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Abstract

The study of spinning axisymmetric cylinders undergoing finite deformation
is a classic problem in several industrial settings – the tire industry in partic-
ular. The elastic formulation of the problem shows bifurcations into N-peak
standing waves at rotational frequencies where the linearized evolution op-
erator becomes singular. While standing-wave solutions are recognized to
exist in the viscoelastic setting, there has been little study of their behav-
ior. In this work we present a formulation of the problem that allows us
to re-examine the elastic case and discover a second hierarchy of standing
wave bifurcations. Additionally, with this framework we are able to study
the viscoelastic case and show the existence of pseudo-bifurcation modes.
This analysis also permits us to study the validity of two popular models for
finite viscoelasticity. We show that the commonly used linear convolution
model results in a non-physical exponential energy growth when the system
is perturbed in a pseudo-bifurcation direction and followed in time. On the
other hand, Sidoroff-style viscoelastic models are seen to be fully stable on
pseudo-bifurcation branches as is physically required.
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1. Introduction

The behavior of steady spinning bodies at finite deformation is of both
theoretical and practical interest. In the special case that the body is ax-
isymmetric, there has been a fair amount of work devoted to its formulation,
elucidation, and behavior. Notable early work on the spinning axisymmet-
ric body was due to Padovan and Paramodilok [20, 21], Oden and Lin [18],
Padovan [19], Bass [2], and Kennedy and Padovan [13]. This literature for-
mulates the equations of motion in the frame of reference of a non-spinning
observer translating alongside the rotating body, and then to various degrees
examines the equilibrium solutions of the motion as the spin rate is varied.
The issues of contact with “roadways” and viscoelastic as well as elastic re-
sponse are considered. The work of LeTallec and Rahier [15], which followed
this early work, provided the first clear description of the problem’s kinemat-
ics and, by virtue thereof, laid the groundwork for the proper understanding
of the issues associated with correctly specifying the constitutive response
of a spinning body in a non-spinning frame of reference; see Govindjee and
Mihalic [11] for a discussion of this point, and the work of Faria et al. [10],
which shows that the issue was somewhat understood prior to these latter
two works.

A special feature of the response of a steady spinning elastic body is
the existence of non-axisymmetric solutions (standing waves) that appear as
bifurcations from an axisymmetric branch in the configuration space of the
body [18, 4]. The determination of these bifurcation speeds can be performed
by searching for the spin rates at which the tangent operator of the equations
of motion becomes singular. The bifurcated state can be determined by
examining the eigenvector corresponding to the zero eigenvalue. Similar non-
axisymmetric steady spinning solutions have also been reported upon in the
case of finite deformation viscoelasticity [20, 21, 13, 4]. In the viscoelastic
case one does not strictly find bifurcations such as are present in the elastic
setting; rather, one finds analogous solutions with a similar spatial structure.
Even though these solutions are “known” to exist, they have not been studied
in detail beyond the linear setting of Chatterjee et. al [4]. This is a major
goal of what follows.

An important issue when considering the mechanical response of contin-
uum bodies is that the constitutive relations that are selected must satisfy
the Clausius-Duhem inequality for satisfaction of the second law of thermo-
dynamics; see e.g. Coleman and Noll [8] or Truesdell and Noll [27, §79]. In
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the finite deformation viscoelastic setting there are two approaches to setting
up the needed constitutive relations such that they will satisfy this condition.
One, due to Coleman [7, 6], is to construct a free energy functional of the
history of the material whose derivative with respect to the current measure
of deformation yields a history functional giving the stress response. This
framework seems natural for convolution type viscoelastic models, such as
the well-known BKZ model [3] and the Simo model [26]. Notwithstanding
the popular status of these two models, and the formal appearance of convo-
lution expressions in their specification, the requisite free-energy functional
that generates them has never been reported. In other words, while these
models have the appearance of being strictly dissipative, it is actually not
known if they satisfy the Clausius-Duhem inequality – this is in contrast to
their behavior in the infinitesimal strain limit where they are known to sat-
isfy the second law of thermodynamics. An alternate viscoelastic framework
is provided by the work of Sidoroff [25], who proposes a multiplicative split
of the deformation gradient, similar to finite deformation plasticity models,
and then directly constructs evolution laws for the viscoelastic variables that
satisfy the Clausius-Duhem inequality. Well known examples of models of
this type are due to LeTallec and Rahier [15] and Reese and Govindjee [24].
The spinning body problem provides an ideal setting for a deep comparison
of these two distinctly different modeling frameworks. In particular we will
be able to demonstrate that the models of the Simo-class lead to non-physical
results; whereas, the models of the Sidoroff-class behave well in similar situa-
tions. This point is particularly relevant for analysis schemes that rely upon
a steady spinning state of a system followed by transient computation – e.g.
in the modeling of a tire traveling at high speed that encounters a bump in
the road.

