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Considerations for Variable Timestep Integration in Hamiltonian Dynamics

Abstract

While great advances have been made in the field of intermolecular potentials for molecular

modeling and material science, the choice in constant energy integration dynamics have been often

relegated to the Størmer-Verlet. In the past 30 years the symplecticity of this method and relatively

low local error in initial conditions have made this integrator a hallmark of stability. However,

the need to perform N-body particle simulations to reach greater time domains has encouraged

practitioners to approach higher timesteps and the stability limit.

This article explores implicit classes of adaptive Verlet algorithms for potential use in the

two-stage coupled equations of motion. At the heart of these methods are state dependant, time

re-scaling functions that offer bounded variable timesteps. There is not many demonstrations of

their overall energy conservation for a choice in timestep value, beyond global error demonstrations

in discrete time. Presented here is the derived linear stability for arbitrary time transformation

functions with the implicit Adaptive Verlet scheme. Considerations for selecting a stable range of

timesteps in fulfilling stable harmonic trajectory are also outlined.

Lastly we observe evidence that the implicit Adaptive scheme paired with a bounded timestep

model may contain a family of solutions that contribute additional spectral elements. Regular

modes of spectral peaks shown in our monochromatic system point towards additional solutions in

the Hamiltonian system. Before moving towards variable timestep methods we demonstrate the

need to develop a transformation functional that meets symmetric criteria outlined by previous

authors.
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Nomenclature

M Diagonal mass matrix

k Pendulum spring constant

m Mass

s Time transformation functional

W Maximum timestep ratio

w Minimum timestep ratio
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CHAPTER 1

Introduction

In this document we consider the application of symplectic and time reversible variable timestep

integrators of the Verlet type. The work performed here intends to demonstrate the limitations

of variable timestep methods in transient stability and frequency response. It is the hope that

with these methods, progress towards reaching greater time domains and higher stability can be

achieved with optimal timestep scaling, that can potentially outperform current practices deployed

in models that require timestep adjustments.

Such cases that may require adaptive variable integration timesteps include the field of advanced

intermolecular potential development. More recent advances towards deep learning potentials that

are reliant on ab-initio calculations called density functional theory have expanded models beyond

pairwise differences and have offered greater insights into invariant atom representations [5] [3].

This work has pioneered predictive accuracy in fusion containment materials for the ITER exper-

iment and intermetallic materials [30] [32] [10]. With these increases in model complexity, arises

greater computational expense in calculating atomistic forces [34] [25]. As potentials become more

complex, the need to develop integrators for nominally higher integration steps can help us avoid

the number of calculations required to reach greater time domains. Presented here are algorithms

used to systemically alter the timestep through use of a modified constant energy Hamiltonian.

The usual description of N body dynamics through the Hamiltonian dictates that the total

energy H = T + V is a constant for d dimensional position q ∈ Rd×N and momenta p ∈ Rd×N

vectors. The kinetic energy T and general state dependent potential V (q) define the coupled set

of linear differential equations in (1.1).

(1.1)

dq

dt
= Hp

dp

dt
= −Hq
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This relation can be seen defined more explicitly in equation (1.2).

(1.2)
Hp =

∂T

∂p
=M−1p

−Hq = −∂V

∂q
= −∇V (q)

A great deal of effort goes into determining the model potential V that drives the forces f =

−∇V (q). Traditionally models have been empirically derived and relate closely to quantum me-

chanical perturbation theory. The Lennard Jones family accurately describes equilibrium properties

in liquids for noble elements by determining second order virial coefficients [24] [31]. Another ex-

ample is the Ziegler Biersack Littmark (ZBL) potential which accounts for electronic screening and

gets repulsion very well for metals [33].

In many cases Molecular Dynamic (MD) simulations employ linearly discrete time integrators

to solve (1.2) and to predict the evolution of position and velocity for a system of many particles.

The time evolution can reveal valuable insight into not only ergodic ensemble properties, but also

periodic dynamical behavior. Ab-initio based MD simulation have proved to be invaluable in

observing vibrational phenomena seen at long time scales on the order of sub-nanosecond. Such an

example is seen in long-time dynamical simulations of 1,3,5-trinitroperhydro-1,3,5-triazine where

low frequency modes that were not observable at the picosecond scale were resolved at higher time

scales [9]. Thus it is the goal here to explore adaptive integrators as a more efficient method of

achieving long time integration in the microcanonical ensemble.

The adaptive methods presented herein are of the Verlet type and descend from the second

order Størmer-Verlet (SV). The Verlet method often serves as a basis for many types of integrators

intending to find position q and momentum p, since the phase space area is preserved in time and

obeys time-reversibility for fixed timestep h [16]. It can also be shown that the SV method is a

special case of the 2-stage Runge-Kutta or Lobatto IIIA-IIIB formulation [27] [6] that uses terms

from essential tableau’s satisfying the symplectic characterization of discrete integrators [13].

The SV method is an excellent choice for any fixed timestep MD simulation. Though in some

cases when it becomes necessary to vary the timestep based on the potential energy, all symplectic

properties are lost due to violations in the geometric construction. Calvo et. al computationally

3



demonstrates that changes to the timestep during Verlet integration voids symmetry and symplec-

ticity [8] [16]. Although it is desirable to shift the timestep as a function of the potential’s curvature

for optimal stability, the consequences in fixed timestep methods are given by an exponential growth

in error [14]. Despite this issue, the practice of variably shifting the timestep to accommodate high

energy situations is often employed for ion implantation studies [4] [17] [10]. This is where the

adaptive methods show here may address the needs of the material science community.

1.1. Time Transformations

Let us begin by examining how dynamical systems change with a time transformation. We first

consider here a time-transformation that takes the ordinary differential equation of f

(1.3)

dt

dt
= 1

dx

dt
= f(x)

into an artificial time frame, where now s describes the time scaling relation.

