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Abstract

This paper describes how meta-cognitive processes may
be captured within a cognitive architecture CLARION.
Existing cognitive architectures often lack built-in meta-
cognitive mechanisms. However, meta-cognitive pro-
cesses are important, in that they are an essential part
of cognition and without them, cognition may not func-
tion properly. We contend that meta-cognitive mecha-
nisms should be an integral part of cognitive architec-
tures, and thus they have been developed as a part of
CLARION. It is demonstrated how human data of meta-
cognitive experiments may be simulated using CLARION.
The simulations show that meta-cognitive processes can
be adequately captured within the CLARION framework.

Keywords: metacognition;
modeling; simulation.

cognitive architecture;

Introduction

According to Flavell (1976), meta-cognition refers to
“one’s knowledge concerning one’s own cognitive pro-
cesses and products or anything related to them.” Meta-
cognition includes “the active monitoring and conse-
quent regulation and orchestration of these processes in
relation to the cognitive objects or data on which they
bear, usually in the service of some concrete goal or ob-
jective.”

Moreover, meta-cognitive processes have often been
portrayed as explicit processes that involve deliberate
reasoning (Metcalfe and Shimamura 1994, Mazzoni and
Nelson 1998). However, recently, evidence has been
mounting that meta-cognitive processes may not be en-
tirely explicit. For example, Reder and Schunn (1996)
argued that there were likely implicit processes, for the
simple reason of avoiding using up limited cognitive re-
sources (such as attention) and interfering with regu-
lar processes. Thus, they argued that, while strategies
themselves might be explicit, and/or explicitly learned,
the selection (and use) of strategies was implicit. We
have reasons to believe that meta-cognitive knowledge
is neither necessarily explicit, nor necessarily implicit.
Meta-cognition is likely a combination of implicit and ex-
plicit processes, the same as regular cognitive processes,
as has been argued amply before (Sun 1999, 2002, Sun
et al 2001, Reber 1989).

It is worth noting that in existing cognitive architec-
tures, there usually lack built-in meta-cognitive mech-
anisms. However, meta-cognitive mechanisms are im-
portant in relation to computational cognitive modeling.

Meta-cognitive mechanisms are an essential part of cog-
nition, and without them, cognition may not function
properly (Metcalfe and Shimamura 1994, Mazzoni and
Nelson 1998). Therefore, we believe that meta-cognitive
mechanisms should be an integral part of cognitive ar-
chitectures.

In this paper, we will develop a theoretical framework
of meta-cognition in the context of an overall architec-
ture of the mind — the CLARION cognitive architecture.
The architecture is then used to construct models of
specific meta-cognitive processes, which are then used
to capture experimental data related to meta-cognition.
Such simulations serve to validate the models (to some
preliminary extent).

Meta-Cognitive Experiments and Data

In the task of Metcalfe (1986), subjects were given a
sheet of paper that described a story. They were asked
to solve the puzzle in the story. They were told to write
down a number between 0 and 10, whereby 0 meant that
they were “cold” about the problem (i.e., they had no
idea at all about the solution) and 10 meant that they
were certain that they had the right solution. They were
supposed to do so every 10s at the sound of a click. When
the subjects had achieved a solution, they were to write
it down on a piece of paper. 134 subjects (undergraduate
introductory psychology students) were tested.

43 subjects got the right solution and 44 subjects came
up with wrong answers. In general, subjects who came
up with the correct solution gave lower warmth ratings
than did subjects with incorrect solutions. ANOVA (cor-
rect X incorrect) showed F'(1,50) = 2.81,p = 0.09, when
the last three ratings were used. However, if we only look
at the last two warmth ratings before reaching a solution,
this effect was significant, F'(1,50) = 6.48,p < 0.05. If
we only look at the last warmth rating before reaching
a solution, this effect was also significant, F'(1,68) =
15.00,p < 0.05.