An outline of the remainder of the paper is as follows: In §2 we review
the strong and weak formulation of the elastic spinning body problem in
both the steady and unsteady cases along with a discussion of its Hamilto-
nian structure. In §3 we revisit the well-studied elastic bifurcation case to
show that our particular formulation is consistent with past work. We then
go further to elucidate a second hierarchy of bifurcation solutions that have
not been reported in numerical studies to our knowledge, but was mathe-
matically foreshadowed in the monograph of Oden and Rabier [22]. With
this background, in §4 we present two viscoelastic models in a form suit-
able for the study of spinning bodies. This is followed in §5 by an analysis
of the behavior of spinning viscoelastic bodies and the strong influence of
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the choice of viscoelastic modeling framework. In §6 we show that convo-
lution type viscoelastic models can lead to non-physical instabilities at high
rotation speeds that are not observed using either a purely elastic response
or a Sidoroff-style viscoelastic model. The paper concludes with some brief
comments and recommendations.

2. Elastic model

2.1. Domain and boundary conditions

The reference configuration B under consideration is an annulus centered
at the origin with inner radius r1 and outer radius r2. Denoting material
points X = (X1, X2), we can write

B = {(X1, X2) | r1 ≤ ‖X‖2 ≤ r2} . (2.1)

We have inner boundary Γh = {X| ‖X‖2 = r1} called the hub and outer
boundary Γe = {X| ‖X‖2 = r2} called the edge; see Fig. 1.

The hub is spun counter-clockwise about the origin at a constant angular
velocity ω. If φ is the motion of the body, then we have the boundary
condition

φ(X, t) = R(t)X on Γh , (2.2)

where R(t) is the rotation matrix given by

R(t) =

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
. (2.3)

On the edge, Γe, we prescribe traction-free boundary conditions.

2.2. Elastic constitutive equations

The motion is given by φ(X, t) with deformation gradient F = Dφ =
∂φ/∂X. We assume a plane strain elastic response described by a compress-
ible Mooney-Rivlin model, with stored energy function Ψe(I1, I2, I3). Ψe is
given in terms of the invariants of the three dimensional right Cauchy-Green
tensor

C3 =

[
C 0
0 1

]
, (2.4)
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Figure 1: The reference domain B.

where C = FTF. We choose the stored energy function

Ψe =
κ

4
(I3 − log I3 − 1) +

µ

2
(1− s) (I1 − log I3 − 3) +

µ

2
s (I2 − 2 log I3 − 3) .

(2.5)
Here κ > 0 is the bulk modulus, µ > 0 is the shear modulus, and s ∈ [0, 1]
can be chosen to balance the two shear terms. This stored energy function is
noted to be polyconvex [5, §4.9] and satisfy the conditions for Ball’s theory [1]
of existence of solutions in finite deformation elasticity. From this expression,
we can compute the first Piola-Kirchhoff stress tensor Pe:

Pe =
∂Ψe

∂F
=
κ

2
(I3−1)F−T+µ(1−s)(F−F−T )+µs(I1F−FC−2F−T ) . (2.6)

2.3. Equations of motion

Given Pe, the elastic equations of motion are formulated as

ρRφ̈ = DIV Pe on B (2.7)

with boundary conditions

φ(X, t) = R(t)X on Γh

PeN = 0 on Γe .
(2.8)

ρR is the density of the undeformed material, which is assumed to be constant.

5



We reduce this second order equation in time to a system of first order
equations in time by introducing the velocity of the motion, ν(X, t), as an
independent field variable. The equations of motion then become:

φ̇ = ν on B

ν̇ =
1

ρR
DIV Pe on B

(2.9)

with boundary conditions

φ(X, t) = R(t)X on Γh

ν(X, t) = Ṙ(t)X on Γh

PeN = 0 on Γe .

(2.10)

2.4. Steady spinning equations

We seek steady spinning states of the elastic body. Such a solution should
satisfy

φ(X, t) = φ(R(t)X, 0)

ν(X, t) = ν(R(t)X, 0)
(2.11)

for all t. Following [15, 18, 11] among others, we introduce a new spatial

variable X̃ defined by
X̃ = R(t)X. (2.12)

We then define

φ̃(X̃, t) = φ(X, t)

ν̃(X̃, t) = ν(X, t).
(2.13)

Physically, we have decomposed the motion φ into a pure rotation R(t) fol-

lowed by the deformation φ̃ that would be observed in the non-spinning “lab
frame.” Note that φ̃ assigns to a point the location of the material particle
that would be there if the body were rotating rigidly with constant angu-
lar velocity. With this change of variables, the steady spinning conditions
become

φ̃(X̃, t) = φ̃(X̃, 0)

ν̃(X̃, t) = ν̃(X̃, 0)
(2.14)
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for all t. Thus the steady problem has been transformed into a problem that

can be solved by setting
˙̃
φ and ˙̃ν equal to zero.

