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Abstract

Scalable Systems for Large Scale Dynamic Connected Data Processing

by

Anand Padmanabha Iyer

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

As the proliferation of sensors rapidly make the Internet-of-Things (IoT) a reality, the
devices and sensors in this ecosystem—such as smartphones, video cameras, home
automation systems, and autonomous vehicles—constantly map out the real-world
producing unprecedented amounts of dynamic, connected data that captures complex and
diverse relations. Unfortunately, existing big data processing and machine learning
frameworks are ill-suited for analyzing such dynamic connected data and face several
challenges when employed for this purpose.

This dissertation focuses on the design and implementation of scalable systems for
dynamic connected data processing. We discuss simple abstractions that make it easy to
operate on such data, efficient data structures for state management, and computation
models that reduce redundant work. We also describe how bridging theory and practice
with algorithms and techniques that leverage approximation and streaming theory can
significantly speed up connected data computations. Leveraging these, the systems
described in this dissertation achieve more than an order of magnitude improvement over
the state-of-the-art.
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Chapter 1

Introduction

The availability of cheap data and cheap compute has made big data analytics main-
stream. However, recently there has been a paradigm shift in how we produce and
process data. As the proliferation of sensors rapidly make the Internet-of-Things (IoT) a
reality, the devices and sensors in this ecosystem—such as smartphones, video cameras,
home automation systems and autonomous vehicles—constantly map out the real-world
producing unprecedented amounts of connected data that captures complex and diverse rela-
tions. When coupled with the significant leap Artificial Intelligence (AI) has made in key
domains where these sensors are the major source of data, there is an increasing demand
in systems that can ingest such live, dynamic, connected data, analyze them and produce
low-latency decisions. These systems have the potential to shape the next generation
computation stack and further research in the fields of networked systems, AI & machine
learning (ML) and mobile computing.

This dissertation focuses on the core problems towards realizing such infrastructure
by designing scalable systems. These systems propose: (1) simple abstractions that
make it easy to operate on dynamic connected data, efficient datastructures to ingest
and compactly store the data and computation state, and computational models that
utilize incremental approaches to reduce redundant work (e.g., Tegra in chapter 3) (2)
bridging theory and practice with algorithms and techniques that leverage approximation,
streaming theory and machine learning to significantly speed up computations by trading
off accuracy (e.g., ASAP in chapter 4), and (3) methods for more accurate application of
ML tasks on live dynamic data (e.g., CellScope in chapter 7).

We begin with an introduction to the concept of connected data, explain the necessity
for processing them in an efficient manner and the describe the difficulties in doing so
using real-world examples.
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Which towers were 
congested then?

What was the reason for 
congestion at these?

How about at 10am?

What did the network look 
like at 9am?

Figure 1.1: Alex, a network administrator, diagnoses issues using data collected in the
network.

1.1 Motivating Examples

In this section we describe two scenarios, which we will use as running examples
throughout this dissertation, to motivate the need for dynamic connected data processing.
While the names of the persons used in these examples are fictional, the scenarios depict
real world problems faced by enterprise organizations today.

1.1.1 Alex Diagnoses Network Issues

Alex works as a network administrator at a large cellular network operator in the United
States. Alex’s job is to manage several thousands of wireless base stations, deployed
across a large geographic region, that serves millions of users connect to the Internet every
day. Whenever problems occur, and they do occur often in today’s cellular networks, Alex
is tasked with finding the reason for the issue and fix them. Monitoring and managing
network infrastructure is highly impactful problem for network operators today, with up
to USD 22 billion spent by a single top-tier operator every year in network management
and operation costs. For instance, let’s assume that Alex is trying to find the answer to
the question, "What is the reason for poor download throughput for (several) users at 9:00am?".

Much like any data driven company today, Alex’s company collects extensive data
from their network. The workflow is depicted in fig. 1.1. Alex might start with asking
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Were there small deposits & 
large withdrawals?

How many such patterns?

How about in February?

What were the transactions 
on 01 January?

Figure 1.2: Taylor, a financial analyst, uses transaction data to train a model to detect
money laundering.

"How did the network look like at 9am?", when the problem actually happened. The query
returns something similar to fig. 1.1 where there are several base stations serving many
users. Alex doubts congestion as the cuase for low throughput, so the next query is "Which
towers were congested at this point?" that returns a few towers from the original answer.
Then to understand the reason, Alex might run a few machine learning algorithms on the
data. Now Alex has to confirm that the findings are indeed correct. To do so, Alex asks
"How about at 10am?" meaning to repeat the entire analysis again, but now on a different
subset of the data.

In order to execute these queries and machine learning algorithms on data, Alex uses
handwritten scripts to parse and represent the data in a format that is amenable to the
analysis, and open source tools such as Scikit Learn [155] or Tensorflow [3] to do the
learning. Unfortunately, Alex faces two issues today. First, the tools available are unable
to handle the dynamicity of the data. The network which Alex manages generates several
terabytes of data every day, and wading through this massive amount of real-time data
is difficult. Second, the tools which Alex uses for analysis do not scale to large datasets,
majorly due to the nature of the queries. Thus, Alex spends a significant amount of effort
today in doing such analysis.
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1.1.2 Taylor Finds Financial Frauds

Taylor works as a financial analyst at one of the largest banks in the world. A major
analysis involved in Taylor’s daily job is in discovering financial frauds. A particular
problem of interest for Taylor is money laundering, which accounts for over 200 billion
USD every year, and thus an important charter for the bank.

Banks collect extensive information about financial exchanges, and a common ap-
proach to finding frauds is to train a machine learning algorithm on these financial
transactions to learn a model for detecting fraudulent transaction, and then use this
model in real-time transactions to mark suspicious ones. Figure 1.2 shows how Taylor
does this today, and it starts by retrieving the transactions that took place around the
time of known frauds. Once the data is retrieved, Taylor searches for transactions or
batches of transactions where small amounts of deposits were made followed by large
withdrawals, which is the distinguishing characteristic of classic money laundering. If
there are such patterns in the data (there is one such occurrence in fig. 1.2), Taylor gets an
estimate of how many such frauds occurred and retrieves a few of them. These retrieved
"laundering patterns" are fed to a learning algorithm which learns a model to detect
laundering. Taylor does this process in an ongoing fashion; as new laundering patterns
pop-up the model needs to be trained to retain its performance.

Like Alex, Taylor uses a combination of tools to do this analysis; for instance, R [144] for
quickly prototyping and testing some statistical methods, PyTorch [141], TensorFlow [3] or
Python scripts to train the model, and NetworkX [127] or custom programs to discover the
laundering patterns in the data. Similar to Alex’s, Taylor faces the problems of dynamicity
and scalability, albeit to a much higher extent. Due to the complexity of discovering
patterns in the data, the analysis cannot even handle moderate sized data. Thus, it takes
days, or even weeks for Taylor to run the analysis on the data collected by the bank.

1.1.3 Alex & Taylor Aren’t Alone!

Alex and Taylor work with what we refer to in this dissertation as connected data. In simple
terms, connected data is data comprising of entities and their relations. The relations can
be explicitly specified (e.g., real-world entities with spatial relations [153] such as base
stations and users in Alex’s case, graphical models [101]) or learned (e.g., raw sensor data
in deep learning tasks [27]). Such data has the power to capture diverse and complex
relations, which could be immensely valuable in many areas including the potential to be
the building block of future Artificial Intelligence systems [27].

Indeed, the lives of Alex and Taylor can become much more simpler by the availability
of techniques and systems that can operate on large scale dynamic, connected data.
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However, a key question that arises is if the problem of dynamic connected data processing
is limited to Alex and Taylor’s use-cases. The answer is a resounding no. Several emerging
applications could benefit from scalable and efficient connected data processing systems.
Connected vehicles [35] is an increasingly popular area of interest, both in the industry
and academia. In connected vehicles, connected data processing systems can enable safety
systems, such as using the sensor inputs from vehicles and users, combine them with the
real-time path taken by vehicles to model impending accidents and provide warnings.
Autonomous vehicles are undoubtedly the future of transportation, and we are making
huge strides towards achieving this goal. However, managing fleets of autonomous
vehicles in the real-world requires extremely robust and scalable traffic flow management
systems that can avoid congestion and choke points. Connected data processing systems
are likely the foundations in such systems. Finally, with sensors making their ways into
our everyday equipment and home automation systems becoming more popular, we
are no doubt going to see intelligent smart cities that would enhance our quality of life
and the environment. These smart cities would require immense planning, design and
ongoing optimizations for efficient operation, and connected data systems would be
crucial in understanding how the different entities that constitute the smart city interact
with each other and how to optimally actuate the different pieces for achieving the end
goal. In short, as the era of Internet-of-Things become reality, the world is moving towards
connected data, and systems that can efficient process large scale, dynamic connected
data can shape the next generation computation stack.

1.2 Problems with Existing Systems

Over the past decade, growing data volumes have pushed the frontiers in large scale data
processing and cloud computing. As a result, several cluster processing frameworks exist
today that can scale out to a large number of machines and process tremendous amounts
of data. The natural question is if these systems can help with dynamic connected data
processing. Unfortunately, there are three main challenges that stand in the way of
leveraging existing data processing systems for connected data processing.

1.2.1 Programmability

The first challenge is that of programmability. How do we allow end users to query
dynamic connected data in a natural and intuitive way? Users like Alex and Taylor
are familiar with the simple interface provided by existing Python based tools, and can
benefit from similar (simple) interfaces for representing, accessing and manipulating
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Figure 1.3: Representing connected data as property graphs.

or operating on the data they are interested in. However, no such facilities exist in
today’s big data frameworks. While these frameworks provide elegant primitives for
unstructured data manipulation, the relation between the entities and the dynamic nature
of these relations pose problems. The representation problem is fairly straightforward to
address. At a given point in time, connected data depicts the state of entities and their
relations. Such relations are naturally represented as graphs. For instance, Alex’s network
can be represented by a property graph (§2.2.1) where the entities in the network, such
as users and base stations, are graph nodes as shown in fig. 1.3. We follow this natural
representation format in this dissertation and thus dynamic connected data is represented
as dynamic property graphs (§3.3.1). Unfortunately, efficient storage and operations on
dynamic graphs are still open questions.

1.2.2 Storage

Connected data analysis is data intensive, as we saw with the examples of Alex and Taylor.
In both these scenarios, data is generated in the order of several terabytes every day. The
volume of data is only poised to increase with emerging Internet-of-Things applications,
for instance, autonomous/connected vehicles are expected to generate over 4 terabytes
of data per day by 2020 [83]. Thus, efficiently storing and retrieving large quantities of
dynamic connected data is a huge challenge. This is because commonly used techniques
in databases such as building indices for improving the access efficiency is not possible
in connected data processing.

1.2.3 Performance

Extracting performance in the face of dynamicity forms the biggest challenge in connected
data analysis. Most of connected data queries are both interactive and exploratory. They
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are interactive because users like Alex and Taylor are firing these queries at a terminal and
waiting for the results. The exploratory nature is because the queries are executed based
on what the user sees; the answer to a query determines the next query. Thus, queries are
executed in an ad-hoc fashion, and are not predetermined. In such scenarios, performance
optimization techniques such as pre-processing and query specific caching do not help.

1.3 Solution Overview

This dissertation focuses on the core problems in realizing efficient dynamic connected
data processing systems. Towards this goal, we design and implement the following
systems:

Tegra focuses on the problem of ad-hoc analytics on dynamic connected data. It aims
to solve the problems faced by Alex and Taylor and forms the foundation for the other
systems. To do so, it represents dynamic connected data as dynamic/evolving property
graphs, and proposes techniques for efficient storage and ad-hoc window operations on
evolving graphs. It enables efficient access to the state of the graph at arbitrary windows,
and significantly accelerates ad-hoc window queries by using a compact in-memory
representation for both graph and intermediate computation state. For this, it leverages
persistent datastructures to build a versioned, distributed graph state store, and couples
it with an incremental computation model which can leverage these compact states. For
users, it exposes these compact states using Timelapse, a natural abstraction. Tegra

significantly outperforms other systems (by up to 30×) for ad-hoc window operations.
ASAP specifically focuses on usecases similar to Taylor’s roadblock, the intractability

of scaling pattern discovery queries to larger datasets, and proposes a fast, approximate
computation engine for graph pattern mining. It leverages state-of-the-art results in
graph approximation theory, and extends it to general graph patterns in distributed
settings. To enable the users to navigate the tradeoff between the result accuracy and
latency, we propose a novel approach to build the Error-Latency Profile (ELP) for a given
computation. ASAP outperforms existing exact pattern mining solutions by orders of
magnitude. Further, it can scale to graphs with billions of edges without the need for
large clusters.

GAP explores the question of applying approximation to the problem of iterative
analytics on connected data and takes a first attempt at realizing approximate graph
analytics engine. Here, we discuss how traditional approximate analytics techniques do
not carry over to the graph usecase. Leveraging the characteristics of graph properties
and algorithms, GAP proposes a graph sparsification technique, and a machine learning
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based approach to choose the apt amount of sparsification required to meet a given
budget.

Monarch attempts to enhance the connected data processing systems by looking at
making them function when deployed in a geo-distributed fashion and thus focuses on
the problem of efficient geo-distributed graph analytics. We find that optimizing the
iterative processing style of graph-parallel systems is the key to achieving this goal rather
than extending existing geo-distributed techniques to graph processing.

CellScope looks at the fundamental difficulties in making real-time decisions on
real-time connected data. Such real-time decision tasks include simple reporting on data
streams to sophisticated model building. We observe that the practicality of these analyses
are impeded in several domains because they are faced with a fundamental trade-off
between data collection latency and analysis accuracy. To solve this issue, we look at
one particular domain, Alex’s network performance diagnosis, to study the trade-off in
detail and find that the trade-off can be resolved using two broad, general techniques:
intelligent data grouping and task formulations that leverage domain characteristics.
Based on this, CellScope applies a domain specific formulation and application of
Multi-task Learning(MTL) to network performance analysis. It uses three techniques:
feature engineering to transform raw data into effective features, a PCA inspired similarity
metric to group data from geographically nearby base stations sharing performance
commonalities, and a hybrid online-offline model for efficient model updates. We then
generalize the techniques and show their efficacy in other domains.

1.4 Dissertation Plan

This dissertation is organized as follows. Chapter 2 provides background on large scale
data processing. Chapter 3 describes the work on supporting ad-hoc analytics on dynamic
connected data. We discuss Tegra here, which proposes efficient ways to store and per-
form ad-hoc window operations. In chapter 4, we focus on pattern mining on connected
data, looking at problems such as Taylor’s. We describe ASAP in this chapter, which
is a fast, approximate pattern mining system that achieves several orders of magnitude
improvement over the state of the art techniques. Chapter 5 attempts to extend the
learning from ASAP to iterative analytics, and describes GAP, an approximate analytics
engine. We discuss how connected data is naturally generated in a geo-distributed fashion
and attempt to extend connected data processing systems to geo-distributed settings by
describing Monarch in chapter 6. Chapter 7 looks at the fundamental trade-offs in
making real-time decisions on dynamic connected data and describes CellScope, our
solution to this problem. Finally, we conclude and discuss future work in chapter 8.
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Chapter 2

Background

In this dissertation, we follow the natural representation format of viewing (dynamic)
connected data as (dynamic) property graphs (§1.2.1). Thus, the systems we discuss in
the following chapters build on the rich distributed graph processing literature. To aid
the reader in following the rest of the dissertation, we begin with a brief background on
large scale data processing systems, focusing on data-parallel and graph parallel systems.

2.1 Data Parallel Processing

Over the last decade, data parallel systems have gained popularity for processing large
amounts of data. These systems were aimed at simplifying parallel computation over
large amounts of distributed data. Typically, these systems expose simple abstractions
and operators that developers use to achieve the desired processing goals, and internally
manage the intricacies of efficiently running these operations on the data in parallel.

The most popular early proposal in this space is Google’s MapReduce [52], which
exposed just two operators—map and reduce—that could capture many embarrassingly
parallel use-cases such as rebuilding Google’s search indexes, the use-case it was originally
intended for, and provided efficient execution in a fault-tolerant fashion. The tremendous
popularity of MapReduce resulted in the emergence of a large number of systems [84,
190, 125, 193, 192, 21] and sparked research in many core areas such as scheduling,
query optimization and programming models. The new generation engines, such as
Naiad [125], Spark [192] and Flink [21], improved upon the original MapReduce proposal
by incorporating new operators, declarative interfaces, better task execution plans and
in-memory caching to reduce inefficiencies with intermediate data management.

Traditionally, most of the dataflow engines were targeted at processing batches of
unstructured data. However, as new application scenarios emerged, they have increasingly
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incorporated new functionalities such as the ability to do graph processing [115, 22, 71],
stream processing [21, 13, 194] and machine learning [102, 162].

2.2 Graph Parallel Processing

We discuss graph parallel processing in this section, touching upon representation,
abstractions and optimizations.

2.2.1 Property Graph Model

Graph processing systems typically represent graph structured data as a property
graph [148], which associates user-defined properties with each vertex and edge. The
properties can include meta-data (e.g., user profiles and time stamps) and program state
(e.g., the number of neighbors, or rank of vertices). For example, fig. 1.3 shows Alex’s
network at a particular instance in time (say 9:00am) as a property graph. Here, the
vertices (users and base stations) can hold properties such as the total data transferred
and number of users active while the edges can be made to store properties specific to
the node pairs such as signal quality, geographical distance and so on. This enables Alex
to query and filter the network based on properties and thus create analysis specific
instances of graphs as input to the next stage of processing.

Property graphs are logically represented in a distributed dataflow framework such as
MapReduce [52] as a pair of vertex and edge property collections, where the collections
contain the mapping between the vertex or edge and their properties. This enables
the composition of graphs with other collections in the dataflow frameworks [71]. An
alternative to property graphs for associating data with graph entities is the Resource
Description Framework (RDF) format [148] which stores triplets of subject-predicate-
object. However, compared to RDF, property graphs are considered to be a better format
for storage and querying, especially for graph analytics.

2.2.2 Graph Parallel Abstractions

Most existing general purpose graph processing systems allow end-users to perform
graph computations by exposing a graph-parallel abstraction. A graph-parallel abstraction
consists of a graph and a vertex-program, provided by the user, which is executed in
parallel on each vertex. The program running on individual vertex can interact with
the vertex’s neighborhood. This interaction between vertices is implemented using either
shared state (e.g., GraphLab [111]) or message passing (e.g., Pregel [115]). Each vertex
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program can read and modify its vertex property, and when all vertex programs vote to
halt the program terminates.

Pregel

Pregel [115] proposes a Bulk Synchronous Parallel (BSP) message passing abstraction where
all the vertex programs run simultaneously in a series of super-steps. In every super-
step, each vertex program receives all messages from the previous super-step and sends
messages to its neighbors in the next super-step. At the end of each super-step, a barrier
is imposed in order to ensure that all the vertex programs finish processing messages
before proceeding to the next. This ensures program correctness (at the cost of efficiency).
A Pregel program terminates when there are no messages remaining to be sent and every
vertex program has voted to halt. Pregel exposes several optimizations to improve the
efficiency of the message passing, for instance, messages destined to the same vertex are
combined using a commutative associative user-defined function.

GraphLab

GraphLab [111] proposes an asynchronous distributed shared-memory abstraction where the
vertex programs have shared access to the distributed graph. Each vertex program access
information about the current and adjacent vertices and edges directly and no message
passing is involved. In this model, correctness of the program is ensured by the GraphLab
system by serializing the program execution at neighbors. GraphLab eliminates messages
and also synchronization and can thus achieve higher efficiency by isolating and handling
data movements at the system level. However, this comes at the cost of an increased
complexity, and the gains due to an asynchronous programming model are often offset
by this additional complexity. Thus, a majority of distributed graph processing systems
today adopt the bulk synchronous model.

GAS Decomposition

PowerGraph [70] observes that while Pregel and GraphLab differ in how they collect
and distribute information, they share a common structure. Thus, it proposes the
Gather-Apply-Scatter (GAS) decomposition to characterize this common structure and
differentiate between vertex and edge specific computations. The GAS model captures
the conceptual phases of the vertex program as shown in listing 2.1. In the GAS de-
composition, a vertex program consists of three data parallel phases: a gather phase
that collects information about adjacent vertices and edges and applies a function on
them, the apply phase that uses the function’s output to update the vertex, and the
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def Gather(u, v) = Accum
def Apply(v, Accum) = vnew
def Scatter(v, j) = jnew, Accum

Listing 2.1: The Gather-Apply-Scatter (GAS) decomposition introduced in
PowerGraph [70].

scatter phase that uses the new vertex value to update adjacent edges. The system
executes these phases sequentially. Since the GAS decomposition leads to a pull based
model of message computation, it enables vertex-cut partitioning, and improved work
balance which are essential in achieving performance in real-world graphs which follow
power-law distribution [70]. As a result, many popular open-source graph-processing
frameworks (e.g., [71]) have adopted the GAS model.
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Chapter 3

Ad-Hoc Analytics on Dynamic
Connected Data

3.1 Introduction

In this chapter, we focus on the problem of efficient ad-hoc window operations on dynamic
connected data represented as evolving graphs—the ability to perform ad-hoc queries on
arbitrary time windows (i.e., segments in time) either in the past or in real-time. The
motivating examples described in the previous chapter (§1.1) are indeed instances of such
exploratory analysis.

Alex’s transient failure diagnosis started by retrieving a series of snapshots1 of the
network represented as an evolving graph before and after the failure. The process then
involved running a handful of queries on the retrieved window, and then iteratively
refining the queries until a hypothesis could be formed. The process culminating with
the repetition of the same queries on a different window. Similarly, Taylor’s quest towards
discovering money laundering involved improving the fraud detection algorithm by
retrieving the complete states of the transaction graph at different segments in time to train and
test variants of the algorithm. In such scenarios, neither the queries nor the windows on
which the queries would be run are predetermined.

To efficiently perform ad-hoc window operations, a graph processing system should
provide two key capabilities. First, it must be able to quickly retrieve arbitrary size
windows starting at arbitrary points in time. There are two approaches to provide this
functionality. The first is to store a snapshot every time the graph is updated, i.e., a vertex
or edge is added or deleted. While this allows one to efficiently retrieve the state of

1A snapshot is a full copy of the graph, and can be viewed as a window of size zero. Non-zero windows
have several snapshots.
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the graph at any point in the past, it can result in prohibitive overhead. An alternative
is to store only the changes to the graph and reconstruct a snapshot on demand. This
approach is space efficient, but can incur high latency, as it needs to re-apply all updates
to reconstruct the requested snapshot(s). Thus, there is a fundamental trade-off between
in-memory storage and retrieval time.

Second, we must be able to efficiently execute queries (e.g., connected components)
not only on a single window, but also across multiple related windows of the graph.
Existing systems, such as Chronos [76] allows executing queries on a single window,
while Differential Dataflow [125] supports continuously updating queries over sliding
windows. However, none of the systems support efficient execution of queries across
multiple windows, as they do not have the ability to share the computation state across
windows and computations. This fundamental limitation of existing systems arises from
their inability to efficiently store intermediate state from within a query for later reuse.

We present Tegra
2, a system that enables efficient ad-hoc window operations on

time-evolving graphs. Tegra is based on two key insights about such real-world evolving
graph workloads: (1) during ad-hoc analysis graphs change slowly over time relative to their
size , and (2) queries are frequently applied to multiple windows relatively close by in time.

Leveraging these insights Tegra is able to significantly accelerate window queries by
reusing both storage and computation across queries on related windows. Tegra solves
the storage problem through a highly efficient, distributed, versioned graph state store
which compactly represents graph snapshots in-memory as logically separate versions
that are efficient for arbitrary retrieval. We design this store using persistent data-
structures that lets us heavily share common parts of the graph thereby reducing the
storage requirements by several orders of magnitude (§3.5). Second, to improve the
performance of ad-hoc queries, we introduce an efficient in-memory representation of
intermediate state that can be stored in our graph state store and enables non-monotonic3

incremental computations. This technique leverages the computation pattern of the
familiar graph-parallel models to create compact intermediate state that can be used to
eliminate redundant computations across queries. (§3.4).

Tegra exposes these compact persistent snapshots of the graph and computation
state using a logical abstraction named Timelapse, which hides the intricacies of state
management and sharing from the developer. At a high level, a timelapse is formed by a
sequence of graph snapshots, starting from the original graph. Viewing the time-evolving
graph as consisting of a sequence of independent static snapshots of the entire graph
makes it easy for the developer to express a variety of computation patterns naturally,

2for Time Evolving GRaph Analytics.
3Allows vertex/edge deletions, additions and modifications on any graph algorithm implemented in a

graph-parallel fashion.



CHAPTER 3. AD-HOC ANALYTICS ON DYNAMIC CONNECTED DATA 15

while letting the system optimize computations on those snapshots with much more
efficient incremental computations (§3.3.1). Finally, since Timelapse is backed by our
persistent graph store, users and computations always work on independent versions
of the graph, without having to worry about consistency issues. Tegra outperforms
existing systems by up to 30× on ad-hoc window operation workloads (§3.7).

In summary, we make the following contributions:

• We present Tegra, a time-evolving graph processing system that enables efficient ad-
hoc window operations on both historic and live data. To achieve this, Tegra shares
storage, computation and communication across queries by compactly representing
the evolving graph and intermediate computation state in-memory.

• We propose Timelapse, a new abstraction for time-evolving graph processing. Tegra

exposes timelapse to the developer using a simple API that can encompass many
time-evolving graph operations. (§3.3.1)

• We design (DGSI), an efficient distributed, versioned property graph store that enables
timelapse APIs to perform efficient operations. (§3.5)

• Leveraging timelapse and DGSI, we present an iterative, incremental graph computa-
tion model which supports non-monotonic computations. (§3.4)

3.2 Background & Challenges

3.2.1 Time-evolving Graph Workloads

Time-evolving graph workloads, an important graph workload [153], can be of three
categories:

Temporal Queries: Here, an analyst is querying the graph at different points in the
past and evaluates how the result changes over time. Examples are “How many friends did
Alice have in 2017?” or “How did Alice’s friend circle change in the last three years?”. Such
queries may have time windows of the form [T − δ, T ] and are performed on offline data,
and are executed in batch.

Streaming/Online Queries: These workloads are aimed at keeping the result of a
graph computation up-to-date as new data arrives (i.e., [Now−δ,Now]). For example, the
analyst may ask “What are the trending topics now?”, or use a moving window (e.g., “What
are the trending topics in the last 10 minutes?”). These queries focus on the most recent data,
thus streaming systems operate on live graph.
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Ad-hoc Queries: In these workloads, an analyst is likely to explore the graph by
performing ad-hoc queries on arbitrary windows. For example, consider the exact queries
used by Alex (§1.1), a network administrator troubleshooting a transient failure that
occurred at 09:00AM. To do so, Alex may ask “What were the hotspots at 08:00AM?” which
runs a connected component algorithm on the snapshot. Based on what is seen, the next
query may ask “What were the hotspots at 10:00AM?” followed by “At 10:00AM, what is the
shortest path of hotspot X to the controller?”. Alex iteratively refines this query by taking
many snapshots and running the query. In another example, Taylor, a financial expert
is interested in improving the fraud-detection algorithm4. Taylor queries “Who were the
top influencers 1 month around April 1?” which retrieves the window of 1 month around a
known fraud and runs an algorithm (e.g., personalized page rank) on the window, and
then launches follow-up queries based on what the output is. Taylor repeats this on
different windows to learn new rules that would detect the fraud. Taylor then tests her
changes on a different set of windows, possibly also with injecting artificial data.