Warmth rating reflects meta-cognitive monitoring —
keeping an eye on one’s own cognitive processes. How-
ever, the difference in warmth rating is highly counter-
intuitive — we would normally expect that subjects who
came up with the correct solution gave higher warmth
ratings than did subjects with incorrect solutions, but
the result was the exact opposite. The question is how
this result should be explained; in particular, we would
want to know how this result should be explained mech-
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anistically (computationally), within the general frame-
work of a cognitive architecture.

Meta-Cognition in CLARION

The Overall Architecture. Overall, CLARION is an
integrative architecture, consisting of a number of dis-
tinct subsystems, with a dual representational struc-
ture (implicit and explicit) in each. Its subsystems in-
clude the action-centered subsystem (the ACS), the non-
action-centered subsystem (the NACS), the motivational
subsystem (the MS), and the meta-cognitive subsystem
(the MCS). The role of the ACS is to control actions, re-
gardless of whether the actions are for external physical
movements or internal mental operations. The role of the
NACS is to maintain general knowledge, either implicit
or explicit. The role of the MS is to provide underly-
ing motivations for perception, action, and cognition, in
terms of providing impetus and feedback (e.g., indicat-
ing whether outcomes are satisfactory or not). The role
of the MCS is to monitor, direct, and modify the oper-
ations of the ACS dynamically as well as the operations
of all the other subsystems.

Each of these subsystems consists in turn of two lev-
els of representation (a dual representational structure):
Generally, the top level encodes explicit knowledge and
the bottom level encodes implicit knowledge. Notice the
fact that the relatively inaccessible nature of implicit
knowledge may be captured by subsymbolic, distributed
representation provided, for example, by a backpropa-
gation network (Sun 2002). This is because distributed
representational units in the hidden layer(s) of a back-
propagation network are capable of accomplishing com-
putations but are subsymbolic and generally not indi-
vidually meaningful (Sun 1994). This characteristic of
distributed representation, which renders the represen-
tational form less accessible, accords well with the rel-
ative inaccessibility of implicit knowledge (Reber 1989,
Seger 1994, Cleeremans et al 1998). In contrast, explicit
knowledge may be captured in computational modeling
by symbolic or localist representation, in which each unit
is more easily interpretable and has a clearer conceptual
meaning (Sun 1994). This characteristic of symbolic or
localist representation captures the characteristic of ex-
plicit knowledge being more accessible and more manip-
ulable (Sun 1994). !

Figure 1 contains a sketch of this basic architecture of
a cognitive agent, which includes the four major subsys-
tems. The following three subsections will sketch, one
by one and in some more detail, these subsystems of
CLARION.

The Action-Centered Subsystem. The overall al-
gorithm for action decision making in the action-centered
subsystem (the ACS) of CLARION is as follows, where the
bottom level is named the IDNs (the Implicit Decision
Networks) and the top level the ARS (the Action Rule
Store):

1. Observe the current state z.
2. Compute in the bottom level (the IDNs) the “value”
of each of the possible actions (a;’s) associated

!See Sun (1994, 2002) for full arguments.
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Figure 1: The CLARION architecture.

with the state z: Q(z,a1), Q(z,a2), ...... , Q(z,an).
Stochastically choose one action according to Q val-
ues.

3. Find out all the possible actions (b1, bz, ...., bm) at
the top level (the ARS), based on the current state
x and the existing rules in place at the top level.
Stochastically choose one action.

4. Choose an appropriate action a, by stochastically
selecting the outcome of either the top level or the
bottom level.

. Perform the action a, and observe the next state y
and (possibly) the reinforcement r.

. Update the bottom level in accordance with an appro-
priate algorithm based on the feedback information.

. Update the top level using an appropriate algorithm
(for extracting, refining, and deleting rules).

. Go back to Step 1.

o N o o

In each network (encoding implicit knowledge), ac-
tions are selected based on Q values. A Q value is an
evaluation of the “quality” of an action in a given state:
Q(z,a) indicates how desirable action a is in state z. At
each step, given the state x, we compute the Q values
of all the actions (i.e., Q(z,a) for all a’s). We then use
the Q values to decide probabilistically on an action to
be performed, through a Boltzmann distribution of Q
values (this method is also known as Luce’s choice ax-
iom; Watkins 1989). The @Q-learning algorithm (Watkins
1989), a reinforcement learning algorithm, is used for
learning Q values (i.e., learning implicit knowledge at
the bottom level). Q values are gradually tuned, on-
line, through successive updating, to enable sequential
behavior to emerge. Q-learning is implemented in back-
propagation networks (Sun 2002, 2003). 2

Next, explicit knowledge at the top level (the ARS)
is captured by action rules. An action rule indicates an
action to be performed in a particular state.