(1.4)

dt

dτ
= s(x)

dx

dτ
= s(x)f(x)

E. Hairer shows the relation s(x) was used extensively in the search for an analytical solution to

the Kepler three body dynamics problem [29, p. 127] [23, p. 313] [15]. Stoffer shows that it is

possible to choose a scalar function s > 0 such that integration of (1.4) from 0 to a small timestep

ε maps one to one with the integration of (1.3) with a variable step [0, εs(x)]. Essentially a discrete

integration method Φ with variable timesteps applied to (1.3) maps to a variable flow method Φ̃

with fixed discrete width ε. More details on Stoffer’s work on time invariance between the ordinary

differential equation in (1.3) and the system in (1.4) may be referred to here [28].

Admittedly the adaptive Verlet techniques that vary the timestep here are not integrating the

usual Hamiltonian instead we make use of another timeframe τ and thus another Hamiltonian

H̃ [15].

H̃ = s(q, p) (H − γ) and H = 1/2pTM−1p+ V (q).(1.5)
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As a consequence of this transition, a new set of differential equations are formulated. These

modified equations of motion are referred to as Sundman time transformations and shown below.

(1.6)

dq

dτ
= s(p, q)Hp

dp

dτ
= −s(p, q)Hq

Formulating an integrator of the symplectic kind for Sundman transformations is a difficult task

due to non-linear terms introduced by s. However, the functional s may be leveraged to vary

the timestep such that it is sensitive to the model curvature. Ensuring that this variation is time

reversible is the topic for the next section.

1.2. Time Reversibility Criteria

In order to use variable timesteps without breaking time symmetry, we introduce the criteria for

maintaining time invariance and flow symmetry. Regardless of the treatment of the Hamiltonian,

there are constraints on choosing the particular time transformation function.

The notions of satisfying symmetry or time-reversibility within a variable timestep method

are subtle and are not necessarily the same as demonstrating symplecticity. For instance showing

general time-reversibility in a one-step flow method qn+1 = Φh(qn) does not guarantee area preser-

vation of phase space. Going into further detail on the topic of symplecticity is outside the scope

of this document and can be found in E. Hairer’s textbook [16]. Focused here in this section are

the qualities that the methods shown in Chapter 2 must meet in order to satisfy time reversibility.

The criteria for one-step flow symmetry begins with the concatenation of flows in equation (1.7)

for some integration timestep h.

Φh ◦ Φ−h = I(1.7)

Taking the above relation one step further, it is useful to show time symmetry through the equiv-

alence of the original flow method and its adjoint Φ∗
h = Φ−1

−h [16]. This can be seen by the relation

(1.8) which demonstrates that a reversal of timestep h signage and a swap of qn+1 ↔ qn arrives at
5



the original flow expression for symmetric methods.

Φh = Φ−1
−h(1.8)

Let it be known that the superscript suggests time and thus the −1 suggests the previous timestep.

The subscript h defines the timestep, where the minus sign literally changes the sign in front of h

within the integration method Φ. It is an interesting exercise to show the implicit mid-point method

satisfies the criteria q1 = Φ(q0)←→ Φ(q1) = q0 and thus meets time symmetry despite not being a

symplectic method.

In all of these steps the time scaling function is not mentioned, however to maintain time

symmetry we note that s must be symmetric. The requirement in s(q,p) → s(q,−p) is shown

by Leimkuhler [20] [19]. A solely q dependent function clearly satisfies this invariance. A no-

table example is provided by Levi-Cevita who uses the inverse of position s(q) = ∥q∥−1 as time

transformation function [23].

Note that at this point we’ve shown requirements for symmetry, but not necessarily time-

reversibility. The method Φ is considered time-reversible if the relation (1.9) is true, where ρ is a

general operator. This relation holds if and only if Φh is symmetric.

ρΦh(q) = Φ−h (ρq)(1.9)

Since s is now incorporated into Φ the condition s(ρq) = s(q) now becomes a prerequisite for time

reversibility. This can also be applied to a coupled set of differential equations as shown below.

s(ρq, ρp) = s(q,p)(1.10)

In general it is difficult for s to satisfy time-reversibility, except in cases wherein ρ is an orthogonal

transformation (ρρ−1 = I) [22]. Throughout this study s is chosen such that factors of q are

quadratic and thus symmetric, though awareness is given to the fact that integration may not be

time-reversible despite long time integration stability shown later.

6



1.3. A Bounded Scaling Function for Oscillatory Motion

So how do we select a time scaling functional that abides by time symmetry and stays within

given timestep limits? One such example, that is symmetric but not bounded is a coordinate

invariant functional referenced by Hairer [15] shown below.

s(q,p) = (p · p/m+∇V (q) ·∇V (q)/m)−1/2(1.11)

The example here leverages the Hamiltonian thus the integration procedure may re-scale for both

high momenta and close packed collision type situations. Note that the nominal value of s scales

non-linearly as a function of q and p and may yield exceptionally large values in s. Keep in mind

variable timestep methods define an effective timestep that is the product of h and s(q), so an

unnecessarily large s may increase the integration step beyond the stable limit. Thus to avoid this

issue a new functional sζ was devised to provide limits on the effective timestep.

The following sections present an alternative scaling parameter that is capable of automatically

yielding the minimum desired timestep in regions of extreme potential energy curvature (∇V →∞).

