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ABSTRACT OF THE DISSERTATION

Goal-Directed Biped Stepping and Push Recovery with Momentum Control

by

Chun-Chih Wu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2011

Dr. Victor Zordan, Chairperson

Stepping is a fundamental skill involved in common bipedal activities such as walking,

foot repositioning and step recovery. Generating these stepping activities requires char-

acters that are controllable and responsive. This dissertation describes a goal-directed

controller and a momentum supervisor for characters that perform both believable and

robust steps under a variety of conditions. The desired step is controlled by generic

task goals, namely step position and step duration, which allow characters to step in

arbitrary directions with various speeds. These high-level goals guide desired changes

of a character’s center of mass and swing foot over the duration of the step. To produce

realistic and flexible steps, the desired time-varying values for the center of mass and

the swing foot are derived from parametric curve generators which are built on empir-

ical evidence extracted from motion capture data of stepping. Controlling these two

values along with regulation of angular momentum in vertical axis produces characters

with coordinated full-body movements including natural arm swings during stepping.

The system can guide a character with purposeful, directable steps to precisely follow

user-specified foot placements and to carefully control the character’s position and ori-

entation. Moreover, the same system can be used to create protective steps to maintain
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the character’s balance in response to a perturbation. A novel supervisory routine au-

tomatically chooses when and where to step with a straightforward goal: removing all

linear and angular momenta induced by a push. In contrast to previous methods for

push recovery using the inverted pendulum, the proposed momentum supervisor intro-

duces a nice clean formulation to determine when and where to step and provides better

prediction of a character’s stability under perturbations by considering both linear and

angular momenta of the character. In addition to responding to a perturbation, this

dissertation also presents an approach for characters that anticipate impending pertur-

bations with examples taken from human motion capture data. I focus on the motion

interpolation sysnthesis technique which allows a character to anticipate by blocking or

dodging a threat coming from a variety of directions and targeting any part of the body.
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Chapter 1

Introduction

3D character animation has applications in a wide variety of fields such as en-

tertainment, education and communication. While currently being used extensively in

animated films and electronic games, character animations are also becoming prevalent

in military trainings, medical simulations, news reports as well as social skills learning

just to name a few. However, as modeling and rendering of computer generated charac-

ters become more and more realistic, constructing believable motion remains a challeng-

ing task. The challenge can be attributed to two major reasons. First, we are especially

good at discerning the nuances between natural and unnatural motion since we see each

other’s movements in our daily lives. Second, despite advances in current technology,

our knowledge is still limited about how humans control their bodies which consist of

hundreds of bones and muscles to move in a coordinated manner and perform vari-

ous activities such as balance, response and locomotion under different circumstances.

The interest of understanding and reproducing natural, efficient human movements has

been the motivation for several disparate disciplines such as biomechanics, robotics and

computer graphics.
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In traditional computer graphics, expressive character movements are created

by experienced animators through their manually specified key frames. The rest of

frames can be automatically generated by computers with interpolation techniques.

While keyframing provides animators with full control of the final motion, the technique

itself is an off-line process and relies heavily on artistic skills and experiences to fine-tune

a character’s movements. To date, animation studios such as Pixar and DreamWorks

still rely on this labor intensive approach to produce their movie blockbusters.

The advent of motion capture provides an alternative solution to creating real-

istic movements. The motions of human actors are recorded at a high sampling rate (120

to 240 Hz) and are mapped onto digital characters. Motion capture has been widely used

in current video games and in increasing number of live-action films such as Avatar due

to its strength of preserving every subtle nuance of an individual’s motion style. Because

of the ease of creating motions, aforementioned animation studios are also employing

motion capture in their pre-visualization stage to help film directors experiment camera

movement and placement. However, when the recorded motion data does not satisfy

requirements of an application, it is often easier to capture a new motion rather than

reusing the existent data. The reason is because motion capture only records kinematic

aspects of movement, i.e. position and velocity information. Dynamic aspects of move-

ment are not directly available in the data and need to be approximated, for example

force and torque exerted by and acting on a character’s body which contains mass and

inertia information. Manipulating existing motion data without careful consideration

of the required constraints often results in physically implausible motion. As a result,

motion capture-driven animations resort to a large collection of examples for realism

and other requirements such as interactivity and flexibility. However, this approach

still fails to generalize to situations where the desired motions are too dissimilar or not
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belonging to the same category of the pre-recorded database. Real-time applications

with unpredictable environments and user inputs suffer most dramatically from this

limitation.

Physically based simulation, on the other hand, holds promise for animating

realistic controllable characters in interactive environments. Realistic motion is derived

from two aspects: physical plausibility from the equations of motion and coordinated

body movement from controller which dictates naturalness of motion. Through simu-

lation, the interplay between characters, objects, and their surroundings is generated

automatically by constraining the motion to follow the dynamic equations of motion.

However, developing robust and flexible controllers for simulated characters that convey

human-like motion qualities remains an open problem. Due to difficulties in creating

such controllers, physics-based characters had only been used sparingly, mostly for creat-

ing the so-called ragdoll effect which employs little or zero control to simulate characters’

unconscious or death sequences. Until recently, with the advance of computer hardware

and research in control strategies, physically simulated characters are finally seen in

commercial softwares such as NaturalMotion’s endorphin and Euphoria [55].

1.1 Motivation

An ideal animation system should provide characters that preserve their styles

and motion qualities while seamlessly interacting with the environments and responding

to users’ commands. In the last fifteen years, there has been a significant amount of

research on motion capture, dynamical simulation and combination of both of them

to try to solve the above problem. While much progress has been made, the problem

has not been fully solved and is still an active research area in computer graphics.
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In this dissertation, I chose stepping behavior as a testbed and present two control

algorithms, one using a kinematic model and the other using a dynamic model, to address

the problem of creating controllable, believable, responsive and robust characters. I

elaborate on motivation for the selected behavior and the proposed algorithms next.

1.1.1 Stepping Activities

Stepping is a fundamental skill involved in common activities such as walking

and full-body maneuvering such as foot repositioning and step recovery. As such, step-

ping is a critical behavior for applications involving virtual human avatars. For example,

characters in electronic games must be able to change their stance and facing direction

in response to a player’s inputs. The ability of being able to precisely control foot place-

ment is also important for characters to navigate in a constrained virtual environment

and to avoid collisions. Furthermore, characters must also be able to take protective

steps to regain their balance in response to external perturbations from players and the

environments. Besides computer scientists, researchers from biomechanics and robotics

have also shown great interest in stepping activities. By investigating such fundamental

behavior, we hope to shed light on how humans control their bodies and perform more

complex motion such as step recovery and walking.

In biomechanics, there has been in-depth investigation performed on both vol-

untary and compensatory steps for the purposes of rehabilitation and prevention of

falling. For example, it is a necessary and a distinguishing postural adjustment for

healthy humans to execute a self-initiated step by shifting body’s weight toward the

stance foot before lifting the swing foot. Studies have found that patients with Parkin-

son’s disease suffer from deficits of such anticipatory postural adjustment. The stepping

algorithms in this dissertation take into account the body’s weight shift by controlling
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a character’s center of mass (CM) to follow desired path based on insight from biome-

chanical observations of CM trajectories during gait and stepping. On the other hand,

compensatory stepping, has been identified as a natural response for both young and

older adults when they receive external perturbations. Biomechanists investigated age

and gender differences of a single-step recovery with various perturbation techniques

including waist pulls, lean-and-releases and platform movements. In this dissertation,

both liberal and conservative step recoveries can be produced by the proposed momen-

tum supervisor through adjusting its damping variables to decide how quickly momenta

induced by a push should be removed.

In robotics, humanoid robots have the unique potential to cooperate with hu-

mans and operate in the environments made by humans. However, it is inevitable that

these robots will encounter disturbances from humans and the uncertain environments.

The occurrence of a fall is a devastating event for a humanoid robot because it can

injure people and cause damage to the expensive robot as well as objects in the sur-

roundings. As a result, push recovery by stepping is also an active research topic in

robotics community in order for humanoid robots to safely work in these complex sce-

narios. In this dissertation I present a straightforward formulation to determine when

and where to step under perturbations by considering both linear and angular momenta

of a character. Considering both linear and angular momenta improves a character’s ro-

bustness under perturbations in comparison to inverted pendulum which only considers

a character’s linear momentum.