In ad-hoc workloads, not only does the analyst need to access arbitrary windows, but
also the queries and the windows on which they are executed are determined just-in-time
(i.e., not predetermined). Further, the analyst applies the same query to multiple (close-by,
discontinuous) windows.

3.2.2 Limitations of Existing Solutions

Recent work in graph systems has made considerable progress in the area of evolving
graph processing. (§3.8)

Temporal analysis engines (e.g., Chronos [76], ImmortalGraph [120]) operate on offline
data and focus on executing queries on one or a sequence of snapshots in the graph’s
history. Upon execution of a query, these systems load the relevant history of the graph
and utilize a pre-processing step to create an in-memory layout that is efficient for
analysis. Such preprocessing can often dominate the algorithm execution time [116].
As a result, these systems are tuned for operating on a large number of snapshots in
each query (e.g., temporal changes over months or year), and are efficient in such cases.
Fundamentally, the in-memory representation in these systems cannot support updates.
Additionally, these systems do not allow updating the results of a query.

Streaming systems (e.g., Kineograph [45], DifferentialDataflow [119], Kickstarter [175],
GraphBolt [117]) operate on live data and allow query results to be updated incrementally
(rather than doing a full computation) when new data arrives. These systems only
allow queries on the live graph, and do not support ad-hoc retrieval of previous state.

4Typically a combination of machine learning and expert rules.
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Additionally, the incremental computation is tied to the live state of the graph, and
cannot be utilized over multiple windows. Further, most systems (with the exception
of Differential Dataflow, to the best of our knowledge) do not support non-monotonic
computations in their incremental model, and either assume some properties of the
algorithm, or leave it up to the developer to ensure correctness.

Differential Dataflow (DD) allows general, non-monotonic incremental computations
using special versions of operators. Each operator stores “differences” to its input and
produces the corresponding differences in output (hence full output is not materialized),
automatically incrementalizing algorithms written using them. While this technique is
very efficient for real-time streaming queries, incorporating ad-hoc window operations
in it is fundamentally hard. Since the computation model is based on the operators
maintaining state (differences to their input and output) indexed by data (rather than time),
accessing a particular snapshot can require a full scan of the maintained state. Further,
since every operator needs to maintain state, the system accumulates large state over
time which must be compacted (at the expense of forgoing the ability to retrieve the
past). Finally, intermediate state of a query is cleared once it completes and storing these
efficiently for reuse is an open question5.

3.2.3 Challenges

Meeting the requirements necessary to support efficient ad-hoc window operations in
practice is hard. There are three main challenges that stand in the way of building such a
system. First is that of programmability. The system must be able to provide the end user
a natural and intuitive way to operate on time-evolving graphs. Second, the system must
support efficient storage of evolving graphs. While it is ideal to store the history of the
graph as individual snapshots for zero overhead ad-hoc retrieval, but the system needs
to consider the storage overhead due to duplication with every snapshot stored. Finally,
ad-hoc analytics is both interactive (the user is waiting for answers) and exploratory (new
queries are based on the answers to previous ones) and thus, extracting performance under
these constraints is difficult. To accelerate queries across windows, the system must not
only be able to store intermediate states efficiently, but also be able to leverage them in its
computation model. In essence, it must be able to compactly represent and share data
and state between queries across multiple windows and users.

5Our conversations with the author of DD revealed that incorporating the state management techniques
we propose in this work in DD is fundamentally hard and requires modification of its execution engine.



CHAPTER 3. AD-HOC ANALYTICS ON DYNAMIC CONNECTED DATA 18

3.3 Tegra Design

Our solution, Tegra, consists of three components:

Timelapse Abstraction (§3.3.1): In Tegra, users interact with time-evolving graphs us-
ing the timelapse abstraction, which logically represents the evolving graph as a sequence
of static, immutable graph snapshots. Tegra exposes this abstraction via a simple API
that allows users to save/retrieve/query the materialized state of the graph at any point.

Computational Model (§3.4): Tegra proposes a computation model that allows ad-hoc
queries across windows to share computation and communication. The model stores com-
pact intermediate state as a timelapse, and uses it to perform general, non-monotonic
incremental computations.

Distributed Graph Snapshot Index (§3.5): Tegra stores evolving graphs, intermediate
computation state and results in DGSI, an efficient indexed, distributed, versioned
property graph store which shares storage between versions of the graph. In fact, Timelapse
can be seen as “views” on the data stored in DGSI. Such decoupling of state from queries
and operators allow Tegra to share it across queries and users.

3.3.1 Timelapse Abstraction & API

Tegra introduces Timelapse as a new abstraction for time-evolving graph processing
that enables efficient ad-hoc analytics. The goal of timelapse is to provide the end-user
with a simple, natural interface to run queries on time-evolving graphs, while giving the
system opportunities for efficiently executing those queries. In timelapse, Tegra logically
represents a time-evolving graph as a sequence of immutable, static graphs, each of which
we refer to as snapshot in the rest of this chapter. A snapshot depicts a consistent state
of the graph at a particular instance in time. Tegra uses the popular property graph
model [71], where vertices and edges in the graph are associated with arbitrary properties,
to represent each snapshot in the timelapse. For the end-user, timelapse provides the
abstraction of having access to a materialized snapshot at any point in the history of the
graph. This enables the usage of the familiar static graph processing model in evolving
graphs (e.g., queries on arbitrary snapshot).

Timelapses are created in Tegra in two ways—by the system and by the users. When
a new graph is introduced to the system, a timelapse is created for it that contains a
single snapshot of the graph. Then, as the graph evolves, more snapshots are added to
the timelapse. Similarly, users may create timelapses while performing analytics. Because
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save(id): id Save the state of the graph as a snapshot in its timelapse.
ID can be autogenerated. Returns the id of the saved
snapshot.

retrieve(id): snapshot Return one or more snapshots from the timelapse. Allows
simple matching on the id.

diff(snapshot, snapshot): delta Difference between two snapshots in the timelapse. (§3.4)
expand(candidates): subgraph Given a list of candidate vertices, expand the computa-

tion scope by marking their 1-hop neighbors. Used for
implementing incremental computations ( §3.4)

merge(snapshot,snapshot,func):
snapshot

Create a new snapshot using the union of vertices and
edges of two snapshots. For common vertices, run func to
compute their value. Used for implementing incremental
computations ( §3.4)

Table 3.1: Tegra exposes Timelapse via simple APIs.

snapshots in a timelapse are immutable, any operation on them creates new snapshots as
a result (e.g., a query on a snapshot results in another snapshot as a result). Such newly
created snapshots during an analytics session may be added to an existing timelapse, or
create a new one depending on the kind of operations performed. For instance, for an
analyst performing what-if analysis by introducing artificial changes to the graph, it is
logical to create a new timelapse. Meanwhile, snapshots created as a result of updating a
query result should ideally be added to the same timelapse. The system does not impose
restrictions on how users want to book-keep timelapses. Instead, it simply tracks their
lineage and allows users to efficiently operate on the timelapses. (§3.5)

Since timelapse logically represents a sequence of related graph snapshots, it is
intuitive to expose the abstraction using the same semantics as that of static graph. In
Tegra, users interact with timelapses using a language integrated API. The API extends
the familiar Graph interface, common in static graph processing systems, with a simple set
of additional operations, listed in table 3.1. This enables users to continue using existing
static graph operations on any snapshot in the timelapse obtained using the retrieve()

API.

3.3.2 Evolving Graph Analytics Using Timelapse

The natural way to do graph computations over the time dimension is to iterate over a
sequence of snapshots. For instance, an analyst interested in executing the degrees query
on three snapshots, G1, G2 and G3 depicted in fig. 3.1 can do:

for(id <- Array(G1,G2,G3))

result = G.retrieve(id).degrees
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Figure 3.1: A timelapse of graph G consisting of three snapshots. For temporal analytics,
instead of applying graph-parallel operations independently on each snapshot (left),
timelapse enables them to be applied to all snapshots in parallel (right).

However, applying the same operation on multiple snapshots of a time-evolving graph
independently is inefficient. In graph-parallel systems (§3.2), degrees() computation is
typically implemented using a user-defined program where every vertex sends a message
with value 1 to their neighbors, and all vertices adding up their incoming message values.
Such message exchange accounts for a non-trivial portion of the analysis time [154]. In the
earlier example, sequentially applying the query to each snapshot results in 11 messages
of which 5 are duplicates (fig. 3.1).

To avoid such inefficiencies, timelapse allows access to the lineage of graph entities.
That is, it provides efficient retrieval of the state of graph entities in any snapshot. Using
this, graph-parallel phases can operate on the evolution of an entity (vertex or edge) as
opposed to a single (at a given snapshot) value. In simple terms, each processing phase
is able to see the history of the node’s property changes. This allows temporal queries
(§3.2.1) involving multiple snapshots, such as the degree computation, to be efficiently
expressed as:

results = G.degrees(Array(G1,G2,G3))

where degrees implementation takes advantage of timelapse by combining the phases
in graph-parallel computation for these snapshots. That is, the user-defined vertex
program is provided with state in all the snapshots. Thus, we are able to eliminate
redundant messages and computation.
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Figure 3.2: 1 Connected components by label propagation on snapshot G1 produces
R1. 2 Vertex A and edge A − B is deleted in G2. Using the last result to bootstrap
computation results in incorrect answer R2. 3 A strawman approach of storing all
messages during the initial execution and replaying it produces correct results, but needs
to store large amounts of state.

3.4 Computation Model

To improve interactivity, Tegra must be able to efficiently execute queries by effectively
reusing previous query results to reduce or eliminate redundant computations, commonly
referred to as performing incremental computation. Here, we describe Tegra’s incremental
computation model.

3.4.1 Incremental Graph Computations

Supporting incremental computation requires the system to manage state. The simplest
form of state is the previous computation result. However, many graph algorithms are
iterative in nature, where the graph-parallel stages are repeatedly applied in sequence
until a fixed point. Here, simply restarting the computations from previous results do not
lead to correct answers. To illustrate this, consider a connected components algorithm
using label propagation on a graph snapshot, G1 as shown in 1 in fig. 3.2 which entails
result R1 after three iterations. When the query is to be repeated on G2, restarting the
computation from R1 as shown in 2 computes incorrect result. In general, correctness in
such techniques depend on the properties of the algorithm (e.g., abelian group) and the
monotonicity of updates (e.g., the graph only grows).
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Supporting general non-monotonic iterative computations require maintaining inter-
mediate state. In the previous example, one solution is to store every message exchanged
between graph entities during the initial execution of the algorithm. When the query is
executed on the updated graph, the system can selectively replay these stored messages to
ensure correctness of the results as depicted in 3 . However, this approach requires stor-
ing and effectively using large amounts of state (proportional to the number of edges for
every iteration), which may pose prohibitive overheads when applied to real-world graphs
where the number of edges are significantly more compared to vertices [70]. Further, the
state is tied to the computation performed and thus doesn’t provide opportunities to
share it across queries.

Tegra proposes a general, incremental iterative graph-parallel computation model
that significantly reduces the state requirements. It leverages the fact that graph-parallel
computations proceed by making iterative changes to the original graph. Thus, iterations of
a graph-parallel computation can be seen as a time-evolving graph, where the snapshots are the
materialized state of the graph at the end of each iteration. Since timelapse can efficiently
store and retrieve these snapshots, we can perform incremental computations without
the need to store the message exchanges. We call this model Incremental Computation by
entity Expansion (ICE).

3.4.2 ICE Computation Model

ICE executes computations only on the subgraph that would be affected by the updates
at each iteration. To do so, it needs to find the relevant entities that should participate in
computation at any given iteration. For this, it uses the state stored as timelapse, and the
computation proceeds in four phases:
Initial execution: When an algorithm is executed for the first time, ICE stores the state
of the vertices (and edges if the algorithm demands it) as properties in the graph. At
the end of every iteration, a snapshot of the graph is added to the timelapse. The ID is
generated using a combination of the graph’s unique ID, an algorithm identifier and the
iteration number. As depicted in 1 in the examples in fig. 3.3, the timelapse contains
three and four snapshots, respectively.
Bootstrap: When the computation is to be executed on a new snapshot, ICE needs to
bootstrap the incremental computation. Intuitively, the subgraph that must participate in
the computation at bootstrap consists of the updates to the graph, and the entities affected
by the updates. For instance, any newly added or changed vertices should be included.
Similarly, edge modifications would result in the source and/or destination vertices to
be included in the computation. However, the changes alone are not sufficient to ensure
correctness of the results. This is because in graph-parallel execution, the state of a
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graph entity is dependent on the collective input from its neighbors. Thus, ICE must
also include the one-hop neighbors of affected entities, and so the bootstrapped subgraph
consists of the affected entities and their one-hop neighbors. ICE uses the expand() API
for this purpose. The graph computation is run on this subgraph. The first example’s 2

in fig. 3.3 shows how ICE bootstraps when a new vertex D and a new edge between A
and D is added. D and A should recompute state, but for A to compute the correct state,
it must involve its one-hop neighbor B, yielding subgraph D−A−B.
Iterations: At each iteration, ICE needs to find the right subgraph to perform computa-
tions. ICE exploits the fact that the nature of the graph-parallel abstraction restricts the
propagation distance of updates in an iteration. Intuitively, the graph entities that might
possibly have a different state at any iteration will be contained in the subgraph that
ICE has already executed computation on from the last iteration. Thus, after the initial
bootstrap, ICE can find the new subgraph at a given iteration by examining the changes
to the subgraph from the previous iteration and expanding to the one-hop neighborhood
of affected entities. For the vertices/edges that did not recompute the state, ICE simply
copies the state from the timelapse. In 3 in fig. 3.3 (first example), though A and D
recomputed, only D changed state and needs to be propagated to its neighbor A which
needs B.
Termination: It is possible that modifications to the graph may result in more (or less)
number of iterations compared to the initial execution. Unlike normal graph-parallel
computations, ICE does not necessarily stop when the subgraph converges. If there are
more iterations stored in the timelapse for the initial execution, ICE needs to check if the
unchanged parts of the graph must be copied over. Conversely, if the subgraph has not
converged and there are no more corresponding iterations, ICE needs to continue. To do
so, it simply switches to normal (non-incremental) computation from that point. Thus,
ICE converges only when the subgraph converges and no entity needs their state to be
copied from the stored snapshot in the timelapse. ( 4 in fig. 3.3)

3.4.3 ICE vs Streaming Systems

ICE provides several desirable properties for ad-hoc exploratory analysis on evolving
graphs, and differs from the computation models in existing streaming graph processing
systems (e.g., Differential Dataflow, Kickstarter, GraphBolt) in two major ways. First,
the state in ICE model is decoupled from computation, and ICE generates the exact
same intermediate states as a system that executes the algorithm from scratch (i.e., non-
incremental computation) at every iteration. In addition to guaranteeing the correctness
even for non-monotonic computations, this allows ICE to leverage any user specified
previous state for incremental computations compared to streaming systems which can
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only utilize the last state (i.e., there are no ordering constraints e.g., an analyst can run
a query on a graph snapshot at 9:00am and use the state to run the query on 8:00am
snapshot). Second, streaming systems typically cannot utilize newly available data when
a computation is in progress—for example, a query might be in progress when a new
snapshot of the graph is available. Tegra’s choice of immutable snapshots allows it to
separate computation and data ingestion. Thus, ICE can switch to a new snapshot when
available (and leverage the computation until the switch due to state decoupling).

3.4.4 Improving ICE Model

Sharing State Across Different Queries Many graph algorithms consist of several stages
of computations, some of which are common across different algorithms. For example,
variants of connected components and pagerank algorithms both require the computation
of vertex degree as one of the steps. Since ICE decouples state, such common computa-
tions can be stored as separate state that is shared across different queries. Thus, ICE
enables developers to generate and compose modular states. This reduces the need to
duplicate common state across queries which results in reduced memory consumption
and better performance.
Incremental Computations Can Be Inefficient Incremental computation is not useful in
all cases. For instance, in graphs with high degree vertices, a small change may result in
a domino effect in terms of computation—that is, during later iterations, a large number
of graph entities might need to participate in computation (e.g., Example 2 in fig. 3.3). To
perform incremental computation, ICE needs to spend computations cycles to identify
the set of vertices that should recompute (using diff) and copy the state of vertices that
did not do computations (using merge). Due to this, the total work done by the system
may exceed that of completely executing the computation from scratch [61, 175]. Since
ICE generates the same intermediate states at every iteration as full re-execution, it can
switch to full re-execution.

We propose a simple learning based technique to determine when to do this switch.
We use a decision tree classifier to predict if the current iteration would be faster using
incremental or non-incremental execution. To train the classifier, we use offline data
that consists of several runs of queries both in incremental and non-incremental fashion.
At each iteration of every run, we note the number of vertices that participated in
computation in the last iteration, the time taken for the last iteration, and whether full
execution or incremental execution was faster in that iteration. The label is defined as
whether incremental execution was faster than full execution at this iteration. At run
time, we use the classifier to predict whether to switch to full execution.



CHAPTER 3. AD-HOC ANALYTICS ON DYNAMIC CONNECTED DATA 26

3.5 Distributed Graph Snapshot Index (DGSI)

To make timelapse abstraction and ICE computation model practical, Tegra needs
to back them with a storage that satisfies the following three requirements: (1) enable
ingestion of updates in real-time, and make it available for analysis in the minimum time
possible, (2) support space-efficient storage of snapshots and intermediate computation
state in a timelapse, and (3) enable fast retrieval and efficient operations on stored
timelapses. These requirements, crucial for efficiently supporting ad-hoc analytics on
time-evolving graphs, pose several challenges. For instance, they prohibit the use of pre-
processing, typically employed by many graph processing systems, to compactly represent
graphs and to make computations efficient. In this section, we describe how Tegra

achieves this by building DGSI. It addresses requirements (1) and (2) by leveraging
persistent datastructures to build a graph store (§3.5.1, §3.5.2) that enables efficient
operations (§3.5.3) while managing memory over time (§3.5.4).

3.5.1 Leveraging Persistent Datastructures

In Tegra, we leverage persistent datastructures [55] to build a distributed, versioned
graph state store. The key idea in persistent datastructures is to maintain the previous
versions of data when modified, thus allowing access to earlier versions. DGSI uses a
persistent version of the Adaptive Radix Tree [108] as its datastructure. ART provides
several properties useful for graph storage such as efficient updates and range scans.
Persistent Adaptive Radix Tree (PART) [137] adds persistence to ART by simple path-
copying. For the purpose of building DGSI, we reimplemented PART (hereafter pART)
in Scala and made several modifications to optimize it for graph state storage. We also
heavily engineered our implementation to avoid performance issues, such as providing
fast iterators, avoiding unnecessary small object creation and optimizing path copying
under heavy writes.

3.5.2 Graph Storage & Partitioning

Tegra stores graphs using two pART datastructures: a vertex tree and an edge tree.
The vertices are identified by a 64-bit integer key. For edges, we allow arbitrary keys
stored as byte arrays. By default, the edge keys are generated from their source and
destination vertices and an additional short field for supporting multiple edges between
vertex pairs. pART supports prefix matching, so using matching on this key enables
retreiving all the destination edges of a given vertex. The leaves in the tree store pointers
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Snapshot 1
v1 v2

{”name: Foo”} {”name: Bar”}

Snapshot 2

Figure 3.4: Tegra’s DGSI consists of one pART datastructure for vertices and one for
edges on each of the partitions. Here, a vertex pART stores properties in its leaves. Vertex
id traverses the tree to the leaf storing its property. Changes generate new versions.

to arbitrary properties.We create specialized versions of pART to avoid (un)boxing costs
when properties are primitve types.

Tegra supports several graph partitioning schemes, similar to GraphX [71], to balance
load and reduce communication. To distribute the graph across machines in the cluster,
vertices are hash partitioned and edges are partitioned using one of many schemes (e.g.,
2D partitioning). We do not partition the pART structures, instead Tegra partitions
the graph and creates separate pART structures locally in each partition. Hence logically,
in each partition, the vertex and edge trees store a subgraph (fig. 3.4). By using local
trees, we further amortize the (already low) cost6 associated with modifying the tree
upon graph updates. To consume graph updates, Tegra needs to send the updates to
the right partition. For this, we impose the same partitioning as the original graph on the
vertices and edges in the update.

3.5.3 Version Management

DGSI is a versioned graph state store. Every “version” corresponds to a root in the vertex
and edge tree in the partitions—traversing the trees from the root pair materializes the
graph snapshot. For version management, DGSI stores a mapping between a root and
the corresponding “version id” in every partition. The version id is simply a byte array.

For operating on versions, DGSI exposes two low level primitives inspired by existing
version management systems: branch and commit. A branch operation creates a new

6Modifications to nodes in ART trees only affect the O(log256 n) ancestors
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working version of the graph by creating a new (transient) root that points to the original
root’s children. Users operate on this newly created graph without worrying about
conflicts because the root is exclusive to them and not visible in the system. Upon
completing operations, a commit finalizes the version by adding the new root to version
management and makes the new version available for other users in the system. Once
a commit is done on a version, modifications to it can only be done by “branching” that
version. Any timelapse based modifications cause branch to be called, and the timelapse
save() API invokes commit.

Tegra can interface with external graph stores, such as Neo4J [126], Titan [170] or
Weaver [180] for importing and exporting graphs. While importing new graphs, DGSI
automatically assigns an integer id (if not provided) and commits the version when
the loading is complete. We create a version by batching updates. The batch size is
user-defined. In order to be able to retrieve the state of the graph in between snapshots,
Tegra stores the updates between snapshots in a simple log file, and adds a pointer to
this file to the root.

The simplest retrieval is by using its id. In every partition, DGSI then gets a handle to
the root element mapped to this id, thus enabling operations on the version (e.g., branch-
ing, materialization). By design, versions in DGSI have no global ordering because
branches can be created from any version at any time. However, in some operations, it
may be desirable to have ordered access to versions, such as in incremental computations
where the system needs access to the consecutive iterations. For this purpose, we enable
suffix, prefix and simple ranges matching primitives on the version id.

3.5.4 Memory Management

Over time, DGSI stores several versions of a graph, and hence Tegra needs to manage
these versions efficiently. We employ several ways to do this. Between branch and commit

operations, it is likely that many transient child nodes are formed. We aggressively
remove them during the commit operation. In addition, we enable in-place updates when
the operations are local, such as after a branch and before a commit. Further, during
ad-hoc analysis, analysts are likely to create versions that are never committed. We
periodically mark such orphans and adjust the reference counting in our trees to make
sure that they are garbage collected.

For managing stored versions, we leverage a simple Least Recently Used (LRU)
eviction policy. Each time a version is accessed, we annotate the version and all its
children with a timestamp. The system then employs a thread for periodically removing
versions that were not accessed in a long time. The eviction is done by saving the version
to local disk (or distributed file system). We do this in the following way. Since every
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Snapshot SSnapshot 1
v1 vv…

Figure 3.5: DGSI has fine-grained control over leaves (where data is stored). Here DGSI
has 1000s of snapshots. All snapshots except S is on disk, their parents just hold pointers
to the file. Parents are also dynamically written to disk if all of their children are on disk.
Datastructure uses adaptive leaf sizes for efficiency.

version in DGSI is a branch, we write each subtree in that branch to a separate file and
then point its root to the file identifier (e.g., in fig. 3.4, we can store v2’s leaf that is
different from v1 in disk as a file and point the parent node to this file). By writing
subtrees to separate files, we ensure that different versions sharing tree nodes in memory
can share tree nodes written to files. Due to this technique, we can ensure that leaf nodes
(which are most memory consuming) that are specific to a version (not shared with any
other version) are always written to disk if the version is evicted. As depicted in fig. 3.5, a
large number of versions can be flushed to disk over time while still being retrievable
when necessary. Thus, only active snapshots are fully materialized in memory, thereby
allowing Tegra to store several snapshots.

3.6 Implementation

We have implemented Tegra on Apache Spark [192] as a drop-in replacement for
GraphX [71]7. We utilize the newly available barrier execution mode to implement direct
communication between tasks to avoid most Spark overheads.

3.6.1 ICE on GAS Model

As described in §3.4.2, the diff() API marks the candidates that must perform graph-
parallel computation in a given iteration. In GAS decomposition, the scatter() function,

7Tegra is a new implementation and does not extend GraphX’s codebase.
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invoked on scatter_nbrs, determines the set of active vertices which must perform
computation. Starting with an initial candidate set (e.g., at bootstrap the changes to the
graph, and at any iteration the candidates from the previous iteration) the diff() API
uses scatter_nbrs (EdgeDirection in GraphX) in the user-defined vertex program to mark
all necessary vertices for computation. We mark all scatter_nbrs of a vertex if its state
differs from the previous iteration, or from the previous execution stored in the timelapse.
For instance, a vertex addition must inspect all its neighbors (as defined by scatter_nbrs)
and include them for computation.

The vertices in GAS parallel model perform computation using the user-defined
gather(), sum() and apply() functions, where gather_nbrs determine the set of neighbors to
gather state from. The expand() API enables correct gather() operations on the candidates
marked for recomputation by also marking the gather_nbrs of the candidates. After the
diff() and expand(), Tegra has the complete subgraph on which the graph-parallel
computation can be performed.

3.6.2 Using Tegra as a Developer

Tegra provides feature compatibility with GraphX, and expands the existing APIs in
GraphX to provide ad-hoc analysis support on evolving graphs. It extends all the opera-
tors to operate on user-specified snapshot(s) (e.g., Graph.vertices(id) retrieves vertices at
a given snapshot id, and Graph.mapV([ids]) can apply a map function on vertices of the
graph on a set of snapshots). Graph-parallel computation is enabled in GraphX using the
Graph.aggregateMessages() (previously mrTriplets()) API. Because this API works on the
Graph interface, developers can directly apply it to the subgraph found by using Tegra’s
diff() and expand() calls and then use merge() to materialize the complete result.

GraphX further offers iterative graph-parallel computation support through a Pregel
API which captures the GAS decomposition using repeated invocation of the aggregate-

Messages and joinVertices until a fixed point. Tegra provides an incremental version of
this Pregel API that can perform ICE from a previously saved computation state provided
as an argument as shown in listing 3.1. In general, a developer can write incremental
versions of any iterative graph parallel algorithm by using the Tegra APIs along with
aggregateMessages. Tegra provides a library of incremental versions of commonly used
graph algorithms.

3.7 Evaluation

We have evaluated Tegra through a series of experiments.
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def IncPregel(g: Graph[V, E],
prevResult: Graph[V, E],
vprog: (Id, V, M) => V,
sendMsg: (Triplet) => M,
gather: (M, M) => M): Graph[V, E] = {

iter = 0
// Loop until no active vertices and nothing to copy
// from previous results in timelapse.
while (!converged) {
// Restrict to vertices that should recompute
val msgs: Collection[(Id, M)] =
g.expand(g.diff(prevResult.retrieve(iter))).
.aggregateMessages(sendMsg, gather)

iter += 1
// Receive messages and copy previous results
g = g.leftJoinV(msgs).mapV(vprog)

.merge(prevResult.retrieve(iter)).save(iter) }
return g }

Listing 3.1: Implementation of incremental Pregel using Tegra API.

