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Over 785,000 individuals in the United States have end-stage renal disease (ESRD),

with about 70% of patients on dialysis, a life-sustaining treatment. Dialysis patients

experience frequent hospitalizations. In order to identify risk factors of hospitaliza-

tions, we utilize data from the large national database, United States Renal Data Sys-

tem (USRDS). To account for the hierarchical structure of the data, with longitudinal

hospitalization rates nested in dialysis facilities and dialysis facilities nested in geo-

graphic regions across the United States, we propose a multilevel varying coefficient

spatiotemporal model (M-VCSM) where region- and facility-specific random devia-

tions are modelled through a multilevel Karhunen–Loéve (KL) expansion. The pro-

posed M-VCSM includes time-varying effects of multilevel risk factors at the region-

(e.g., urbanicity and area deprivation index) and facility-levels (e.g., patient demo-

graphic makeup) and incorporates spatial correlations across regions via a conditional

autoregressive (CAR) structure. Efficient estimation and inference are achieved

through the fusion of functional principal component analysis (FPCA) and Markov

chain Monte Carlo (MCMC). Applications to the USRDS data highlight significant

region- and facility-level risk factors of hospitalizations and characterize time periods

and spatial locations with elevated hospitalization risk. Finite sample performance of

the proposed methodology is studied through simulations.

K E YWORD S

conditional autoregressive model, end-stage renal disease, hospitalization risk, multilevel
longitudinal data, United States Renal Data System

1 | INTRODUCTION

As of 2018, the number of patients with end-stage renal disease (ESRD) in the United States exceeded 785,000, with approximately 554,000

(70%) patients undergoing dialysis, a life-sustaining treatment (United States Renal Data System [USRDS], 2020). Patients on dialysis have a high

burden of complex comorbid conditions and are typically hospitalized twice a year with hospitalization rates sharply elevated in the first year of

dialysis. In addition, ESRD patients remain on dialysis for long periods of time (for the duration of their lives or until receiving a kidney transplant),

and their needs may change as they stay on dialysis. Our own works and others (Li et al. 2018, 2020; USRDS, 2020) have also shown significant

variation in hospitalizations among dialysis facilities contributing to spatial variation with regional clusters of high rates (e.g., ‘hot spots’). More

generally, there is a compelling need to more fully understand the region- (e.g., urbanicity and area deprivation index [ADI]) and facility-level fac-

tors (e.g., patient demographic makeup or comorbidity burden) that contribute to differences in longitudinal hospitalizations observed across the

United States over the time course that patients receive dialysis. Comprehensive modelling of hospitalizations to identify the time-dynamic/time-

varying effects of modifiable risk factors can better inform patient care and is essential in efforts aimed at reducing hospitalization in the dialysis

population.
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The United States Renal System (USRDS) is a large national database which contains data on almost all dialysis patients in the United States,

with a hierarchical structure: longitudinal hospitalizations over time nested in dialysis facilities and dialysis facilities nested within regions across

the United States. We note that rather than modelling aggregated rates at the region-level (see USRDS, 2020 for a conditional autoregressive

[CAR] Bayesian modelling of aggregated rates), it is important to develop a multilevel model for hospitalization rates at the facility-level, incorpo-

rating the hierarchical structure of the data, to target a more granular estimate of the effects of multilevel risk factors, while also accounting for

the spatiotemporal variation across dialysis facilities. The multilevel approach not only allows for incorporation of multilevel risk factors more nat-

urally, but it also facilitates the study of variation in hospitalizations among facilities within a region. This is important since elevated hospitaliza-

tion rates within a region may be due to a few outlying facilities with higher rates or consistently high hospitalization rates across a high

percentage of the facilities within a region. The multilevel approach provides the ability to study the reasons behind elevated hospitalization rates

within a region, whether it be region-level risk factors or variation among facilities within the region, which could also partially be driven by

facility-level risk factors.

There is extensive literature in spatiotemporal modelling where data are viewed as time series observed on a lattice of spatial locations

(Cressie & Wikle, 2011). The goals of typical spatiotemporal models mainly focus on prediction, either for time points in the future or for

unmeasured spatial locations (Quick et al. 2013; Zhang et al. 2016). For the few works on multilevel spatiotemporal modelling, a functional data

analysis (FDA) approach is taken to model structured functional trajectories where the dependencies are induced by spatial or temporal proximity

(Crainiceanu et al. 2009; Di et al. 2009; Kundu et al. 2016; Morris et al. 2003; Morris & Carroll, 2006; Zipunnikov et al. 2011). Functional principal

components analysis (FPCA) using the Karhunen–Loéve (KL) representation is utilized as an effective dimension reduction tool in modelling func-

tional variability. For multilevel functional data that are spatially correlated, spatial correlations have typically been modelled across lower level

units that are nested within independent subjects (Baladandayuthapani et al. 2008; Hasenstab et al. 2017; Staicu et al. 2010; Scheffler et al.

2020). For multilevel functional data where spatial correlation is at the highest level of the hierarchy (e.g., longitudinal hospitalizations nested in

dialysis facilities and facilities nested in spatially correlated geographic regions), Li et al. (2021) considered a multilevel spatiotemporal functional

model with a focus on drawing valid multilevel inference accounting for spatiotemporal correlations. However, these models do not include

potentially time-varying effects of multilevel covariates.

To study time-varying effects of covariates, varying coefficient models are an effective tool and have been widely used to model longitudinal

outcomes (Cleveland et al. 1991; Hastie & Tibshirani, 1993). For single-level spatiotemporal data, Serban (2011) proposed a space–time-varying coef-

ficient model to examine the association of service accessibility and demographics. Zhang et al. (2016) considered a functional CAR approach for

modelling spatially correlated genomic changes over areal regions of the bladder tissue (space) and genomic locations (time). However, both models

do not include multilevel covariates or account for the hierarchical dependency structure in the data. For two-level longitudinal data, Li et al. (2018,

2020) proposed multilevel varying coefficient models (M-VCM) to study the time-varying effects of facility- and patient-level covariates on hospitali-

zations of dialysis patients. However, these works do not include modelling of spatiotemporal correlations in the data for valid inference.