1.1.2 Control Algorithms

I propose two control algorithms to address problems with animating biped

stepping behaviors. The first algorithm employs a kinematic model which relies on a
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procedural approach in conjunction with a motion capture database of stepping to create

characters that perform controllable and believable steps. Procedural animations refer

to motions which are generated through a set of user specified rules or computational

procedures. The advantage of procedural animation is that new motion can be easily

produced by adjusting control parameters which come with the procedures. The control

parameters of the first algorithm are generic task goals, namely step position and step

duration, which allow human characters to step in a range of directions with different

speeds. These two parameters provide high-level, goal-directed control and thus avoid

adjustments in a character’s individual joint level which might lead to uncoordinated

body movements. The algorithm achieves the desired stepping goals by parameterizing

and modifying a character’s CM and swing foot. As mentioned in the first section, modi-

fying existent motion data requires careful consideration of the physical constraints. CM

and swing foot were chosen as the control parameters because they encapsulate many

physical attributes of a step. In contrast to pure data-driven approach, procedural ap-

proach is more flexible because of its controllability. However, motion quality produced

by procedural approach alone still lacks subtle details found in motion capture data.

Therefore, the first algorithm combines procedural approach with motion capture data

of stepping in order to get the best of both approaches: controllability and believability.

The second algorithm in this dissertation employs a physical model which relies

on full-body momentum control and a momentum-based supervisor to create responsive

robust characters that are able to follow user specified footprints and react to external

perturbations by stepping. The algorithm generates realistic whole body movements

by controlling three high level objectives: linear momentum, angular momentum and

swing foot. Control of a character’s linear and angular momenta creates coordinated

full-body movements including natural arm swings. The supervisor improves a charac-
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ter’s robustness under perturbations by assessing the character’s momenta conditions to

automatically decide when and where to step. Because only controlling high-level objec-

tives, the algorithm uses no heuristics specific to humanoid characters and can be applied

to any biped characters. Because no motion capture data is required, the characters are

able to step in arbitrary directions both voluntarily and as a result of perturbation.

Believable motion is still retained because desired trajectories of the character’s CM

and swing foot are guided by the parameterized model developed in the first algorithm

which are empirical evidence extracted from motion capture data.

1.2 Contributions

As mentioned earlier, the goal of this dissertation is to animate biped characters

that are controllable, responsive while able to perform robust, believable motions. I

address this goal by solving the stepping problem and presenting two control algorithms

to answer the core issues of stepping: how to step, when to step and where to step in a

principled manner. I demonstrate the effectiveness of the proposed algorithms through

exploration of three classes of stepping behaviors including directed step for navigation,

reactive step for regaining balance as well as continuous steps for walking and multiple-

step recovery. In summary, the primary contributions of this research include:

• a goal-directed controller which provides a character with flexible step position

and duration.

• parametric models for CM and swing foot which are empirical evidence extracted

from motion capture data and have shown to be critical for maintaining a charac-

ter’s dynamic balance while achieving the desired stepping goals.

• a momentum supervisor which improves prediction of a character’s stability under
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perturbations by considering both linear and angular momentum and provides a

formulation to automatically decide when and where to step with a straightforward

goal: removing all linear and angular momenta induced by a push.

1.3 Outline

This dissertation continues in the next chapter with a survey of related work

in the areas of motion capture editing and control strategies for simulated characters

as well as relevant background in robotics and biomechanics. In Chapter 3, I describe

the first approach to creating characters that perform controllable and believable steps

using a procedural approach in combination with motion capture data. In Chapter 4,

I introduce a physics-based approach for simulating characters that perform directed

steps for navigation and protective steps for maintaining balance in response to external

perturbations. In Chapter 5, I present a method for characters generating anticipation to

unexpected interactions with example taken from human motion capture data. Lastly,

conclusions are given in Chapter 6.
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Chapter 2

Related Work

Creating controllable responsive characters is an open problem in computer

graphics. This chapter presents an overview of related work on motion editing tech-

niques which add controllability to data-driven motion capture animations and control

strategies which create responsive characters using physical simulation as well as hybrid

approaches which combine the advantages of motion capture and dynamic simulation.

Furthermore, because the proposed algorithms in this dissertation are inspired by do-

main knowledge in robotics and biomechanics, I summarize related work from each of

these areas including simplified models for balance and locomotion as well as angular

momentum studies of human activities.

2.1 Editing Techniques for Motion Capture Data

Motion capture data produces realistic animations but the data itself does not

provide controllability and is best for playback. When used in interactive applications,

motion capture data must be augmented with high-level control mechanisms in oder

to accomplish new tasks and to smoothly create transitions between different motions.
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There has been a great amount of work in this area and the approaches can be categorized

into two groups: motion parameterization through blending [88, 67, 59, 39, 44, 54] and

motion rearrangement [4, 40, 45, 47, 5, 22].

A desired motion or behavior can be parameterized and synthesized by blend-

ing labeled motion segments. For example, Rose et al. [67] proposed a framework for

creating walking motions with various emotions such as happy, sad, angry, tired and etc.

They recorded many different walking sequences and manually labeled them off-line. At

runtime, they create walking motion with smooth transitions from one emotion to an-

other using scattered data interpolation with radial basis functions. Later, Kwon and

Shin [44] enhanced the approach by introducing an automatic motion labeling scheme.

They presented an approach to decompose unlabeled motion sequence into segments

based on CM trajectories and classified them into groups with identical footstep pat-

tern. Their on-line locomotion system can synthesize parameterized walking motions

with different speeds, turning angles and accelerations. Unlike their methods which

focused on locomotion, the control algorithms in this dissertation emphasize the impor-

tance of precise control of foot placement through stepping. Other researchers have also

addressed similar goal lately [57, 18]. However, I achieve parameterized step positions

through a procedural approach which directly modifies a character’s CM and swing

foot rather than relying on motion blending techniques which require a large number

of stepping examples. To be clear, stepping examples in my first algorithm are used

to enhance a character’s upper body movements because the procedural approach only

modifies the character’s lower body through CM and swing foot control. Stepping ex-

amples are not used in my second algorithm because controlling a character’s aggregate

linear and angular momenta creates full-body movements.

Motion rearrangement synthesizes new motions to follow user specified paths
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or constraints by searching for similar postures or motion segments that are easy to

produce seamless transitions. Most of the approaches use variants of ‘motion graph’

data structure to represent connectivity between similar poses in a given motion stream.

Since the introduction of motion graph, the concept of generating transitions has become

increasingly popular. Some contributions highlight ideal lengths for transitions and

similarity metrics for selecting similar frames [84, 85, 86]. Some use multiple frames

to generate high quality transitions that have split-second reactivity [32]. Transitions

are typically performed by blending character’s joint angles as well as root position

and orientation over time. Cleaning up transitions is usually done with algorithms

for footplant detection and enforcement [71, 41, 31] with inverse kinematics. Tools

for correcting balance ensure that motion transitions remain physically plausible by

controlling the CM or zero moment point [8, 9, 81]. The algorithms presented in this

dissertation can also be used to create motion transitions. Unlike motion graph which

requires similar postures to create transitions, the proposed algorithms here do not have

this limitation because characters can take directed steps to align foot placements before

and after the transition to avoid foot sliding. Also, the proposed algorithms take into

account a character’s CM and swing foot during transition to maintain the physical

plausibility.

2.2 Control Strategies for Simulated Characters

Despite advances in current technology, control of physically simulated charac-

ter is still challenging because how humans control their muscles to generate coordinated

body movements is still not well understood. Early work on simulated characters relied

on hand-crafted controllers to generate specific behaviors such as running, handspring
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vaulting, diving and etc [28, 90]. The other common approach to simulate physics-based

characters is to use joint-based tracking controller to follow a reference motion [101, 46].

Motion capture data provides desired joint angle information for all of the degrees of

freedom. However, naively tracking the reference motion without considering balance

usually causes the character to tip or fall over. There are two major problems regarding

this naive tracking approach. First, there are discrepancies between physical models of

the simulated character and the human actor whose motion is recorded. Sok et al. [74]

used optimization to correct motion in order to remove these discrepancies. Second,

biped characters are underactuated because their feet are not fixed on the ground. That

is, they don’t have direct control over their global position and orientation because the

number of degrees of freedom of a character is larger than the number of its actuators

(joints in this case). This is why the problem is called underactuation. Only through

external forces such as ground reaction force can the characters regain control over the

unactuated degrees of freedom: global position and orientation. If we do not pay atten-

tion to these unactuated degrees of freedom, any tracking error will cause the character

to deviate from the reference motion and eventually to lose balance. In this dissertation,

I control the aggregate linear and angular momenta of a character which in turn leads

to control over those unactuated degrees of freedom.

Recently, several new motion control approaches used multiobjective optimiza-

tion and optimal control theory to take advantage of the realism of data examples while

employing simulation to create characters with controllable movements [2, 15, 16, 53, 48].

This dissertation uses a similar framework, most specifically [48]. However, of these ef-

forts the proposed methods have focused on locomotion and standing, but none have

focused on the problem of control for stepping. A distinction between these previous

efforts and the research work in this dissertation is that a single fixed reference motion
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is not acceptable for stepping potentially in any direction at any time.