A function that fits this asymptotic behavior is defined below,

sζ(q) =

( (
∥∇V (q)∥2 + wζ

)1/ζ
1/W (∥∇V (q)∥2 + wζ)

1/ζ
+ 1

)−1

(1.12)

where the timestep boundary parameters W = h/hmin and w = h/hmax were chosen so that the

product with the ’fictitious’ timestep h gives a value between the maximum and minimum discrete

timestep.

hmin < h ◦ sβ < hmax(1.13)

This functional represents a generalized form of Leimkuhler’s bounded scaling function for ζ = 2,

where sζ=2 approaches a plateau when forces approach infinity and relaxes in regions of zero

gradients. This behavior is represented in equation (1.14). Originally sζ=2 was applied in Kepler
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hmin

hmax
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Figure 1.1. A representation of sζ for an array of ζ values. Each variation of sζ
is plotted for the unit hooke’s potential (spring constant k = 1) with hmin = 0.001,
hmax = 0.005, and h = 1. The black curve represents the initial form of sζ which
corresponds to sζ=2. Clearly decreasing ζ allows sζ to vary between nominal hmin
and hmax values. Note extreme values of ζ can lead to cusps.

gravitational models for time-reversible variable timestep integration [20].

lim
∇V→∞

s = 1/W

lim
∇V→0

s = 1/W + 1/w
(1.14)

The functional sζ provides adjustable roots ζ that serve in constraining the bounds within desired

limits. In total there are effectively three hyperparameters hmin, hmax, and ζ that provide user

control in timestep range as shown in the vertical axis, while domain responsiveness is shown on

the horizontal axis of Figure 1.1.

To characterize the methods in Chapter 2 the functional sζ must be tuned to fit within the

harmonic oscillator’s domain boundaries q ∈ [−1, 1]. The initial behavior of sζ=2 is shown as

the solid black line plotted in Figure 1.1 as a function of the quadratic potential. We initially

expected this function to vary between hmin and hmax within the domain but noticed that it

appears unresponsive and essentially constant. At large potential gradients (off the chart) sζ=2

does smoothly vary the timesteps, meaning this configuration is be better suited for potentials with

extreme gradients in curvature such as q−1. Essentially to modify sζ for the harmonic oscillator
8



the first limit in (1.14) must now be tuned to,

lim
∇V→kqmax

s = 1/W(1.15)

where the behavior at zero gradient is automatically fulfilled.

Manually the exponent parameter ζ was tuned to approach the appropriate limit for variation,

so sζ responds within regions of interest. Reasonable variation in s was found with ζ = 0.05 and

ζ = 0.1 for suitable values of W and w defined in the caption of Figure 1.1. A more general approach

to finding the optimal ζ value can be taken with data science techniques, but is not necessarily for

the harmonic oscillator.

In general building a symmetric functional that is sensitive to arbitrary potential energy sur-

faces, may be determined using sζ . In fact many different functional forms may be used, but

sζ serves as a symmetric and simple adjustable form that can provide boundary control over the

timestep range hmin and hmax. Additionally, optimization of ζ can be performed for any intermolec-

ular potential of interest, thus providing a flexible framework for physical modelling practitioners.

Finding the optimal scaling hyperparameters hmin, hmax, and ζ may increase the length of time

per time step iteration and thus may help in potentially reaching greater time domains. Although

variable timestep schemes are typically implicit there is room for high performance computing to

reduce the number of additional implicit iterations but is again outside of the scope here.
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CHAPTER 2

Adaptive Time Integration

We begin looking at variable timestep methods by first visiting the well known Størmer-Verlet

algorithm. It has been widely used across dynamical systems for its second order accuracy in

position and its computationally efficient explicit one-step methodology. When applied to the

Hamiltonian equations of motion, only one force calculation per step is required in pn+1. It is

also easy to see in (2.1)-(2.3) that the implementation of this method requires minimal memory to

override and save the vector quantities qn → qn+1, pn → pn+1 and fn → fn+1 at every updated

timestep n+ 1.

pn+1/2 = pn +
h

2m
fn(2.1)

qn+1 = qn + hpn+1/2(2.2)

pn+1 = pn+1/2 +
h

2m
fn+1(2.3)

tn+1 = tn + h(2.4)

More importantly the flow functions satisfy time symmetric and symplectic area preserving

properties. Many authors have shown it is a special case of the Partitioned Runge-Kutta (PRK)

and Lobatto IIIa-b methods [13]. Though this method provides long time integration stability, it

is still susceptible to discrete errors in velocity depending on the given set of initial conditions [21].

This method is also limited to a single timestep setting in h, but may be varied at the cost of

sacrificing structural symmetry properties. We consider in the next section an integrator that is

structurally designed for varied timestep while maintaining time symmetry.
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2.1. Implicit Adaptive Verlet

The Implicit Adaptive Verlet method (IAV) also known as the semi explicit Verlet method is

derived from the fundamental PRK formulation in the same manner that is used to construct the

Størmer-Verlet.

ϱ =
s(pn+1/2, qn) + s(pn+1/2, qn+1)

2

pn+1/2 = pn +
h

2m
s(pn+1/2, qn)fn(2.5)

qn+1 = qn + hϱpn+1/2(2.6)

pn+1 = pn+1/2 +
h

2m
s(pn+1/2, qn+1)fn+1(2.7)

tn+1 = tn + hϱ(2.8)

Leimkuhler derived equations (2.5)-(2.7) from the symplectic two-stage order-2 tableau while apply-

ing the sundman transformations to the PRK formulation [20]. The resulting algorithm above in-

troduces coefficients that scale nonlinearly in time depending on the functional form of s(q(τ), p(τ)).

Note that the expressions reduce down to the traditional SV method when the time scaling model

is unity, s(p, q) = 1, thus confirming that this belongs to the second order Labatto IIIa-b method.

The IAV scheme is made semi-explicit or fully implicit depending on the choice of s(q, p) or

s(q). The first choice to depend on q and p renders pn+1/2 and qn+1 implicit, and consequently

the overall IAV scheme becomes more computationally inefficient. Solving for the implicit terms,

such as in the case when pn+1/2 = pn +
h
2ms(pn+1/2, qn)fn can be solved iteratively via the residual

difference method below,

∥pñ+1
n+1/2 − pñn+1/2∥

pñ+1
n+1/2

< ϵ(2.9)

as done in the Calvo et. al paper [7] or with newton-raphson iterations. Here the ñ term refers to

the intermediate solving iterations for pn+1/2, while ϵ refers to the acceptable residual threshold.

