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ABSTRACT 

Predicting Surgical Site Infections Using Machine Learning Approaches  

with Further Investigation of Bias 
 

Digitalization of healthcare records has made patient-centered records, commonly known as 

Electronic Health Records (EHRs), readily available and has provided opportunities for secondary 

analysis. These EHRs provide us with patient demographics, laboratory values, patient vitals 

values, the medications administered throughout the treatment, the type of surgery the patient 

underwent, outcomes, and much more information. This readily available data has enabled the 

fast-growing field of Machine Learning and Artificial Intelligence to build reliable patient statistics 

and gain useful insights which support healthcare providers in making better decisions, thereby 

improving the quality of healthcare. 

This Thesis demonstrates one such use case of EHR data in predicting the onset of Surgical 

Site Infections (SSIs). The objective is to predict and stratify patients who are at risk of developing 

SSI by applying various Machine Learning (ML) methods. 

Surgical Site Infections (SSIs) can be defined as the infections that occur at the site of the 

surgery within 30 to 90 days of the procedure, depending on the type of the procedure. SSIs 

account for about 20% of all Hospital-Acquired Infections (HAIs) and have an enormous effect on 

patients, hospitals, and public health in general. Predicting who may be at risk for SSIs can help 

clinicians take preventive measures to avoid the onset of the infection. Availability of data at both 

the pre-and post-operative stages allows the application of ML methods at each of the stages, 

aiding in drawing better insights. 
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The usage of this readily available data comes with its own downsides. There is an inherent 

bias in data that could have been induced at different stages of the data acquisition process. These 

biases, when left unaddressed, can creep into the algorithms we employ and result in biased 

decisions. This unintentional bias may seem unfair to certain groups of the patient population. 

Identifying and mitigating this bias issue will result in a “fair” predictive model. In this Thesis, we 

analyze and demonstrate the issue of ML bias in using retrospective patient data. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

Surgical Site Infections (SSIs), defined as the infections that occur at the site of the surgery 

within 30 to 90 days of the procedure can have an enormous negative impact on patients, hospitals, 

and public health in general. Machine learning approaches, and further analysis of inherent biases 

may help with predicting who may be at risk of SSI and help clinicians take necessary interventions 

to prevent the onset of SSI. 

1.2 Thesis Statement 

The objective of this thesis is to predict and stratify patients who are at risk of developing 

SSI by identifying the risk factors and applying various Machine Learning (ML) methods. Further, 

we also analyze and demonstrate the issue of ML bias in using retrospective patient data fpr the 

task of SSI classification.  

1.3 Approach 

The goal of the experiments performed in this thesis are to provide a model for SSI risk 

prediction and to handle the inherent bias present in data modeling. Our approach begins with 

reducing data from two patient data sources, the SSI surveillance National Healthcare Safety 

Network (NHSN) registry data, and the associated Electronic Health Records (EHR), into a single 

covariate matrix. The covariate matrix was further processed, and data inconsistencies were 

addressed. Next in the pipeline was a two-step feature selection process that filtered the important 

features based on statistical measurements and further reduces the feature set by factoring in the 



 

 

2 

 

downstream classification task. This process provided us with a set of predictors that contribute 

the most towards SSI risk prediction. The final step of the pipeline involved the Nested cross-

validation process that provides a robust estimate of the performance of the ML model. All the 

input features for the model were structured and discrete providing an opportunity to automate the 

process of prediction to provide decision support in real-time at the point-of-care across the 

continuum of pre-operative surgical planning phase through to the post-operative recovery phase.  

In the above-mentioned experiments, we do not deal with the inherent bias present in the 

data. The next part of this thesis deals with identifying and mitigating this bias. Identifying this 

bias begins with defining the subgroups from the patient population followed by assessing the ML 

model’s performance across these groups to provide proof of the existence of bias in terms of 

statistical metrics. Further, we discuss mitigation techniques to handle the bias issue.  

The approaches in this thesis were carefully designed in a way that makes sense in both, 

engineering as well as in the medical field, by working closely with clinical subject experts. 

1.4 Organization 

This thesis is organized into 6 chapters. Chapter 2 details the technical methodologies and 

algorithms used in our experimentation. In Chapter 3, we discuss the background, significance, 

and related works in SSI prediction and the algorithmic bias issues. Chapter 4 details the processes 

involved in developing the pipeline for SSI prediction along with the results. Chapter 5 explains 

the methods employed in bias identification and mitigation along with the results. Chapter 6 

concludes and discusses the interpretation of the results and the limitation in the experiments from 

the previous chapters. 
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CHAPTER 2: TECHNICAL CONCEPTS 

2.1 Predictive Modeling 

2.1.1 Random Forest (RF) 

A decision tree, as the name suggests, models the data in the shape of a tree which is then 

used to classify a new unknown data point. For a binary classification tree, at every node, the input 

training data points are split into homogenous groups based on the features in the dataset. The 

“Gini” score, similar to a cost function, indicates the quality of a split. The Decision tree has a 

recursive nature and is a greedy algorithm with the objective to reduce the cost of splitting. With 

such an algorithm there rises a possibility of overfitting, where the algorithm perfectly models the 

given data but fails at generalizing.  

 

Figure 1. Random Forest 
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 The Random Forest (RF) algorithm encompasses multiple decision trees. An RF model 

consists of a cluster of decision trees and the final prediction, either classification or regression, is 

based on all the trees. Each decision tree in RF is built using a subset of the input training data 

points obtained by resampling and a random set of features (See Figure 1). The output of an RF 

classifier is the class with the majority of the votes from the cluster of trees. By using a random 

vector of features for each tree RF decreases the correlation between the trees which in turn reduces 

the chances of overfitting and helps in generalizing the model to unknown data points better than 

a decision tree [1]. But there is still the chance of individual trees overfitting that can be handled 

by manipulating the characteristics of the trees such as the depth and the minimum number of data 

points per leaf node. 

