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ABSTRACT 

Autoregressive prediction is adapted to double the resolution of 

Angle—Resolved Photoemission Extended Fine Structure (ARPEFS) Fourier 

transforms. Even with the optimal taper (weighting function), the 

commonly used taper—and—transform Fourier method has limited 

resolution: it assumes the signal is zero beyond the limits of the 

measurement. By seeking the Fourier spectrum of an infinite extent 

oscillation consistent with the measurements but otherwise having 

maximum entropy, the errors caused by finite data range can be 

reduced. Our procedure developed to implement this concept applies 

autoregressive prediction to extrapolate the signal to an extent 

controlled by a taper width. Difficulties encountered when processing 

actual ARPEFS data are discussed. A key feature of this approach is 

the ability to convert improved measurements (signal- 

to—noise or point density) into improved Fourier resolution. 



-3- 

I. INTRODUCTION 

Fourier transformation is a basic tool for spectroscopic data 

analysis in several contexts. Typically, Fourier transformation is 

used for harmonic analysis. 3  The spectroscopic measurement 

records an intensity while scanning energy; the Fourier transformation 

converts this energy spectrum into a frequency spectrum, reporting the 

amplitude and phase of a series offixed frequency sinusoids which sum 

to the experimental result. If the physically significant part of the 

measurement has a distinctive frequency dependence, the signal 

frequencies can be isolated from irrelevant background or noise 

frequencies. Synthesis of the signal frequencies then yields a new 

energy spectrum whose interpretation may be simpler. For example, 

Extended X—ray Absorption Fine Structure (EXAFS) data are usually 

analyzed in this manner. 4 ' 5  

Conceptually, Fourier analysis yields the amplitude and phase of 

each individual sine wave in a series which sums to give the 

spectroscopic signal. Of course, sine waves continue indefinitely 

while spectroscopic signals typically have a limited range. If the 

data analysis is restricted to a Fourier transform, this mismatch 

inevitably leads to a broadened Fourier spectrum: wide peaks appear 

for dominant frequencies, but adjacent peaks may overlap and the 

- 

	

	
desired separation in frequencies may not be realized. With the 

Fourier methods currently used in spectroscopy 46  this finite- 

data—range broadening cannot be reduced by more careful measurements 

within a fixed interval. Thus if the measurement range is physically 
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restricted, then the ability of simple Fourier analysis to separate 

dominant frequencies will be limited. 

Because of this broadening, the advantage of the explicit 

harmonic content analysis provided by a single Fourier transformation 

is offset by its lowering of frequency resolution. This broadening 

effect is extrinsic to the data set: it is inflicted on the data by 

forcing a clumsy method of analysis, because we force infinite sine 

waves functions to reproduce a finite length data sequence. 7 ' 8  An 

implicit method for extracting the harmonic content (e.g., least-

squares fitting the data) would provide the required frequency 

resolution. It is, moreover, also possible to realize the advantage 

of both approaches; viz, high frequency resolution and explicit 

analysis, by combining regression methods and Fourier analysis. Such 

an approach, for a particular spectroscopic method, is the subject of 

this paper. 

To directly analyze Angle—Resolved Photoemission Extended Fine 

Structure (ARPEFS), a photoelectron diffraction phenomenon useful for 

surface structure determination, 9  we have found the frequency 

resolving power of the usual spectroscopic Fourier analysis to be 

inadequate, because the data range is limited. Fortunately, we have 

been able to adapt one of the new approaches to the Fourier analysis 

of physical measurements that allows higher Fourier resolution and can 

trade measurement precision for Fourier resolution. We shall report 

and discuss an adaptation of autoregressive prediction, also known as 

maximum entropy spectral analysis, which improves the Fourier 
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resolution by a factor of two in practical cases. Autoregressive 

prediction is widely used to process geophysical and acoustical 

measurements' 3 ' 10  when estimates of power spectra are required, but 

only short data sequences are available. We will demonstrate that 

autoregressive prediction can be used to extend the effective range of 

sinusoidal ARPEFS signals by an amount which increases with the 

signal—to—noise ratio. Although we apply this method to the analysis 

of ARPEFS, the method is directly applicable to EXAFS data or to other 

spectroscopies requiring high resolution Fourier transformations. 

After ARPEFS is described in Section II, the taper—and—transform 

method of Fourier analysis is discussed in Section III. 

Autoregressive prediction is introduced in Section IV. The results 

are discussed in Section V, and a summary appears in Section VI. 