Other physics-based techniques have been proposed to generate protective

steps [19, 43, 99, 97, 33]. Researchers at CMU graphics lab have focused on closely

related biomechanical principles of trip recovery during walking [73]. Closest to this

dissertation, Kudoh et al. [43] chose the desired foot placement using an inverted pen-

dulum (IP) model with its parameters extracted from motion capture data. Also, Jain

et al. [33] picked the desired step position such that the CM will lie in the center of

the support polygon after stepping. The main distinction of this dissertation is that the

choice of when and where to step is automatically computed by our supervisor based

on assessment of momenta. We don’t have to extract parameters for IP nor do we

use heuristics to decide foot placements. Instead, our momentum supervisor relies on

two straightforward parameters which control how fast the induced momenta should be

dissipated to automatically decide when and where to step under perturbations.

Data-driven techniques for generating steps in response to unpredicted distur-

bances without physical simulation require the collection of a large database [6, 98, 38].

In this dissertation, I synthesize motion without a reference trajectory through the goal-

directed stepping model. The stepping model is designed based on knowledge about the

principle goals of the behavior. Controlling CM and swing foot have shown to en-

capsulates many physical attributes of a single step. Previous work of Stewart and

Cremer [78, 79] has the same spirit of CM and end-effector planning. In fact, con-

trolling high-level goals such as CM, end-effector and angular momentum has shown

to be a very general approach which is able to generate realistic and flexible mo-

tions [17, 52, 93, 12, 94]. However, the control signals for these high-level goals in these

SIGGRAPH 2010 papers are either manually specified or through expensive global opti-

mization such as Covariance Matrix Adaptation (CMA) [25]. Instead, the control signals
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of these high-level goals in this dissertation are empirical evidence extracted from human

motion capture data.

2.3 Simplified Models for Balance and Locomotion

Researchers in robotics have also proposed techniques for automatic generation

of stepping motion for use in control of humanoid robots. Similar challenges in this

area include choosing step location and maintaining balance [29, 75, 76, 69, 77]. Various

numerical values have been introduced to define balance [60] and many simplified models

for control of balance and locomotion have appeared. One simplifying model is to treat

the dynamics of character as a linear IP [36] and to control the robot to perform stepping

and walking [34] based on a point mass and massless leg. Another group of researchers

introduced the concept of ‘capture point’ which is the step point which yields a single

step to recover from a perturbation [64].

Several roboticists have extended the IP model to account for change in an-

gular momentum due to disturbances. In particular, the angular momentum pendulum

model [37] and the IP plus flywheel [64] are close models to the proposed momentum-

based supervisor in this dissertation. One difference is that the IP focuses on single

stance while the supervisor proposed here considers double stance for step recovery.

Moreover, the IP plus flywheel uses a constant inertia as an approximation of the entire

body but the proposed supervisor here does not make this assumption since human

body can have different moment of inertia based on different postures. Lastly, the goal

of step recovery in this dissertation is to place the foot at the proper position to remove

all linear and angular momenta induced by a push. This strategy is supported by study

of fall recovery in the biomechanics literature [50]. On the other hand, the idea of IP
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plus flywheel is that the angular momentum can be stored in the flywheel. The stored

angular momentum can later be released to produce angular momentum when there is

a difference between the actual step position and the capture point to enhance a char-

acter’s robustness. If we follow the classification of the use of angular momentum by

Zordan in [100], IP plus flywheel uses non-zero spin (NZS) strategy while the momentum

supervisor proposed here uses zero-spin (ZS) strategy to regulate angular momentum.

2.4 Angular Momentum Control

Several researchers from biomechanics have studied the role of angular momen-

tum in human activities such as walking, turning and maintaining balance [61, 62, 26,

20, 30] and found that angular momentum is carefully regulated in the above activities.

Robotics researchers have also proposed ways to control angular momentum to improve

robustness of their humanoid robots. Kajita et al. [35] introduced ‘resolved momentum

control’ to simultaneous control robot’s linear and angular momentum to create coor-

dinated motions for activities such as kicking and walking. Goswami and Kallen [24]

suggested to keep angular momentum change to be zero as a robust way to maintain

biped robot’s balance. Abdallah and Goswami [1] proposed a two-phase strategy to

absorb disturbance by first preserving momentum and then returning to the upright

posture.

Biomechanists have also investigated the underlying mechanics of arm swing

during human walking. Herr and Popovic [26] found that the movement of arm swing

cancels out the leg angular momentum in the vertical axis. Collins et al. [11] suggested

that normal arm swing also reduces the vertical ground reaction moment acting on the

support foot. Based on these findings, I show that by continuously damping out the
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angular momentum in a character’s vertical axis leads to natural arm swings.
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Chapter 3

Goal-Directed Stepping

In this chapter we introduce a general method to animate controlled stepping

motion for use in combination of pre-recorded motion capture sequences. We use ex-

amples from a stepping motion database or from given motion segments to create an

initial interpolation and then modify it to uphold characteristics of stepping. Stepping

in our system is characterized by two simple models which idealize the movement of

stepping foot and projected center of mass (CM) based on observations of examples in

the database of stepping. Taking as basic features about the desired action, our system

computes path and speed profiles from each model and adapts the initial interpolation to

account for models’ results. We show that our animation can be enriched by choosing a

close example from the step motion database. Alternatively, we can synthesize stepping

to create transitions between two given motion segments. We demonstrate that we are

able to synthesize precise, realistic stepping for a number of scenarios.
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3.1 Introduction

Motion capture blending, editing and reordering have become the standard

suite of motion synthesis tools used for animating video games and increasing number

of feature films. A standard practice associated with such applications is the genera-

tion of ‘transitions’ which combine two motion sequences together to create one longer

sequence. Transition also plays an important role in improving a character’s responsive-

ness to a player’s inputs such as changing the character’s walking direction or changing

its behavior. However, the quality of the resulting motion depends on the choice of

method(s) used to create the transition. Since motion capture-driven animations do

not explicitly model physics, tell-tale artifacts of a poor transition generally include

unnatural foot sliding and physically implausible motion. Groups of researchers have

addressed these issues by explicitly removing the so-called foot skate [41, 31] and by

enforcing various physical characteristics during motion transition [68, 72].

In video games especially, foot skate often appears when a character is in

transition from one standing configuration to another. Unless the feet are perfectly

aligned, naive interpolation techniques will induce unnatural foot sliding as the character

goes from the beginning to the ending stance. A difficult problem in this scenario is to

create a transition which accounts for the differences in the placements of the feet while

also taking into account the movement of the body in a realistic manner. A human

actor would tackle similar scenarios by shifting the weight of the body and taking steps

to re-position the feet. We propose that a similar mechanism for stepping is necessary

to generate a plausible transition in character animation. Based on this insight, a new

problem arises during the special conditions of transitions where a character begins and

ends in double stance.
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In this chapter we introduce a general method to synthesize stepping actions

for humanoid characters. While the technique is showcased in conjunction with a motion

database of step examples to enrich the final motion, the power of the approach comes

from the control models which drive the character using idealized, parametric trajectories

for the swing foot and projected CM.

We show that these two trajectories can be simple mathematical functions

built empirically from observations of example stepping movements and parameterized

to be controlled by key features of the desired action such as step position and step

duration. The result is a stepping system that allows a character to create transition

from one double-stance pose to another automatically by stepping. The simplicity of

the approach lends itself to being adopted easily and immediately by game developers

and technical animators alike. To show the generalness of the results, we demonstrated

example stepping animations for a variety of scenarios.

3.2 Stepping Algorithm

The algorithm we employed has two particular components. First, we control

the swing foot, both its path and its speed along that path. And second, we control the

CM, again both position and velocity. We choose to control the CM in order to create

the visible weight shift that corresponds to stepping actions in humans. We demonstrate

that these two factors alone encapsulate many of physical attributes of a single step.

While we include motion examples of stepping to enrich the final motion, the main

hypothesis is that by moving the stepping foot and CM realistically we can generate

believable stepping simply. In the next chapter, we further demonstrate that these two

components really play an important role in maintaining a character’s dynamic balance
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during stepping and walking.

Our technique incorporates these two components into an animation transition

system using optimization. First, we create a starting blend by naively interpolating the

character’s current motion with an example extracted from the stepping database. We

use this sequence as the initial paths for the foot and CM. Second, we employed a per-

frame based optimizer which takes a frame from starting blend as input and produces a

modified posture that enforces the desired swing foot and CM trajectories. The choice

of timing and position for the swing foot is provided by user as input to the system.