Returning to the full dynamics, we compute that φ̃ and ν̃ satisfy

˙̃
φ = ν̃ − F̃ΩX̃

˙̃ν =
1

ρR
D̃IVP̃e − D̃ν̃ΩX̃ ,

(2.15)

where F̃
def
= D̃φ̃, C̃

def
= F̃

T
F̃, etc., and Ω is the constant matrix

Ω = ṘRT = ω

[
0 −1
1 0

]
. (2.16)

D̃ and D̃IV refer to derivatives with respect to X̃. For ease of notation,
we now drop the superposed tildes and refer to the transformed variables in
what follows unless explicitly noted.

For later use, we also note the weak formulation of the equations of mo-
tion: ∫

B
φ̇ · ζ =

∫
B
(ν − FΩX) · ζ∫

B
ν̇ · η =

∫
B
− 1

ρR
Pe : Dη −DνΩX · η .

(2.17)

Here ζ and η are arbitrary test functions, required to be 0 on the hub, Γh. We
denote G(φ,ν) as the operator such that (φ̇, ν̇) = G(φ,ν), where φ̇, ν̇,φ,ν
satisfy (2.17).

As mentioned above, the steady spinning problem can now be written as

0 = ν − FΩX

0 =
1

ρR
DIV Pe −DνΩX

(2.18)

with boundary conditions

φ(X, t) = X on Γh

ν(X, t) = ΩX on Γh

PeN = 0 on Γe .

(2.19)
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In weak form the steady spinning problem can be written as

G(φ,ν) = (0,0) . (2.20)

When convenient, we will denote the pair (φ,ν) by z. We may then write
the steady state equations simply as G(z) = 0.

2.5. Hamiltonian structure

By virtue of our assumption of a stored energy function, the evolution of
the untransformed variables is Hamiltonian, with Hamiltonian function∫

B
Ψe +

1

2
ρRν · ν . (2.21)

This is a non-autonomous system due to the time-dependent boundary con-
ditions expressing rotation of the hub. However, the evolution of the trans-
formed variables (2.17) is an autonomous Hamiltonian system described by
the following Hamiltonian:

H =

∫
B

Ψe +
1

2
ρRν · ν − ρR(FΩX) · ν . (2.22)

Below we will discretize the equations and obtain a finite dimensional
Hamiltonian system for which we can apply stability theory. In particular,
let Ĥ be the discretized Hamiltonian and let Ĝ be the discretization of G,
which describes the motion generated by Ĥ: Ĝ = (∂Ĥ/∂ν,−∂Ĥ/∂φ). It will
be useful to note that the Hessian of Ĥ is related to the Jacobian of Ĝ by

DĜ = JD2Ĥ, where J =

[
0 I
−I 0

]
is skew-symmetric. Later we will use

the following theorem about the stability of Hamiltonian systems: If z is a
critical point of Ĥ and the matrix D2Ĥ is positive definite at z, then z is
Lyapunov stable, since energy level sets near Ĥ(z) remain close to z. In turn,
Lyapunov stability implies that the eigenvalues of DĜ are purely imaginary,
since otherwise z would be linearly unstable either forward or backward in
time.

3. Perturbations of the elastic model

Oden and Lin [18] numerically solved the steady state problem (2.20) in
an equivalent form. Below a certain critical speed ωc, they only observed an
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Figure 2: The reference element is mapped to the r-θ plane, where it is then mapped by
the polar coordinate transformation exactly onto the annular reference configuration B.

axisymmetric solution. However, for some ω ≥ ωc, they found bifurcations
to non-axisymmetric solutions by noticing that the Jacobian matrix DG of G
about an axisymmetric solution z becomes singular. We repeat this analysis
but, in addition to the 0 eigenvalues studied by Oden and Lin, we also track
a set of small-magnitude eigenvalues of DG. This gives information about
the behavior of the system under dynamic perturbation. In the remainder
of this section, we first describe the numerical methods we employ and then
describe the results of our experiments.

3.1. Numerical methods

We employ quartic quadrilateral C0 isogeometric elements to discretize
the weak equations, which in turn allows us to compute Ĝ, the discretization
of G (see Fig. 2). By linearizing the weak equations about a given z = (φ,ν),
we can also compute the Jacobian matrix DĜ. When we wish to emphasize
the function about which Ĝ is linearized, we will write DĜ[z]. We note that
DĜ can be written as the product M−1A, where M is the mass matrix
corresponding to the finite element basis. Both M and A are sparse due
to the finite element formulation. We solve the steady-state equation (2.20)
using Newton’s method. We must perform matrix solves on DĜ, hence A,
for which we employ the direct sparse solver SuperLU [16].