2.1.2 Convolutional Neural Network (CNN) 

Artificial Neural Networks (ANNs) are a category of algorithms that use an interconnected 

structure of neurons to learn patterns from the data. ANNs are often compared to the neural 

connections in a human brain and hence the name. The structure often consists of an input layer, 

followed by multiple hidden layers, and then an output layer. Each layer of the network consists 

of a weight matrix (also known as parameters of the network) and reveals features of interest, from 

the input data, that help in deducing the patterns and aids in the task of classification. The input 

data is transformed from one layer to another often by a linear matrix multiplication with the 

weight matrix followed by a non-linear activation. The activation function is basically a 

thresholding function that activates a neuron and allows data transfer from that neuron if the value 

in the neuron is above a specified threshold. The output layer produces the final result, and for a 

classification task, the size of the output layer depends on the number of classes in our data.  
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𝑐𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 =  
−1

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒
∑ 𝑦𝑖 log 𝑦�̂� +  (1 −  𝑦𝑖) log (1 − 𝑦�̂�)

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒

𝑖=1

 

The network learns the patterns by a training regime that consists of two processes: forward 

propagation and backward propagation. The forward propagation produces the final result by 

propagating the data through the layers. The backward propagation involves a cost function that 

calculates the cost of misclassification. The weight matrices of the layers in the network are then 

updated as a function of this cost. The network is repeatedly trained with these two processes with 

the objective to minimize the cost of misclassification. We employed a cross-entropy loss function 

as defined by above equation. In the equation, 𝑦𝑖  denotes the true class and  𝑦�̂� 
 denotes the class 

predicted by our network for the given input sample. The training regime also involves several 

hyperparameters that help in manipulating the quality and duration of training.  

 

Figure 2. One-dimensional CNN 

Convolutional Neural Networks (CNNs) are a subset of ANNs that performs a convolution 

operation between matrices in the forward propagation of the network. At every layer, the input to 
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the layer is convolved with the weight/parameter matrix of the layer. A simple CNN, as shown in 

Figure 2, consists of multiple layers: convolutional layer, pooling layer, non-linearity layer, and 

fully-connected layer [2]. Fully-connected layers are the same as the neuron arrangement found in 

a traditional neural network. The convolutional layers and the fully-connected layers are the ones 

containing the parameters which are updated during the training of the network. The training of a 

CNN is quite similar to that of an ANN with the forward propagation and the backward 

propagation. 

CNNs with multiple deep layers are known for their usage in the classification of 

unstructured data such as image and text data but in this thesis, we have implemented a shallow 

one-dimensional CNN for the task of classifying structured data. 

2.2 Feature Selection 

2.2.1 Statistical Filtering 

The Kolmogorov-Smirnov (KS) test is used to test for the goodness of fit of one sample 

distribution with another. Given a sample and a reference or two samples, the KS test for goodness 

of fit tests the null hypothesis: the two samples were drawn from the same distribution. The 

motivation to test the goodness of fit is supported by the argument that to classify the records into 

positive and negative classes, we need features that reflect the differences in distribution and help 

the model distinguish between the two classes. The main advantage of the KS test is that it is a 

non-parametric and distribution-free test, that is, it is independent of the underlying distribution of 

the data [3].  

In the KS test, we divide our feature samples into two groups based on the target to create 

empirical Distribution Functions (EDFs). The vertical distance between these two distributions (d) 
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is calculated, as observed in Figure 3 (Bscan, 2013) [40]. This distance (d) is then compared with 

a critical value that can be obtained readily from the KS-test P-value table using the sample size 

and the significance level. If the distance (d) is greater than the critical value, then the hypothesis 

can be rejected. The features that reject the null hypothesis can be considered to distinguish 

between the binary target values. 

 

Figure 3. KS statistic depicting the vertical distance between two distributions  

(Bscan, March 2013) 

The KS test is a univariate test that helps in proving the existence of a correlation between 

the features and the target variable. Although this helps in choosing the relevant features, there 

might exist a correlation between some of the chosen features which may not contribute to the 

prediction of the target variable. These highly correlated features need to be excluded from the 

analysis using multivariate test, such as Pearson’s correlation test. 

The Pearson’s product-moment correlation coefficient is a numerical value indicating the 

linear association/correlation between two features. The values range from +1 to -1. A positive 

value indicates a positive relationship, that is, as one variable increases, the other also increases, 

and similarly, a negative value indicates a negative relationship, that is, as one variable's value 
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increases, the other decreases. A higher absolute value indicates a high correlation between the 

two features. A value close to zero indicates no correlation between the two variables [4].  

The correlation coefficient is calculated based on the spread, that is, the variation of the 

data points, around the line of best fit drawn using the two variables. The three possible cases of 

correlation are depicted in Figure 4 (Steven Nickolas, Feb 2019) [41]. A higher spread leads to a 

lower correlation coefficient value and a lower spread, that is, the data points showing low 

variation away from the line, lead to a higher absolute coefficient value. Based on the obtained 

values, an empirical threshold is set to filter out the features that are least correlated with one 

another. 

        

Figure 4. Correlation depicted by data spread and the line of best fit (Steven Nickolas, Feb 2019) 

2.2.2 Maximum Relevance and Minimum Redundancy (MRMR) 

Maximum Relevance and Minimum Redundancy (MRMR) is a statistical feature selection 

method that picks up features based on their relevancy or correlation with the target variable and 

avoids redundant features [5]. Redundant features are those that have high cross-correlation with 

other features and do not provide any new information but might add noise to predictive modeling. 

This is done in an iterative manner, where the number of iterations depends on the number of 

features required. There are two steps at every iteration, first, the correlation between each feature 
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and the target is calculated (c1). Second, the cross-correlation between the features that have not 

been selected yet and the already selected features is calculated (c2). The final score is calculated 

as c1/c2, and the feature with the highest final score is selected at that iteration.  

Following the MRMR feature selection, we implemented an exhaustive feature search 

method known as forward selection. This is an exhaustive search method that iteratively selects 

features that when combined with already selected features improve the predictive performance of 

the model. Unlike the previous selection algorithm, this method takes into consideration the 

downstream classification task. This is a suitable method when the number of features is limited 

as the computational complexity is high. By using the MRMR method, we were able to filter out 

a significant number of features and reduce the size of the feature set enabling the use of a more 

robust feature selection method such as forward selection, which otherwise would be 

computationally very expensive. 