Action rules may be learned in a variety of ways.
For example, to capture a bottom-up learning process
(Karmiloff-Smith 1996, Sun 20002), the Rule-Extraction-
Refinement algorithm (RER) learns action rules at the

2As Q-learning is not directly relevant to this work, see
Sun (2003) for further details.
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top level using information in the bottom level. The
basic idea of bottom-up learning is as follows: If an
action chosen (by the bottom level) is successful (i.e.,
it satisfies a certain criterion), then an explicit action
rule is extracted. Then, in subsequent interactions with
the world, the rule is refined by considering the out-
come of applying the rule: If the outcome is successful,
the condition of the rule may be generalized to make
it more universal; if the outcome is not successful, then
the condition of the rule should be made more specific
and exclusive of the current case. An agent needs a ra-
tional basis for making these above decisions, which is
based on information gain (Sun 2002, 2003). The de-
tails of the operations used in the algorithm (including
extraction, generalization, and specialization) and the
numerical criteria measuring whether a result is success-
ful or not (used in deciding whether or not to apply some
of these operators) can be found in Sun (2002, 2003).
(Since they are not directly relevant to this work, we
will not get into the details.)

For integrating the outcomes of the two levels, at each
step, with probability Prj,, we use the outcome from the
top level. With the probability Pgr(=1— Prr), we use
the outcome of the bottom level. The selection proba-
bilities may be variable, determined through a process
known as “probability matching”: that is, the probabil-
ity of selecting a component is determined based on the
relative success ratio of that component.

The Non-Action-Centered Subsystem. At the
bottom level of the NACS, the “associative memory”
networks (the AMNs for short) encode implicit non-
action-centered knowledge. Associations are formed by
mapping an input to an output. The regular back-
propagation learning algorithm can be used to establish
such associations between pairs of inputs and outputs
(Rumelhart et al 1986).

On the other hand, at the top level of the NACS,
a general knowledge store (the GKS) encodes explicit
non-action-centered knowledge (cf. Sun 1994). In this
network, concepts are represented by chunks, which are
specified through dimensional values (as in the ACS).
Links between chunks encode associations between pairs
of chunks (concepts), known as associative rules.

On top of rule-based reasoning, similarity-based rea-
soning may be employed in the NACS. An agent may
compare a known (given or inferred) chunk with another
chunk. If the similarity between them is sufficiently high,
then the latter chunk is inferred.

The Motivational Subsystem. The motivational
subsystem (the MS) is concerned with drives and their
interactions (Toates 1986). That is, it is concerned with
why an agent does what it does. Simply saying that
an agent chooses actions to maximizes gains, rewards,
or payoffs leaves open the question of what determines
gains, rewards, or payoffs. The relevance of the motiva-
tional subsystem to the main component, the ACS, lies
primarily in the fact that it provides the contezt in which
the goal and the payoff of the ACS are set. It thereby
influences the working of the ACS, and by extension, the
working of the NACS. Since this part is not directly rel-

evant to this work, we will not get into more details (see
Sun 2003 for further details).

The Meta-Cognitive Subsystem. On the other
hand, meta-cognition taps into one’s knowledge concern-
ing one’s own cognitive processes and outcomes. It in-
volves active monitoring as well as regulation/control
of these processes, usually in the service of some goal
(Flavell 1976). This notion of meta-cognition is opera-
tionalized within CLARION. The meta-cognitive subsys-
tem (the MCS) monitors and controls/regulates cogni-
tive processes for the sake of improving cognitive perfor-
mance. Control and regulation may be in the forms of
setting goals for the ACS (on the basis of motivational
states), setting essential parameters of the ACS and the
NACS, interrupting and changing on-going processes in
the ACS and the NACS, and so on. Control and regu-
lation may also be carried out through setting reinforce-
ment functions (on the basis of motivational states).