II. ARPEFS 

We shall demonstrate the autoregressive Fourier technique by 

applying it to ARPEFS data. In this section we briefly describe the 

essential physics of ARPEFS and discuss why high resolution Fourier 

analysis is required. 

Angle—resolved photoeinission extended fine structure is the 

oscillatory part of the photoemission current as a function of 

photoelectron kinetic energy. 9  Photo—excitation of an adsorbate 

core level gives an atomic—like (direct) outgoing photoelectron wave. 

Direct propagation of this wave to our detector would give an overall 
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atomic character to the differential cross section. Elastic scatter-

ing of this wave from substrate atoms leads to a new set of waves 

which can reach the detector and which interfere with the direct 

wave. For electron kinetic energies from about 50 to 500 eV, two 

conditions are met: single elastic scattering from ion cores dominates 

and the electron de Brogue wavelength corresponds to atomic dimen-

sions. Thus, the interference modulation with kinetic energy can be 

used to derive the scattering path length and hence the position of 

the adsorbate atoms relative to the substrate. 

The ARPEFS modulations are strongly dependent on the scattering 

angle, a3 , the angle between the photon polarization vector and 

scatterer, 8, and the angle between the detector and the polariza-

tion vector, '. In the simplest theory, 11  the modulations, x(k), 

expressed as a function of the electron de Brogue wavenumber, k, are 

	

X(k) = 	Acos[kr(l_cos  

where 

	

COS 
B 	u/ ka 2 (i_cos a) 

A=05 	
e 

 

for is photoabsarption. If we call the polarization vector , the 

th emission vector k, and the vector from the emitter atom to the j 

scatterer r 3 ., then the parameters in this formula are: 
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angle between 	and 

angle between 	and 

4. 

angle between k and 

scattering amplitude for ion core j at 

scattering phase shift for ion core j at 

x 	 : inelastic scattering length coefficient 

L 	 : total electron path in solid 

mean square difference in displacement between 

emitter and scatterer j. 

The argument of the cosine contains the geometrical information, 

cos a3 . If the contribution from a single scatterer can 

be isolated, .the scattering phase shift, 0j.  can be removed and the 

structure can be determined. 

Because the single scattering theory is not valid for low 

wavenumber measurements and because the Debye—Waller factor, 

exp(—o2 k 2 (1—cos 	reduces the intensity of the oscillations 

for high wavenumbers, the useful ARPEFS data range typically lies 

between 3 A—rad. and 12 A—rad. As we show in the next section 

this range may not be sufficient to resolve the nearest neighbor path 

lengths when normal Fourier analysis is applied. 

III. THE TAPER—AND—TRANSFORM METHOD 

To demonstrate our Fourier method we analyzed a harmonic sum 
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(Fig. la) made up of test data consisting of two sine waves with 

frequencies of 5 A and 6 A sampled 128 times in the interval from 4 to 

11 A—rad. We added pseudo—random numbers to give a signal/noise 

ratio 12  of 2.8 	Two important differences between this signal and 

our ARPEFS data--the k dependences of the amplitude A and of the 

phase 3 --wil1 be examined in Section V. 

Direct application of the discrete Fourier transform, 

—i 
g(p) = 	

N 
	

G(.) _i2irpq/N 

q=O 
(2) 

to the test sequence of N points [G] gives, via the Fast Fourier 

Transform, 2  a sparsely digitized Fourier spectrum, [g],  shown in 

Figure lb. The density of points in the Fourier spectrum can be 

increased by simply appending zeros to the sequence, [G], as Figures 

ic and id illustrate, but ringing sidelobes—Gibbs oscillations--then 

appear, as a consequence of the finite length of the data 

sequence. 1 ' 2  These oscillations obscure or confuse features in the 

experimental Fourier spectrum. They arise from the sharp truncation 

of the signal at the ends of the range. If y(p) is the sinusoid that 

we would get if we could measure an infinite range of data, then our 

experiment gives 

b(p) = w(p)*y(p) 	 — a:i< p < + 00 
	

(3) 

The box function, w(p), truncates the signal at the extremes of the 
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measurement interval: 

w(p)=O 	 p < 1 

w(p)=l 	 1 < p < N 	 (4) 

w(p)=O 	 p > N 

for N measurements. The Fourier transform of b is the convolution of 

the transform of the sine waves (delta functions) and the transform of 

the box (sin 2x/x2 ). The sidelobes oscillations of the box trans- 

form are then superimposed upon the delta functions. 