Dataset Vertices / Edges

twitter [31] 41.6 M / 1.47 B
uk-2007 [33] 105.9 M / 3.74 B
Facebook Synthetic Data [2] Varies / 5, 10, 50 B

Table 3.2: Datasets in our evaluation. M = Millions, B = Billions.

Comparisons. We compare Tegra against a streaming engine and a temporal engine.
For streaming system, we use the Rust implementation of Differential Dataflow (DD) [54].
Since we were unable to obtain an open source implementation of a temporal engine, we
developed a simplified version of Chronos [76] in GraphX [71], which we call Chlonos
(Clone of Chronos) in this section. This implementation emulates an array based in-
memory layout of snapshots and the incremental computation model in Chronos. For
graph updates, we use a mixture of additions and deletions.
Evaluation Setup. All of our experiments were conducted on 16 commodity machines

available as Amazon EC2 instances, each with 8 virtual CPU cores, 61GB memory, and
160GB SSDs. The cluster runs a recent 64-bit version of Linux. We use Differential
Dataflow v0.8.0 and Apache Spark v2.4.0. We warm up the JVM before measurements.
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Caveats. While perusing the evaluation results, we wish to remind the reader a few
caveats. Though many of the graphs we use fit in the memory of a modern single machine,
Tegra is focused on ad-hoc analytics which requires storage of multiple snapshots of
the graph. Further, ad-hoc analytics requires the use of property graphs, and thus Tegra

supports edge and vertex properties (and creates a default value) which blows up the
graph size several magnitudes (and also affects performance). DD does not support
properties which makes it highly memory efficient. Further, DD only outputs differences
(not fully materialized results) which Tegra materializes the entire result on every
computation. Finally, DD’s connected component implementation uses union-find (hard
to fit in a vertex centric model) which is superior to Tegra’s label propagation based
implementation.

3.7.1 Microbenchmarks

Graph Update Throughput: To evaluate the ability of Tegra to sustain high update
volumes, we load the Twitter graph. We randomly add and remove 1 million edges (no
computations are performed) and note the time to store the updates and compute the
throughput. We repeat the experiment 10 times each with varying number of machines
and average the results. We observe that Tegra is able to average about 1 million updates
per machine and this number scales linearly with more machines, which is expected as
there is no coordination required for updating the graph. DD is able to achieve 20 million
updates per machine, but it is simply inserting the updates in native arrays while Tegra

is applying the updates to the graph stored in DGSI.
Snapshot Retrieval Latency: Next, we repeat the experiment to evaluate the snapshot
retrieval latency. After 1000 updates, we retrieve random snapshots from graph. For each
retrieval, we note the time for the system to materialize the output. We note the average
of 10 retrievals each on different number of machines in fig. 3.6. DD does periodic state
compaction to reduce state overheads, but this results in the inability to retrieve the past.
One potential solution is to create a snapshot at the point of compaction and store it
separately along with a redo log. However, this requires a solution similar to DGSI (§3.2)
to store these snapshots efficiently without duplication. Since this is beyond the scope of
this work, we disable compaction in DD and modify it to retrieve the snapshot at a given
time.

We see that Tegra is able to return the queried snapshot with no computation at all,
since it materializes the snapshot at ingestion time. In contrast, DD needs to reconstruct
the graph when it is queried. Reconstructing the graph takes about 20 seconds on a single
machine, and reduces linearly with number of machines. However, as more updates are
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Figure 3.6: Snapshot retrieval latency in DD incurs cost and degrades with time.
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Figure 3.7: Differential dataflow generates state at every operator, while Tegra’s state is
proportional to the number of vertices.

added, the retrieval time degrades. DD also exhibits high variance in retrieval time based
on the snapshot retrieved.
Computation State Storage Overhead: Finally, we measure the memory overhead due
to computation state. We perform page rank (PR) and connected components (CC)
computation on the Twitter graph in an incremental fashion, where we add and delete
1000 edges to create a snapshot. We note the memory usage by each system after every
200 such computations until 1000 computations (for a total of 1 million edge updates).
Figure 3.7 shows this experiment’s results. When the number of updates are small, both
Tegra and DD use comparable amount of memory to store the state, even with DD’s



CHAPTER 3. AD-HOC ANALYTICS ON DYNAMIC CONNECTED DATA 34

 1

 10

 100

 1000

 10000

Twitter-CC UK-CC Twitter-PR UK-PR

T
im
e 
(s
) 
[L
og
sc
al
e]

Graph (PR=PageRank, CC=ConnectedComponents)

Tegra
Diff. Datafow (DD)

Chlonos

Figure 3.8: On ad-hoc queries on snapshots, Tegra is able to significantly outperform
due to state reuse.

highly compact layout (native arrays compared to Tegra’s property graph), but DD’s
state size increases rapidly as it does more incremental computation and takes up to 2×
that of Tegra. Tegra’s memory requirement also increases over time, but much more
gracefully. The reason is that Tegra’s state requirement is proportional to the number
of vertices, while DD needs to keep state at every operator. The amount of increase also
depends on the algorithm. For instance, page rank generates the same amount of state in
every iteration while connected component’s state requirement reduces over iterations.
Note that DD uses compaction in this experiment which is automatically done by the
system.

3.7.2 Ad-hoc Window Operations

Here, we present evaluations that focus on Tegra’s main goal. In these experiments, we
emulate an analyst. We load the graph, and apply a large number of sequential updates
to the graph, where each update modifies 0.1% of the edges. We then retrieve 100 random
windows of the graph that are close-by, and apply queries in each. We use page rank and
connected components as the algorithms. Page rank is either run until a specific tolerance,
or 20 iterations, whichever is smaller. We assume that earlier results are available so
that the system could do incremental computations. We do not consider the window
retrieval time in this experiment for DD and Chlonos. We present the average time taken
to compute the query result once the window is retrieved.
Single Snapshot Operations: In the first experiment, we set the window size to zero so
every window retrieval returns a single snapshot. The results are depicted in fig. 3.8.
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Figure 3.9: Tegra’s performance is superior on ad-hoc window operations even with
materialization of results.

DD and Chlonos do not allow reusing computation across queries, so they compute
from scratch for every retrieval. In contrast, Tegra is able to leverage the compact
computation state stored in its DGSI from earlier queries for much faster computation. In
this case, most of the snapshots incurs no computation overhead because of the extremely
small amount of changes between them, and Tegra is able to produce an answer within
a few seconds. DD takes a few 10s of seconds, while Chlonos requires 100s of seconds.
Tegra’s benefits range from 18-30× compared to DD.
Window Operations: Here we set the window size to be 10 snapshots. Chlonos and DD
are able to apply incremental computations once the query has been computed on the
first snapshot. Figure 3.9 shows the results. We see that DD is very fast once the first
result has been computed, and incurs minimal overheads after that. In contrast, Chlonos
incurs a penalty because it uses the first result to bootstrap the rest. Because Tegra

needs to materializes the result and also store it separately for each snapshot, and due to
scheduling overheads in Spark it incurs a slight penalty compared to a single snapshot.
Tegra is still 9-17× faster compared to DD.
Large Graphs: Finally, we evaluate the ability of Tegra to support ad-hoc window
analysis on very large graphs. For this, we use synthetic graphs provided by Facebook [2]
modeled using the social network’s properties. There are 3 graphs with 5B, 10B and 50B
edges respectively.

Here, we load the graph and execute the queries once. Then we modify the graph by a
tiny percentage, 0.01% randomly 1000 times to create 1000 snapshots. We then randomly
pick a snapshot, and run the queries on it. We provide the average time over 100 such
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Graph 5B 10B 50B

PR CC PR CC PR CC
DD 1m 8s 2m 34s - -
Giraph 2m 1m 4m 1.5m 22.5m 4.5m
GraphX 6m 3.5m 18m 12m - -
Tegra 10s 5s 19s 7s 1.5m 18s

Table 3.3: Ad-hoc analytics on big graphs. A ’-’ indicates the system failed to run the
workload.

runs. The results are shown in table 3.3. DD works reasonably well when both the graph
and the updates are small (hence generates less state). However, as the graph becomes
larger, DD needs to push a large number of updates through the computation, and hence
the state it generates becomes a huge bottleneck in its performance (on the largest graph,
we were unable to get DD to work as it failed due to excessive memory usage during
initial execution). In contrast, Tegra is not only able to keep the state compact and scale
to large graphs, but also provide significant benefits by using previous computation state.
Tegra carries the performance to larger graphs, the runtime increases linearly, which is
intuitive for PageRank. Note that Giraph and GraphX recompute the entire results as
they do not support incremental computations.

3.7.3 Timelapse & ICE

We evaluate the ability of Timelapse abstraction to provide efficient ways for graph-parallel
phases to perform operations (§3.3.2) and the ICE computation model (§3.4.4).
Parallel computations. We develop a simple parallel computation model (§3.3.2) in which
a query applied to a sequence of snapshots can be run in parallel on all the snapshots.
That is, instead of running the query snapshot-by-snapshot, we use timelapse to compute
across snapshots.

We create 20 snapshots of the Twitter graph by starting with 80% of the edges and
adding 1% to it repeatedly. We then apply the connected components algorithm on these
snapshots where we vary the number of snapshots on which the algorithm runs. Thus,
the value in the X-axis of this plot indicates the number of snapshots included in the
computation. In each run, we measure the time take to obtain the results on all the
snapshots considered. For comparison, we use GraphX and apply the algorithm to each
snapshot in a serial fashion. The results are depicted in fig. 3.10. We see that Tegra

significantly outperforms GraphX for a single snapshot due to its use of barrier execution
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Figure 3.10: Timelapse can be used to optimize graph-parallel stage.
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Figure 3.11: Sharing state across queries results in reduction in memory usage and also
improvement in performance.

mode in Spark. Further, we see a linear trend with increasing number of snapshots. By
sharing computation and communication, Tegra is able to achieve up to 36× speedup.
Sharing state across queries: To evaluate how much benefits sharing state between
different queries provides, we run an experiment with connected components and page
rank. For these queries, the degree computation can be shared. We evaluate with and
without this sharing. We use the Twitter graph and average the result of 10 runs of
incremental computations on random snapshots. The results in fig. 3.11 show 20% and
30% reduction in memory usage and runtime.
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Figure 3.12: Incremental computations are not always useful. Tegra can switch to full
re-execution when this is the case.

ICE’s switching capability: To test ICE’s switching capability to full re-execution when
incremental computations are not useful (§3.4.4), we run the connected component
algorithm on Twitter graph. Then we introduce a batch of deletions in the largest
components so that incremental computation executes on a large portion of the graph.
We then make Tegra recompute with and without the switching enabled and average
the results over 10 such runs. The results are shown in fig. 3.12. We see that without
the switching, Tegra incurs a penalty—the incremental execution takes more time than
fully re-executing the algorithm (which takes on average 90 seconds). With the switching
enabled, Tegra is easily able to identify that it needs to switch.
ICE’s versatility: Since ICE differs from streaming engines (§3.4.3), it can also provide
flexibility in how it uses state. For instance, if updates are monotonic (only additions),
then ICE can simply restart from the last answer rather than using fully incremental
computations. Figure 3.13 shows this on two algorithms on the UK graph. Both pagerank
and connected components can benefit from monotonicity. Pagerank is faster since it only
needs to converge within tolerance.

3.7.4 Tegra Shortcomings

Finally, we ask the question “What does Tegra not do well?”.
Purely Streaming Analysis: For this experiment, we consider an online query (§3.2)
of connected components. To emulate a streaming graph, we first load the graph and
continuously change 0.01% of the graph by adding and deleting edges.We assume that
earlier results are available so that the system could perform incremental computation.
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Figure 3.13: Monotonicity of updates (additions only) can be leveraged to speed up
computations by starting from the last answer.
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Figure 3.14: DD significantly outperforms Tegra for purely streaming analysis.

We do this as follows: after a fixed number of updates, we stop and do a complete
computation to create previous state. Then we do incremental computation from the
next update. The average runtime of 10 runs is shown in fig. 3.14. We see that DD is
significantly better than Tegra for such workloads, providing 20-30X improvements.
This is due to a combination of DD optimized for online queries (pushing each updates
really fast through computation) and its Rust implementation. In contrast, Tegra

materializes the result after each computation, and also is tuned for updates in batches.
Purely Temporal Analysis: We also consider a purely temporal query. Here, we assume
that the system knows the queries and the window before the start, and thus it has
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optimized the data layout for the query. We run a simple query on a window size of 10

and compare Tegra and Chlonos. Excluding processing time, we noticed that Tegra

takes around a 15% performance hit due to its use of tree structure.
COST Analysis: The COST metric [118] is not designed for incremental systems, but
we note that Tegra is able to match the performance of an optimized single threaded
implementation using 4 machines, each with 8 cores and has a COST of 32 cores. However,
Tegra uses property graphs while the optimized implementation does not.

3.8 Related Work

(Transactional) Graph Stores: The problem of managing time-evovling graph has been
studied in the context of graph stores [38, 123, 124, 180, 138]. These focus on optimizing
point queries which retrieves graph entities and do not support storing multiple snapshots.
This yields a different set of challenges compared to iterative graph analytics.
Managing Graph Snapshots: A lot of systems took the idea to manage snapshots for
evolving graphs, so the problem is converted to analytics on a series of static graphs.
DeltaGraph [98] proposes a hierarchical index that can manage multiple snapshots of
a graph using deltas and event lists for efficient retrievals, but lacks the ability to do
windowed iterative analytics. TAF [99] fixes this, but it is a specialized framework that
does not provide a generalized incremental model or ad-hoc operations. LLAMA [114]
uses a multiversion array to support incremental ingestion. It is a single machine system,
and it is unclear how the multiversion array can be extended to support data parallel
operations required for iterative analytics. Version Traveler [95] achieves swift switching
between snapshots of a graph by loading the common subgraph in the compressed-
sparse-row format and extending it with deltas. However, it does not support incremental
computation. Chronos [76] and ImmortalGraph [120] optimizes for efficient computation
across a series of snapshots. They propose an efficient model for processing temporal
queries, and support snapshot storage of the graph on-disk using a hybrid model. While
their technique reduces redundant computations in a given query, they cannot store and
reuse intermediate computation results. Their in-memory layout of snapshots requires
preprocessing and cannot support updates. Further, their incremental computation
model does not support non-monotonic computations. None of these allow compactly
representing computation state.
Incremental Maintenence on Evolving Graphs: Another important body of work are the
streaming systems. CellIQ [91] is a specialized system for cellular network analytics, but
it does not support ad-hoc analysis or compactly storing graph and state. Kineograph [45]
supports constructing consistent snapshots of an evolving graph for streaming computa-
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tions but does not allow ad-hoc analysis. WSP [191] focuses on streaming RDF queries.
GraphInc [41] supports incremental graph processing using memoization of the messages
in graph parallel computation, but does not support snapshot generation or maintenance.
Kickstarter [175] and GraphBolt [117] supports edge deletions, but does not support
ad-hoc analysis. Differential Dataflow [125, 121, 119] leverages indexed differences of
data in its computation model to do non-monotonic incremental computations. However,
it is challenging to do ad-hoc window operations using indexed differences (§3.2.2). As
we demonstrate in our evaluation, compactly representing graph and computation state
is the key to efficient ad-hoc window operations on evolving graphs.
Incremental View Maintenance (IVM): In databases, IVM algorithms [75, 30] maintain
a consistent view of the database by reuse of computed results. However, they are tuned
for different kinds of queries and not iterative graph computations. Further, they generate
large intermediate state and hence require significant storage and computation cost [119].
Versioned File Systems (e.g., [161]) allow several versions of a file to exist at a time.
However, they are focused on disk based files in contrast to in-memory efficiency.

3.9 Summary

In this chapter, we presented Tegra, a system that enables efficient ad-hoc window
operations on evolving graphs. The key to Tegra’s superior performance in such
workloads is a compact, in-memory representation of both graph and intermediate
computation state, and a computation model that can utilize it efficiently. For this,
Tegra leverages persistent datastructures and builds DGSI, a versioned, distributed
graph state store. It further proposes ICE, a general, non-monotonic iterative incremental
computation model for graph algorithms. Finally, it enables users to access these states
via a natural abstraction called Timelapse. Our evaluation shows that Tegra is able
to outperform existing temporal and streaming graph systems significantly on ad-hoc
window operations.

The storage solution presented in this chapter, DGSI, can be used as a standalone
state store for dynamic connected data represented as an evolving property graph, and
forms the storage layer for other systems presented in the rest of this dissertation. While
this chapter focused on simple scenarios such as exact analysis and single datacenter
processing, we look at more complex scenarios in later chapters.
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Chapter 4

Pattern Mining in Dynamic Connected
Data

4.1 Introduction

In the last chapter, we looked at how to enable ad-hoc window operations that is required
to support analysis queries in dynamic connected data systems. This chapter looks at a
different, equally important class of queries, pattern mining queries, similar to Taylor’s
effort to discover money laundering patterns in the transaction graph. Such queries are
intractable even in static data for medium to large sized data sets. We describe the reason
for this and propose a novel solution in the rest of this chapter.

Algorithms for graph processing can broadly be classified into two categories. The
first, graph analysis algorithms, compute properties of a graph typically using neighbor-
hood information. Examples of such algorithms include PageRank [132], community
detection [63] and label propagation [203]. The second, graph pattern mining algorithms,
discover structural patterns in a graph. Examples of graph pattern mining algorithms
include motif finding [122], frequent sub-graph mining (FSM) [187] and clique min-
ing [37]. Graph mining algorithms are used in applications like detecting similarity
between graphlets [139] in social networking and for counting pattern frequencies to do
credit card fraud detection.

Today, a deluge of graph processing frameworks exist, both in academia and open-
source [111, 70, 105, 151, 71, 143, 150, 178, 39, 45, 76, 125, 114, 46, 199]. These frameworks
typically provide high-level abstractions that make it easy for developers to implement
many graph algorithms. A vast majority of the existing graph processing frameworks
however have focused on graph analysis algorithms. These frameworks are fast and can
scale out to handle very large graph analysis settings: for instance, GraM [182] can run
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one iteration of page rank on a trillion-edge graph in 140 seconds in a cluster. In contrast,
systems that support graph pattern mining fail to scale to even moderately sized graphs,
and are slow, taking several hours to mine simple patterns [166, 57].

The main reason for the lack of the scalability in pattern mining is the underlying
complexity of these algorithms—mining patterns requires complex computations and
storing exponentially large intermediate candidate sets. For example, a graph with a
million vertices may possibly contain 1017 triangles. While distributed graph-processing
solutions are good candidates for processing such massive intermediate data, the need to
do expensive joins to create candidates severely degrades performance. To overcome this,
Arabesque [166] proposes new abstractions for graph mining in distributed settings that
can significantly optimize how intermediate candidates are stored. However, even with
these methods, Arabesque takes over 10 hours to count motifs in a graph with less than 1

billion edges.
We propose ASAP1, a system that enables both fast and scalable pattern mining. ASAP

is motivated by one key observation: in many pattern mining tasks, it is often not necessary to
output the exact answer. For instance, in FSM the task is to find the frequency of subgraphs
with an end-goal of ordering them by occurrences. Similarly, motif counting determines
the number of occurrences of a given motif. In these scenarios, it is sufficient to provide an
almost correct answer. Indeed, our conversations with a social network firm [147] revealed
that their application for social graph similarity uses a count of similar graphlets [139].
Another company’s [147] fraud detection system similarly counts the frequency of pattern
occurrences. In both cases, an approximate count is good enough. Furthermore, it is not
necessary to materialize all occurrences of a pattern2. Based on these use cases, we build
a system for approximate graph pattern mining.

Approximate analytics is an area that has gathered attention in big data analytics [5,
67, 20], where the goal is to let the user trade-off accuracy for much faster results. The
basic idea in approximation systems is to execute the exact algorithm on a small portion of
the data, referred to as samples, and then rely on the statistical properties of these samples
to compose partial results and/or error characteristics. The fundamental assumption
underlying these systems is that there exists a relationship between the input size and the
accuracy of the results which can be inferred. However, this assumption falls apart when
applied to graph pattern mining. In particular, running the exact algorithm on a sampled
graph may not result in a reduction of runtime or good estimation of error (§4.2.2).

Instead, in ASAP, we leverage graph approximation theory, which has a rich history
of proposing approximation algorithms for mining specific patterns such as triangles.

1for A Swift Approximate Pattern-miner
2In fact, it may even be infeasible to output all embeddings of a pattern in a large graph.
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ASAP exploits a key idea that approximate pattern mining can be viewed as equivalent
to probabilistically sampling random instances of the pattern. Using this as a foundation,
ASAP extends the state-of-the-art probabilistic approximation techniques to general pat-
terns in a distributed setting. This lets ASAP massively parallelize instance sampling and
provide a drastic reduction in run-times while sacrificing a small amount of accuracy.
ASAP captures this technique in a simple API that allows users to plugin code to detect
a single instance of the pattern and then automatically orchestrates computation while
adjusting the error bounds based on the parallelism.

Further, ASAP makes pattern mining practical by supporting predicate matching and
introducing caching techniques. In particular, ASAP allows mining for patterns where
edges in the pattern satisfy a user-specified property. To further reduce the computation
time, ASAP leverages the fact that in several mining tasks, such as motif finding, it is
possible to cache partial patterns that are building blocks for many other patterns. Finally,
an important problem in any approximation system is in allowing users to navigate
the tradeoff between the result accuracy and latency. For this, ASAP presents a novel
approach to build the Error-Latency Profile (ELP) for graph mining: it uses a small sample
of the graph to obtain necessary information and applies Chernoff bound analysis to
estimate the worst-case error profile for the original graph.

The combination of these techniques allows ASAP to outperform Arabesque [166],
a state-of-the-art exact pattern mining solution by up to 77× on the LiveJournal graph
while incurring less than 5% error. In addition, ASAP can scale to graphs with billions of
edges—for instance, ASAP can count all the 6 patterns in 4-motifs on the Twitter (1.5B
edges) and UK graph (3.7B edges) in 22 and 47 minutes, respectively, in a 16 machine
cluster.

We make the following contributions in this work:

• We present ASAP, the first system to our knowledge, that does fast, scalable approxi-
mate graph pattern mining on large graphs. (§4.3)

• We develop a general API that allows users to mine any graph pattern and present
techniques to automatically distribute executions on a cluster. (§4.4)

• We propose techniques that quickly infer the relationship between approximation error
and latency, and show that it is accurate across many real-world graphs. (§4.5)

• We show that ASAP handles graphs with billions of edges, a scale that existing systems
failed to reach. (§4.6)
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4.2 Background & Motivation

We begin by discussing graph pattern mining algorithms and then motivate the need for
a new approach to approximate pattern mining. We then describe recent advancements
in graph pattern mining theory that we leverage.

4.2.1 Graph Pattern Mining

Mining patterns in a graph represent an important class of graph processing problems.
Here, the objective is to find instances of a given pattern in a graph or graphs. The
common way of representing graph data is in the form of a property graph [148], where
user-defined properties are attached to the vertices and edges of the graph. A pattern
is an arbitrary subgraph, and pattern mining algorithms aim to output all subgraphs,
commonly referred to as embeddings, that match the input pattern. Matching is done
via sub-graph isomorphism, which is known to be NP-complete. Several varieties of
graph pattern mining problems exist, ranging from finding cliques to mining frequent
subgraphs. We refer the reader to [166, 7] for an excellent, in-depth overview of graph
mining algorithms.

A common approach to implement pattern mining algorithms is to iterate over all
possible embeddings in the graph starting with the simplest pattern (e.g., a vertex or
an edge). We can then check all candidate embeddings, and prune those that cannot be
a part of the final answer. The resulting candidates are then expanded by adding one
more vertex/edge, and the process is repeated until it is not possible to explore further.
The obvious challenge in graph pattern mining, as opposed to graph analysis, is the
exponentially large candidate set that needs to be checked.

Distributed graph processing frameworks are built to process large graphs, and
thus seem like an ideal candidate for this problem. Unfortunately when applied to
graph mining problems, they face several challenges in managing the candidate set.
Arabesque [166], a recently proposed distributed graph mining system, discusses these
challenges in detail, and proposes solutions to tackle several of them. However, even
Arabesque is unable to scale to large graphs due to the need to materialize candidates
and exchange them between machines. As an example, Arabesque takes over 10 hours to
count motifs of size 3 in a graph with less than a billion edges on a cluster of 20 machines,
each having 256GB of memory.
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(c) Triangles in UK graph

Figure 4.1: Simply extending approximate processing techniques to graph pattern mining
does not work.
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4.2.2 Approximate Pattern Mining

Approximate processing is an approach that has been used with tremendous success in
solving similar problems in both the big data analytics [5, 67] and databases [43, 48, 49],
and thus it is natural to explore similar techniques for graph pattern mining. However,
simply extending existing approaches to graphs is insufficient.

The common underlying idea in approximate processing systems is to sample the
input that a query or an algorithm works on. Several techniques for sampling the input
exists, for instance, BlinkDB [5] leverages stratified sampling. To estimate the error,
approximation systems rely on the assumption that the sample size relates to the error in
the output (e.g., if we sample K items from the original input, then the error in aggregate
queries, such as SUM, is inversely proportional to

√
K). It is straightforward to envision

extending this approach to graph pattern mining—given a graph and a pattern to mine
in the graph, we first sample the graph, and run the pattern mining algorithm on the
sampled graph.

Figure 4.1a depicts the idea as applied to triangle counting. In this example, the
input graph consists of 10 triangles. Using uniform sampling on the edges we obtain a
graph with 50% of the edges. We can then apply triangle counting on this sample to get
an answer 1. To scale this number to the actual graph, we can use several ways. One
naive way is to double it, since we reduced the input by half. To verify the validity of
the approach, we evaluated it on the Twitter graph [104] for finding 3-chains and the
UK webgraph [34] graph for triangle counting. The relation between the sample size,
error and the speedup compared to running on the original graph ( Torig

Tsample
) is shown in

figs. 4.1b and 4.1c respectively.
These results show the fundamental limitations of the approach. We see that there is

no relation between the size of the graph (sample) and the error or the speedup. Even
very small samples do not provide noticeable speedups, and conversely, even very large
samples end up with significant errors. We conclude that the existing approximation
approach of running the exact algorithm on one or more samples of the input is incompatible
with graph pattern mining. Thus, we propose a new approach.

4.2.3 Graph Pattern Mining Theory

Graph theory community has spent significant efforts in studying various approximation
techniques for specific patterns. The key idea in these approaches is to model the edges
in the graph as a stream and sample instances of a pattern from the edge stream. Then
the probability of sampling is used to bound the number of occurrences of the pattern.
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There has been a large body of theoretical work on various algorithms to sample specific
patterns and analysis to prove their bounds [133, 171, 40, 14, 135, 8, 93].

While the intuition of using such sampling to approximate pattern counts is straight-
forward, the technical details and the analysis are quite subtle. Since sampling once
results in a large variance in the estimate, multiple rounds are required to bound the
variance. Consider triangle counting as an example. Naively, one would design an
technique that uniformly samples three edges from the graph without replacement. Since
the probability of sampling one edge is 1/m in a graph of m edges, the probability of
sampling three edges is 1/m3. If the sampled three edges form a triangle, we estimate
the number of triangles to be m3 (the expectation); otherwise, the estimation is 0. While
such a sampling technique is unbiased, since m is large in practice, the probability that
the sampling would find a triangle is very low and the variance of the result is very large.
Obtaining an approximated count with high accuracy, would require a large number of
trials, which not only consumes time but also memory.

