
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Optimization: Stochastic thermodynamics, machine learning, and numerical algorithms

Permalink
https://escholarship.org/uc/item/9036544q

Author
Wadia, Neha Spenta

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9036544q
https://escholarship.org
http://www.cdlib.org/

OPTIMIZATION: STOCHASTIC THERMODYNAMICS, MACHINE LEARNING, AND
NUMERICAL ALGORITHMS

by

Neha Spenta Wadia

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Biophysics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael I. Jordan, Co-chair
Professor Michael R. DeWeese, Co-chair

Professor Daniel S. Rokhsar
Professor Peter L. Bartlett

Spring 2022

OPTIMIZATION: STOCHASTIC THERMODYNAMICS, MACHINE LEARNING, AND
NUMERICAL ALGORITHMS

Copyright 2022
by

Neha Spenta Wadia

1

Abstract

OPTIMIZATION: STOCHASTIC THERMODYNAMICS, MACHINE LEARNING, AND
NUMERICAL ALGORITHMS

by

Neha Spenta Wadia

Doctor of Philosophy in Biophysics

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor Michael R. DeWeese, Co-chair

Optimization is a natural language in which to express a multitude of problems from all
reaches of the mathematical sciences. This is a dissertation in three parts, detailing work on
three different problems in optimization.

We begin in stochastic thermodynamics, with the problem of computing optimal operating
protocols for Brownian machines by minimizing their dissipation on average. We develop a
perturbative solution to the Fokker-Planck equation for one-dimensional driven Brownian
motion in the limit of slow driving. Calculating the average dissipation in this formalism, we
demonstrate the existence of an emergent Riemannian geometric structure in the space of
control parameters, whereby the nth order term in the average dissipation contains a tensor of
order n. We rigorously derive an exact formula for the order-2 tensor (the metric) and show
that up to second-order terms in the perturbation theory, optimal dissipation-minimizing
driving protocols minimize the length defined by this metric.

Next, we move to the world of machine learning, and study the generalization properties of
models trained with first-order optimizers on whitened data, and with exact second-order
optimizers. For a general class of models trained with first-order optimizers, we find that
the mutual information between the trained model and the dataset is strictly smaller when
the data is whitened than when it isn’t. This reduction of access to information relevant
for test performance negatively impacts generalization in a dimension-dependent manner,
worsening for high dimensional problems. Exploiting analogies between training linear models
and wide neural networks with a first-order optimizer on whitened data and with an exact
second-order optimizer, we also establish the existence of a generalization gap between first-
and exact second-order optimizers in these model classes. Experiments demonstrate that our
conclusions hold in a larger class of models than is supported by the theoretical results, but

2

that regularizing a second-order optimizer appropriately can compensate for the reduction in
generalization performance observed in the exact setting.

Finally, we study the problem of setting step sizes for discrete-time gradient-based optimization.
Taking the view that a discrete-time optimizer is a simulation of an underlying ordinary
differential equation (ODE), we set step sizes for the former by controlling the error with
which it tracks the latter. The resulting adaptive step size mechanism is highly efficient,
requiring just one extra gradient call over all iterations, and applicable to any optimizer
with a well-defined continuous-time representation as an ODE. We find empirically that this
step size routine can achieve oracle lower bounds on strongly convex functions for first- and
second-order optimizers, and that it can also perform competitively with the state of the art
on a nonconvex problem, principal components analysis.

i

To curiosity.

ii

Contents

Contents ii

List of Figures iii

1 Introduction 1

2 Optimal protocols for driven Brownian systems 7
2.1 Driven Brownian motion . 8
2.2 The thermodynamic metric . 17
2.3 The harmonic oscillator in an electric field 25
2.4 Summary and discussion . 28

3 On whitening, exact second-order optimization, and generalization 30
3.1 On whitening and generalization . 32
3.2 On exact second-order optimization and generalization by analogy with whitening 42
3.3 Experiments . 44
3.4 Discussion . 50
3.5 Methods . 52

4 Adaptive step size selection from a dynamical systems perspective 59
4.1 Adaptive step size routine . 61
4.2 Benchmark: Strongly convex functions . 66
4.3 A nonconvex problem: principal components analysis 69
4.4 Discussion . 72

Bibliography 73

iii

List of Figures

3.1 Whitening removes correlations between feature dimensions in a dataset 31
3.2 A Venn diagram of the information in the dataset and the model . . . 33
3.3 Model activations and parameters depend on the training data only

through second moments . 34
3.4 Whitening and second-order optimization reduce or prevent generalization 46
3.5 Whitening MNIST before training negatively impacts generalization in

MLPs . 47
3.6 Models trained on whitened data or with second-order optimizers

converge faster . 47
3.7 Regularized second-order methods can train faster than gradient de-

scent, with minimal or even positive impact on generalization 48
3.8 Whitening data speeds up training but reduces generalization in linear

models . 51
3.9 Whitening using the entire dataset behaves similarly to conventional

whitening, with only a slight improvement in performance. 52
3.10 The effect of whitening on linear models with non-zero parameter

initialization . 53

4.1 Gradient descent with adaptive P control 64
4.2 P control achieves complexity lower bounds for gradient descent and

the heavy ball method on random strongly convex functions 67
4.3 Oja’s rule with P control performs competitively with a 1/n step size

routine . 71

iv

Acknowledgments

It takes a village to get a PhD, and I am profoundly grateful to mine.
I must begin by thanking my advisors Mike Jordan (MJ) and Mike DeWeese (MD). MD’s

own cheerful enthusiasm for science and his relentless encouragement to me to work on the
problems that “get me out of bed in the morning” made it feel natural to think about problems
in a variety of different fields in grad school. Similarly, MJ’s insistence that I must “eat [my]
meat and potatoes” before anything else gave me the courage to slow down (so it seemed at
the time) in the middle of my PhD and devote months to acquiring baseline technical skills
in statistics and optimization - the meat and potatoes. Over the years, I have repeatedly
been floored by and grateful for MJ’s constant support of my development as a researcher.
Both Mikes have always been generous with their time, and sources of calm, good, sensible
advice. (Idealists like myself are often in need of such.)

I thank Jascha Sohl-Dickstein for mentoring me through the years of my Google PhD
Fellowship and since, and for hosting me during my internship at Google Brain in 2019. I
thank him for insisting that I ask questions, for fixing my code (and therefore teaching me
how to write better code), and for teaching me how to do research in the neural network
community. Similarly, I thank Ethan Dyer for functioning as a second mentor at Google. I
thank Sam Schoenholz and Daniel Duckworth, also collaborators on our joint work. It was a
privilege to learn from you and build experiments with you.

I have been fortunate to have been mentored by a number of postdocs at Berkeley -
Dibyendu Mandal, Michael Muehlebach, and Gui França. Dibyendu introduced me to out-
of-equilibrium statistical mechanics. Michael and Gui taught me (theory of) optimization
and (continue to) cheerfully put up with my erratic work schedule. Michael’s astonishing
discipline, Gui’s effortless creativity, and Dibyendu’s understated mastery were and continue
to be inspirational.

I learn from everyone I work with. I thank all my other collaborators not already mentioned
- Ryan Zarcone, Charles Frye, Kris Bouchard, Andrew Ligeralde, and James Simon. Ryan, in
particular - thank you for being my minus-sign catcher!

A nontrivial number of faculty both at Berkeley and at other institutions have supported
me and my professional development over the years in various ways. I thank Mike Eisen and
Michael Yartsev, whose labs I rotated in in my first year; Bruno Olshausen, Dan Rokhsar,
Bin Yu, Marla Feller, and Peter Bartlett, my qualifying exam and dissertation committee
members; Jim Hurley and John Wilkening, who facilitated my applications to various graduate
fellowships; Mukund Thattai, David Cory, and William Loinaz - it’s thanks to you I went to
Berkeley; Larry Hunter and Steve Peck - your approach to experimental work informs my
thinking still; Patrick Williamson, Bill Bialek, and Anirvan Sengupta for their advice; and
Satya Majumdar, Florent Krzakala, Lenka Zdeborova, Jennifer Chayes, and Gavin Crooks.

It has been a profound privilege to be part of the two groups in which I have spent most
of my time at Berkeley - the Redwood Center, and the SAIL group. I thank Bruno Olshausen
for building and maintaining the former, and MJ for the latter. Both these groups are packed
with kind, generous, and outstandingly talented students and postdocs from whom I have

v

learned most of what I learned in graduate school. This, I think, is the privilege of spending
time at Berkeley: My peer groups are so stellar that if even the teensiest bit of their talent
has rubbed off on me, I’m in good shape. I thank them all.

I have several senior students and postdocs to thank specifically for their guidance,
especially during the first years of graduate school and in the last one. In SAIL: Ahmed El
Alaoui, Horia Mania, Ashia Wilson, Stephen Bates, Adam Sealfon, Lydia Liu, and Nilesh
Tripuraneni. At the Redwood Center: Jesse Livezey, Mayur Mudigonda, Dylan Paiton, Yubei
Chen, Eric Weiss, and Shariq Mobin. And in the Biophysics Graduate Group: Jasmine
Nirody, Mike Levy, Eric Bolin, and Chris Habrian. I also thank my officemates in Evans
for a great time - Louis Kang, Steven Lee, Mayur Mudigonda, and Jesse Livezey - and my
floormates in SDH7 - Lydia Liu, Adam Sealfon, Meena Jagadeesan, and Stephen Bates.

My favorite part of being in SAIL was and continues to be the probability reading group
consisting of myself, Anastasios Angelopoulos, Reese Pathak, and Mariel Werner. Meeting
weekly, it took us about two years to fight our way through Concentration Inequalities by
Boucheron, Lugosi, and Massart. Now that we have finished the book we finally feel ready to
read it. Anastasios, Reese, and Mariel, thank you for teaching me probability theory, and I
look forward to continuing to read and learn with you in the coming years.

Of all the courses I took at Berkeley, Math 205A, Stat 210A, and Stat 210B were the
hardest by far. I wouldn’t have got through them without my homework buddies - Anastasios
Angelopoulos, Akosua Busia, Milind Hegde, Clara Wong-Fannjiang, Jeffrey Epstein, Mike
Fang, and Ella Hiesmayr - and the graduate student instructors - Xiao Li, Chiao-Yu Yang,
Nilesh Tripuraneni, and Jake Soloff.

I thank Kate Chase, the administrative backbone of the Biophysics program, for her
assistance in all things administrative over the years. I’m very grateful. I also thank Naomi
Yamasaki, Catherine Dea, Sarah Hamilton, and Nanette Hara in the same vein.

I thank all the many members of the campus community who make Berkeley the special
place it is. Shout out to the baristas at the Stanley Hall Yali’s, who pull the best espressos
on campus, and the baristas at the V&A (formerly Nefeli) Cafe, who make the best hot
chocolate, and the librarians at the Math Library. I thank Mary Popylisen, Jeff Chen, and
Matthew Garet, physical therapists at the Tang Center, and Bianca Rodriguez at the RSF,
for making me stronger.

Where would we all be without our friends? Vasha DuTell, Dar Dahlen, Mike Fang, Jesse
Livezey, Sarah Maslov, Mindy Perkins, Ryan Zarcone, Lester Hu, Danielle Ramos, Ruqian
Chen, Shenglan Qiao, Matt Fernald, Liz Lawler, Heidi Kleven, Ipsita Agarwal, Maggie Huang,
June Pan, Mugdha Sathe, Divya Anjan, Amy Ko, Jeff Spence, and Anne-Marie Bonnel, and
many others. Thank you for all the good times, for your care of me, and for your faith in
me. And the Friday Night Dinner crew - Aadi Ramdas, Leila Wehbe, Mayur Mudigonda,
Vish Banarasi, Siva Bandaru, Madhyama Subramanian, and Divya Anjan, thank you for the
laughter and the yummies.

Lastly, I thank all my family. I thank my aunt Anitha for her advice and perspective, and,
along with my uncle Ramesh and my grandmother Jayashree, I thank her for spoiling me
at every opportunity. I thank my brother Varun - you may be my “little” brother, but you

vi

have taught me no small lessons about how to live life. And I thank my parents, Leena and
Spenta. Words fail here. Thank you for teaching me to live a life of the mind, for establishing
the value system that I rely on in my decision-making every day, and for holding my hand all
these many years without question or complaint. I particularly thank my Dad, Spenta, my
first and longest-continuing (i.e., longest-suffering) teacher in science. It was he who taught
me most of the physics I know, and how to proceed when faced with a blank sheet of paper, a
pencil, and a question. And I thank my Mom, for putting her foot down once in a while and
making both of us do other things, for staying up with me all night once until I submitted a
paper, and who, along with all the women in science of her generation and previous ones,
paved my way in this profession.

I end these acknowledgements with an apology to anyone I may have missed here.

1

Chapter 1

Introduction

Optimization is an indispensable tool that is operative throughout the mathematical sciences.
It finds use both at the highest levels of abstraction as an organizing principle, and as a
practical methodology for problem solving. An example of the former type is the variational
formulation of the laws of gravity, mechanics, and electromagnetism. Through the action
principle, these laws emerge as the extrema of functionals called actions. On the other end
of the spectrum of abstraction we have, for example, the standard method of performing a
linear fit to a dataset, which is to minimize the sum of squared distances between each data
point and a candidate line.

In a small way, this thesis is a celebration of the versatility and ubiquity of optimization.
In it, we describe work on three different optimization problems - one in physics (specifically,
in thermodynamics), one in machine learning, and one in the engineering discipline known as
optimization. In what follows, with a general graduate-level audience in the mathematical
sciences in mind, we introduce the problems addressed in subsequent chapters and provide
summaries of results.

All the work presented herein is based on references [138], [139], and [140].

Physics, machine learning, and optimization

Optimal protocols for Brownian machines

Extracting work from a machine (extracting forward thrust from a car engine, for example)
always comes at the cost of generating waste heat (car engines typically have coolants to
absorb this waste heat and maintain a reasonable temperature). The centuries-old laws of
thermodynamics characterize this fundamental trade-off, and enable the design of operating
protocols that maximize the extraction of useful work while minimizing the release of waste
heat, or dissipation. Today, in order to understand the operating principles of microscopic
machines, such as biomolecules, there is an ongoing research effort to miniaturize the laws of
(macroscopic) thermodynamics. At the relevant length scales, where the role of thermal noise
is significant, these machines take on probabilistic descriptions, and the theoretical challenges

CHAPTER 1. INTRODUCTION 2

begin at the most fundamental level with the question of how to define quantities such as
work, heat, and entropy for a single stochastic trajectory [117]. The subfield of physics in
which these problems are dealt with is called stochastic thermodynamics.

In macroscopic thermodynamics, the state of a machine is specified by the values of its
external control parameters. These parameters are manipulated according to an operating
protocol in order to extract work. For example, the control parameters of a steam engine are
the temperature and volume of the steam. These are manipulated in a cyclic fashion in order
to extract work from the engine, say, to drive to a piston or rotate a wheel. The operating
protocol that maximizes the extraction of useful work from a steam engine while minimizing
dissipation is the celebrated Carnot cycle [36] (for a modern description in English see, for
example, Chapter 4 of [115]).1

Similarly, in stochastic thermodynamics, a machine can be abstracted as a Brownian
motion that depends on a set of tunable external parameters. Since the control parameters
vary with time, we say the Brownian motion is driven. This abstraction is not merely a
theoretical construct. Brownian engines exist [89]. Indeed, this is an area of science in which
theory trails experiment. All the more reason, then, to ask: what is the analog of the Carnot
cycle for a Brownian engine? Directly inspired by this and similar questions, in Chapter 2
we study the problem of computing dissipation-minimizing optimal operating protocols for
driven Brownian systems. The problem is formulated as follows: given two points in the
space of control parameters of a Brownian system, what is the path between the them that
minimizes dissipation on average?

For arbitrary driving dynamics, it is known that this optimization problem is intractable
[113]. But in a remarkable line of work in 2012, within a specific driving regime known as
the linear response regime, it was demonstrated that the generally intractable problem of
minimizing dissipation approximately reduces to the relatively tractable problem of computing
geodesics with respect to a Riemannian metric in the space of control parameters of the
Brownian system [127, 155]. Some questions follow. Linear response is a theoretical tool.
That is, restricting to the linear response regime on paper does not provide a prescription
by which an experimentalist can maintain a physical system in that regime. So what is the
driving dynamics in which this reduction to a geometric problem holds? Second, while the
results of [127, 155] hint at the existence of geometric structure in optimal control problems
in stochastic thermodynamics, it was not clear how firm this link to geometry is. Does it
hold only approximately, or in an exact sense, and if the latter, what precisely is that sense?
In Chapter 2, we provide answers to both these questions.

One of the reasons the optimal control problem for driven Brownian systems is hard is
that the probability density of the system is a time-dependent nonequilibrium density (i.e., it
is not given by the Gibbs measure) to which we typically do not have access. Therefore it is
usually not even possible to compute the average dissipation, let alone minimize it. To solve

1It should be noted that the Carnot cycle is not a practical operating protocol, because it requires
thermodynamic reversibility. However, it provides an upper bound on the efficiency of a certain class of
engines, and serves as both a basis and limiting case for practical operating protocols.

CHAPTER 1. INTRODUCTION 3

this problem, we developed a rigorous method of perturbatively solving the Fokker-Planck
equation of a driven one-dimensional Brownian motion, enabled by the spectral properties of
the corresponding Schrödinger operator. The perturbative expansion is in a small parameter
ν which is the ratio of the system timescale to the characteristic timescale of variation
of the fastest-varying control parameter. That is to say, we work in a regime where the
system relaxes faster than it is driven. When we computed the average dissipation in the
perturbative formalism, we found that each term acquires a tensor structure, revealing an
emergent Riemannian structure in the space of control parameters. The geometric structure
of the optimal control problem therefore derives from the specific form of the perturbative
expansion for the probability density, and persists to all orders of the expansion. The second-
order term gives a formula for the Riemannian metric in this space. Up to second order in ν,
optimal driving protocols are then characterized by geodesics corresponding to this metric.
Thus, up to second order in ν, the result of [127, 155] is exact, and not approximate.

The discussion in Chapter 2 is based on joint work [139] with Ryan Zarcone and Michael
DeWeese.

Generalization properties of exact second-order optimizers by analogy with data
whitening

The canonical problem of machine learning can be stated as follows: given a dataset, learn a
function over the data that will perform well (by some metric) when it is evaluated on or
used to predict new data. The form of this problem is forced by the fact that we do not
usually have knowledge of the data generating process. If we did, we could simply “learn a
function over the data” as opposed to learning a function over the available (“training”) data
that will generalize to unseen (“test”) data. Optimization is the core tool by which we solve
this proxy problem over the training data, usually by extremizing a performance metric of
some kind. Canonical examples are a cost function over the data (in which case we minimize)
or a reward function over actions (in which case we maximize). An important open problem
in machine learning is to understand the relationship between the choice of optimizer and
the generalization properties of the solutions it finds.

The most widely used optimizers fall roughly into two families, first-order or second-order,
so named for the number of derivatives (one or two) of the cost or reward function they
require access to. There is some debate in the field on the relative merits of these families,
especially with respect to computational complexity and generalization performance. Second-
order optimizers are more expensive per iteration, since they require the computation of
the second derivative of the cost function, but they also converge in fewer iterations than
first-order optimizers, so they could well have lower overall computational complexity in
specific problems. Interestingly, there is evidence to suggest that the solutions recovered by
second-order optimizers do not always generalize as well as those recovered by first-order
optimizers [144]. For this reason, understanding the generalization properties of second-order
optimizers is a highly active area of research. In Chapter 3, we discuss some work in this
area.

CHAPTER 1. INTRODUCTION 4

One of our main results is the following: in the high dimensional setting, where the
size of the dataset is smaller than the dimensionality of an individual data point, exact
second-order optimizers produce models that either cannot generalize or generalize poorly.
However, approximate second-order optimizers may not exhibit this pathology. This result is
unexpected, if not downright odd, for reasons we now describe.

Computing the second derivative of the cost function at each iteration can often be
cost-prohibitive both in terms of wall-clock time and processor power. Therefore, when
implementing a second-order optimizer in a large-scale machine learning problem, the second
derivative is typically approximated in some way that reduces the computational cost of each
iteration. These approximations are usually understood as necessary compromises - ideally,
it would be better to compute the full second derivative at each iteration. However, in the
context of machine learning (as opposed to pure optimization), where we ultimately care
about generalization, the main result of Chapter 3 suggests otherwise! The result implies that
even if we could compute the full second derivative of the cost function at each iteration during
optimization, it may be better not to do so, because the resulting models will have poorer
generalization properties than if they had been trained with an approximate second-order
optimizer.

Specifically, in Chapter 3, we show that the mutual information between the trained model
and the dataset is strictly smaller if the model is trained with an exact second-order method as
opposed to a first-order method. Therefore, models trained with exact second-order optimizers
are expected to have reduced generalization performance. The result holds in theory for any
function that includes a dense matrix multiplication, but we found experimentally that it
also holds for more general function classes such as convolutional neural networks. We also
show that the drop in generalization caused by training with a second-order optimizer has
a dimension dependence, worsening for high dimensional problems. The theoretical results
follow from an analogy between exact second-order optimization and whitening, which is a
data preprocessing transform that removes second-order correlations in the dataset.

The discussion in Chapter 3 is based on joint work [140] with Jascha Sohl-Dickstein,
Ethan Dyer, Sam Schoenholz, and Daniel Duckworth.