Once the residual is less than ϵ the value of pñ+1
n+1/2 is accepted. The regular iterative approach does

not take much time in a single dimension, however the newton-raphson method may prove to be

more computationally efficient in higher dimensions but goes untested here.
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Figure 2.1. Represented here in the triangular points is the harmonic IAV trajec-
tory in position q and momentum p, for the exact solution q(t) = cos(Ω0t) signal.
Shown in the left pane is the phase space diagram, and the corresponding position
time series is shown in the right panel. The model run was deployed with relatively
large parameter settings h = 105, hmin = 0.025 and hmax = 0.5. The integrator
was configured for bounded time transformation sζ with the bounding parameter
ζ = 0.1. The exact solution is demonstrated as the dotted line.

Choosing to rely solely on position in s(q) is more computationally efficient and scales as

a function of the potential energy surface. In this case the only implicit situation is due to

qn+1 = qn + h

(
s(pn+1/2, qn) + s(pn+1/2, qn+1)

2

)
pn+1/2, where again we follow the residual dif-

ference demonstrated by Calvo et. al.

∥qñ+1
n+1 − qñn+1∥
∥qñ+1

n+1∥
< ϵ(2.10)

For the purposes of this study, modeling the harmonic oscillator, we utilize sζ as discussed in

section 1.3. Note that sampling techniques during the adaptive Verlet procedure are difficult due

to unequal spacing in time.

Time averaging with variable timestep techniques may come with an inherit bias. It should

be noted that timestep variation means non-equispaced positional points in time and thus leads to

biased situations where more samples are taken from moments of fast momenta or high gradient

potential curvature. Pooling near low gradients in the harmonic oscillator as shown in Figure 2.1

demonstrates the case of gathering more samples near relaxed force situations. The figure is an

example where more simulation iterations are spent near or in lower potential gradient situations.
12



This may place a large bias on sampling statistics, which may benefit or hinder the average total

energy. As mentioned before the accuracy of the position and velocity Verlet depends on the given

set of initial conditions [21], thus sampling more in regions where accuracy is higher may lead to

better results, where the converse of this is also a possibility. In Chapter 3 the average total energy

is sampled every iteration and may have some bias, but meets expectations.

2.2. Explicit Adaptive Verlet

After implicit adaptive techniques were introduced in the late 90s, a new explicit method was

introduced in the early 2000s [19]. Though this method loses generality and symplectic properties,

this Explicit Adaptive Verlet (EAV) minimizes the necessity to re-compute the potential multiple

times per step.

pn+1/2 = pn +
h

2ρn
fn(2.11)

qn+1/2 = qn +
h

2ρn
pn+1/2(2.12)

ρn+1 = 2s(pn+1/2, qn+1/2)− ρn(2.13)

qn+1 = qn+1/2 +
h

2ρn+1
pn+1/2(2.14)

pn+1 = pn+1/2 +
h

2ρn+1
fn+1(2.15)

The equations (2.11)-(2.15) showcase the sequentially ordered set of Verlet procedural steps for

advancing position q and momenta p. The first iteration is solved with ρ0 = s(q0).

The scheme boils down to a composition method of the symplectic first order method and its

adjoint. As described in Leimkuhler’s paper this method is symmetric for s(q, p) = s(q,−p) but

not symplectic and thus not area preserving. This scheme is not tested here but serves as evidence

that there are myriads of additional schemes which are designed to vary the timestep.

2.3. Implementation

In order to computationally deploy the adaptive Verlet scheme in (2.5)-(2.7) a C++ shared library

was created.
13



The library was created to handle integrators of the Verlet type. In particular the IAV methods

(2.5)-(2.7) are computed sequentially but benefit from shared memory operations, such as dot

operations. The Basic Linear Algebra Subprograms (BLAS) library was leveraged to help speed

up implicit iterations of pn+1/2 when norms of the forces are required. The program then performs

the secondary step of solving qn+1 explicitly by utilizing the result from pn+1/2. As mentioned,

Calvo et. al. suggests a convenient iterative method for satisfying implicit terms such as pn+1/2

and qn+1 [7]. There are of course more efficient techniques (ie. Bisection or Newton-Raphson

methods); however, for comparability with previous studies this article employs the same iterative

scheme with residual tolerance of ε = 10−7.

Deploying these algorithms in C++ were embedded within our own custom framework to offer

very fast computational speed, but also to serve as an expandable framework for other integrators

in the future. For new developers there are build instructions available on GitHub, where examples

are also included. The library is easily built and compiled using the cmake utility and is available

as an educational open-source integrator repository. As of the time of writing here the IAV, EAV,

and SV methods are fully operational.
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CHAPTER 3

The Variable Timestep Harmonic Oscillator

Pioneering authors on variable-discrete timestep methods almost always benchmarked their

methods on the Kepler problem for orbital mechanics. Determining their discrete integrators effi-

cacy was usually demonstrated using an analysis of the global error [15] [20] [7] [19]. Among these

tests one of the more interesting focused on the application of the double pendulum and showed

variable timesteps had greater stability near cusps and minimized the number of iterations required

to simulate pendulum dynamics [20]. Notably, the aspect that is not quantified, is the discrete

timestep stability range. Rather than bench-marking the IAV method on the traditional Kepler

problem, the harmonic oscillator is chosen to represent a linear system. This system is a very well

known and is ideal for testing energy stability, as well as characterizing spectra response. A linear

stability derivation is presented for the IAV method and compared with findings. Presented here

are the considerations that should be carefully examined when using variable timestep methods.

3.1. HMO: IAV Integration

The implicit variable timestep scheme tested here introduces nonlinear s terms that redefine

where the underlying method’s stability limit lies. It is commonly known where the Størmer-Verlet

method’s stability limit lies, but due to the influence of s the IAV’s stability limit has a different

outcome that is not well documented. For the initial conditions q0 = 1 and p0 = 0 we search for

the limit of hmax where energy is no longer conservative for the pendulum Hamiltonian shown in

(3.1).