Neighborhood sampling [135] is a recently proposed approach that provides a solution
to this problem in the context of a specific graph pattern, triangle counting. The basic
idea is to sample one edge and then gradually add more edges until the edges form a
triangle or it becomes impossible to form the pattern. This can be analyzed by Bayesian
probability [135]. Let’s denote E as the event that a pattern is formed, E1,E2, . . . ,Ek
are the events that edges e1, e2, . . . , ek are sampled and stored. Thus the probability
of a pattern is actually sampled can be calculated as Pr(E) = Pr(E1 ∩ E2 · · · ∩ Ek) =

Pr(E1)× Pr(E2|E1) · · · × Pr(Ek|E1, . . . ,Ek−1). Intuitively, compared to the naive sampling,
neighborhood sampling increases the probability that each trial would find an instance of
the given pattern, and thus requires fewer estimations to achieve the same accuracy.

Example: Triangle Counting

To illustrate neighborhood sampling, we will revisit the triangle counting example
discussed earlier. To sample a triangle from a graph with m edges, we need three edges:

• First edge l0. Uniformly sample one edge from the graph as l0. The sampling
probability Pr(l0) = 1/m.

• Second edge l1. Given that l0 is already sampled, we uniformly sample one of l0’s
adjacent edges (neighbors) from the graph, which we call l1. Note that neighborhood
sampling depends on the ordering of edges in the stream and l1 appears after l0
here. The sampling probability Pr(l1|l0) = 1/c, where c is the number l0’s neighbors
appearing after l0.
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Figure 4.2: Triangle count by neighborhood sampling

• Third edge l2. Find l2 to finish if edges l2, l1, l0 form a triangle and l2 appears
after l1 in the stream. If such a triangle is sampled, the sampling probability is
Pr(l0 ∩ l1 ∩ l2) = Pr(l0)× Pr(l1|l0)× Pr(l2|l0, l1) = 1/mc.

The above technique describes the behaviors of one sampling trial. For each trial, if it
successfully samples a triangle, converting probabilities to expectation, ei = mc will be
the estimate of the triangles in the graph. For a total of r trials, 1r

∑
r ei is output as the

approximate result. Figure 4.2 presents an example of a graph with five nodes.

4.2.4 Challenges

While the neighborhood sampling algorithm described above has good theoretical prop-
erties, there are a number of challenges in building a general system for large-scale
approximate graph mining. First, neighborhood sampling was proposed in the context of
a specific graph pattern (triangle counting). Therefore, to be of practical use, ASAP needs
to generalize neighborhood sampling to other patterns. Second, neighborhood sampling
and its analysis assume that the graph is stored in a single machine. ASAP focuses on
large-scale, distributed graph processing, and for this it needs to extend neighborhood
sampling to computer clusters. Third, neighborhood sampling assumes homogeneous
vertices and edges. Real-world graphs are property graphs, and in practice pattern mining
queries require predicate matching which needs the technique to be aware of vertex and
edge types and properties. Finally, as in any approximate processing system, ASAP needs
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to allow the end user to trade-off accuracy for latency and hence needs to understand the
relation between run-time and error in a distributed setting.

4.3 ASAP Overview

We design ASAP, a system that facilitates fast and scalable approximate pattern mining.
Figure 4.3 shows the overall architecture of ASAP. We provide a brief overview of the
different components, and how users leverage ASAP to do approximate pattern mining
in this section to aid the reader in following the rest of this chapter.

User interface. ASAP allows the users to tradeoff accuracy for result latency. Specifically,
a user can perform pattern mining tasks using the following two modes 1 :

• Time budget T . The user specifies a time budget T , and ASAP returns the most
accurate answer within T with a error rate guarantee e and a configurable confidence
level (default of 95%).

• Error budget ε. The user gives an error budget ε and confidence level, and ASAP
returns an answer within ε in the shortest time possible.
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Before running the algorithm, ASAP first returns to the user its estimates on the time or
error bounds it can achieve 6 . After user approves the estimates, the algorithm is run
and the result presented to the user consists of the count, confidence level and the actual
run time 7 . Users can also optionally ask to output actual (potentially large number of)
embeddings of the pattern found.

Development framework. All pattern mining programs in ASAP are versions of gen-
eralized approximate pattern mining 2 we describe in detail in §4.4. ASAP provides
a standard library of implementations for several common patterns such as triangles,
cliques and chains. To allow developers to write program to mine any pattern, ASAP
further provides a simple API that lets them utilize our approximate mining technique
(§4.4.1). Using the API, developers simply need to write a program that finds a single
instance of the pattern they are interested in, which we refer to as estimator. In a nutshell,
our approximate mining approach depends on running multiple such estimators in
parallel.

Error-Latency Profile (ELP). In order to run a user program, ASAP first must find out
how many estimators it needs to run for the given bounds 3 . To do this, ASAP builds an
ELP. If the ELP is available for a graph, it simply queries the ELP to find the number of
estimators 4 . Otherwise, the system builds a new ELP 5 using a novel technique that
is extremely fast and can be done online. We detail our ELP building technique in §4.5.
Since this phase is fast, ASAP can also accommodate graph updates; on large changes,
we simply rebuild the ELP.

System runtime. Once ASAP determines the number of estimators necessary to achieve
the required error or time bounds, it executes the approximate mining program using a
distributed runtime built on Apache Spark [192, 193].

4.4 Approximate Pattern Mining in ASAP

We now present how ASAP enables large-scale graph pattern mining using neighborhood
sampling as a foundation. We first describe our programming abstraction(§4.4.1) that
generalizes neighborhood sampling. Then, we describe how ASAP handles errors that
arise in distributed processing(§4.4.2). Finally, we show how ASAP can handle queries
with predicates on edges or vertices(§4.4.3).

4.4.1 Extending to General Patterns

To extend the neighborhood sampling technique to general patterns, we leverage one
simple observation: at a high level, neighborhood sampling can be viewed as consisting
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of two phases, sampling phase and closing phase. In the sampling phase, we select an edge
in one of two ways by treating the graph as an ordered stream of edges: (a) sample an
edge randomly; (b) sample an edge that is adjacent to any previously sampled edges,
from the remainder of the stream. In the closing phase, we wait for one or more specific
edges to complete the pattern.

The probability of sampling a pattern can be computed from these two phases. The
closing phase always has a probability of 1 or 0, depending on whether it finds the edges it
is waiting for. The probability of the sampling phase depends on how the initial pattern is
formed and is a choice made by the developer. For a general graph pattern with multiple
nodes, there can be multiple ways to form the pattern. For example, there are two ways
to sample a four-clique with different probabilities, as shown in Figure 4.4. (i) In the
first case, the sampling phase finds three adjacent edges, and the closing phase waits for
rest three edges to come, in order to form the pattern. The sampling probability is 1

mc1c2
,

where c1 is the number of the first edge’s neighbors and c2 represents the neighbor count
of the first and the second edges. (ii) In the second case, the sampling phase finds two
disjoint edges, and the closing phase waits for other four edges to form the pattern. The
sampling probability in this case is 1

m2
.

Analysis of General Patterns

We now show how neighborhood sampling, when captured using the two phases, can
extend to general patterns.
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Definition 4.4.1 (General Pattern). We define a “general pattern” as a set of k connected
vertices that form a subgraph in a given graph.

First, let’s consider how an estimator can (possibly) find any general patterns. We
show how to sample one general pattern from the graph uniformly with a certain success
probability, taking 2 to 5-node patterns as examples. Then, we turn to the problem of
maintaining r 6 1 pattern(s) sampled with replacement from the graph. We sample r
patterns and a reasonably large r will yield a count estimate with good accuracy. For the
convenience of the analysis, we define the following notations: input graph G = (V ,E)
has m edges and n vertices, and we denote the occurrence of a given pattern in G as f(G).
A pattern p = {ei, ej, . . . } contains a set of ordered edges, i.e., ei arrives before ej when
i < j. When describing the operation of an estimator, c(e) denotes the number of edges
adjacent to e and appearing after e, and ci is c(e1, . . . , ei) for any i > 1. For a given a
pattern p∗ with k∗ vertices, the technique of neighborhood sampling produces p∗ with
probability Pr[p = p∗,k = k∗]. The goal of one estimator is to fix all the vertices that form
the pattern, and complete the pattern if possible.

Lemma 4.4.2. Let p∗ be a k-node pattern in the graph. The probability of detecting the pattern
p = p∗ depends on k and the different ways to sample using neighborhood sampling technique.
(1) When k = 2, the probability that p = p∗ after processing all edges in the graph by all possible
neighborhood sampling ways is

Pr[p = p∗,k = 2] =
1

m

(2) When k = 3, the probability that p = p∗ is

Pr[p = p∗,k = 3] =
1

m · c1

(3) When k = 4, the probability that p = p∗ is

Pr[p = p∗,k = 4] =
1

m2
(Type-I) or

1

m · c1 · c2
(Type-II)

(4) When k = 5, the probability that p = p∗ is

Pr[p = p∗,k = 5] =
1

m2 · c1
(Type-I)

or =
1

m2 · c2
(Type-II.a)

or =
1

m · c1 · c2 · c3
(Type-II.b)
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Proof. Since a pattern is connected, the operations in the sampling phase are able to reach
all nodes in a sampled pattern. To fix such a pattern, the neighborhood sampling needs to
confirm all the vertices that form the pattern. Once the vertices are found, the probability
of completing such a pattern is fixed.

When k = 2, let p∗ = {e1} be an edge in the graph. Let E1 be the event that e1
is found by neighborhood sampling. There is only one way to fix two vertices of the
pattern—uniformly sampling an edge from the graph. By reservoir sampling, we claim
that

Pr[p = p∗,k = 2] = Pr[E1] =
1

m

When k = 3, we need to fix one more vertex beyond the case of k = 2. As shown
in [135], we need to sample an edge e2 from e1’s neighbors that occur in the stream after
e1. Let E2 be the event that e2 is found. Since Pr[E2|E1] = 1

c(e1)
,

Pr[p = p∗,k = 3] = Pr[E1] · Pr[E2|E1] =
1

m · c(e1)

When k = 4, we require one more step from the case of k = 2 or the case of k = 3,
from extending neighborhood sampling. By extending from the case of k = 2 (denoted as
Type-I), two more vertices are needed to fix a 4-node pattern. In Type-I, we independently
find another edge e∗2 that is not adjacent to the sampled edge e1. Let E∗2 be the event that
e∗2 is found. Since Pr[E∗2|E1] =

1
m ,

Pr[p = p∗,k = 4] = Pr[p = p∗,k = 2] ∗ Pr[E∗2|E1]

=
1

m2
(Type-I)

When extending from the case k = 2 (denoted as Type-II), one more vertex is needed to
fix a 4-node pattern. In Type-II, we sample a “neighbor” e3 that comes after e1ande2. Let
E3 be the event that e3 is found. Since e3 is sampled uniformly from the neighbors of e1
and e2 and is appearing after e1, e2, Pr[E3|E1,E2] = 1

c(e1,e2)
. Thus,

Pr[p = p∗,k = 4] = Pr[p = p∗,k = 3] · Pr[E3|E1,E2]

=
1

m · c(e1) · c(e1, e2)
(Type-II)

When k = 5, we again need one more step from the case k = 3 or the case k = 4. By
extending from k = 3 (denoted as Type-I), we require two separate vertices to fix a 5-node
pattern. In Type-I, we independently sample another edge e∗3 that is not adjacent to e1, e2.
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Let E∗3 be the event that e∗3 is found. Pr[E∗3|E1,E2] =
1
m . Therefore,

Pr[p = p∗,k = 5] = Pr[p = p∗,k = 3] ∗ Pr[E∗3|E1,E2]

=
1

m2 · c(e1)
(Type-I)

When extending from the case k = 4, we need to consider the two types separately.
By extending Type-I of case k = 4 (denoted as Type-II.a), we need one more vertex to
construct a 5-node pattern and thus we sample a neighboring edge e4. Let E4 be the event
that e4 is found. Since e4 is sampled from the neighbors of e1, e2,

Pr[p = p∗,k = 5] = Pr[p = p∗,k = 4] ∗ Pr[E4|E1,E∗2]

=
1

m2 · c(e1, e2)
(Type-II.a)

Similarly, by extending Type-II of case k = 4 (denoted as Type-II.b),

Pr[p = p∗,k = 5] =
1

m · c(e1) · c(e1, e2) · c(e1, e2, e3)

Lemma 4.4.3. For pattern p∗ with k∗ nodes, let’s define

t̃ =

{
1

Pr[p=p∗,k=k∗] if p 6= ∅
0 if p = ∅

Thus, E[t̃] = f(G).

Proof. By Lemma 4.4.2, we know that one estimator samples a particular pattern p∗ with
probability Pr[p = p∗,k = k∗]. Let p(G) be the set of a given pattern in the graph,

E[t̃] =
∑

p∗∈p(G)
t̃(p 6= ∅) · Pr[p = p∗,k = k∗] = |p(G)| = f(G)

The estimated count is the average of the input of all estimators. Now, we consider
how many estimators are needed to maintain an ε error guarantee.

Theorem 4.4.4. Let r > 1, 0 < ε 6 1, and 0 < δ 6 1. There is an O(r)-space bounded
algorithm that return an ε-approximation to the count of a k-node pattern, with probability at
least 1− δ. For a certain ε, when k = 4, we need r > C1m

2

f(G) Type-I estimators, or r > C2m∆
2

f(G)

Type-II estimators for some constants C1 and C2, to achieve ε-approximation in the worst case;
When k = 5, we need r > C3m

2∆
f(G) Type-I estimators, or r > C4m

2∆
f(G) Type-II.a estimators, or

r > C5m∆
3

f(G) Type-II.b estimators, for some constants C3,C4,C5 in the worst case.
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Proof. Let’s first consider the case k = 4. Let Xi for i = 1, . . . , r be the output value of i-th
estimator. Let X̄ = 1

r

∑r
i=1 Xi be the average of r estimators. By Lemma 4.4.3, we know

that E[Xi] = f(G) and E[X̄] = f(G). From the properties of graph G, we have c(e) 6 ∆ for
∀e ∈ E, where ∆ is the maximum degree (note that in practice ∆ isn’t a tight bound for
the edge neighbor information). In Type-I, Xi 6 m2 and we construct random variables
Yi =

Xi
m2

such that Yi = [0, 1]. Let Y =
∑r
i=1 Yi and E[Y] = f(G)r

m2
. Thus the probability that

the estimated number of patterns has a more than ε relative error off its expectation f(G)
is Pr[X̄ > (1+ ε)f(G)] 6 δ

2 , which is at most

Pr[

r∑
i=1

Yi > (1+ ε)E[Y]] 6 e−
ε2

2+εE[Y] 6 e−
ε2

3 E[Y] 6
δ

2

by Chernoff bound. Thus r > 3m2

ε2f(G)
· ln 2

δ . Similarly, this lower bound of r holds for
Pr[X̄ < (1− ε)f(G)].

In Type-II, Xi 6 6m∆2. Let Yi =
Xi

6m∆2
such that Yi = [0, 1]. Let Y =

∑r
i=1 Yi and E[Y] =

f(G)r
6m∆2

. By Chernoff bound, r > 18m∆2

ε2f(G)
· ln(2δ). Similarly, when k = 5, we (theoretically)

need 6m2∆
ε2f(G)

· ln(2δ) Type-I estimators, 12m
2∆

ε2f(G)
· ln(2δ) Type-II.a estimators, and 24m∆3

ε2f(G)
· ln(2δ)

Type-II.b estimators. Since each estimator stores O(1) edges, the total memory is O(r).

Programming API

ASAP automates the process of computing the probability of finding a pattern, and
derives an expectation from it by providing a simple API that captures two phases. The
API, shown in Table 4.1, consists of the following five functions:

• SampleVertex uniformly samples one vertex from the graph. It takes no input, and
outputs v and p, where v is the sampled vertex, and p is the probability that sampled
v, which is the inverse of the number of vertices.

• SampleEdge uniformly samples one edge from the graph. It also takes no input, and
outputs e and p, where e is the sampled edge, and p is the sampling probability, which
is the inverse of the number of edges of the graph.

• ConditionalSampleVertex conditionally samples one vertex from the graph, given subgraph
as input. It outputs v and p, where v is the sampled vertex and p is the probability to
sample v given that subgraph is already sampled.
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API Description
sampleVertex: ()→(v,p) Uniformly sample one vertex from the

graph.
SampleEdge: ()→(e,p) Uniformly sample one edge from the

graph.
ConditionalSampleVertex: (subgraph)→(v,p) Uniformly sample a vertex that appears

after a sampled subgraph.
ConditionalSampleEdge: (subgraph)→(e,p) Uniformly sample an edge that is adja-

cent to the given subgraph and comes
after the subgraph in the order.

ConditionalClose: (subgraph, subgraph)

→boolean
Given a sampled subgraph, check if an-
other subgraph that appears later in the
order can be formed.

Table 4.1: ASAP’s Approximate Pattern Mining API.

• ConditionalSampleEdge(subgraph) conditionally samples one edge adjacent to subgraph
from the graph, given that subgraph is already sampled. It outputs e and p, where e
is the sampled edge and p is the probability to sample e given subgraph.

• ConditionalClose(subgraph, subgraph) waits for edges that appear after the first subgraph
to form the second subgraph. It takes the two subgraphs as input and outputs yes/no,
which is a boolean value indicating whether the second subgraph can be formed. This
function is usually used as the final step to sample a pattern where all nodes of a
possible instance have been fixed (thereby fixing the edges needed to complete that
instance of the pattern) and the sampling process only awaits the additional edges to
form the pattern.

These five APIs capture the two phases in neighborhood sampling and can be used to
develop pattern mining algorithms. To illustrate the use of these APIs, we describe how
they can be used to write two representative graph patterns, shown in Figure 4.5.
Chain. Using our API to write a sampling function for counting three-node chains
is straightforward. It only includes two steps. In the first step, we use SampleEdge()

to uniformly sample one edge from the graph (line 1). In the second step, given the
first sampled edge, we use ConditionalSampleEdge (subgraph) to find the second edge of the
three-node chain, where subgraph is set to be the first sampled edge (line 2). Finally, if
the algorithm cannot find e2 to form a chain with e1 (line 3), it estimates the number of
three-node chains to be 0; otherwise, since the probability to get e1 and e2 is p1 · p2, it
estimates the number of chains to be 1/(p1 · p2).
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SampleThreeNodeChain

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))

↪→
if (!e2)
return 0

else
return 1/(p1.p2)

SampleFourCliqueType1

(e1, p1) = SampleEdge()
(e2, p2) = ConditionalSampleEdge(Subgraph(e1))

↪→
if (!e2) return 0
(e3, p3) = ConditionalSampleEdge(Subgraph(e1,

↪→ e2))
if (!e3) return 0
subgraph1 = Subgraph(e1,e2,e3)
subgraph2 = FourClique(e1,e2,e3)-subgraph1
if (ConditionalClose(subgraph1,subgraph2))
return 1/(p1.p2.p3)

else return 0

Figure 4.5: Example approximate pattern mining programs written using ASAP API

Four clique. Similarly, we can extend the algorithm of sampling three node chains to
sample four cliques. We first sample a three-node chain (line 1-2). Then we sample an
adjacent edge of this chain to find the fourth node (line 4). Again, during the three steps,
if any edges were not sampled, the function would return 0 as no cliques would be found
(line 3 and 5). Given e1, e2 and e3, all the four nodes are fixed. Therefore, the function
only needs to wait for all edges to form a clique (line 8-9). If the clique is formed, it
estimates the number of cliques to be 1/(p1 · p2 · p3); otherwise, it returns 0 (line 10).
Figure 4.4(a) illustrates this sampling procedure (CliqueType1).

4.4.2 Applying to Distributed Settings

Capturing general graph pattern mining using the simple two phase API allows ASAP
to extend pattern mining to distributed settings in a seamless fashion. Intuitively, each
execution of the user program can be viewed as an instance of the sampling process. To
scale this up, ASAP needs to do two things. First, it needs to parallelize the sampling
processes, and second, it needs to combine the outputs in a meaningful fashion that
preserves the approximation theory.

For parallelizing the pattern mining tasks, ASAP’s runtime takes the pattern mining
program and wraps it into an estimator3 task. ASAP first partitions the vertices in the
graph across machines and executes many copies of the estimator task using standard
dataflow operations: map and reduce. In the map phase, ASAP schedules several copies
of the estimator task on each of the machines. Each estimator task operates on the local
subgraph in each machine and produces an output, which is a partial count. ASAP’s

3Since each program is providing an estimate of the final answer.
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Figure 4.6: Runtime with graph partition.

runtime ensures that each estimator in a machine sees the graph’s edges and vertices in
the same order, which is important for the sampling process to produce correct results.
Note that although every estimator in each partition sees the graph in the same order,
there is no restriction on what the order might be (e.g., there is no sorting requirement),
thus ASAP uses a random ordering which is fast and requires no pre-processing of the
graph. Once this is completed, ASAP runs a reduce task to combine the partial counts
and obtain the final answer. This is depicted in fig. 4.6. This massively parallel execution
is one of the reasons for huge latency reduction in ASAP. Since the input to the reduce
phase is simply an array of numbers, ASAP’s shuffle is extremely light-weight, compared
to a system that produces exact answers (and needs to exchange intermediate patterns).
Handling Underestimation. Only summing up the partial counts in the reduce phase
underestimates the total number of instances, because when vertices are partitioned to the
workers, the instances that span across the partitions are not counted. This results in our
technique underestimating the results, and makes the theoretical bounds in neighborhood
sampling invalid. Thus, ASAP needs to estimate the error incurred due to distributed
execution and incorporate that in the total error analysis.

We use probability theory to do this estimation. We enforce that the vertices in the
graph are uniformly randomly distributed across the machines. ASAP is not affected
by the normal shortcomings of random vertex partitioning [70] as the amount of data
communication is independent of partitioning scheme used. In this case random vertex
partitioning is in fact simple to implement, and allows us to theoretically analyze the
underestimation.
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The theoretical proof for handling the underestimation is outside the scope of this
work. Intuitively, we can think of the random vertex partitioning into w workers as
uniform vertex coloring from w available colors. Vertices with the same color are at the
same worker and each worker estimates patterns locally on its monochromatic vertices.
By doing this coloring, the occurrence of a pattern has been reduced by a factor of
1/f(w), where f is a function of the number of workers and the pattern. For instance, a
locally sampled triangle has three monochromatic vertices and the probability that this
happens among all triangles is 1/w2. Thus by the linearity of expectation, each such
triangle is scaled by f(w) = w2. A rigorous proof on the maximum possible w with small
errors (in practice w can be >> 100), can be shown using concentration bounds and
Hajnal-Szemerédi Theorem [133]. Similarly, each monochromatic 4-clique is scaled by
f(w) = w3 and f(w) can be computed for any given pattern.

4.4.3 Advanced Mining Patterns

Predicate Matching. In property graphs, the edges and vertices contain properties;
and thus many real-world mining queries require that matching patterns satisfy some
predicates. For example, a predicate query might ask for the count of all four cliques on
the graph where every vertex in the clique is of a certain type. ASAP supports two types
of predicates on the pattern’s vertices and edges all and atleast-one.

For “all” predicate, queries specify a predicate that is applied to every vertex or edge.
For example, such query may ask for “four cliques where all vertices have a weight of
atleast 10”. To execute such queries, ASAP introduces a filtering phase where the predicate
condition is applied before the execution of the pattern mining task. This results in a new
graph which consists only of vertices and edges that satisfy the predicate. On this new
graph, ASAP runs the pattern mining algorithm. Thus, the “all” predicate query does
not require any changes to ASAP’s pattern mining algorithm.

The “atleast-one” predicate allows specifying a condition that atleast one of the vertices
or edges in the pattern satisfies. An example of such a query is “four cliques where atleast
one edge has a weight of 10”. To execute such predicate queries, we modify the execution
to take two passes on the edge list. In the first pass, edges that match the predicate are
copied from the original edge list to a matched edge list. Every entry in the matched list
is a tuple, (edge, pos), where pos is the position in the original list where the matched
edge appears. In the second pass, every estimator picks the first edge randomly from
the matched list. This ensures that the pattern found by the estimator (if it finds one)
satisfies the predicate. For the second edge onwards, the estimator uses the original list
but starts the search from the position at which the first matched edge was found. This
ensures that ASAP’s probability analysis to estimate the error holds.
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Motif mining. Another query used in many real-world workloads is to find all patterns
with a certain number of vertices. We define these as motif queries; for example a 3-motif
query will look for two patterns, triangles and 3-chains. Similarly a 4-motif query looks
for six patterns [146]. For motif mining we notice that several patterns have the same
underlying building block. For example, in 4-motifs, 3-chains are used in many of the
constituent patterns. To improve performance, ASAP saves the sampling phase’s state for
the building block pattern. This state includes (i) the currently sampled edges, (ii) the
probability of sampling at that point, and (iii) the position in the edge list up to which the
estimator has traversed. All the patterns that use this building block are then executed
starting from the saved state. This technique can significantly speedup the execution of
motif mining queries and we evaluate this in Section 4.6.2.
Refining accuracy. In many mining tasks, it is common for the user to first ask for a
low accuracy answer, followed by a higher accuracy. For example, users performing
exploratory analysis on graph data often would like to iteratively refine the queries. In
such settings, ASAP caches the state of the estimator from previous runs. For instance,
if a query with an error bound of 10% was executed using 1 million estimators, ASAP
saves the output from these estimators. Later, when the same pattern is being queried,
but with an error bound of 5% that requires 3 million estimators, ASAP only needs to
launch 2 million, and can reuse the first 1 million.

4.5 Building the Error-Latency Profile (ELP)

A key feature in any approximate processing system is allowing users to trade-off accuracy
for result latency. To do this for graph mining, we need to understand the relation between
running time and error.

In ASAP’s general, distributed graph pattern mining technique described earlier, the
only configurable parameter is the number of estimator processes used for a mining task.
By using r estimators and making r sufficient large, ASAP is able to get results with
bounded errors. Since an estimator takes computation and memory resource to sample a
pattern, picking the number of estimators r provides a trade-off between result accuracy
and resource consumption. In other words, setting a specific number of estimators, Ne,
results in a fixed runtime and an error within a certain bound. As an example, fig. 4.7
depicts the relation between the number of estimators, runtime and error for triangle
counting run on the Twitter graph [104]. To enable the user to traverse this trade-off,
ASAP needs to determine the correct number of estimators given an error or time budget.
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Figure 4.7: The actual relations between number of estimators and run-time or error rate.

4.5.1 Building Estimator vs. Time Profile

The time complexity of our approximation algorithm is linearly related to the number
of edges in the graph and the number of estimators. Given a graph and a particular
pattern, we find the computation time is dominated by the number of estimators when
the number of estimators is large enough. From fig. 4.7, we see that the estimator-time
curve is close to linear when the number of estimators is greater than 0.5M. Thus we
propose using a linear model to relate the running time to the number of estimators.