We break the description of the algorithm into two phases, preprocessing and

step generation. In the preprocessing stage, we determine the necessary inputs to the

stepping algorithm, specifically:

1. Input (from user) the final swing foot position and step duration

2. Select a step example in database which has the closest swing foot position to the

final foot position in Step 1

3. Adjust the ending pose from the selected example using inverse kinematics (IK)

to precisely place the foot at the final position

4. Extract the CM ending place from the (adjusted) end pose

Steps 3 and 4 are used solely to determine the final position of the CM based on the

motion sequence selected. Alternatively, we can force the system to generate transition

to a specific motion sequence. In this case, Steps 2 and 3 can be skipped.

Once we have the required parameters, the stepping algorithm follows a straight-

forward sequence:

1. Compute the stepping foot path, Pf , and speed profile, Vf
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2. Compute the CM path, Pc and speed profile, Vc

3. Blend to selected example with support foot as root

4. Modify the blend with optimizer to meet CM/foot trajectories

The starting blend from Step 3 is treated as the input to the optimizer. To keep the

stance foot from moving during transition, the starting blend is performed by treating

the stance foot as the fixed root of the branching chain for the entire body. All other

parts of the body move accordingly by smoothly interpolating the included joint angles.

More details about each step are described in the following sections.

3.3 Stepping Foot Control

To define the swing foot motion appropriate for the desired step/transition, we

determine the foot’s path and its speed along that path. We assume that the path and

speed profile are related by the distance covered from start to finish. That is, the total

path displacement must equal the integral of the function chosen for the speed. We also

assume that distance covered is monotonically increasing along the path. We follow a

similar set of definitions and assumptions for CM control.

We model stepping as if it is a point-to-point reach. Upon inspection

of our database of examples, we found remarkable uniformity - nearly-linear, point-to-

point paths for each stepping foot. There has been in-depth investigation performed on

hand point-to-point movement for reaching tasks [3, 21]) and, in this body of work, it is

commonly accepted that the hand traverses an approximately straight-line path with a

bell-shaped speed profile. For our foot model, we adopt a similar estimate for the foot

trajectory, Pf , by forcing the foot to traverse the line segment formed by its starting
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Figure 3.1: Foot speed, Vf . The black, dashed curve is the idealized normal speed fit
using a Gaussian centered at 0.5. The rest are normalized sample profiles taken from
various examples in our step database.

and ending position while using a normal Gaussian to serve as the bell-shaped speed

curve:

Vf = ae
−(x−0.5)2

2w2 (3.1)

which define the speed along Pf .

This idealized speed curve is plotted in comparison to several speed profiles

taken from our database in Figure 3.1. When the recorded curves are normalized in

both time and amplitude, they show remarkable similarity, independent of the stepping

direction, the length of the step, or the duration. We adjusted the shape (width) of our

normalized Gaussian shown by manually setting the constant, w, to be 0.08. This value

is used for all our results using stepping examples. For results without using examples,

we found that adjusting the width is sometimes necessary to avoid abrupt movement of

stepping foot.

To align the speed profile with the path, we must control the area under the

curve to be equal to the distance from the start to the end of the footstep. We au-

tomatically tune the Gaussian by scaling amplitude, a, after integrating the curve for
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the normalized amplitude shown in Figure 3.1. Note this integration need only be done

once and can then be scaled by a to match the specific (known) distance covered in the

to-be-synthesized motion.

3.4 Center of Mass Control

As with the foot, to control the CM we define a simplified model which captures

the features of the human examples. Again the path and speed are both idealized

from observations about the stepping examples recorded in our database. The CM

path follows a parabola-like trajectory starting and ending at known points and moving

toward and away from the support (pivot) foot. For Pc, we found empirically that a

simple quadratic Bezier curve which uses the start and end of CM positions as well as

pivot as control points reasonably maps out the path of the CM found in examples in

our database. Comparisons appear in the results section.

For the speed, we observe consistent trends in the recorded motions that the

CM velocity which can be broken down into three phases. 1) Push off. In this phase,

before the foot is lifted, the CM begins to accelerate at a fairly constant rate toward the

support foot (pivot). 2) Free fall. The second stage has the swing foot off the ground

and we see a trajectory that mimics an unactuated inverted pendulum with the center

of mass accelerating uniformly away from the support foot (now out of static balance.)

3) Landing. The swing foot reaches the ground and the motion induced in the second

stage is dissipated with a slow changing acceleration toward the (original) support foot.

What we infer from these observations is that three stages with constant acceleration

reasonably describe the observed velocity profiles. Note, these phenomena are described
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Figure 3.2: CM speed, Vc. Ideal and actual speed profiles in the direction of the support
foot. That is, only motion toward and away from the pivot foot contribute to the data
plotted, plus signs are derived from a real example. The timing information, t0 − t3,
which delimit the stages (push off, free fall, and landing, respectively) can be estimated
from the motion example by detecting when the stepping foot leaves and touches the
ground again. Based on the pendulum model, m2 is set to gsin(θ) where θ is the lean
angle between vertical plane and support leg and g is gravity. Areas, A0 and A1, link
D, the displacement of the CM derived from Pc, to the slopes m1 and m3.

Figure 3.3: An idealized inverted pendulum which pivots about the support foot models
path and speed observations reasonably.
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in the coordinate frame oriented toward the support foot.

An idealized inverted pendulum which pivots about the support foot

models both our path and speed observations reasonably. Based on an inverted

pendulum model, our choice of path trajectory, Pc, is sensible since an idealized inverted

pendulum moves its body on a ballistic, quadratic path. To fit the velocity characteristics

for the CM, we could approximate the effects of the stepping leg as applying a uniform

’push-off’ and ‘landing’ force before and after the step. (The minimum jerk theory for

reaching partially supports this proposition [21].) An idealized constant force would

yield a constant acceleration for push-off and landing. Constant acceleration is also

reasonable for the middle phase when the body feels only the effects of gravity. Thus,

for the model of our CM speed profile, Vc, we choose the piecewise linear function

shown in Figure 3.2. We derive the terms of the velocity segments shown from known

(or approximate) values for timing, t0 − t3, and the CM displacement, D, which is

extracted from the Bezier curve, Pc.

3.5 Interpolation Synthesis for Stepping

To modify the starting blend given the stepping action parameters, we propose

a simple, but effective interpolation synthesis technique. The problem here is to con-

catenate the motion the character is currently doing followed by the stepping motion

in the example. To be successful, the transition should not introduce any unwanted

artifacts. The most straightforward solution is to align the stepping motion globally to

the character’s current position and facing direction and then to blend the root position

and orientation as well as the joint angles. However, this would introduce unnatural

artifacts such as foot sliding if we do not specifically keep the feet in place. Instead of
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using this naive blend, we align the support foot of the before and after motion and

use this foot as the fixed root for the stepping action. The system performs a simple

blend using the new root (support foot) by interpolating over the errors for the root

orientation and the joint angles of all other parts of the body across the transition se-

quence. In our implementation, our system interpolates by ‘slerp’-ing quaternions, with

a simple ease-in/ease-out (EIEO) time-based weighting across the transition. Note we

do allow the support foot to rotate across the transition. This rotation is usually small

if the facing direction of the two motions are closely aligned and acts to pivot the foot

if there is a larger discrepancy. We show that such rotations appear natural looking in

our results.

3.6 Optimization

Once we have the starting blend, we must modify it to uphold the stepping

foot and CM trajectories determined for the transition. To accomplish this goal, we first

apply IK to place the stepping foot at the desired position and then use an optimization

which has an objective function of reaching the desired CM. The optimization works

by moving the pelvis position in the horizontal plane and using an IK sub-routine [82]

to generate adjustments for each leg which enforce the proper foot placement given the

pelvis’ new position. We found it necessary to constrain the height of the pelvis so as to

not cause the change of the length of legs. To accomplish this goal, we limit the distance

between the pelvis and each of the foot by lowering the pelvis automatically such that

the leg is not stretched beyond its length. Therefore, the solver only needs to consider

the placement of the pelvis in the horizontal plane.

Our implementation uses Numerical Recipes’ BFGS [66] routine which employs
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a quasi-Newton gradient-based search to determine the pelvis location. The starting

location is taken from the corresponding frame in the starting blend. The objective

function is a weighted sum of the CM error in horizontal plane. The position of the

desired CM is extracted from Pc by moving along the Bezier curve until the normal

displacement satisfies Vc. Likewise, the stepping foot location is set each frame to follow

Pf while also satisfying the rate determined from Vf .

3.7 Implementation and Results

Our final implementation includes additional details that need to be described.

First, our stepping database was recorded by systematically creating a series of examples

of normal steps taken in each of eight directions on the horizontal plane. Each example

beginning and ending with neutral double-stance covers two steps which could be both

for the same foot, i.e. taking a step and returning to neutral stance, or one step for each

foot. This setting allows us to easily create continuous steps alternating with left and

right feet. In total, we include twenty examples in our database. We use our system in

two modes, starting from a known stance and transitioning to a modification of one of

these examples or by combining two known clips, i.e. without using an example from

the stepping database. When generating a step animation that includes an example, we

select the example in the database which is closest to the desired step location. We note

the running time of our system is fast enough to be used at interactive rates.