Efficient adaptive step size methods for gradient-based optimization

There is a subdiscipline of computer science and electrical engineering called optimization, in
which the latter is studied not as a means to an end but as an end in itself. The basic problem
is the following - given a function f(x), find either its minimum value, or the argument
x⋆ that minimizes it, or both.2 It is understood that the solution to this problem will be
implemented on a computer, and so it is natural to think in discrete time.

Beginning with some initial point x0, an optimizer or optimization algorithm gives a
prescription by which to generate a sequence {x0, x1, x2, ...}, and if this sequence is constructed
correctly we can guarantee that the distance between the iterate xj and the optimum x⋆

2We will be concerned here with the case x ∈ Rd.

CHAPTER 1. INTRODUCTION 5

decreases with iteration number, and goes to zero as j tends to infinity. That is, the sequence
converges to x⋆. The rate at which the distance between xj and x⋆ goes to zero is the
convergence rate of the optimizer that generated the sequence.

To arrive at xj+1 from xj , the following two pieces of information are required: a direction
in which to step, and a step length or step size. Despite this, choosing an optimizer only
provides a prescription for computing the first of these. It usually falls to the practitioner to
make the additional choice of a step size routine in a problem-specific manner. Let us look at
the example of gradient descent,

xj+1 = xj − ηj ∇f
(
xj
)
, (1.1)

in which the update to xj is given by the product of the gradient of f evaluated at xj and the
jth step size ηj. Only the computation of the update direction is specified by Eq. 1.1. The
choice of ηj in Eq. 1.1 is crucial, and can make the difference between convergence, divergence,
and other behaviors. Consider, for example, the function f(x) = x2. It has a single optimum
at x⋆ = 0. For any xj = y, applying repeated gradient descent updates with a step size of
one will result in the iterate oscillating back and forth between −y and y. Thus the distance
between xj and the optimum x⋆ is constant and the algorithm never converges. On the other
hand, if at xj = y, we apply the gradient descent update with a step size of 1/2, then the
algorithm converges to x⋆ in a single step. Lastly, applying step sizes larger than one will
cause the iterate sequence to move away from the optimum and diverge. As illustrated by
this example, in general, any prescription for choosing step sizes must negotiate the following
mutually opposed requirements: the step size must be large enough so that the algorithm
converges in a reasonable number of steps, but small enough to avoid oscillatory or divergent
behavior. Methods that modulate the step size at each iteration to meet these requirements
are called adaptive (as opposed to constant step size methods).

Existing adaptive step size methods can be computationally expensive. For example,
linesearch is an important method for step size computation in which we search along the
next update direction for the step size that approximately maximizes the drop in function
value. [There are many details hidden in this description, see, for example, Chapter 9 of
[28].] Depending on the specifics of how this is accomplished, linesearch can add significant
computational overhead to an optimization routine.

In Chapter 4, we present an efficient alternative to existing adaptive step size methods,
inspired by techniques in the numerical analysis of ordinary differential equations. Taking
the viewpoint that a discrete-time algorithm is merely a particular discretization of an
underlying continuous-time dynamical system, we use a control mechanism to set step
sizes for the discrete-time algorithm by controlling the error with which it follows the
continuous-time trajectory. This method can be generalized to any discrete-time algorithm
with a well-defined continuous-time representation, and, if implemented appropriately, can
be surprisingly computationally efficient, requiring exactly one extra gradient evaluation over
all iterations.

In the complexity theory of optimization, an important class of results called lower bounds
[93] characterizes the maximal possible rate of convergence of a specific family of optimizers

CHAPTER 1. INTRODUCTION 6

on a specific function class. Let us continue with the example of gradient descent on a
quadratic function to unpack this. Quadratic functions are the canonical members of the class
of strongly convex functions, and gradient descent is a member of the family of first-order
optimizers. The corresponding lower bound puts a limit on how fast any first-order optimizer
can converge on the class of strongly convex functions. The choice of step size for a specific
optimizer can determine whether or not it achieves this lower bound.

We find empirically that the step size routine we develop in Chapter 4 can achieve the
discrete-time oracle lower bounds for first and second-order optimizers on strongly convex
functions, and that it can actually improve the constant in the lower bound compared to
constant step size schemes.3 Furthermore, the step size mechanism is not limited - either in
implementation or in good performance - to strongly convex functions. We find, for example,
that it also performs competitively with state of the art step size schemes on principal
components analysis - a nonconvex problem.

The discussion in Chapter 4 is based on joint work [138] with Michael Muehlebach and
Michael Jordan.

3Lower bounds typically consist of a constant multiplied by a rate of convergence. These are distinguished
by the fact that the latter depends on problem-specific quantities such as the curvature of the function being
optimized, and the former does not. Theorems establishing lower bounds usually concentrate on exactly
characterizing the rate of convergence, and not the constant.

7

Chapter 2

Optimal protocols for driven Brownian
systems

Driven Brownian motion is a paradigmatic model for a certain class of small (micrometer sized
and smaller) stochastic machines [117]. The hallmark of these systems is that quantities such
as work and efficiency fluctuate, and are comparable in scale to thermal fluctuations. Their
study, stochastic thermodynamics [119], has seen remarkable recent experimental progress,
including, for example, the implementation of microscopic single-particle heat engines [24,
89], and much theoretical activity. See [134] for a collection of recent work.

A fundamental problem in stochastic thermodynamics is to understand how small systems
do useful work while operating out of equilibrium. A natural framing of this problem is in
terms of a notion of optimality out of equilibrium, whereby a system is considered optimal if
it minimizes irreversible heat loss to the reservoir on average. Optimal driving protocols can
therefore be computed by minimizing the average dissipation over protocols. In general this
is a nontrivial optimization problem to solve [113].

The introduction of the thermodynamic metric framework [37, 127] simplified the problem
for a restricted class of systems by recasting it in a geometric picture in which the average
dissipation is proportional to a measure of length in the space of control parameters of
the system. The “length” is defined by a Riemannian metric on this space. An optimal
protocol between two points in control space is then given by the minimum of this length,
which is generally easier to compute than solutions to the original optimization problem.
This framework is a generalization to mesoscale, out-of equilibrium systems of geometrical
approaches originally developed for macroscale, endoreversible systems [141, 107, 32, 109,
108, 112, 30].

Since its introduction, the thermodynamic metric framework has found success in predict-
ing optimal protocols for a number of systems both analytically and numerically [155, 154,
105, 126, 106], and in illuminating their general characteristics, opening up a window onto
the physics of small machines that operate out of equilibrium.

The concept of a thermodynamic geometry at mesoscopic length scales emerges inde-
pendently from various different assumptions about the dynamics of the stochastic system.

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 8

All these approximations have in common a notion of closeness to equilibrium. In the
original work, the approximations were linear response plus slow driving [127]. Subsequent
work derived a thermodynamic metric under approximations of derivative truncation [155],
and timescale separation [106]. Slow driving was also assumed in order to extend the
thermodynamic metric framework to driven discrete-time systems [85].

We provide a new and rigorous derivation of a thermodynamic metric within the framework
of the Fokker-Planck equation for Brownian motion with time-varying control parameters.
We work in a regime in which the control parameters vary on a timescale that is much
longer than the intrinsic timescale of the system, which is set by its relaxation time. The
solution to the time-dependent Fokker-Planck equation is obtained as an expansion in a small
dimensionless parameter ν that is the ratio of the relaxation time of the system to the the
shortest characteristic timescale of variation among the control parameters. The expansion is
enabled by the spectral properties of the corresponding Schrödinger operator. The formula
for the thermodynamic metric we derive in this framework is exact and has a generalization
to higher dimensions.

In addition, we demonstrate an emergent diffeomorphism symmetry in the space of control
parameters arising from the expansion in ν of the probability density. Under this symmetry,
every term with n indices in the corresponding expansion for the average dissipation is a rank
n tensor.

The harmonic potential is a canonical system to study in stochastic thermodynamics,
both experimentally and theoretically. For this reason we illustrate our formalism and
formulae using the example of a harmonic oscillator with a time-varying spring constant in a
time-varying electric field.

2.1 Driven Brownian motion
Consider a small system in contact with a reservoir such as a Brownian particle in a suspension
subject to an external potential Vλ(t)(x) that can depend on a possibly time-dependent control
vector λ ∈ Rk. The space C of all possible values of λ is a subset of Rk. The position of
the particle is given by x ∈ R and its probability density ρ(x; t) evolves according to a
Fokker-Planck equation [101],

∂

∂t
ρ(x; t) = L̂λ(t)(x)ρ(x; t), (2.1)

where L̂λ(t)(x), the Fokker-Planck operator, is a second-order differential operator involving
spatial derivatives of the potential. In the overdamped limit, where inertial effects are
neglected, L̂λ(t)(x) takes the form

L̂λ(t)(x) =
1

γ

∂

∂x

(
V ′
λ(t)(x) +

1

β

∂

∂x

)
, (2.2)

where γ and β = 1/kBT are the friction coefficient and inverse temperature, respectively,
and kB is Boltzmann’s constant. Primes denote derivatives with respect to x. Note that

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 9

V ′
λ(t)(x) = −F (x; t) where F is the force acting on the system. We consider natural boundary

conditions, requiring ρ(x; t) → 0 as x→ ±∞. ρ(x; t) satisfies the normalization condition∫
dx ρ(x; t) = 1. (2.3)

We use the notation
∫
dx as shorthand for

∫∞
−∞ dx.

Eq. 2.1 can also be written in the form of a continuity equation as

∂

∂t
ρ(x; t) = − ∂

∂x
J(x; t), (2.4)

where J is the probability current,

J(x; t) = −1

γ

(
V ′
λ(t)(x) +

1

β

∂

∂x

)
ρ(x; t). (2.5)

Natural boundary conditions additionally require J(x; t) → 0 as x→ ±∞.
We note that Eq. 2.1 with L̂λ(t) as given in Eq. 2.2 is equivalent to the trajectory-level

Langevin description

γẋ = F (x, t) +

√
2γ

β
η(t), (2.6)

where η(t) is mean zero δ-correlated Gaussian noise: ⟨η(t)⟩ = 0, ⟨η(t)η(t′)⟩ = δ(t− t′). The
dot denotes a derivative with respect to time.

At all times, the state space admits the existence of a unique equilibrium distribution
ρeqλ(t)(x) such that

L̂λ(t)(x)ρ
eq
λ(t)(x) = 0 (2.7)

and ∫
dx ρeqλ(t)(x) = 1. (2.8)

ρeqλ(t)(x) is given by

ρeqλ(t)(x) =
1

Z(t)
e−βVλ(t)(x), (2.9)

where Z(t) is the partition function,

Z(t) =

∫
dx e−βVλ(t)(x). (2.10)

All distributions approach ρeqλ(t)(x) asymptotically with time when λ is frozen, and ρeqλ(t) satisfies
the detailed balance condition, which requires that the probability current in equilibrium be
zero:

− 1

γ

(
V ′
λ(t)(x) +

1

β

∂

∂x

)
ρeqλ(t)(x) = 0 ∀x. (2.11)

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 10

ρeqλ(t) does not satisfy Eq. 2.1 except in an approximate sense. While Eq. 2.7 is exact, the
time derivative of ρeqλ(t) is

∂

∂t
ρeqλ(t)(x) =

k∑
i=1

λ̇i
∂

∂λi
ρeqλ(t)(x), (2.12)

which is not zero if λ̇i ̸= 0. The solution to Eq. 2.1 we develop in the following is in the limit
of small λ̇. We will show that the “smallness” of λ̇ is quantified by a parameter ν, defined as
the ratio of the relaxation time τα1 of the system to the driving timescale τλ, which must be
chosen such that ν ≪ 1. In this limit, the timescale of driving is so long that ρeqλ(t) is roughly
stationary on the system timescale, which is set by τα1 . Thus ρeqλ(t) satisfies Eq. 2.1 to zeroth
order in the parameter ν. We return in detail to these ideas in Section 2.1.

We solve Eq. 2.1 using the method of Green’s functions. The difficulty in this program is
that the Fokker-Planck operator has a zero mode, namely, ρeqλ(t), and is not self-adjoint. We
map L̂λ(t) onto its corresponding Schrödinger operator, which is self-adjoint, and leverage
the spectral theory of the latter to construct the Green’s function of L̂λ(t).

For the purposes of solving Eq. 2.1, the partial derivative with respect to time on the
left-hand side should be interpreted as acting at fixed λ. We will show in Section 2.1 that
this produces a solution that is consistent, in the sense that both the left-hand side of Eq. 2.1
and the time derivative of the solution we find to this equation are O(ν).

The associated Schrödinger operator and Green’s function

The Fokker-Planck operator L̂λ(t) is not self-adjoint. However, we can construct a self-adjoint
operator Ĥ from L̂λ(t) by making the similarity transformation

Ĥ = eβVλ(t)/2L̂λ(t)e
−βVλ(t)/2. (2.13)

We have suppressed the x−dependence of the potential and the operators for notational
convenience. Ĥ and L̂λ(t) share eigenvalues, and their eigenfunctions are related by a simple
transformation that we will discuss shortly. Ĥ takes the form

Ĥ(x) =
1

γβ

(
β

2
V ′′
λ(t)(x)−

(
β

2
V ′
λ(t)(x)

)2

+
∂2

∂x2

)
. (2.14)

It is related to the one-dimensional single-particle Schrödinger operator ĤS as follows:

ĤS = −1

2
Ĥ. (2.15)

We have
ĤS = − 1

2γβ

∂2

∂x2
+ Uλ(t)(x), (2.16)

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 11

where the potential Uλ(t) is given by

Uλ(t)(x) =
1

2γβ

((
β

2
V ′
λ(t)(x)

)2

− β

2
V ′′
λ(t)(x)

)
. (2.17)

This map between Fokker-Planck and Schrödinger operators is well-known [102, 97]. We
use it here to apply the spectral theory of the Schrödinger operator to driven Brownian
motion. Any potential for which the spectral decomposition of the Schrödinger operator is
known and possesses certain properties then becomes accessible to us for the purposes of
solving Eq. 2.1.

As mentioned, the requirements for this approach to be viable involve conditions on the
spectrum of ĤS . Natural boundary conditions on Eq. 2.1 already require Vλ(t)(x) → ∞
as x → ±∞. We additionally require Vλ(t) to be such that Uλ(t) is also confining. That
is, Uλ(t)(x) → ∞ as x → ±∞. This is satisfied, for example, if Vλ(t) is harmonic, and not
satisfied if it is logarithmic in |x| at large x.

We use En and ψn to denote the eigenvalues and eigenfunctions of ĤS . The eigenvalue
equation is

ĤS(x)ψn(x) = Enψn(x), n = 0, 1, (2.18)

For x ∈ R, with the stated boundary condition on Uλ(t), we are guaranteed that the spectrum
of ĤS is discrete, non-degenerate (Em ̸= En for m ̸= n), and ordered (En < En+1 ∀n). The
fact that a confining potential confers a discrete non-degenerate spectrum can be argued
rigorously (see theorem 10.7 in [62]). From a physical point of view this is reasonable to
expect because in one spatial dimension a confining potential has bounded closed orbits
which are quantized to give a discrete non-degenerate spectrum. (Tunneling effects can split
degenerate energy levels separated by a potential barrier.) The discreteness of the spectrum
crucially enables a simple definition of the Green’s function of ĤS . See [75] for a proof of
non-degeneracy.

It is simple to check1 that E0 = 0 and that the zeroth eigenfunction of ĤS is given by

ψ0(x) =
1√
Z(t)

e−βVλ(t)(x)/2. (2.19)

Note that ρeqλ(t) = ψ2
0. The ψn are real, and form a complete orthonormal basis [75]:∫

dx ψn(x)ψm(x) = δnm, (2.20)

where δnm is the Kronecker delta. This guarantees the representation

δ(x− y) =
∑
n

ψn(x)ψn(y) (2.21)

1Schrödinger operators customarily have nonzero zero-point energies. Here, E0 = 0 due to the specific
construction of Uλ(t), which is “shifted” downward by a factor of V ′′

λ(t)/4γ such that the usual zero-point
energy of Eq. 2.16 is exactly removed.

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 12

for the delta function.
For n > 0, the eigenvalues of ĤS satisfy En > 0. The proof of this claim is as follows.

Left-multiplying Eq. 2.18 by ψn and integrating with respect to x, we have

En =

∫
dx

(
1

2γβ

(
∂ψn

∂x

)2

+ Uλ(t)ψ
2
n

)
. (2.22)

Writing ψn(x) = ρl,n(x)ψ0(x) where ρl,n is a smooth function with n nodes, this is

En =

∫
dx

1

2γβ
ψ2
0

(
∂ρl,n
∂x

)2

≥ 0, (2.23)

with equality holding only for n = 0 since ρl,0 = 1. The subscript l notation will become clear
in the next section.

The function ρl,n satisfies the eigenvalue equation

1

γ

(
−V ′

λ(t)(x) +
1

β

∂

∂x

)
∂ρl,n
∂x

= L̂†
λ(t)ρl,n = −2Enρl,n, (2.24)

where L̂†
λ(t) is the Kolmogorov backward operator.2 L̂†

λ(t) satisfies the symmetrization relation

Ĥ = e−βVλ(t)/2L̂†
λ(t)e

βVλ(t)/2. (2.25)

Given the structure of the spectrum of ĤS , its Green’s function GS(x; y) is given by the
following standard definition:

GS(x; y) =
∑
n ̸=0

1

En

ψn(x)ψn(y). (2.26)

The action of ĤS on GS is

ĤS(x)GS(x; y) = δ(x− y)− ψ0(x)ψ0(y). (2.27)

Note that the right-hand side of Eq. 2.26 has the form of a projection. It indicates that ĤS
is only invertible in the space of functions orthogonal to ψ0.

Ĥ and ĤS share eigenfunctions ψn. Writing αn for the eigenvalues of Ĥ, these are given
by

αn = −2En, (2.28)

where α0 = 0 and αn>0 < 0. The eigenvalue equation for Ĥ is

Ĥ(x)ψn(x) = αnψn(x). (2.29)

2This operator is self-adjoint under the measure dm(x) defined by dm(x) =
(
ρeqλ(t)(x)

)−1

dx.

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 13

The Green’s function GH of Ĥ is given by Eq. 2.26 with the replacement En → αn:

GH(x; y) =
∑
n ̸=0

1

αn

ψn(x)ψn(y). (2.30)

The action of Ĥ on GH is

Ĥ(x)GH(x; y) = δ(x− y)− ψ0(x)ψ0(y). (2.31)

The Green’s function of L̂λ(t)

We use the discussion of the previous section to write down the eigenfunctions of L̂λ(t) and
L̂†

λ(t), and the Green’s function of L̂λ(t).
From Eqs. 2.13, 2.25, and 2.29, we immediately have the relations

L̂(x)ρr,n(x) = αnρr,n(x), (2.32a)

L̂†(x)ρl,n(x) = αnρl,n(x), (2.32b)

where

ρr,n(x) = ψ0(x)ψn(x), (2.33a)

ρl,n(x) = (ψ0(x))
−1 ψn(x). (2.33b)

ρr,n and ρl,n are called the right and left eigenfunctions, respectively. Together, they form a
biorthogonal system that diagonalizes L̂λ(t). They are complete,

δ(x− y) =
∑
n

ρr,n(x)ρl,n(y), (2.34)

and orthonormal, ∫
dx ρr,n(x)ρl,m(x) = δnm. (2.35)

Eq. 2.34 follows from Eq. 2.21 and Eq. 2.35 follows from Eqs. 2.20 and 2.34. The zeroth right
eigenfunction is the equilibrium distribution of L̂λ(t) corresponding to the specific value of λ
at time t, and the zeroth left eigenfunction is a constant:

ρr,0(x) = ψ2
0(x) = ρeqλ(t)(x), (2.36a)

ρl,0(x) = 1. (2.36b)

Due to Eq. 2.36, the right and left eigenfunctions share the simple relationship

ρr,n = ρr,0ρl,n. (2.37)

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 14

We can now write down the Green’s function Gλ(t) of L̂λ(t). Using the representation
Eq. 2.13 for Ĥ, and suppressing the subscript λ(t) for visual clarity, from Eq. 2.31 we have

eβV (x)/2L̂(x)e−βV (x)/2GH(x; y) =
∑
n ̸=0

ψn(x)ψn(y). (2.38)

Left-multiplying by e−βV (x)/2, right-multiplying by eβV (y)/2, and using Eq. 2.33, we arrive at

L̂(x)e−βV (x)/2GH(x; y)e
−βV (y)/2 =

∑
n̸=0

ρr,n(x)ρl,n(y), (2.39)

from which we identify Gλ(t),

Gλ(t)(x; y) = e−βVλ(t)(x)/2GH(x; y)e
βVλ(t)(y)/2 =

∑
n ̸=0

1

αn

ρr,n(x)ρl,n(y). (2.40)

The action of L̂λ(t) on Gλ(t) is given by Eq. 2.39. Using Eqs. 2.34 and 2.36, this can be
rewritten as

L̂λ(t)(x)Gλ(t)(x; y) = δ(x− y)− ρeqλ(t)(x). (2.41)

Solution to the Fokker-Planck equation

We can decompose the probability distribution in Eq. 2.1 into the sum of ρeqλ(t)(x) and a
correction δρ(x; t):

ρ(x; t) = ρeqλ(t)(x) + δρ(x; t). (2.42)

We must have
∫
dx δρ(x; t) = 0 to preserve normalization. Using this representation for

ρ(x; t) in Eq. 2.1, we obtain the dynamics of δρ(x; t):

L̂λ(t)(x)δρ(x; t) =
∂

∂t
ρ(x; t). (2.43)

In order to apply the method of Green’s functions, we interpret the right-hand side of Eq. 2.43
as a source term. From this follows the relation

δρ(x; t) =

∫
dy Gλ(t)(x; y)

∂

∂t
ρ(y; t). (2.44)

Eq. 2.44 contains the quantity δρ on both sides and can be solved iteratively. Thus we arrive
at

ρ(x; t) = ρeqλ(t)(x) +

∫
dx′ Gλ(t)(x;x

′)
∂

∂t
ρeqλ(t)(x

′)

+

∫
dx′′ Gλ(t)(x;x

′′)
∂

∂t

∫
dx′ Gλ(t)(x

′′;x′)
∂

∂t
ρeqλ(t)(x

′) + . . . , (2.45)

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 15

with the partial time derivative of ρeqλ(t) given by Eq. 2.12.
The form of Eq. 2.45 is ρ(x; t) = ρeqλ(t)(x)+

∑∞
n=1 δρ

(n)(x; t), where the quantities δρ(n) are
corrections to ρeqλ(t). We observe that the corrections have a recursive structure, and integrate
to zero:

δρ(n+1)(x; t) =

∫
dx′ Gλ(t)(x;x

′)
∂

∂t
δρ(n)(x′; t), (2.46a)∫

dx δρ(n+1)(x; t) = 0, n ≥ 0. (2.46b)

In the above, we have notated ρeqλ(t)(x) as δρ(0)(x; t). The form of Eq. 2.46a indicates that
δρ(n+1)(x; t) contains precisely n + 1 derivatives with respect to time. This motif will be
important in Section 2.2, where we will see that it introduces geometric structure to the
average dissipation.