When the number of estimators is small, the computation time is also affected by
other factors and thus the curve is not strictly linear. However, for these regions, it
is not computationally expensive to profile more exhaustively. Therefore, to build the
time profile, we exponentially space our data collection, gathering more points when the
number of estimators is small and fewer points as the number of estimators grows. We
use a profiling budget T∗ to bound the total time spent on profiling. Algorithm 1 shows
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Algorithm 1 BuildTimeProfile(T∗)
1: P ← ∅ // store points for the profile
2: T ← 0, t← 0, α← α∗ // α∗ can be a reasonable random start
3: while T + t <= T∗ do
4: t← run approximation algorithm with α estimators
5: P.add((α, t))
6: α← 2α
7: T ← T + t

the pseudo code. ASAP starts from using a small number of estimators (α← α∗), and
doubles α each time until the total profiling time exceeds the profiling cost T∗. In practice,
we have found that setting T∗ in the minute granularity gives us good results.

4.5.2 Building Estimator vs. Error Profile

Since error profile is non-linear (fig. 4.7), techniques like extrapolating from a few data
points is not directly applicable. Some recent work has leveraged sophisticated techniques,
such as experiment design [173] or Bayesian optimization [19] for the purpose of building
non-linear models in the context of instance selection in the cloud. However, these
techniques also require the system to compute the error for a given setting for which we
need to know the ground-truth, say, by running the exact algorithm on the graph. Not only
is this infeasible in many cases, it also undermines the usefulness of an approximation
system.

In ASAP, we design a new approach to determine the relationship between the number
of estimators Ne and error ε. Our approach is based on two main insights: first, we
observe that for every pattern based on the probability of sampling, a loose upper bound
for the number of estimators required can be computed using Chernoff bounds. For
instance for triangle counting, the sampling probability is 1/mc where m is the number
of edges and c is the degree of first chosen edge( §4.2.3). This probability bound can be
translated to an estimator of form Ne >

K∗m∗∆
ε2P

(Theorem 3.3 [135]) where K is a constant,
m is the number of edges, ∆ is the maximum degree and P is the ground truth or the exact
number of triangles. At a high level, the bound is based on the fact that the maximum
degree vertex leads to the worst case scenario where we have the minimum probability of
sampling. Similar bounds exist for 4-cliques and other patterns [135]. These theoretical
bounds provide a relation between the number of estimators (Ne), error bound (ε) and
ground truth (P) in terms of the graph properties such as m and ∆.

The second insight we use is that for smaller graphs we can get a very close approxi-
mation to the ground truth by using a very large number of estimators. This is useful
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in practice as this avoids having to run the exact algorithm to get a good estimate of the
ground truth. Based on these two insights, the steps we follow are:

(a) We first uniformly sample the graph by edges to reduce it to a size where we can
obtain a nearly 100% accurate result. In our experiments, we find that 5− 10% of the
graph is appropriate according to the size of the graph.

(b) On the sampled graph, we run our algorithm with a large number of estimators (Ngt)
to find P̂s, a value very close to the ground truth for the sampled graph.

(c) Using P̂s as the ground truth value and the theoretical relationship described above,
we compute the value of other variables on the sampled graph. For example, in the
sampled graph, it is easy to compute ms and ∆s, and then infer K by running varying
number of estimators.

(d) Finally we scale the values ms, ∆s and P̂s to the larger graph to compute Ne. We note
that the scaled P̂ might not be close to P for the larger graph. But as we use the worst
case bound to compute P̂s, the computed value of Ne offers a good bound in practice
for the larger graph.

4.5.3 Handling Evolving Graphs

The ELP building process in ASAP is designed to be fast and scalable. Hence, it is possible
to extend our pattern mining technique to evolving graphs [86] by simply rebuilding the
ELP every time the graph is updated. However, in practice, we don’t need to rebuild the
ELP for every update. and that it is possible to reuse an ELP for a limited number of
graph changes. Thus we use a simple heuristic where are a fixed number of changes, say
10% of edges, we rebuild the ELP. The general problem of accurately estimating when a
profile is incorrect for approximate processing systems is hard [4] and in the future we
plan to study if we can automatically determine when to rebuild the ELP by studying
changes to the smaller sample graph we use in §4.5.2.

4.6 Evaluation

We evaluate ASAP using a number of real-world graphs and compare it to Arabesque, a
state-of-the-art distributed graph mining system. Overall, our evaluations show that:

• Compared to Arabesque, we find ASAP can improve performance by up to 77×
with just 5% loss of accuracy for counting 3-motifs and 4-motifs.
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Graph Nodes Edges Degrees
CiteSeer [56] 3,312 4732 2.8

MiCo [56] 100,000 1,080,298 22

Youtube [109] 1,134,890 2,987,624 8

LiveJournal [109] 3,997,962 34,681,189 17

Twitter [104] 41.7 million 1.47 billion 36

Friendster [188] 65.5 million 1.80 billion 28

UK [34, 32] 105.9 million 3.73 billion 35

Table 4.2: Graph datasets used in evaluating ASAP.

• We find that ASAP can also scale to much larger graphs (up to 3.7B edges) whereas
existing systems fail to complete execution.

• Our techniques to build error profile and time profile (ELP) are highly accurate
across all the graphs while finishing within a few minutes.

Implementation. We built ASAP on Apache Spark [193], a general purpose dataflow
engine. The implementation uses GraphX [71], the graph processing library of Spark to
load and partition the graph. We do not use any other functionality from GraphX, and
our techniques only use simple dataflow operators like map and reduce. As such, ASAP
can be implemented on any dataflow engine.
Datasets and Comparisons. Table 4.2 lists the graphs we use in our experiments. We use
4 small and 3 large graphs and compare ASAP against Arabesque [166] (using its open-
source release [72] built on Apache Giraph [22]) on four smaller graphs: CiteSeer [56],
Mico [56], Youtube [109], and LiveJournal [109]. For all other evaluations, we use the
large graphs. Our experiments were done on a cluster of 16 Amazon EC2 r4.2xlarge

instances, each with 8 virtual CPUs and 61GiB of memory. While all of these graphs fit
in the main memory of a single server, the intermediate state generated (§4.2) during
pattern mining makes it challenging to execute them. Arabesque, despite being a highly
optimized distributed solution, fails to scale to the larger graphs in our cluster. We note
that Arabesque (or any exact mining system) needs to enumerate the edges significantly
more number of times compared to ASAP which only needs to do it once or twice,
depending on the query.
Patterns and Metrics. For evaluating ASAP, we use two types of patterns, motif s and
cliques. For motifs, we consider 3-motifs (consisting of 2 individual patterns), and 4-motifs
(consisting of 6 individual patterns) and for cliques, we consider 4-cliques. For our
experiments, we run 10 trials for each point and report the median, and error bar in the
ELP evaluation. We do not include the time to load the graph for any of the experiments
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Figure 4.8: ASAP is able to gain up to 77× improvement in performance against
Arabesque. The gains increase with larger graphs and more complex patterns. Y-axis is
in log-scale.

for ASAP and Arabesque. We use total runtime as the metric when raw performance is
evaluated. When evaluating ASAP on its ability to provide errors within the requested
bound, we need to know the actual error so that it can be compared with ASAP’s output.
We compute actual error as |t−treal|

treal
, where treal is the ground truth number of a specific

pattern in a given graph. Since this requires us to know the ground-truth, we use simpler,
known patterns, such as triangles and chains, where the ground-truth can be obtained
from verified sources for such experiments. Note that the actual error is only used for
evaluation purposes. Unless otherwise stated, the ASAP evaluations were done with an
error target of 5% at 95% confidence.

4.6.1 Overall Performance

We first present the overall performance numbers. To do so, we perform comparisons
with Arabesque and evaluate ASAP’s scalability on larger graphs. We do not include ELP
building time in these numbers since it is a one-time effort for each graph/task and we
measure this in §4.6.3.
Comparison with Arabesque. In this experiment, we compare Arabesque and ASAP
on the 4 smaller graphs (Table 4.2). In each of these systems, we load the graph first,
and then warm up the JVM by running a few test patterns. Then we use each system to
perform 3-motif and 4-motif mining, and measure the time taken to complete the task. In
Arabesque, we do not consider the time to write the output. Similarly, for ASAP we do
not output the patterns embeddings. The results are depicted in figs. 4.8a and 4.8b.
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3-Motif System Graph |V| |E| Runtime

ASAP (5%) 16 x 8 Twitter 42M 1.5B 2.5m
16 x 8 Friendster 66M 1.8B 5.0m
16 x 8 UK 106M 3.7B 5.9m

Arabesque 20 x 32 Inst4
180M 0.9B 10h45m

4-Motif System Graph |V| |E| Runtime

ASAP (5%) 16 x 8 Twitter 42M 1.5B 22m
16 x 8 UK 106M 3.7B 47m
16 x 8 LiveJ 4M 34M 0.7m

Arabesque 16 x 8 LiveJ 4M 34M 53m
20 x 32 SN4 5M 199M 6h18m

Table 4.3: Comparing the performance of ASAP and Arabesque on large graphs. The
System column indicates the number of machines used and the number of cores per
machine.

We see that ASAP significantly outperforms Arabesque on all the graphs on both the
patterns, with performance improvements up to 77× with under 5% loss of accuracy. The
performance improvements will increase if the user is able to afford a larger error (e.g.,
10%). We also noticed that the performance gap between Arabesque and ASAP increases
with larger graph and/or more complex patterns. In this experiment, mining the more
complex pattern (4-motif) on the largest graph (LiveJournal) provides the highest gains for
ASAP. This validates our choice of using approximation for large-scale pattern mining.
Scalability on Larger Graphs. We repeat the above experiment on the larger graphs.
Since Arabesque fails to execute on these graphs on our cluster, we also provide per-
formance numbers that were reported by its authors [166] as a rough comparison. The
results are shown in Table 4.3.

When mining for 3-motif, ASAP performs vastly superior on the Twitter, the Friendster,
and the UK graphs. Arabesque’s authors report a run time of approximately 11 hours
on a graph with a similar number of edges. This translates to a 258× improvement for
ASAP. In the case of 4-motifs, ASAP is easily able to scale to the more complex pattern
on larger graphs. In comparison, Arabesque is only able to handle a much smaller graph
with less than 200 million edges. Even then, it takes over 6 hours to mine all the 4-motif
patterns. These results indicate that ASAP is able to not only outperform state-of-the-art
solutions significantly, but do so in a much smaller cluster. ASAP is able to effortlessly
scale to large graphs.

4These graph datasets in Arabesque are not publicly available.
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Pattern Baseline ASAP Improv.
Motif Mining 32.2min 22min 32%

Predicate Matching 2.5min 27s 82%
Accuracy Refinement 2.5min 1.5min 40%

Table 4.4: Improvements from techniques in ASAP that handle advanced pattern mining
queries.

4.6.2 Advanced Pattern Mining

We next evaluate the advanced pattern mining capabilities in ASAP described in §4.4.3.
Motif mining. We first evaluate the impact of ASAP’s optimization when handling motif
queries for multiple patterns. We use the Twitter graph and study a 4-motif query that
looks for 6 different patterns. In this case ASAP caches the 3-node chain that is shared by
multiple patterns. As shown in Table 4.4, we see a 32% performance improvement from
this.
Predicate Matching. To study how well predicate matching queries work, we annotate
every edge in the Twitter graph with a randomly chosen property. We then consider a
3-motif query which matches 10% of the edges. With ASAP’s filtering based technique,
the “all” query completes in 27 seconds, compared to 2.5 minutes when running without
pre-filtering.
Accuracy Refinement. We study a scenario where the user first launches a 3-motif query
on the Twitter graph with 10% error guarantee and then refines the results with another
query that has a 5% error bound. We find that the running time goes from 2.5min to
1.5min (40% improvement) when our caching technique is enabled.

4.6.3 Effectiveness of ELP Techniques

Here, we evaluate the effectiveness of the ELP building techniques in ASAP, described in
§4.5.
Time Profile. To evaluate how well our time profiling technique (§4.5.1) works, we run
three patterns—3-chains, triangles, and 4-cliques—on the three large graphs. In each
graph, we obtain the time vs. estimator curve by exhaustively running the mining task
with varying number of estimators and noting the time taken to complete the task. We
then use our time profiling technique which uses a small number of points instead of
exhaustive profiling to obtain ASAP’s estimate. We plot both the curves in fig. 4.9 for each
of the three graphs. In these figures, the colored lines represent the actual (exhaustively
profiled) curve, and the black line shows ASAP’s estimate. From the figure we can see
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Graph Task Time Profile Error Profile

3-Chain 5.2m 2.1m
UK-2007-05 3-Motif 6.1m 2.7m

4-Clique 9.5m 4.8m
4-Motif 11.2m 5.9m

Table 4.5: ELP building time for different tasks on UK graph

that the time profile estimated by ASAP very closely tracks the actual time taken, thereby
showing the effectiveness of our technique.
Error Profile. We repeat the experiment for evaluating ASAP’s error profile building
technique. Here, we exhaustively build the error profile by running a different number of
estimators on each graph, and note the error. Then we use ASAP’s technique of using a
small portion of the graph to build the profile. We show both in fig. 4.10. We see that the
actual errors are always within the estimated profile. This means that ASAP is able to
guarantee that the answer it returns is within the requested error bound. We also note
that in real-world graphs, the worst-case bounds are never really reached. In edge cases,
where the number of patterns in the graphs are high like the chains in UK graph, the
overestimation may be large, and one concern might be that we run more estimators
than required. We are working on techniques that can help us determine a tighter bound
for the number of estimators in the future but as discussed in §4.6.1, even with this
overestimation we get significant speedups in practice. This experiment confirms that
ASAP’s heuristic of using a very small portion of the graph and leveraging the Chernoff
bound analysis (§4.5.2) is a viable approach.
Error rate Confidence. In Figure 4.11, we evaluate the cumulative distribution function
(CDF) of 100 independent runs on the UK graph with 3% error target and 99% confidence.
We can see that 100/100 actual results are not worse than 3% error and 74/100 results are
within 2% error. Thus the actual results are even better than the theoretical analysis for
99% confidence.
ELP Building Time. Finally, we evaluate the time taken for building the profiling curves.
For this, we use the UK graph and configure ASAP to use 1% of the graph to build the
error profile. The results are shown in table 4.5 for different patterns, which shows that
the time to build the profiles is relatively small, even for the largest graph.

4.6.4 Scaling ASAP on a Cluster

ASAP partitions the graph into different subgraphs based on random vertex partition,
and aggregates scaled results in the final reduce phase. In this section we evaluate how
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Figure 4.11: CDF of 100 runs with 3% error target.
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Figure 4.12: The errors from two cluster scenarios with different number of nodes. Config-
1:strong-scaling to fix the total number of estimators as 2M × 128; Config-2: weak-scaling
to fix the number of estimators per executor as 2M.

configurations with different numbers of machines impact the accuracy. In Fig. 4.12, we
consider two scenarios: strong-scaling, where we fix the total number of estimators used
for the entire graph, and increase the number of machines used; and weak-scaling where
we fix the number of estimators used per-machine and thus correspondingly scale the
number of estimators as we add more machines. We run the triangle counting task with
the Twitter graph on different cluster sizes of 4, 8, 12, and 16 machines. From the figure
we see that in the strong-scaling regime, adding more machines has no impact on the
accuracy of ASAP and that we are able to correctly adjust the accuracy as more graph
partitions are created. In the weak-scaling case we see that the accuracy improves as we
increase more machines, which is the expected behavior when we have more estimators.
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5-Chain 5-House

Figure 4.13: Two representative (from 21) patterns in 5-Motif.

5-Chain System Graph |V| |E| Runtime

ASAP (5%) 16 x 16 Twitter 42M 1.5B 9.2m
16 x 16 UK 106M 3.7B 17.3m

ASAP (10%) 16 x 16 Twitter 42M 1.5B 3.2m
16 x 16 UK 106M 3.7B 6.5m

5-House System Graph |V| |E| Runtime

ASAP (5%) 16 x 16 Twitter 42M 1.5B 12.3m
16 x 16 UK 106M 3.7B 22.1m

ASAP (10%) 16 x 16 Twitter 42M 1.5B 5.6m
16 x 16 UK 106M 3.7B 14.2m

Table 4.6: Approximating 5-Motif patterns in ASAP.

4.6.5 More Complex Patterns

Finally, we evaluate the generality of ASAP’s techniques by applying to mine 5-motifs,
consisting of 21 individual patterns. This choice was influenced by our conversations
with industry partners, who use similar patterns in their production systems. Due to the
complexity of the patterns, we used a larger cluster for this experiment, consisting of 16

machines, each with 16 cores and 128GB memory. Due to space constraints, and also
because of the absence of a comparison, we only provide ASAP’s performance on two
representative patterns in table 4.6. As we see, ASAP is able to handle complex patterns
on large graphs easily.
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4.7 Related Work

A large number of systems have been proposed in the literature for graph processing [111,
70, 105, 151, 71, 143, 150, 178, 39, 44, 199]. Of these, some [111, 105, 151] are single machine
systems, while the rest supports distributed processing. By using careful and optimized
operations, these systems can process huge graphs, in the order of a trillion edges.
However, these systems have focused their attention mainly on graph analysis, and do not
support efficient graph pattern mining. Some systems implement very specific versions of
simple pattern mining (e.g., triangle count). They do not support general pattern mining.

Similar to graph processing systems, a number of graph mining systems have also
been proposed. Here too, the proposals contain a mix of centralized systems and
distributed systems. These proposals can be classified into two categories. The first
category focuses on mining patterns in an input consisting of multiple small graphs. This
problem is significantly easier, since the system only finds one instance of the pattern in
the graph, and is trivially incorporated in ASAP. Since this approach can be massively
parallelized, several distributed systems exist that focus specifically on this problem. The
state-of-the-art in distributed, general purpose pattern mining systems is Arabesque [166].
While it supports efficient pattern mining, the system still requires a significant amount
of time to process even moderately sized graphs. A few distributed systems have focused
on providing approximate pattern mining. However, these systems focus on a specific
algorithm, and hence are not general-purpose.

In distributed data processing, approximate analysis systems [5, 67, 20] have recently
gained popularity due to the time requirements in processing large datasets. Following
the approximate query processing theory in the database community, these systems focus
on reducing the amount of data used in the analysis process in the hope that the analysis
time is also reduced. However, as we show in this work, applying the exact algorithm
on a sampled graph does not yield desired results. In addition, doing so complicates, or
even makes it infeasible to provide good time or error guarantees.

Theory community has invested a significant amount of time in analyzing and propos-
ing approximate graph algorithms for several graph analysis tasks [51, 68, 9, 10, 36,
23]. None of these are aimed at distributed processing, nor do they propose ways to
understand the performance profile of the algorithms when deployed in the real world.
We leverage this rich theoretical foundation in our work by extending these algorithms
to mine general patterns in a distributed setting. We further devise a strategy to build
accurate profiles to make the approach practical.



CHAPTER 4. PATTERN MINING IN DYNAMIC CONNECTED DATA 75

4.8 Summary

We present ASAP, a distributed, sampling-based approximate computation engine for
graph pattern mining. ASAP leverages graph approximation theory and extends it
to general patterns in a distributed setting. It further employs a novel ELP building
technique to allow users to trade-off accuracy for result latency. Our evaluation shows
that not only does ASAP outperform state-of-the-art exact solutions by more than a
magnitude, but it also scales to large graphs while being low on resource demands.
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Chapter 5

Approximate Analytics on Dynamic
Connected Data

5.1 Introduction

The last chapter showed how embracing approximation can significantly speed up pattern
queries for use cases such as Taylor’s and make pattern discovery feasible in medium to
large datasets, which are much more realistic in enterprises [153]. Now we look at the
feasibility of extending approximation for analytic queries.

Approximate analytics is an area that has garnered attention recently in big data
analytics [5, 67, 20], where the goal is to let the end-user trade-off accuracy for much
faster results. Several proposals for approximate analytics exist, but the underlying key
idea is to use a small portion of the dataset to compute the results. Some approximation
systems leverage the scheduler, and kill tasks selectively to achieve the desired accuracy
or latency budget. However, all of the approximation systems focus on simple aggregate
queries or analytics and thus do not consider complex, iterative workloads such as
distributed graph processing.

Extending approximate analytics systems to support graph analytics is a challeng-
ing task because of the differences in the underlying assumptions. The fundamental
assumption of a linear relationship between the sample size and execution time falls
apart in graph processing. Further, approximation systems rely on statistical properties
of the samples to compose partial results and/or error characteristics. Finally, these
systems store multiple samples and cherry pick the right amount based on the linearity
assumption. These techniques are difficult to incorporate in distributed graph processing
due to the iterative nature of the algorithms.



CHAPTER 5. APPROXIMATE ANALYTICS ON DYNAMIC CONNECTED DATA 77

System PageRank Runtime (s)
PowerGraph [70] 300

GraphX [71] 419

Giraph [22] 596

GraphLab [111] 442

Table 5.1: Runtimes for pagerank algorithm as reported by popular graph processing
systems used in production.

We explore the feasibility of bringing approximate analytics to distributed graph
processing. Achieving efficient approximate graph processing faces a number of challenges,
including the question of how to sample graphs and how to pick the right sampling
parameter given a budget (§5.2). To solve these challenges, we leverage the recent
advancements in spectral sparsification theory [163] literature. Specifically, we propose a
spectral graph sparsification strategy that reduces the graph size significantly. We then
devise a machine learning based approach to modeling performance and picking the
right sparsification parameter (§5.3). We implement our proposed techniques in a system
called GAP (for Graph Analytics by Proximation). Our evaluation of GAP has shown
encouraging results (§5.4).

5.2 Background & Challenges

We begin with a brief overview of graph-parallel systems, approximate analytics and then
list the challenges in building a system for approximate graph analytics.

5.2.1 Graph Processing Systems

The bottleneck in distributed graph-parallel processing arises mainly from the message
passing between vertices. In a big data system, these are implemented as shuffles which
are quite expensive. As a result, executing graph algorithms take a non-negligible amount
of time. Table 5.1 reproduces the reported results from recent graph processing literature
for running 20 iterations of page rank algorithm on a moderately sized graph of 1B edges
using 16 machines. We see that the execution time is in the order of several minutes. The
performance numbers worsen significantly as the input graph becomes larger.
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Figure 5.1: Sampling randomly leads to undesirable effects. Here, execution time
(speedup) increases (reduces) with smaller samples.

5.2.2 Approximate Analytics

Approximate analytics is based on the premise that results from partial execution is often
good enough. Systems supporting approximate analytics usually provide bounds on
two dimensions—latency and accuracy—and lets users trade-off one for the other. These
systems have been used successfully for query processing [5], dataflow jobs and straggler
mitigation [20]. To provide this trade-off, they leverage sampling strategies. The basic
observation is that the more data the system works on, the more accurate the results
and vice-versa. Thus, given a corpus of data, approximation systems save samples of it
using various criteria. Given a latency or accuracy budget, the job of the system is then to
pick the right amount of samples to process and/or drop tasks when desired result is
achieved.

5.2.3 Challenges

While it may seem straightforward to marry approximate analytics with graph-processing
systems, making approximate graph analytics a reality is far from trivial. A system for
approximate graph analytics faces a number of challenges. First, approximation systems
rely on the fact that there exists a linear relationship between the amount of data in the
sample and the execution time. However, such linear relationship does not exist in graph
processing. While this could be helpful (i.e., a small reduction in input could lead to a
large reduction in execution time), it also means that sampling could lead to undesirable
outputs. To illustrate this, consider fig. 5.1, which shows the result of running connected
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components on different random samples of a graph. Surprisingly, the execution time
does not improve at all, rather it even becomes worse when the sample is small. This is
because blind sampling destroys the structure of the graph leading to much longer paths.
Thus, simple sampling strategies employed by existing approximate analytics systems are
not applicable in our setting.

Second, due to this non-linearity, picking the right amount of samples is difficult.
Traditional approximation systems create, store and precompute query results on samples
based on the assumption that partial results and errors could be composed. However,
this may not hold true in graphs. Thus, precomputing aggregates by creating and storing
samples is not a feasible approach.

Finally, existing approximation systems support only simple queries, such as aggre-
gates, where computing the error on the result is intuitive. However, graph algorithms
are executed in an iterative manner and thus estimating error on the output of a graph
algorithm operating on a sampled graph is hard. Theoretical bounds exist for a few
specific algorithms, but to the best of our knowledge, there are no general guarantees.

5.3 Our Approach

We now describe our vision and approach for an approximate graph analytics system. In
addition to solving the challenges listed earlier, we wish to achieve the following goals in
our quest towards an efficient approximate graph analytics solution:

• A large body of graph theoretical work exists in the area of approximation algorithms.
These works propose efficient approximate versions of various graph processing
algorithms. We do not want to depend on such approximate version of any graph
algorithms. In other words, we would like to be approximation algorithm agnostic.

• Similarly, several flavors of distributed graph-processing engines exist. Some of them
offer asynchronous processing mode [70], while some of them offer the favorable
properties of dataflow [71]. We would like to propose techniques that are generic and
not specific to one graph-parallel model.

• Finally, existing graph processing systems support varied workloads. In this respect,
we would like our solution to have low overhead when it needs to accommodate new
workloads.

The overall architecture of our solution GAP is depicted in fig. 5.2. It consists of two
main components. Leveraging the work in spectral graph theory, a graph sparsifier is
used to reduce the input graph’s size. Based on the observation that a graph workload’s
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Figure 5.2: GAP System Architecture.

performance characteristics is majorly dependent on the input graph [29], a machine
learning (ML) based model is used to learn and predict the amount of sparsification
required for a given budget. When an input graph is provided, we map it to one of
the benchmark models by a simple mapping technique. Our intuition is that since the
number of graph algorithms are limited and graph characteristics are described by a few
variables, ML models are apt at this job. We discuss these components in detail in the
rest of this section.

5.3.1 Graph Sparsification

The fundamental building block of any approximation system is sampling. Carrying this
over to graphs, a straightforward approach is to sample edges and vertexes using some
criteria. This approach, commonly referred to as graph sparsification1 has been studied
extensively in the literature on graph theory. The main idea in this body of work is to
compute a (much) smaller graph that preserves crucial properties of the input graph.

While several proposals on the type of sparsifier exists, many of them are either
computationally intensive, or are not amenable to a distributed implementation (which
is the focus of our work). We developed a simple sparsifier adapted from the work of
Spielman and Teng [163] that is based on vertex degrees. The sparsifier uses the following
probability to decide to keep an edge between vertex a and b:

dAVG × s
min(doa,dib)

(5.1)

1Also referred to as graph sketching.
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where dAVG is the average degree of the graph, doa is the out-degree of vertex a and
dib is the in-degree of vertex b and s is a tunable parameter that controls the level of
sparsification.

Intuitively, we would like to drop one of many edges from a vertex with large degree
as opposed to dropping the only edge from a vertex with low degree. The sparsifier in
eq. (5.1) does exactly this. The cost of running the sparsifier is negligible. We further
reduce this cost by computing vertex degrees when the graph is first loaded into the
system. One potential problem with the sparsifier is that it takes decision solely on local
information. To reduce the ill effects of this, we leverage how the algorithm operates. For
instance, we can avoid removing an edge it is in the spanning tree and so on.

Estimating Error due to Sparsification

An important task when using sampling strategies is to estimate the error in the output.
In a non-graph setting, error estimation is straightforward. However, it is unclear how
to estimate the error due to sparsification on the output of graph algorithms. We take a
simple approach to this problem: we define a few error metrics, and leave the flexibility
of defining additional error metrics to the user. In our system, one default error metric
is the degree of reordering. This metric is applicable to algorithms that output a ranking
for the vertexes, for example page rank or triangle count. In these algorithms, we can
define the degree of reordering as the amount of reordering of the ranking compared to
the ground truth. This flexibility exists because we learn the relation between error and
sparsification.