 

Figure 5. Nested Cross-Validation 
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2.3 Nested Cross-Validation  

Nested Cross-Validation (NCV) was employed to provide a robust estimate of the 

generalized model performance. In NCV, there are two nested loops, outer and inner, the outer 

loop splits the data into ‘K’ folds and at each iteration one of the folds acts as a hold-out data and 

the remaining data is used for training. In the inner loop, the training data is split into ‘n’ folds and 

at each iteration one of the folds acts as validation data and the remaining folds are used for 

training. The purpose of the inner loop is to search for the best hyperparameter that improves the 

model’s performance on unseen data. The model is then fitted with the best hyperparameter found, 

trained on the outer loop’s training data, and evaluated using the outer loop’s hold-out data. Figure 

5 shows a pictorial representation of the process. 
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CHAPTER 3: BACKGROUND AND RELATED WORK 

3.1 Surgical Site Infections 

Surgical Site Infections (SSI) are an adverse event that complicates 2% to 5% of patients 

who undergo inpatient surgery in the United States. Approximately 21.8 million surgeries are 

conducted, and around 160,000–300,000 SSIs occur annually in the United States [6, 7]. SSI is 

now the most common and most expensive Hospital-Acquired Infection (HAI), accounting for 

20% of all HAIs in hospitalized patients. 

The impact of SSI on patients, hospitals, and public health in general, is enormous. SSI 

significantly affects patient outcomes. Along with discomfort, pain, and suffering due to additional 

interventions, SSIs are estimated to add an extra 7 to 11 days to a patient’s hospital stay, 2 to 11 

folds higher risk of death compared to non-SSI patients, and 77% of deaths in patients with an SSI 

are directly linked to the SSI. Further, many of the costs associated with managing SSI are non-

reimbursable. SSIs add about $3.5 billion to $10 billion annually to healthcare expenditures [6]. 

Therefore, SSIs are a significant public health concern due to its association with morbidity, 

mortality, and healthcare costs. 

The quality improvement initiatives by public health institutions have generated evidence-

based guidelines that provide strategies to prevent SSIs. It is estimated that up to 60% of SSIs are 

preventable by following these guidelines. Recent reports suggest a slight decrease in the incidence 

of SSI and other HAIs, after the implementation of practices that are following those guidelines, 

though more research and efforts are needed [8]. SSIs are a national healthcare priority, and several 

initiatives for SSI surveillance within hospitals have arisen over the past few decades, with the 

goal of improving the early detection of SSI [9]. 
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Much of the research concerning SSI is in developing surveillance methods for monitoring 

SSI rates in hospitals. Early efforts at the monitoring of SSI by the CDC have helped develop 

standard metrics for tracking SSI rates and other surgical outcomes over time and across 

institutions so that trends and comparison of infection rates between facilities are standardized. 

Utilizing these standards, the CDC has established the National Healthcare Safety Network 

(NHSN) and developed standards to track HAIs, including SSI. The information system, National 

Nosocomial Infections Surveillance System (NNIS), was set up by CDC in 1992 and helps 

participating institutions follow standard definitions and guidelines at data collection, which is 

mandatory in most states and tied to payment determinations. 

The American College of Surgeons followed the NHSN methods, pooled collective 

knowledge of its members to add additional data elements to the standard matrices and 

implemented the National Surgical Quality Improvement Program (NSQIP). The data capture 

methods at point-of-care for both NHSN and NSQIP are active surveillance and retrospective 

review of clinical documentation. Though the NSQIP surveillance methods differ slightly from the 

NHSN, both standards, definitions, and surveillance data are broadly accepted benchmarks, 

implemented across healthcare facilities as part of quality improvement initiatives and surgical 

outcomes research [10, 11]. Both data repositories provide a rich source of manually curated and 

validated data, capturing both SSI and non-SSI control populations from healthcare facilities 

across the US for research purposes. 

The availability of validated data on SSI patients and the non-SSI control population has led 

to a range of efforts at developing generalizable forecasting and predictive modeling methods for 

identifying patients who are at increased risk for SSI. Typically, however, these efforts are limited 

to data captured using these NHSN and NSQIP databases. In addition, very few studies have 
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attempted to incorporate additional features into their modeling approaches, such as laboratory, 

vitals, and medication data [9, 12, 13, 14, 15]. 

Identification of risk factors is an essential step in the early detection of SSI. Previously 

known risk factors are based on patient- and surgery-related variables, with a few studies 

incorporating additional features such as laboratory, vitals, and medication data. Laboratory data 

is one of the most reliable indicators of health status, a measure of milieu interior, that clinicians 

have depended heavily on for decision-making about all aspects of patient management. Moreover, 

many studies focus on SSI occurrence in specific procedures and hence report surgery-specific 

risk factors. This project attempts to overcome some of the shortcomings of previous efforts both 

by incorporating additional data sources (from Electronic Health Records) and using modern 

analytic methods for a variety of surgical procedures. Combining and analyzing data from 

disparate patient health measures has thus yielded higher accuracy than similar methods that have 

not incorporated all available additional patient care data. 

Artificial Neural Networks (ANNs) have proven to model complex non-linear patterns that 

linear models struggle to identify. ANNs are typically used for unstructured data such as images 

and text. Image analysis of wounds with ANNs for the detection of SSI has shown very good 

performance in [16, 17]. Though ANNs are preferred for unstructured data, efforts have been made 

to avail the ability of ANNs to model complex relationships in structured data analysis [8, 18, 19]. 

In this project, we attempt to use Convolutional Neural Networks (CNNs) [20], which are a subset 

of ANNs, in the prediction of SSI. Various other ML methods were studied, which are further 

discussed in the methods section.  
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3.2 Bias in ML 

We also demonstrate the bias issue in ML as a part of our study. Algorithmic bias in ML, 

also popularly known as fairness in ML, is a currently emerging field of Artificial Intelligence that 

deals with the biases in data and model, that causes them to perform unevenly across 

groups/individuals that are defined based on the protected attributes such as race/sex. In a broad 

sense, the bias issue in ML is defined as the disparity in the model’s performance, in terms of some 

statistical measure, among different groups/individuals [21]. This bias in the model performance 

can affect the decision-making process and hence result in certain groups being at disadvantage in 

terms of receiving medical care or attention. Such bias, when not diagnosed and left untreated, 

propagates further into future clinical decision-making processes that can negatively impact patient 

outcomes in certain group of patients. 