The expansion parameter ν

Eq. 2.45 is a derivative expansion. In this section, we justify this claim.
There are two sources of timescales in this problem: the eigenvalues of the Fokker-Planck

operator, and the time variation of the control parameters.
The eigenvalues αn of L̂λ(t) have the physical units of inverse time, and their absolute

values set the various natural timescales of the system. Calling these timescales ταn , we have
ταn = 1/|αn|. Due to the ordering of the αn, the ταn are also ordered. The longest natural
timescale in the system is τα1 , known as the relaxation time.

Each external parameter λi has a characteristic timescale τλi
associated with its time

evolution. We denote the shortest of these timescales as τλ = mini τλi
.

Now let us examine the total time variation of ρ(x; t):

d

dt
ρ(x; t) =

∂

∂t
ρ(x; t) +

∑
i

λ̇i
∂

∂λi
ρ(x; t). (2.47)

In the first term on the right-hand side of Eq. 2.47, the time derivative acts at fixed λ and
the time evolution is generated by the Fokker-Planck operator, i.e., by Eq. 2.1. The second
term describes the time variation resulting from the time dependence of the external control
parameters, which is not determined by the Fokker-Planck operator.3 Note that if we replace
ρ(x; t) by ρeqλ(t)(x) in Eq. 2.47, the first term on the right-hand side evaluates to zero, exactly
consistent with Eq. 2.12.

In this work we consider the scenario in which the dynamics of λ is very slow compared
to the dynamics generated by the Fokker-Planck operator. This means the longest natural
timescale τα1 must be shorter than the shortest control timescale τλ:

τλ ≫ τα1 . (2.48)
3We will see in a later section that this time variation is determined by another principle, namely, the

minimization of the average heat produced in the reservoir over the course of driving.

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 16

Eq. 2.48 naturally gives rise to a dimensionless small parameter ν, defined as follows:
ν = τα1/τλ ≪ 1. It is the smallness of this parameter that justifies our usage of Eq. (1) to
approximate the true dynamics of ρ(x; t), which is given by the left-hand side of Eq. 2.47.

In Eq. 2.45, derivatives with respect to time act (through Gλ(t) and ρeqλ(t)) only on λ(t),
and so we can rescale time in λ−space by ν by defining the variable t̃ = νt. Making the
reparameterization t→ t̃ in Eq. 2.45, we arrive at an expansion for ρ(x; t) in the manifestly
dimensionless small parameter ν:

ρ(x; t̃) = ρeq
λ(t̃)

(x) + ν

∫
dx′ Gλ(t̃)(x;x

′)
∂ρeq

λ(t̃)

∂t̃
(x′)

+ ν2
∫
dx′′ Gλ(t̃)(x;x

′′)
∂

∂t̃

∫
dx′ Gλ(t̃)(x

′′;x′)
∂ρeq

λ(t̃)

∂t̃
(x′) + (2.49)

What is happening here is that there is a separation of timescales between the laboratory
and the control space. In the latter, time must be measured in units of τλ. However, the
overall timescale of the problem is set by τα1 , which is fixed by the shape of the potential.
Therefore when expanding the density ρ(x; t), it is necessary to measure τλ in units of τα1 .
This is why time in control space is scaled by ν.

The condition Eq. 2.48 imposes a constraint on the dynamics of the spectrum of L̂λ(t),
which we now discuss. In general, the αn are functions of all the control parameters λi due
to the fact that the spectrum of L̂λ(t) depends on Vλ(t), which is a function of λ. The time
derivative of αn is

dαn

dt
=
∑
i

λ̇i
∂αn

∂λi
, (2.50)

where the variation of αn with respect to λi is given by the Hellmann-Feynman theorem [49]

∂αn

∂λi
=

∫
dx ψ2

n(x)
∂Ĥ(x)

∂λi
= −2

∫
dx ψ2

n(x)
∂Uλ(t)(x)

∂λi
. (2.51)

For every i ∈ (1, . . . , k), Eq. 2.51 is finite and fully determined by the form of the potential
Uλ(t). Therefore Eq. 2.48, which can equivalently be written as maxi

∣∣∣λ̇i∣∣∣ ≪ |α1|, together
with Eq. 2.50, implies that the quantities |α̇n| must be small ∀n. We can explicitly check
that this condition holds. Note that

λ̇i =
dt̃

dt

dλ

dt̃
= ν

dλ

dt̃
= O(ν), (2.52)

and so λ̇i is of order ν. Together with Eq. 2.52, Eq. 2.50 implies that |α̇n| is also O(ν). That
is, the condition Eq. 2.48 forces the spectrum of L̂λ(t) to change slowly over the course of
driving.

Due to fact that derivatives with respect to time in Eq. 2.49 act only on λ(t), Eq. 2.52
also implies that the time derivative of Eq. 2.49 is O(ν), which is consistent with the
time-dependence of Eq. 2.47 on λ.

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 17

The last point we must address in this timescale analysis is the fact that ν itself is a
function of time. Clearly, in order for the expansion in Eq. 2.49 to be stable, we require
the time variation of ν to be small. We can check that Eq. 2.48 indeed enforces this. Using
Eq. 2.52, we find that

dν

dt
= O

(
ν2
)
. (2.53)

In fact, the nth time derivative of ν for n ≥ 1 is of order νn+1.
Thus as long as the control timescale is chosen such that the slowness condition Eq. 2.48

is satisfied, the procedure we have presented for solving Eq. 2.1 is consistent, and Eq. 2.49
describes the time evolution of ρ(x; t).

In the next section we derive a formula for the thermodynamic metric using Eq. 2.45.
We note that in all previous work [127, 155, 106] in which the thermodynamic metric has
been derived it is assumed that the timescale of driving is slow with respect to the longest
natural timescale of the system. The analysis just given explains why this assumption is
necessary: without it, the Fokker-Planck equation is not a good descriptor of the driven
Brownian system.

Lastly, we note that other authors have previously made use of eigenfunction expansions
of ρ(x; t) to calculate the average dissipation for driven Brownian systems with a single slowly
varying control parameter [120, 71]. We will calculate average dissipation in the next section.
The authors recognized that their methods must correspond to a perturbative approach to
solving Eq. 2.1 as we have presented here, but this idea was not fully developed. In particular,
the precise conditions under which the spectral structure of L̂λ(t) permits a perturbative
expansion of ρ(x; t) in ν and the relative importance of the various time scales in the problem
were not studied, and τλ was not identified.

2.2 The thermodynamic metric
Writing down a driving protocol for a system involves specifying a functional form for the time
dependence of the control vector λ. We say a driving protocol Λ is optimal if it minimizes
the functional for the average heat ⟨∆Q⟩ [Λ] produced in the reservoir over the course of
driving [127]:

Λopt = argmin
Λ

⟨∆Q⟩ [Λ] . (2.54)

We are interested in the scenario where the system is driven between two fixed values of λ
over a fixed time period Ω. Note that we must have Ω ≫ τλ.

The average heat transferred to the reservoir over the course of driving is given by the

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 18

formula [118]

⟨∆Q⟩ [Λ] = −
∫ Ω

0

dt

∫
dx V ′

λ(t)(x)J(x; t)

=

∫ Ω

0

dt

∫
dx ρ(x; t)

(
V ′2
λ(t)(x)

γ
−
V ′′
λ(t)(x)

γβ

)
. (2.55)

In the second equality, we have replaced J(x; t) with the right-hand side of Eq. 2.5 and
integrated by parts. Note that the quantity in parentheses in Eq. 2.55 is, up to a constant
factor 4/β, the Schrödinger potential Uλ(t) at inverse temperature 2β.

In the following, we calculate ⟨∆Q⟩ using the approximation

ρ(x; t) = ρeqλ(t)(x) + δρ(1)(x; t) + δρ(2)(x; t), (2.56)

with the corrections δρ(1)(x; t) and δρ(2)(x; t) given by the second and third terms on the
right-hand side of Eq. 2.45, respectively:

δρ(1)(x; t) =

∫
dx′ Gλ(t)(x;x

′)
∂

∂t
ρeqλ(t)(x

′), (2.57a)

δρ(2)(x; t) =

∫
dx′ Gλ(t)(x;x

′)
∂

∂t
δρ(1)(x′; t). (2.57b)

We show that one of the contributions to ⟨∆Q⟩ coming from δρ(2) contains an integral over a
symmetric positive definite matrix in the space of control parameters C, and we identify this
as the thermodynamic metric for systems described by Eq. 2.1 with the stated conditions on
Vλ(t) and Uλ(t). We discuss the emergence of this geometric structure in ⟨∆Q⟩ and show that
it persists to all orders in the expansion of ρ(x; t) (Eq. 2.45).

Calculation of ⟨∆Q⟩ and derivation of thermodynamic metric

We drop the subscript λ(t) for visual clarity.
It is useful to rewrite Eq. 2.55 in the equivalent form

⟨∆Q⟩ [Λ] =
1

γβ2

∫ Ω

0

dt

∫
dx ρ(x; t)eβV (x)∂2xe

−βV (x). (2.58)

The first contribution to ⟨∆Q⟩ from Eq. 2.56 corresponds to approximating ρ(x; t) by ρeq(x),
and it evaluates to zero:

⟨∆Q⟩0 =
1

γβ2

∫ Ω

0

dt

∫
dx ρeq(x) eβV (x)∂2xe

−βV (x) = 0. (2.59)

This is easily seen by using Eq. 2.9 to replace e−βV (x) and applying the normalization condition
Eq. 2.8.

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 19

To calculate the next two terms of ⟨∆Q⟩, we will make use of the following identity:∫
dx G(x;x′)eβV (x)∂2xe

−βV (x) = γβ

∫
dx (1− βV (x)) L̂(x)G(x;x′). (2.60)

This is derived by integrating the left-hand side by parts twice, evaluating the resulting double
derivative over the product G(x;x′)eβV (x), and integrating by parts again. The boundary
terms in Eq. 2.60 vanish.

The second contribution to ⟨∆Q⟩ is

⟨∆Q⟩1 =
1

γβ2

∫ Ω

0

dt

∫
dx δρ(1)(x; t) eβV (x)∂2xe

−βV (x). (2.61)

Replacing δρ(1) with Eq. 2.57a, applying Eq. 2.60 and then Eq. 2.41, we have

⟨∆Q⟩1 =
1

β

∫ Ω

0

dt

∫
dx′ ∂tρ

eq(x′)

∫
dx (1− βV (x)) L̂(x)G(x;x′)

= − 1

β

∫ Ω

0

dt

∫
dx′ ∂tρ

eq(x′)βV (x′) +
1

β

∫ Ω

0

dt

∫
dx′ ∂tρ

eq(x′)

∫
dx βV (x)ρeq(x).

(2.62)

The second term in Eq. 2.62 is zero due to Eq. 2.8, which implies ∂t
∫
dx ρeq(x) = ∂t1 = 0.

The first term can be written in terms of the difference in entropy ∆Seq between ρeqλ(0)(x) and
ρeqλ(Ω)(x). We recall the definition of the entropy Seq of an equilibrium distribution:

Seq
λ(t) = −

∫
dx ρeqλ(t)(x) log ρ

eq
λ(t)(x), (2.63)

the time derivative of which is
∫
dx βV (x)∂tρ

eq(x). Thus we have

⟨∆Q⟩1 = − 1

β

∫ Ω

0

dt ∂tS
eq
λ(t) = − 1

β
∆Seq. (2.64)

If we truncate the approximation of ρ(x; t) at δρ(1)(x; t), we reproduce the quasistatic Clausius
equality for diffusive systems [60, 83, 85]:

β⟨∆Q⟩ [Λ] + ∆Seq = 0. (2.65)

The third contribution to ⟨∆Q⟩ is

⟨∆Q⟩2 =
1

γβ2

∫ Ω

0

dt

∫
dx δρ(2)(x; t) eβV (x)∂2xe

−βV (x). (2.66)

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 20

Similar to the calculation of ⟨∆Q⟩1, we use Eq. 2.57b to replace δρ(2), apply Eq. 2.60, and
then Eq. 2.41. This gives

⟨∆Q⟩2 = − 1

β

∫ Ω

0

dt

[∫
dx′′ ∂tδρ

(1)(x′′; t)βV (x′′)−
∫
dx′′ ∂tδρ

(1)(x′′; t)

∫
dx ρeq(x)βV (x)

]
.

(2.67)

The second term in Eq. 2.67 is zero due to Eq. 2.46b. Writing −βV (x′′) = log ρeq(x′′) + logZ,
the first term can be rewritten as

⟨∆Q⟩2 = − 1

β

∫ Ω

0

dt

∫
dx′′ δρ(1)(x′′; t) ∂t log ρ

eq(x′′)

− 1

β

∫ Ω

0

dt (∂t logZ)

∫
dx′′ δρ(1)(x′′; t)

−
∫ Ω

0

dt

∫
dx′′ ∂t

(
δρ(1)(x′′; t)V (x′′)

)
. (2.68)

We evaluate the three terms in Eq. 2.68 in reverse order.
The third term is the integral of a total time derivative, and depends only on the initial

and final values of λ and λ̇. It can be written as

A(λ(Ω), λ̇(Ω))− A(λ(0), λ̇(0)) ≡ ∆A, (2.69)

where the function A is given by

A = −
∑
i

λ̇i

∫ ∫
dx dx′ Vλ(t)(x)Gλ(t)(x;x

′)
∂ρeqλ(t)
∂λi

(x′). (2.70)

The second term in Eq. 2.68 evaluates to zero due to Eq. 2.46b.
Lastly, the integral with respect to x′′ in the first term in Eq. 2.68 can be rewritten as a

quadratic form:

−
∫
dx′′ δρ(1)(x′′; t) ∂t log ρ

eq
λ(t)(x

′′) = λ̇
⊤
ζλ̇, (2.71)

where the elements of the matrix ζ(λ) are given by the formula

ζij = −
∫
dx′dx′′ ρeqλ(t)(x

′′)

(
∂

∂λi
log ρeqλ(t)(x

′′)

)
Gλ(t)(x

′;x′′)

(
∂

∂λj
log ρeqλ(t)(x

′)

)
. (2.72)

ζ(λ) is clearly symmetric. We now prove that it is also positive definite. In terms of ψ0

and GS , Eq. 2.72 takes the following simple form:

ζij = 2

∫
dx′dx′′

∂ψ0(x
′′)

∂λi
GS(x

′;x′′)
∂ψ0(x

′)

∂λj
. (2.73)

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 21

Consider the quadratic form λ̇
⊤
ζλ̇. Using Eqs. 2.26 and 2.28 in Eq. 2.73, we have

λ̇
⊤
ζλ̇ = −

∑
n̸=0

1

αn

(
2

k∑
i=1

∫
dx λ̇iψn(x)

∂ψ0

∂λi
(x)

)2

> 0. (2.74)

The last inequality is due to the fact that −αn̸=0 > 0. Thus, the eigenvalues of ζ(λ) are
positive. ζ(λ) therefore induces a Riemannian metric on the space C, and can be identified
as the thermodynamic metric [127] for driven Brownian systems described by Eq. 2.1 with
confining Schrödinger potentials. We note that Eq. 2.72 contains all the time scales in the
problem, since Gλ(t) contains a sum over all the eigenvalues of L̂λ(t).

It becomes necessary now to distinguish between covariant and contravariant quantities;
therefore from this point onward in the discussion we will write control variables with raised
indices, as λi.

We can explicitly check that ζ(λ) transforms correctly under a change of coordinates.
Using the representation Eq. 2.73, it is simple to see that under a continuous, invertible
transformation (diffeomorphism) λ → ϕ(λ), the elements of the new metric ζ̃(ϕ) in ϕ-space
are given by

ζ̃kl =
∑
i,j

ζij
∂λi

∂ϕk

∂λj

∂ϕl
. (2.75)

This transformation law for the metric holds due to the two partial derivatives with respect
to λi and λj in Eq. 2.73, which in turn derive from the two partial derivatives with respect
to time in δρ(2)(x; t). Therefore, even though Eq. 2.55 has no geometric structure in general
that we can discover, the specific form of δρ(2)(x; t) introduces geometric structure in the
average dissipation. We will see shortly that this emergent structure persists in Eq. 2.55 to
all orders in ν.

We emphasize that Eq. 2.72 is distinct from the formula for a thermodynamic metric
given in Eq. 12 in [127], which was the first work to derive a thermodynamic metric for
mesoscopic systems with time-varying relaxation times. As mentioned previously, this formula
was derived in the linear response regime with a slow driving assumption. Evaluating it
involves computing an integral with respect to time over the linear response function, which
is the average two-point time correlation function of deviations of the conjugate forces from
their equilibrium values.

Gathering the contributions from Eqs. 2.59, 2.64, 2.69 and 2.71, we have the following
formula for the average heat up to terms of order ν2 in Eq. 2.45:

β⟨∆Q⟩ [Λ] = 0−∆Seq +

∫ Ω

0

dt λ̇(t)ζ(λ)λ̇(t)⊤ + β∆A. (2.76)

To minimize Eq. 2.76 over protocols, we can define the action

S[λ(t)] = β∆A+ 2

∫ Ω

0

dt
1

2
λ̇(t)ζ(λ)λ̇(t)⊤. (2.77)

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 22

The equations of motion follow by setting the variation δS
δλi of S with respect to λi to zero,

subject to the constraints δλi(0) = δλi(Ω) = 0 ∀i. These constraints imply δA(0) = δA(Ω) =
0, and therefore only the second term in Eq. 2.77 contributes to the equations of motion.
These are the Euler-Lagrange equations of the Lagrangian L = 1

2
λ̇

⊤
ζλ̇:

d

dt

(
2
∑
j

ζpjλ̇
j

)
=
∑
i,j

λ̇i
∂ζij
∂λp

λ̇j, p ∈ (1, . . . , k). (2.78)

Opening out the time derivative on the left-hand side of Eq. 2.78, a straightforward calculation
shows that it is equivalent to

λ̈p +
∑
i,j

Γp
ijλ̇

iλ̇j = 0, p ∈ (1, . . . , k), (2.79)

where Γp
ij is the Christoffel symbol of the second kind:

Γp
ij =

1

2

∑
m

ζpm
(
∂ζmi

∂xj
+
∂ζmj

∂xi
− ∂ζij
∂xm

)
. (2.80)

Eq. 2.79 are also the equations of motion of the Lagrangian L̃ =

√
λ̇ζλ̇

⊤
in the arc-length

parameterization [99]. In other words, these are geodesic equations of the control parameter
space C.

Due to the spectral properties of ĤS , Eq. 2.74 also indicates that the quadratic form
λ̇

⊤
ζλ̇ is always finite. Therefore, if Vλ(t) is such that Uλ(t) is confining, and the perturbative

expansion Eq. 2.45 holds over the time period Ω, we are guaranteed that ζ(λ) exists and is
well-defined over the course of driving. Then, up to terms of order ν2 in Eq. 2.45, optimal
protocols Λopt are geodesics in C with respect to the length measure defined by ζ(λ).

We note that in a specific optimal problem, the invariance of the geodesic equations to
reparameterizations of C is broken by the boundary conditions, in which the identities of the
control parameters, along with their initial and final values, are specified. For example, in the
next section, we consider the harmonic potential Vλ(t)(x) = κx2/2 +Ex with time-dependent
electric field E and spring constant κ. The choice of these two control parameters breaks the
diffeomorphism invariance of Eq. 2.79 for this problem instance.