To compute eigenvalues of DĜ, we employ the Arnoldi method imple-
mented in the ARPACK software package [14]. This method works best
finding large magnitude eigenvalues, so in order to find small-magnitude
eigenvalues we apply it to (DĜ)−1. Exactly as with Newton’s method, we
perform matrix solves on DĜ using SuperLU.
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3.2. Results: Classic modes
We first state our choice of units and choice of constants. Our units are

Newtons (N), megagrams (Mg), and seconds (s). This choice implies our unit
for length is millimeters (mm). Our body has inner radius r1 = 240mm and
outer radius r2 = 400mm. The density of the body is ρ = 1×10−9 Mg/mm3.
The bulk modulus κ and shear modulus µ are 689 N/mm2 and 6.89 N/mm2,
respectively, and we set s = 0.5.

We briefly recall the results of Oden and Lin in some detail. For any
rotation speed ω, they found an axisymmetric solution zω. For small ω they
observed DĜ[zω] is non-singular, but at a speed ωc they observed that DĜ[zω]
became highly singular, i.e. DĜ[zω] had a large dimensional nullspace. For
ω > ωc, they observed discrete speeds ωi, 3 ≤ i < ∞, where DĜ[zωi

] also
became singular. Perturbing away from the axisymmetric solution in the
direction of a null vector of DĜ[zωi

] led to an i-peak standing wave solution to
the steady spinning problem. They noted that the ωi decrease monotonically
and limit to ωc from above. Thus Oden and Lin discovered a hierarchy of
i-peak standing wave solutions.

Using ARPACK, we additionally compute the smallest eigenvalues of the
matrix DĜ[zω] for a range of values of ω and plot them in Fig. 3. When
ω < ωc, the eigenvalues are all purely imaginary. This is explained by the
Hamiltonian structure of the problem. When ω = 0, the axisymmetric so-
lution is the identity configuration and we can directly compute that D2Ĥ
is positive definite. As we increase ω to ωc, we numerically observe that
D2Ĥ remains non-singular, hence positive definite. Thus we expect that the
eigenvalues of DĜ are purely imaginary, which our eigenvalue computations
confirm. For ω ≥ ωc, we do not necessarily expect purely imaginary eigen-
values, and in fact we do observe eigenvalues with real components in this
regime, although they appear to be spurious as explained below.

In the plot on the left of Fig. 3, we can see the smallest eigenvalues are
bounded away from 0 initially and then rapidly move toward 0. Where they
collide with 0 indicates DĜ[zω] has a loss of rank and identifies ωc. The
plot on the right of Fig. 3 is a zoomed-in portion of the plot on the left.
There we can see a series of Xs that increase in frequency as we approach
ωc ≈ 210 rad/s from the right. These Xs correspond to the i-peak standing
wave solutions found by Oden and Lin. The Xs cross zero at the bifurcation
speeds ωi where DĜ[zω] is singular. The sporadic eigenvalues not lying on
an X appear to be caused by the discretization of the equations and do not
persist when the mesh is refined. Occasionally these (sporadic) eigenvalues
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Figure 3: Plots of the smallest eigenvalues of DĜ[zω]. Here ωc is near 210 rad/s and a
mesh with 8 radial elements and 64 angular elements has been used.
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Figure 4: Plot of the λi and λ̄i. The leftmost X corresponds to λ12 while the rightmost X
corresponds to λ2.

will have a non-zero real component, but we did not observe any of these
eigenvalues with corresponding eigenvectors that were resolved by our mesh.
If we plot only the eigenvalues that correspond to the ωi, i = 2, . . . , 12,
we obtain Fig. 4. We will denote these eigenvalues as λi(ω) with complex
conjugate λ̄i(ω). Note that λi(ωi) = 0. For each λi and λ̄i there is a complex
conjugate pair of eigenvectors. We will denote the eigenvector associated
with λi by ei(ω). The real φ components of two of the ei are plotted in Fig.
5.
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Eigenvector corresponding to ω12 Eigenvector corresponding to ω5

Figure 5: Plot of the real φ component of e12 and e5. The plots are colored according to
the norm of the real φ component, with red being large and blue small.

3.3. Results: Radial hierarchy

In addition to the standing wave eigenvectors with i peaks we discov-
ered other eigenvectors which correspond to other bifurcation speeds. We
plot these eigenvectors in Fig. 6 and note that these eigenvectors have more
complexity in the radial direction than the eigenvectors discussed by Oden
and Lin. To investigate this, we note that the rotational symmetry of our
problem implies that eigenvectors must have a certain form. DG commutes
with a family of rotation operators R(α) defined by

R(α)

(
φ̄
ν̄

)
(X) =

(
R(α)φ̄(RT(α)X)
R(α)ν̄(RT(α)X)

)
. (3.1)

Hence any eigenvector z̄ = (φ̄, ν̄) of DG associated to a distinct eigenvalue
must also be an eigenvector of R(α) for all α. This implies that z̄ = (φ̄, ν̄),
written as a function of polar coordinates, is of the form

φ̄(r, θ) = a1(r)e
i(k+1)θ

[
1
i

]
+ a2(r)e

i(k−1)θ
[

1
−i

]
,

ν̄(r, θ) = a3(r)e
i(k+1)θ

[
1
i

]
+ a4(r)e

i(k−1)θ
[

1
−i

]
.