Results. We show two types of results in the accompanying video to illustrate

the animations which are possible using this technique. First, we show examples which

use our stepping database and include an animation of a series of steps with the left

and right feet alternately to create a careful navigation (see Figure 3.4) We compare the
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Figure 3.4: Careful stepping. Navigating an extreme environment by precisely placing
steps shows off a series of four steps completely synthesized by our system.

Figure 3.5: Comparisons for stepping. Cartesian plots for the foot and CM paths
shown in red and green lines respectively over three consecutive steps. On the left is a
contiguous motion capture example held out of the database but used as target input
for foot placement and timing. In the middle is motion resulting from our model (also
shown in Figure 3.6). On the right is the starting blend, as described in the text.

quality of a second synthesized series with a continuous motion sequence of three steps

held out of the database (see Figures 3.5 and 3.6) Next, we include two animation results

that are generated without the examples from database. The goal here is to breakdown

the contributions of each component of our system and to show off the power of our

technique for creating seamless transitions by stepping. In the video, we show a turning

task which is derived from simply rotating a contiguous motion of a “ready-stance”

in martial arts to certain degrees. We contrast the optimized result with the starting

blend. Next, we modify a series of fighting attacks to control the direction of one kick

by changing the stepping motion prior to the attack.
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Figure 3.6: Animation of a series of steps pivoting on the left foot. The red X marks
the consecutive end locations of the steps synthesized, the X values were taken from the
motion capture sequence shown on the left in Figure 3.5.

3.8 Discussion and Conclusions

We have demonstrated the power of our simple method for generating con-

trolled stepping movement. The underlying assumptions in our system are motivated

by motor theorists and are supported by comparisons with motion capture examples

of stepping. While the technique is very simple, used in combination with a stepping

motion database we can generate rich motion that is comparable to unmodified stepping

motion.

Our approach does include certain limitations. First, the system does not make

any modifications to the upper body. While we know the upper body will respond to

the movement of the lower body during stepping, we rely on the upper-body response

embedded in the stepping example. When we remove the use of example, the motion

of the upper body is computed solely from the interpolants and their blend. There

is no guarantee that this will result in realistic motion. Likewise, the pivoting of the

support foot is derived solely from the starting blend and we feel it is acceptable but

not truly reflective of what we see in the motion database. In the next chapter, we

will show that by controlling a character’s aggregate linear and angular momenta we
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are able to generate full-body movements including arm swings without motion capture

examples. Second, the piecewise linear model for the velocity of the CM is likely too

over-simplified to match human motion tightly, although we found it acceptable for

our purposes. And finally, if user inputs a desired stepping position whose distance is

farther than the reaching scope of a single step for the character, our system currently

is unable to automatically generate multiple steps to achieve the desired step position.

This problem generally requires a sophisticated motion planning routine which is beyond

the scope of this work.

Motion generation from a system like the one proposed here is useful for directly

animating a character. However, we believe it is also potentially valuable for informing

a control system when employed in the activation of a physical character. We see this

as a promising direction for future work and show our latest system in the next chapter.

Moreover, the system we describe is easy to implement and fast to run, and so we hope it

is adopted by game developers and animators who need to take steps toward stepping.
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Chapter 4

Stepping and Push Recovery with

Momentum Control

This chapter proposes a technique for animating simulated characters to per-

form controlled steps. The desired step is controlled by high-level goals, namely step

position and step duration. These stepping goals guide desired time-varying values for

center of mass and stepping foot which in turn lead to objectives dictating the desired

changes in momentum and joint angles over the duration of the step. Our approach em-

ploys a multiobjective optimization to solve for joint accelerations from the objectives

and uses inverse dynamics to compute joint torques. Our approach can guide a charac-

ter with purposeful, directable steps for controlling careful navigation of the character’s

position and orientation. In addition, the same system can be used to create protec-

tive steps to prevent falling as a reaction to perturbations. A novel supervisory routine

automatically chooses when and where to step based on an analysis of the momentum

conditions for the character. We contrast this approach to previous methods for step

recovery using the inverted pendulum.
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4.1 Introduction

Creating controllable responsive characters is a challenging open problem in

computer animation and is essential for real-time applications such as electronic games.

Physically based simulation holds promise for animating realistic characters in interac-

tive environments. Through simulation, the interplay between characters, objects, and

their surroundings can be generated automatically by constraining the motion to follow

the dynamic equations of motion. However, developing robust and flexible controllers

for simulated characters remains a difficult problem. In this chapter, we present a con-

troller which allows characters to step in arbitrary directions both voluntarily and as a

result of perturbations.

Stepping is a fundamental skill involved in common activities such as walk-

ing and full-body maneuvering from foot repositioning. As such, stepping is a critical

behavior for applications involving virtual human avatars. For example, characters in

electronic games must be able to change their stance and facing direction in response

to a player’s inputs. We propose a controller to conveniently synthesize a wide range

of stepping behaviors such as directed stepping for change of stance, reactive step for

maintaining balance and continuous steps for walking. The inputs to our controller

are generic task goals, namely step position and duration, which allow us to apply the

technique to various situations and different character morphology.

Furthermore, we introduce a hierarchical control approach to direct stepping

that employs a novel momentum-based analysis in a supervisory stage to determine

both when and where to step. Given the supervisor’s selection of stepping goals, a

parameterized curve generator computes desired trajectories for the center of mass (CM)

and the stepping foot. More specifically, we use the trajectories developed in previous
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chapter as the desired paths. By doing so we benefit from the realistic human motion

capture data. Furthermore, we demonstrate that the desired trajectories developed in

previous chapter not only are valuable for use in kinematics model, but are also critical

for use in physics model. These two values lead to behavior-specific objectives which

guide changes in character’s linear momentum and joint angles over the duration of the

step. Automatic conversion from high-level goals to low-level control signals has been

applied to generate procedural gaits and steps using kinematic models [80, 91]. Here we

apply similar technique to generate controllable steps using a physical model.

Contrasting our approach to inverted pendulum (IP) techniques [65, 64], we

find that considering both linear and angular momenta is especially important for step

response to perturbations. This finding is supported by biomechanists whom have shown

that humans carefully regulate angular momentum in activities such as walking [26].

Although the IP plus flywheel was also introduced to incorporate angular momentum

in [64], our momentum analysis formulation is straightforward and is supported by

biomechanics literature [50] as we explain in Section 4.3.

The main contribution of this chapter is our formulation for choosing when and

where to step in response to perturbations. Including angular momentum in our for-

Figure 4.1: A sample output for a directed step
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mulation improves a character’s robustness under perturbations compared to IP models

which only consider linear momentum. A second contribution is our high-level control

for the flexible synthesis of goal-directed stepping. We demonstrate the generality of our

technique through exploration of three classes of stepping behaviors: directed stepping

for navigation, reactive stepping in response to perturbations and continuous stepping

for walking. We also show that our stepping controller can be seamlessly applied to dif-

ferent character morphology, such as a character in handstand and a dinosaur character.

4.2 Control Structure

We use a three tiered architecture to control a character to step. At the lowest

level we employ a control technique described by Macchietto et al. [48]. That is, a

multiobjective optimization solver determines desired joint accelerations and an inverse

dynamics computes joint torques from the output accelerations to drive a character

simulation. In our case, the solver objectives are informed by input signals which are

computed once per footstep, automatically, based on the conditions and goals of the

specific behavior.

At the core of our controller, the system directs the step through automatic

specification of two straightforward “goal” input signals, one for the CM and one for the

swing foot. Their desired trajectories are modeled by two parametric curves based on

empirical models built to follow similar paths extracted from motion capture data [91].

To convert the input signals to the objectives, we interpret the CM acceleration as linear

momentum change and use inverse kinematics (IK) [82] to compute a pose that achieves

the desired foot trajectory.

At the highest level, a user or a supervisory routine directs the high-level
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characteristics of the behavior, namely the position of the swing foot and the duration

of a step. For a reactive step, the supervisor guides the choice of when and where to

step based on an analysis of the momentum conditions for the character. We highlight

details with respect to the supervisor next.

4.3 Goal-Directed Stepping

Starting from double stance, the character can take intentional steps by em-

ploying our step controller. In the simplest manner, the user can direct the system by

specifying a new location for one of the feet. A reasonably large range of foot positions

can be controlled. Default timing and stepping height are employed, although these

values can also be controlled to change the style of the step. Generating motion in this

manner is similar to driving animation with desired footprints as in [83].