The diffeomorphism invariance of the geodesic equations suggests that it is appropriate to
write Vλ(t) in such a way that all components of λ have matching units. One way to do this
is to introduce a fixed length scale ℓ and rescale x as x→ x/ℓ. For example, in the harmonic
potential defined previously, the control parameters κ and E have different units. Rescaling
x by ℓ, we can instead write Vλ(t)(x/ℓ) = (ℓ2κ)(x/ℓ)2/2 + (ℓE)x/ℓ. The new control vector is
λ = (ℓ2κ, ℓE), both components of which have units of energy. Applying diffeomorphisms
that may scramble the two control parameters now makes sense. We can choose ℓ to be such
that βℓE = 1, or, equivalently, such that βℓ2κ = 1.

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 23

We end this section with a note on higher-order terms in the average heat production.
By calculations analogous to those for ⟨∆Q⟩2, it is straightforward to establish that for any
w ≥ 2, the contribution to Eq. 2.55 from δρ(w)(x; t) takes the form

β⟨∆Q⟩w = β∆Aw +

∫ Ω

0

dt
∑

i1,...,iw

λ̇i1 . . . λ̇iwΞ
(w)
i1...iw

, (2.81)

where Aw is a term that depends only on the values of λ and λ̇ at times 0 and Ω, and Ξ(w)

is an object with w indices. (In the notation of Eq. 2.81, the quantity A defined in Eq. 2.70
is A2, and the thermodynamic metric ζ is Ξ(2).) Due to the fact that δρ(w)(x; t) contains
exactly w derivatives with respect to time, under a reparameterization λ → ϕ(λ), Ξ(w) obeys
the transformation law Ξ̃

(w)
j1...jw

=
∑

i1,...,iw
Ξ
(w)
i1...iw

∂ϕj1λi1 . . . ∂ϕjwλiw , and is therefore a rank-w
tensor. Thus, if the conditions for the existence of Eq. 2.45 are met, geometric structure is
emergent in Eq. 2.55 at all orders in ν.

Up to terms of order νk in ρ(x; t), the Lagrangian of the optimal control problem is given
by L(w) =

∑k
w=2

∑
i1,...,iw

λ̇i1 . . . λ̇iwΞ
(w)
i1...iw

; like Eq. 2.70, the ∆Aw for w ≥ 3 do not participate
in the Euler-Lagrange equations for Λopt. Predictions of optimal protocols can be refined
beyond the solutions of Eq. 2.79 by including terms of order w = 3 and higher in L(w). The
Ξ(w)—and therefore L(w)—can easily be expressed in terms of ρeqλ(t) and Gλ(t). For example,
the elements of Ξ(3) are given by

Ξ
(3)
ijk = −

∫
dxdx′

∂ log ρeqλ(t)(x)

∂λi
Gλ(t)(x;x

′)
∂

∂λj

(∫
dx′′ Gλ(t)(x

′;x′′)ρeqλ(t)(x
′′)
∂ log ρeqλ(t)(x

′′)

∂λk

)
.

(2.82)

We leave the study of possible interpretations of Ξ(w) for w ≥ 3 and the development of
solutions of the Euler-Lagrange equations of L(w) for w ≥ 3 to future work.

Relationship of ζ to previously proposed formula for a
thermodynamic metric

In [154], the authors propose an approximate formula for a thermodynamic metric involving
only ρeqλ(t). Call this metric χ. Using the notation Πeq

λ(t) to refer to the cumulative distribution
function

Πeq
λ(t)(x) =

∫ x

−∞
dx′ρeqλ(t)(x

′), (2.83)

the elements of χ are given by

χij =

∫
dx

γβ

ρeqλ(t)(x)

(
∂

∂λi
Πeq

λ(t)(x)

)(
∂

∂λj
Πeq

λ(t)(x)

)
. (2.84)

The advantage of this formula is that it is entirely local in x, depending only on ρeqλ(t) and
not on Gλ(t), which is nonlocal in x and contains all the natural timescales of the system.

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 24

In the case of a harmonic potential, it can be checked by explicit calculation that ζ and χ
are identical. For more general potentials, we show that in a certain limit, Eq. 2.72 can be
written as Eq. 2.84 plus correction terms.

For this part of the discussion only, we restrict ourselves to potentials of the form

Vλ(t)(x) = g(x) +
m∑
i=1

aix
i, (2.85)

where m ≥ 4 is even, and am > 0. The ai are functions of λ(t). g(x) is any function of x and
λ that is finite in the limit |x| → ∞. At large x, this potential is dominated by the xm term.
In fact, it contains a natural length scale, x0, defined as the value of x at which the ratio
Vλ(t)(x0)/amx

m
0 is of order 1. For such a potential, it is the case that

lim
|x|→∞

eβVλ(t)(x)/2
∂

∂λi
Πeq

λ(t)(x) = 0, (2.86)

and integrals over x of the quantity in the limit converge. This can be established using the
asymptotic expansion of 1− Πeq

λ(t)(x0) ∼
∫∞
x0
dy e−βamym :∫ ∞

x0

dy e−βamym ≈ e−βamxm
0

xm−1
0

(
1 +O

(
1

x0

))
. (2.87)

The first term in the expansion can be verified by differentiating both sides of Eq.2.87 with
respect to x0.

In the following, we drop the subscript λ(t) for brevity. We use the notation ζx0
ij and χx0

ij

to denote Eqs. 2.72 and 2.84 with all integrals evaluated between −x0 and x0.
Using ∂xΠeq(x) = ρeq(x), Eq. 2.72 can be rewritten as

ζx0
ij = −

∫ x0

−x0

dx′dx′′
∂2Πeq(x′′)

∂λi∂x′′
G(x′;x′′)

ρeqλ(t)(x
′)

∂2Πeq(x′)

∂λj∂x′
. (2.88)

Integrating by parts twice, this is

ζx0
ij = −

∫ x0

−x0

dx′dx′′
∂Πeq(x′′)

∂λi
Θ(x′, x′′)

∂Πeq(x′)

∂λj
, (2.89)

where
Θ(x′, x′′) =

∂2

∂x′∂x′′
G(x′;x′′)

ρeq(x′)
. (2.90)

For potentials of the form Eq. 2.85, the boundary terms in Eq. 2.89 are exponentially
suppressed in x0, that is, they are of order e−βamxm

0 . Opening out the derivatives in Θ, we
find that it satisfies the differential equation

1

γβ

∂

∂x′
ρeq(x′)Θ(x′, x′′) = L̂(x′)∂G(x

′;x′′)

∂x′′
. (2.91)

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 25

Applying Eq. 2.41, this is
∂

∂x′
(ρeq(x′)Θ(x′, x′′) + γβδ (x′ − x′′)) = 0. (2.92)

The solution to this differential equation is a family of functions hx′(x′′) parameterized by x′.
We choose to work with h evaluated at x′ = x0, henceforth notated simply as h(x′′):

h(x′′) = ρeq(x0)Θ(x0, x
′′) + γβ δ(x0 − x′′). (2.93)

In terms of h, Eq. 2.90 can be written as

Θ(x′, x′′) =
1

ρeq(x′)
(−βγ δ(x′ − x′′) + h(x′′)) . (2.94)

Substituting this in Eq. 2.89, we find

ζx0
ij = χx0

ij +∆x0
ij , (2.95)

where
∆x0

ij = −
∫ x0

−x0

dx′dx′′
βγ

ρeq(x′)

∂Πeq(x′)

∂λj
h(x′′)

∂Πeq(x′′)

∂λi
. (2.96)

Once again using the asymptotic expansion Eq. 2.87, it can be shown that ∆x0
ij is of order

e−βamxm
0 . We note that it is necessary to evaluate the function hx′ at x′ ≥ x0 to arrive at this

conclusion, otherwise it is not clear how to estimate the size of ∆x0
ij . Therefore we finally

arrive at
ζx0
ij = χx0

ij +O(e−βamxm
0). (2.97)

From Eq. 2.97, we see that in the limit |x0| → ∞, all correction terms go to zero, and we
have ζij − χij → 0. However, this limit is not physically valid—it is simple to check that as
x0 → ∞, Eq.2.1 is trivialized to 0 = 0. Thus, for general potentials, we cannot expect the
two formulae ζ and χ to be equivalent. As previously mentioned, the quadratic potential is
an interesting exception for which it can be explicitly checked that both ζ and χ evaluate to
the same quantity.

The calculation leading to Eq. 2.95 is a proof of the formula Eq. 2.84 for polynomial
potentials. In [154], the class of potentials for which Eq. 2.84 converges was not established.
We further note that we expect a relation similar to Eq. 2.97 to hold for potentials that grow
faster than Eq. 2.85; for example, V (x) = eb|x| with b > 0. The specifics of the asymptotic
analysis proving this point will differ from what is presented here.

2.3 The harmonic oscillator in an electric field
We calculate ζ for a one-dimensional system of charge q in a harmonic potential with time-
dependent spring constant κ(t) and subject to an external electric field E(t). The control
vector is λ(t) = (κ(t), E(t)), where κ > 0 and E ∈ R. The potential is

Vλ(t)(x) =
1

2
κx2 − qEx =

1

2
κ (x− θ)2 − κ

2
θ2. (2.98)

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 26

In the second equality we have defined the new variable θ = E/κ. The electric field can be
interpreted as an offset in the center of the harmonic trap.

The Fokker-Planck operator for this system is

L̂λ(t)(x) =
1

γ

[
κ(t) + κ(t) (x− θ(t))

∂

∂x
+

1

β

∂2

∂x2

]
. (2.99)

The eigenfunctions ψn of the corresponding Schrödinger operator are given by the Her-
mite functions [101]. Using Hn to denote the nth Hermite polynomial, the right and left
eigenfunctions are

ρr,n(x) =
1√
2nn!

√
βκ

2π
e−

1
2
βκ(x−θ)2Hn

(√
βκ

2
(x− θ)

)
, (2.100a)

ρl,n(x) =
1√
2nn!

Hn

(√
βκ

2
(x− θ)

)
. (2.100b)

The corresponding eigenvalues are −κn/γ. The equilibrium distribution at any given time t
is a normalized Gaussian distribution with mean θ and variance 1/βκ:

ρeqλ(t)(x) =

√
βκ

2π
e−

1
2
βκ(x−θ)2 . (2.101)

We proceed to calculate the four elements, beginning with ζ11 = ζκκ:

ζκκ = −
∫
dx

∫
dy

√
βκ

2π
e−

1
2
βκ(y−θ)2

(
1

2κ
− β(x− θ)2

2

)(
1

2κ
− β(y − θ)2

2

)
∑
n̸=0

− γ

κn

1

2nn!

√
βκ

2π
e−

1
2
βκ(x−θ)2Hn

(√
βκ

2
(x− θ)

)
Hn

(√
βκ

2
(y − θ)

)
.

(2.102)

Transforming to the variables x′ =
√
βκ/2(x− θ), y′ =

√
βκ/2(y − θ), and using 1

2
− x′2 =

−1
4
H2(x

′), this is

ζκκ =
1

π

γ

κ3
1

16

∑
n̸=0

1

n2nn!

(∫
dx′ e−x′2

H2(x
′)Hn (x

′)

)2

. (2.103)

Applying the orthogonality property∫
dx′ e−x′2

Hm(x
′)Hn (x

′) = δmn2
nn!

√
π, (2.104)

we have
ζκκ =

γ

4κ3
. (2.105)

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 27

Similarly, the elements ζθκ and ζκθ are proportional to the product∫
dx′ e−x′2 1

4
H2(x

′)Hn(x
′)

∫
dy′ e−y′2 1

2
H1(y

′)Hn(y
′), (2.106)

which evaluates to zero for all n. Finally

ζθθ =
2βγ

π

∑
n ̸=0

1

n2nn!

(∫
dx′

1

2
H1(x

′)Hn(x
′)

)2

= βγ. (2.107)

Gathering elements, we have

ζ = γ

[
(4κ3)

−1
0

0 β

]
. (2.108)

As mentioned in the previous section, the same result is obtained by evaluating Eq. 2.84 for
this system. Eq. 2.108 is also identical to the result obtained by evaluating the formula for
a thermodynamic metric given in [127] for a harmonic potential with time-varying spring
constant and trap center.

We can now calculate optimal protocols for the harmonic oscillator. For the metric
Eq. 2.108, Eq. 2.71 takes the form∫ Ω

0

dt γ

(
κ̇2

4κ3
+ βθ̇2

)
=

∫ Ω

0

dt γ
(
µ̇2 + βθ̇2

)
. (2.109)

In the second equality above we have made the change of variables µ =
√
κ. This is a

diffeomorphism for κ > 0. From Eq. 2.109 it is clear that the potential Eq. 2.98 gives rise
to a flat geometry in (µ, θ)-space. However, the protocols have a nontrivial structure in the
physical control parameter space (κ, θ) due to the existence of the forbidden region κ ≤ 0.
The Euler-Lagrange equations corresponding to Eq. 2.109 are µ̈ = θ̈ = 0. The solutions are
straight lines in the (µ, θ) plane. Given initial and final values of the physical parameters—κΩ
and κ0, and similarly for θ—the protocol that minimizes Eq. 2.71 is

θopt(t) =
θΩ − θ0

Ω
t+ θ0 (2.110a)

κopt(t) =

(√
κΩ −√

κ0
Ω

t+
√
κ0

)2

. (2.110b)

The optimal protocol demands a constant rate of change for θ and
√
κ.

In this example, we can explicitly check the consistency conditions of Section 2.1. To do
so, it is convenient to rescale the optimal control problem so that all control parameters are
dimensionless. This is easily done by first rescaling x→ x/ℓ where the length measure ℓ is
defined by βℓ2κ = 1 = Eℓβ, as discussed at the end of Section 2.2, and then multiplying
the potential (Eq. 2.98) by β. These rescalings do not disturb the optimal control problem.

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 28

We have the following optimal protocols for the dimensionless control parameters
(
µ̃, θ̃
)
=(√

βκℓ2, E/κℓ
)
:

θ̃opt(t) =
θ̃Ω − θ̃0

Ω
t+ θ̃0 (2.111a)

µ̃opt(t) =
µ̃Ω − µ̃0

Ω
t+ µ̃0. (2.111b)

These are of precisely the same form as Eq. 2.110. In terms of the dimensionless control
parameters, the eigenvalues of the Fokker-Planck operator for the harmonic oscillator are
given by −µ̃2n/βℓ2γ. Therefore, under the optimal protocol, the relaxation time of the
Brownian system is τα1 = βℓ2γ/ (µ̃opt)

2.
Without loss of generality, we can assume ˙̃µopt ≥ ˙̃θopt. For ease of notation in what follows,

we write the difference µ̃Ω − µ̃0 as ∆µ̃. The longest driving timescale set by the optimal
protocol is then given by τλ = 1/ ˙̃µopt = Ω/∆µ̃.

Therefore we have
ν =

τα1

τλ
=

βℓ2γ

(µ̃opt)2
∆µ̃

Ω
= O

(
1

Ω

)
. (2.112)

ν can be made small by choosing Ω, the duration of the protocol, to be sufficiently long.
From Eq. 2.111, we see that ˙̃µopt is of order 1/Ω. The rate of change of the spectrum of the

Fokker-Planck operator, too, goes as 1/Ω. To see this, note that |α̇1| = 1/τα1 . Differentiating
this with respect to time, we find |α̇1| = 2 ˙̃µoptµ̃opt/βℓ2γ = O(1/Ω) since ˙̃µopt is O(1/Ω).
Thus, both the control parameters and the spectrum of the Fokker-Planck operator vary
appreciably only on the timescale of the control parameters, and are roughly constant on the
timescale of the system if Ω is chosen to be large.

Lastly, differentiating Eq. 2.112 with respect to time, we find that ν̇ is of order 1/Ω2, i.e.,
O(ν2), and is therefore suppressed on the control timescale.

2.4 Summary and discussion
We have developed a precise perturbative solution to Eq. 2.1 and used it to calculate the heat
generated in the environment when the external parameters of a small stochastic system are
varied in time. In so doing, we derived a new formula for the thermodynamic metric and all
correction terms at the same order in the perturbation theory.

Both [127] and [154] propose formulae for thermodynamic metrics but do not establish the
class of potentials for which those formulae are valid. The formula we have derived, Eq. 2.72,
holds for potentials Vλ(t) such that both Vλ(t) and the associated Schrödinger potential Uλ(t)

are confining. We have shown that for a subset of such potentials, namely, those in Eq. 2.85,
the formula Eq.2.84 of [154] is approximately valid.

We found that the expansion in ν has an emergent local diffeomorphism symmetry
not present in the original formula, Eq.2.55, for average heat production. Every term of

CHAPTER 2. OPTIMAL PROTOCOLS FOR DRIVEN BROWNIAN SYSTEMS 29

this expansion transforms as a tensor of this diffeomorphism symmetry. Restricting to the
symmetric 2-tensor (metric) in the expansion, we explicitly worked out the equations for
an optimal protocol. These equations of motion describe geodesics in the space of control
parameters.

Additional directions for future research include extending the perturbation theory to
underdamped systems, and to higher spatial dimensions. For the latter, much of the formalism
developed here will be applicable but it will be necessary to study the spectral properties of
the Schrödinger operator in higher dimensions.

In this paper we derived a formula for the thermodynamic metric corresponding to the
confining potential Uλ(t). This invites the following question: given a metric, what is the
class of potentials that give rise to it? This may be especially interesting and tractable in the
case of two-dimensional Riemannian geometries.

30

Chapter 3

On whitening, exact second-order
optimization, and generalization

In the following, we study the generalization properties of models trained with first-order
optimizers on whitened data. We find that whitening negatively impacts generalization
in a dimension-dependent manner, with the effect worsening in high dimensional settings.
Exploiting the equivalence of training with a first-order method on whitened data and training
with an exact second-order method on unwhitened data in certain model classes, we then
study the generalization properties of models trained with exact second-order optimizers. We
find that such models also exhibit reduced generalization compared with the same models
trained with first-order optimizers, but that this effect can be countered by appropriately
regularizing the optimizer.

What is whitening?

Whitening is a data preprocessing step that removes correlations between input features (see
Fig. 3.1). It is used across many scientific disciplines, including geology [53], physics [68],
machine learning [76], linguistics [1], and chemistry [29]. It has a particularly rich history in
neuroscience, where it has been proposed as a mechanism by which biological visual systems
realize Barlow’s redundancy reduction hypothesis [14, 18, 13, 40, 125].

Whitening is often recommended since, by standardizing the variances in each direction
in feature space, it typically speeds up the convergence of learning algorithms [76, 143], and
causes models to better capture contributions from low variance feature directions. Whitening
can also encourage models to focus on more fundamental higher-order statistics in data, by
removing second-order statistics [65]. Whitening has further been a direct inspiration for
deep learning techniques such as batch normalization [66] and dynamical isometry [98, 147].

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 31

(a) (b)

Figure 3.1: Whitening removes correlations between feature dimensions in a dataset.
Whitening is a linear transformation of a dataset that sets all non-zero eigenvalues of the covariance
matrix to 1. ZCA whitening is a specific choice of the linear transformation that rescales the data in
the directions given by the eigenvectors of the covariance matrix, but without additional rotations or
flips. (a) A toy 2d dataset before and after ZCA whitening. Red arrows indicate the eigenvectors of
the covariance matrix of the unwhitened data. (b) ZCA whitening of CIFAR-10 images preserves
spatial and chromatic structure, while equalizing the variance across all feature directions.

Whitening destroys information useful for generalization

Our argument proceeds in two parts: First, we prove that when a model with an isotropically
initialized, fully connected first layer is trained with either gradient descent or stochastic
gradient descent (SGD), information in the data covariance matrix is the only information
that can be used to generalize. This result is agnostic to the choice of loss function and to
the architecture of the model after the first layer. Second, we show that whitening always
destroys information in the data covariance matrix.

Whitening the data and then training with gradient descent or SGD therefore results
in either diminished or nonexistent generalization properties compared to the same model
trained on unwhitened data. The seriousness of the effect varies with the difference between
the number of datapoints n and the number of features d, worsening as n− d gets smaller.

Empirically, we find that this effect holds even when the first layer is not fully connected
and when its weight initialization is not isotropic - for example, in a convolutional network
trained from a Xavier initialization.

Second-order optimization harms generalization similarly to whitening

Second-order optimization algorithms take advantage of information about the curvature
of the loss landscape to take a more direct route to a minimum [28, 27]. There are many
approaches to second-order or quasi second-order optimization [31, 50, 54, 122, 43, 81, 114,
79, 131, 86, 34, 137, 47, 132, 150, 61, 33, 69, 129, 44, 88, 55, 4, 153, 26, 87, 52, 82, 25, 56,
123, 23, 11, 5, 96], and there is active debate over whether second-order optimization harms
generalization [144, 152, 151, 8, 136]. The measure of curvature used in these algorithms is
often related to feature-feature covariance matrices of the input or of intermediate activations

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 32

[88]. In some situations second-order optimization is equivalent to steepest descent training
on whitened data [128, 88].

We take advantage of the similarities between whitening and second-order optimization to
argue that exact second-order optimization also prevents information about the input distri-
bution from being leveraged during training, and can harm generalization (see Figs. 3.4, 3.6).
Our results are strongest for unregularized, exact second-order optimizers and for the large
width limit of neural networks. We do find, however, that when strongly regularized and
carefully tuned, second-order methods can lead to superior performance (Fig. 3.7).

3.1 On whitening and generalization
Consider a dataset X ∈ Rd×n consisting of n independent d-dimensional examples. X consists
of samples from an underlying data distribution to which we do not have access. We write F
for the feature-feature second moment matrix and K for the sample-sample second moment
matrix:

F = XX⊤ ∈ Rd×d , K = X⊤X ∈ Rn×n . (3.1)

We assume that at least one of F or K is full rank. We omit normalization factors of 1/n
and 1/d in the definitions of F and K, respectively, for notational simplicity in later sections.
As defined, K is also the Gram matrix of X.