There are many formal definitions of fairness in ML presented in the literature. The most 

common definitions are Demographic parity, Equality of Odds, and Equality of Opportunity [22, 

23]. Each of these definitions deals with a metric, a measure of bias, bounded by a certain statistical 

constraint. A number of these metrics, depending on the context and the subject matter expertise, 

can be defined as a function of the confusion matrix [24]. The disparate impact, which is defined 

as the disproportionate impact of the outcomes on the subgroups [25], is calculated to quantify the 

disparity in the model performance. This disparate impact helps in identifying the existence of 

bias.  

Once the existence bias has been identified, the next step would be to mitigate the said bias. 

Mitigating bias deals with satisfying the definition of fairness, that is, the statistical constraints that 

bound the metric of choice. Based on the type of constraints violated, the appropriate mitigation 

technique can be chosen. Mitigation techniques are usually grouped into pre-processing, in-
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processing, and post-processing algorithms [26, 27]. Each algorithm manipulates a different part 

of the classification pipeline. In this thesis we demonstrate the identification and mitigation of bias 

in our SSI data. 
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CHAPTER 4: SSI RISK PREDICTION 

4.1 Setup 

In this chapter, we discuss the workflow and techniques employed in the task of SSI risk 

prediction. We first discuss the data collection and the data preprocessing which provides a 

description of the dataset and the decisions taken in processing the data. Then, we move onto the 

features selection section that explains the need for such a process in the pipeline and the analytic 

methods implemented in this thesis. The model development section describes the training of the 

classical ML algorithms and the CNN. Following that, the results section discusses the features 

obtained and the model performances. 

4.2 Data Collection 

After appropriate IRB approval and following standard operating procedures, the validated 

NHSN surveillance data of SSI patients and the denominator control non-SSI population was 

collected for all patients at the UC Davis Health affiliated hospitals who underwent surgery 

between 2014 and 2017. In addition to the NHSN SSI surveillance data, additional data was 

collected for each patient from the internal UC Davis Electronic Health Record (EHR) Clarity 

database, which includes laboratory, vitals, problems list, and medications data. 

4.3 Data Preprocessing 

The raw dataset contained separate files and representations (cohorts) for each patient 

representing disparate sources for laboratory, vitals, medication, and surgery related information 
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spanning from 2014 to 2017. It was necessary to clean and merge these data files. The data cleaning 

process was primarily performed using the R programming languages. Packages such as 

“tidyverse”, “dplyr”, and “tidyr” were used to perform appropriate cleaning of the data and handle 

any inconsistencies that may be present across the data from different years [28], such as the 

variation in data formats and inconsistencies in patient demographics.  

Each patient had multiple values for labs and vitals that were taken at different time points 

for each procedure. Hence, to model these values in a time agnostic fashion, it was necessary to 

create derived variables that summarized these values for each procedure. The lab and vitals’ 

values were represented by the minimum, maximum, mean, and the range of the lab and vitals 

measurements. So, each type of lab and vitals’ measurement was represented by four derived 

features. Additionally, the differences in values of temperature and pulse, the two types of vitals 

variables, before and after the surgical procedure were calculated for every patient and included in 

the features list.  

After generating the features, the categorical variables, such as the surgery-related and 

medication variables, were one-hot encoded to create dummy variables. The data sources with the 

newly generated variables were now combined into one covariate matrix with the “patient id” and 

“surgery date”. In the reduced covariate matrix, each row represents an encounter and not a patient 

since each patient can have multiple procedures. Therefore, each row has a unique combination of 

“patient id” and “surgery date”. 

The current covariate matrix contained data of patients spanning from 30 days prior to their 

surgery to 7 days after the procedure. In the resulting covariate matrix, features with more than 

40% of their values missing were removed, that is, measurements that were present for at least 

60% of the procedures were retained. Our exclusion criteria also included removing patients under 
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the age of 18 years. The covariate matrix contained 32 different laboratory types that satisfied the 

retention criteria. The missing laboratory values were then imputed. The imputation technique was 

chosen contingent on the computational time complexity required to impute the values. In this 

study, data imputation was performed using the “Simple imputer” package in python [29]. The 

missing values in every column would be replaced with the median of that column. One main 

drawback of this method is that it reduces the variance of the data which could hinder learning, 

but further experiments with Random Forest-based and K Nearest Neighbours (KNN) based 

imputation algorithms showed similar performance in the downstream classification task. Table 1 

shows an example representation of the categorical and the numerical features in the covariate 

matrix with every row representing one encounter. 

Table 1. Representation of the patients’ covariate matrix. “PID” stands for the patient ID 

and “NA” indicates missing values. 

  

PID 

L1 … M1 … V1 … C1 … S1 … SSI 

(Class label) 

1 23 … 0 … 90 … 1 … 0 … 1 

2 NA … 1 … 98 … 0 … 0 … 0 

3 45 … 0  … 91 … 0 … 1 … 0 

- NA …    0 … 98 … 1 … 0 … 1 

- 20 … 1 … 96 … 1 … 0 … 0 

n NA … 1 … 80 … 0 … 1 … 0 
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4.4 Feature Selection 

After the creation of the cohort data, there were 290 feature variables. These features 

included numerical as well as categorical features. The categorical features were one hot encoded 

and dummy variables were created. Feature selection was necessary for the following reasons: 1) 

To reduce the feature space and thereby reduce the computational complexity 2) select the features 

that provide the most information by reducing the noise as an irrelevant feature affects the learning 

process and a redundant feature adds nothing new to the task of prediction. 3) Identify relevant 

features for the clinicians.  