Therefore, to quantify the time-varying effects of region- and facility-level risk factors on hospitalization rates in the dialysis cohort while

accounting for both the hierarchical dependency structure and the spatiotemporal correlations in the data, we propose a novel multilevel varying

coefficient spatiotemporal model (M-VCSM). Multilevel covariates are included in the model to study the time-varying effects of both region- and

facility-level risk factors. Additional region- and facility-specific time-varying random deviations model the multilevel spatiotemporal correlation

structure of the data. Spatial correlations are induced among the region-specific random deviations through a CAR model to account for dependen-

cies across regions and to stabilize the estimates for small regions. Estimation of time-varying effects of multilevel covariates jointly with multilevel

time-varying random deviations (with an additional spatial correlation at the region-level) poses a major computational challenge, especially in big

data settings. To achieve computational efficiency in modelling large data sets, such as data from USRDS, the proposed estimation and inference

rely on dimension reduction via Bayesian P-splines (Lang & Brezger, 2004) in targeting time-varying coefficient functions of multilevel covariates

and FPCA in targeting the multilevel time-varying random deviations. Following dimension reduction, model parameters (including P-spline coeffi-

cients and variance components) are targeted via Markov chain Monte Carlo (MCMC) in a mixed effects modelling framework. Section 2 introduces

the proposed M-VCSM and outlines the proposed estimation and inference procedures. Applications to USRDS data to model hospitalization risk

among 5494 dialysis facilities across 423 health service areas (HSAs), regions with relatively self-contained infrastructure for the provision of hospi-

tal care, in the United States, are given in Section 3. Simulations to study the finite sample performance of the proposals, including comparisons with

a M-VCM that ignores the spatial correlation in the data, are presented in Section 4, followed by a discussion given in Section 5.

2 | PROPOSED M-VCSM

2.1 | Model specification

Let Yijk ¼YijðtijkÞ denote the hospitalization rate of the jth facility from region i at time (month) tijk, where i¼1,2,…,n denotes regions, j¼1,2,…,Ni

denotes dialysis facilities within the ith region and k¼1,2,…,T denotes the kth month after transition to dialysis. The hospitalization rate for the
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jth facility in month k is defined as the ratio of the total number of patient hospitalizations to the total patient follow-up time in month k. For ease

of interpretation, monthly rates are multiplied by 12 before modelling, to target the hospitalization rate PPY (consistent with USRDS reporting).

Note that monthly hospitalization rates after transition to dialysis are targeted as a continuous outcome, similar to previous seminal works of

(Quick et al. 2013; Short et al. 2002) and amenable for the use of functional data analysis tools. While the vast majority of yearly hospitalization

rates are less than 5 (median 1.8), the range of the yearly rates extends from 0 to 9.5.

The proposed M-VCSM includes P region- (Xi ¼ðXi1,…,XiPÞT) and Q facility-level (ZijðtÞ¼ ðZij1ðtÞ,…,ZijQðtÞÞT) covariates as well as time-

dynamic region- (Ui(t)) and facility-specific (Vij(t)) deviations:

YijðtÞ¼XT
i βðtÞþZijðtÞTθðtÞþUiðtÞþVijðtÞþϵijðtÞ, ð1Þ

where βðtÞ¼ fβ1ðtÞ,…,βPðtÞgT and θðtÞ¼ fθ1ðtÞ,…,θQðtÞgT denote the time-varying coefficient functions of the region- and facility-level covariates,

respectively, and ϵij(t) denotes the measurement error. Note that in the formulation in Equation (1), the facility-level covariates are time-

dependent and region-specific covariates are time-invariant, to mimic our data application. Facility-level covariates, such as patient demographic

makeup or comorbidity burden, which characterize the patient cohort, change over time as the patient cohort at the facility changes over time,

while region-level covariates, such as urbanicity or ADI, are taken to be time-static over the 2-year follow-up on dialysis. Nevertheless, the formu-

lations below can easily accommodate both time-varying and time-invariant covariates at both the region- and facility-levels, with minor changes

to the design matrix.

The time-varying region- and facility-specific deviations, capturing the remaining spatiotemporal variation in hospitalizations after adjusting

for region- and facility-level covariates, are both modelled via the KL expansions,

UiðtÞ¼
X∞
ℓ¼1

ξiℓψ
ð1Þ
ℓ ðtÞ, VijðtÞ¼

X∞
m¼1

ζijmψ
ð2Þ
m ðtÞ: ð2Þ

where ψ ð1Þ
ℓ ðtÞ and ψ ð2Þ

m ðtÞ denote the region- and facility-level (first- and second-level) orthonormal eigenfunctions (denoted by superscripts (1)

and (2)) and ξiℓ and ζijm denote respectively region- and the facility-level principal component (PC) scores. Note that while PC scores across levels

are assumed to be uncorrelated, the eigenfunctions across levels are not assumed to be mutually orthogonal. In practice, only finite numbers of

eigencomponents are selected in the KL expansions in Equation (2), denoted by L (region-level) and M (facility-level). The number of

eigencomponents can be chosen by cross validation (Rice & Silverman, 1991), Akaike information criterion (Yao et al. 2005), or the estimated frac-

tion of variance explained (FVE). We found FVE to be effective in the selection of the number of eigencomponents in applications given in this

paper.

To capture dependencies due to potential region-level or dialysis-chain-specific practices, spatial correlations are induced among the region-

specific PC scores ξiℓ via a CAR model. More specifically, let W¼fwii0 g denote the n� n adjacency matrix, describing the neighbourhood structure

among the regions, with wii0 ¼1 if regions i and i0 (i≠ i0) are neighbours (denoted by i� i0) and wii0 ¼0 otherwise. The diagonal elements of W are

set to zero by convention. Further let di ¼
P

i0�iwii0 denote the total number of neighbours of region i and D¼diagðdÞ denote the n� n diagonal

matrix with d¼ðd1,…,dnÞ. The full conditional distribution for the ℓth PC score for region i, ξiℓ, is specified by a Markov random field (MRF):

ξiℓjfξi0ℓgi0 ≠ i �N ν
P

i0�iwii0ξi0ℓ=di,αℓ=di
� �

, with the variance component αℓ and the spatial correlation parameter ν. Hence, the conditional mean of

ξiℓ is a weighted average of the ℓth PC scores from neighbours of region i. Under this specification, the joint distribution of the ℓth PC scores

ξℓ ¼ðξ1ℓ ,…,ξnℓÞT can be derived as ξℓ �Nf0,αℓðD�νWÞ�1g through Brook's lemma. It has been shown that when the spatial correlation parame-

ter ν is in (0, 1), the precision matrix (D� νW)/αℓ is guaranteed to be positive definite; see, for example, the discussion on p. 82 in Banerjee

et al. (2014). The CAR model borrows spatial information across neighbours and therefore can be thought of as a smoother over neighbouring

regions, stabilizing the estimates for small regions. Facility-specific PC scores, ζijm, are assumed to be uncorrelated with EðζijmÞ¼0 and

varðζijmÞ¼ λim. Note that the facility-level variance λim is allowed to vary across regions. Finally, the measurement error, ϵij(t), are assumed to be i.i.

d with mean zero and variance σ 2, and uncorrelated with both region- and facility-specific PC scores.