The usual approach for reducing these oscillations is termed 

"taper—and—transform" spectral analysis.' The sharp—edged box is 

replaced by a smooth weighting function whose Fourier transform does 

not contain large oscillations. This weighting function will broaden 

the Fourier spectrum as it reduces the sidelobe oscillations. 

Harris 13  and Nuttall 14  surveyed a variety of weighting functions 

and compared their performance by several criteria. For our purposes, 

the appropriate weighting function should have the highest possible 

resolution for a sidelobe—to—mainlobe ratio below the flat Fourier 

spectrum of the noise (assuming approximately normal distributed 

noise). Sidelobes falling below this level will have no more impact 

than the noise from the measurement. For sine waves, the Fourier 

signal—to—background will be the square root of half the number of 

data channels times the signal—to—noise ratio; this may be used as a 

S. 	 rough guide for the weighting function selection. 

As a measure of resolution we select the full width at half 

maximum valve and label it Ar. The width of the measurement, Ak, can 
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be related to this resolution as 

Ak 
	

(5) 

where the factor f depends on the weighting function. For a square 

window (no weighting) f = 1.21, and the sidelobe is .22 times the 

mainlobe. Harris gives f as the "6 dB resolution" and reports the 

sidelobe ratio in dB (20 times the 109 10  of the sidelobe ratio). 

Several of Harris' results 13  are collected in Table I and displayed 

in Figure 2; since Harris concentrated on weighting functions with 

very low sidelobes, we have extended his calculations to include 

weighting functions with sidelobes - 10 percent of the main lobe. 

The weighting functions in Figure 2 fall in three groups. First, 

functions (a,b) which are flat in the center and fall smoothly to zero 

at the edges have the poorest resolution for a given sidelobe ratio. 

The shape of the roll off—Gaussian or cosine—seems to have little 

effect. Second, several functions (c,d,e) without variable parameters 

can be found which have 1-10 percent sidelobes but better resolution 

than the first group. Finally, the third set includes functions 

(f,g,h) which are theoretically optimal for mainlobe width versus 

sidelobe ratio by different measures. 13 ' 14  For sidelobe ratios in 

	

the .1 to .01 range these weighting functions are equivalent. 	 - 

From this last set we select the more familiar Gaussian weights 

and choose the Gaussian function width equal to 5/8 times the data 

range. This gives f = 1.6 and sidelobes equal to 3 percent of the 
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mainline. Figures3(a) and 3(b) illustrate the taper—and—transform 

results for the sine wave test spectrum using this weighting. The 

sidelobes will double while the mainlobe only narrows by 10 percent if 

we choose a Gaussian width equal to 3/4 of the data range. 

With the resolution relation, equation 5, we can look forward to 

difficulties with real measurements. With the longest ARPEFS 

measurement range reported to date 9 , A = 6.5 A—rad., the path-

length resolution will be Ar = 1.55 A. Nearest neighbor scattering 

atoms in that study appeared at path lengths of 1.96 A, 3.2 A, and 

4.46 A--these peaks cannot be resolved with taper—and—transform 

Fourier analysis. 

IV. THE AUTOREGRESSIVE PREDICTION METHOD 

The taper—and—transform Fourier method produces a Fourier 

spectrum of our signal only after we taper the signal toward zero at 

the edges of the observation interval. Beyond the observation 

interval this method therefore arbitrarily (albeit implicitly) assigns 

zero as the signal value, contrary to any reasonable expectation based 

on the sequence measured. In fact, most arbitrary choices for the 

signal in this region could be characterized as "unreasonable". This 

is another way of saying that we do not want the Fourier transform of 

our measured signal; we want the Fourier transform of a signal of 

which we have only a short segment. Proper selection of a weighting 

function can minimize the problems of a short data range, but this 
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does not address the underlying problem. 

The autoregressive (AR) prediction approach to Fourier analysis 

proceeds with different assumptions about the data analysis 

problem)' 3 ' 10  In the AR method we assume that the data in the 

(limited) data range represent a few observations of an auto-

regressive process. By least—squares fitting these data we determine 

the process parameters and solve for the Fourier spectrum of the 

process. Because the range of the AR process is not limited to the 

observation interval, much better resolution is possible. 

In an autoregressive process each data value, x, can be 

expressed as a linear combination of previous values, 

x = - q1 a
q xp_q . 	 (6) 

The number m is called the "order" of the process; the coefficients 

aq  constitute an autoregressive filter. In modeling a data sequence 

with an AR process, a set of coefficients a q  and an order m must be 

calculated which can "predict" all the members of the data sequence. 