We are interested in understanding the effect of whitening on the performance of a trained
model when evaluated on a test set. We begin by proving the general result that for any model
with a dense, isotropically initialized first layer, the trained model depends on the training
inputs only through K. This is Part A. Then, in Part B, we show that whitening reduces
the information in K. Together, these two results lead to the conclusion that whitening
limits generalization. We discuss the resulting predictions in various cases depending on the
dimensionality of the data and how the whitening transform is computed. Lastly, in Part C,
we discuss all our results in the context of linear least squares models. These models can
be exactly solved, and are productive of insight into why whitening might be expected to
negatively affect generalization.

Part A: Data dependence of training dynamics and test predictions

Training dynamics depend on the training data only through its second moments

Consider a model f with a dense first layer Z:

f(X) = gθ(Z) , Z = WX , (3.2)

whereW denotes the first layer weights and θ denotes all remaining parameters (see Fig. 3.3(a)).
The structure of gθ (·) is unrestricted. W is initialized from an isotropic distribution. We

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 33

Information lost to whitening or
unused by second-order optimizers

Information remaining in trained model
after whitening or second-order optimization

Information in the dataset X

Information in the sample second moment matrix K

Information in the trained model f

Figure 3.2: A Venn diagram summarizing the core result. For any model with a dense,
isotropically initialized first layer, only information contained in the sample second moment
matrix K of the data is available to inform model predictions. Trained models learn a subset
of the information contained in K. Both data whitening and second-order optimization make
information in K unavailable. This reduces the information about the dataset available to
the model, and often harms generalization. In some cases all information in K is rendered
unavailable, in which case the trained model is completely unable to generalize.

study a supervised learning problem, in which each vector Xi corresponds to a label Yi.1 We
adopt the notation Xtrain ∈ Rd×ntrain and Ytrain for the training inputs and labels, and write
the corresponding second moment matrices as Ftrain and Ktrain. We consider models with
loss L(f(X);Y) trained by SGD. The update rules are

θt+1 = θt − η
∂Lt

∂θt
, (3.3a)

W t+1 = W t − η
∂Lt

∂W t
= W t − η

∂Lt

∂Zt
train

X⊤
train , (3.3b)

where t denotes the current training step, η is the learning rate, and Lt is the loss evaluated
only on the minibatch used at step t. As a result, the activations Ztrain = WXtrain evolve as

Zt+1
train = Zt

train − η
∂Lt

∂Zt
train

Ktrain. (3.4)

Treating the weights, activations, and function predictions as random variables, with
distributions induced by the initial distribution over W 0, the update rules (Eqs. 3.3-3.4) can
be represented by the causal diagram in Fig. 3.3(b). We can now state one of our main
results.

1Our results also apply to unsupervised learning, which can be viewed as a special case of supervised
learning where Yi contains no information.

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 34

(a) X

Z = WXW

f(X) = gθ(Z)θ

(b) Ktrain

Zt
train

θt

Ytrain

Zt+1
train

θt+1

f t+1

(c) Xtrain

Ktrain

Z0
train Z1

train Zt
train

θ0 θ1 θt

Ytrain f t
test

Ktrain×test

. . .

. . .

Figure 3.3: Model activations and parameters depend on the training data only through
second moments. (a) Our model class consists of a linear transformation Z = WX, followed
by a nonlinear map gθ (Z) with parameters θ. Note that this model class includes fully connected
neural networks, among other common machine learning models. (b) Causal dependencies for a
single gradient descent update. The changes in weights, activations, and model output depend on
the training data through the training sample second moment matrix, Ktrain, and the targets, Ytrain.
(c) Causal structure for the entire training trajectory. The final weights and training activations
only depend on the training data through the training sample second moment matrix Ktrain, and
the targets Ytrain, while the test predictions (in purple) also depend on the mixed second moment
matrix, Ktrain×test.

Theorem 3.1.0.1. Let f(X) be a function as in Eq. 3.2, with linear first layer Z = WX,
and additional parameters θ. Let W be initialized from an isotropic distribution. Further, let
f(X) be trained via gradient descent on a training dataset Xtrain. Then, the learned weights
θt and first layer activations Zt

train are independent of Xtrain conditioned on Ktrain and Ytrain.
In terms of mutual information I, we have

I(Zt
train, θ

t;Xtrain | Ktrain, Ytrain) = 0 ∀t. (3.5)

Proof. To begin, we note that the first layer activation at initialization, Z0
train, is a random

variable due to random weight initialization, and only depends on Xtrain through Ktrain:

I(Z0
train;Xtrain | Ktrain) = 0. (3.6)

This is a consequence of the isotropy of the initial weight distribution, and we will prove it
later. Note also that the deeper layer weights at initialization are independent of Xtrain:

I(θ0;Xtrain) = 0. (3.7)

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 35

Using these two facts and the update rules Eqs. 3.3-3.4, the causal diagram for all of training
is given by (the black part of) Fig. 3.3(c). It is clear that the conditional independence of
Eq. 3.5 follows from this diagram, since the only additional data dependence of Zt

train and
θt over their counterparts at t = 0 is through Ytrain. We provide an explicit argument by
induction.

We have already established the base case. Assume Eq. 3.5 holds for t = i. By the chain
rule,

I(Zi+1
train,θ

i+1;Xtrain | Ktrain, Ytrain)

= I(Zi+1
train;Xtrain | Ktrain, Ytrain) + I(θi+1;Xtrain | Ktrain, Ytrain, Z

i+1
train). (3.8)

When Ktrain and Ytrain are held fixed, the only sources of randomness in Zi+1
train and θi+1 are

Zi
train and θi. This can be seen by examining the update rules for Ztrain and θ, Eqs. 3.4

and 3.3, in which we can write the loss function at time i as Li = L(gθi(Z
i
train);Ytrain). By

assumption, Zi
train and θi are conditionally independent of Xtrain given Ktrain and Ytrain, and

therefore both terms on the right-hand side of Eq. 3.8 evaluate to zero.
It remains to establish Eq. 3.6.
Let P(W t) denote the probability distribution of the first layer weights at step t. We

have assumed that W 0 is isotropically initialized: for any R ∈ O(d) where O(d) is the set of
d-dimensional orthogonal matrices, we have

P(W 0R) = P(W 0). (3.9)

Now consider the conditional probability P(Z0
train|Xtrain). We can write it in terms of the

distribution over initial weights, P (Z0
train|Xtrain) =

∫
DW 0P (W 0)δ(Z0

train −W 0Xtrain), where
DW 0 is the uniform measure over the components of W 0. Then, for any R ∈ O(d), we have

P(Z0
train|RXtrain) =

∫
DW 0 P(W 0)δ(Z0

train −W 0RXtrain)

=

∫
DW̃ 0 P(W̃ 0R⊤)δ(Z0

train − W̃ 0Xtrain)

=

∫
DW̃ 0 P(W̃ 0)δ(Z0

train − W̃ 0Xtrain)

= P(Z0
train|Xtrain) . (3.10)

Here, δ denotes the Dirac delta function. To arrive at the second line we defined W̃ 0 := W 0R
and used the invariance of the measure DW 0. The third line follows from the O(d) invariance
of the initial weight distribution. Thus, the rotational invariance of the distribution over
first layer weights leads to rotational invariance of the conditional distribution over first layer
activations.

By the first fundamental theorem of invariant theory [73], the only O(d) invariant
functions of n vectors in d dimensions are the n2 inner products Ktrain = X⊤

trainXtrain. Thus

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 36

P(Z0
train|Xtrain) = h(Ktrain) for some function h, and P(Z0

train|Xtrain, Ktrain) = P(Z0
train|Ktrain).

Eq. 3.6 then follows from the definition of conditional mutual information.

I(Z0
train;Xtrain | Ktrain)

≡ EKtrain

[
DKL(P(Z0

train, Xtrain|Ktrain)||P(Z0
train|Ktrain)P(Xtrain|Ktrain))

]
= EKtrain

[
P(Xtrain|Ktrain)DKL(P(Z0

train|Xtrain, Ktrain)||P(Z0
train|Ktrain))

]
= 0. (3.11)

Test set predictions depend on train and test inputs only through their second
moments

Let Xtest ∈ Rd×ntest and Ytest be the test data. The test predictions ftest = f(Xtest) are
determined by Zt

test = W tXtest and θt. To identify sources of data dependence, we can write
the evolution of the test set predictions Ztest over the course of training in a manner similar
to Eq. 3.4:

Zt+1
test = Zt

test − η
∂Lt

∂Zt
train

Ktrain×test, (3.12)

where Ktrain×test = X⊤
trainXtest ∈ Rntrain×ntest . The initial first layer activations are independent

of the training data, and depend on Xtest only through Ktest. Therefore we have

I(Z0
test;X | Ktest) = 0, (3.13)

where X is the combined training and test data. If we denote the second moment matrix
over this combined set by K, then the evolution of the test predictions is described by the
(purple part of the) causal diagram in Fig. 3.3(c), from which we conclude the following.

Theorem 3.1.0.2. For a function f(X) as in Eq. 3.2, with first-layer weights initialized
isotropically, trained with the update rules Eqs. 3.3-3.4, test predictions depend on the training
data only through K and Ytrain. This is summarized in the mutual information statement

I(ftest;X | K,Ytrain) = 0 . (3.14)

Part B: Whitening and generalization

We have established that trained models with fully connected, isotropically initialized first
layers depend on the input data only through K. Now we show that by removing information
from F , whitening removes information in K that could otherwise be used to generalize. In
the extreme case n ≤ d, K is trivialized, and we show that any generalization ability in a
model trained in this regime relies solely on linear interpolation between inputs. We offer a
detailed theoretical study of these effects in a linear model, and we use this example to make
a connection with unregularized second-order optimization.

We begin with the definition of whitening.

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 37

Definition 3.1.0.1 (Whitening). Any linear transformation M s.t. X̂ = MX maps the
eigenspectrum of F to ones and zeros, with the multiplicity of ones given by rank(F).

It is natural to consider the two cases n ≤ d and n ≥ d (when n = d both cases apply).

n ≥ d : F̂ = Id×d , K̂ =
d∑

i=1

ûiû
⊤
i .

n ≤ d : F̂ =
n∑

j=1

v̂j v̂
⊤
j , K̂ = In×n.

(3.15)

Here, F̂ and K̂ denote the whitened second moment matrices, and the vectors ûi and v̂j are
orthogonal unit vectors of dimension n and d respectively. Eq. 3.15 follows directly from the
fact that X⊤X and XX⊤ share nonzero eigenvalues.

Full data whitening of a high dimensional dataset

We first consider a simplified setup: computing the whitening transform using the combined
training and test data. We refer to this as “full-whitening”. We consider the large feature
count (d ≥ n) regime.

Corollary 3.1.0.2.1. When d ≥ n, and when the whitening transform is computed on the
full input dataset X (including both train and test points), then the whitened input data X̂
provides no information about the predictions ftest of the model on test points. That is,

I(ftest; X̂ | Ytrain) = 0 . (3.16)

Proof. By Eq. 3.15 we have K̂ = I. Since K̂ is now a constant rather than a random variable,
Eq. 3.14 simplifies directly to Eq. 3.16.

To further clarify this prediction, note that Eq. 3.16 implies I(ftest;Ytest | Ytrain) = 0 for
fully-whitened data because the true test labels are solely determined by Xtest. Therefore
knowing the model prediction on a test point in this setting gives no information about the
true test label.

Training data whitening of a high dimensional dataset

In practice, we are more interested in the common setting of computing a whitening transform
based only on the training data. We call data whitened in this way “train-whitened”. As
mentioned above, the test predictions of a model are entirely determined by the first layer
activations Zt

test and the deeper layer weights θt. From Theorem 3.1.0.1 we see that the
learned weights θt depend on the training data only through Ktrain, and are thus independent
of the training data for whitened data:

I(θt; X̂train | Ytrain) = 0 . (3.17)

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 38

It is worth emphasizing this point because in most realistic networks the majority of model
parameters are contained in these deeper weights θt.

Despite the deep layer weights, θt, being unable to extract information from the training
distribution, the model is not entirely incapable of generalizing to test inputs. This is because
the test activations Ztest will interpolate between training examples, using the information in
K̂train×test. More precisely,

Zt
test = Z0

test +
(
Zt

train − Z0
train

)
K̂train×test. (3.18)

This interpolation in Z is the only way in which structure in the inputs Xtrain can drive
generalization. This should be contrasted with the case of full-whitening, discussed above,
where K̂train×test = 0. We therefore predict that when whitening is performed only on the
training data, there will be some generalization, but it will be much more limited than can
be achieved without whitening.

Full data whitening of lower dimensional datasets

When the dataset size is larger than the data dimensionality, whitening continues to remove
information which could otherwise be used for generalization, but it no longer removes all of
the information in the training inputs. In this regime, by mapping the feature-feature second
moment matrix F to the identity matrix, whitening also reduces the degrees of freedom in the
sample-sample second moment matrix K. Because information about the training dataset is
available to the model only through K (Fig. 3.3(c)), reducing the degrees of freedom of K
also reduces the information available to the model about the training inputs.

Theorem 3.1.0.3. Consider a dataset X ∈ Rd×n, with n > d, and where all submatrices
formed from d columns of X are full rank (this condition holds in the generic case). Consider
the same model class and training procedure as in Theorem 3.1.0.1. Any dataset X can be
compressed to c ≤ nd scalar values without losing any of the information that determines the
distribution over the test set predictions ftest of the trained model. When models are trained
on unwhitened data, then c = min

(
nd− (d2−d)/2, (n2+n)/2

)
. However, when models are trained

on whitened data, then the whitened dataset can be further compressed to ĉ ≤ (n− d)d scalars.

Data whitening therefore reduces the amount of information about the input data that
can be used to generate model predictions.

Proof. By Theorem 3.1.0.2 and the causal diagram in Fig. 3.3(c), we know that the distribution
over test set predictions depends on model inputs only through K. Since K is positive
semidefinite, it is fully specified by (n2+n)/2 entries. For d < n these entries are not independent.
K encodes the inner products between n vectors in d dimensions, These are specified by n
magnitudes and n(d− 1)− (d(d− 1))/2 independent angles.

Thus, for a model trained on unwhitened data,

c = min

(
nd− d2 − d

2
,
n2 + n

2

)
. (3.19)

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 39

Next we consider the case that full data whitening has been performed, such that F̂ = I.
Recall the following identity, where + indicates the pseudoinverse:

X̂⊤ = X̂+X̂X̂⊤. (3.20)

Using this, we can rewrite K̂ as

K̂ = X̂⊤X̂ = X̂+X̂X̂⊤X̂ = X̂+F̂ X̂

= X̂+X̂. (3.21)

Next consider a modified dataset

X̃ = QX̂ = [I · · ·] , (3.22)

where the matrix Q ∈ Rd×d has been chosen such that the first d columns of X̃ correspond
to the identity matrix (ie Q is the inverse of the submatrix formed by the first d columns
of X̂). Because its first d columns are deterministic, X̃ can be stored using (n− d) d real
values. Despite being represented by d2 fewer values, this compressed dataset can still be
used to reconstruct K̂,

K̂ = X̂+X̂ = X̂+Q−1QX̂ =
(
QX̂

)+
QX̂

= X̃+X̃. (3.23)

We further observe that when n > d, (n− d) d < (n2+n)/2. This is enough to establish

ĉ = (n− d) d < c. (3.24)

Summary of predictions and a note

In a model with a fully connected first layer, with first layer weights initialized from an
isotropic distribution, whitening the data before training with SGD is expected to result in
reduced generalization ability compared to the same model trained on unwhitened data. The
severity of the effect varies with the relationship of n to d.

Full data whitening when n < d is a limiting case in which generalization is expected to
be completely destroyed. When n ≤ d and the data is train-whitened, generalization is forced
to rely solely on interpolation and is expected to be poor. When n > d and the data is either
fully or train-whitened, model predictions still depend on strictly less information than would
be available had the data not been whitened, and once again generalization is expected to
suffer. For n≫ d, the effect of whitening on generalization is expected to be minimal.

As we discuss later, these same predictions apply to second-order optimization of linear
models and of overparameterized networks (with d corresponding the number of parameters
rather than the number of input dimensions).

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 40

In this work, the measure of generalization we are concerned with is the performance of
a trained model on a test set. Although standard in the neural network community, this
is different from the measure of generalization usually studied in statistical learning theory,
which is the expected difference between the empirical and population risks. Interestingly,
when this latter measure of generalization is considered, there are results establishing precisely
the opposite of our results here, namely that both a reduction in the mutual information
between the dataset and model output [148] and a greater compression of the dataset [42]
are beneficial for generalization, albeit with different assumptions on the model class than
the ones we have here. How to reconcile these two kinds of results is a question for future
research.

Part C: Whitening in linear least squares models

Linear models are widely used for regression and prediction tasks and provide an instructive
laboratory to understand the effects of data whitening. Studying them also provides intuition
for why whitening is harmful.

Consider a linear model with mean squared error loss,

f(X) = W⊤X , L =
1

2
||f(X)− Y ||2 . (3.25)

This loss function is convex. We begin by discussing the low dimensional case, d < n, where
the loss has a unique global optimum W ⋆ = F−1

trainXtrainYtrain. The model predictions at this
global optimum, f⋆(X) = W ⋆⊤X, are invariant under any whitening transform (3.1.0.1). As
a result, any quality metric (loss, accuracy, etc...) for this global minimum is the same for
whitened and unwhitened data.

The story is more interesting, however, during training. Consider a model trained via
gradient flow (similar statements can be made for gradient descent or stochastic gradient
descent). The dynamics of the weights are given by

dW

dt
= − ∂L

∂W
, W (t) = e−tFtrainW (0) + (1− e−tFtrain)W ∗ . (3.26)

The evolution in Eq. 3.26 implies that the information contained in the trained weights W (t)
about the training data X is entirely determined by Ftrain and W ⋆. In terms of mutual
information, we have

I(W (t);X|Ftrain,W
⋆) = 0 . (3.27)

As whitening sets F̂train = I, a linear model trained on whitened data does not benefit from
the information in Ftrain.

At a more microscopic level, we can decompose Eq. 3.26 in terms of the eigenvectors, vi,
of F :

W (t) =
d∑

i=1

viwi(t), wi(t) = e−tλiwi(0) + (1− e−λit)w⋆
i . (3.28)

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 41

We see that for unwhitened data the eigenmodes with larger eigenvalues converge more quickly
towards the global optimum, while the small eigendirections converge relatively slowly. For
centered X, F is the feature covariance and these eigendirections are exactly the principle
components of the data. As a result, training on unwhitened data is biased towards learning
the top principal directions at early times. This bias is often beneficial for generalization.
Similar simplicity biases have been found empirically in deep linear networks [111] and in
deep networks trained via SGD [100, 104] where networks learn low frequency modes before
high. In contrast, for whitened data, F̂train = I and the evolution of the weights takes the
form

ŵi(t) = e−tŵi(0) + (1− e−t)ŵ⋆
i . (3.29)

All hierarchy between the principle directions has been removed, thus training overfits
immediately. For this reason linear models trained on unwhitened data can generalize
significantly better at finite times than the same models trained on whitened data. Empirical
support for this in a linear image classification task with random features is shown in
Fig. 3.4(a).

At the global optimum, W ⋆ = F−1
trainXtrainYtrain, the network predictions on test points

can be written in a few equivalent ways,

f⋆(Xtest) = Y ⊤
trainX

⊤
trainF

−1
trainXtest = Y ⊤

trainK
+
trainKtrain×test = Y ⊤

trainK̂train×test . (3.30)

Here, the + superscript is the pseudoinverse, and K̂train×test is the whitened train-test sample-
sample second moment matrix. These expressions make manifest that the test predictions at
the global optimum only depend on the training data through Ktrain and Ktrain×test, and that
the global optimum is the same regardless of whether the data is whitened. This can also be
seen in Figs. 3.4(a) and 3.8.

The discussion is very similar in the high dimensional case, d > n. In this case, there is
no longer a unique solution to the optimization problem, but there is still a unique optimum
within the span of the data.

W ⋆
∥ =

(
F

∥
train

)−1

X
∥
trainYtrain , W ⋆

⊥ = W⊥(0) . (3.31)

Here, we have introduced the notation ∥ for directions in the span of the training data and
⊥ for orthogonal directions. Explicitly, if we denote by V ∥ = {v1, v2, . . . , vn} ∈ Rn×d the
non-null eigenvectors of Ftrain and V ⊥ = {vn+1, vn+2, . . . , vd} ∈ R(d−n)×d the null eigenvectors,
then X∥

train := V ∥Xtrain, W∥ := WV ∥, W⊥ := WV ⊥, and F ∥
train := V ∥Ftrain(V

∥)⊤.
The model predictions at this optimum can be written as

f⋆(Xtest) = f 0(Xtest)−
(
f 0(Xtrain)− Ytrain

)⊤
K−1

trainKtrain×test . (3.32)

This is the solution found by GD, SGD, and projected Newton’s method. The evolution
approaching this optimum can be written (again assuming gradient flow for simplicity) as

W∥(t) = e−tF
∥
trainW∥(0) + (1− e−tF

∥
train)W ∗

∥ , W⊥(t) = W⊥(0). (3.33)

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 42

In terms of the individual components, [W∥(t)]i = e−tλi [W∥(0)]i + (1− e−tλi)[W ∗
∥]i.