(3.2)

Here, i =
√
−1, k is a fixed integer, and the ai(r) are functions that depend

only on the radial coordinate r. In particular, the above eigenfunction is
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Figure 6: Plot of the real φ component of eigenvectors outside of the N -peak hierar-
chy discovered by Oden and Lin. The plots are colored according to the displacement
from the reference configuration, with red being high displacement and blue being little
displacement.

invariant with respect to R(α) for α = 2πn/k and, hence, the standing wave
solutions with N peaks must be in the above form with k = N or k = −N .

Given a numerically computed eigenvector with N peaks, we can compute
its Fourier series in the θ direction. As expected due to (3.2), we observe
exactly two Fourier modes: N ± 1 or −N ± 1. We repeat this computation
for each value of r to determine the functions ai(r). By plotting the ai we
can compare the radial complexity of different eigenvectors. As in the upper
left plot in Fig. 7, we observe the ai(r) corresponding to the ei have one local
extremum. The ai(r) corresponding to other eigenvectors have more radial
complexity with 2, 3, 4 or more local extrema.

Examining these solutions, we find an entire N -peak hierarchy of eigen-
functions with ai having two local extrema. We denote these eigenvectors
as ei,2 with corresponding eigenvalues and bifurcation speeds denoted by λi,2
and ωi,2, respectively. Fig. 8 shows the corresponding paths of their eigen-
values. As in Figs. 6 and 7, we also found eigenvalues with more radial
complexity than the ei,2, which suggests that the standing wave solutions
may be described by a two-dimensional hierarchy ei,j, where i is the number
of peaks in the circumferential direction and j is the number of oscillations
in the radial direction. It is an unresolved question whether the ωi,j converge
to ωc as i→∞ for fixed j, or if perhaps there is a distinct critical speed for
each j.
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We note that in their monograph [22], Oden and Rabier discovered analyt-
ically a two-dimensional hierarchy of eigenvalues ζi,j of an operator related to
DG. However, their analysis was not able to show that the ζi,j corresponded
to eigenvalues of DG for j > 1 and it applied only to incompressible hyper-
elastic materials. Incompressibility prevents solutions on the trivial branch
of stationary solutions from expanding radially, but does enable the use of
potential functions to describe the solutions on other branches.

4. Viscoelastic effects

In §3, we presented the classical stability analysis of a spinning body
along with a discussion of an additional hierarchy of bifurcation modes not
reported on to date. The classical analysis is, however, restricted to the
elastic setting. In this section, we consider the influence of viscoelasticity on
the stability of a spinning body and, in particular, we discuss the influence
of the choice of the (finite deformation) viscoelastic model.

Two common viscoelastic models are the linear model proposed by Simo
[26] and the nonlinear Sidoroff [25] model as detailed by Reese and Govindjee
[12, 24, 23]. In both models, additional variables are introduced that govern
a viscoelastic component of the first Piola-Kirchhoff stress tensor, which we
denote Pv. The equations of motion are then driven by the total Piola-
Kirchhoff stress tensor Ptotal = Pe + Pv. We briefly describe the two models
below. For the purpose of describing the models in a general context, we will
revert to using φ, ν, F, etc. as the untransformed variables and φ̃, ν̃, F̃, etc.
as the transformed variables.

4.1. Linear viscoelastic model

We refer to the model of Simo [26] as a linear model because the evolution
of the viscoelastic variables can be described by a differential equation that
is linear in the viscoelastic variables – even though it was designed to be
applied to finite deformation problems.

The model is often presented by first introducing a viscoelastic (over-
)stress tensor Q defined by the convolution equation

Q(t) =

∫ t

−∞
exp

(
−(t− s)

τ

)
d

ds
(Se(s)) dt . (4.1)

Here Se = F−1Pe is the second Piola-Kirchhoff stress tensor corresponding
to Pe and τ is the viscoelastic relaxation time. Differentiating (4.1) yields
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an evolution equation for Q:

Q̇(t) = −1

τ
Q(t) + Ṡe(t) . (4.2)

Note that the evolution depends linearly on Q. Given Q, we define a vis-
coelastic second Piola-Kirchhoff stress tensor Sv by Sv = νQ, where ν is a
weight parameter describing the strength of the viscoelastic response. We
then define Pv = FSv.