With the order less than the number of data points, the forward 

predictions in equation (6) and the backward predictions, 

= - ql 
dq Xp_m+q 	 (7) 

form an overdetermined set of equations for the AR coefficients. The 
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structure of this set of equations is unusual since the autoregressive 

process employs data values to construct other data values. 10  

For n data values, we define a 2n-2m length vector, b, containing 

the values from the left hand side of equations 6 and 7. Similarly, m 

AR coefficients form a vector, a, and a (2n-2m) by m matrix, X, is 

constructed from the staggered data values as indicated on the right 

hand side. Then the least—squares equation for a is 

+ + 
Xa = —b (8) 

(see also ref. 10, page 249). These equations may be solved by fast 

recursive methods, 15  but, for the signal—to—noise ratios encountered 

in the analysis of extended fine structure, we find that the Singular 

Value Decomposition (SVD) method 16  for solving these equations to be 

more useful. As described in Ref. 17, the Singular Value 

Decomposition of a matrix X gives 

X T 
2(n—m)Xm 	2(n—m)x2(n—m)2(n—m)xmYmxm 	

(9) 

where U and V are orthogonal matrices and S is a diagonal matrix whose 

entries may be ordered by size. The value of this approach to solving 

least—squares problems has been discussed in detail by Lawson and 

Hanson, 17  and the application of spectral estimation is discussed by 

Tufts and Kumaresan. 16  Essentially, the SVD concentrates the 

significant signal content in the equations for the largest singular 

values. Then, when the solution for the original least—squares 

problem is constructed, only the largest singular values are used and 
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the remainder—those associated with noise—are discarded. Thus the 

solution for the AR coefficients is written 

P Vj 	
T a=— 	.—. (Ub) 	 (10) 

i=1 

where V 1  is the 1th 
 row of V and 	is the 

1th 
 singular 

value. 

The appropriate number of singular values, p, may be selected by 

visual inspection. Since the SVD of random numbers will be random, 

the ordered singular values with fall with a constant slope unless 

they contain information (see Figure 8, as discussed below). With the 

highly overdetermined AR system of equations, we can always see a 

section of constant slope for high index singular values: when the 

singular values rise above this slope, they contain information. 

An AR process of order m has a Fourier power spectrum 

proportional to 

1 
m 

Ii + 	aqe_2l'Nj2 	 (11) 
q=1 

Thus, one route to high resolution Fourier analysis proceeds as 

follows: 

seta0 l, 

construct the least—squares equations and apply the SVD, 
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select the number of singular values and solve for a q' 

q=l, m with equation 10, 

set aq  = 0 for q = M+l,q 	where 	is a lar g emax 

power of 2, e.g. 

fast Fourier transform the full sequence [a q ] and 

invert the square modulus of the transform. 

While this approach has the greatest potential resolution, it is 

difficult to apply to real data. The resulting peaks are all very 

sharp, making it difficult to distinguish spurious from real hidden 

peaks. The peaks are strong functions of the order chosen and of the 

signal—to—noise ratio in the data. Furthermore, only the power 

spectrum is retrieved; the phase information is not available. 

For these reasons we have adopted a more conservative approach, 

suggested by reference 1, which sacrifices some resolution in favor of 

greatly enhanced reliability and control. This procedure is: 

seta0 l, 

construct the least—squares equations and apply the SVD, 

select the number of singular values and solve for a q  

q=l, m with equation 10, 

use equation 6 to extrapolate the data, sequence forward, 

use equation 7 to extrapolate backward, 

multiply the resulting sequence by a weighting function, 

add zero value channels until the total number of channels 

is a large power of 2, e.g. 2048, and 
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8. 	fast Fourier transform the long sequence. 

The Fourier coefficients derived from this procedure can be 

further analyzed with the usual Hilbert back transformation. 3 ' 4  We 

have usually chosen an order equal to one half the number of data 

points, and we can typically extrapolate for approximately as many 

data points forward and backward as we originally measured. 

The inherent control of this procedure comes in the examination 

of the extrapolated sequence. At some point in the extrapolation the 

new values begin to increase rapidly in amplitude and/or noise content 

(Fig. 3c). By placing the edge of our taper window at these points 

the unstable part of the extrapolation is eliminated. Furthermore, 

the window weights the extrapolated points significantly less than the 

real data values, moderating the effect of the new values on the final 

spectrum. This last advantage is crucial for practical spectroscopic 

signals which are not exact sinusoids. 