H(q, p) =
1

2
p2/m+

1

2
kq2 = const.(3.1)

Ω0 =
√
k/m
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Figure 3.1. The left panes (a), (c), and (e) represent the search for the maximum
stable timestep hhmax depending on the minimum timestep hmin setting. The trian-
gular marker points correspond with a maximum timestep sweep at a fixed minimum
timestep of hmin = 0.01, while the circular marker points correspond to runs with
a decade smaller scale of hmin = 0.0001. The right panels (b), (d), and (f) show
extreme values of fictive timestep h for fixed variable timestep range. The averaged
total energy aligned with the expected constant energy show in blue and given by
equation (3.1). Each simulation in the left panes are given parameters Ω0 = 2,
h = 1, and iterates until 105 periods are complete.

We tested the stability of the harmonic model with the sζ transformation and observe the

approximate limit is obeyed as shown in panel (e) of Figure 3.1. The maximum timestep sweeps

(a), (c), and (e) show that the approximate upper limit 2/Ω0 is obeyed, although the averaged

kinetic and potential energies blow up ten times earlier than predicted. A stable maximum timestep

appears to approximately approach hmax = 0.1 instead of 1 for the frequency Ω0 = 2.

Reasoning for the early loss of stability is primarily due to non-linear effects that are not

predicted in the linear analysis explained in the next section 3.2. In the future sζ can be shaped

to fulfill the complex constraint (B.6) given in the appendix using a set of stable trajectories.

Large changes to the fictive timestep h observed in Figure 3.1, panels (b), (d), (f), show dis-

turbances in the kinetic and potential energy portions of the ensemble energy. Increases to h in

the functional sζ are equivalent to making the ratios W and w large enough to create cusps in

the transformation. It seems that despite these cusps the overall performance in the linear model

show relatively small but steady time averaged kinetic energy decreases. This could show more

prevalent disturbances in non-linear models such as the Lennard Jones. The kinetic energy was
16



always problematic but becomes worse as h is increased which consequently is one parameter for

achieving greater time domain increases. It is important not to fall prey to increasing h too far, in

order to achieve speed increases.

3.2. HMO: IAV Linear Stability Criteria

In addition to the brute force stability search, an analytic inequality for the relationship between

s and the pendulum’s primary frequency Ω0 is sought in this section. The challenge of finding a

limit on hmax must be considered when using time adaptive techniques. Deriving a closed form

expression for how large this value can be is critical for yielding the correct energies.

We apply a linear stability approach to finding amplification factor λ which can be applied to

non-linear discrete methods [18]. Obtaining the amplification factor serves as an estimate indicating

unacceptably large errors as a function of the timestep maxima.

|λ| =
∣∣∣∣qn+1

qn

∣∣∣∣ ≤ 1(3.2)

Though in our case we seek to find the error in q and p between timesteps. The time-stepping

procedure is stable when the amplitude of λ or complex conjugate is on or within the radius of the

unit circle. Additionally, the error of the discrete method must simultaneously be determined for

q and p.

(3.3) λ =
qn+1

qn
and λ =

pn+1

pn

We satisfy both of this criteria by systematically grouping terms in (2.6) and (2.7). In doing

so we obtain a system of equations that can be represented as an Eigenvalue problem. λ Has a

corresponding characteristic matrix V depending on the coefficients in front of q and p found in the

integrator itself.

qn+1

pn+1

 = λ

qn

pn

(3.4)

17



Solving for λ by diagonalization is typically applied to a linearized system given by the Hookes

potential (f = −∇V = −kq); however, sζ or in general s(q) serves as a non-linear functional.

Additionally λ does not have a trivially solvable expression due to the implicit terms in the IAV

methods. Thus the system is treated linearly by asserting the nonlinear contributions s(q) are

constant. Deriving the roots λ and full algebraic steps for the stability criteria can be seen in

Appendix A and B. The resulting harmonic stability analysis for the Verlet scheme is of course the

inequality below,

Ω0h < 2(3.5)

stating that the timestep must be below this non-dimensionalized threshold. When the same

method of diagonalization is applied to the IAV method (shown in Appendix B) the resulting

Eigenvalues of the IAV scheme indicate a dependence on the scaling function.

Ω0h <
22

(sn + sn+1)
(3.6)

Obviously reverting back to the SV method by inputting s = 1 into (3.6) will reduce the

expression to the SV limit.

In order to obtain an approximate limit we make assumptions for sζ in an extremely low gradient

potential scenario. In this case the scaling function is maximized with s = 1/m, and sn and sn+1

are suitably close to each other (sn = sn+1). Utilizing (3.6) and simplifying one step further with

our above assumptions lead to the recognizable expression (3.7).

2��*
1/w

sn (Ω0h) ≤ 22 −→ hmaxΩ0 ≤ 2(3.7)

The limit effectively means the other timestep values below this maximum limit are suitable.

In our assumptions made, the alternative situation where sn and sn+1 are not close to each other

and sn << sn+1 being true would effectively remove the factor of two in front of 1/w and seemingly

double the limit on hmax. This type of situation is likely due to a sharp decrease in potential and

would result in a large position step that could increase the likelihood of particle overlap. The
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hopes of avoiding this type of situation are that the particles maintain constant intermolecular

contact for smooth time scaling.

3.3. HMO: IAV Spectral Response

Using the same potential energy as section 3.2, we integrate the dynamics of a singular harmonic

with the IAV method and have recovered a polychromatic spectra. In testing the frequency response

of the IAV, the functional sζ is our chosen time-scaler for reasons mentioned in 1.3.

The dynamics are given by the solution

qn = q0e
±iΩ0tn(3.8)

where the natural frequency is defined as Ω0 =
√
k/m for spring coefficient k, mass m, and subscript

n denotes the time index.