4.3.1 Reactive Stepping

For reactive stepping, the supervisor automatically determines when and where

to step by assessing the character’s current momenta. Unlike the linear IP plus a fly-

wheel [64], our formulation does not have the constraint of a constant height of CM and

avoids the simplification of the flywheel which has a fixed moment of inertia. Instead,

we use the relationship between full-body momenta changes and control over the CM

and center of pressure (CP) [48]. This relationship allows us to skip the approximation

of the rotational inertia of the body.

CP can be expressed as a function of the linear momentum change, L̇, angular

momentum change, Ḣ, and the CM, c,
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Figure 4.2: Assuming no additional forces, change of angular momentum around the
CM (green circle) can be expressed as a cross product of the ground reaction force and
the torque arm which is the distance from the CM to the CP (blue circle).

px = cx −
L̇x

fz
cz −

Ḣy

fz
(4.1)

py = cy −
L̇y

fz
cz +

Ḣx

fz
(4.2)

where fz = L̇z + mg is the vertical ground reaction force, m is the total mass of the

character and g is the positive gravitational acceleration. The above equations are the

expansion of Ḣ = (p − c) × (L̇ + mg) from a static analysis of momenta (See Figure

4.2). More specifically, assuming no additional forces, change in a character’s linear

momentum is equivalent to the difference between the ground reaction force and force

due to the gravity, i.e. L̇ = f−mg. Next, since torque is equivalent to change in angular

momentum. If we draw a line from a character’s CM to its CP, the character’s change in

angular momentum can be expressed as a cross product of the ground reaction force and

the torque arm which is the distance between CM and CP, i.e. Ḣ = (p− c) × f . These

two equations can be combined into one due to the same variable, f . By combining

these two equations we have the final equation Ḣ = (p − c) × (L̇ + mg). The same
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Figure 4.3: The goal of a reactive step is to arrest the induced linear and angular
momenta denoted by L and H respectively.

equations 4.1 and 4.2 are referred to as the predicted zero moment point (ZMP) in

robotics literature [60]. CP and ZMP are equivalent [23] if the predicted ZMP is within

the support and the character is only in contact with flat ground. The value at the edge

of the support means the support is or will rotate and is a powerful indicator that the

character should take a step.

According to the fall recovery mechanisms reviewed in biomechanical literature,

linear and angular momenta induced by a push are neutralized during the impact phase

of swing foot contact [50]. We infer that a reactive step arrests the induced momenta by

a push through proper foot placement. Assuming current linear and angular momenta

of the character are L and H, simple but effective desired momenta changes can be

specified as

L̇des = −dl · L (4.3)

Ḣdes = −dh ·H (4.4)
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where dl and dh are damping variables. Substituting these desired momenta changes

into Equations 4.1 and 4.2 gives us a new desired CP which accounts for the desired

momentum changes:

pxdes
= cx +

dl · Lx

fz
cz +

dh ·Hy

fz
(4.5)

pydes = cy +
dl · Ly

fz
cz −

dh ·Hx

fz
. (4.6)

We use Equations 4.5 and 4.6 to determine whether the character should step

or not. We use the condition that the desired CP is outside of the current support as

an indicator for when the character needs to step. When this occurrence is indicated,

we anticipate that the support foot will soon rotate and therefore the character should

take a step to prevent it. In contrast, Equations 4.1 and 4.2 do not indicate a step

until the CP (ZMP) reaches the actual edge. We point out that Equation 4.5 and 4.6

depends only on two momentum damping terms dl and dh to decide when to step. The

rest terms are the character’s current states, such as CM position, linear and angular

momenta, which can be computed.

CM position and velocity have been used for the prediction of step initiation

based on the IP model [58, 65]. Ours is different in that we also consider the angular

momentum around the CM (Equations 4.5 and 4.6). The combination of linear and

angular momenta provides better prediction of a character’s stability than the IP. We

also note that the damping values dl and dh affect the character’s tendency to step.

Higher damping values imply the character is more conservative and is more l to take

protective steps. Equations 4.1 and 4.2 give us no equivalent control over this tendency.

In all of our results, we set dl = 4 and dh = 6.

38



4.3.2 Where to Step

To step, we select the foot which is closest to the new desired CP as the swing

foot. Default timing and stepping height are employed unless otherwise specified by the

user. Next, we employ Equations 4.5 and 4.6 with increased gain values (dl = 9 and

dh = 18) to compute a conservative position which is farther out for where to step. The

reason to compute a conservative step position is because the desired step position is just

outside of support polygon when a step is indicated. Instead of taking a small step or

being liberal, we opt to take a more conservative step to improve a character’s stability.

We choose to place the character’s foot at a (conservative) estimate for the desired

CP value in order to enable the ability to push from that point on the ground plane.

In practice, this simplification works well because the stepping foot location provides

the most promising vantage point from which to push through the desired CP. This

is especially clear in situations when multiple steps are required to maintain balance

because the old support is lifted quickly following the stepping foot’s touchdown.

4.3.3 Comparison to Capture Point

Before going on to step synthesis, we perform a brief analysis of our method in

comparison to capture point control, which is an alternative technique used to choose

where to step in robotics. Capture point [65, 64] is based on an IP model with a

constant height of CM and can be shown to be the same as the position of CM plus a

velocity-scaled term or

xfoot = cx +

√
cz
g
ċx . (4.7)

(We focus on the x axis for brevity). While this result is derived from an energy analysis,
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upon observation we see that our approach adds an extension to the capture point with

a term that accounts for the change in full-body angular momentum induced by external

perturbations.

With careful inspection, we can reduce the differences between the capture

point and our method. First, since capture point does not consider angular momentum,

we could ignore angular momentum by zeroing out dh in Equation 4.5. Second, capture

point’s constant CM height assumption implies fz = mg and by definition Lx = mċx.

Finally, capture point is a model of single support; therefore the desired CP coincides

with the foot. Applying these differences to Equation 4.5 gives us the following expres-

sion:

xfoot = cx +
dl · cz
g

ċx . (4.8)

Comparing this simplified version of our system to capture point, we see that if we

choose dl =
√

g
cz

, Equation 4.8 is exactly the same as capture point. Assuming an

average human CM height of 1 meter,
√

g
cz

≈ 3.1 is not far from our choice of dl = 4.

Further comparison appears in our animation results.

4.4 Parameterized Stepping Model

Based on the stepping goals specified by the supervisor, our system automati-

cally plans the desired positions of the CM and the swing foot over the duration of the

step. The desired trajectories are idealized by two parametric curves based on empirical

evidence extracted from motion capture data.

To fit within the multiobjective controller described in [48], our parameterized

step model should provide both tracking and momenta objective values. The tracking
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objective requires joint accelerations which follow a given reference trajectory. In our

case, we use a default pose and modify it using IK to follow a synthesized foot path. For

momentum, we control the CM trajectory and convert this trivially to desired changes

in linear momentum. We also control angular momentum change, but only about the

vertical axis since angular momentum about the horizontal axes is controlled by the step

position.

4.4.1 Swing Foot Control

We found the appearance of the overall behavior particularly sensitive to the

chosen stepping path. After some experimentation, we model the desired motion of the

swing foot as if it is performing a point-to-point reach - that is, considering the foot as if

it is the end effector and treating the step as if it is a reaching task [91]. There has been

in-depth investigation performed on hand point-to-point movement [3, 21] and in this

body of work the hand traverses an approximately straight line path with a idealized

bell-shaped speed profile. We adopt a similar estimate for the foot trajectory (See Figure

2). We use a synthetic Gaussian function to serve as our speed profile with a width set

to 0.08, as in [91]. We automatically tune the Gaussian by scaling its amplitude such

that the traversing distance matches the desired step displacement.

For tracking, we compute the desired acceleration for the joint angles:

θ̈des = kT (θr − θ) + dT (θ̇r − θ̇) + θ̈r (4.9)

where θr, θ̇r, θ̈r are the reference joint angle, velocity and acceleration computed at

runtime based on the swing foot trajectory. The reference joint angle is resolved at

runtime using IK from the simulated CM. Ideal positions of the CM and the swing foot

are treated as the desired root and end-effector for solving ideal motion and reference
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Figure 4.4: Cartesian plots for the paths of swing foot (line) and CM (curve) for a
motion capture example (left) and our model (right).

joint velocity and acceleration are approximated using finite differencing from this ideal

motion. In practice, we also found it necessary to lift the foot slightly to avoid unwanted

contact between the foot and the floor - a second 0.08-width Gaussian function with

controllable maximum height served for this requirement.