An example of the extrapolation is shown in Figure 3c, and its 

effect on the Fourier spectrum is shown in Figure 3d. The signal in 

Figure la was fitted to an AR process of order 64 and 4 singular 

values were required (as expected for 2 real sinusoids 16 ). 

Extrapolation gives Figure 3c. Figure 3d dramatically illustrates the 

potential of this method for increasing resolution in Fourier analysis. 

At this point it is useful to note that the ARP—Fourier transform 

method is not a "deconvolution" of the data which can produc spurious 

peaks through unreliable resolution enhancement. As we illustrated in 
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Figure 4, our net process solves a problem with the 

taper—and—transform Fourier method. In Figure 4a it is obvious on 

visual inspection that more than one frequency is present, but the 

Fourier transform will have Gibb's oscillations. When the taper 

A. 	

(weighting function) is applied as in Fig. 3b, the beat structure is 

lost while the Gibb's oscillations in the Fourier transform are 

suppressed (Figure 3(b)). From this perspective the unadorned Fourier 

transform and the taper—and—transform process are clumsy operations 

that obscure the frequency information inherent in the data. When the 

ARP is applied, Figure 4(c), data on the ends of the measurement are 

no longer lost when the window function is applied, Figure 4(d). 

Our overall procedure requires three parameters: the number of 

singular values, the number of AR coefficients, and the final taper 

width. As discussed above and in reference 17, the number of singular 

values may be determined by inspection. For poor signal—to—noise 

conditions, the size and variability of the singular values associated 

with noise will make this choice more difficult. Autoregressive 

orders between N/2 and 3N/4 are are recommended by Tufts and 

Kumaresan) 6  Our choice of a taper width at just less than twice 

the measured data width reduces the importance of our choice in the 

first two parameters. 

Up to this point we have assumed that our measurement can be 

successfully approximated by an autoregressive process. In 

reexamining this point we divide the question in two parts: i) how 

closely can a cosinusoidal series be represented by an autoregressive 



process, and ii) how closely does a cosinusoidal model fit ARPLFS 

data? For the first part we can note the discussion of Ulrych and 

Ooe10 . Beginning with a finite difference equation for a sinusoidal 

series, they demonstrate that such a series can be represented by a 

combination autoregressive, moving average (ARMA) model; they also 

show that such an ARMA model can be represented by an infinite order 

pure autoregressive model. Numerical work by Tufts and Kumaresan 16  

supports the conclusion that AR models can represent sinusoidal 

series; their method can give resolution near the theoretical limit 

even for low signal—to—noise ratios. 

The second question is more difficult to address, but it impacts 

every method of harmonic analysis applied to ARPEFS. Specifically, if 

the cosine form breaks down, the taper—and—transform approach will 

fail as the autoregressive approach does. We will examine some of the 

possible problems in the next section. 

V. DISCUSSION 

Two important features neglected in the sine wave model spectrum 

are the amplitude and phase variation with k in real ARPEFS data. The 

sine wave model spectrum neglected any variation in frequency due to 

nonlinearity in Oj  and any variation in amplitude due to 

If(a) Iexp[—a 2k2 (1—cos a)_L/Xk]. 

To examine a model containing realistic amplitude and phase 

functions on a scale similar to our data we have generated a spectrum 
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by adding noise to 

X(k) = cos( 1730 )Jf( 1730 )Icos [4.46k + (173 0 )] e 02 k 2_5 * 3 /k 

+ 2 cos( 1160 )If( 116° )Icos [3.21k: + (176 ° )] e_. 4 k 2_5.31k; 

where f and 0 are derived from summed partial—wave phase shifts. 18  

Direct application of the AR prediction gives the result in Figure 5a 

and the Fourier transform in Figure 5b. The increase in amplitude at 

low k in the linear prediction is a consequence of the amplitude 

structure for scattering through 116 0 : If(116°)I peaks at 

- 5 A—rad as shown in Figure 6. The AR method presumes that this 

is a rising signal and continues the trend to lower k. At higher k, 

the AR method tries to force this single decaying frequency to be 

modeled by infinite sine waves: it must sum two nearby frequencies to 

simulate the amplitude decline. The Fourier spectrum then contains a 

split peak for this scattering event. 