In this study, we tested and compared two data-driven features selection methods. The first 

one was a statistical two-step filter method. This is a combination of a univariate filter, that filters 

the relevant features based on their relationship with the target, and followed by a multivariate 

filter, that filters redundant features. We were able to reduce the size of the feature set that enabled 

model selection, which otherwise was computationally expensive. This is discussed further in the 

results section. Following that, we implemented a more robust combination of the MRMR 

technique followed by the exhaustive forward selection process. This combination, unlike the 

statistical method, takes into consideration the downstream classification task. The details on the 

implementation of these techniques can be found in Chapter 2. 

4.5 Model Development 

We tested four different classical ML classification algorithms such as Random Forest (RF), 

XgBoost, Logistic Regression, and AdaBoost. Additionally, we also tested the performance of 

Convolutional Neural Networks on the task of SSI classification.  
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The performances of the models were assessed using 5-fold Nested Cross-Validation (NCV). 

In each run, the data is split into stratified folds based on the patient id and the target variable such 

that each fold contains the same proportions of the positive and negative cases, and there is no 

overlap in patients between the folds.  

Due to the high feature dimensionality, it was necessary to reduce the feature set to select 

the model. Using the features from the statistical method, we evaluated the performance of the 

models by the Area Under the Receiver Operating Characteristic (AUROC) curve, the Positive 

Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity. Based on 

these metrics, we chose RF for further experimentation.  

All the classical ML algorithms were implemented using their respective sci-kit learn 

packages to model the data for the task of SSI risk prediction. A NCV process, which encompasses 

5-fold cross validation hyperparameter search, was employed to evaluate and compare the 

performance of the model across the two sets of features selected. By using NCV we can provide 

a robust estimate of the model performance. Chapter 2 describes the working of NCV in detail. 

The following section explains the techniques and tools used in the training of the CNN. 

Convolutional Neural Network (CNN) 

The PyTorch library was used to define the neural network model class and the training 

process [30]. The network architecture contains a 1D convolution layer, a fully connected layer, 

and a batch normalization layer. The Rectified Linear Unit or ReLU activation function was used 

as the non-linear activation of the network. The weights of the network were not initialized 

randomly and instead, they were initialized using a semi-orthogonal matrix that allows depth 

independent learning times and faithful propagation of gradients [31]. The size of the input was 
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the size of the entire features set, that is, 290 features. The input to the network was scaled since it 

helps in training the network efficiently. 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑐𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 =  
−1

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒
∑ 𝛼𝑦𝑖 log 𝑦�̂� + (1 −  𝑦𝑖) log (1 − 𝑦�̂�)

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒

𝑖=1

 

 

SSI is a rare event, and our data has an SSI prevalence rate of 3.3%. To deal with this 

imbalance in class population between non-SSI and SSI cases, we used a weighted variant of the 

cross-entropy loss function. Adding a cost or a weight to a term in the cross-entropy loss that 

corresponds to the misclassification of the minority class penalizes the misclassification of a 

minority class with more scrutiny than that of a majority class, and hence enables the network to 

learn the minority class data well. The above equation represents the weighted cross-entropy 

equation with the weight term 𝛼 that penalizes the misclassification of the minority class. 

Hyperparameter tuning is an important part of neural network training. Depending on the 

data, a different configuration of hyperparameters may be required to achieve the best performance 

possible. Searching for the best set of hyperparameters can be exhausting and computationally 

expensive. In our implementation, we used an automatic hyperparameter tuning framework known 

as Optuna [32] that utilizes parallel processes or threads to search hyperparameter spaces and rules 

out discouraging configurations. Refer Chapter 2 for a brief explanation of the working of a neural 

network. 

4.6 Results 

The baseline characteristics and the demographics of the patients for the SSI and non-SSI 

populations can be seen in Table 3, along with the significance of the listed features in 
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distinguishing between the two populations. The prevalence rate of SSI in our data was 3.3% and 

there was a total of 38783 surgical encounters. 

4.6.1 Model with Features from Statistical Feature Selection  

This univariate filter followed by a multivariate filter was implemented as a means to 

reduce the feature set and aid in model selection. As described in Chapter 2, the univariate KS test 

provides evidence for the existence of correlation between the features and the binary target. First, 

the KS test filtered out features not correlated with the SSI target variable and yielded 206 features. 

Now, the cross-correlation among these features, known as Pearson’s correlation coefficient, was 

calculated and for every pair of features with a coefficient value more than 0.2, one of the features 

from the pair was dropped since it was a redundant feature. This second filter yielded 27 features 

(See Appendix).  

As mentioned previously, four ML models were trained using these features and their 

performances were evaluated. Table 2 shows the nested cv performance of the four ML models at 

a sensitivity value of 0.6. There were no significant differences in the performances, but RF, with 

a balance of slightly better performance and better computational complexity than XgBoost and 

AdaBoost, was selected for further experiments. 

Table 2. Nested cross-validation performance of four models 

Model AUC Sensitivity PPV NPV Specificity 

Random Forest 0.822 ± 0.02 0.6 0.14 ± 0.04 0.98 ± 0.001 0.86 ± 0.03 

Logistic regression 0.821 ± 0.02 0.6 0.13 ± 0.03 0.98 ± 0.001 0.85 ± 0.03 

XgBoost 0.825 ± 0.02 0.6 0.13 ± 0.03 0.98 ± 0.001 0.85 ± 0.03 

AdaBoost 0.800 ± 0.02 0.6 0.12 ± 0.02 0.98 ± 0.001 0.84 ± 0.03 
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Table 3. Baseline characteristics and demographics of patients included in the study 

Characteristics SSI (n = 

1316) 