2.2 | Estimation and inference

The proposed estimation algorithm is outlined in the table below, with key details highlighted in this section. The estimation algorithm utilizes

P-splines and FPCA to reduce the dimension of the multilevel varying coefficient functions (VCFs) (βðtÞ and θðtÞ) and the multilevel time-dynamic

stochastic deviations (Ui(t) and Vij(t)), respectively. To achieve dimension reduction in the multilevel time-varying deviations, the region- and

facility-level eigenfunctions, ψ ð1Þ
ℓ ðtÞ and ψ ð2Þ

m ðtÞ, are targeted using the between- and within-facility covariances (Steps 2–4 in the estimation algo-

rithm below). The between- and within-facility covariances are obtained using residuals Eij(t) from a multilevel varying coefficient fit to the data in

LI ET AL. 3 of 16
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a preliminary step under the working independence assumption (Step 1). The residuals Eij(t) represent the remaining deviation in the data after

adjusting for time-dynamic effects of multilevel covariates. Keeping the estimated region- and facility-level eigenfunctions fixed, the remaining

model parameters (including the P-spline coefficients from expansions of the multilevel VCFs and the variance components, αℓ, λim, ν, and σ 2)

and the multilevel PC scores (ξiℓ and ζijm) are targeted in a mixed effects modelling framework using MCMC (Steps 5–6). Posterior distributions of

the P-spline coefficients and the PC scores are utilized for inference on the multilevel VCFs.

More specifically, the proposed estimation algorithm begins with an M-VCM fit to the data under the working independence assumption:

YijðtÞ¼XT
i βðtÞþZijðtÞTθðtÞþϵijðtÞ. The residuals from this initial fit, denoted by Eij(t), capture the remaining spatiotemporal variation in the data

after adjusting for the time-varying effects of multilevel covariates and are used in targeting the between- (GB(t, t0)) and within-facility covariances

(GW(t, t0)) in Steps 2 and 3. FPCA is employed on the between- and within-facility covariances to target the region- and facility-level

eigenfunctions {ψ ð1Þ
ℓ ðtÞ,ℓ¼1,2,…,L} and {ψ ð2Þ

m ðtÞ,m¼1,2,…,M} in Step 4, similar to Li et al. (2021). The number of eigenfunctions (L and M)

included in the decompositions of the region- (Ui(t)) and facility-specific deviations (Vij(t)) are selected by FVE. To stabilize the estimation of the

region-specific variance parameter varðζijmÞ¼ λim, a two-compartment model is utilized with λim ¼ λi1ωm, where λi1 is allowed to change across

regions, but ωm, denoting the proportion of FVE of the mth second-level eigencomponent to FVE of the leading second-level eigencomponent

(with ω1 ¼1), is assumed to be fixed. In other words, while the ordering of the second-level eigencomponents, as well as their FVE, is assumed to

be fixed across regions, regions are still allowed to be different in the variance of the second-level PC scores through multiplication by λi1. The

term ωm, which is constant across regions, is estimated as ω̂m ¼ Λ̂m=Λ̂1,m¼2,…,M, where fΛm :m¼1,2,…,Mg are the eigenvalues of the within-

facility covariance GW(t, t0).

Step 5 combines expansions of the VCFs βðtÞ and θðtÞ onto B-spline basis and of the region- and facility-specific deviations onto the esti-

mated eigenfunctions from Step 4, in a mixed effects framework. The VCFs are modelled using Bayesian P-splines:

βpðtÞ¼
XR

r¼1
BprϕrðtÞ, θqðtÞ¼

XR

r¼1
CqrϕrðtÞ, where ϕrðtÞ, r¼1,…,R, denote the B-spline basis functions and Bpr and Cqr denote the corresponding

coefficients. As proposed by Lang and Brezger (2004), the priors for Bp ¼ðBp1,…,BpRÞT and Cq ¼ðCq1,…,CqRÞT are taken to be

Bpjτ2Bp / expf�BT
pKpBp=ð2τ2BpÞg,Cqjτ2Cq / expf�CT

qKqCq=ð2τ2CqÞg, where Kp and Kq denote the R�R penalty matrices and τBp and τCq denote the

hyperparameters. Let Yij ¼fYijðt1Þ,…,YijðtTÞgT denote the T�1 response vector; Φ¼ðϕ1,…,ϕRÞ denote the T�R matrix of B-spline basis func-

tions, with ϕr ¼fϕrðt1Þ,…,ϕrðtTÞgT and B¼ðB1,…,BPÞT; and C¼ðC1,…,CQÞT denote the P�R and Q�R matrices of B-spline coefficients, respec-

tively. Keeping the estimated fψ̂ ð1Þ
ℓ ðtÞ, ψ̂ ð2Þ

m ðtÞ, ω̂m,L,Mg fixed and assuming the PC scores and measurement errors are normally distributed, the

mixed effects model is given as follows:

Yij ¼ΦBTXiþðΦCTÞ ∘Zij1þΨ ð1Þ~ξiþΨ ð2Þζ ijþϵij,

Bp / exp � 1

2τ2Bp
BT
pKpBp

 !
, Cq / exp � 1

2τ2Cq
CT
qKqCq

 !
,

ξℓ �Nð0,αℓðD�νWÞ�1Þ, ζ ijm �Nð0,λi1ωmÞ, ϵijðtkÞ�Nð0,σ2Þ,

where ‘∘’ denotes element-wise matrix product, Xi ¼ðXi1,…,XipÞT and Zij ¼fZijðt1Þ,…,ZijðtTÞgT denote the P�1 and T�Q region- and facility-level

design vector and matrix, Ψ ð1Þ ¼ ðψð1Þ
1 ,…,ψð1Þ

L Þ and Ψ ð2Þ ¼ ðψð2Þ
1 ,…,ψð2Þ

M Þ denote the T� L and T�M matrices, respectively, made up of the region-

and facility-level eigenfunctions ψð1Þ
ℓ ¼fψ ð1Þ

ℓ ðt1Þ,…,ψ ð1Þ
ℓ ðtTÞg

T
and ψð2Þ

m ¼fψ ð2Þ
m ðt1Þ,…,ψ ð2Þ

m ðtTÞg
T
, ~ξi ¼ðξi1,…,ξiLÞT, ζ ij ¼ðζij1,…,ζijMÞT denote the L�1

and M�1 vectors containing the level 1 and level 2 PC scores, and ϵij ¼fϵijðt1Þ,…,ϵijðtTÞgT denotes the T�1 error vector. In Step 6, model