The rising low k amplitude effect can be recognized in the 

predicted spectrum and remedied by analyzing kX(k). The k weighting 

helps to cancel the decline of If(afl at higher k and has been used 

extensively for analysis of EXAFS data. 5  This weighting evens out 

the linear prediction shown in Figure 5c, and the resulting Fourier 

transform amplitudes (Fig. 5d) are more similar to the average 

amplitudes of the signals within the real measurement range. 

Whatever weighting is employed, the important separation of the 

(12) 
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Fourier frequencies is still effected by the autoregressive prediction 

followed by Fourier transformation. The amplitude variation places an 

upper limit on the resolution obtainable from the AR analysis of real 

data. When the amplitude function falls with the same shape as the 

beat envelop, then the AR analysis cannot distinguish between them. 

Variation of the frequency with k violates the stationary 

assumption in the application of the autoregressive model. Thus 

ARPEFS peaks with phase functions strongly nonlinear in k will be 

modeled incorrectly, probably being represented as more linear than 

they really are. If the phase has an average slope at the beginning 

of the data range which is different from its average slope at the 

end, the extrapolation procedure sometimes yields a slightly doubled 

or asymmetric peak which must not be mistaken for two. 

The frequency variation may also explain the empirical selection 

of a large process order m. In the usual application of the AR 

technique'°  the order is chosen by some criterion based on the 

prediction error; that is, the difference between the linear 

prediction and the data values. While this criterion can give a 

prediction filter for pure sinusoids in the presence of noise, valid 

for infinite range, we seek an adequate representation of a more 

complex oscillating signal over a small range. Our signal does not 

result from any autoregressive process, and a large order may model 

nuances of nonlinear phase and noise. 

The impact of modelling this non—stationary signal with an 
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autoregressive filter is minimized because we do not rely on the 

Fourier spectrum itself for the final analysis. Following Martens, 4  

we apply a Hubert transformation 3  to our data. From the complex 

exponential form of the cosine 

A. 	i(p 
A(k + 	= 4 e 	

k+) 	. _i( k+) 
cos 

	

+ 
A 
 4e 	 (13) 

we see that the transform of the cosine is real and peaked near p3  

and —p3 . By using only the positive frequency components, a complex 

back transform gives 

A. i(Pk+) 	A. 	 iA. 

4 e 	 = 4 cos (k+) + ._2.i sin(Pk+) 	(14) 

The amplitude and phase functions of the original cosine wave can be 

derived as the amplitude and phase of this complex sequence. For our 

	

signal the actual cosine argument is k(r —r) + 
	

, so we sub- 

tract the potential phase shift, O j , and fit the resulting sequence 

to a line. The slope of this line gives the averaged geometrical 

position we seek. The crucial point is this: we only use the cosine 

phase function in the region of k where we made actual measurements. 

Thus the entire AR prediction Fourier analysis serves only to isolate 

a single frequency. The position and amplitude of the Fourier peaks 

need not be accurate f or us to obtain accurate geometries. 

This complex backtransformation procedure does introduce one 

important source of error: we lose the wings of the Fourier peak 
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spectrum for the oscillation we isolate. This implies that the 

non—linear phase information and strong amplitude dependence of the 

ARPEFS oscillation will be missing in the backtransfornied peak: we 

necessarily derive an averaged frequency and smoothed amplitude 

dependence. While not ideal, this result is certainly preferred to 

mixing the arguments of two different cosine oscillations. 

Since there are a large number of variable parameters in even 

this simple model, we cannot yet give a complete analysis of the 

effects of background subtraction and signal/noise ratio. Generally, 

the AR prediction produces a "peakier" spectrum than one might imagine 

being correct. 1 ' 10  Thus, errors in background subtraction appear as 

small peaks at harmless low r 3  values. When the beat pattern of two 

peaks approaches the width of the actual measurement range, then 

errors in background subtraction may interfere with resolution. 

Signal/noise ratios greater than two allow approximately double 

the resolution of the taper approach, with errors in geometry of 

< 0.02 A. Errors increase rapidly for signal/noise ratios falling 

below 1. Until more experience is acquired with the AR method, 

prudence suggests examination of these effects for model spectra 

closely mimicking the actual data before assigning error limits. 