5.3.2 Picking Sparsification Parameter

Once the sparsification strategy is in place, the next question is how to pick the right
sparsification parameter s for a given accuracy requirement. To the best of our knowledge,
theoretical bounds on error for the graph sparsification in a general setting is an open
problem, hence we develop heuristics to solve this problem. Specifically, we use simple
machine learning techniques to learn a model for the relation between s and performance
(latency/error).

Building a Model for s

At the simplest level, one can build a model for s by running every possible algorithm on
a given graph at varying values of s and then feeding the observed results to a learning
algorithm. However, this requires too much time and effort. Thus, an approximation
system needs a smarter solution.
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In GAP, we take a simple approach. We consider a set of standard graph algorithms.
These algorithms are then run on a set of representative graphs at varying values of s.
The objective of this task is to learn a function H that maps s and the characteristics of
the graph and algorithm to the performance profile. That is, we would like to learn:

H : (s,a,g) =⇒ e/p

where a is the algorithm specific features (if any), g is the graph specific features and
e/p is the error / performance. Since there is no standard benchmark for distributed
graph processing, we choose the representative set of algorithms and workloads from the
Graph500 benchmark [73]. Our observation (§5.2.3) indicates that performance profiles
are non-linear, hence we pick learning techniques that can accommodate discontinuity
(e.g., random forests).

Accommodating New Workloads

Once models are built, the final step is to use the model to pick the sparsification
parameter s when the system needs to run a graph algorithm on an unknown/new graph
workload. We do not want to build a model per workload online (the model building
phase is intensive and hence is typically done offline). Thus, we need to find an existing
model that can operate on the new workload.

For this, we propose a light-weight mechanism2. We randomly pick a few values of
sparsification parameters and run the algorithm on the new workload in an online fashion.
Simultaneously, we use the models to predict the output. We then pick the model(s) with
the least error. The random values of s could be chosen to complete the tests within a
given time budget. For every new workload, we also use the results of running analytics
as a feedback to our learning component. This lets us refine and improve our models
over time.

5.4 Evaluation

We picked five openly available graph datasets [164, 33, 31] (with number of edges up
to 3.7 billion for the largest graph) based on the characteristics of the underlying graph,
such as the diameter and clustering coefficient.

We evaluate our hypothesis of building a model for sampling based on the character-
istics of the graph in the following way. We ran two algorithms, page rank and triangle
count, on the datasets with varying values of the sparsification parameter s. We then

2We are pursuing better techniques here at the time of writing.
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Figure 5.3: In triangle counting, we see similar trends in performance in graphs with
similar characteristics (e.g., AstroPh & Facebook).
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Figure 5.4: Error due to sparsification. Like the speedup, we see similarity in the error
profile of graphs with similar characteristics.

recorded the speedup of the algorithm compared to the execution on the complete graph.
We also note the error by evaluating the degree of reordering (§5.3) for each value of s.

Figure 5.3 shows the speedup obtained on triangle count algorithm, while fig. 5.4
depicts the error in terms of reordering. We see that even with a small reduction in input,
the system is able to speedup the execution. As seen in the error characteristics, this
speedup does not come at the expense of large errors. The error remains small for a wide
range of the sparsification parameter. It may be troubling to see the diminishing returns
with increase in sparsification, but this is due to the use of small datasets and also due to



CHAPTER 5. APPROXIMATE ANALYTICS ON DYNAMIC CONNECTED DATA 84

 1
 2
 3
 4
 5
 6
 7
 8
 9

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1  0

 10
 20
 30
 40
 50
 60
 70

Sp
ee
du
p

Er
ro
r 
(%
)

Sparsifcation Parameter

Speedup
Error

Figure 5.5: Larger graph (uk-2007-05 [33, 31] with 3.7B edges) sees better speedup due to
the distributed nature of the execution.

the fact that the experiment was done on a single machine (the system executes the same
way as in a distributed setting but does not incur network penalties). As the graph grows
larger and the computation is spread across many machines, sparsification reduces the
shuffled data, and we see much larger gains as shown in fig. 5.5.

A more intriguing question is if our proposed approach is feasible. That is, is it
possible to learn a model at all for approximate analytics? In our dataset, the Facebook
and AstroPh datasets share similarity in the diameter and clustering coefficients. Similarly,
Wikivote and Epinions share similar graph characteristics. Moreover, Facebook and
AstroPh are social relationships while Wikivote and Epinions represent voting/rating
relationships. In our results, we see that the performance and error trends follow the same
observation—-the performance and error curves of the Facebook and AstroPh datasets
exhibit similar trends, the same is true for the Wikivote and Epinions datasets. Results
from our experiments using page rank algorithm also show similar trends. Thus, we
believe that our approach is feasible.

5.5 Related Work

A large number of graph processing systems exist in the literature. [111, 70, 105, 151,
71, 143, 150, 178, 39] focus on iterative analytics on static graphs. [114, 129, 45, 41, 76,
125, 121, 91] focus on analytics on evolving graphs. None of these systems support
approximate analytics. GraphTau [129], which focuses on evolving graph processing,
supports approximate page rank computations. However, it does not allow user to specify



CHAPTER 5. APPROXIMATE ANALYTICS ON DYNAMIC CONNECTED DATA 85

a budget. Our techniques can be used to bring approximation to several of these graph
processing systems.

Approximate analytics systems have gained much popularity in the big data ana-
lytics community recently, and thus several proposals exist. BlinkDB [5] uses stratified
sampling to generate samples and then chooses samples to satisfy the query budget.
[20] uses approximation techniques to mitigate stragglers. ApproxHadoop [67] enables
approximation enabled map-reduce jobs. These systems do not support graph processing.

5.6 Summary

For many graph-processing application scenarios, computing an approximate answer is
good enough. Yet, existing graph processing frameworks, in an effort to compute the
exact answer, take several minutes or even hours to execute popular graph algorithms. In
this chapter, we looked at the problem of approximate graph analytics. We presented our
proposal, which uses a spectral sparsifier to reduce the size of the graph, and a machine
learning model to pick the right amount of sparsification given a budget.
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Chapter 6

Geo-Distributed Analytics on Connected
Data

6.1 Introduction

In this chapter, we look at a possible enhancement to connected data processing, geo-
distributed processing.

All the systems we have described till now assume that the data to be processed
is available at a single data center which processes this data. However, today, many
applications that could benefit from graph analysis are deployed on data centers across
the globe and generate data in a geo-distributed fashion. For example, users of social
networks are located around the globe. Similarly, cellular networks collect data at
base stations that are geo-distributed across various locations [91]. This is also true for
emerging applications. Internet-of-Things (IoT) applications, such as the much anticipated
driverless vehicles, may generate data across multiple aggregation points. In analyzing
such datasets, it may not always be feasible to aggregate the data to a central location
due to many reasons. First, Wide Area Network (WAN) bandwidth is expensive and
transferring large amounts of data may incur high costs. Second, more importantly,
many of these scenarios could benefit from timely, low-latency analytics. Finally, political
reasons may prevent data from moving to a different location.

The problem of analyzing datasets spanning geographical boundaries is not new;
the field of Geo-distributed Analytics (GDA), that has gained much attention recently,
focuses on precisely the same problem [176, 174, 140]. GDA brings WAN awareness
to big data analytics, thus eliminating the need to move all the data to one location.
Existing GDA proposals look at different aspects of this problem, ranging from low-level
task placement [140] to higher-level query optimization [174]. However, current works
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on GDA have focused on simple queries and aggregates, and largely ignored iterative
workloads such as machine learning and distributed graph processing, two important
and emerging workloads in many applications.

Performing graph analytics in a geo-distributed fashion differs from traditional GDA in
many ways. Due to the iterative nature of graph algorithms and the complex dependency
in tasks that perform these iterations, simple task placement techniques do not work well
as there is a need to deal with task affinity. Further, in traditional GDA, many datasets
are amenable to clean sharding. This is not the case in graph processing where locality
plays an important role in the performance of graph algorithms. Because of the expensive
joins that must be performed at every iteration in a graph-parallel setting, simple join
optimizations in GDA may not be effective. Finally, many graph algorithms generate
large amounts of intermediate data. Thus, geo-distributed graph analytics solutions need
to account for the iterative nature of graph processing.

We focus on the problem of geo-distributed graph analytics. While combining traditional
GDA with graph analytics may seem straightforward, our experience indicates that
it is far from trivial. It is tempting to see this as a graph partitioning problem, since
the goal of graph partitioning is to improve locality and thus reduce communication.
However, due to the nature of data creation, repartitioning may not be feasible. Other
similar challenges exist which should be addressed (§6.2). We observe that the key in
geo-distributed graph analytics is to optimize the iterative processing style of graph-
parallel systems. Based on this, we propose three techniques. First, we reduce the data
to be processed using sampling strategies that leverages graph algorithms. Second, we
remove the inefficiencies in current graph processing models by proposing a modification
that reduces data exchange using a simple incremental computation strategy. Finally, we
discuss how to bring WAN awareness into the picture (§6.3). To evaluate our proposal, we
built Monarch, a system that incorporates our proposed techniques. To the best of our
knowledge, Monarch is the first system to focus on geo-distributed graph analytics.

6.2 Background & Challenges

We begin with a brief overview of geo-distributed analytics and then list the challenges
in geo-distributed graph analytics.

6.2.1 Geo-Distributed Analytics

A number of recent works have made the case for Geo-Distributed Analytics (GDA) [176,
140, 174]. While traditional data analytics assumes that data resides in a single, centralized
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datacenter, GDA forgoes that assumption. In GDA, data is collected and stored at
geographically distributed datacenters. Analytic tasks are run across these datacenters
without aggregating data to a central location. The key challenge in GDA systems is to
ensure low response times for the analytic tasks being performed.

GDA systems solve this challenge by being Wide Area Network (WAN) aware. Specif-
ically, these systems consider intermediate data movement to be the bottleneck and
thus optimize the placement of such data and tasks that operate on them based on the
bandwidth available between datacenters. Some systems [82] go further by switching
between different join strategies and task coordination.

6.2.2 Challenges

There are several challenges in building a geo-distributed graph processing system.
First, GDA systems assume simple jobs and queries. In contrast, graph processing sys-

tems execute graph algorithms in an iterative manner, with multiple message exchanges
in every iteration. Extending this to a geo-distributed setting means that every iteration
would generate data exchange across WAN. While traditional GDA’s task placement and
scheduling can optimize where the tasks are placed, they do not alleviate the problem
with the iterative model of graph processing.

Second, in GDA systems, data is susceptible to sharding. Hence, there is fine grained
control over data movement that could be beneficial—for instance, a small amount of data
could be moved to a different data center for a significant improvement in task placement
flexibility. While graph partitioning has similar goals of improving locality and reducing
communication between partitions, cleanly partitioning graphs is a hard problem [70].
Additionally, as graph algorithms progress the partitioning may need to be changed for
the best performance. On top of this, since partitioning graphs cannot be done at fine
granularity, a complete repartitioning may need to be done due to the nature of data
generation. Thus, a one-time partitioning or data placement strategy is unlikely to be of
help.

Finally, graph algorithms are complex, and their distributed implementations are
demanding since they involve expensive operations [71]. The immutability assumption
made by many graph-processing frameworks make things worse in terms of bandwidth
usage. For task scheduling purposes, some GDA systems assume that intermediate
data could be estimated and placed efficiently. This assumption breaks down in graph
processing, where the intermediate data size could be large. As an example, running
connected components on the openly available Twitter data [164] results in shuffling more
than 50GB of data during the initial iterations in GraphX [71], a popular graph processing
framework.
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6.3 Our Proposal

We now describe our proposal for geo-distributed graph analytics after discussing our
assumptions.

6.3.1 Assumptions

Geo-Distributed Graph: We assume that the graph is generated in a geo-distributed
fashion. That is, a graph G(V ,E) exists across P partitions, distributed across D data
centers (P >= D). Each partition p ∈ P consists of v vertices and e edges. In this setting,
it is obvious that aggregating the graph to one data center is expensive.

PowerGraph [70] argued that many naturally occurring graphs follow power-law
distribution and hence make a case for vertex-cuts rather than edge-cuts for entities
spanning partitions. Following this, we choose vertex-cuts, and mirror vertices which
have edges spanning partitions. We note that this is not fundamental to our approach, as
our approach could use edge-cuts also.

As discussed earlier, we do not assume that a complete repartitioning (e.g., using a
communication efficient partitiong scheme such as 2D partitioning [70]) could be done.
Thus, we restrict ourselves to the partitioning provided by the data naturally. Leveraging
partitioning flexibility is something that we wish to pursue in the future.

Algorithms: While a large body of algorithms exist for the analysis of graphs, we restrict
our scope in this work to algorithms that are implementable in a GAS decomposition
model. Most of the commonly used graph algorithms can be expressed in GAS decom-
position format; for instance, GraphX [71] provides implementations for six such graph
algorithms (connected components, label propagation, page rank, SVD, shortest path,
and triangle count).

WAN vs LAN Bandwidth: We assume that the LAN bandwidth is significantly higher
than the WAN bandwidth. We further assume that the WAN bandwidth between pairs of
DCs can differ significantly. This is true in most cloud provider settings. For instance,
[174] notes that inter-DC bandwidth in major cloud providers is 1-2 orders of magnitude
less than intra-DC bandwidth, and that the pair-wise WAN bandwidth can vary by over
20×.
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DC 1

DC 3

DC 2

DC 4

Figure 6.1: Monarch system architecture. Each data center (DC) contains part of the
graph. Communication between DCs happen through border vertices (shaded vertex in
the picture), who exchange and synchronize state as described in §6.3.

6.3.2 Approach

The overall architecture of the system we are currently building, which we call Monarch,
is depicted in Figure 6.1. Based on our observation that optimizing iterative processing
style of graph-parallel algorithm is the key to efficient geo-distributed graph analytics,
the main idea in our approach is to leverage the characteristics of graph-parallel computation
model and the algorithms they support to reduce WAN usage. To achieve this, we propose
three simple, but powerful techniques: first, we reduce the data itself using an accuracy
preserving sampling process. This results in less data to exchange. Second, we propose a
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modification to the GAS model that removes the inefficiencies with iterative processing.
Finally, we bring WAN awareness to this modified model. We explain them in the rest of
this section.

Sparsification without Accuracy Loss

In geo-distributed graph analytics, inter-DC data exchange happens only if there are
entities spanning multiple data centers. Hence, our first goal is to reduce these spanning
entities and/or reduce the data flowing through them.

In Monarch, we call vertices that interface with other datacenters border vertices.
Since we use vertex-cut by default, border vertices are mirrors. In the GAS model, vertices
gather (scatter) messages from (to) their neighborhood (§6.2). Thus, by reducing the
size of the graph, we can reduce the amount of data transferred across data centers.
Unfortunately, randomly eliminating graph entities to reduce the graph size leads to
incorrect results.

To solve this, we plan on using a simple technique. We observe that in iterative graph-
parallel model, many graph algorithms generate and exchange redundant intermediate
data. This is because the GAS model only considers the immediate neighborhood in
each iteration. Leveraging this, we can design a sparsification strategy that eliminates
graph entities that will not contribute to the final solution. To illustrate a simple case,
consider the connected components algorithm. By examining the connectivity information
of border vertices, we can eliminate the need to mirror all but one vertex across DC
pairs if the vertices are connected. This reduces the amount of data transferred across
DCs. Further improvements can be obtained if only partial results are required (e.g.,
only required to compute components that contain particular vertices, or only find top
components), as such cases can discard large parts of the graph and even eliminate the
need for border vertices.

While the sparsification technique is beneficial in our setting, we note two shortcom-
ings with it. First, not all algorithms can leverage such sparsification strtegies. Second, our
sparsification strategy may result in a slightly longer convergence time. This is because
by dropping entities, we may eliminate a shorter path. However, we assume that the cost
of WAN transfer is much higher than this small sacrifice in convergence time.

Geo-distributed Graph Computation Model

Once the graph is sparsified, the next step is to run graph algorithms on it in a geo-
distributed manner. As discussed in §6.2, GAS computations result in two data exchanges
(gather and scatter) in every iteration. In our setting, this means that the border vertices
potentially need to exchange data twice per iteration. When the data to be exchanged
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is large and/or when multiple iterations are involved, these transfers can become the
bottleneck.

To solve this problem, we propose a simple modification to the GAS model. In this
model, we restrict the execution of the GAS model to each datacenter. We then use a
merging strategy to combine the results from each datacenter. Our enhanced GAS model
consists of the following stages:

Bootstrap: When a graph algorithm is to be executed, Monarch first invokes the
bootstrap stage. In the bootstrap phase, Monarch runs vanilla GAS on every datacenter
independently. We consider the subgraph in each data center to be a graph of its own,
and compute the algorithm result on this subgraph. At the end of this stage, we end up
with local solutions in each datacenter.

Global Sync: After the bootstrap GAS execution has converged, we invoke a global
synchronization stage. In this stage, only border vertices participate. A gather-like
operation is invoked on them which enables the vertices to collect the partial state from
other mirrors. Then, an algorithm specific function fa is used to combine these partial
states to generate an updated state for the border vertices. After this stage, all the mirrors
of each border vertices have the same state. However, the global graph is in an inconsistent
state. This is because the partial results in each DC may no longer be valid because of the
updates to the border vertices.

iGAS: A strawman approach to recompute the correct partial results is to reset the
local graph’s vertices (except the border vertices) and restart the local GAS computation.
However, this is wasteful. Hence we propose a different approach. We observe that after
the synchronization, each subgraph is equivalent to an updated graph (with just the
border vertices updated). Thus, we can leverage an incremental computation model to
update the results on the local graph. In Monarch, we design an incremental version
of the GAS model, which we call iGAS.

The iGAS computation leverages both the GAS computation model and algorithm
properties. Specifically, we exploit the fact that GAS computations consider only the
immediate neighborhood. In each iteration of the iGAS, we mark the immediate neigh-
borhood of vertices that changed their state, and force computations on them. Obviously,
in the first iteration, we mark the neighbors of the border vertices. We then repeat this
marking and re-computation step until the change in the border vertex is propagated
across the entire local graph. One problem with this approach is that potentially all
the vertices may recompute if the graph is fully connected. To avoid this, we leverage
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Figure 6.2: In incremental GAS model, each iteration marks and activates the neighbor-
hood it influences. In this example, border vertex A is updated. It marks and activates B
in the first iteration, B marks and activates C in the second iteration and C marks and
activates D in the third. By leveraging the characteristics of the algorithm being executed,
we avoid marking E and F although they are in the immediate neighborhood of C and B.

algorithm properties. We mark only neighbors which might use the updated value.
Figure 6.2 shows our iGAS approach. At a high level, iGAS can be seen as a backtracking
and rectification process.

To summarize, our enhanced GAS model starts with a normal execution of the GAS
model, then switches to iterations of global sync followed by iGAS until convergence.
Essentially, we are amortizing the cost of synchronization after every iteration of the
GAS step by batching multiple GAS iterations. We note that there is one caveat to our
approach. The global synchronization step assumes that the algorithm specific function,
fa, is able to correctly combine the partial results for each border vertices. While we have
derived fa for many common graph algorithms, generalizing our technique to any graph
algorithm is part of our future work.

Bringing WAN Awareness

While Monarch specifically optimizes for WAN bandwidth, our techniques consider
WAN bandwidths to be equal. However, this is not true in practice. To tackle this problem,
we envision two approaches.

First, we plan to generalize our computation model to support arbitrary interleaving
of the global sync and iGAS phases per datacenter. Thus, depending on the current WAN
bandwidth, a datacenter may decide whether to participate in the global sync or not. In
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Figure 6.3: Our proposal is able to complete the execution of connected components
when GraphX is unable to complete. This is because it tries to transfer too much data
across WAN.

the second approach, if the system is given some flexibility in terms of data movement,
then we plan to explore moving some border vertices based on the amount of bandwidth
they might consume. Both are hard problems, and we are actively exploring different
ways to solve them.

6.4 Evaluation

We evaluate the usefulness of the enhanced GAS model that includes the local incremental
computations and global syncs. We chose the open source Twitter dataset [104], and use
16 machines on Amazon EC2 that simulates the same setting as in [71]. We picked 4

machines in each region, and then ran the connected components algorithm. The results
are depicted in fig. 6.3. We see that GraphX is unable to complete the computation since
it fails during the shuffle stage, while the enhanced model we propose is able to complete
the computation in around 310 seconds. While this is longer than the reported numbers in
GraphX (251s), we believe a lot of optimization opportunities are left for us to explore. We
also see that while GraphX tries to transfer almost 10GB of data across WAN, Monarch

only transfers around 1 GB. In this experiment, we did not use the sparsification process.
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6.5 Related Work

A large number of graph processing systems exist in the literature, of which [111, 70, 44,
177, 185, 105, 151, 71, 143, 150, 178, 39, 166, 197, 204, 112, 11, 201, 181, 138, 183, 184, 74,
113, 198, 12, 66, 196, 200] focus on iterative analytics on static graphs, while [98, 99, 120,
114, 45, 41, 76, 125, 121, 129, 91] focus on analytics on evolving graphs. However, none of
them support geo-distributed processing and thus focus on a single datacenter where the
graph is aggregated. While our work focuses on the GAS decomposition model, these
techniques can be incorporated into other models. [62] parallelizes sequential graph
algorithms using partial evaluations and algorithm specific incremental computations, but
does not consider geo-distributed settings.

On the other hand, many recent works have proposed techniques for geo-distributed
data analytics. Iridium [140] uses WAN aware task placement and scheduling. [176] looks
at join algorithm selection strategies for WAN optimization. SWAG [82] coordinates tasks
across DCs. Finally, Clarinet [174] argues for WAN aware query optimization. [80] looks
at the problem of geo-distributed machine learning using approximation techniques that
are specific to ML algorithms. None of these systems consider iterative graph processing.

6.6 Summary

Graph processing and geo-distributed analytics are two areas that have seen increasing
interest in the recent past. Yet, neither of them support the other. Geo-distributed graph
analytics could be beneficial for many application scenarios that generate graph-structured
data. In this chapter, we took the first step towards marrying geo-distributed analytics
with graph-parallel processing. We listed the challenges in doing so, and proposed a
solution to address these challenges.
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Chapter 7

Real-time Decisions on Dynamic
Connected Data

7.1 Introduction

Increasingly, the trend in connected data analyses is moving towards tasks that operate
on data that is procured in a real-time fashion to produce low-latency decisions. Unlike
traditional tasks such as aggregates or datacubes, these real-time analytic tasks often
involve model building and refinement for the purpose of manual or automatic decision
making. For instance, Alex’s network can benefit from real-time diagnosis of problems
use the results to self-heal and reduce impact to users in the network. Similarly, Taylor’s
tasks can leverage real-time updates to fraud detection models. However, such analyses
are faced with a fundamental trade-off between having not enough data to build accurate-
enough models in short timespans and waiting to collect enough data that entails stale results in
several domains. In this chapter, we seek to answer the question of whether it is possible
to mitigate this trade-off. Towards this goal, we take the first step and investigate this
trade-off in detail, expose the effects of it, and build techniques to mitigate it in Alex’s
domain-specific problem: performance diagnostics in cellular Radio Access Networks (RAN)s.

While RAN technologies have seen tremendous improvements over the past decade [160,
152, 156], performance problems are still prevalent [158]. Factors impacting RAN per-
formance include user mobility, skewed traffic pattern, interference, lack of coverage,
unoptimized configuration parameters, inefficient algorithms, equipment failures, soft-
ware bugs and protocol errors [157]. Though some of these factors are present in
traditional networks and troubleshooting these networks has received considerable at-
tention in the literature [24, 202, 47, 6, 179], RAN performance diagnosis brings out a
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unique challenge: the performance of multiple base stations exhibit complex temporal
and spatial interdependencies due to the shared radio access media and user mobility.

Existing systems [58, 16] for detecting performance problems rely on monitoring
aggregate metrics, such as connection drop rate and throughput per cell, over minutes-
long time windows. Degradation of these metrics trigger mostly manual—hence, time-
consuming and error-prone—root cause analysis. Furthermore, due to their dependence
on aggregate information, these tools either overlook many performance problems such
as temporal spikes leading to cascading failures or are unable to isolate root causes. The
challenges associated with leveraging just aggregate metrics has led operators to collect
detailed traces from their network [59] to aid domain experts in diagnosing problems.

However, the sheer volume of the data and its high dimensionality make the trou-
bleshooting using human experts and traditional rule-based systems very hard, if not
infeasible [97]. Machine learning (ML) is one natural alternative to these approaches
that has been used recently to troubleshoot other complex systems with considerable
success. However, simply applying ML to RAN diagnosis is not enough. The desire to
troubleshoot RANs as fast as possible exposes the inherent tradeoff between latency and
accuracy that is shared by many ML algorithms.

To illustrate this tradeoff, consider the natural solution of building a model on a
per-base station basis. On one hand, if we want to troubleshoot quickly, the amount of
data collected for a given base station may not be enough to learn an accurate model. On
the other hand, if we wait long enough to learn a more accurate model, this will come at
the cost of delaying troubleshooting and the learned model may not be valid any longer.
Another alternative would be to learn one model over the entire data set. Unfortunately,
since base stations can have very different characteristics using a single model for all of
them can also result in low accuracy (§7.2).

We present CellScope, a system that enables fast and accurate RAN performance
diagnosis by resolving the latency and accuracy trade-off using two broad techniques:
intelligent data grouping and task formulations that leverage domain characteristics.
More specifically, CellScope applies Multi-task Learning (MTL) [168, 42], a state-of-
the-art machine learning approach, to RAN troubleshooting. In a nutshell, MTL learns
multiple related models in parallel by leveraging the commonality between those models.
To enable the application of MTL, CellScope uses two techniques. First, it uses feature
engineering to identify the relevant features to use for learning. Second, it uses a PCA
based similarity metric to group base stations that share common features, such as
interference and load. This is necessary since MTL assumes that the models have some
commonality which is not necessarily the case in our setting, e.g., different base stations
might exhibit different features. Note that while PCA has been traditionally used to find
network anomalies, CellScope uses it for finding the common features instead.
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Figure 7.1: LTE network architecture

To this end, CellScope uses MTL to create a hybrid model: an offline base model
that captures common features, and an online per-base station model that captures the
individual features of the base stations. This hybrid approach allows us to incrementally
update the online model based on the base model. The resulting models are both accurate
and fast to update. Finally, in this approach, finding anomalies is equivalent to detecting
concept drift [65]. To demonstrate the effectiveness of our proposal, we have built
CellScope on Spark [192, 162, 102]. Our evaluation shows that CellScope is able
to achieve accuracy improvements up to 4.4× without incurring the latency overhead
associated with normal approaches (§7.6). We have also used CellScope to analyze a
live LTE network consisting of over 2 million subscribers, where we show that it could
save the operator several orders of magnitude savings in troubleshooting efforts (§7.7).

We then investigate if the techniques we present in this chapter can be general. To
do so, we take a new domain-specific problem, energy bug diagnosis in mobile phones, and
illustrate that the trade-off exists in this domain too. Using a dataset from 800,000+ users,
we how the proposed techniques in CellScope can easily be adapted and demonstrate
their effectiveness in mitigating the trade-off (§7.8).