4 of 16 LI ET AL.
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parameters are targeted via MCMC sampling with inverse Gamma (IG) priors for variance components αℓ � IGðaαℓ ,bαℓ Þ, λi1 � IGðaλ,bλÞ and

σ2 � IGðaσ2 ,bσ2 Þ, hyperparameters τ2Bp � IGðaτ2 ,bτ2 Þ and τ2Cq � IGðaτ2 ,bτ2 Þ and Beta priors for the spatial correlation parameter ν�Betaðaν,bνÞ. Pos-
terior distributions of the model parameters and details on sampling methods are deferred to Appendix S1. For inference on the VCFs βðtÞ and
θðtÞ, we form simultaneous credible bands as proposed in Crainiceanu et al. (2007). Let f(t) denote a single varying coefficient function (in either

βðtÞ or θðtÞ), observed at time points tk, for k¼1,2,…,T. Further let f̂ðtÞ and SDffðtÞg denote the mean and standard deviation of f(t) based on a

total of J MCMC samples f ( j )(t) and let cb denote the (1� α) sample quantile of maxk¼1,…,T jffðjÞðtkÞ� f̂ðtkÞg=SDffðtkÞgj, j¼1,2,…,J. Then, the (1� α)

simultaneous credible band for f(t) is given by ½f̂ðtkÞ�cbSDffðtkÞg�.

3 | DATA ANALYSIS

3.1 | Description of the USRDS study cohort and multilevel risk factors

The facility hospitalization rates PPY, calculated monthly over the 2-year follow-up on dialysis, are modelled using the USRDS, a large database

that collects data on nearly all patients on dialysis in the United States. The cohort includes dialysis patients of age 18 years or older who trans-

itioned to dialysis between 1 January 2005 and 30 September 2013, followed up for 2 years with the last date of follow-up on 31 December

2015. Patients are followed up starting from the 91st day of dialysis treatment (after a 90-day period to establish stable treatment modality).

Regional units are taken to be HSAs in the contiguous United States, consistent with national USRDS reporting. HSAs are merged to guarantee

that each resulting region contains at least four facilities, for stable estimation and inference. After merging, the final study cohort includes a total

of 5494 facilities and 423 regions/HSAs, with an average hospitalization rate of 1.8 per person-year (PPY). Detailed descriptions of the study

cohort, exclusion rules and the region merging algorithm are deferred to Appendix S2.

The region-level covariates considered include urbanicity, ADI and medical underservice index (MUI). To capture urbanicity, HSAs are catego-

rized into three classes: large metropolitan, small metropolitan or non-metropolitan. The classes are determined by the categorization assigned to

the majority of the counties within each HSA, by the urban-rural classification scheme from National Center for Health Statistics (https://www.

cdc.gov/nchs/data_access/urban_rural.htm). The HSA is assigned to the larger category to break occasional ties in the number of county designa-

tions. Non-metropolitan regions are taken as the reference group. The second region-level covariate, ADI, reflects the HSA's socio-economic sta-

tus, consisting of 17 education, employment, housing-quality and poverty measures (Kind & Buckingham, 2018). The index, available at the level

of census block groups (available at https://www.neighborhoodatlas.medicine.wisc.edu), is a rank-based index taking on values between 0 and

100, with higher values corresponding to lower socio-economic status (and higher deprivation). ADIs assigned to census block groups within each

HSA are averaged to derive the HSA-level indices. The last region-level covariate, MUI, is used to reflect the medical service availability within

each HSA. Medically underserved areas (MUA) are areas with too few primary care providers, high infant mortality, high poverty or a high elderly

population, designated by Health Resources and Services Administration. The index is available at the census tract/county subdivision level at

https://data.hrsa.gov/tools/shortage-area. The proportion of census tracts/county subdivisions that are designated as MUA is first targeted for

each county, and county MUIs are then averaged within each HSA to arrive at the HSA-level MUI index, with higher indices corresponding to

higher underservice. Finally, facility-level covariates summarize the patient demographic makeup and comorbidity burden at initiation of dialysis

for each dialysis facility. Covariates considered include patients' average age and body mass index (BMI), percentage of female patients within a

facility and percentage of patients with diabetes as the cause of ESRD and with the comorbidities of COPD, septicemia, other infections and psy-

chological disorders. Note that even though patient characteristics from initiation of dialysis are summarized, the facility-level covariates are time-

varying due to the dynamic nature of the patient cohort served by each dialysis facility (due to patients changing dialysis facilities or death). The

covariates ADI, MUI, age, BMI and percentage of female patients are mean-centred for ease of interpretation in modelling.

3.2 | Results

3.2.1 | Time-varying effects of multilevel covariates

The estimated time-varying effects of region-level covariates including the time-varying y-intercept, representing the hospitalization rate of an

‘average’ facility in a non-metropolitan region (with median ADI of 53, MUI of 0.43, patient mean age of 63, BMI of 29 and female at 44%, patient

comorbidities and diabetes as cause of ESRD at the reference level), are given in Figure 1. The estimated y-intercept displays an overall decreasing

trend in hospitalization rates throughout the 2-year follow-up, with the highest rate of 1.77 PPY early after transitioning to dialysis (dropping

down to 1.35 PPY at 2-year follow-up) (Figure 1a). Figure 1b–e displays the estimated effects of region-level covariates (solid) with simultaneous

95% credible bands (dashed), overlaying horizontal lines at zero (grey), included for reference. Both ADI and MUI are positively associated with

hospitalization rates, suggesting that regions with a higher deprivation level or lower medical service availability have higher hospitalization rates.
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However, neither ADI nor MUI is found significant at the 0.05 significance level. Large metropolitan regions have significantly higher hospitaliza-

tion rates than non-metropolitan regions (reference group), where the difference between hospitalization rates at small metropolitan and non-

metropolitan regions is not found to be significant.

The estimated time-varying effects (solid) of the facility-level covariates, along with their simultaneous 95% credible bands (dashed), are given

in Figure 2 (Horizontal lines are included in grey for reference). The estimated time-varying effect of age (adjusted for comorbidities) is positive at

initiation of dialysis but becomes mostly nonsignificant for the 2-year follow-up. This can be explained by the mostly positive effects of com-

orbidities that partly explain away the effects of age (older patients typically have more comorbidities than younger patients). Higher BMI is asso-

ciated with lower hospitalization risk for approximately the first 10 months on dialysis, where the protective effect gets weaker as patients stay

longer on dialysis. The protective effect of BMI is a well-known phenomenon, as also documented in other studies on adverse events in the dialy-

sis cohort, such as cardiovascular risk and mortality (Kalantar-Zadeh et al. 2005). While facilities with a higher percentage of female patients have

higher hospitalization rates (consistent with previous findings), all comorbidities considered are mostly associated with higher hospitalization risk

as expected. More specifically, while the effects of chronic conditions such as COPD and psychological disorders are getting stronger as patients

stay longer on dialysis (COPD significant after 15 months and psychological disorders significant around 15 months on dialysis), effects of acute

conditions such as septicemia weaken as patients stay longer on dialysis (significant stronger effects of septicemia observed within the first

10 months on dialysis). The effect of having diabetes as a cause of ESRD and other infections are mostly not found to be significant.