As a practical example of the improved analysis of ARPEFS data, 

we have analyzed 9  the modulations (Figure 7a) in the sulfur is 

photoemission intensity emitted along the [110] direction from a 

c(2x2)S/Ni(100) adsorbate system. The Fourier transform via the taper 

approach shows distinct peaks (Figure 7b), but each peak is an average 



of several path—length differences. The singular values for the 

application of an 128 order AR prediction are shown in Figure 8. The 

slope of the singular values is roughly constant—as indicated by the 

plotted derivative—above singular value 17. Thus 17 principal 

vectors were used to construct the AR filter. The AR prediction is 

shown in Figure 7c, and the Fourier transform gives Figure 7d. Now 

the individual peaks are clearly separated and they can be assigned to 

scattering path—length differences. 9  

VI. SUMMARY 

Autoregressive prediction provides a method for greatly 

increasing the resolution of Fourier analysis of sinusoidal data. 

Using the extrapolate—taper—transform method described here, we can 

always do as well or better than the taper—transform approach. If the 

signal/noise ratio is so poor that the extrapolation fails imedi-

ately, then the AR procedure reverts to the usual taper method. For 

all other cases the resolution is improved. Furthermore, the method 

is easy to implement, computationally efficient, and controllable. 

The resolution improvement afforded by the autoregressive 

prediction method scales with the quality of the experimental measure-

ments. Low precision or widely spaced measurements do not contain 

enough information to accurately detemine the autoregressive coeff 1-

cients. Our moderate precision measurements yield moderate precision 

autoregressive coefficients; our coefficients allow successful extra- 
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polation as we have demonstrated, but they are not precise enough for 

the analytic power spectrum formula. 

Two improvements in the application of autoregressive prediction 

to spectroscopic data require further investigation. First, the 

statistical accuracy of the data values can vary significantly across 

a spectrum; the least–squares fit of the autoregressive coefficients 

should be weighted accordingly. Second, the autoregressive method 

assumes equal intervals between measurements; for ARPEFS we do not 

have equally spaced data. This problem is more difficult: the AR 

process given in equation (6) steps by a single fixed amount. 

However, there should be some AR process whose Fourier spectrum 

closely approximates the Fourier specrum of our data even if our 

measurements do not fall on an even mesh. Such questions are being 

examined in the signal processing literature, e.g., references 20 and 

21, and new methods should be available soon. 

Our final procedure is empirical for the same reasons the 

familiar taper–and–transform method is empirical. Ideal frequency 

analysis—the separation of our signal into each component oscil-

lation—cannot be accomplished with noisy, finite–range measurements. 

Furthermore, harmonic analysis is only approximately valid for our 

spectroscopy: nonlinear phase shifts and energy–dependent scattering 

power preclude pure sine–wave signals. The procedure we have 

described here will, however, give a useful, high–resolution Fourier 

transform from real spectroscopic signals. 

Formulation of the autoregressive prediction method from the 
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vantage of information theory has led to its description as maximum 

entropy spectral analysis. 7 ' 8 ' 10 ' 22  Faced with the problem of 

estimating the Fourier transformation of an oscillatory signal given 

ZI 	 only a short measurement range, the autoregressive method fits a 

general oscillatory model to the measurements. The resulting over-

determined set of equations are reduced by maximizing the entropy of 

the model. Thus, of all the possible models which give the same least-

squares error, we select the model which adds the least new informa-

tion, i.e. the one with the most signal entropy. 

Data analysis methods can generally be compared by examining the 

information they add to the measurement. The AR method assumes that 

the data represent a process whose Fourier spectrum does not change 

outside the data sequence: it attempts to add no new 

information. 7 ' 8 ' 10  The taper-and-transform approach added the 

uinformationsl that the signal was zero where it was not measured; this 

is contrary to any reasonable expectation. Directly fitting the data 

to a model of the physical process (egn. (1)) would be the ultimate 

addition of information, but small uncertainties in the measurement 

and in the model usually prevent this approach 5  from being 

successful. 

Note that extrapolation after direct physical model fitting has a 

different meaning than our AR prediction. Extrapolating by evaluating 

a physical model estimates a physical signal. The AR extrapolation 

does not estimate a physical signal; instead it reflects the frequency 

content over the original measured interval. The AR prediction 
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estimates an autoregressive model, not a physical one. We are not 

attempting to predict a measurable quantity; the extrapolation is 

merely one step in a harmonic analysis of our data. 

Finally we note that this conservative approach to AR Fourier 

analysis can also be applied to a number of spectroscopic problems. 