4.4.2 Center of Mass Control

Empirically, we have found that the path of CM observed in the motion capture

data could be reasonably mapped using a quadratic curve (See Figure 4.4). Specifically,

we employ a quadratic Bézier with the position of the current CM, the support foot

(pivot), and the midpoint between the pivot and the desired step position as the suc-

cessive control points [91]. Although this CM trajectory seems overly simplified, while

in single support the CM does follow closely to a quadratic curve, since the body is in

a controlled fall. This simplification is consistent with the IP model commonly used for

prediction in robotics [36, 64].

We compute the desired CM acceleration using the following equation:

c̈des = kL(cr − c) + dL(ċr − ċ) + c̈r (4.10)
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Figure 4.5: The desired CM trajectory can be automatically computed by using current
CM, the pivot and the midpoint as control points.

where cr, ċr, c̈r are the reference CM position, velocity and acceleration respectively.

The values kL and dL are manually selected and kept as constants in all our results. We

sample the entire curve using an ease-in/ease-out function to determine the reference

CM positions. Reference CM velocity and acceleration are approximated numerically

from the sampled CM positions over time. Equation 4.10 is then transformed to linear

momentum change by multiplying the character’s mass.

Finally, we control the angular momentum in the character’s vertical axis.

More specifically, damping the angular momentum around the character’s vertical axis

creates the swing of the arms. This result is supported by work in both biomechanics [26]

and robotics [35] fields. We accomplished this by adding a simple damper in the angular

momentum objective:

Ḣz = −dz ·Hz . (4.11)
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Figure 4.6: More examples on the approximation of CM trajectories (red) using
quadratic Bezier curves (green)

Figure 4.7: CM follows a sinusoidal path during walking and the required step duration
is automatically determined by capture point which is CM position plus a scaled CM
velocity term. We know exactly when to put the foot down because CM position and
CM velocity are explicitly controlled by our controller as in Equation 4.10.
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4.5 Continuous Stepping

By recursively applying the supervisor after each step, we are able to generate

multiple reactive steps to regain a character’s balance. Furthermore, with the power

and versatility of our step controller, the construction of a walking behavior required

only slight modifications to allow for alternating steps.

Similar to directed and reactive stepping, the inputs to our walking controller

are also step position and step duration. We use a series of equal length steps to generate

a steady walk for our walking example. According to Herr et al [26], the angular momen-

tum is highly regulated and the value is close zero during human walking. Furthermore,

as our comparison with capture point in section 4.3.3, if the angular momentum is negli-

gible, the desired CP in Equations 4.5 and 4.6 can be simplified to capture point. Given

the equal length step positions, we use capture point to automatically determine the

step duration. As mentioned in section 4.3.3, capture point is simply the position of

CM plus a term with the scaled CM velocity. Since we dictate the desired CM position

and CM velocity in our CM control (section 4.4.2), we can easily compute the position

of capture point at any time. In order to make the character walk continuously, the step

duration is automatically determined such that the swing foot aligns with capture point

when it touches the ground. In Figure 4.7, CM is represented as a green circle and the

arrows indicate the positions of capture point which are the desired step positions in

order for the character to walk continuously.

4.6 Implementation and Results

To demonstrate the power of our approach we present a series of animation

results that highlight unique aspects of our system. All simulations were performed
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in real-time on a 2.4 GHz processor. The multiobjective optimization was solved at a

frequency of 60 Hz and the inverse dynamics computed joint torques at the simulation

rate 2000 Hz.

Directed stepping. To show the basic operation of the tool, we input a series

of footsteps for the character to follow. Each footstep is shown as a red indicator in the

animation (as in Figure 4.1). We demonstrate that we can reorient and position the

character by taking a small number of directed steps. Further, because only high-level

goals are controlled and no character specific parameters are set, we can change the

character’s configuration. We showcase the value of this aspect of our system by making

the character take steps in a handstand.

Reactive stepping. Responsivity is an important feature of the controller.

In the related animations, we show that the character can sustain multiple impulses

by taking steps in various directions. Each impact is 170 N applied for 0.1 sec. The

resulting action is both complex and believable, especially considering no motion capture

data was used (Figure 4.8). In addition, we show that the supervisor can opt not to

take a step and instead use standing balance control [48] to respond to the impact. As

mentioned in Section 4.3.1, dl and dh can be used to control the character’s tendency to

step.

Our stepping mode is considered between statically stable steps, i.e. zero initial

velocity and zero target velocity. However, the impact force created by the swing foot

contact might cause non-zero target velocity after each step. This effect is not a problem

as our system can recursively apply the supervisor after each step to automatically

determine if another step is needed.

Comparison to IP. We contrast our momentum supervisor to IP by follow-
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Figure 4.8: A reactive step generated automatically in response to a disturbance.

ing the descriptions in Section 4.3.3. In this comparison, the IP does not include the

angular momentum terms in Equations 4.5 and 4.6. The result shows the momentum

supervisor initiates the recovery earlier than the IP under the same impact. Under small

disturbance, both IP and momentum supervisor are able to maintain character’s bal-

ance by stepping. However, being able to quickly initiate a step is especially important

under large disturbance. We show that our supervisor can still keep the character in

balance while the IP fails when the force is increased to 250 N for 0.1 sec. For clarity

we note that this is not exactly the capture point since our domain is double support

while capture point is single support.

4.7 Conclusions

In this chapter, we present a goal-directed controller for simulated characters

to perform directed and reactive steps by guiding the CM, and the swing foot. The char-

acter is able to follow the desired step positions (footprints) specified by the user. The

same controller works for different character morphology. To react to a disturbance, the

character can take protective steps computed automatically by our momentum-based
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Figure 4.9: The character is able to take multiple steps under a large perturbation when
we apply the supervisor after each step (top). IP does not consider angular momentum;
therefore, the character is less robust than the one using our supervisor and fails to
maintain the character’s balance under a large perturbation (down).

supervisor. Considering both linear and angular momenta in the supervisor improves

character’s robustness to disturbances. Lastly, the required number of steps is automat-

ically determined by applying the supervisor after each step.
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Chapter 5

Anticipation from Example

Automatically generated anticipation is a largely overlooked component of re-

sponse in character motion for computer animation. In this chapter, we present an

approach for generating anticipation to unexpected interactions with examples taken

from human motion capture data. Our system generates animation by quickly selecting

an anticipatory action using a Support Vector Machine (SVM) which is trained offline

to distinguish the characteristics of a given scenario according to a metric that assesses

predicted damage and energy expenditure for the character. We show our results for a

character that can anticipate by blocking or dodging a threat coming from a variety of

locations and targeting any part of the body, from head to toe. Since this work is a col-

laboration with my other colleagues, this chapter will focus on my contribution, motion

interpolation synthesis, i.e. creating physical plausible motion transition from current

to selected anticipatory motion from the database. Please refer to [102] for details of

other aspects of the system such as assessing damage and supervised learning.
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5.1 Introduction

Anticipation behavior has been largely overlooked in computer-generated char-

acters, especially in interactive settings such as virtual environments and electronic

games where such motions must be computed automatically. While responding after an

interaction has received considerable attention and is necessary to uphold the physical

realism of contact resulting from an interaction, anticipatory response before an interac-

tion is an important component for making characters appear alert to their environment

and conscious about themselves. In this chapter, we introduce a novel technique for gen-

erating anticipation that selects from a database of possible motion capture examples

of anticipation based on the specific conditions of an impending interaction.

As our testbed we focus on making a character anticipate and block a threat

coming from a range of directions, heights, and speeds. We focus our domain on a

character which starts from an idle, standing state (rather than anticipating interactions

starting from any arbitrary state.) However, we do not make any assumptions about

the activities that the character can do in regards to anticipation. Instead, we add a

large variety of anticipation clips (examples) to a database, including actions such as

taking protective steps, ducking, or lifting a leg off the ground to protect against a

threat. In contrast to previous research [51] which builds a model of anticipation drawn

from psychology, we rely on human performance in the form of anticipation examples

to produce lifelike anticipatory actions and focus our effort on the motion interpolation

systhesis technique which creates seamless transition between motions.
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5.2 Related Work

Several researchers have introduced techniques that generate responses for mo-

tion capture-driven characters reacting to unforeseen influences [56, 101, 95, 70, 49, 103,

6, 38]. In general, previous methods for responding to an interaction take into account

the physical components related to the impact, either in the form of a simulated collision,

as in [19, 101, 49, 103], or by modifying dynamic parameters of the character motion,

such as joint velocities [56, 6] or momentum [37, 38]. The result of creating these kinds of

changes is character motion that gives the impression of responding physically following

the impact.

To our knowledge, our previous research effort [51] is the only one reported on

anticipation for character response. In that paper, we use insights drawn from psycho-

logical literature to infer the proper behavior mechanisms to employ for anticipatory

action and develop heuristic rules that are consistent with psychological findings. Our

previous results included anticipating impacts to the head and upper body. In contrast,

in this work we employ examples of anticipation taken from motion capture which are

more natural-looking.