In this case, a true harmonic integrator should resonate at the singularly given frequency of Ω0,

however the implicit scheme used herein contains other frequencies. We verified the traces of these

auxiliary frequencies using three processing methods: a brute force (1) discrete Fourier Transform,

(2) the kernel based Non-Uniform Fast Fourier Transform, and (3) the Least Squares method.

The unweighted Fourier Transform F

F [q(t)] = Q(ω) =

∫ ∞

−∞
q(t)eiωtdt(3.9)

must be made discrete and adapted for nonequispaced sampled data [11]. Each model run samples

N positions and is integrated with a timestep range that satisfies the critical Nyquist sampling

frequency ωc.

ωc = 2π

(
1

2|hmax|

)
(3.10)

The critical sampling frequency is conservatively estimated by the largest timestep hmax. Thus in

our FT spectral scans the set of frequencies span the range (3.11).

0 < ωm < ωc(3.11)
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We define a linear set of frequencies indexed by integers m = 1, 2, . . . ,M and define a set of

unequally spaced timesteps hn = tn − tn−1 that vary across the time index n.

ωm = 2π
(m
M

)
ωc(3.12)

3.3.1. NU-FFT Analysis. The discrete Fourier Transform (3.13) is computationally expen-

sive and requires two loops that carry the numerical complexity of O(NM).

Fm [qn] = Qm,n =
1

N

N−1∑
n=0

qne
iωmtn(3.13)

In order to increase our frequency resolution we compute N ∝ 106 non-uniform points. Using

a Non-Uniform Fast Fourier Transform (NU-FFT) based on Dutt and Rokhlin’s seminal work

relating the complex exponential to a Gaussian interpolator, we reduce the computational cost to

O(M |log ε|d + NlogN). Here ε is the tolerance [12]. The modern NU-FFT method used here is

based on the exponential of a semicircle kernel optimized for exponential error convergence [1].

Essentially the non-equidistant time series treatment between intervals is smoothed by the kernel

on a finely defined grid, essentially mapping non-equispaced series onto a regularly spaced interval.

This concept has been refined to perform in parallel and with reduced memory thus making the

scheme extremely efficient.

In Figure 3.2 we were surprised by a set of additional frequencies that appear to show themselves

as integer multiples of the primary frequency Ω0. Additional spectral peaks were first resolved with

the traditional discrete FT method, however we decreased the timestep scales to achieve finer

resolution in position. It quickly became apparent that the amount of time to compute N ×M

operations for N ≈ O(106) was not computable within a reasonable time frame. Thus we rely on

NU-FFT for analyzing larger data sets for a set of M ≥ N many frequencies.

In our tests we also used the non-uniform time sequence produced by the IAV method and

input this into a perfect sinusoidal signal and then performed the dFT and NU-FFT analysis.

Again the additional frequency spectra were detected. These anomalous peaks were then verified

with Ordinary Least Squares method.
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3.3.2. Least Squares Analysis. Demonstrated in this section is an alternative method of

determining spectra of the IAV method using Ordinary Least Squares (OLS) to validate the results

of the NU-FFT method.

β̂ = argminβ∥(qi − q̃i(ωj)∥2(3.14)

The minimum sum of square differences between set of harmonic trajectories qi and our best fit

trial function q̃i will determine amplitude coefficients corresponding to model form(s) that best

describe the harmonic data set.

q̃(ω) = X (ω)β(3.15)

The OLS method is related to the Fourier Transform integral by the fact that OLS method sums the

distances between trial data qi and the trial function. For harmonic models that contain solutions

at discrete frequency points, this effectively means non-zero terms in the trial function are expected

to occur at the harmonic system’s natural frequency Ω0. To find these occurrences the OLS method

is performed at incrimental frequencies ωj , such that Ω0 is also included.

When the OLS method is applied to integer cycles of harmonic motion, the out of phase

trial functions will be flattened to a line in order to minimize the squared sum of the distances.

Essentially frequencies that are similar or close to the given cosine distribution qi will contain

non-zero model amplitudes, while out of phase frequencies will be ignored.

(3.16) X =


1 cos(ωt0)

1 cos(ωt1)
...

1 cos(ωtn)


To ensure the model matrix contains at-least one solution satisfying IAV harmonics, X is

composed of a trial cosine function as shown in equation (3.16). It seemed obvious that a cosine

distribution should be included within the model matrix for harmonic motion, since the initial
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conditions q0 = 1 and p0 = 0 satisfy the cosine distribution at time t = 0. The linear intercept is

included as an additional term in the trial model, but β0 was found to be null in most cases.

Here in this study the least squares formulation (3.14) is performed with Singular Value De-

composition (SVD). By examining the least squares formulation as a linear problem of the form

qi ≈Xβ, the unknown feature set of amplitude coefficients β can be solved for via the SVD method

which avoids round off errors and singularities. Results found for a harmonic set of IAV trajectories

show that the amplitudes plotted in Figure 3.2 reveal the same additional spectral peaks predicted

by the NU-FFT method.
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Figure 3.2. Shown in black and blue are the IAV spectral results corresponding
respectively to least squares and NU-FFT methods. Both spectral techniques show
the same anomalous peaks regularly repeating at Ωn = (2n + 1)Ω0. The sample
spectra shown here is defined with timestep parameters h = 1000, hmin = 0.001,
hmax = 0.05 and configured with sζ = 0.05 and Ω0 = 1.

Note that the additional peaks that appear as integer multiples of the natural frequency Ω0

came as a surprise and hints towards the existence of other solutions contained within the dynamical

system introduced by the sundman time transformations. Providing the same non-uniform time

series to the cosine function still produced the same anomalous peaks and thus deserves further

investigation in Chapter 4.
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CHAPTER 4

Discussion

Expected frequency behavior for a particle with one degree of freedom demonstrated in Figure

2.1 should yield a singular frequency Ω0. Contrary to this expectation the time transformative IAV

method yields additional spectra as shown in Figure 3.2. It is the purpose of this section to provide

the necessary steps required to find a solution for adaptive Verlet motion. Furthermore a loose

explanation to the unexpected behavior found in the variable discrete time integration method

(IAV) is traced back to the governing differential equation (4.2).