Specifically, in this subsystem, several types of meta-
cognitive processes are available, for different meta-
cognitive monitoring and control/regulation purposes.
Among them, there are the following types:

(1) behavioral aiming:
setting of reinforcement functions
setting of goals

(2) information filtering:
focusing of input dimensions in the ACS
focusing of input dimensions in the NACS

(3) information acquisition:
selection of learning methods in the ACS
selection of learning methods in the NACS

(4) information utilization:
selection of reasoning methods in the ACS
selection of reasoning methods in the NACS

(5) outcome selection:
selection of output dimensions in the ACS
selection of output dimensions in the NACS

(6) cognitive mode selection:

selection of explicit processing, implicit processing,
or a combination thereof (with proper integration
parameters), in the ACS

(7) setting parameters of the ACS and the NACS:
setting of parameters for the IDNs

setting of parameters for the ARS

setting of parameters for the AMNs

setting of parameters for the GKS

Structurally, the subsystem may be subdivided into a
number of modules. The bottom level consists of the
following (separate) networks: the goal setting network,
the reinforcement network, the input selection network,
the output selection network, the parameter setting net-
work (for setting learning rates, temperatures, etc.), and
so on. In a similar fashion, the rules at the top level (if
they exist) can be correspondingly subdivided. See
Figure 2 for a diagram of the MCS.
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Figure 2: Structure of the meta-cognitive subsystem.

The monitoring buffer contains several sections of in-
formation: the ACS performance section, the NACS per-
formance section, the ACS learning section, the NACS
learning section, and other sections. Each section con-
tains information about both the bottom level and the
top level of a subsystem. Most relevant to this work,
in each “performance” section, the information about
a subsystem includes not only the strengths of the top
conclusions, but also the relative strengths of the top con-
clusions, which concern how distinguished or certain the
top conclusions are in relation to other competing ones.
3 A relative strength is defined as:

RS; = Si (1)

Ej Sj

where S stands for strength, and RS for relative
strength.

Other aspects of the MCS, such as setting reinforce-
ment functions, setting goals, information selection, and
so on, can be found in Sun (2003). This subsystem may
be pre-trained before the simulation of any particular
task (to capture evolutionary pre-wired instincts or pre-
viously acquired knowledge and skills).

Simulations of Meta-Cognitive Data

In the simulation, we model meta-cognitive monitoring,
and thereby provide a detailed computational explana-
tion of the (counter-intuitive) experimental results of
Metcalfe (1986).

Model Setup. The explanation of the experiment
of Metcalfe (1986) on which this simulation was based
was that when a subject came up with multiple plausi-
ble explanations and had to evaluate their relative mer-
its, his/her subjective certainty on the conclusions (a
meta-cognitive judgment) was relatively low due to the
co-existence of multiple plausible explanations. Hence a
lower warmth rating was produced. But, in this way, the

3Details of other sections can be found in Sun (2003).

subject was more likely to come up with a correct (the
most plausible) explanation eventually. On the other
hand, when a subject came up with only one plausible
explanation, there was no need to evaluate multiple pos-
sibilities, and thus his/her subjective certainty, and also
his/her “warmth” rating, was higher, but that sole expla-
nation was more likely wrong, because of the ambiguity
of the situation and the lack of careful evaluation of all
possibilities on the part of the subject (Metcalfe 1986).

In CLARION, both the ACS and the NACS were in-
volved in the simulation of this task. The NACS per-
formed inference under the control of the ACS. Through
the monitoring buffer, the MCS monitored the progress
of inference in the NACS and performed meta-cognitive
control when needed.

More specifically, the goal of performing “regular in-
ference” was set up first by the MS (before it all began).
The MCS then selected relevant input dimensions to be
used in reasoning in the NACS, which excluded all other
information not relevant to the task at hand (for exam-
ple, there was contextual input information, such as time
and location, that was not relevant to the task). The
MCS also selected reasoning method to be used in the
NACS, in this case, “forward chaining with similarity
based reasoning”.