To further assess the effects of facility-level risk factors on hospitalization rates, Figure 3 displays the predicted hospitalization trajectories

for two facilities with the percentage of patients with septicemia at 0% and 20% (while other covariates are kept at median or reference levels as

specified above for the y-intercept). The 95% simultaneous credible bands (shaded in grey) for the predicted hospitalization trajectories are

F IGURE 1 Estimated time-varying effects (solid) of region-level covariates: (a) y-intercept, (b) area deprivation index (ADI) (centred),
(c) medical underservice index (MUI) (centred), (d) large metropolitan and (e) small metropolitan, along with their 95% simultaneous credible
intervals (dashed), in modelling hospitalization rates among the US dialysis population. Horizontal lines at zero are included in grey for reference.
Positive coefficients correspond to increased hospitalization rates
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formed based on the draws from YijðtÞ¼XT
i βðtÞþZijðtÞTθðtÞ, corresponding to each posterior draw of the multilevel VCFs, and following the algo-

rithm outlined at the end of Section 2.2 with fðtÞ¼YijðtÞ. A 20% increase in the number of patients with septicemia in a given facility (while all

other covariates are kept fixed) corresponds to a significant difference in hospitalization risk trajectories in approximately the first 4months on

dialysis. This is consistent with the weakening effects of septicemia as patients stay longer on dialysis, displayed in Figure 2. More specifically,

while a 20% increase in the number of patients with septicemia corresponds to an increase of 0.55 PPY in hospitalization rates at initiation of dial-

ysis, the difference drops to 0.28 PPY at the end of the 2-year follow-up. In comparison, the difference in hospitalization rates of facilities in large

metropolitan versus non-metropolitan areas is 0.19 PPY at initiation of dialysis, dropping down to 0.14 PPY at the end of the 2-year follow-up

(Figure 1d). Hence, while the magnitude of the effects of significant region- and facility-level covariates are comparable, the effects of more

F IGURE 2 Estimated time-varying effects (solid) of facility-level covariates: (a) age (centred), (b) BMI (centred), (c) % of patients having
diabetes as the cause of ESRD, (d) % of female patients (centred) and % patients with (e) COPD, (f) septicemia, (g) other infection and
(h) psychological disorders, along with their 95% simultaneous credible intervals (dashed), in modelling hospitalization rates among the US dialysis
population. Horizontal lines at zero are included in grey for reference. Positive coefficients correspond to increased hospitalization rates
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facility-level covariates are time-dynamic (e.g., COPD, septicemia, BMI and female), compared to region-level covariates (where the effects are

found to be relatively stable across follow-up).

3.2.2 | Spatiotemporal patterns of hospitalization rates

In addition to modelling time-varying effects of multilevel covariates, the proposed M-VCSM models the remaining spatiotemporal patterns in the

data via multilevel stochastic deviations (Ui(t) and Vij(t)) with spatial correlations induced at the region-level. Multilevel FPCA is utilized in reducing

the dimension of Ui(t) and Vij(t), where spatial correlations are induced among the region-level eigenscores. The estimated multilevel

eigenfunctions are displayed in Figure 4. At the region-level, the leading eigenfunction explains 95% of the variation, highlighting higher variation

in hospitalization rates across regions during the first 5 to 10 months of dialysis. This is consistent with the elevated hospitalizations observed at

initiation of dialysis. Figure 4b-d displays the three leading facility-level eigenfunctions, explaining more than 85% of the total facility-level varia-

tion. The leading facility-level eigenfunction (with 71% FVE) is relatively flat, capturing the constant variation across the 2-year follow-up among

facilities. The second leading eigenfunction (with 11% FVE) highlights variation at beginning and end of follow-up, while the third leading eigen-

function (with 5% FVE) highlights variation also around the mid follow-up point, at 1 year on dialysis (in addition to the beginning and end of

follow-up). The estimated spatial correlation parameter, ν̂, equals 0.94, inducing correlations between neighbouring HSAs ranging from 0.28 to

0.67. The findings affirm that there is still significant spatiotemporal variation remaining in the data, after adjusting for time-varying effects of mul-

tilevel covariates. To visualize the remaining spatiotemporal patterns in the data, Figure 5 displays the residuals Eij(t) (averaged across time)

obtained from the initial M-VCM fit to the data under the working independence assumption (Step 1 of the estimation algorithm). Also displayed

in Figure 5 are the predicted region-specific deviations Ui(t) averaged across follow-up time. Both plots confirm the significant spatial variation

remaining in the data after adjustment by covariates. In addition, the similarity between the two maps show that the predicted region-specific

deviations are able to capture the remaining spatial variation in the data effectively. Note also that the remaining spatial patterns in the residuals

ϵij(t) (given in Figure S3), obtained after the proposed spatiotemporal modelling at the region-level, are much reduced. The spatial patterns in

Figure 5 highlight higher hospitalizations in the ‘band’ from Massachusetts to southern Texas (dark blue), as well as Nevada, Arizona and Florida.

In addition, spatial variation across regions is of the similar order to temporal variation observed across the 2-year patients stay on dialysis: the

interquartile range of the predicted region-specific deviations is 0.35 PPY, while hospitalization risk decreases by 0.42 PPY throughout the 2-year

follow-up.

To assess the spatial and temporal variation jointly while also taking into account time-varying effects of multilevel covariates on hospitaliza-

tion risk, Figure 6 displays raw hospitalization rates as well as region-specific predictions from the full model at 1, 12 and 24 months after initia-

tion of dialysis. Region-specific predictions are obtained via averaging predicted facility-level rates across all facilities within each region:

ŶiðtÞ¼
XNi

j¼1
fXT

i β̂ðtÞþZijðtÞTθ̂ðtÞþ ÛiðtÞþ V̂ijðtÞg=Ni. Predicted maps correspond closely to raw maps indicating the satisfactory fit of the pro-

posed M-VCSM model. Overall, both sets of maps highlight elevated hospitalization rates in Massachusetts to southern Texas, Nevada, Arizona

and Florida, also accounting for effects of multilevel covariates, similar to the findings of Figure 5. Across the United States, rates are higher in the

F IGURE 3 Predicted hospitalization trajectories for two facilities with per cent of patients with septicemia at 0% (solid) and 20% (dashed)
(while other covariates are kept at median or reference levels) along with 95% simultaneous credible bands (shaded in grey)
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northeast, northwest and central regions. Moreover, hospitalization rates are the highest in the early months after transitioning to dialysis, with

an overall decreasing trend in almost all HSAs throughout the 2-year follow-up period.