Non-SSI  

(n = 37207) 

p-

value 

Patient 
   

Age (Median [IQR]) 56 (23) 57 (25) 0.34 

BMI (Median [IQR]) 27.7 (8.3) 28.1 (8.3) 0.009 

Female (n [%]) 597 (45.4) 20591 (55.3) <0.001 

Male (n [%]) 719 (54.6) 16616 (44.6) <0.001 

ASA physical status score 
   

≤ 2 (n [%]) 212 (16.1) 13948 (37.5)  <0.001 

> 2 (n [%]) 1104 (83.9) 23259 (62.5) <0.001 

Surgical Procedure 
   

Exploratory Abdominal (n [%]) 251 (19.0) 2392 (6.4) <0.001 

Small Bowel (n [%]) 155 (11.8) 1060 (2.8) <0.001 

Colon (n [%]) 125 (9.5) 876 (2.3) <0.001 

Craniotomy (n [%]) 39 (3.0) 1507 (4.0) 0.73 

Surgery risk 
   

low risk (n [%]) 343 (26.0) 16587 (44.6) <0.001 

medium risk (n [%]) 276 (21.0) 9786 (26.3) 0.05 

high risk (n [%]) 697 (53.0) 10834 (29.1) <0.001 

Labs - pre surgery 
   

Range of Platelet count (Median [IQR]) 301.5 (281.5) 93.0 (147.0) <0.001 

Mean Albumin level (Median [IQR]) 2.93 (1.34) 3.7 (0.44) <0.001 

Minimum haemoglobin level (Median [IQR]) 7.3 (2.6) 10.0 (3.6) <0.001 

Mean Platelet count (Median [IQR]) 269.0 

(158.36) 

225.66 

(84.64) 

<0.001 

Minimum potassium level (Median [IQR]) 3.2 (0.4) 3.5 (0.5) <0.001 

Minimum Albumin level (Median [IQR]) 2.2 (1.6) 3.3 (0.8) <0.001 

Medications 
   

Diagnostic (n [%]) 1157 (87.9) 20088 (54.0) <0.001 

Antihistamines (n [%]) 1176 (89.4) 26639 (71.6) <0.001 

Antifungals (n [%]) 713 (54.2) 7769 (20.9) <0.001 

Antidotes (n [%]) 1046 (79.5) 17259 (46.4) <0.001 

Sedative hypnotics (n [%]) 638 (48.5) 8476 (22.8) <0.001 

Anti- infectives (n [%]) 124 (9.4) 1021 (2.7) <0.001 

Vitals 
   

Temperature difference before and after surgery (Median 

[IQR]) 

0.0 (0.9) 0.0 (0.0) <0.001 

Pulse range (Median [IQR]) 64.0 (38.0) 38.0 (26.0) <0.001 

Max pulse (Median [IQR]) 124.0 (34.0) 101.0 (27.0) <0.001 
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4.6.2 Model with Features from MRMR and Forward Selection 

Utilizing the feature selection technique presented in Chapter 2, 14 features that contributed 

to the highest-performing models were identified. This set contained features from different 

sources such as the laboratory values, the vitals, the medications, and surgery-related variables. 

 

Figure 6. ROC curve for the 5-folds 

Through our experiment, we discovered that none of the top features were from the post-

surgical phase, which motivated us to build models using only the data from the pre-surgical phase 

to predict the risk of SSI. Feature selection was repeated on just the pre-surgery data, and the 

results mirrored the findings from our previous models; that most of the features were the same as 

the previous experiment. The performance of the RF model trained on these selected features can 

be seen in Table 4. The PPV, NPV, and the specificity were evaluated at four arbitrary values 

(0.6, .0.7, 0.8, 0.9) of sensitivity indicating four operating thresholds. Figure 6 and Figure 7 display 
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the ROC curves and precision-recall curves corresponding to the five folds. The following 

paragraphs discuss the features obtained from the pre-surgery data. 

 

Figure 7. Precision-Recall curve for 5-folds 

The laboratory variables included the range of platelet count prior to surgery which is 

defined as the difference between the maximum and minimum platelet count of a patient for a 

surgical procedure in the chosen period. This derived feature from the raw laboratory platelet 

values was a better predictor than the minimum, maximum, and mean values of platelet count, 

indicating that the range of the values provided more information than the absolute lab values by 

capturing the temporality. Other lab variables included, in the order of importance, the mean 

albumin level prior to surgery, the minimum hemoglobin level prior to surgery, minimum 

potassium level prior to surgery. The maximum pulse level prior to surgery was the only vitals 

variable present in the top 14. The medications variables were categorical variables indicating if 

the patient was administered the medication. The classes of medication variables selected were, 
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diagnostic, antifungals, sedative, anti-infectives, antidotes, and antihistamines. The surgery 

procedure variables were also categorical variables indicating the site of the surgical procedure 

and included sites such as “exploratory abdominal”, and “small bowel”. The top features also 

contained an expert-driven variable that quantified the level of risk for a patient into ‘low’, ‘mid’ 

and ‘high’, based on the type/site of the surgical procedure that was performed.  

Table 4. Performance evaluation of RF and CNN trained using data from 5 days prior to the 

surgery. 

Model AUC Sensitivity PPV NPV Specificity 

RF 0.85 ± 0.02 0.6 0.16 ± 0.05 0.98 ± 0.001 0.88 ± 0.03 

0.7 0.13 ± 0.03 0.99 ± 0.001 0.82 ± 0.04 

0.8 0.10 ± 0.02 0.99 ± 0.001 0.73 ± 0.05 

0.9 0.07 ± 0.02 0.99 ± 0.0003 0.60 ± 0.04 

CNN 0.86 ± 0.01 0.6 0.16 ± 0.01 0.98 ± 0.001 0.89 ± 0.01 

0.7 0.14 ± 0.01 0.99 ± 0.001 0.85 ± 0.02 

0.8 0.11 ± 0.01 0.99 ± 0.001 0.77 ± 0.03 

0.9 0.08 ± 0.01 0.99 ± 0.001 0.63 ± 0.04 

 

A similar trend about top-performing features was observed when we used a data set that 

included data from 5 days prior to surgery to 2 days after surgery, with the difference in 

temperature before and after surgery as an additional vitals’ variable. 

The performance of CNN trained on the pre-surgery data can be seen in Table 4. Since 

neural networks can handle high dimension data, the input to the network was the entire feature 

set. CNNs are inherently capable of extracting important features as they are trained. The CNN 

model’s performance seems comparable to that of the RF model without an explicit feature 

selection process.  
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CHAPTER 5: BIAS INVESTIGATION 

5.1 Setup 

In this chapter, we describe the methods employed to identify the bias in the SSI data, and 

furthermore demonstrate the mitigation of this bias to avoid unfair disparity in decision making. 