Among other things, the monitoring buffer in the MCS
kept track of how clear-cut conclusions reached by the
NACS were. The NACS section of the buffer recorded
the relative strengths of the n most highly activated con-
clusions (as explained earlier). When that part of the
buffer reported that there was one conclusion that stood
out with a high relative strength, the conclusion was con-
sidered certain and its “warmth” level was correspond-
ingly high. Otherwise, the conclusion was less certain,
and the “warmth” level was lower. Hence, “warmth”
was captured in this simulation by relative strength.

The ACS directed the reasoning of the NACS. The
following action rules were implemented in the top level
of the ACS for this purpose:

If goal= regular-inference, then perform one-step of in-

ference in the NACS (using method selected by the MCS
and information filtered by the MCS).

If goal= regular-inference, and chunk i is a conclusion
chunk with RS; > thresholdrs and V;S; > S;, then
retrieve chunk ¢ and report it.

If goal= warmth-reporting, then report the “warmth”
of the chosen chunk from the monitoring buffer in the
MCS.

where RS stood for relative strength, and S for
strength. The threshold for relative strengths was set
at thresholdrs = 0.5.

Although the IDNs (the bottom level of the ACS) were
present, they had very little effect. This was due to the
stochastic selection of levels in favor of the top level (due
to the setting of the cross-level integration parameters),
which was the result of the task instructions, which led
to performing a rather explicit inference task.

At the top level of the NACS (the GKS), relevant
knowledge was encoded as associative rules. Some sub-
jects (those who turned out to have higher warmth rat-
ings) had few of these rules, while other subjects (those
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who turned out to have lower warmth ratings) had more
of these rules. In relation to the domain of this experi-
ment, rules were in the following form:

If event A1 happens, then B11 might be the answer
If event A1 happens, then B12 might be the answer
If event A2 happens, then B21 might be the answer
If event A2 happens, then B22 might be the answer

At the bottom level of the NACS, one AMN was
present. The network was trained with the same knowl-
edge as embodied by the associative rules in the GKS.

Simulation Results. In our simulation, in general,
those variants of the models that generated the correct
solution gave lower warmth ratings than those that gen-
erated incorrect solutions. Thus, the simulation model,
as explained earlier within the general framework of
CLARION, accounted for the counter-intuitive findings
in the experimental data of Metcalfe (1986).

In the simulation data, for the last two ratings, there
were significant differences between the two groups of
simulated subjects. At the last rating, the average
warmth rating of the simulated subjects with correct so-
lutions was 3.327, while that of the simulated subjects
with incorrect solutions was 5.241. At the rating pre-
ceding the last, the average warmth rating of the sim-
ulated subjects with correct solutions was 3.299, while
that of the simulated subjects with incorrect solutions
was 5.085.

An ANOVA of the warmth data of the last rating
showed that there was a significant difference between
correct versus incorrect (F'(1,298) = 92.808, MSE =
273.196,p < 0.0001). Similarly, an ANOVA of the
warmth data of the penultimate rating showed that
there was also a significant difference (F'(1,292) =
78.049, MSE = 232.681, p < 0.0001).

The earlier explanation of the data pattern of this ex-
periment has been confirmed by the simulation: That is,
when a subject initially came up with multiple plausible
explanations (when multiple relevant rules were avail-
able), his/her subjective certainty on the conclusions was
low due to the co-existence of multiple plausible explana-
tions. Thus a lower warmth rating was produced. How-
ever, the subject in this case was more likely to come up
with a correct explanation, based on evaluations of the
relative merits of the different explanations.

Discussions

The simulations in this work help us to better under-
stand issues related to meta-cognition, which may well
be one of the central issues of cognition and may have
significant implications for further advances in cognitive
theories and in further development of cognitive architec-
tures (Reder 1996, Anderson and Lebiere 1998, Lovett et
al 2000, Sun et al 2001, Sun 2002). Notably, many cogni-
tive architectures do not include a meta-cognitive com-
ponent (such as ACT-R; Anderson and Lebiere 1998).
Thus, work in this area is not only useful but very much
needed.