Extended X—ray Absorption Fine Structure (EXAFS) has a nearly 

identical form to eq. (1), and the autoregressive prediction would 

allow high resolution Fourier analysis of more general utility than 

the beat method of Martens. 19  Many problems in spectroscopic 

deconvolution via the Fourier transform can also benefit from this AR 

approach. Direct AR power spectral analysis has been successfully 

applied to this problem, 23  but the danger of spurious peaks is 

particularly acute when we are seeking resolution enhancement. An 

extrapolation—taper procedure would allow a more controlled, albeit 

more moderate resolution enhancement. 
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Figure Captions 

Figure 1. (a) Sum of two sine waves, periods of 5 and 6 A, plus 10 

percent pseudo—Gaussian noise. (b) Fourier amplitude of 

the sequence in 1(a). (c) Extension of the sine waves of 

(la) by appending zeros. Set above the signal is a plot of 

the weighting window function; it has a baseline of zero 

and a height of one. (d) Fourier amplitude of Fig. 1(c). 

Figure 2. Resolution factor versus sidelobe—to—mainlobe ratio for 

several weighting functions. Abcissia is f in ArAk = 2irf; 

for a data range of 6.3 A—rad., f will be the Fourier 

resolution in A. Ordinate is the maximum sidelobe peak 

value divided by the mainlobe peak. The plotted values are 

given in Table I. The point at f = 1.21 and sidelobe = .22 

represents an unweighted Fourier transform. The weighting 

functions are given in Table I. (a) Tukey weighting, ref. 

10, pg. 66. This function is flat in the center and rolls 

off as a cosine on the data extremes. (b) Gaussian Step 

or Error function. Similar to (a) but using a Gaussian 

roll—off. (c) Riesz polynomial, ref. 10, pg. 65. 

(d) Riemann weighting, ref. 10, pg. 65. (e) cosine 

weighting, ref. 10, pg. 60. (f) Van der Maas weighting, 

ref. 11, pg. 90. (g) Gaussian weighting, ref. 10, pg. 69, 

(h) Kaiser—Bessel weighting, ref. 11, pg. 89. 	 :- 
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Figure 3. (a) Extended sine wave from Fig. 1(c) and, set above, the 

weights used for taper—and—transform Fourier analysis. The 

base of the weighting function is zero and its peak is 

one. (b) Fourier transform of sine wave times weights 

from Fig. 3(a). (c) Autoregressive prediction of the 

signal in Fig. 1(a), using an order m= 64, half of the 128 

points. The new weights is set above. (d) Fourier 

amplitude of the product of the prediction results and 

weights from Fig. 3(c). 

Figure 4. Weighting function interaction with autoregressive 

prediction. (a) Test sequence of two sine waves and noise 

as in Fig. 1. Note the beat structure. (b) Data from 

(a) times Gaussian weights. Gaussian width is 5/8 times 

the data range. Note the loss of beat structure. (c) AR 

prediction of the data in (a). (d) AR prediction from (c) 

times Gaussian weights. Gaussian width is 5/8 times the 

extended data range. Note the reduced emphasis of the 

extrapolated region. 

Figure 5. (a) Autoregressive prediction of a simulated signal from 

equation (9).. (b) Fourier amplitude of Fig. 3(a) times 

Gaussian weights. (c) Autoregressive prediction of k 

times the simulated signal in Fig. 3(a). (d) Fourier 

amplitude of Fig. 3(c) times Gaussian weights. 
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Figure 6. Magnitude of the scattering amplitude, If(a,k) 1 , for Ni 

atom at a = 116 °  and a = 173 ° . The mild amplitude behavior 

of the scattering for 173 0  gives a simple Fourier peak 

shape; the steep drop at high k for scattering through 116 °  

leads to a doubled Fourier peak. 

Figure 7. (a) Angle—resolved photoemission extended fine structure 

from S(ls) c(2x2)S/Ni(100) along [110]. The weighting 

function used for the taper is plotted offset above •the 

data. Its minimum is zero and maximum is one. (b) Taper-

and—transform Fourier amplitude for (a). (c) 

Autoregressive prediction of (a). An order M=64 was used 

for 128 points interpolated from the raw data. The 

weighting function is set above as for (a). (d) Fourier 

amplitude of the product of the window and extrapolated 

data in (c). 

Figure 8. Selection of rank for the singular value decomposition for 

order 128 autoregressive fit to the data shown in figure 

7. The singular value decomposition algorithm (ref. 17) 

automatically orders the singular values by size. The 

values a, are plotted versus i as solid circles 

connected by a thin line; their magnitude is given by the 

left hand axis. The point by point differences are plotted 

as the thick line with the right hand axis giving the 

scale. The rank is selected as the point where the 

singular values depart from constant slope. 
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