4 | SIMULATION STUDIES

Finite sample properties of the proposed estimation algorithm and inference procedure are studied via simulation studies with a varying number

of regions, number of facilities per region and measurement error variance. In addition, we compare the finite sample performance of the pro-

posed M-VCSM with a multilevel varying coefficient (M-VCM) that ignores the spatial correlation at the region-level.

F IGURE 4 The estimated leading region-level eigenfunction (a) with 95% FVE and the leading (b), second leading (c) and third leading
(d) facility-level eigenfunctions with FVE at 71%, 11% and 5%, respectively

F IGURE 5 The residuals Eij(t) (averaged across time) obtained from the initial multilevel varying coefficient model fit to the data under the
working independence assumption (left), predicted region-specific deviations Ui(t) averaged across follow-up time (right)
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4.1 | Simulation design

We consider the simulation model YijðtijkÞ¼XT
i βðtijkÞþZijðtijkÞTθðtijkÞþ

XL

ℓ¼1
ξiℓψ

ð1Þ
ℓ ðtijkÞþ

XM

m¼1
ζijmψ

ð2Þ
m ðtijkÞþϵijðtijkÞ, evaluated at an equidistant

grid of k¼1,…,24 time points, tijk, between 0 and 1, mimicking the 24-month follow-up in our data application. The region-level covariates Xi ¼
ð1,Xi1,Xi2ÞT include a y-intercept term, and Xi1, Xi2 are generated from U(0, 1), N(0, 1), respectively. To mimic the USRDS data where facility-level

covariates are time-dependent, ZijðtijkÞ¼ fZij1ðtijkÞ,Zij2ðtijkÞgT, facility-level covariates are generated as Zij1ðtÞ¼�tþϵ1,Zij2ðtÞ¼ tþϵ2 where ϵ1 and

ϵ2 are generated independently from standard normal distributions. The region- and facility-level VCFs equal βðtÞ¼ fβ0ðtÞ,β1ðtÞ,β2ðtÞgT ¼
ð1� t,2t, �4t2þ4t�1ÞT and θðtÞ¼ fθ1ðtÞ,θ2ðtÞgT ¼ð2t2�3tþ1,10t3�16t2þ7t�1ÞT, respectively. Region- and facility-level eigenfunctions

equal ψ ð1Þ
1 ðtÞ¼

ffiffiffi
2

p
sinð2πtÞ,ψ ð1Þ

2 ðtÞ¼
ffiffiffi
2

p
cosð2πtÞ and ψ ð2Þ

1 ðtÞ¼
ffiffiffi
3

p
ð2t�1Þ,ψ ð2Þ

2 ðtÞ¼ ffiffiffi
5

p ð6t2�6tþ1Þ, respectively (L¼M¼2), where

eigenfunctions are chosen not to be orthogonal across the two levels of the data. The region-specific PC scores ξℓ ¼ðξ1ℓ,…,ξnℓÞT are generated

from a multivariate normal distribution with mean zero and covariance matrix (1/αℓ)(D� νW )�1, whereW is the adjacency matrix and D is a diago-

nal matrix with diagonal elements equal to the number of neighbours for each region, as described in Section 2. The spatial correlation parameter

ν equals 0.9, inducing spatial correlations between neighbouring regions in the range of 0.22 to 0.62, similar to the data application in

Section 3.2.2. The spatial variance parameters α1 and α2 equal 1 and 0.25, respectively. The facility-specific PC scores ζijm are generated from N

F IGURE 6 Raw (left column) and predicted (right column) hospitalization rates at 1, 12 and 24 months after initiation of dialysis for 423 HSAs
across the United States. Predicted rates are obtained from the full model including effects of multilevel covariates and predictions for multilevel
stochastic predictions
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(0, λim), with λi1 generated from a discrete uniform on {0.3, 0.2, 0.1} and λi2 ¼0:5λi1, guaranteeing that FVE of the facility-level eigencomponents

stay the same across regions while total variation still remains region-specific.

Eight simulation settings are considered with two sets of total region numbers, two sets of total facility numbers per region and two sets of

measurement error variance. The two regional units considered are HSAs and states in the contiguous United States (including the District of

Columbia), resulting in 423 (similar to the data application) and 49 total regions, respectively. In addition, two sets of total facility numbers per

region are considered: 4 � 20 and 10 � 30. More specifically, the total number of facilities per region is generated as follows. Regions are

first randomly designated into three groups: small (S), medium (M) and large (L), where the total number of facilities within each region is

generated from a discrete uniform distribution on S¼f4,5,6g,M¼f7,8,9,10g, and L¼f11,12,…,20g in the first setting and

S¼f10,11,12,13g,M¼f14,15,16,17g, and L¼f18,19,…,30g in the second. Finally, the measurement error, ϵij(tijk), is generated from N(0, σ 2)

with σ2 ¼0:2 and σ2 ¼0:02 in two separate simulation set-ups.

TABLE 1 The mean MSDE of VCFs, eigenfunctions and region- and facility-specific deviations and MSE for variance components and spatial
correlation parameters from eight simulation settings with two sets of total region numbers, two sets of total facility numbers per region and two
sets of measurement error variance σ2