The important features obtained from the previous chapters were used in training the RF model.  

5.2 Bias Identification and Mitigation 

In our experiment, the subgroups were defined based on sensitive attributes such as patient 

race and sex. The four subgroups defined were white-male, white-female, non-white-male, and 

non-white-female. The dataset was split into 80% training data and 20% hold-out test data, while 

maintaining the proportion of subgroup population as well as the proportion of positive and 

negative cases same across the two splits. Table 5 shows the proportion of the patient population 

for each subgroup in the training and hold-out datasets. The Random Forest algorithm was used to 

train the model on the entire training dataset and then evaluated on each subgroup hold-out dataset  

A post-processing algorithm, as the name suggests, manipulates the posterior probabilities 

of the classifier, and changes the predicted label outputs to satisfy the fairness constraints. We 

demonstrate a simple post-processing algorithm that deals with choosing the right classification 

threshold for each subgroup such that the calculated metric satisfies the statistical constraint [27]. 

In other words, we aim to choose a fixed classification threshold for each subgroup such that the 

threshold-based metric score is equal for all the subgroups. By choosing different operating 

thresholds for each subgroup, we can deal with the offset in performance. In our study, we chose 
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Positive Predictive Value (PPV) as our metric since it was a sensible metric among the clinicians. 

Hence PPV parity was our definition of fairness which is defined as the equality in PPV across the 

subgroups. PPV is a metric derived from the confusion matrix, which could be altered by varying 

the threshold. The maximum attainable PPV of the least performing subgroup was chosen and the 

threshold for each subgroup was selected such that the PPV of that subgroup is equal to that of the 

chosen PPV. This can also be extended to other metrics of choice, such as the True Positive Rate 

parity and False Positive Rate parity. 

Table 5. Subgroup populations in the training dataset and holdout dataset 

Subgroups  

Training data (n = 30863) 

 

Holdout data (n = 7660) 
 

SSI Non-SSI Total SSI Non-SSI Total 

White Male 373 8635 9008 (29.2%) 88 2153 2241 (29.3%) 

White Female 318 10786 11104 (36%) 99 2692 2791 (36.4%) 

Non-White Male 225 4628 4853 (15.7%) 33 1200 1233 (16%) 

Non-White Female 150 5748 5898 (19.1%) 30 1365 1395 (18.2%) 

5.3 Results 

On evaluating the trained model on the subgroups of the holdout datasets at a fixed operating 

threshold of 0.1, a disparity in the model performance to predict SSI was observed. The disparate 

impact was calculated as the difference between the overall performance and each individual 

subgroup’s performance (see Table 6). The disparate impact is an indicator of the bias in the 

model’s performance across subgroups. The highest performing groups is the “white and female” 
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subgroup and the least performing is the “non-white and male”. These results also correlate with 

the subgroup population, as shown in Table 5, in that the largest group is the best performing one. 

Table 6. PPV (at a threshold of 0.1) across the subgroups and the disparate impact with the 

overall PPV as 0.17 
 

White/male White/female Non-

white/male 

Non-

white/female 

Positive Predictive Value 

(PPV) 

0.20 0.23 0.10 0.11 

Disparate impact 0.03 0.06 0.07 0.06 

 

Using the simple post-processing technique explained in the previous section, we were able 

to identify different operating thresholds for each subgroup such that the PPV is equal across the 

subgroups (see Table 7). Operating the classifier at these individual subgroups thresholds satisfies 

our PPV fairness constraints. Figure 8 shows the PPV across different thresholds for the defined 

subgroups. A horizontal line at PPV = 0.19 would intersect all the curves at different points of 

operation. This similar technique can be used to realise other fairness constraints based on other 

statistical metrics of choice.  

Table 7. Chosen thresholds for each subgroup such that the statistical parity constraint is 

satisfied. 
 

White/male White/female Non-white/male Non-white/female 

Threshold 0.09 0.08 0.26 0.16 

Positive Predictive Value 0.19 0.19 0.19 0.19 
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Figure 8. Positive Predictive Values (PPV) across different thresholds for the four subgroups 
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CHAPTER 6: DISCUSSION AND CONCLUSION 

6.1 Discussion 

Prediction, risk assessment, and early detection are important tools to reduce SSI, one of the 

most common, costly, yet potentially preventable adverse surgical outcomes. CDC initiated 

surveillance methods to track SSI and guidelines for preventative measures have been credited 

with improvements in SSI rates, though much more efforts are needed to further curtail the SSI 

burden. This national priority has spurred many research efforts, including accurate and advanced 

SSI prediction models and risk stratification, which are critical to alert the clinicians to take 

measures at risk factor modification, before, during, and after surgical procedures, including risk-

based reconsiderations to surgical approaches.  

The approaches and features (risk factors) considered at developing SSI prediction and risk 

stratification models are varied. Some are generalizable across all surgical procedures, some are 

organ system-specific (e.g., cardiothoracic, neurosurgery, orthopedic) and others are procedure-

specific (colorectal resection, ventral hernia repair, lower extremity revascularization, hip 

replacement, spinal surgery). Some of the commonly studied risk factors include patient 

characteristics (e.g., age, gender, BMI, and smoking status), pre-operative biomarkers, including 

inflammatory markers (e.g., hemoglobin, WBC and platelet counts, CRP, albumin), co-

morbidities, ASA classification of patient physical status, incision wound classification, 

complexity and/or duration of surgery, ambulatory or inpatient, and emergency or planned. 

In this thesis, all the available structured data, routinely collected during patient care and 

monitoring, from multiple health information systems, such as institutional data warehouses and 

registries (NHSN), were extracted and processed. Data covered pre-, intra-, and postoperative 
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periods, up to 3 months after surgery. Data included all the NHSN registry variables, laboratory 

data, medications administered, and vitals collected during patient care. The data was a 

comprehensive set and covered the full continuum of SSI events from the planning stage and 

provided rich data encompassing most of the risk factors implicated in the literature, more than 

any other study had used for analysis and modeling. Six ML models, including Neural Networks, 

were tested for SSI classification, and based on the performance, the RF and the CNN algorithms 

were chosen for further experimentation.  