4.2. Nonlinear viscoelastic model

The nonlinear Sidoroff viscoelastic model of Reese and Govindjee [12, 24,
23] is derived by assuming a multiplicative split of the deformation gradient

F = FeFv (4.3)

into an elastic part Fe and a viscous part Fv. In addition, we assume that
the total free energy is given as a sum of the elastic energy Ψe(C) described
above and a viscoelastic energy Ψv(Ce) which only depends on the strain
associated with the elastic deformation: Ce = FT

e Fe. In the case of isotropy,
Ψv can also be written as depending on the elastic left Cauchy-Green tensor
be = FeF

T
e , which yields a more convenient formulation. We define Ψv(be)

similarly to Ψe:

Ψv = ν
(κ

4
(Ie3 − log Ie3 − 1) +

µ

2
(1− s) (Ie1 − log Ie3 − 3) +

µ

2
s (Ie2 − 2 log Ie3 − 3)

)
,

(4.4)
where Ie1 , I

e
2 , I

e
e are the invariants of the three-dimensional tensor b3e =[

be 0
0 1

]
. Pv is now given by

Pv = 2
∂Ψv

∂be
beF

−T

= ν
(κ

2
(Ie3 − 1)I + µ(1− s)(be − I) + µs(Ie1be − b2

e − 2I)
)

F−T .

(4.5)

The model is completed by giving an evolution equation for be:

ḃe = `be + be`
T − 2V(τ e)be , (4.6)
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where

` = ḞF−1

τ e = 2
∂Ψv

∂be
be

V(τ e) = C1

(
τ e −

1

2
(tr τ e)I

)
+ C2

1

2
(tr τ e)I , C1, C2 > 0 .

(4.7)

Reese and Govindjee [24] have proved that the Clausius-Duhem inequality
is satisfied for their nonlinear viscoelastic model:

1

2
S : Ċ− Ψ̇total ≥ 0 , (4.8)

but noted that it is unknown whether the linear viscoelastic model of [26]
satisfies this inequality for any appropriate free energy function.

4.3. Steady state spinning of a viscoelastic body

We now derive steady spinning conditions for the viscoelastic variables Q
and be. Recall that steady spinning motion of an elastic body is given by

φ(X, t) = φ(R(t)X, 0)

ν(X, t) = ν(R(t)X, 0).
(4.9)

The same relationship should hold for any scalar, vector, or tensor quantity
defined on the deformed configuration; in particular it should hold for the
left Cauchy-Green deformation tensor b = FFT. Since be is analogous to b,
we require be to satisfy

be(X, t) = be(RX, 0), (4.10)

where we omit t in the notation for R(t) in this section. The relationship
for other quantities can be determined by using F to push them onto the
deformed configuration. We compute from (4.9) that F satisfies

F(X, t) = F(RX, 0)R . (4.11)

Using this and the integral definition of Q in (4.1), we find that Q satisfies

RQ(X, t)RT = Q(RX, 0) . (4.12)
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We then define the transformed variables

Q̃(X̃, t) = RQ(X, t)RT

b̃e(X̃, t) = be(X, t) .
(4.13)

A computation shows that they evolve as

˙̃
Q = −1

τ
Q̃(t) + ˜̇Se(t) + ΩQ̃− Q̃Ω− D̃Q̃ΩX̃

˙̃
be = ˜̀b̃e + b̃e˜̀T − 2V(τ̃ e)b̃e − D̃b̃eΩX̃ .

(4.14)

Again, we now drop the superposed tildes and will only refer to the trans-
formed variables below. The weak formulations of the equations of motion
for φ and ν become∫

B
φ̇ · ζ =

∫
B
(ν − FΩX) · ζ∫

B
ν̇ · η =

∫
B
− 1

ρR
Ptotal : Dη −DνΩX · η .

(4.15)

The only difference from (2.17) being that Pe is replaced with Ptotal. This is
then coupled with either the linear viscoelastic model∫

B
Q̇ : K =

∫
B

(
−1

τ
Q(t) + Ṡe(t) + ΩQ−QΩ−DQΩX

)
: K , (4.16)

or the nonlinear viscoelastic model∫
B

ḃe : K =

∫
B

(
`be + be`

T − 2V(τ e)be −DbeΩX
)

: K . (4.17)

Here K is an arbitrary symmetric tensor-valued test function. For later use,
we define Ĝvq, Ĝvb to be the discretized differential operators corresponding
to the linear and nonlinear viscoelastic models, respectively. We will write
zvq for the triple (φ,ν,Q) and zvb for (φ,ν,be).