Let us first begin by recalling that the IAV method, (2.5)-(2.7), was designed to satisfy the

Hamiltonian constraint which keeps the total system energy constant. The introduction of the

time relation s(q, p) modifies the Hamiltonian system to H̃.

H̃ = s(q, p) (H − γ) and H = 1/2pTM−1p+ V (q).(4.1)

The constraint on s(q, p) is that H̃ and H must pass through the same initial solution H̃(q0, p0) =

H(q0, p0), while γ is some constant. Adjusting to this new Hamiltonian accordingly, the new set of

coupled equations for motion is defined in (4.2).

dq/dτ
dp/dτ

 =

 ∇pH̃

−∇qH̃

(4.2)

Treating this problem in the same fashion as Leimkuhler [2] the formulation of the IAV inte-

grator ignores ∇qs(q, p). To clarify, this derivative does not go away since s(q) often depends on

position, however we do not adjust the IAV method laid out by Leimkuhler, since we wish to make

a direct assessment of the original method.

In order to model harmonic motion the hookes potential is inserted into equation (4.2). In

addition the time transformation s must now be chosen to explicitly define the dynamical system.
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In most cases the choice of the time transformation s(q, p) = dt/dτ will define a quasi-linear

differential equation [26] of the form,
dt/dτ

dq/dτ

dp/dτ

 = A


t

q

p

+ εg(q, q̇, t)(4.3)

where the characteristic matrix A contains the linear coefficients, and the non-linear terms are

premultiplied by a scalar ε (i.e. the discrete timestep h). In our system of equations, the non-linear

function g will become apparent after inserting the time relation and expanding the quasi-linear

differential equation. Within the scope of this paper we can only determine the linear solution for

very selective prescribed conditions.

Let us define a simple form of s(q) and solve for a very confined case where the forces approach

zero limq→0 f(qn) = 0. In general this differential equation does not have a trivial solution, espe-

cially since the time frames t and τ are mapped non-linearly via position q. Thus this problem

becomes very difficult to solve indefinitely without an exact map. In this example we take the time

relation to be the arc-length equation (4.4) for the linear system. Where in the limit that position

approaches zero the force contributions disappear and thus time variance maps one to one t↔ τ .

s(qn) = (1 + ε∥fn∥2)(4.4)

It is in this very crude approximation limq→0 f(qn) = fn = 0 that additional harmonics can be seen.

Inserting s(qn) and expanding our system of equations in terms of position begins to resemble the

Van der Pol equation in relation (4.5).

d2q

dτ2
+Ω2

0q = εg(q, q̇, ε)(4.5)

The non-linear terms in g were found to be the following.

g(q, q̇, τ) = −Ω0

(
2εq2 + ε2k2q3

)
+ ε

(
k

1 + ε

)
dq

dτ
(4.6)

Conveniently as the limit defined before is approached, the first few terms in g are reduced and

so the only remaining term is the momenta derivative g ≈ dq/dτ . Finally a solution to this
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non-homogeneous differential equation can be solved for by variation of parameters, which gives

the solution as a combination of the unperturbed solution and the particular solution. First the

unperturbed solution is found for g = 0 which yields the independent solutions q1 = c1 cos(Ω0τ)

and q2 = c2 sin(Ω0τ). Determining the particular solution is done so via variation of parameters

shown below, where the Wronskian term is W = Ω0c1c2.

qp(τ) = −q1
∫

q2g

W
dτ + q2

∫
q1g

W
dτ(4.7)

The integration above is not determinable until realizing one of the solutions is periodic and belongs

to the cosine distribution. Thus the sinusoidal momentum term is dq/dτ = sin(Ω0τ). The situation

involved begins with the initial conditions q0 = 1, p0 = 0 and for periodic motion this implies one of

the solutions is of the cosine distribution. Finally by solving for the particular solutions we arrive

at the following expression.

qp =
1

2Ω0
τ cos(Ω0τ) +

(
22Ω0 + 1

)
23Ω2

0

cos(Ω0τ + π/2) +
1

23Ω2
0

cos(3Ω0 + π/2)(4.8)

In the expression above we observe the 3Ω0 term as another mode or frequency that should be

present within the spectra. This prediction is confirmed by simulating periodic motion using the

IAV method in combination with the time transformation set by equation (4.4). The resulting

spectra can be seen in Figure 4.1, and as confirmed by the panel on the right there is resonance at

Ω1 = 3Ω0. Finding the solution in the limit as q → 0 demonstrates the potential for other modes,

but does not predict all the possible modes. For instance the 5Ω0 peak was not found in this limit.

It should be noted that at the other limit where dq/dτ → 0 approaches zero, the harmonic

system begins to resemble the same form as the modified Mathieu problem. This is often equivalent

to a frequency modulation problem shown in section 2.3 of [26], but the relation to the system in

(4.5) is not fully explored yet, since the transformation dt/dτ = s(q) renders the mapping between

t ↔ τ indefinable unless the solution is already known. In general, defining s(q) will generate a

non-linear, non-homogeneous differential equation without a closed form solution. Offered by the

IAV method is a predictable numerical method for solving this non-linear coupled set of position-

momenta equations of motion with time reversibility. As we’ve shown it may introduce additional
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harmonics, but it does so in a predictable manner that is consistent with integer multiples of the

fundamental frequencies.