As in the case d < n, the hierarchy in the spectrum allows for the possibility of beneficial
early stopping, while whitening the data results in immediate overfitting.2

Let us briefly consider the case where n ≤ d with full data whitening. As discussed, the
global optimum W ⋆ is still unique up to a pseudoinverse: W ⋆ = F+

trainXtrainYtrain. When
full data whitening is performed, we have K̂ = I from Eq. 3.15, and so the mixed second
moment matrix K̂train×test, which is an off-diagonal block of K̂, is a zero matrix. Therefore
f⋆(Xtest) = Y ⊤

trainK̂train×test = 0 for all the test points, and it is particularly simple to see how
whitening can destroy generalization.

3.2 On exact second-order optimization and
generalization by analogy with whitening

In Part A of Section 3.1, we argued that for any model with a dense, isotropically initialized
first layer, the trained model depends on the training inputs only through K. In Part B, we
demonstrated that whitening reduces the information in K and therefore negatively impacts
generalization. Here, we show that exact second-order optimizers, typified by Newton’s
method, have reduced access to the information in K for certain model classes. Although in
practice unregularized Newton’s method is rarely used as an optimization algorithm due to its
computational complexity, a poorly conditioned Hessian, or poor generalization performance,
it is still important to study because it serves as the basis of and as a limiting case for most
second-order methods.

It is known that in linear least squares models, training with Newton’s method is exactly
equivalent to training on whitened data with a first-order optimizer. We reproduce the argu-
ment that established this equivalence below. We further argue that highly overparameterized
neural networks trained with Newton’s method evolve as linear models trained with the same
optimizer. By analogy with whitening, then, exact second-order optimizers are expected to
produce linear models and overparameterized neural networks that do not generalize as well as
the same models trained with first-order optimizers. Thus, we are able to give an explanation
for why unregularized second-order methods have poor generalization performance. We find
that our conclusions also hold empirically in a deep CNN (see Figs. 3.4, 3.6).

Linear least squares

We compare a pure Newton update step on unwhitened data with a gradient descent update
step on whitened data in a linear least squares model. The Newton update step uses the

2The result discussed here, that whitening eliminates the benefits of early stopping, if there are any,
should be distinguished from the phenomenon of benign overfitting, in which the optimal solution to a training
problem still generalizes well, in defiance of the bias-variance tradeoff of classical statistics. Benign overfitting
is a property of W ⋆, and not of any solution to the training problem obtained by early stopping. See [21, 19,
59] for studies of benign overfitting in linear least squares problems.

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 43

Hessian H of the model as a preconditioner for the gradient:

W t+1
Newton = W t

Newton − ηH−1 ∂L
t

∂W t
. (3.34)

We allow for a general step size η, with η = 1 giving the canonical Newton update. When H
is rank deficient, we take H−1 to be a pseudoinverse. For a linear model with mean squared
error (MSE) loss, the Hessian equals the second moment matrix Ftrain, and the model output
evolves as

f t+1
Newton(X) = f t

Newton(X)− η
∂Lt

∂f t
Newton

X⊤
trainF

−1
trainX . (3.35)

We can compare this with the evolution of a linear model f̂(X) = ŴMX trained via
gradient descent on whitened data X̂ =MX with a mean squared loss:

f̂ t+1(X) = f̂ t(X)− η
∂Lt

∂f̂ t
X⊤

trainM
⊤MX. (3.36)

Noting that M⊤M = F−1
train, Eqs. 3.35 and 3.36 give identical update rules. Thus if both

functions are initialized to have the same output, Newton updates give the same predictions as
gradient descent on whitened data. While this correspondence is known in the literature, we
can now use it to say something further, namely that by applying the argument in Section 3.1,
Part B, we expect Newton’s method to produce linear models that generalize poorly. This
result assumes a mean squared loss, but we find experimentally that generalization is also
harmed with a cross entropy loss in Fig. 3.4(d).

Overparameterized neural networks

In recent years much progress has been made in understanding the dynamics of wide neural
networks [67]. In the large width limit, which occurs when the number of units or channels
in intermediate network layers grows towards infinity, many neural network architectures,
including fully connected and convolutional architectures, behave as linear models in their
parameters throughout training. In particular, it has been realized that wide networks trained
via GD, SGD, or gradient flow evolve as linear models with static, nonlinear features given
by the derivative of the network map at initialization [78]. Here we extend the connection
between linear models and wide networks to second-order methods. We argue that wide
networks trained with a regularized Newton’s method evolve as linear models trained with
the same second-order optimizer.

In the wide network limit, d corresponds to the number of features rather than the
number of input dimensions, and the number of features is equal to the number of parameters.
Second-order optimization is therefore predicted to be harmful for much larger dataset sizes
when optimizing overparameterized neural networks.

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 44

We consider a regularized Newton update step,

θt+1 = θt − η (ϵ1+H)−1 ∂L
t

∂θ
. (3.37)

This diagonal regularization is a common generalization of Newton’s method. One motivation
for such an update rule in the case of very wide neural networks is that the Hessian is
necessarily rank deficient, and so some form of regularization is needed.

For a linear model, flinear(x) = θ⊤ ·g(x), with fixed nonlinear features, g(x), the regularized
Newton update rule in weight space leads to the function space update

f t+1
linear(x) = f t

linear(x)− η
∑
xa,xb

∈Xtrain

Θlinear(x, xa) (ϵ1+Θlinear)
−1
ab

∂Lb

∂flinear
. (3.38)

Here, Θlinear is a constant kernel, Θlinear(x, x
′) = ∂f

∂θ

⊤ · ∂f
∂θ

= g⊤(x) · g(x′).
For a deep neural network, the function space update takes the form

f t+1(x) = f t(x)− η
∑
xa,xb

∈Xtrain

Θ(x, xa) (ϵ1+Θ)−1
ab

∂Lb

∂f
+
η2

2

P∑
µ,ν=1

∂2f

∂θµ∂θν
∆θtµ∆θ

t
ν + · · · .

(3.39)

Here we have indexed the model weights by µ = 1 . . . P , denoted the change in weights by
∆θt and introduced the neural tangent kernel (NTK), Θ(x, x′) = ∂f⊤

∂θ
· ∂f
∂θ

.
In general, Eqs. 3.38 and 3.39 lead to different network evolution due to the non-constancy

of the NTK and the higher-order terms in the learning rate. For wide neural networks,
however, it was realized that the NTK is constant [67] and the higher-order terms in η
appearing in Eq. 3.39 vanish at large width [48, 63, 80, 10, 6].3

With these simplifications, the large width limit of Eq. 3.39 describes the same evolution
as a linear model trained with fixed features g(x) = ∂f(x)

∂θ
|θ=θ0 trained via a regularized

Newton update.

3.3 Experiments

Model and Task Descriptions

We describe our basic experiment structure, and provide brief descriptions of the four types
of models we studied and associated experimental variations here. Detailed methods are
given in Section 3.5.

3These simplifications were originally derived for gradient flow, gradient descent and stochastic gradient
descent, but hold equally well for the regularized Newton updates considered here. This can be seen, for
example, by applying Theorem 1 of [48].

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 45

The kernel of all our experiments is as follows: From a dataset, we draw a number of
subsets, tiling a range of dataset sizes. Each subset is divided into train, test, and validation
examples, and three copies of the subset are made, two of which are whitened. In one case
the whitening transform is computed using only the training examples (train-whitening), and
in the other using the training, test, and validation examples (full-whitening). Note that
the test set size must be reduced in order to run experiments on small datasets, since the
test set is considered part of the dataset for full whitening. Models are trained from random
initialization on each of the three copies of the data using the same training algorithm and
stopping criterion. Test errors and the number of training epochs are recorded. We emphasize
that in any single experiment in which whitening is performed, the same whitening transform
is always applied to train, test, and validation data. Experiments differ in the specific subset
of the data (train only or train + test + validation) on which the whitening transform is
computed.

Linear models and MLPs. To experimentally demonstrate theoretical results, we study
CIFAR-10 classification in linear models and CIFAR-10 and MNIST classification in three-
layer, fully connected multilayer perceptrons (MLPs). Linear models were trained by opti-
mizing mean squared error loss, where the model outputs were a linear map between the
512-dimensional outputs of a four layer convolutional network at random initialization on
CIFAR-10, and their 10-dimensional one-hot labels. This setup is in part motivated by
analogy to training the last linear readout layer of a deep neural network. We solved the
gradient flow equation for the time at which the MSE on the validation set is lowest, and
report the test error at that time. The experiment was repeated using continuous-time
Newton’s method, consisting of continuous-time gradient descent using an inverse Hessian
preconditioner. MLPs were trained using SGD with constant step size until the training
accuracy reaches a fixed cutoff threshold, at which point test accuracy was measured.

Convolutional networks. Since our theoretical results on the effect of whitening apply
only to models with a fully connected and isotropically initialized first layer, we test whether
the same qualitative behavior is observed in CNNs trained from a Xavier initialization. We
chose the popular wide residual (WRN) architecture [149], trained on CIFAR-10. Training
was performed using full batch gradient descent with a cosine learning rate schedule for a
fixed number of epochs. Full batch training was used to remove experimental confounds
from choosing minibatch sizes at different dataset sizes. A validation set was split from the
CIFAR-10 training set. Test error corresponding to the parameter values with the lowest
validation error was reported.

We also trained a smaller CNN (a ResNet-50 convolutional block followed by an average
pooling layer and a dense linear layer) on unwhitened data with full batch gradient descent
and with the Gauss-Newton method (with and without a scaled identity regularizer) to
compare their respective generalization performances. A grid search was performed over
learning rate, and step sizes were chosen using a backoff line search initialized at that learning

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 46

103

dataset size

0.42

0.44

0.46

0.48

0.50

te
st

 e
rro

r

linear model

101 102 103 104 105

dataset size

0.4

0.6

0.8

1.0

te
st

 e
rro

r

MLP

101 102 103 104

training set size

0.4

0.6

0.8

1.0

te
st

 e
rro

r

WRN

101 102 103 104

training set size

0.5

1.0

1.5

2.0

2.5
te

st
 (t

ra
in

) l
os

s
CNN

GD: unwhitened
GD: train whitened
GD: full whitened
NGD: unwhitened
input dimension
GD: training loss
NGD: training loss

(a) (b)

(c) (d)

Figure 3.4: Whitening and second-order optimization reduce or prevent generalization.
(a)-(c) Models trained on both full-whitened data (blue; panes a,b) and train-whitened data (green;
panes a-c) consistently underperform models trained by gradient descent on unwhitened data (purple;
all panes). In (a), Newton’s method on unwhitened data (pink circles) behaves identically to gradient
descent on whitened data. (d) second-order optimization in a convolutional network results in poorer
generalization properties than steepest descent. Points plotted correspond to the learning rate and
training step with the best validation loss for each method; data for this experiment was unwhitened.
CIFAR-10 is used for all experiments (see Fig. 3.5 for experiments on MNIST). In (c) and (d) we
use a cross entropy loss (see Section 3.5 for details).

rate. Test and training losses corresponding to the best achieved validation loss were reported.
Note that this experiment is relatively large scale; because we perform full second-order
optimization to avoid confounds due to choosing a quasi-Newton approximation, iterations
are cubic in the number of model parameters.

Results

Whitening and second-order optimization impair generalization. In agreement
with theory, in Figs. 3.4(a) and (b), linear models and MLPs trained on fully whitened data
generalize at chance levels (indicated by test errors of 0.5 and 0.9, respectively) when the size
of the dataset is smaller than the dimensionality of the data, and models trained on train-
whitened data perform strictly worse than those trained on unwhitened data. Furthermore,

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 47

101 102 103 104 105

dataset size

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 e
rro

r

MLP on MNIST
unwhitened
train whitened
full whitened
dataset size > input rank
input dimension

Figure 3.5: Whitening MNIST before training negatively impacts generalization in
MLPs. Models trained on fully whitened data (in blue) are unable to generalize until the size of the
dataset exceeds its maximal input rank of 276, indicated by the solid black vertical line. Regardless
of how the whitening transform is computed, models trained on whitened data (blue and green)
consistently underperform those trained on unwhitened data (in purple).

10−1 101 103 105 107

training time

0.44

0.46

0.48

0.50

te
st

 e
rro

r

linear model

101 102 103 104

dataset size

0

50

100

150

tra
in

in
g

ep
oc

hs

MLP

100 101 102 103 104

training step

0

1

2

va
lid

at
io

n
(tr

ai
n)

 lo
ss

CNN

GD: unwhitened
GD: train whitened
GD: full whitened
NGD: unwhitened
training loss

(a) (b) (c)

Figure 3.6: Models trained on whitened data or with second-order optimizers converge
faster. (a) Linear models trained on whitened data optimize faster, but their best test accuracy
was always worse. Data plotted here is for a training set of size 2560. Similar results for smaller
training set sizes are given in Fig. 3.8. (b) Whitening the data significantly lowers the number of
epochs needed to train an MLP to a fixed cutoff in training accuracy, when the learning rate and all
other training parameters are kept constant. Discrete jumps in the plot data correspond to points
at which the (constant) learning rate was changed. The dashed vertical line indicates the input
dimensionality of the data. See Section 3.5 for details. (c) second-order optimization accelerates
training on unwhitened data in a convolutional network, compared to gradient descent. Data shown
is for a training set of size 10240. Stars correspond to values of the validation loss at which test and
training losses are plotted in Fig. 3.4(d).

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 48

10−6 10−3 0.5 1 − 10−3 1 − 10−6

λ (NGD regularizer strength)

1.45

1.50

1.55

1.60

1.65

1.70

te
st

 lo
ss

GD: unwhitened
NGD: unwhitened,
 regularized

10−6 10−3 0.5 1 − 10−3 1 − 10−6

λ (NGD regularizer strength)

101

102

103

104

tra
in

in
g

st
ep

s

CNN

(a) (b)

Figure 3.7: Regularized second-order methods can train faster than gradient descent,
with minimal or even positive impact on generalization. Models were trained on a size
10240 subset of CIFAR-10 by minimizing a cross entropy loss. Error bars indicate twice the standard
error in the mean. (a) Test loss as a function of regularizer strength. At intermediate values of λ,
the second-order optimizer produces lower values of the test loss than gradient descent. Test loss is
measured at the training step corresponding to the best validation performance for both algorithms.
See text for further discussion. (b) At all values of λ < 1, the second-order optimizer requires fewer
training steps to achieve its best validation performance.

the generalization ability of these models recovers only gradually as the dataset grows. On
CIFAR-10, a 20% gap in performance between MLPs trained on whitened and unwhitened
data persists even at the largest dataset size, suggesting that whitening can remain detrimental
even when the number of training examples exceeds the number of features by an order of
magnitude. Similar results are seen in Fig. 3.5 on MNIST, except that the generalization
gap at the largest dataset size is much smaller than for CIFAR-10. Because MNIST is highly
rank deficient, the high dimensional regime for this dataset is defined by n < r, where r is
the maximal input rank of the dataset (r < d).

In Fig. 3.4(c) we see a generalization gap in the high dimensional regime between WRNs
trained on train-whitened versus unwhitened data, which persists when the size of the dataset
grows beyond its dimensionality. This is despite the fact that the convolutional input layer
violates the theoretical requirement of a fully connected first layer, and that we used a Xavier
initialization scheme, therefore also violating the theoretical requirement for an isotropic
first-layer weight initialization. We note that these results are consistent with the whitening
experiments in the original WRN paper [149]. Generalization ability begins to recover before
the size of the training set reaches its input dimensionality, suggesting that the effect of
whitening can be countered by engineering knowledge of the data statistics into the model
architecture.

In Fig. 3.4(a), we demonstrate experimentally the correspondence we proved in the
discussion on linear least squares models in Section 3.2. In Fig. 3.4(d), we observe that pure

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 49

second-order optimization similarly harms generalization even in a convolutional network.
Despite training to lower values of the training loss, a CNN trained with an unregularized
Gauss-Newton method exhibits higher test loss (at the training step with best validation loss)
than the same model trained with gradient descent.

Whitening and second-order optimization accelerate training. In Figs. 3.6(a) and
3.8, linear models trained on whitened data or with a second-order optimizer converge to their
final loss faster than models trained on unwhitened data, but their best test performance is
always worse. In Fig. 3.6(b), MLPs trained on whitened CIFAR-10 data take fewer epochs to
reach the same training accuracy cutoff than models trained on unwhitened data, except at
very small (< 50) dataset sizes. The effect is stark at large dataset sizes, where the gap in
the number of training epochs is two orders of magnitude large. second-order optimization
similarly speeds up training in a convolutional network. In Fig. 3.6(c), unregularized Gauss-
Newton descent achieves its best validation loss two orders of magnitude faster (as measured
in the number of training steps) than gradient descent.

Regularized second-order optimization can simultaneously accelerate training
and improve generalization. In Fig. 3.7 we perform full batch second-order optimization
with preconditioner ((1− λ)B + λI)−1, where λ ∈ [0, 1] is a regularization coefficient, and
B−1 is the unregularized Gauss-Newton preconditioner. λ = 0 corresponds to unregularized
Gauss-Newton descent, while λ = 1 corresponds to full batch steepest descent. At all values
of λ, regularized Gauss-Newton achieves its lowest validation loss in fewer training steps than
steepest descent (Fig. 3.7(b)). For some values of λ, the regularized Gauss-Newton method
additionally produces lower test loss values than steepest descent (Fig. 3.7(a)).

Writing the preconditioner in terms of the eigenvectors, êi, and eigenvalues, µi, of B,

((1− λ)B + λI)−1 =
∑
i

1

(1− λ)µi + λ
êiê

⊤
i , (3.40)

we see that regularized Gauss-Newton optimization acts similarly to unregularized Gauss-
Newton in the subspace spanned by eigenvectors with eigenvalues larger than λ/(1− λ), and
similarly to steepest descent in the subspace spanned by eigenvectors with eigenvalues smaller
than λ/(1− λ). We therefore suggest that regularized Gauss-Newton should be viewed as
discarding information in the large-eigenvector subspace, though our theory does not formally
address this case. As λ increases from zero to one, the ratio λ/(1− λ) increases from zero to
infinity. Regularized Gauss-Newton method therefore has access to information about the
relative magnitudes of more and more of the principal components in the data as λ grows
larger. We interpret the improved test performance with regularized Gauss-Newton at about
λ = 0.5 in Fig. 3.7(a) as suggesting that this loss of information within the leading subspace is
actually beneficial for the model on this dataset, likely due to aspects of the model’s inductive
bias which are actively harmful on this task.

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 50

Supplementary experiments with linear least squares

In Fig. 3.8 we present the same experiment as in Fig. 3.6(a) at three additional dataset sizes.
In all cases, the best test performance achievable by early stopping on whitened data was
worse than on unwhitened data.

In Fig. 3.9, we study the effect on generalization of using the entire dataset of 60000
CIFAR-10 images to compute the whitening transform regardless of training set size. We call
this type of whitening “distribution whitening” to indicate that we are interested in what
happens when the whitening matrix approaches its ensemble limit. We find that distribution
whitening does not close the generalization gap with unwhitened models, but it generally
does better than train-whitened and fully-whitened models at small and intermediate dataset
sizes.

In Fig. 3.10, we compare generalization performance of models trained on whitened versus
unwhitened data from two different parameter initializations. Initial distributions with larger
variance produce models that generalize worse, but for a fixed initial distribution, models
trained on whitened data generally underperform models trained on unwhitened data.

3.4 Discussion
Are whitening and second-order optimization a good idea? Our work suggests that
whitening and second-order optimization come with costs – a likely reduction in the best
achievable generalization. However, both can drastically decrease training time – an effect
we also see in our experiments. As compute is often a limiting factor on performance [121],
there are many scenarios where faster training may be worth the reduction in generalization.
Additionally, the negative effects may be largely resolved if the whitening transform or
second-order preconditioner are regularized, as is often done in practice [55]. We observe
benefits from regularized second-order optimization in Fig. 3.7, and similar results have been
observed for whitening [77].

Directions for future work. The practice of whitening has, in the machine learning
community, largely been replaced by batch normalization, for which it served as inspira-
tion [66]. Studying connections between whitening and batch normalization, and especially
understanding the degree to which batch normalization destroys information about the
data distribution, may be particularly fruitful. Indeed, some results already exist in this
direction [64].

Most second-order optimization algorithms involve regularization, structured approxi-
mations to the Hessian, and often non-stationary online approximations to curvature. Un-
derstanding the implications of our theory results for practical second-order optimization
algorithms should prove to be an extremely fruitful direction for future work. It is our
suspicion that milder loss of information about the training inputs will occur for many of

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 51

100

te
st

 M
SE

384 training examples
unwhitened
train whitened

100

460 training examples

10−1 101 103 105 107

training time

0.6

0.8

1.0

1.2

te
st

 M
SE

 768 training examples

10−1 101 103 105 107

training time

0.44

0.48

0.52
 2560 training examples

Figure 3.8: Whitening data speeds up training but reduces generalization in linear
models. Here we show representative examples of the evolution of test error with training time in a
linear least-squares model where the training set consists of 384, 460, 768, 2560 examples, as labeled.
In all cases, while models trained on train-whitened data (in green) reach their optimal mean squared
errors in a smaller number of epochs, they do no better than models trained on unwhitened data
(in purple). In the large time limit of training, the two kinds of models are indistinguishable as
measured by test error. The y-axis in the top row of plots is in log scale for clarity. In all cases, the
input dimensionality of the data was 512.

these algorithms. In addition, it would be interesting to understand how to relax the large
width requirement in our theoretical analysis.