5.3 Overview

Our system combines a selection routine, which decides the anticipation action

to employ from a library of examples, with a motion interpolation synthesis step which

blends from the current motion to the anticipation motion, taking into account balance.

Following the system flow diagram in Figure 5.1, we assume the character starts in

idle standing balance (upper left.) When an interaction (or threat) is recognized, the
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Figure 5.1: System flow diagram

system selects the anticipatory clip to employ using the SVM. Next, in the interpolation

synthesis step, a transition to the example motion is generated, making adjustments to

balance by controlling the center of mass across the transition. After the anticipation is

complete, we compute a dynamic response [103] if there is contact and finally return to

the idling motion with a final blend.

5.4 Balance Adjustment

To generate animation given the anticipation action selected from trained SVM,

we propose a simple but effective motion interpolation synthesis technique that accounts

for balance. The problem here is to concatenate the motion the character is currently

doing, for example standing or idling, and to follow it with the selected anticipation

motion from example. To be successful, the transition should not introduce any un-

wanted artifacts such as food slide. The most straightforward solution is to align the

anticipation motion globally to the character’s current position and facing direction and

then to blend the root position and orientation as well as the joint angles. However, this
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naive approach would likely introduce unnatural foot sliding since there is no guarantee

that the feet are in the same configuration before and after the transition.

To overcome this issue, we apply a balance adjustment step for the motion

interpolation synthesis. Our specific routine is somewhat related to previous approaches

for balance filtering [81, 51] but is unique because we approximate a purposeful weight

shift during transition from one motion to another. That is, the system shifts the weight

toward one foot, based on the foot in the anticipation example that is carrying more of

the weight. Then, we use the newly selected “support foot” as the fixed root for blending

and use the inverse kinematics (IK) routine described by Metoyer et al. citemetoyer:2007

on the other leg to keep the foot on the ground. The goal is to make the character lean

in the direction of one foot and slide the other foot into place - the effect is a quick

adjustment of weight that is largely imperceptible and, we believe, quite natural for

situations where double support is followed by a sudden anticipatory movement.

To accomplish balance adjustment, our algorithm moves the center of mass

smoothly toward the support foot, running an optimization step using BFGS to place

the pelvis, and using IK to reposition the legs while keeping the feet fixed. This step

is similar to center of mass control employed in Chapter 3 but without the quadratic

Bezier trajectory. With the center of mass over the support foot, the system performs

the blend to the selected example by aligning the support foot in the example motion

with the current motion. During blending, the center of mass is returned smoothly

to the unmodified position for the anticipation example. While we do not move the

non-support foot explicitly in the balance adjustment process, the weight is shifted to

the support foot which is used as the (fixed) root for the interpolation blend, and the

non-support foot is therefore allowed to move as the blend takes place. We found it

important for visual quality to use IK on the non-support leg and keep the foot on the

53



Figure 5.2: Two examples of anticipation from our system (view left to right).

ground, both avoiding lifting the foot and from potentially passing through the ground.

5.5 Implementation and Results

To realize our approach, we had to make several engineering and design deci-

sions including how to construct our database and how to implement the various com-

ponents. For our anticipation library, we include a set of examples which we capture

methodically as blocks and anticipations protecting from several directions, targeting

various areas of the body (legs, pelvis, trunk, head) and with two varying degrees, mild

and exaggerated. In the capture, the subject was asked to imagine a threat approaching

from each of eight directions. To ensure that the directions were consistent, a second

person stood outside of the capture region and acted out a throwing motion to cue the

subject. After each direction, the subject reset to a home position and the ‘thrower’

moved to the next location in preparation for the next direction. In total, we include

sixty examples of anticipation which are segmented and mirrored (left-to-right) totaling

120 in the final repository.
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To create the animations shown in the video, our system interpolates to the

anticipation example by ‘slerp’-ing quaternions, with a simple ease-in/ease-out (EIEO)

time-based weighting across the transition. With the blended motion to the anticipa-

tion in place, the interaction itself is finally computed. If the interaction results in a

contact (e.g. the SVM did not choose an anticipation that dodges a ball completely,)

we incorporate a version of Zordan et al.’s [103] technique for responding to unpredicted

impacts. This subsystem utilizes the ODE simulation to react physically to collision

forces and then generates a smooth transition by interpolating between the anticipation

and simulated motion. After a short duration, the simulation is blended back to the

idle behavior or, at the animator’s discretion, to a reaction example as described in the

original implementation.

Results. We show in the accompanying video a variety of examples (See

Figure 5.2) where the character is able to successfully dodge an incoming ball as well

as believably anticipate and physically react to threats which the character is unable

to avoid completely. In addition we show a set of animations where we make other

modifications to test the limits of the system, namely: we modify the starting state

to begin from a fighting motion taken from a different source (actor); and we add an

example where the dynamic response returns to a new reaction example. The dynamic

response is too slow for real-time currently, but without it, the system runs interactively

using an AMD Athlon64 CPU with 2 Gigabytes of memory (with hardware rendering.)

5.6 Conclusions

In this chapter, we present an approach for generating anticipation using hu-

man motion capture examples. We employ supervised learning to select the example
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based on the given scenario and train our learner on observations where damage and

energy are factors in determining the most suitable anticipation for the conditions of

the scenario. To limit our scope, we focus our attention on a specific testbed where a

standing character responds to a threat approaching from a variety of trajectories.

As described, there are a number of limitations with our current approach.

Foremost, we assume that the character is starting in standing balance and while we

do allow the character’s state to vary, the range of starting states for most of our

animations is fairly narrow. This issue is due to the fact that the anticipation we

generate is computed using interpolation synthesis and to generalize to a larger set of

starting states we would need to improve this component of the system in order to

uphold the quality of the motion generated. Lastly, in some animations, the character

appears omnipotent or ”super-human.” Adding delays, noise, and/or failed attempts at

anticipation would fix this problem and fit nicely within our existing framework.

Even with these limitations, this work represents a large step forward in the

state of the art for automatically generating anticipation action for characters and we

look forward to further advances in this exciting topic in the near future.
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Chapter 6

Conclusions

Through this work, I have demonstrated that controlling high-level goals such

as full-body linear momentum, angular momentum and end-effector is an effective way

to produce realistic coordinated movements of stepping. Controlling these high-level

goals only requires low-dimensional input signals despite a character’s high degrees of

freedom which usually range from 30 to 60. The design of these desired input signals is

inspired by principles and knowledge from biomechanics, robotics and neuroscience.

Figure 6.1: Since only high-level goals are controlled, we can apply the algorithm to
different character morphology.
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Controlling a character’s linear momentum change is equivalent to the control

of CM acceleration. CM behaves like an IP pivoting about the support foot during the

swing phase of stepping and walking [89]. During this phase, humans shift their weights

toward the support foot to avoid falling laterally while moving forward. I have shown

that the desired CM trajectory during this phase can be reasonably mapped out by a

simple quadratic Bezier curve with the beginning of CM, the pivot and the midpoint

between the pivot and end position of swing foot as control points.

Several biomechanists and roboticists have investigated the underlying mechan-

ics of arm swing during human walking. Herr and Popovic [26] found that the whole

body angular momentum is small, despite substantial segmental momenta, indicating

large segment-to-segment cancellations during walking. In particular, the movement of

arm swing cancels out the leg angular momentum in the vertical axis. Normal arm swing

also reduces the vertical ground reaction moment acting on the foot [11]. Based on these

findings, I have shown that by continuously damping out the angular momentum of a

character in the vertical axis results in natural arm swings during stepping and walking.

Figure 6.2: Natural arm swings automatically emerge during walking when we control
the character’s angular momentum around the vertical axis to be zero.

For the control of swing foot, I modeled the motion as if it is a point-to-
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point reach. There has been in-depth investigation performed on hand point-to-point

movement for reaching tasks [3, 21] in neuroscience. In this body of work, it is commonly

accepted that the hand traverses an approximately straight line path with a bell-shaped

speed profile. I adopted a similar estimate for the foot trajectory by controlling it to

follow the line segment formed by the starting and ending foot positions. I used a

normal Gaussian function with automatically tuned width and amplitude to serve as

the bell-shaped speed profile.

Lastly, maintaining a character’s balance is also a low-dimensional problem.

From Equations 4.5 and 4.6 we know the important features are CM position, linear

momentum L and angular momentum H relative to the support polygon. I have shown

that considering both linear and angular momenta enhances a character’s robustness

under perturbations compared to IP which only considers linear momentum. The pro-

posed supervisor automatically computes when and where to step under perturbations

with a straightforward goal: to remove all linear and angular momenta induced by a

push. This control law is supported by biomechanics literature of fall recovery [50].
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