7.2 Background and Motivation

We begin with a brief primer on LTE networks and the current state of RAN trou-
bleshooting. Then, we illustrate the difficulties in applying ML for RAN performance
diagnosis.

7.2.1 LTE Network Primer

LTE networks provide User Equipments (UEs) such as smartphones with Internet con-
nectivity. When a UE has data to send to or receive from the Internet, it sets up a
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communication channel between itself and the Packet Data Network Gateway (P-GW).
This involves message exchanges between the UE and the Mobility Management Entity
(MME). In coordination with the base station (eNodeB), the Serving Gateway (S-GW),
and P-GW, data plane (GTP) tunnels are established between the base station and the
S-GW, and between the S-GW and the P-GW. Together with the connection between the
UE and the base station, the network establishes a communication channel called EPS
bearer (short for bearer). The LTE network architecture is shown in fig. 7.1.

For network access and service, LTE network entities exchange control plane messages.
A specific sequence of such control plane message exchange is called a network procedure.
For example, when a UE powers up, it initiates an attach procedure with the MME
which consists of establishing a radio connection, authentication and resource allocation.
Each network procedure involves the exchange of several messages between two or
more entities. Their specifications are defined by 3GPP Technical Specification Groups
(TSG) [165].

Network performance degrades and end-user experience is affected when procedure
failures happen. The complex nature of these procedures (due to the multiple underlying
message and entity interactions) make diagnosing problems challenging. Thus, to aid
RAN troubleshooting, operators collect extensive measurements from their network.
These measurements typically consist of per-procedure information (e.g., attach). To
analyze a procedure failure, it is often useful to look at the associated variables. For
instance, a failed attachment procedure may be diagnosed if the underlying signal
strength information was captured. Hence, relevant metadata is also captured with
procedure information. Since there are hundreds of procedures in the network and each
procedure can have many possible metadata fields, the collected data contains several
hundreds of fields.

7.2.2 RAN Troubleshooting Today

Current RAN network monitoring depends on cell-level aggregate Key Performance
Indicators (KPI). Existing practice is to use performance counters to derive these KPIs.
The derived KPIs are then monitored by domain experts, aggregated over certain pre-
defined time window. Based on domain knowledge and operational experience, these
KPIs are used to determine if service level agreements (SLA) are met. For instance, an
operator may have designed the network to have no more than 0.5% call drops in a 10

minute window. When a KPI that is being monitored crosses the threshold, an alarm is
raised and a ticket created. This ticket is then handled by experts who investigate the
cause of the problem, often manually. Several commercial solutions exists [15, 16, 17, 58]
that aid in this troubleshooting procedure by enabling efficient slicing and dicing on data.
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However, we have learned from domain experts that often it is desirable to apply different
models or algorithms on the data for detailed diagnosis. Thus, many of the RAN trouble
tickets end up with experts who work directly on the raw measurement data.

7.2.3 Machine Learning for RAN Diagnostics

The large volume of data collected in the RAN makes it an ideal candidate for the
application of machine learning. We now discuss the difficulties in using ML for the
purpose of RAN performance diagnostics.

Data

We obtained measurement data from the live network of a top tier operator in the United
States. The data consists of four types of records:

Bearer Records: These log bearer level information. In our logs, such information
includes extensive information, such as frame loss rate, physical radio resources allocated,
radio channel quality, physical layer modulation and coding rate, bearer start and end
time, bearer setup delay, failure reason code (if any), associated base station, MME, S-GW
and P-GW.

Signaling Records: These are logs of network procedures, such as paging, attach/de-
tach, and handoff information. Every procedure in the network creates a new record
along with metadata information such as the time of the event.

TCP Flow Records: These logs are from strategically placed probes in the network, and
consists of TCP flow level information. They are associated with the bearer records to get
more insights on application level information.

Network Element Records: These are aggregate information at network elements such
as eNodeB or MME. Some fields in this record include total failures and downlink/uplink
frames.

Collectively, the dataset contains over four hundred fields which could potentially be
leveraged as individual features by a machine learning algorithm.

Ineffectiveness of Global Model

A common approach in applying ML on a dataset is to consider the dataset as a single
entity and build one model over the entire data. However, base stations in a cellular
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network exhibit different characteristics. This renders the use of a global model ineffective.
To illustrate this problem, we conducted an experiment where the goal is to build a model
for call drops in the network (similar to [87]) using information in our traces. Specifically,
we build a decision tree model using an hour worth of data to ensure sufficient data for
the algorithm to produce statistically significant results. Figure 7.2a shows the result of
this experiment, where we see that the global model achieves poor accuracy and high
variance. This underlines the heterogeneity in the characteristics of base stations and
hence the ineffectiveness of global models.

Latency/Accuracy Issues with Local Models

The alternative to a single global model is to build a model for every base station. We
evaluate this approach by repeating the last experiment, but this time segregating the
data for every base station and building an independent model for each. The results of
this experiment is shown in fig. 7.2a, which indicates that local models are far superior,
with up to 20% more accuracy while showing much lower variance.

It is natural to think of a per base station model as the final solution to this problem.
However, this approach has issues too. Due to the difference in characteristics of the base
stations, the amount of data they collect in a given time interval varies vastly. Thus, in
small intervals, they may not generate enough data to produce statistically significant
results. Figure 7.2b shows the distribution of the amount of data generated by these base
stations under different data collection latencies. It shows that at small intervals (e.g.,
under 10 minutes), most base stations do not generate enough data, and that it takes
about an hour for all quartiles of base stations to log reasonable number of records.

To illustrate the effect of this discrepancy, we conduct another experiment. We use two
machine learning algorithms—a random forest model to predict connection drops (Alg 1),
and a lasso regression model using stochastic gradient descent to predict the throughput
(Alg 2)—at various data collection latencies. These two algorithms represent some of the
commonly used models from the broad categories of classification and regression. The
result of this experiment is shown in fig. 7.2c. The behavior of Alg 1 is obvious; as it
gets more data its accuracy improves due to the slow varying nature of the underlying
causes of failures. After an hour latency1, it is able to reach a respectable accuracy.
However, the second algorithm’s accuracy initially seems to improve with more data, but
falls quickly. This is counterintuitive in normal settings, but the explanation lies in the
spatio-temporal characteristics of cellular networks. Many of the performance metrics
exhibit high temporal variability, and thus need to be analyzed in smaller intervals. Thus,

1Such high latencies may not be acceptable in many scenarios.
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in models like that in Alg 2, it is not enough to just “wait” for enough data to be collected,
and hence local modeling is ineffective.

Need for Model Updates

An obvious, but flawed conclusion from our previous experiment is that models similar
to that built by Alg 1 would work after the data collection latency (of an hour) has been
incurred once. Put differently, can we just use historic data? In any application of ML,
models need to be updated to retain their performance. This is true in cellular networks
too, where temporal variations affect the performance of the model. To depict this, we
repeated the experiment where we built per base station decision tree model for call
drops. However, instead of training and testing on parts of the same dataset, we train on
an hours worth of data, and test it on the next hour. Figure 7.2a shows that the accuracy
drops by 12% with a stale model (because the model built using historic data is no longer
valid). Thus, it is important to keep the model fresh by incorporating incoming data and
removing old data. Such sliding updates to ML models in a general setting is difficult
due to the overheads in retraining them from scratch. To add to this, cellular networks
consist of several thousands of base stations. Thus, a per base station approach requires
creating and updating a huge amount of models (e.g., our network consisted of over
13000 base stations). This makes scaling hard.

Why not Spatial/Temporal Partitioning?

Our experiments point towards the need for obtaining enough data for ML algorithms
to produce statistically significant results with low latency. The obvious solution to
combating this trade-off is to intelligently combine data from multiple base stations. It
is intuitive to think of this as a spatial partitioning problem, since base stations in the
real world are geographically separated. Thus, it is reasonable to assume that a spatial
partitioner which combines data from base stations within a geographical region must be
able to give good results. Unfortunately, this isn’t the case which we motivate using a
simple example. Consider two base stations, one situated at the center of times square in
New York and the other a mile away at a residential area. Using a spatial partitioning
scheme that divides the space into equal sized planes would likely result in combining
data from these base stations. However, this is not desirable because of the difference
in characteristics of these base stations2. We illustrate this using the drop modeling
experiment as before. Figure 7.2a shows the performance where we combine data from

2In our measurements, a base station in a highly popular spot serves more than 300 UEs and carries
multiple times uplink / downlink traffic compared to another base station situated just a mile from it that
serves only 50 UEs.
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Figure 7.3: CellScope System Architecture.

nearby base stations using a simple grid partitioner, and then build a model in each of
the partitions. The result shows that this technique is only slightly better compared to a
single global model. We evaluate other spatial partitioning schemes in §7.6.

7.3 CellScope Overview

We now present our solution, CellScope, which mitigates the latency-accuracy trade-off
using a domain-specific formulation and application of Multi-Task Learning (MTL).

7.3.1 Problem Statement

CellScope’s ultimate goal is to enable fast and accurate RAN performance diagnosis by
resolving the trade-off between data collection latency and the achieved accuracy. The key dif-
ficulty arises from the fundamental trade-off between having not enough data to build
accurate-enough models in short timespans and waiting to collect enough data that entails stale
results. Additionally, CellScope must also support efficient modifications to the learned
models to account for the temporal nature of our setting to avoid data and model staleness.

7.3.2 Architectural Overview

Figure 7.3 shows the high-level architecture of CellScope, which consists of the
following key components:



CHAPTER 7. REAL-TIME DECISIONS ON DYNAMIC CONNECTED DATA 105

Input data: CellScope uses measurement traces that are readily available in modern
cellular networks (§7.2.1). Base stations collect traces independently and send them to the
associated MME, which merges records if required and uploads them to a data center.3

Feature engineering: Next, CellScope uses domain knowledge to transform the raw
data and construct a set of features amenable to learning (e.g., computing interference
ratios)(§7.4.1). We also leverage protocol details and algorithms (e.g., link adaptation in
the physical layer).
Domain-specific MTL: CellScope uses a domain specific formulation and application
of MTL that allows it to perform accurate diagnosis while updating models efficiently
(§7.4.2).
Data partitioner: To enable correct application of MTL, CellScope implements a
partitioner based on a similarity score derived from Principal Component Analysis (PCA)
and geographical distance (§7.4.3). The partitioner segregates data to be analyzed into
independent sets and produces a smaller co-located set relevant to the underlying analysis.
This also minimizes the need to shuffle data during training.
RAN performance analyzer: This component binds everything together to build diag-
nosis modules. It leverages the MTL component and uses appropriate techniques to
build call drop and throughput models. We discuss our experience of applying these
techniques to a live LTE network in §7.7. This component can be easily replaced to extend
CellScope to a new domain, as we show in §7.8.
Output: Finally, CellScope can output analytics results to external modules such as
RAN performance dashboards. It can also provide inputs to Self-Organizing Networks
(SON).

7.4 Mitigating Latency Accuracy Trade-off

In this section, we present how CellScope mitigates the trade-off between latency and
accuracy. We first discuss a high-level overview of RAN specific feature engineering that
prepares the data for learning (§7.4.1). Next, we describe CellScope’s MTL formulation
(§7.4.2), and how it lets us build fast, accurate and incremental models. Then, we explain
how CellScope achieves grouping that captures commonalities among base stations
using a novel PCA based partitioner that makes application of MTL possible (§7.4.3).

3The transfer of traces to a data center is not fundamental. Extending CellScope to do geo-distributed
learning in a future work.
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7.4.1 Feature Engineering

Feature engineering, the process of transforming the raw input data to a set of features
that can be effectively utilized by machine learning algorithms, is a fundamental part of
ML applications [195]. Generally carried out by domain experts, it is often the first step
in ML.

In CellScope, the network measurement data contains several hundreds of fields
(§7.2). These fields range from simple bearer identification information to fields associated
with LTE network procedures. Unfortunately, many of these fields are not suitable for
model building as it is. Additionally, several fields are collected in a format that utilizes
a compact representation. Finally, these records are not self-contained, and multiple
records may need to be “joined” to create a feature for a certain procedure. We use simple
feature engineering to obtain fields that can be used in ML algorithms. As an example,
for modeling connection drop rates, we use block error rate (BLER) as a feature. However,
the records do not directly provide this value, thus it is computed using the block transfer
information. Similarly, for throughput modeling, the downlink and uplink throughput
values are computed using the amount of physical resource blocks allocated and the
transfer time. While we depend on manual feature engineering in this work (automating
this is part of our future work), not all fields need to be feature engineered. Further, we
found that the engineered fields can be used across several ML algorithms.

7.4.2 Multi-Task Learning

The latency-accuracy trade-off makes it hard to achieve both low latency and high accuracy
in ML tasks (§7.2). The ideal-case scenario in CellScope is if infinite amount of data is
available per base station with zero latency. In this scenario, we would have a learning
task for each base station that produce a model as an output with the best achievable
accuracy. In reality, our setting has several tasks, each with its own data. However, each
task does not have enough data to produce models with acceptable accuracy in a given
latency budget. This makes our setting an ideal candidate for multi-task learning (MTL),
a research area in machine learning that has been successful in many ML applications.
The key idea behind MTL is to learn from other tasks by weakly coupling their parameters so
that the statistical efficiency of many tasks can be boosted [42, 168, 60, 28]. Specifically, if we
are interested in building a model of the form

h(x) = m(f1(x), f2(x), ..., fk(x)) (7.1)

where m is a model (e.g., to predict connection drop) composed of feature functions f1
through fk, then the traditional MTL formulation, given dataset D = {(xi,yi,bsi) : i =
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1, ...,n}, where xi ∈ Rd,yi ∈ R and bsi denotes the ith base station, is to learn

h(x) = mbs(f1(x), f2(x), ..., fk(x)) (7.2)

where mbs is a per base station model.
In this MTL formulation, the core assumption is a shared structure or dependency

across each of the learning problems. Unfortunately, in our setting, the base stations do
not share a structure at a global level (§7.2). Due to their geographic separation and the
complexities of wireless signal propagation, the base stations share a spatio-temporal
structure instead. Thus, we proposes a new domain-specific MTL formulation.

CellScope’s MTL Formulation

In order to address the difficulty in applying MTL due to the violation of task depen-
dency assumption in RANs, we can leverage domain-specific characteristics. Although
independent learning tasks (learning per base station) are not correlated with each other,
they exhibit specific non-random structure. For example, the performance characteristics
of base stations nearby are influenced by similar underlying features. Thus, we propose
exploiting this knowledge to segregate learning tasks into groups of dependent tasks on
which MTL can be applied. MTL in the face of dependency violation has been studied in
the machine learning literature in the recent past [100, 69]. However, they assume that
each group has its own set of features. This is not entirely true in our setting, where
multiple groups may share most or all features but still need to be treated as separate
groups. Furthermore, some of the techniques used for automatic grouping without a
priori knowledge are computationally intensive.

Assuming we can club learning tasks into groups, we can rewrite the MTL equation
in eq. (7.2) as:

h(x) = mg(bs)(f1(x), f2(x), ..., fk(x)) (7.3)

where mg(bs) is the per-base station model in group g. We describe a simple technique to
achieve this grouping based on domain knowledge in §7.4.3 and experimentally show
that just grouping can achieve significant gains in §7.6.

In theory, the MTL formulation in eq. (7.3) should suffice for our purposes as it would
perform much better by capturing the inter-task dependencies using grouping. However,
this formulation still builds an independent model for each base station. Building and
managing a large amount of models leads to significant performance overhead and would
impede our goal of scalability. Scalable application of MTL in a general setting is an active
area of research in machine learning [134], so we turn to problem-specific optimizations
to address this challenge.
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The model mg(bs) could be built using any class of learning functions. In this work,
we restrict ourselves to functions of the form F(x) = w · x where w is the weight vector
associated with a set of features x. This simple class of function gives us tremendous
leverage in using standard algorithms that can easily be applied in a distributed setting,
thus addressing the scalability issue. In addition to scalable model building, we must also
be able to update the built models fast. However, machine learning models are typically
hard to update in real time. To address this challenge, we discuss a hybrid approach to
building the models in our MTL setting next.

Hybrid Modeling for Fast Model Updates

Estimation of the model in eq. (7.3) could be posed as an `1 regularized loss minimization
problem [169]:

min
∑

L(h(x : fbs),y) + λ||R(x : fbs)|| (7.4)

where L(h(x : fbs),y) is a non-negative loss function composed of parameters for a
particular base station, hence capturing the error in the prediction for it in the group,
and λ > 0 is a regularization parameter scaling the penalty R(x : fbs) for the base station.
However, the temporal and streaming nature of the data means that the model must be
refined frequently for minimizing staleness.

Fortunately, grouping provides us an opportunity to solve this. Since the base stations
are grouped into correlated task clusters, we can decompose the features used for each
base station into a shared common set fc and a base station specific set fs. Thus, we can
modify eq. (7.4) as minimizing

∑(∑
L(h(x : fs, fc),y) + λ||R(x : fs)||

)
+ λ||R(x : fc)|| (7.5)

where the inner summation is over dataset specific to each base station. This separation
gives us a powerful advantage. Since we grouped base stations, the feature set fs is
minimal, and in most cases just a weight vector on the common feature set. Because
the core common features do not change often, we need to update only the base station-
specific parts in the model frequently, while the common set can be reused. Thus, we end
up with a hybrid offline-online model. Furthermore, the choice of our learning functions
lets us apply stochastic methods [159] which can be efficiently parallelized.

Anomaly Detection Using Concept Drift

A common use case of learning tasks for RAN performance analysis is in detecting
anomalies. For instance, an operator may be interested in learning if there is a sudden
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increase in call drops. At the simplest level, it is easy to answer this question by monitoring
the number of call drops at each base station. However, just a yes or no answer to such
questions are seldom useful. If there is a sudden increase in drops, then it is useful to
understand if the issue affects a complete region and its root cause.

Our MTL approach and the ability to do fast incremental learning enables a better
solution for anomaly detection and diagnosis. Concept drift is a term used to refer
the phenomenon where the underlying distribution of the training data for a machine
learning model changes [65]. CellScope leverages this to detect anomalies as concept
drifts and proposes a simple technique for it. Since we process incoming data in mini-
batches (§7.5), each batch can be tested quickly on the existing model for significant
accuracy drops. An anomaly occurring just at a single base station would be detected by
one model, while one affecting a larger area would be detected by many. Once anomaly
is detected, finding cause is as easy as updating the model and comparing it with the old.

7.4.3 Data Grouping for MTL

Having discussed CellScope’s MTL formulation, we now turn our focus towards
how CellScope achieves efficient grouping of cellular datasets that enables accurate
learning. Our data partitioning is based on Principal Component Analysis (PCA), a
widely used technique in multivariate analysis [136]. PCA uses an orthogonal coordinate
transformation to map a given set of points into a new coordinate space. Each of the new
subspaces are commonly referred to as a principal component. Since the coordinate space
is smaller than the original , PCA is used for dimensionality reduction.

In their pioneering work, Lakhina et.al. [106] showed the usefulness of PCA for
network anomaly detection. They observed that it is possible to segregate normal
behavior and abnormal (anomalous) behavior using PCA—the principal components
explain most of the normal behavior while the anomalies are captured by the remaining
subspaces. Thus, by filtering normal behavior, it is possible to find anomalies that may be
otherwise undetected.

While the most common usecase for PCA has been dimensionality reduction (in
machine learning domains) or anomaly detection (in networking domain), we use it
in a novel way, to enable grouping of datasets for multi-task learning. Due to the
lack of the ability to collect sufficient amount of data from individual base stations,
detecting anomalies in them will not yield results. However, the data would still yield an
explanation of normal behavior. We use this observation to partition the dataset.
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Notation

As bearer level traces are collected continuously, we consider a buffer of bearers as a
measurement matrix A. Thus, A consists of m bearer records, each having n observed
parameters making it an m×n time-series matrix. It is to be noted that n is in the order
of a few 100 fields, while m can be much higher depending on how long the buffering
interval is. We enforce n to be fixed in our setting—every measurement matrix must
contain n columns. To make this matrix amenable to PCA analysis, we adjust the columns
to have zero mean. By applying PCA to any measurement matrix A, we can obtain a set
of k principal components ordered by amount of data variance they capture.

PCA Similarity

It is intuitive to see that many measurement matrices may be formed based on different
criteria. Suppose we are interested in finding if two measurement matrices are similar.
One way to achieve this is to compare the principal components of the two matrices.
Krzanowski [103] describes such a Similarity Factor (SF). Consider two matrices A and B
having the same number of columns, but not rows. The similarity factor between A and
B is:

SF = trace(LM ′ML ′) =
k∑
i=1

k∑
j=1

cos2 θij

where L, M are the first k principal components of A and B respectively, and θij is the
angle between the ith component of A and the jth component of B. The similarity factor
considers all combinations of k components from both matrices.

CellScope’s Similarity Metric

Similarity in our setting bears a slightly different meaning: we do not want strict similarity
between measurement matrices, but only similarity between corresponding principal
components. This ensures that algorithms will still capture the underlying major influ-
ences and trends in observation sets that are not exactly similar. So we propose a simpler
metric.

Consider two measurement matrices A and B as before, where A is of size mA × n
and B is of size mB × n. By applying PCA on the matrices, we can obtain k principal
components using a heuristic. We obtain the first k components which capture 95% of
the variance. From the PCA, we obtain the resulting weight vector, or loading, which is a
n× k matrix: for each principal component in k, the loading describes the weight on the
original n features. Intuitively, this can be seen as a rough measure of the influence of
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each of the n features on the principal components. The Euclidean distance between the
corresponding loading matrices gives

SFCellScope
=

k∑
i=1

d(ai,bi) =
k∑
i=1

n∑
j=1

|aij − bij|

where a and b are the column vectors representing the loadings for the correspond-
ing principal components from A and B. Thus, SFCellScope

captures how closely the
underlying features explain the variation in the data.

Due to the complex interactions between network components and the wireless
medium, many of the performance issues in RANs are geographically tied (e.g., con-
gestion might happen in nearby areas, and drops might be concentrated)4. However,
SFCellScope

doesn’t capture this phenomenon because it only considers similarity in
normal behavior. Consequently, it is possible for anomaly detection algorithms to miss
geographically-relevant anomalies. To account for this domain-specific characteristic, we
augment our similarity metric to also capture the geographical closeness by weighing
the metric by geographical distance between the two measurement matrices. Our final
similarity metric is5

SFCellScope
= wdistance(A,B) ×

k∑
i=1

n∑
j=1

|aij − bij|

Using Similarity Metric for Partitioning

With similarity metric, CellScope can now partition bearer records. We first group the
bearers into measurement matrices by segregating them based on the cell on which the
bearer originated. The grouping is based on our observation that the cell is the lowest
level at which an anomaly would manifest. We then create a graph G(V ,E) where the
vertices are the individual cell measurement matrices. An edge is drawn between two
matrices if the SFCellScope

between them is below a threshold. To compute SFCellScope
,

we simply use the geographical distance between the cells as the weight. Once the graph
has been created, we run connected components on this graph to obtain the partitions.
The use of connected component algorithm is not fundamental, it is also possible to use
a clustering algorithm instead. For instance, a k-means clustering algorithm that could
leverage SFCellScope

to merge clusters would yield similar results.
4Proposals for conducting geographically weighted PCA (GW-PCA) exist [78], but they are not applica-

ble since they assume a smooth decaying user provided bandwidth function.
5A similarity measure for multivariate time series is proposed in [189], but it is not applicable due to its

stricter form and dependence on finding the right eigenvector matrices to extend the Frobenius norm.
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Managing Partitions Over Time

One important consideration is managing group changes over time. To detect group
changes, it is necessary to establish correspondence between groups across time intervals.
Once this correspondence is established, CellScope’s hybrid modeling makes it easy
to accommodate changes. Due to the segregation of our model into common and base
station specific components, small changes to the group do not affect the common model.
In these cases, we can simply bootstrap the new base station using the common model,
and then start learning specific features. On the other hand, if there are significant
changes to a group, then the common model may no longer be valid, which is easy to
detect using concept drift. In such cases, the offline model could be rebuilt.

7.4.4 Summary

We now summarize how CellScope resolves the fundamental trade-off between latency
and accuracy. To cope with the fact that individual base stations cannot produce enough
data for learning in a given time budget, CellScope uses MTL. However, our datasets
violate the assumption of learning task dependencies. As a solution, we proposed a
novel way of using PCA to group data into sets with the same underlying performance
characteristics. Directly applying MTL on these groups would still be problematic in our
setting due to the inefficiencies with model updates. To solve this, we proposed a new
formulation for MTL which divides the model into an offline and online hybrid. On this
formulation, we proposed using simple learning functions are amenable to incremental
and distributed execution. Finally, CellScope uses a simple concept drift detection to
find and diagnose anomalies.

7.5 Implementation

We have implemented CellScope on Spark [192]. We describe its API that exposes our
commonality based grouping based on PCA (§7.5.1), and implementation details on the
hybrid offline-online MTL models (§7.5.2).

7.5.1 Data Grouping API

CellScope’s grouping API is built on Spark Streaming [194], since the data arrives
continuously, and we need to operate on this data in a streaming fashion. Spark Streaming
already provides support for windowing functions on streams of data, thus we extended
it with the three APIs in listing 7.1.
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grouped = DStream.groupBySimilarityAndWindow(

windowDuration , slideDuration)

reduced = DStream.reduceBySimilarityAndWindow(

func , windowDuration , slideDuration)

joined = DStream.joinBySimilarityAndWindow(

windowDuration , slideDuration)

Listing 7.1: Grouping API

The APIs leverage the DStream abstraction provided by Spark Streaming. groupBy-

SimilarityAndWindow takes the buffered data from the last window duration, applies the
similarity metric to produce outputs of grouped datasets every slide duration. reduceBy-
SimilarityAndWindow allows an additional user defined associative reduction operation
on the grouped datasets. Finally, joinBySimilarityAndWindow joins multiple streams
using similarity.

7.5.2 Hybrid MTL Modeling

We use Spark’s machine learning library, MLlib [162] for implementing our hybrid MTL
model. MLlib contains implementation for many distributed learning algorithms. The
MTL formulation we presented in §7.4.2 allows us to utilize these existing models in our
framework.

In MTL, the tasks learn from each other. These tasks in our setting consist of building a
model, mg(bs) for each base station in every group created by the PCA based grouping. In
eq. (7.3), we presented our MTL formulation, and described a simplified loss minimization
method to estimate this model. Further, in eq. (7.5), we decomposed this into shared
and base station specific set, so the model mg(bs) is of the general form h(x : fs, fc),y).
Since we restrict ourselves to learning functions of the form w · x for this model, our
model per base station is simply a weight vector on the shared group model. This allows
the usage of existing ensemble methods [53]. Ensemble methods use multiple learning
algorithms to obtain better performance. In our case, we use the ensemble method to
learn the shared group model. This can be done in many ways: we can directly employ
existing ensemble methods, or we can leverage multiple algorithms to be components of
the ensemble. However, unlike normal ensemble methods where the output is aggregated,
we use the MTL approach of a task per base station to learn the per-base station model.
This is equivalent to a linear model on the individual ensemble components, which gives
us the weight vector.
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We modified the MLLib implementation of Gradient Boosted Tree (GBT) [64]. This
implementation supports both classification and regression, and internally uses stochastic
methods. We implement the group’s shared feature model using either the GBT’s
ensemble, or individual algorithms. As an example, for connection drop prediction, the
shared model can be obtained using the standard ensembles such as the GBT itself, or
random forests. Then, we use individual base station data to fit a linear model on the
individual ensemble components. Note that it is not necessary to build the base model
this way—we could also use multiple learning methods as ensemble components. In
the same example, our ensemble could consist of a combination of SVM and decision
trees. Similarly, for throughput prediction, the shared model is built as an ensemble of
regression models—for instance, we may use one model for low throughput and another
for high throughput, and each of these tasks could use a different standard learning
method. In this method, we can update the base station specific weight vector in real time
as data is streamed in, as we simply need to update the linear model. Further, the group
specific model can be periodically retrained. One way to do so is to simply add more
models to the ensemble when new data comes in. Our implementation allows weighing
the outcome to give more weights to the latest models.