Compared with other existing cognitive architectures,
CLARION clearly has much better developed meta-
cognitive mechanisms. For example, in ACT-R, meta-
cognitive control and regulation are often accomplished
through manually adjusting parameter settings (Lovett
et al 2000). Although some meta-cognitive reasoning
processes may be implemented using ACT-R’s produc-
tion rules, the range of meta-cognitive processes that
can be implemented using ACT-R is very limited, be-
cause there is no built-in mechanism or process in ACT-
R specifically designed to capture meta-cognitive pro-
cesses in a precise way. Our simulation results, for in-
stance, would be difficult for ACT-R to replicate. An
ACT-R model of this sort of task would end up calculat-
ing the relative strength of the relevant productions (or
chunks, depending on implementations), but the ACT-R
model, by design, would not have access to the results
of this calculation, making it very difficult to show the
same behavior.

We can also compare CLARION with SOAR (Rosen-
bloom et al 1993). In SOAR, like in ACT-R, some meta-
cognitive processes may be implemented using produc-
tion rules, but they would be very limited. They are
also not properly distinguished from regular processes
and delimited in terms of their specific characteristics.

In contrast, CLARION has a set of specially designed
mechanisms for monitoring, controlling, and regulating
cognitive processes. The meta-cognitive subsystem may
filter /select information, adjust cognitive parameters, or
intervene in regular cognitive processes. Also, in contrast
to these two other cognitive architectures, in CLARION,
meta-cognitive processes are architecturally specified to
a large extent. They are specifically modeled to the ex-
tent that we believe is appropriate. They are not totally
undelimited, as in the other architectures. But they are
also not completely fixed and thus they are not inflex-
ible. As our understanding of meta-cognitive processes
grows, these mechanisms in CLARION may be further re-
fined, and tailored to capture the exact range and scope
of human meta-cognitive processes.

One counter-argument that may arise would be that,
although the other architectures do not have built-in
meta-cognitive mechanisms, at least some of those ar-
chitectures allow meta-cognition to occur on the basis of
the regular cognitive mechanisms, and it is the more con-
strained architectures that provide deeper explanations,
rather than those with a larger pool of specific mecha-
nisms for specific classes of phenomena. However, this
counter-argument ignored the fact that there are severe
limitations in those other architectures in terms of the
range of meta-cognitive phenomena those other archi-
tectures can capture. If an architecture fails to capture
the breadth of meta-cognitive phenomena, then there is
very little to be gained in being “constrained”, because
no “deep” explanations come out of it when it cannot
capture most of the phenomena.

As indicated by our earlier discussion of simulation
results, CLARION, through simulation, succeeded in ex-
plaining, computationally, counter-intuitive results in
the experimental data of Metcalfe (1986) (which con-
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cerned the lower warmth ratings from the subjects who
found the correct answers compared with the subjects
who failed to do so). The explanation (based on amount
of relevant knowledge) naturally fell out of the processes
embodied by CLARION.

A number of other meta-cognitive simulations have
also been carried out, and many more meta-cognitive
simulations are under way. We expect that these sim-
ulations will provide further arguments in favor of our
design of the meta-cognitive subsystem in CLARION.

Concluding Remarks

In summary, simulations of meta-cognitive monitor-
ing have been conducted based on the built-in meta-
cognitive mechanisms in the cognitive architecture
CLARION. The cognitive architecture contains rather
detailed descriptions of meta-cognitive mechanisms and
thus makes simulations of meta-cognitive processes eas-
ier to construct, less ad hoc, and more uniform. That
is, meta-cognitive processes are, more or less, architec-
turally specified in CLARION. We showed that this ap-
proach is viable for cognitive modeling.

The afore-described simulations captured rather ac-
curately the experimental data of Metcalfe (1986). To
some extent, the afore-described simulation, along with
other meta-cognitive simulations using CLARION, vali-
dated our approach (as embodied by CLARION).
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