Our data contained patients who underwent 38 different surgical procedures. Many studies 

included patients from a specific population with a certain risk level. They also developed 

algorithms that model surgery-specific populations rather than including a wide range of surgical 

procedures [33, 34, 35, 36].  

There were very few studies that incorporated EHR data such as labs, vitals, and 

medications as opposed to a narrow focus on surgery and patient variables. But like many other 

approaches, the modeling approaches involved prediction in the postoperative phase, but the 

temporal information of the pre-operative data was not part of the study. There are not many 

studies that have used pre-operative biomarkers, and this study combined the routinely conducted 

pre-operative laboratory test results with patient characteristics, co-morbidities, and vitals to look 

at SSI prediction and risk stratification. Our approach utilizes the temporal behavior of the pre-

operative laboratory, vitals, and other patient characteristics. 

Based on the features selected from models including pre-operative and postoperative data, 

it was found that the most significant predictors were pre-operative data. This motivated us to 

conduct further analysis to include only the pre-operative data in features selection and predictive 

modeling. This yielded results with little to no change compared to the models built from including 
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postoperative data in the feature selection stage. This indicates that pre-operative laboratory, vitals, 

and medication data combined with certain surgery-related features can enable the early detection 

of SSI.  

The effectiveness of Artificial Neural Networks (ANNs) in biomedical informatics has 

been witnessed in multiple studies in the past. Though ANNs are primarily used for unstructured 

data, efforts have been made to avail the ability of ANNs to model complex relationships in 

structured Electronic Medical Records (EMR) data [18, 19, 37]. In our study, we used a one-

dimensional shallow Convolutional Neural Network (CNN) to model the relationship between the 

input values and the target values. About 290 scaled input features containing variables from 

different sources such as patient-related, surgery-related, laboratory, vitals, and medications were 

used. The performance of the CNN was observed to be similar to that of the Random Forest 

algorithm, if not better. 

Further, on analyzing the fairness of these predictive models across different subgroups, 

we observed a disparity. There are multiple reasons for the observed disparity in performance. We 

know the algorithm is only as good as the data, and any imperfection in the data is inherited by the 

model. Data can also reflect the human and societal biases that cause them to be skewed or tainted. 

In most cases, it is hard to identify the reason for bias. The difference in sample size among the 

subgroups (See Table 5), as observed in our data, could also cause the algorithm to imperfectly 

model the minority groups. Due to the varying sample size, the model performance for the minority 

subgroups is sub-optimal with varying performance across the subgroups which can, in turn, lead 

to decisions that result in drastic surgical outcomes for the minority subgroups.  

The post-processing method employed to mitigate the observed bias comes with certain 

limitations. First, it requires test time access to the sensitive attributes. Second, due to the trade-
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off between accuracy and fairness, implementing a fair classifier means that the well-performing 

subgroups should settle for lower accuracies. The maximum accuracy achievable is based on the 

maximum value for the least performing group. Further, we would also like to indicate that there 

are developed toolkits from IBM [24], Google [38], and Facebook that implement different 

algorithms assisting in detecting and mitigating bias. 

This experiment was performed to demonstrate the existence of biases in prediction and 

risk scoring applications that focus on critical study environments such as in clinical settings. We 

believe that it is necessary to acknowledge the existence of bias in ML models, that may impact 

the provision of appropriate preventative medical intervention to avoid SSI in the minority or the 

historically underrepresented groups and further to mitigate the propagation of the above biases 

into any future applications. 

Our study also comes with certain limitations. First, the data was from a single institution 

and was internally validated. Second, some of the challenges of retrospective study are applicable 

to our study [39]. Further validation of our models with data from other institutions and prospective 

studies is necessary to confirm our findings. Third, better understanding and handling of missing 

data and imputation methods are required to reflect the real-world variance in data. 

6.2 Conclusion 

In this thesis, we report a study of SSI risk detection using various predictive modeling 

algorithms on a patient cohort containing multiple surgical procedures and many features. The 

important risk factors for the early detection of SSI were identified. And the potential application 

of Convolutional Neural Networks in structured EMR data for the prediction of SSI risk was 

demonstrated. We also identified the existence of the issue of bias in ML modeling used to 

predict SSI and demonstrated a method to mitigate the bias. 
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APPENDIX A 

 

Table A.1. Important features derived from data spanning 30 days prior to 7 days after surgical 

procedure 

Range of platelet count prior to surgery 

Mean Albumin level prior to surgery 

Diagnostic medication prior to surgery 

Risk of surgery 

Minimum haemoglobin level prior to surgery 

Maximum pulse measurement prior to surgery 

Antifungal medication prior to surgery 

Exploratory abdominal surgical procedure 

Small bowl surgical procedure 

Sedative medication prior to surgery 

Minimum albumin level prior to surgery 

Colon surgical procedure 

Anti-infective medication prior to surgery 

Craniotomy surgical procedure 

 

Table A.2. Important features derived from data 5 days prior to surgical procedure 

Range of platelet count prior to surgery 

Mean Albumin level prior to surgery 

Minimum haemoglobin level prior to surgery 

Risk of surgery 

Diagnostic medication prior to surgery 

Antidotes medication prior to surgery 

Antifungals medication prior to surgery 

Maximum pulse measurement prior to surgery 
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Antihistamines medication prior to surgery 

Exploratory abdominal surgical procedure 

Anti-infective medication prior to surgery 

Minimum potassium level prior to surgery 

Small bowl surgical procedure 

Sedative medication prior to surgery 

 

Table A.3. Important features derived from data spanning 5 days prior to 2 days after surgical 

procedure. 

Range of platelet count prior to surgery 

Mean Albumin level prior to surgery 

Diagnostic medication prior to surgery 

Minimum haemoglobin level prior to surgery 

Risk of surgery 

Antihistamines medication prior to surgery 

Difference in temperature before and after surgery 

Range of pulse measurement prior to surgery 

Antifungals medication prior to surgery 

Exploratory abdominal surgical procedure 

Small bowl surgical procedure 

Colon surgical procedure 

Antidotes medication prior to surgery 

Mean platelet count prior to surgery 

 