It is possible for the IAV method to rid the spectra of additional harmonics using the IAV

integrator. This is achieved when s = 1, since the IAV method is reverted back into the Størmer-

Verlet and thus shouldn’t contain non-linear terms. A test of this will confirm that the overall

system of equations revert to the ordinary differential equation representing the harmonic oscillator

shown in Figure 4.1. The panel on the left of Figure 4.1 demonstrates expected harmonic behavior,
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Figure 4.1. Shown on the left are spectral modes corresponding s = 1 found by the
non-uniform FFT technique. Demonstrated on the right panel the spectra produced
using s(qn) = (1+ε∥fn∥2). Both tests were performed with a stable integration step
h = 0.05 and the frequency Ω0 = 1.

and that reverting the IAV method back into the form of SV produces a singular harmonic at Ω0.

Introducing the time-scaling factor s(q) has its quirks, however it is a controlled method of scaling

the timestep with the added forewarning that non-linearity may affect the spectra. Though when

time-scaling is no longer needed, it is always an option to recall the SV method and its symmetric

qualities.
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CHAPTER 5

Conclusion

In this document programming codes were created to implement variable timestep integrators.

The codes march the Implicit Adaptive Verlet integrator forward in time to characterized the energy

stability as well as the frequency response for the harmonic system.

Findings in Chapter 3.2 demonstrate that the stability response fell short of the traditional linear

stability. The frequency spectra also demonstrated additional harmonics that regularly repeated as

integer multiples of the fundamental frequency Ω0. In Chapter 4 this spectral behavior was been

confirmed and analytically derived for the condition that position approaches the origin for the

harmonic oscillator.

Overall these differences are due to fundamental differences within the class of differential

equations being integrated by the IAV method. Introducing time-transformation functions s(q)

into the harmonic system, converts a linear problem into a non-linear differential equation not

trivially solved.

Current variable timestep techniques arbitrarily alter the timestep without regard for time-

reversibility or symplecticity. By varying the timestep, the Hamiltonian is interchanged in every

occurrence [14]. The existing time reversible and symplectic adaptive techniques [15] [20] presented

here offer an alternative to brute force timestep varying approaches. They offer a method of

controlling the variable timestep while preserving time-reversibility. The forewarning to these

methods are that there may be non unique solutions introduced as demonstrated by additional

spectral modes. These effects may be mitigated if the fundamental frequency is known, or otherwise

s(q) may be set to have no varying timestep effect s(q) = 1.

Other areas of careful consideration with the IAV are the choice in s functional. There is

room for optimizing the time-transformation functional for greater timestep response depending on

potential curvature, but as Chapter 1.3 demonstrates the bounds of the timestep range must be

considered.
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APPENDIX A

Deriving the Størmer-Verlet λ Factor

Determining the amplification factor λ is used to demonstrate the linear stability. This assess-

ment of the scheme (2.1)-(2.3) requires a linear configuration that the harmonic oscillator provides.

The hookes model for linear behavior yields the linear driving force fn = −kqn which can be plugged

into the integration method.

The system of equations in (3.4) can be solved by finding the Eigenvalues by hand. First we

demonstrate this Eigenvalue problem in its characteristic linear system of equations below,

qn+1

pn+1

 = V

qn

pn

(A.1)

where the coefficients in V represent the terms found in the coupled linear system.

V =

a b

c d

(A.2)

For completeness we list the terms of the SV method below.

a =

(
1− (Ω0h)

2

2

)
(A.3)

b = h(A.4)

c = hΩ2
0

(
(Ω0h)

2

2
− 1

)
(A.5)

d =

(
1− (Ω0h)

2

2

)
(A.6)
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Going through some algebra for the 2× 2 Eigenvalue problem yields the following solution.

λ± =
(d+ a)±

√
(d+ a)2 − 4 (ad− cb)

2
(A.7)

With a little algebra we arrive at an expression for the roots .

λ± =

(
1− (Ω0h)

2

2

)
± i

(
1− (Ω0h)

2

22

)1/2

Ω0h(A.8)

The following steps used herin this section are then used in the IAV’s stability assessment.
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APPENDIX B

Deriving the IAV Scheme’s λ Factor

After some rearrangement in equations (2.6) and (2.7) a systematic representation of variable

step equations can be derived. For short hand notation the scaling functions s(pn+1/2, qn) are

abridged as sn and s(pn+1/2, qn+1) as sn+1. Thus the same method shown in Appendix A is used

to determine the amplification factor. Begin with the matrix coefficients:

a =

(
1− (Ω0h)

2

2

(
s2n + sn+1sn

2

))
(B.1)

b = h

(
sn + sn+1

2

)
(B.2)

c = hΩ2
0

(
(Ω0h)

2

2

(snsn+1

2

)
− 1

)(
sn+1 + sn

2

)
(B.3)

d =

(
1− (Ω0h)

2

2

(
snsn+1 + s2n+1

2

))
(B.4)

Plugging these coefficients into equation (A.7) we arrive at the result below.

λ± =

(
1− (Ω0h)

2

2

(
sn + sn+1

2

)2
)
±

i

(
1− (Ω0h)

2

22

(
sn + sn+1

2

)2
)1/2

Ω0h

(
sn + sn+1

2

)
(B.5)

We know that these roots are being derived for periodic motion, and thus it’s solution or the

complex conjugate of the roots λ must lie exactly on the unit circle for all time. However to traverse

the unit circle, the complex component must be preserved. Thus the inequality,(
1−

(
Ω0h

2

)2(sn + sn+1

2

)2
)1/2

> 0(B.6)
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preserves the complex component necessary for stability as time is evolved. Using the inequality

an overall stability limit can be derived for h. By holding the non-linear coefficients constant we

arrives at the expression (B.7). This serves as a conservative estimate for choosing h within the

limits determined by |sn| ≈ |sn+1| = h/hmax.

h ≤ 22

Ω0 (sn + sn+1)
(B.7)

Treating the amplification factor as linear by holding the non-linear coefficients s constant is

a rudimentary yet necessary step in assessing the overall viability of the method’s stability. If the

method does not pass the rudimentary test, it does not have much hope of passing a more detailed

assessment over all the states qn.
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