7.6 Evaluation

We have evaluated CellScope through a series of experiments on real-world cellular
traces from a live LTE network in a large geographical area. Our results show that:

• CellScope’s similarity based grouping provides up to 10% improvement in accuracy
on its own compared to the best space partitioning scheme.

• With MTL, CellScope’s accuracy improvements range from 2.5× to 4.4× over
different collection latencies.

• Our hybrid online-offline model is able to reduce model update times upto 4.8× and is
able to learn changes in an online fashion with no loss in accuracy.

Evaluation Setup: We use a private cluster of 20 machines, each consisting of 4 CPUs,
32GB RAM and 200GB hard disk.
Dataset: We collected data from a major metro-area LTE network for a time period of
over 10 months. It serves over 2 million active users and carries over 6TB traffic per hour.
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(a) Grouping by itself is able to provide signifi-
cant gains. MTL provides further gains.
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(b) Grouping is not computationally intensive,
even a days worth of data (with >500M records)
can be grouped in under a minute.
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(c) CellScope achieves up to 2.5× accuracy
improvements in drop rate classification.
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(d) Improvements in throughput regression go
up to 4.4×
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(e) CellScope’s hyrid model allows efficient
updates, and reduces update time by up to
4.8×.
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(f) Online training due to the hybrid model
helps avoid the loss in accuracy due to staleness
of the model.

Figure 7.4: CellScope achieves high accuracy while reducing the data collection latency.
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7.6.1 Benefits of Similarity Based Grouping

We first attempt to answer the question "How much benefits do the similarity based grouping
provide?". For this, we conducted two experiments, each with a different learning
algorithm. The first experiment, detection of call drops, uses a classification algorithm
while the second, throughput prediction, uses a regression algorithm. We chose these
to evaluate the benefits in two different classes of algorithms. In both these cases, we
pick the data collection latency where the per base station model gives the best accuracy,
which was 1 hour for classification and 5 minutes for regression. In order to compare
the benefits of our grouping scheme alone, we build a single model per group instead of
applying MTL. We compare the accuracy obtained with three different space partitioning
schemes. The first scheme (Spatial 1) just partitions space into grids of equal size. The
second (Spatial 2) uses a sophisticated space-filling curve based approach [92] that could
create dynamically sized partitions. Finally, the third (Spatial 3) creates partitions using
base stations that are under the same region. Figure 7.4a shows the results.

CellScope’s similarity grouping performs as good as the per base station model
which gives the highest accuracy. It is interesting to note the performance of spatial parti-
tioning schemes which ranges from 75% to 80%. None of the spatial schemes come close
to the similarity grouping results. This is because the drops are few, and concentrated.
Spatial schemes club base stations not based on underlying drop characteristics, but only
based on spatial proximity. This causes the algorithms to underfit or overfit. Since our
similarity based partitioner groups base stations using the drop characteristics, it is able
to do as much as 17% better.

The benefits are even higher in the regression case. Here, the per base station model
is unable to get enough data to build an accurate model and hence is only able to achieve
around 66% accuracy. Spatial schemes are able to do slightly better than that. Our
similarity based grouping emerges as a clear winner in this case with 77.3% accuracy.
This result depicts the highly variable performance characteristics of the base stations,
and the need to capture them for accuracy. These benefits do not come at the cost of
computational overhead due to grouping. Figure 7.4b shows the overhead of similarity
based grouping on various dataset sizes.

7.6.2 Benefits of MTL

Next, we characterize the benefits of CellScope’s use of MTL. We repeated the ex-
periment before, and apply MTL to the grouped data to see if the accuracy improves
compared to the earlier approach of a single model per group. The results are presented
in figure 7.4a. The ability of MTL to learn and improve models from other similar base
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stations’ data results in an increase in the accuracy. Over the benefits of grouping, we see
an improvement of 6% in the connection drop diagnosis experiment, and 16.2% in the
case of throughput prediction experiment. The higher benefits in the latter comes from
CellScope’s ability to capture individual characteristics of the base station. This ability
is not so crucial in the former because of the limited variation in individual characteristics.

7.6.3 Combined Benefits

Here, we are interested in evaluating how CellScope handles the latency accuracy
trade-off. We do the same classification and regression experiments, but on different data
collection latencies. We show the results from the classification and regression experiment
in fig. 7.4c and fig. 7.4d, which compares CellScope’s accuracy against a per base
station model’s.

When the opportunity to collect data at individual base stations is limited, CellScope

is able to leverage our MTL formulation to combine data from multiple base stations,
and build customized models to improve the accuracy. The benefits of CellScope

ranges up to 2.5× in the classification experiment, to 4.4× in the regression experiment.
Lower latencies are problematic in the classification experiment due to the extremely low
probability of drops, while higher latencies are a problem in the regression experiment
due to the temporal changes in performance.

7.6.4 Hybrid model benefits

Finally, we are interested in learning how much overhead it reduces during model
updates, and if it do online learning.

To answer the first question, we conducted the following experiment: we considered
three different data collection latencies: 10 minute, 1 hour and 1 day. We then learn a
decision tree model on this data in a tumbling window fashion. So for the 10 minute
latency, we collect data for 10 minutes, then build a model, wait another 10 minutes to
refine the model and so on. We compare our hybrid model strategy to two different
strategies: a naive approach which rebuilds the model from scratch every time, and a
better, strawman approach which reuses the last model, and makes changes to it. Both
builds a single model while CellScope uses our hybrid MTL model and only updates
the online part of the model. The results of this experiment is shown in figure 7.4e.

The naive approach incurs the highest overhead, which is obvious due to the need to
rebuild the entire model from scratch. The overhead increases with the increase in input
data. The strawman approach, on the other hand, is able to avoid this heavy overhead.
However, it still incurs overheads with larger input because of its use of a single model
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which requires changes to many parts of the tree. CellScope incurs the least overhead,
due to its use of multiple models. When data accumulates, it only needs to update a part
of an existing tree, or build a new tree. This strategy results in a reduction of up to 2.2×
to 4.8× in model building time for CellScope.

To wrap up, we evaluated the performance of the hybrid strategy on different data
collection intervals. Here we are interested in seeing if the hybrid model is able to adapt to
data changes and provide reasonable accuracies. We use the connection drop experiment
again, but do it in a different way. At different collection latencies, we build the model at
the beginning of the collection and use the model for the next interval. Hence, for the
1 minute latency, we build a model using the first minute data, and use the model for
the second minute (until the whole second minute has arrived). The results are shown in
figure 7.4f. We see here that the per base station model suffers an accuracy loss at higher
latencies due to staleness, while CellScope incurs almost zero loss in accuracy. This is
because it doesn’t wait until the end of the interval, and is able to incorporate data in real
time.

7.7 Real World RAN Analysis

We now turn to the question of how could operators benefit from a system such as
CellScope? We try to answer this question in two ways: first, we try to evaluate what
are the benefits of automatic root-causing and how much effort is reduced for the operator
because of this feature. Second, we evaluate CellScope’s ability to analyze in the wild.

7.7.1 Time Savings to the Operator

Operators spend several billions of dollars in diagnosing network problems. Often,
finding the cause of a network problem takes hours, or even days of effort. To evaluate
how CellScope could cut down this effort, we collected network trouble tickets from
the operator. The operator logs tickets at different levels, so we look at trouble tickets
that were investigated by domain experts using state-of-the-art tools such as datacubes.
For each ticket where the operator has network data available, we used CellScope to
diagnose the problem. This way, we can evaluate the potential time savings CellScope

provides. We discuss four real trouble tickets, the time taken by CellScope is depicted
in table 7.1.
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Ticket Resolution Time CellScope

§7.7.1 3 days 10 minutes
§7.7.1 1 day 2 minutes
§7.7.1 7 days 15 minutes
§7.7.1 1 hour 1 minute

Table 7.1: CellScope is able to reduce operator effort by several orders of magnitude.
Resolution time includes field trials & expert analysis using datacubes / state-of-the-art
tools [15].

Throughput Degradation After Upgrade

This ticket reported that a number of users experienced degraded network throughput
after a network upgrade. In many cases, throughput decrease of up to 30% was observed.
Since not all of the users saw this problem, the operator had to conduct field trials to
find the root cause of the problem. We used CellScope to model the throughput
before and after the upgrade. Comparing the models, we noticed that a cluster of base
stations had one feature influencing the model heavily. This matched the operator’s ticket
resolution—the field trials in the ticket indicated that the problem was cluster-wise and
that it was because the feature CellScope was erroneously turned on after the upgrade.
The base stations CellScope identified matched those reported in the resolution. In this
case, the ticket was resolved in three days including the field trials, while our modeling on
CellScope took less than 10 minutes. Note that manually applying learning techniques
would not have found the problem without grouping.

Specific Patterns of Call Drops

Here, the operator reported consistent call drops (specifically, VoLTE call drops) in certain
areas of the network. Manually analyzing this would have required a domain expert to
slice and dice several TB of data to find a pattern and then dig deep into the pattern.
To reduce this effort, the operator conducted field trials in parts affected to obtain test
data that is manageable for the expert, who was able to identify the problem: a missing
neighbor configuration in a group of base stations.

We used CellScope to model the call drop in an expanded portion of the network.
After the grouping process, one particular group’s model indicated that drops happened
when a handoff procedure was triggered and the procedure failed due to a specific error
code at the base station, missingneighbor. Here, the field trial, and domain expert’s
analysis was completed in one business day, while CellScope did the grouping and
modeling on one day’s data in 2 minutes.
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Periodic Throughput KPI Degradation

The operator noticed a degradation of KPI in the network. The degradation happened in
some serving cells. However, this was not consistently noticed, and occurred irregularly.
To add, the problem was transient. Thus, the ticket required a week worth of effort
to diagnose since field trials did not prove to be of help. We used CellScope in the
following fashion: we replayed the data for days when KPI degradation was reported.
We then built incremental models for drop rate and throughput. We then look at the
intervals when CellScope refines the model due to accuracy loss using the concept drift
and look at the model changes. We noticed that during some specific intervals, call drops
spiked in some cells while the throughput of the entire cell dropped. The difference in
the models built by CellScope indicated that device specific features influenced the
drops. The reason was that a particular model and software version of a device creating a
deluge of control messages that affected the entire cell when it was near capacity. The
ticket closure confirmed this.

Periodic Call Drops

Here, the operator noticed periodic increase in call drops. The domain expert was able to
identify the problem in an hour as PCI collision due to her vast expertise in the domain
by looking through the logs from affected period. We used the same logs in CellScope,
and were able to generate a call drop model that explained the drops using inter-cell
interference. When expertise is not available, the ticket would have been time-consuming.

7.7.2 Analysis in the Wild: Findings

To validate our system in the real world, we used CellScope for RAN performance
analysis on the live LTE network. Based on our experience with trouble tickets, we con-
sidered two metrics that are of significant importance for end-user experience: throughput
and connection drops. In this section, we present some of our main findings (which were
previously unknown to the operator) and the role played by CellScope.

SINR Anomaly

In a particular week, we noticed that an implementation of a learning task for connection
drop predicted unusually high numbers of drops. These high drops happened at some
base stations, all of which were assigned to the same group in CellScope’s grouping.
Upon further investigation with help from network experts, it was revealed that these
base stations had been experiencing unusually higher levels of interference.
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Incorrect Parameters

Similarly, we implemented a throughput prediction model. During a month long ob-
servation, we noticed that the predicted throughput for a set of base stations had fallen
below its normal average after a certain date. It was found that the base stations were
connected to the same MME and that a software upgrade had set some parameters
affecting the throughput incorrectly. This was one of several misconfigurations we found
in the network that caused performance degradation. Others included incorrect neighbor
assignments and hand-off problems.

Real-time Monitoring

We simulated real-time monitoring of the network and CellScope’s ability to detect
performance problems. The current approach taken by the operator is to define SLAs for
KPIs and then monitor them for SLA violations. However, such aggregate metrics are
likely to miss many events. We used CellScope to monitor the network over a month,
and verify if the events predicted by CellScope matches ground truth. Not only did
CellScope detect 100% of the KPI SLA violations, it also found a few issues that were
missed by the KPI based monitoring system, and later logged as trouble tickets.

Measurement Error

We also found problems in network measurements. Specifically, during initial deployment
trials of CellScope, we noticed that using the feature engineered field of block error
rate resulted in poor accuracy. The reason for this was an uninitialized field in the
measurement record logger, which resulted in random values.

7.8 Extending CellScope to a New Domain

To show the generality of the techniques presented in this chapter, we now apply these
techniques to a new domain: energy anomaly detection in mobile phones [128]. We obtained
a dataset of measurements from approximately 800,000 users obtained using the Carat
app. The goal here is to suggest actions to users that help improve their battery life. This
can be done by building a battery usage model for each user.

Data: The Carat app periodically collects a variety of data from the mobile phone it is
running on, including the phone model, version of the operating system, the state of the
battery, the CPU and memory utilization and the applications that are running. We use
these fields to build a ML model that predicts the battery drain rate for a user. Using
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Figure 7.5: Other domains suffer from latency-accuracy trade-off. Here, we see the
problem in the domain of energy debugging for mobile devices. Grouping by phone
model or phone operating system does not give benefits.

this model, it is possible to point out potential application that are responsible for an
increased battery drain.

Latency-Accuracy Trade-off: For users signing up for the Carat app, it is desirable to
provide suggestions as soon as possible. However, currently, it takes several weeks for
the app to collect enough data for a new user. Figure 7.5 shows the results of building a
model for suggesting apps that are bugs for a particular user once enough data has been
collected. It can be seen that a per-user model (denoted Local) works the best, but at the
cost of latency. The local model performs poorly until enough data has been collected as
depicted in fig. 7.6. A global model can be built immediately, but has poor accuracy. It is
intuitive to think of grouping users who have the same model device together, or same
operating system together. However, these grouping (denoted Model and OS) does not
yield significant benefits. Further, as people install/uninstall apps, the models need to be
updated. This make the domain ideal for testing CellScope’s techniques.

Extending Similarity Metric and MTL: To extend our techniques to a new domain,
we need to (i) customize the similarity metric (used for grouping) to the domain under
consideration, and (ii) modify the MTL formulation in eq. (7.5) for this domain. In the
cellular networks domain, our similarity metric was weighted by geographic distance
between base stations. However, geographic distance does not have an effect here.
From fig. 7.5, we notice that device model and operating system also do not make much
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Figure 7.6: CellScope’s techniques can easily be extended to new domains, and can
benefit them. Here, using our techniques, models built are usable immediately while
without CellScope, Carat [128] takes more than a week to build a model that is usable.

difference either. Intuitively, the subset of apps common between the users should provide
better results. However, just that alone is not enough as usage patterns vary across users
with similar apps. The Carat dataset provides enough information to determine the
number of times each app is active, which is roughly an indicator of the usage pattern
for the user. We use that to derive usage similarity between users, uusage(A,B) , and utilize
that to form the similarity metric:

SFCellScope
= uusage(A,B) ×

k∑
i=1

n∑
j=1

|aij − bij|

The MTL formulation remains the same as in eq. (7.5), we simply replace fs with
per-user features fu.

We implemented a Mobile Energy Diagnosis module in CellScope at the same level
as the RAN Performance Analyzer in fig. 7.3 that uses our modified similarity metric
and MTL formulation. We then applied the grouping and learning to the measurement
data we obtained to build a model for suggesting bugs to a new user. The results are
shown in fig. 7.6 which shows the accuracy of models built with (denoted CellScope)
and without CellScope (denoted per-user) starting from the day a user installs Carat.
We see that on the day of signing up, the accuracy of the model built without using
CellScope is unusable. This is intuitive, since only a few samples have been sent by
the new user’s device. Over time, the user sends enough data and the accuracy improves.
However, it takes over a week for Carat to offer usable suggestions to a new user. In
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contrast, with CellScope, we are able to build models that are immediately usable,
and Carat can begin offering suggestions on day 1.

7.9 Related Work

Monitoring and Troubleshooting Network monitoring and troubleshooting has been
an active area of research in both wired networks [77, 96, 186] and wireless networks [50,
15, 58, 16]. These techniques do not employ machine learning for troubleshooting.
Systems targeting RAN [58, 16] typically monitor aggregate KPIs and per-bearer records
separately. Their root cause analysis of KPI problems correlates with aggregation air
interface metrics such as SINR histograms and configuration data. Because these systems
rely on traditional database technologies, it is hard for them to provide fine-grained
prediction based on bearer models. Recent research [92] and commercial offerings [18]
have looked at the problem of scalable cellular network analytics by leveraging big data
frameworks. However, they do not support learning tasks. In contrast, CellScope

focuses on scalable and accurate application of machine learning in such domains.

Self-Organizing Networks (SON) The goal of SON [1] is to make the network capable
of self-configuration (e.g. automatic neighbor list configuration) and self-optimization.
CellScope’s techniques can provide the necessary diagnostics capabilities for assisting
SON.

Modeling and Diagnosis Techniques Problem diagnosis in cellular networks has been
explored extensively in the literature in various forms [26, 79, 110, 145, 167, 87]. The
focus of these has either been detecting faults or finding the root cause of failures. A vast
majority of such techniques depend on aggregate information and correlation based fault
detection. [87] discusses the shortcomings of using aggregate KPIs, and propose the use
of fine-grained information. Some studies have focused on understanding the interaction
of applications and cellular networks [142, 149, 172, 81, 94]. These are largely orthogonal
to our work.

Finally, some recent proposals leverage the use of ML for specific tasks. In [167], the
authors discuss the use of ML tools in predicting impending call drops and its duration.
A probabilistic system for auto-diagnosing faults in RAN is presented in [26]. It uses
KPIs as inputs to the model. [25] shows that improving signal-to-noise ratio, decreasing
load and reducing handovers in cellular networks can improve web quality of experience
by using ML to model the influence of radio network characteristics on user experience
metrics. Our previous work [87] proposed the use of simple, explainable ML models
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towards the quest of automating RAN problem detection and diagnosis, and discussed
several challenges in leveraging ML. In this work, we present techniques that can solve
the challenges in leveraging ML in many domains.

Multi-Task Learning MTL builds on the idea that related tasks can learn from each
other to achieve better statistical efficiency [42, 168, 60, 28]. Since the assumption of task
relatedness do not hold in many scenarios, techniques to automatically cluster tasks have
been explored in the past [100, 69]. However, these techniques consider tasks as black
boxes and hence cannot leverage domain specific structure. CellScope proposes a
hybrid offline-online MTL formulation on domain-specific grouping of tasks based on
the underlying performance characteristics.

7.10 Summary

The practicality of real-time decision making in many domains generating connected
data is impeded by a fundamental trade-off between data collection latency and analysis
accuracy. In this chapter, we first exposed this trade-off using the domain of cellular
networks RAN. We presented CellScope to resolve this trade-off by applying a domain
specific formulation of MTL. To apply MTL effectively, CellScope proposed a novel
PCA inspired similarity metric that groups data from geographically nearby base stations
sharing performance commonalities. Finally, it also incorporates a hybrid online-offline
model for efficient model updates. Our evaluations show significant benefits. We have
also used CellScope to analyze a live LTE network, where it could offer significant
reduction in troubleshooting efforts. We then explored the generality of our techniques
by applying them to a new domain, energy anomaly diagnosis in smartphones. We
show that extending our grouping and learning techniques to a new domain is easy and
effective. Thus we believe our proposals form a solid framework for mitigating the effects
of latency-accuracy trade-off in real-time dynamic connected data analytics systems.
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Chapter 8

Conclusions & Future Work

Over the last several chapters, we have discussed the design and implementation of
systems for dynamic connected data analysis, focusing on different aspects of the prob-
lem such as compact storage, efficient execution and low latency decisions. However,
several pieces remain in achieving the vision of building the next generation computing
infrastructure for real-time decisions on large-scale dynamic, connected data. In this chapter,
we touch upon a few directions for future work in this space.

8.1 Future Work

Learning Based Connected Data Processing

Here, we look at leveraging learning to improve connected data processing. Possible
future work in this direction include:

Pluggable Learned Sparsifiers: In chapter 5, we presented our work on GAP, an
effort to bring approximation to graph processing. The effectiveness of GAP depends
on the sparsifier used, and we discussed simple techniques to create sparsifiers. An
interesting question worth exploring is if the sparsifier could be learned, perhaps using
techniques such as deep learning and/or by leveraging the rich graph theory literature,
such as [107], which presents a theoretical analysis of input reduction to some popular
graph algorithms. The sparsifier can then be made pluggable; that is we could learn not
one, but many sparsifiers. Based on the characteristics of the choices, it may be possible
to cherry pick one or an ensemble of them to meet the latency/error bound.

Program Synthesis for Approximation: An alternative approach to applying sparsifi-
cation to the graph is to use an approximate version of the algorithm. In graph theory
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literature, there are numerous proposals on approximate versions of algorithms for a
specific analysis problem. However, using them directly is problematic since it introduces
dependency on the algorithm and hence impedes generality. Instead, a radical question
is if it is possible to automatically synthesize an approximate version of an analysis given
the exact version of it.

Incremental Approximate Analysis: In both the approximate techniques presented in
this dissertation, the system re-executes the queries when the underlying dataset changes.
This is acceptable in a majority of cases because the approximation is fast enough to
support interactivity. However, when real-time analysis is required on complex analysis,
rerunning the analysis from scratch may not be feasible. Here, it may be worth looking at
incremental approximate analysis. The interesting question here is to understand how
the approximation error accumulates over time, and how to impose bounds on it.

Learning On Connected Data

This direction looks at how to improve learning techniques on connected data, and the
possible future work may consist of:

Scalable Graph Convolutions for Deep Learning: Graph convolutions have emerged
as a popular technique in combining deep learning and structured approaches, and graph
networks has recently been touted as the fundamental building blocks for next generation
AI [27]. In these approaches, the convolution of the graph is often the bottleneck for
real-time applications. The main reason for this bottleneck is the use of a message passing
based approach for processing. Based on the usefulness of approximation, it may be
possible to take a non-traditional approach of eschewing message passing and favoring
approximate graph isomorphism based techniques for faster and better convolutions.

Approximation as a First Class Citizen: Many AI techniques, such as reinforcement
learning (RL), depend on complex distributed algorithms and parallel processing to
learn policies by performing huge number of compute intensive simulations. A unique
characteristic of learning techniques is that they can accommodate approximation to
some extent without affecting the performance of the model. This provides us with an
opportunity to leverage approximation as a first class citizen in building systems for
learning on connected data in an effort to enable real-time AI, for instance, it may make
real-time policy updates possible.
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New Scenarios

Now we discuss work which could potentially improve connected data analysis systems
by leveraging new settings/scenarios.

Error Code Based State Store: As data volumes keep increasing, future connected
data analysis systems would need to handle magnitudes more data in the future compared
to what we presented in this dissertation. A major bottleneck in connected data analysis
is the way data is partitioned across multiple machines. Several factors affect how data
could be partitioned, and in many cases, the data layout and query distribution results in
heavy skews and some machines becoming hotspots. The use of error correcting codes to
reduce this performance degradation is an idea worth considering.

Leveraging Other/New Storage Hardware: The systems in this dissertation assumes
that the entire data under analysis is stored in main memory. This is a reasonable
assumption today, but with the rising data volume, and new analyses (e.g., ones that
generate significantly more intermediate data than input, such as pattern mining) it is
worthwhile pursuing alternative storage layers. There are two possible paths that could be
explored here: (i) looking at new ways to represent data in traditional disk based storage
(spinning disks or SSDs) and possibly leveraging the (little) computation capability in
them, or (ii) leverage new hardware, such as 3D XPoint to aid connected data analysis.

Simultaneous Queries and Analysis: This dissertation looked at analysis on con-
nected data, but an equally important area is to support point queries where every query
looks only at a very small amount of data but the number of queries are large. However,
supporting queries is fundamentally at odds with analysis because they require com-
pletely different data layouts. The systems we presented are tuned for working on large
sets of data (e.g., the computation model executes the same program on every node), and
thus are not suited for point querying. Work in this direction would need to look at new
data layouts and computation engines that can support both large scale and fine-grained
tasks. Can we develop data structures that can be transformed into each other easily?

Universal Sketching for Connected Data Queries: Building on the previous context,
a possible approach to support faster querying might be to use sketches, or compact
digests of dataset which can be used to answer the queries. However, traditional sketching
techniques are specific to the query; that is a given sketch can only answer a particular
query. There is an opportunity to generate universal sketching mechanisms targeted at
connected data which can answer several kinds of queries.
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Incorporating the Edge: The type of connected data analysis we presented in this
dissertation resorted to aggregating data from the sources to one (or more) data centers
in the cloud and processing them. However, as we move towards real-time applications,
such aggregations may not be possible. Thus, we believe that the next generation real-time
connected data processing systems will span edges and the cloud. Including the edge in
the next generation system architecture can provide vast benefits. For instance, delegating
model learning and inference between the cloud and the edge can result in significant
latency and cost reduction. However, several open questions need to be answered before
this becomes a reality: how should the work be partitioned? How much data should each
edge send? How can it do so in the face of constrained bandwidth? Can we leverage
sampling to reduce bandwidth requirements? How would accuracy be affected?

Serverless Connected Data Processing: The systems presented in this dissertation,
similar to a vast majority of data processing systems today, assume that they are deployed
on a dedicated cluster. Recently, serverless computing architectures have gained attention
for cloud workloads. The significant ease of deployment, management and the highly
elastic nature of serverless architecture makes it a favorable candidate for real-time
connected data processing systems as it can easily handle the dynamic nature of both
the data volume and computation requirement over time. However existing serverless
solutions are not well suited for iterative and communication heavy workloads, both
of which are common traits in real-time learning tasks in connected data. It might
be possible to leverage approximation and intelligent data structures to achieve highly
scalable and elastic connected data analytics and machine learning engines that can be
deployed on serverless offerings.

8.2 Closing Thoughts

In this dissertation, we designed and developed scalable systems for connected data pro-
cessing by proposing new abstractions for operating on such data, compact datastructures
to store data and state, efficient computation models that reduce redundant work using
incremental techniques, techniques that significantly improve performance by embracing
approximation and methods for accurate applications of machine learning that mitigating
fundamental trade-offs. With the IoT fast becoming a reality, and edges incorporating
advanced actuation capabilities, we are entering an exciting era in real-time connected
data processing. We believe that there are tremendous opportunities for cross-disciplinary
research in the areas of distributed systems, databases, machine learning and mobile
computing. We hope that the systems and techniques we presented here can potentially
influence the next generation of data intensive systems.
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