Recent work analyzes deep neural networks through the lens of information theory [17,
133, 7, 20, 124, 2, 72, 9, 3, 110, 116], often computing measures of mutual information similar
to those we discuss. Our result that the only usable information in a dataset is contained in

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 52

102 103 104

training set size

0.42

0.44

0.46

0.48

0.50

0.52

te
st

 e
rro

r
linear model with distribution whitening

GD: unwhitened
GD: train whitened
GD: full whitened
GD: distribution whitened
input dimension

Figure 3.9: Whitening using the entire dataset behaves similarly to conventional whiten-
ing, with only a slight improvement in performance. Whitening using a whitening transform
computed on the entire CIFAR-10 dataset of 50000 training and 10000 test images (distribution
whitening) improves performance over train- and full whitening, but does not close the performance
gap with unwhitened data. With the exception of the “distribution whitened” line, gradient descent
data in this plot is identical to Fig. 3.4(a).

its sample-sample second moment matrix K may inform or constrain this type of analysis.

3.5 Methods

Whitening Methods

PCA Whitening

Consider a dataset X ∈ Rd×n. PCA whitening can be viewed as a two-step operation involving
rotation of X into the PCA basis, followed by the normalization of all PCA components to
unity. We implement this transformation as follows. First, we compute the the singular value
decomposition of the unnormalized feature-feature second moment matrix XX⊤:

XX⊤ = UΣV ⊤, (3.41)

where the rank of Σ is min(n, d). The PCA whitening transform is then computed as
M = Σ−1/2 · V ⊤, where the dot signifies element-wise multiplication between the whitening
coefficients, Σ−1/2, and their corresponding singular vectors. When Σ is rank deficient
(n < d), we use one of two methods to stabilize the computation of the inverse square root:

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 53

102 103

training set size

0.4

0.6

0.8

1.0

1.2

1.4

te
st

 e
rro

r
linear model with larger variance initializations

GD: unwhitened, variance 0
GD: unwhitened, variance 1/d
GD: train whitened, variance 0
GD: train whitened, variance 1/d
input dimension d

Figure 3.10: The effect of whitening on linear models with non-zero parameter initializa-
tion. Linear models are initialized with parameter variances of 0 or 1/d. In all cases the test loss is
reported for the time during gradient flow training when the model achieves the lowest validation loss.
Unwhitened data was scaled to have the same norm accumulated over all samples in the training set
as whitened data, for each training set size, to avoid artifacts due to overall input scale. A model
output of zero corresponds to a test loss of 0.5. All configurations with loss greater than 0.5 are
doing worse than an uninformative prediction of 0. At both initialization scales, the model trained
on whitened data performs worse than the model trained on unwhitened data for almost all dataset
sizes, while for one dataset size they perform similarly. Data for the variance 0 initialization is
identical to Fig. 3.4(a).

the addition of noise, or manual rank control. In the former, a small jitter is added to the
diagonal elements of Σ before inverting it. This was implemented in the experiments in linear
models. In the latter, the last d− n diagonal elements of Σ−1/2 are explicitly set to unity.
This method was implemented in the MLP experiments.

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 54

ZCA Whitening

ZCA (short for zero-phase components analysis) [22] can be thought of as PCA whitening
followed by a rotation back into the original basis. The ZCA whitening transform is M =
UΣ−1/2 · V ⊤. ZCA whitening produces images that look like real images, preserving local
structure. For this reason, it is used in the CNN experiments.

Linear Model

Dataset composition. The dataset for this experiment was a modified version of CIFAR-10,
where the images were first processed by putting them through an off-the-shelf (untrained)
four layer convolutional network with tanh nonlinearities and collecting the outputs of the
penultimate layer. This resulted in a dataset of 512-dimensional images and their associated
labels. Both the CIFAR-10 training and test sets were processed in this way. The linear
estimator was trained to predict one-hot (ten dimensional) labels.

Training set sizes ranged from 128 to 5120 examples, randomly sampled from the prepro-
cessed CIFAR-10 data. For experiments on unwhitened and train-whitened data, a validation
set of 10000 images was split from the CIFAR-10 training set, and test error was measured
on the CIFAR-10 test set. For experiments on fully whitened data, validation and test sets of
10 images each were split from the CIFAR-10 training and test sets, respectively.

Whitening. At each training set size, four copies of the data were made, and three
were whitened using the PCA whitening method. For train-whitened data, the whitening
transform was computed using only the training examples. For fully whitened data, the twenty
validation and test images were included in the computation of the whitening transform. For
distribution whitened data (Fig. 3.9), the entire CIFAR-10 dataset of 60000 images (train as
well as test) was used to compute the whitening transform.

Training and Measurements. We used a mean squared error loss function. Weights
were initialized to all-zeros, except for the data in Fig. 3.10, for which initial weights were drawn
from a Gaussian with variance 1/d. At each training set size, fifty models (initialized with
different random seeds) were trained with full-batch gradient descent, with the optimization
path defined by the gradient flow equation. Writing the model parameters as ϕ, this equation
is

ϕ(t) = ϕ∗ + e−tCB(ϕ∗ − ϕ(0))

for preconditioner B, feature-feature correlation matrix C, infinite-time solution θ∗, and
initial iterate θ(0). In the case of gradient descent, the preconditioner B is simply the identity
matrix.

In order to generate the plot data for Fig. 3.4(a), we solved the gradient flow equation
for the parameters ϕ that achieved the lowest validation error, and calculated the test error
achieved by those parameters. Mean test errors and their inner 80th percentiles across the
twenty different initializations and across whitening states were computed and plotted. To
make the plots in Fig. 3.6(a) and 3.8, we tracked test performance over the course of training
on unwhitened and train-whitened data.

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 55

On train-whitened datasets, we also implemented Newton’s Method. This was done by
putting the preconditioner B in the gradient flow equation equal to the inverse Hessian,
i.e.

(
XX⊤)−1. The preconditioner was computed once using the whole training set, and

remained constant over the course of training. For experiments on whitened data, the data
was whitened before computing the preconditioner.

Multilayer Perceptron

On MNIST

Architecture. We used a 784 × 512 × 512 × 10 fully connected network with a rectified
linear nonlinearity in the hidden layers and a softmax function at the output layer. Initial
weights were sampled from a normal distribution with variance 10−4.

Dataset composition. The term “dataset size” here refers to the total size of the dataset,
i.e. it counts the training as well as test examples. We did not use validation sets in the MLP
experiments. Datasets of varying sizes were randomly sampled from the MNIST training
and test sets. Dataset sizes were chosen to tile the available range (0 to 70000) evenly in log
space. The smallest dataset size was 10 and the two largest were 50118 and 70000. For all
but the largest size, the ratio of training to test examples was 8 : 2. The largest dataset size
corresponded to the full MNIST dataset, with its training set of 60000 images and test set of
10000 images.

The only data preprocessing step (apart from whitening) that we performed was to
normalize all pixel values to lie in the range [0, 1].

Whitening. At each dataset size, three copies of the dataset were made and two were
whitened. Of these, one was train-whitened and the other fully whitened. PCA whitening
was performed. The same whitening transform was always applied to both the training and
test sets.

Training and Measurements. We used sum of squares loss function. Initial weights
were drawn from a Gaussian with mean zero and variance 10−4. Training was performed
with SGD using a constant learning rate and batch size, though these were both modulated
according to dataset size. Between a minimum of 2 and a maximum of 200, batch size was
chosen to be a hundredth of the number of training examples. We chose a learning rate of 0.1
if the number of training examples was ≤ 50, 0.001 if the number of training examples was
≥ 10000, and 0.01 otherwise. Models were trained to 0.999 training accuracy, at which point
the test accuracy was measured, along with the number of training epochs, and the accuracy
on the full MNIST test set of 10000 images. This procedure was repeated twenty times, using
twenty different random seeds, for each dataset. Means and standard errors across random
seeds were calculated and are plotted in Fig. 3.5.

For example, at the smallest dataset size of 10, the workflow was as follows. Eight training
images were drawn from the MNIST training and two as test images were drawn from the
MNIST test set. From this dataset, two more datasets were constructed by whitening the
images. In one case the whitening transform was computed using only the eight training

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 56

examples, and in another by using all ten images. Three copies of the MLP were initialized
and trained on the eight training examples of each of the three datasets to a training accuracy
of 0.999. Once this training accuracy was achieved, the test accuracy of each model on the
two test examples, and on the full MNIST test set, was recorded, along with the number of
training epochs. This entire procedure was repeated twenty times.

Computation of the input rank of MNIST data. MNIST images are encoded by 784
pixel values. However, the input rank of MNIST is much smaller than this. To estimate the
maximal input rank of MNIST, at each dataset size (call it n) we constructed twenty samples
of n images from MNIST. For each sample, we computed the 784× 784 feature-feature second
moment matrix F and its singular value decomposition, and counted the number of singular
values larger than some cutoff. The cutoff was 10−5 times the largest singular value of F
for that sample. We averaged the resulting number, call it r, over the twenty samples. If
r = n, we increased n and repeated the procedure, until we arrived at the smallest value of n
where r > n, which was 276. This is what we call the maximal input rank of MNIST, and is
indicated by the solid black line in Fig. 3.5.

On CIFAR-10

The procedure for the CIFAR-10 experiments was almost identical to the MNIST experiments
described above. The differences are given here.

The classifier was of shape 3072× 2000× 2000× 10 - slightly larger in the hidden layers
and of necessity in the input layer.

The learning rate schedule was as follows: 0.01 if the number of training examples was
≤ 504, then dropped to 0.005 until the number of training examples exceeded 2008, then
dropped to 0.001 until the number of training examples exceeded 10071, and 0.0005 thereafter.

The CIFAR-10 dataset is full rank in the sense that the input rank of any subset of the
data is equal to the dimensionality, 3072, of the images.

Fig. 3.4(b), 3.5 plot details

In Figs. 3.4(b) and 3.5, for models trained on unwhitened data and train-whitened data, we
have plotted test error evaluated on the full CIFAR-10 and MNIST test sets of 10000 images.
For models trained on fully whitened data, we have plotted the errors on the test examples
that were included in the computation of the whitening transform.

Convolutional Networks

WRN

Architecture. We use the ubiquitous Wide ResNet 28-10 architecture from [149]. This
architecture starts with a convolutional embedding layer that applies a 3 × 3 convolution
with 16 channels. This is followed by three “groups”, each with four residual blocks. Each
residual block features two instances of a batch normalization layer, a convolution, and a

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 57

ReLU activation. The three block groups feature convolutions of 160 channels, 320 channels,
and 640 channels, respectively. Between each group, a convolution with stride 2 is used to
downsample the spatial dimensions. Finally, global-average pooling is applied before a fully
connected readout layer.

Dataset composition. We constructed thirteen datasets from subsets of CIFAR-10.
The thirteen training sets ranged in size from 10 to 40960, and consisted of between 20 and
212 examples per class. In addition, we constructed a validation set of 5000 images taken from
the CIFAR-10 training set which we used for early stopping. Finally, we use the standard
CIFAR-10 test set to report performance.

Whitening. We performed ZCA whitening using only the training examples to compute
the whitening transform.

Training and Measurements. We used a cross entropy loss and the Xavier weight
initialization. We performed full-batch gradient descent training with a learning rate of 10−3

until the training error was less than 10−3. We use TPUv2 accelerators for these experiments
and assign one image class to each chip. Care must be taken to aggregate batch normalization
statistics across devices during training. After training, the test accuracy at the training step
corresponding to the highest validation accuracy was reported. At each dataset size, this
procedure was repeated twice, using two different random seeds. Means and standard errors
across seeds were calculated and are plotted in Fig. 3.4(c).

CNN

Architecture. The network consisted of a single ResNet-50 convolutional block followed by
a flattening operation and two fully connected layers of sizes 100 and 200, successively. Each
dense layer had a tanh nonlinearity and was followed by a layer norm operation.

Dataset composition. Training sets were of eleven sizes: 10, 20, 40, 80, 160, 320, 640,
1280, 2560, 5120, and 10240 examples. A validation set of 10000 images was split from the
CIFAR-10 training set.

Training and Measurements. We used a cross entropy loss. Initial weights were drawn
from a Gaussian with mean zero and variance 10−4. Training was accomplished once with
the Gauss-Newton method (see [26] for details), once with full batch gradient descent, and
once with a regularized Gauss-Newton method. With a regularizer λ ∈ [0, 1], the usual
preconditioning matrix B of the Gauss-Newton update was modified as ((1− λ)B + λI)−1.
This method interpolates between pure Gauss-Newton (λ = 0) and gradient descent (λ = 1).
In the Gauss-Newton experiments, we used conjugate gradients to solve for update directions;
the sum of residuals of the conjugate gradients solution was required to be at most 10−5.

For the gradient descent and unregularized Gauss-Newton experiments, at each train-
ing set size, ten CNNs were trained beginning with seven different initial learning rates:
2−8, 2−6, 2−4, 2−2, 1, 4, and 16. After the initial learning rate, backtracking line search was
used to choose subsequent step sizes. Models were trained until they achieved 100% training
accuracy. The model with the initial learning rate that achieved the best validation perfor-
mance of the seven was then selected. Its test performance on the CIFAR-10 test set was

CHAPTER 3. ON WHITENING, EXACT SECOND-ORDER OPTIMIZATION, AND
GENERALIZATION 58

evaluated at the training step corresponding to its best validation performance. The entire
procedure was repeated for five random seeds. In Fig. 3.4(d), we have plotted average test and
validation losses over the random seeds as functions of dataset size and training algorithm. In
Fig. 3.6(c), we have plotted an example of the validation and training performance trajectories
over the course of training for a training set of size 10240.

For the regularized Gauss-Newton experiment, the only difference is that we trained one
CNN at each initial learning rate per random seed, and then selected the model with the best
validation performance. In Fig. 3.7, we have plotted average metrics over the five random
seeds. Errorbars and shaded regions indicate twice the standard error in the mean.

59

Chapter 4

Adaptive step size selection from a
dynamical systems perspective

Many tasks in machine learning and statistics can be formulated as optimization problems.
First-order optimization algorithms, such as gradient descent, are commonly used due to
their simplicity and due to the fact that their complexity scales mildly in the number of
decision variables.

The computational complexity of these algorithms is typically measured by how the
number of iterations grows as a function of accuracy (in terms of function value or distance
to the optimizer) over a given class of functions and over a set of initial conditions. While
this notion of complexity often neglects constants, it has been successful at characterizing
fundamental performance limits [see, e.g., 93, 35, 91] and deriving optimal algorithms.
However, when facing a practical problem instance, the constants do matter and determine
the actual number of iterations needed. This motivates the line of research that we present
here, which leverages tools from numerical analysis in order to improve performance on
practical problem instances.

By exploiting analogies between first-order optimization algorithms and dynamical systems,
we analyze the use of adaptive step size methods from numerical analysis in optimization.
These routines are efficient at computing solutions to differential equations and are used
in most software packages related to ordinary and partial differential equations [57]. Our
empirical studies reveal that these techniques can also be applied in optimization and often
significantly reduce the number of iterations needed for convergence. Key benefits are: 1)
the proposed approach applies to a wide range of algorithms,1 and 2) the proposed approach
does not disturb the computational complexity per iteration; i.e., the complexity remains
O(d), where d refers to the problem dimension. Thus, compared to a fixed step size routine,
an adaptive routine has the potential to speed up convergence at essentially no additional
computational cost.

1We focus on first-order algorithms, but second-order algorithms, such as the Newton method, can be
treated in a similar way.

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 60

In mathematical optimization, there is a very long tradition of using steps of variable
length. The methods typically fall into two categories: line search and trust region strategies.
The former aims to choose a step size that sufficiently reduces the objective function at
each iteration. The difficulty lies in balancing the amount of decrease with the resulting
computational effort [94]. Well-known strategies with convergence guarantees are the Wolfe
[146] or the Armijo-Goldstein conditions [12]. In contrast to line search, where the search
direction is fixed and only the step size is varied, trust region strategies optimize over both the
step size and the step direction. This is typically done by constructing a local approximation
of the objective function about the current iterate. Furthermore, the step size is often
restricted, ensuring that the approximation remains valid. Excellent texts on this subject
include [51] and [94], for example.

In contrast to these techniques, our approach has its origins in the numerical analysis
of differential equations. We draw on recent results that view optimization algorithms as
continuous-time dynamical systems [see, e.g., 74, 130, 142, 45, 90] and apply adaptive step size
techniques as a means to efficiently discretize the continuous-time equations. This provides
an efficient alternative to line search and trust region methods. Our discussion is not limited
to a single algorithm but provides a blueprint that can be applied to any algorithm that has
a meaningful continuous-time representation as an ordinary differential equation (such as
Newton-type methods, gradient descent, accelerated gradient descent, etc.).

Related work. A vast literature exists on adaptive step size methods. These are often
introduced as approximations to the Newton method and include, for example, the popular
Broyden-Fletcher-Goldfarb-Shanno algorithm [see, for example, 38, 39, for more recent
accounts and variants] or the Davidon-Fletcher-Powell method [15]. Important work has
also been done in the machine learning community with the aim of generalizing line search
strategies to a stochastic setting [see, e.g., the recent work of 84, 103], or [135]. Moreover, many
popular optimization algorithms include adaptive elements, such as Adam [70], ADAGrad [46],
or RMSProp. Understanding the benefits and drawbacks of these enhancements compared
to standard stochastic gradient descent is an active area of research [41, 145]. The purpose
of the worked presented here is to introduce adaptive step size methods from a perspective
rooted in numerical analysis to the toolbox that is available to design and analyze practical
optimization algorithms.

Notation. We consider an objective function, f : Rd → R, which has a Lipschitz-continuous
gradient. In order to simplify our exposition, we further assume f has a single, isolated
minimum x∗ at the origin with f(0) = 0, and that the Lipschitz constant of the gradient is
unity. We write the smallest and largest eigenvalues of the Hessian of f at x∗ as µ and L,
respectively, and introduce the condition number as κ = L/µ.

Outline. Section 4.1 introduces an adaptive step size routine and illustrates its use with
the gradient method. This is followed by a discussion of how to apply the method to

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 61

accelerated algorithms, and then a meta-algorithm that applies to any optimizer with an
ODE representation. Section 4.2 evaluates the performance of the adaptive step size routine
on strongly convex functions. We study non-accelerated methods (gradient descent), as well
as accelerated methods (heavy ball). We randomize over different problem instances and
vary the condition number. Section 4.3 investigates the performance on a nonconvex problem.
In particular, we study principal components analysis (PCA) as our benchmark, due to its
practical importance, the fact that the optimal solution can be accurately determined, and
because the problem size can be easily varied. We again randomize over different problem
instances. We conclude with a short discussion in Section 4.4.

4.1 Adaptive step size routine

Gradient descent

Gradient descent has a well-defined continuous-time representation in the form of gradient
flow,

ẋ(t) = −f ′(x(t)). (4.1)

We use dots to write time derivatives and primes for derivatives with respect to x. Gradient
descent is the Euler discretization of Eq. 4.1. Using xn and hn to write the nth discrete-time
update and step size, respectively, this is

xn+1 = xn − hnf
′(xn). (4.2)

The Euler discretization is a common method of discretizing ordinary differential equations.
However, there are many other discretization schemes for Eq. 4.2. These differ, for example,
in the accuracy with which they track the underlying continuous dynamics. More accurate
discretization schemes afford the ability to pick larger step sizes [57]. The central idea of our
work is that we can use this fact to guide adaptation of the step size during optimization. Two
ingredients are required to implement this idea: a way to measure the accuracy of the Euler
step Eq. 4.2, and a mechanism for adapting the step size accordingly. These two ingredients
are described next.

Measuring accuracy. The error of a discretization scheme is given by the difference
between the continuous-time and discrete-time trajectories. Starting from x(t) = xn, an
application of Taylor’s theorem reveals that

x(t+ hn)− xn+1 =
1

2
f ′′(x(ξ))f ′(x(ξ))h2n = C(xn, hn)h

2
n, (4.3)

for some ξ ∈ (t, t + hn), provided that f ′(x) is continuously differentiable. The function
C(xn, hn) is roughly constant for small hn, which shows that the local error of gradient
descent is quadratic in hn.

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 62

We compare this to Heun’s method, which is a more accurate discretization of Eq. 4.2.
Using the notation xH

n for the nth Heun update, this is

xH
n+1 = xn −

1

2
hn (f

′(xn) + f ′(xn+1)) , (4.4)

where xn+1 is given by Eq. 4.2. Heun’s method is also called the “midpoint” rule, because the
increment to xn is the average of (is “midway” between) −f ′ evaluated at xn and at xn+1.
Again, by applying Taylor’s theorem we find

x(t+ hn)− xH
n+1 = CH(xn, hn)h

3
n, (4.5)

where the function CH(xn, hn) is roughly constant for small hn. The local error of Heun’s
method is cubic in hn, and so it is more accurate than Eq. 4.2.

For small hn, we can therefore estimate the accuracy of gradient descent at each iteration
by comparing it to the Heun update:

||x(t+ hn)− xn+1|| = δn(xn, hn) +O(h3n), (4.6)

where δn(xn, hn) = ||xH
n+1 − xn+1||. We use the notation || · || for the Euclidean norm. We

emphasize that using the Heun update to estimate the accuracy of gradient descent is a
particular choice. We could well choose any other more accurate discretization of Eq. 4.1
than Eq. 4.2.