The structure of Ĝvb is similar in form to that of LeTallec and Rahier
[15], who also utilized a Sidoroff viscoelastic model in their spinning study.
However the structure of Ĝvq differs from other rolling studies that use con-
volution based models [18, 10, 11]. In particular, we treat Q as an indepen-
dent field variable. While this increases the number of global unknowns, it
avoids well-known issues associated with the accurate computation of Q at
the Gauss points in a finite element computation as well as with the accurate
computation of DĜvq; see for example [11, 17].
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Figure 9: The top plot shows the radial displacement on the edge of the body for an
expanding initial state for the two viscoelasticity models. The bottom plot shows the
difference between the models, which is several orders of magnitude smaller than the
displacement. As a result, only a single curve can be seen in the top panel.

5. Perturbations of the viscoelastic models

We repeat the experiments of §3 with the viscoelastic models. The nu-
merical framework changes very little. We model the viscoelastic variables
using the same finite element framework and apply Newton’s method to solve
Ĝvq = 0 or Ĝvb = 0. The values of the viscoelastic parameters are ν = 1 and
τ = 0.01 seconds. We choose the constants C1 and C2 to be 1/(2κτ) and
1/(2µτ), respectively, in order to match the relaxation responses of the lin-
ear and nonlinear viscoelastic models at small to modest deformations. To
illustrate the quality of the match obtained with our parameter selection
heuristics, in Figs. 9 and 10 we compare the models’ transient relaxation
response to initial conditions that excite shear and compression modes, re-
spectively. The differences in the relaxation behavior are seen to be quite
minor.

5.1. Results: Steady viscoelastic spinning

We begin by considering the linear viscoelastic model. As with the elastic
case, we find a single radially symmetric solution zvqω for any body speed ω.
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Figure 10: The top plot shows the vertical displacements on the rightmost edge of the body
for a twisting initial state. The bottom plot shows the difference between the models. This
difference is small enough that only a single curve can be seen in the top plot.

We compute the eigenvalues of the operator Ĝvq[zvqω ], which we plot in Fig.
11.

A major difference between the eigenvalues in the elastic case (as in Fig.
3), is that the Hamiltonian structure is destroyed and we no longer expect
purely imaginary eigenvalues. In fact, all of the eigenvalues we observe have a
real component. Moreover, there were no eigenvalues passing through 0, and
the matrix Ĝvq[zvqω ] always remains non-singular. Thus we find no bifurcation
speeds that lead to other steady state solutions. Yet there is still an event
analogous to the critical bifurcation speed ωc at which point many eigenvalues
approach 0, although they do not pass through 0. We will call this speed
ωvqc , which is approximately 285 rad/s.

We plot a set of the smallest magnitude eigenvalues in Fig. 12, and obtain
a very similar picture to Fig. 4, with the addition of a real component. We
observe that there are eigenvalues of Ĝvq[zvqω ] which have a structure analogous
to the λi of the elastic case. We will denote these eigenvalues λvqi (ω). By
“analogous”, we mean that the imaginary parts of the λvqi form Xs and the
corresponding eigenvector, denoted evqi , has a similar structure to the ei. We
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Figure 11: Plots of the smallest eigenvalues of Ĝvq[zvqω ]. Here ωvq
c is near 285 rad/s.

will call ωvqi the speed at which Imλvqi (ω) = 0. However, the ωvqi are not
bifurcation speeds, since the λvqi have a non-zero real component, so we will
refer to them as pseudo-bifurcation speeds.

As in the elastic case of §3.3, we can observe eigenvectors and eigenvalues
that correspond to the second hierarchy of standing waves; i.e. eigenvectors
of the second hierarchy persist in the viscoelastic case and suggest, here also,
there is a two-dimensional hierarchy evqi,j.

When we examine the nonlinear viscoelastic model, we see similar results
in the sense that the eigenvalues λvbi (with corresponding eigenvectors de-
noted evbi ) have a real component; Ĝvb remains non-singular; there is critical
speed ωvbc (near 290 rad/s); and the eigenvectors outside of Oden and Lin’s
i-peak hierarchy remain. Fig. 13 shows the trajectories of the λvbi when ω
is varied. Notice, however, that there is one major difference between the
linear and nonlinear model – viz., the real parts of the λvqi steadily increase
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Figure 12: Plot of the real and imaginary components of the λvqi . The leftmost X corre-
sponds to λvq12 while the rightmost X corresponds to λvq3 .
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Figure 13: Plot of the real and imaginary components of the λvbi . The leftmost X corre-
sponds to λvb12 while the rightmost X corresponds to λvb3 .
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Figure 14: The upper plot shows the elastic energy for the steady state solution of the
linear viscoelastic model perturbed in the direction of Re{evq3 }. We repeat the calculation
for three mesh sizes. The discrepancy between the finer meshes is barely visible on the
plot. The lower plot shows the difference when halving the time step for the finest mesh.

as ω increases while the real parts of the λvbi remain level (see Figs. 12 and
13). We investigate this crucial difference in the next section.