Number of regions
n¼423 regions n¼49 regions

Number of facilities
4-20 10-30 4-20 10-30

Noise level, σ 2 0.2 1 0.2 1 0.2 1 0.2 1

MSDE

β̂0ðtÞ 0.005 0.011 0.004 0.010 0.011 0.042 0.011 0.033

β̂1ðtÞ 0.002 0.004 0.001 0.003 0.007 0.016 0.005 0.013

β̂2ðtÞ 0.003 0.004 0.002 0.003 0.013 0.026 0.009 0.022

θ̂1ðtÞ <0.001 0.001 <0.001 0.001 0.005 0.008 0.003 0.005

θ̂2ðtÞ <0.001 0.001 <0.001 0.001 0.005 0.008 0.003 0.005

ψ̂ ð1Þ
1 ðtÞ 0.003 0.003 0.002 0.003 0.032 0.029 0.025 0.032

ψ̂ ð1Þ
2 ðtÞ 0.004 0.005 0.003 0.004 0.043 0.046 0.031 0.042

ψ̂ ð2Þ
1 ðtÞ 0.001 0.002 <0.001 0.001 0.013 0.019 0.004 0.007

ψ̂ ð2Þ
2 ðtÞ 0.001 0.003 0.001 0.001 0.016 0.026 0.005 0.010

ÛiðtÞ 0.129 0.246 0.089 0.180 0.122 0.286 0.084 0.222

Small 0.170 0.312 0.106 0.209 0.150 0.345 0.092 0.256

Medium 0.125 0.244 0.087 0.188 0.126 0.282 0.089 0.213

Large 0.092 0.184 0.074 0.145 0.088 0.231 0.071 0.197

V̂ijðtÞ 0.232 0.506 0.217 0.494 0.266 0.525 0.232 0.504

MSE

α̂1 0.005 0.006 0.004 0.006 0.057 0.048 0.037 0.052

α̂2 <0.001 0.001 <0.001 <0.001 0.004 0.005 0.003 0.004

ν̂ 0.001 0.001 0.001 0.001 0.003 0.003 0.003 0.002

σ̂2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

λ̂i1 0.005 0.006 0.003 0.004 0.006 0.007 0.003 0.004

Small 0.007 0.009 0.004 0.005 0.008 0.008 0.004 0.005

Medium 0.005 0.006 0.003 0.004 0.006 0.007 0.003 0.004

Large 0.003 0.004 0.002 0.003 0.003 0.004 0.002 0.003

λ̂i2 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001

Small 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001

Medium 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001

Large <0.001 0.001 <0.001 0.001 0.001 0.001 <0.001 0.001

Note: Results are based on 200 Monte Carlo runs.
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4.2 | Results

The estimation of the time-varying and time-invariant parameters are assessed via the relative mean squared deviation error (MSDE), MSDEf̂ ¼Ð
f̂ðtÞ� fðtÞ
n o2

dt

� �
=
Ð
f2ðtÞdt for a generic function f(t), and mean squared error (MSE), respectively. All VCFs are modelled with 20 cubic B-spline

basis functions with equidistant knots and a second-order penalty. The mean MSDE and MSE values from eight simulation set-ups with two sets

of total region numbers (n¼423 and n¼49), two sets of total facility numbers per region (4�20 and 10�30) and two error variances (σ2 ¼0:02

and 0.2) are reported in Table 1. Reported results are based on a total of 200 Monte Carlo runs, with 12,000 iterations in each run (2000 for

burn-in and 10,000 for estimation and inference) for the MCMC step. In addition to the time-varying model parameters, the MSDEs of the esti-

mated region- and facility-specific deviations (ÛiðtÞ and V̂ijðtÞ) are also reported. Reported summaries exclude outlier MSDE values (MSDE>5) for

ÛiðtÞ and V̂ijðtÞ with denominator values close to zero (less than 4%).

MSDE for VCFs and region- and facility-specific deviations get smaller with decreasing noise level σ 2 as expected, while MSDE for

eigenfunctions and variance components are comparable across the two noise levels, showing the efficacy in removal of the effects of measure-

ment error via the proposed FPCA and the mixed effects modelling. The effects on VCFs (as part of the mean function) and the region- and

facility-level deviation predictions are expected since it is harder to predict deviations under increasing measurement error noise. All error mea-

sures decrease with increasing the number of regions, except MSDE of region-specific deviations Ui(t). MSE of region-specific variances λim is also

F IGURE 7 Estimated (a–c) region-level and (d–e) facility-level VCFs from runs with the 5th (dashed grey), 50th (solid grey) and 95th (dotted
grey) percentile MSDEs using M-VCSM, from the set-up with 49 regions, 4 � 20 number of facilities per region and σ2 ¼0:2. The true
eigenfunctions are given in solid black

12 of 16 LI ET AL.

 20491573, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.438 by U

niversity O
f C

alifornia - Irvine, W
iley O

nline L
ibrary on [19/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



marginally effected by increasing the number of regions. This is as expected since the estimation of region-specific parameters mainly depends on

within-region information. Indeed, estimation of region-specific parameters λim and deviation functions Ui(t) are better in larger regions with

increased region-specific information. All error measures decrease similarly with increasing the number of facilities. The effect of increasing the

number of facilities is especially pronounced on facility-level modelling components including the facility-level eigenfunctions ψ ð2Þ
m ðtÞ, facility-

specific deviations Vij(t) and facility-level eigenscore variances λim, as expected.

The estimated time-varying coefficient functions of the multilevel risk factors β(t) and θ(t) along with their simultaneous confidence bands

from the simulation runs with the median MSDE based on n¼49,σ2 ¼0:2 and 4�20 facilities per region are given in Figure S1. The estimated

curves (solid black) track the true functions (solid grey), and the simultaneous confidence bands (dashed) cover the truth for all VCFs. To display

the variability in the VCF estimates, we also display estimates from runs with the 5th, 50th and 95th percentile MSDEs in Figure 7. The estimated

region- and facility-level eigenfunctions from runs with the 5th, 50th and 95th percentile MSDEs are displayed in Figure S2. The estimates also

track the true eigenfunctions, indicating that the proposed estimation algorithm effectively targets the directions of variation at both region- and

facility-levels adjusted for time-varying multilevel covariate effects.

The finite sample performance of the proposed M-VCSM is also compared to a M-VCM which ignores the spatial correlation at the highest

level of the hierarchy (region-level). More specifically, we consider the M-VCM, YijðtÞ¼XT
i βðtÞþZijðtÞTθðtÞþUiðtÞþVijðtÞþϵijðtÞ, where UiðtÞ¼X∞

ℓ¼1
ξiℓψ

ð1Þ
ℓ ðtÞ,VijðtÞ¼

X∞

m¼1
ζijmψ

ð2Þ
m ðtÞ,ψ ð1Þ

ℓ ðtÞ and ψ ð2Þ
m ðtÞ are region- and facility-level eigenfunctions and ξiℓ and ζijm are the corresponding PC

scores (Scheipl et al. 2015). Different from M-VCSM, the PC scores ξiℓ in the M-VCM are assumed to be i.i.d across regions, ignoring the region-

level spatial correlation. Similar to M-VCSM, the M-VCM also utilizes FPCA to reduce the dimension of the region- and facility-specific deviation

and utilizes penalized B-splines to model VCFs. Following dimension reduction of the time-varying modelling components, estimation and infer-

ence for M-VCM is based on standard mixed effect modelling machinery and is implemented via pffr function in R package refund (Scheipl

et al. 2015). The region- and facility-level eigenfunctions and eigenvalues that are estimated from FPCA analysis on between- and within-facility

covariances described in estimation algorithm Steps 1–4 are utilized as input in pffr. The smoothing parameters associated with penalized B-

spline fits are estimated using restricted maximum likelihood and inference is based on the approximate pointwise empirical Bayes' confidence

intervals (Marra & Wood, 2012; Wood, 2017).