6. Stability of the viscoelastic models

For large enough ω we observe from Fig. 12 that λvq3 has a positive real
part, which indicates an unstable mode of the stationary solution for the
linear viscoelastic model. To examine further, we perturb the stationary so-
lution corresponding to rotational speed ωvq3 ≈ 461 rad/s in the direction
Re{evq3 } and allow the body to evolve in time according to the nonlinear
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Figure 15: We plot the elastic energy for the steady-state solution of the elastic model
perturbed in the direction of Re{e3}. Unlike the linear viscoelastic case, the elastic energy
does not increase.
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Figure 16: We plot the elastic energy for the same spinning initial condition as in Fig.
14, but using the nonlinear model of viscoelasticity perturbed in the direction Re{evb3 }.
Unlike the linear viscoelastic model case, the elastic energy does not increase, on average.
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dynamics with this initial configuration using an 8th order Runge-Kutta
time-stepping scheme [9]. Choosing the real part keeps the calculation real,
and boils down to selecting an arbitrary phase in the oscillatory part of the
linearized solution associated with the unstable eigenvalue. The idea is to
seed the nonlinear evolution with an unstable linearized mode, so the phase
is unimportant. Counter to the common intuition surrounding viscoelas-
tic response, we observe the system exponentially gain energy to the point
that our numerical time-stepper returned NaNs. We observe the same phe-
nomenon with any initial condition evolved at rotation speeds greater than
approximately 420 rad/s.

Figure 14 shows the exponential increase in elastic energy with time. To
ensure that this non-physical behavior of the linear viscoelastic model was
not caused by any numerical issues, Fig. 14 shows the energy versus time
curves for several mesh sizes and for two different time-step sizes. The results
indicate that the model response has been fully resolved and, thus, that the
instability is intrinsic to the model. We also repeated the experiment with
the elastic model and nonlinear viscoelastic models using analogous initial
conditions: zω was perturbed in the direction Re{e3} with speed ω = 470
rad/s ≈ ω3 for the elastic model and zvbω was perturbed in the direction
Re{evb3 } with speed ω = 547 rad/s ≈ ωvb3 for the nonlinear viscoelastic model.
Figures 15 and 16 show the results of these experiments. In contrast to the
linear viscoelastic model, the simulations show no exponential increase of
the energy or other signs of instability. These results provide strong evidence
that it is the linear viscoelastic model itself that causes the non-physical
exponential increase in energy. For a large range of viscoelastic parameters,
we observed blow up in the linear model, but never in the nonlinear model.
For the same range of parameters we also always observed that the real part
of the λvqi increases nearly linearly with the rotational speed (see Fig. 12),
which suggests that no matter what parameters we choose, the evqi become
unstable at high enough rotational speeds. In contrast, if we look closely at
the λvbi , we see that their real parts decrease as ω increases, suggesting that
the evbi always remain stable; see Fig. 17.

The instability of the linear viscoelastic model is perhaps not surprising
considering that the evolution operator is linear in the viscoelastic variables
but is applied in a finite deformation setting. It is expected to work well
for small deformations, but not so when large deformations cause nonlinear
effects to become important. This is exactly what we observe: at small
rotation speeds, when there is less deformation, the linear viscoelastic model
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Figure 17: Plot of the real components of the λvbi .

behaves as one expects, i.e. in a dissipative manner. However, at high speeds
and large deformations the linear viscoelastic model behaves non-physically.
The nonlinear viscoelastic model does not suffer from these problems since
it naturally takes into account large deformations.

7. Conclusions

We have presented a formulation of the axisymmetric spinning body suit-
able for both steady as well as transient behavior. In the hyperelastic steady
setting, we have elucidated a more complex hierarchy of bifurcation modes
than have been discussed in the literature to date. This was achieved by a
careful examination of the smallest magnitude eigenvalues of the linearized
evolution operator. This same formulation was also extended to the finite
deformation viscoelastic setting. In this setting we have identified pseudo-
bifurcation modes that can be associated to a discrete set of critical frequen-
cies. By perturbing the system from an axisymmetric state in the direction
of a linearly unstable pseudo-bifurcation mode and then following the system
in time, we have been able to show that the Simo-class of models for (lin-
ear) finite viscoelasticity lead to exponential growth in elastic energy in time.
Thus such models are seen to be unstable, counter to intuition about convolu-
tion type models with fading memory. On the other hand, a similar analysis
using a (purely) hyperelastic model is fully stable, as is a similar analysis
using a Sidoroff-class model, which is necessarily thermodynamically stable.
This points to the general conclusion that it is not prudent to utilize linear
finite viscoelastic models of the Simo-class. In particular, in tire analyses in
which a steady spinning state is perturbed to obtain a transient evolution,
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non-physical unstable computations are clearly possible. This undesirable
situation can be rectified by using nonlinear finite viscoelastic models that
provably satisfy the second law of thermodynamics.
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