Model comparisons at four simulation set-ups (two total number of facilities per region and measurement error settings) for n¼49 regions

are summarized in Table 2, including the MSDEs of VCFs and the region- and facility-specific deviations as well as the VCF coverage probabilities

(CP). While MSDE of the facility-level VCFs are comparable between the two models, M-VCSM, modelling the spatial correlation at the region-

level, leads to smaller MSDE for region-level VCFs than M-VCM, especially for β̂0ðtÞ and β̂1ðtÞ. This difference is also apparent in Figures 7 and 8

TABLE 2 The mean MSDE of VCFs and region- and facility-specific deviations along with coverage probabilities of the 95% credible band/
confidence interval of multilevel VCFs from M-VCSM and M-VCM, respectively, based on 200 Monte Carlo runs

4–20 facilities per region 10–30 facilities per region

Noise level, σ 2 0.2 1 0.2 1 0.2 1 0.2 1

MSDE M-VCSM M-VCM M-VCSM M-VCM

β̂0ðtÞ 0.011 0.042 0.104 0.130 0.011 0.033 0.106 0.109

β̂1ðtÞ 0.007 0.016 0.044 0.031 0.005 0.013 0.032 0.035

β̂2ðtÞ 0.013 0.026 0.020 0.027 0.009 0.022 0.019 0.025

θ̂1ðtÞ 0.005 0.008 0.006 0.008 0.003 0.005 0.003 0.005

θ̂2ðtÞ 0.005 0.008 0.006 0.008 0.003 0.005 0.003 0.005

ÛiðtÞ 0.122 0.286 0.739 0.706 0.084 0.222 0.775 0.649

Small 0.150 0.345 0.754 0.792 0.092 0.256 0.665 0.716

Medium 0.126 0.282 0.755 0.680 0.089 0.213 0.829 0.616

Large 0.088 0.231 0.708 0.648 0.071 0.197 0.830 0.616

V̂ijðtÞ 0.266 0.525 0.293 0.601 0.232 0.504 0.248 0.569

CP (%)

β̂0ðtÞ 100 97.5 49.1 55.9 100 97.5 44.8 50.9

β̂1ðtÞ 100 97.0 73.2 83.6 100 99.0 77.8 82.0

β̂2ðtÞ 100 97.0 98.3 96.7 100 94.0 97.7 96.5

θ̂1ðtÞ 100 97.0 94.5 96.3 100 98.0 94.0 94.9

θ̂2ðtÞ 100 97.0 93.9 95.8 100 97.0 95.6 94.4
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which display VCF estimates from runs with the 5th, 50th and 95th percentile MSDEs for M-VCSM and M-VCM, respectively. The region-level

VCF estimates from M-VCSM are less variable than M-VCM, for both linear and quadratic functions. In addition, CP for β0(t) and β1(t) from M-

VCM is quite lower than the nominal at 95% (as low as 44.8%). Note that CPs reported from M-VCSM are higher than the nominal level at 95%

most of the time. This is as expected since the Bayesian credible bands tend to be conservative (Cox, 1993; Krivobokova et al. 2010). While the

MSDEs for facility-level deviation predictions (V̂ijðtÞ) are comparable between the two models, perhaps the largest MSDE difference between the

two models is observed for region-level deviation predictions (ÛiðtÞ). Ignoring the spatial correlation at the region-level leads to poor estimation of

region-level deviations, as expected. Finally, we want to point out that M-VCSM is computationally more efficient than M-VCM, with run times

of 20and 80min (for n¼49 and 4�20 facilities per region) on a computer with 2.4GHz CPU, 8GB RAM, respectively.

5 | DISCUSSION

An M-VCSM is proposed to study time-varying effects of multilevel risk factors on hospitalization rates in the US dialysis population. The pro-

posed modelling approach takes into account the multilevel structure of the USRDS data with longitudinal hospitalization rates nested in dialysis

facilities and dialysis facilities nested in geographic regions (HSAs). Time-varying regression effects of both region- and facility-level covariates are

characterized as functions of time patients stay on dialysis. To address the challenges in estimation and inference in large data applications, intro-

duced by the multilevel dependency structure with spatial correlations at the highest level of the hierarchy (region-level), dimension reduction is

F IGURE 8 Estimated (a–c) region-level and (d–e) facility-level VCFs from runs with the 5th (dashed grey), 50th (solid grey) and 95th (dotted
grey) percentile MSDEs using M-VCM, from the set-up with 49 regions, 4 � 20 number of facilities per region and σ2 ¼0:2. The true
eigenfunctions are given in solid black
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achieved by a combination of tools from FDA and Bayesian modelling. Bayesian P-splines are utilized in expansions of the VCFs, while FPCA

reduces the dimension in modelling of the multilevel time-dynamic stochastic deviations. Resulting modelling parameters are targeted within a

mixed effects framework using MCMC. Simultaneous credible bands are used for inference on the multilevel VCFs. Applications of the proposed

methodology to USRDS data identifies significant region- and facility-level risk factors for hospitalization rates. Even after adjusting for the multi-

level risk factors, there is still significant spatiotemporal variation detected in the data across United States, which is flexibly modelled via multi-

level time-dynamic stochastic deviations at both the region- and facility-levels. Spatial correlation at the region-level are induced through a CAR

model on the region-level PC scores.

M-VCSM can be extended to model further remaining spatial correlation at the facility-level. However, note that the use of a distance- or a

neighbourhood-based metric (such as the one used in modelling region-level spatial correlation through CAR) for capturing potential facility-level

spatial correlation may not be appropriate, especially in large metropolitan regions where characteristics of a facility neighbourhood or its patients

may not be correlated with those of another facility simply based on geographic distance. Rather, a metric reflecting the socio-economic status of

the patients receiving treatment at the facility may be more accurate in capturing similarities in facility-level hospitalizations within the same

region. Hence, more work is needed to identify viable approaches to model remaining potential facility-level correlations.
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Li, Y., Nguyen, D. V., Chen, Y., Rhee, C. M., Kalantar-Zadeh, K., & Şentürk, D. (2018). Modeling time-varying effects of multilevel risk factors of hospitaliza-

tions in patients on dialysis. Statistics in Medicine, 37(30), 4707–4720.
Li, Y., Nguyen, D. V., Kürüm, E., Rhee, C. M., Chen, Y., Kalantar-Zadeh, K., & Şentürk, D. (2020). A multilevel mixed effects varying coefficient model with
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