The error analysis just presented is valid, strictly speaking, only for small hn. Nevertheless,
we observe in our experiments that the resulting adaptive step size routine is still effective at
step sizes of order one.

A note on complexity. The Heun discretization has the advantage of being computa-
tionally efficient. Each evaluation of f ′ is a single oracle query for a gradient. The gradient
evaluation of f ′(xn+1) in Eq. 4.4 can be reused in Eq. 4.2 for the next iteration. This
means that δn can be computed without additional evaluation of the gradient. The step size
control mechanism we propose in the following therefore comes with almost no additional
computational cost; in fact, it requires precisely one additional gradient computation in total,
over all the iterations.

Adapting step size: proportional control. We use a proportional controller (“P control”)
to set step sizes based on the value of δn. P control is the simplest version of a family of
control mechanisms called PID (proportional integral derivative) control. These find use as
automated mechanisms for controlling a user-specified quantity in a dynamical system. In
our case, the quantity we wish to control is δn. The idea of using PID control to set step
sizes for a discretization scheme for differential equations is not new [57, 58]. Our innovation
here is to apply this idea to optimization.

The P control mechanism introduces two hyperparameters: r, the desired error between
the Heun and gradient descent updates on any given iteration, and θ, which can be interpreted

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 63

as a gain. The control mechanism gives the following prescription for modulating the step
size:

hn+1 =

(
r

δn

)θ/2

hn. (4.7)

The form of Eq. 4.7 is motivated by the fact that, after taking logarithms, neglecting O(h3n)
terms, and using Eq. 4.6 and Eq. 4.3, we have

log hn+1 = log hn +
θ

2
(log r − log δn) = (1− θ) log hn +

θ

2
(log r − logC) .

This means that log hn evolves roughly as a linear system, and is expected to converge to
its steady state, given by δn = r, with a rate of 1 − θ. The feedback law Eq. 4.7 is called
“proportional” control because the quantity log hn+1− log hn is proportional to the error signal
log r − log δn.

At each iteration during optimization, we compute the gradient descent and Heun updates,
compute δn, and calculate the step size hn+1 for the next iteration using Eq. 4.7. We then
apply the gradient descent update with the step size hn recommended by the controller on
the previous iteration.

We emphasize that the Heun update Eq. 4.4 is never actually applied to an iterate during
optimization. Its sole purpose lies in the computation of δn.

Setting θ and r. Formally, we have θ ∈ [0, 2] [58]. Note that θ = 0 results in a constant
step size routine. Increasing θ turns up the gain on the step size control, allowing larger
changes between iterations, and potentially lowering the number of iterations required to
converge.

We use small values of θ, i.e., in the set {10−4, 10−3, 10−2}. These values of θ work for
functions with a large range of condition numbers. At larger values of θ we sometimes observe
oscillatory behavior in the optimizer. Values of θ smaller than 10−4 lead to slow adaptation
of the step size, which forfeits the benefit of the control mechanism.

The value of r specifies how closely we want the Euler discretization to approximate the
underlying gradient flow trajectories. We set r = 0.5 in experiments on strongly convex
functions, forcing the P controller to set step sizes such that δn is no greater than 0.5. We find
the controller is less sensitive to changes in r. Smaller values also work well. In experiments
with PCA, we use r = 10−4.

In practice we find it necessary to place a few additional constraints on the P control
mechanism Eq. 4.7. If the factor (r/δn)

θ/2 is ≥ 10 or ≤ 0.1, we set it equal to 10 or 0.1,
respectively. If, furthermore, hn ≥ 2 or ≤ 0.01, we set it equal to 2 or 0.01, respectively.
The upper bound of 2 on the step size is motivated by the fact that this is the stability
boundary for gradient descent on a 1-Lipschitz convex function. It is possible to remove these
constraints by fine-tuning r and θ to specific problem instances, i.e., to specific ranges of
condition numbers, but too much tuning defeats the purpose of the adaptive algorithm, so
we feel it is reasonable to introduce the constraints. With these constraints, we are able to

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 64

0 50 100 150 200
10 4

10 3

10 2

10 1

100

101

102

103

fu
nc

tio
n

va
lu

es
: f

(x
)

0 50 100 150 200
iteration number

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

st
ep

 si
ze

s:
 h

0 50 100 150 200

10 4

10 3

10 2

10 1

100

101

er
ro

rs
:

 = 0.01
 = 0.1
 = 1.0

r

Figure 4.1: Gradient descent with adaptive P control. Example trajectories of the function
value (left panel), the step size (middle panel), and the error δn (right panel) for gradient descent with
step sizes set using proportional control are shown for three different values of θ. Here, f : R500 → R
is a randomly generated strongly convex function with a condition number of 100. See Section 4.2
for a description of how the function f is generated. Each value of θ produces a different trajectory.
After a few tens of iterations, the control mechanism is able to force δn below the specified value of
r. Large values of θ produce the largest differences between successive step sizes and vice versa.

fix r and θ and optimize strongly convex functions with a broad range of condition numbers
(1.1 to about 1100).

In Fig. 4.1 we present example trajectories of gradient descent with adaptive P control on
a strongly convex function at a range of values of θ. The condition number in this example is
100. Each value of θ produces an algorithm that converges, but takes a different trajectory
than the others. In all cases we see that the function value and the error δn decrease rapidly
at about the same time that the step size becomes large. This is typical behavior.

Second and higher-order algorithms: the heavy ball method

We construct adaptive step size mechanisms similar to Eq. 4.7 for optimizers with higher
order continuous-time representations using a simple trick. If we rewrite the higher order
differential equation as a system of (coupled) first-order equations, the method of the previous
section goes through almost without modification. We illustrate this here with the example
of the heavy ball method.

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 65

We work with the following continuous-time limit of the heavy ball algorithm:

ẋ(t) = p(t) (4.8a)

ṗ(t) = − 2√
κ
p(t)− f ′(x(t)). (4.8b)

Here we have introduced the (momentum) variable p = ẋ to write the dynamics as a set of
coupled first-order differential equations in time.

Symplectic discretization. We have seen that discretization schemes differ in the accuracy
with which they track the underlying continuous system. They also differ in the subsets of
properties of the original continuous-time system they preserve. Due to the analogy between
Eq. 4.8 and the damped motion of a massive particle through a fluid, it is advantageous
to use the semi-implicit instead of the standard Euler discretization. The advantage is
particularly apparent for large values of κ. In the limit as κ → ∞, the standard Euler
discretization becomes unstable even for arbitrarily small step sizes, whereas the semi-implicit
Euler discretization remains stable up to a large step size [92]. The semi-implicit Euler
discretization of Eq. 4.8 is

xn+1 = xn + hnpn+1 (4.9a)

pn+1 = pn + hn

(
− 2√

κ
pn − f ′(xn)

)
. (4.9b)

Compared with a vanilla Euler update, the semi-implicit Euler method replaces pn with pn+1

in the update for xn.
In order to calculate an error δn at each step, we require a more accurate discretization

of Eq. 4.8 than Eq. 4.9. In analogy with the previous section, we use the following Heun
discretization:

xH
n+1 = xn +

1

2
hn (pn+1 + pn+2) (4.10a)

pH
n+1 = pn +

1

2
hn

(
− 2√

κ
(pn + pn+1)− (f ′(xn) + f ′(xn+1))

)
, (4.10b)

where xn+1 and pn+1 are given by Eq. 4.9 and pn+2 is the semi-implicit Euler update to
pn+1. We calculate δn = ||(xn+1, pn+1) − (xH

n+1, p
H
n+1)|| where (xn, pn) is the vector formed

by concatenating xn and pn. Now step sizes are simply given by the P control mechanism
Eq. 4.7.

As for gradient descent, we place some extra constraints on the P controller. If the factor
(r/δn)

θ/2 is ≥ 5 or ≤ 0.05, we set it equal to 5 or 0.05, respectively. And if hn ≥ 0.8 or
≤ 0.01, we set it equal to 0.8 or 0.01, respectively. The upper bound of 0.8 on the step size is
motivated by the fact that this is roughly the stability boundary for the heavy ball algorithm
on quadratic functions. Also similar to gradient descent, we set r = 0.5, and use θ in the set
{10−4, 10−3, 10−2}.

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 66

Meta algorithm

So far we have discussed how to construct an adaptive mechanism for step size control for
gradient descent and the heavy ball algorithm. Here we generalize the ideas to any algorithm
that has a well-defined continuous-time representation.

Given a discrete-time algorithm of interest (call it algorithm A), the construction of a
P-control-like mechanism for step size selection requires the following steps:

1. Find the continuous-time counterpart of algorithm A. If this is a second or higher order
differential equation with respect to time, rewrite it as a system of coupled first-order
equations.

2. Identify a higher order discretization (call this algorithm B) of the continuous-time
system. Typically, computational efficiency will guide this choice.

3. At each iteration during optimization, compute the difference between the updates of
algorithms A and B. Feed this difference to a proportional controller with appropriately
set hyperparameters.

4. Apply the update of algorithm A with the step size recommended by the controller.

4.2 Benchmark: Strongly convex functions
In this section we demonstrate the use of a P controller for adaptive step size selection
when optimizing random strongly convex functions with gradient descent and the heavy ball
method. We compare the performance of the P controller to a constant step size scheme
and show that the former is able to achieve the relevant lower bounds and can also improve
on the constant in many cases. We find that the P controller performs particularly well on
ill-conditioned problems.

Random generation of strongly convex functions

We divide the real line into a finite number N of discrete intervals. For a given value of the
condition number κ, we sample a set of N numbers κ−1 + z(1− κ−1), where z ∼ Unif[0, 1),
that serve as the piecewise-constant second derivatives of a strongly convex function. The
function is then constructed numerically from the second derivative and the conditions
f(0) = 0, f ′(0) = 0. Multidimensional functions f : Rd → R are obtained by summing d
one-dimensional functions. We ensure that at x∗ = (0, ..., 0), the smallest eigenvalue of the
Hessian of f is 1/κ, and the largest eigenvalue is 1 (recall that we fix L = 1). An example
of such a function is given in Fig. 4.2(a) with N = 7 and κ = 10. We fix N = 7 in all our
experiments.

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 67

3 2 1 0 1 2 3
x

2

1

0

1

2

3

f(x
) a

nd
 it

s f
irs

t d
er

iv
at

iv
e

a one dimensional random function

f(x)
f'(x)

100 101 102 103

log

10 3

10 2

10 1

100

lo
g

gradient descent

100 101 102 103

log

0

2500

5000

7500

10000

12500
nu

m
be

r o
f i

te
ra

tio
ns constant step size

P control

100 101 102 103

log

10 1

lo
g

heavy ball

100 101 102 103

log

0

250

500

750

1000

1250

nu
m

be
r o

f i
te

ra
tio

ns

(a) (b) (c)

Figure 4.2: (a) An example of a strongly convex function f generated from a randomly sampled set
of second derivatives. Note that f(0) = 0 and f ′(0) = 0. In this example, the condition number is
10. (b) (Top panel) Gradient descent with P control produces the same convergence behavior as
gradient descent with a constant step size of 1. The asymptotic performance of the latter matches
its theoretical lower bound. The dashed lines are a linear fit of log ρ against log κ for large values
of κ. The slopes of these fits are the same, but P control has an improved constant. Data shown
here is for (r, θ) = (0.5, 0.01). (Bottom panel) For large condition numbers κ, P control converges
in a smaller number of iterations, up to a factor of 2 less than the constant step size routine. (c)
(Top panel) The heavy ball method with P control performs similarly to the same algorithm with a
constant step size of 0.5. Data shown here is for (r, θ) = (0.5, 0.01). (Bottom panel) On average, P
control converges in a smaller number of iterations for almost all values of κ. We emphasize that in
both (b) and (c), r and θ are set to 0.5 and 0.01, respectively. For each value of κ, we plot means
over fifty repeats of each algorithm. Standard deviations are also plotted, but are too small to be
visible.

Gradient descent

We choose a range of condition numbers evenly tiling the log scale between 1.1 and 1100. For
each value of κ, we generate fifty strongly convex functions f : R500 → R. Each function is
optimized once using gradient descent with P control to set step sizes, and once with a constant
step size of 1, both times beginning with a different random initialization x0 ∼ 5∗Unif[0, 1)500.
The starting step size for the adaptive method is also 1 for even comparison. Optimization
halts when the norm of the difference between successive updates drops below 10−8.

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 68

We characterize the convergence of gradient descent using

||xn|| ∼ B||x0||eρn, (4.11)

where B is a positive constant and ρ is the convergence rate, which depends on the condition
number κ. To probe this dependency, for each trajectory, we perform a linear fit of the log
norm of the iterate (scaled by the norm of the initial iterate) to the iteration number:

log
||xn||
||x0||

= ρn+ B̃, (4.12)

where B̃ is a constant. The slope ρ produced by this fit is recorded, along with the number
of iterations required to reach the stopping criterion. This data is graphed in Fig. 4.2(b)
(top panel) as a function of condition number for (r, θ) = (0.5, 0.01). We see that log ρ
exhibits roughly linear behavior with log κ. It is therefore natural to estimate the asymptotic
dependence of ρ on κ for each algorithm with a linear fit to the data in Fig. (4.2)(b) (top
panel) for large κ.

For gradient descent, the complexity lower bound for ρ is 1/κ, i.e., ρ ∼ O(1/κ) [93]. A
constant step size of 1/L (1 here, as L = 1) achieves this bound. Therefore we expect the
slope of the linear fit to the constant step size data in Fig. 4.2(b) (top panel) to be roughly
−1.

Results. The P controller achieves the same asymptotic convergence behavior as a constant
step size routine with step size 1, and for appropriate values of θ, produces a better (larger)
constant. In Fig. 4.2(b) (top panel), at large values of κ, the slope and constant of a
linear fit of log ρ against log κ for the constant step size method are −0.999(1) and 0.013(3),
respectively. (We report standard deviations in brackets; for example, writing 0.013(3)
indicates a parameter of 0.013 with a standard deviation of 0.003.) For gradient descent with
P control, with θ = 0.01, the corresponding fit parameters are −1.000(1) and 0.317(3). The
slopes of the two fits are similar. The larger constant produced by the P control algorithm
indicates convergence with a smaller number of iterations. This is demonstrated visually in
Fig. 4.2(b) (bottom panel), where for moderate to large values of κ (order 10 onward), P
control requires fewer iterations to converge than the constant step size routine. For κ of the
order of 102, this difference can be a factor of 2. At small values of κ, P control confers little
advantage in convergence rate over the constant step size method.

Heavy ball method

We repeat the experiments and analysis of the previous section with the heavy ball algorithm
in place of gradient descent. As before, we compare the performance of a constant step size
routine to adaptive P control on random strongly convex functions with a range of condition
numbers.

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 69

For the constant step size routine, we use a step size of 0.5. This is motivated by the fact
that the algorithm achieves a rate ρ ∼ 1/(2

√
κ) on quadratic functions, and step sizes larger

than 2(
√
2− 1) ≈ 0.828 lead to instability on quadratics. All other experimental details are

similar to those in Section 4.2. The momentum p is initialized to the zero vector.

Results. In Fig. 4.2(c) (top panel) we present convergence rates ρ against condition numbers
κ for the heavy ball method with constant step size and with P control. Once again we observe
a linear relationship between these variables, and perform a linear fit at large values of κ to
estimate the asymptotic behavior of ρ with κ. The slope and constant of the linear fit to the
constant step size algorithm are −0.459(3) and −0.453(8), respectively. The corresponding
numbers for P control with θ = 0.01 are −0.450(2) and −0.290(6).

Continuous-time analysis of the heavy ball equation Eq. 4.8 establishes a complexity lower
bound of 1/

√
κ for ρ [91]. A linear fit of log ρ against log κ for an algorithm that achieves

this lower bound should have a slope of −1/2. The same holds true in discrete time for large
κ [93]. Both the constant and adaptive step size methods perform close to this lower bound,
i.e., they perform reasonably well, with asymptotic convergence rates of about −0.45.

Once again, as with gradient descent, P control has a better constant, which manifests as
a smaller number of iterations to convergence. This is seen in Fig. 4.2(c) (bottom panel). For
large κ the performance gains increase with κ. For κ = 1000 the adaptive step size method
reduces the number of iterations roughly by 30%.

4.3 A nonconvex problem: principal components analysis
We demonstrate the use of P control to set step sizes for a simple instance of the PCA problem:
given a positive semidefinite symmetric matrix A ∈ Rd×d with distinct eigenvalues, the goal is
to learn its first principal component (eigenvector) . The corresponding optimization problem

argmin
||x||=1

−x⊤Ax, (4.13)

where x ∈ Rd, is nonconvex but still admits a unique computable solution.
A well-established algorithm that solves Eq. 4.13 is Oja’s rule [95], given by the update

xn+1 =
(I + hnA)xn

||(I + hnA)xn||
, (4.14)

where I is the identity matrix in d dimensions and hn is the nth step size.
Let the eigengap of A, gap(A), be defined as the difference between the largest and

second-largest eigenvalues of A. Define a positive constant c. A recent convergence proof
guarantees that the error of Eq. 4.14, measured by the quantity 1− (x⊤nx

∗)2 where x∗ is the
principal eigenvector of A, is O(1/n) for a step size routine of c/n if c ≥ 1/(2 ∗ gap(A)) [16].
However, in most real-world problems, gap(A) would not normally be known ahead of time,

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 70

complicating the choice of c. Indeed, in [16], this is posed as a problem for practitioners.
We are able to offer a solution in the form of P control, which avoids the problem entirely
because it requires no knowledge of the gap. We compare Oja’s rule with a c/n step size
scheme with different values of c to P control (with fixed r and θ) across a range of eigengaps
and find that the latter performs competitively.

We note that the convergence result of [16] is proved in the streaming setting, where
instead of a fixed matrix A we have a collection of vectors yi, sampled i.i.d. from a mean-zero
distribution with covariance A, that we access one at a time. In such a scenario, A is replaced
by the rank one matrices yny⊤n in Eq. 4.14. Since our goal here is simply to evaluate the
adaptive step size routine on a nonconvex optimization problem, we confine ourselves to
the simplest possible, and hence deterministic, setting even though P control could also be
applied in the streaming setting.

P control for Oja’s rule. The continuous-time system corresponding to Oja’s rule has a
particularly simple form. It is gradient flow on the unit sphere in d− 1 dimensions, which we
can write as the differential equation

ẋ(t) =

(
A− x(t)⊤Ax(t)

x(t)⊤x(t)
I

)
x(t). (4.15)

We note that the original convergence proof of Eq. 4.14 was done in continuous time by
analyzing the behavior of Eq. 4.15 [95].

It is not difficult to see that the local error of Eq. 4.14 is quadratic in hn (see the discussion
around Eq. 4.3). In order to compute δn for Eq. 4.7, we need a more accurate discretization
of Eq. 4.15 than Eq. 4.14. We use a Heun update xH

n+1 = xn + 0.5hn(g(xn) + g(xn+1)),
where g is given by the right-hand side of Eq. 4.15 and xn+1 is given by Eq. 4.14. Then
δn = ||xn+1 − xH

n+1||, as before. To calculate the step size for Oja’s rule, we use this value of
δn in the P controller Eq. 4.7 at each iteration.

As before, the Heun method allows us to reuse the computation of xn+1 at the next
iteration. Hence the adaptive step size routine does not alter the computational cost per
iteration.

We interrogate a range of eigengaps between 10−5 and 10−1. At each value of the
eigengap we generate twenty diagonal matrices A ∈ R100×100, and apply random orthogonal
transformations to introduce off-diagonal elements. On each matrix, we run Oja’s rule
Eq. 4.14 four times: once with P control, and thrice with a c/n step size routine with
c = 0.5/gap(A), 5/gap(A), and 50/gap(A). We parametrize the P controller with (r, θ) =
(10−4, 10−4). Iterates are initialized from the standard uniform distribution. The stop criterion
is either ||xn+1 − xn|| ≤ 10−8 or n = 2.5× 105, whichever occurs first.

Results. The P control mechanism produces an algorithm that is competitive with a c/n
step size routine for moderate and large values of c, and that outperforms the smallest allowed
value of c, as measured by the number of iterations required to converge (see Fig. 4.3). As

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 71

mentioned previously, the utility of this result derives from the fact that the eigengap is not
normally known ahead of time, making it difficult in practice to set a good value of c for the
c/n step size routine such that the algorithm achieves its O(1/n) rate of convergence.

Thus we see that P control can readily be adapted to problems that are not strongly
convex, and can produce algorithms that perform well compared to the state of the art.

10 5 10 4 10 3 10 2 10 1

gap(A)

101

102

103

104

105

nu
m

be
r o

f i
te

ra
tio

ns

c/n, c=0.5/gap(A)
c/n, c=5/gap(A)
c/n, c=50/gap(A)
p control

PCA

Figure 4.3: Oja’s rule with P control performs competitively with a 1/n step size routine.
Setting step sizes in Oja’s rule using P control with r and θ both set to 10−4 produces an algorithm
that converges, on average, in about as many iterations as a 1/n step size routine with a moderate
to large premultiplier c. On the y-axis we have the mean number of iterations to convergence over
twenty repeats, and on the x-axis we have gap(A), the difference between the two largest eigenvalues
of the matrix A. Error bars indicate one standard deviation. The error bars for P control are too
small for visibility. See text for experimental details.

CHAPTER 4. ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS
PERSPECTIVE 72

4.4 Discussion
We have shown how to construct an adaptive step size control mechanism for optimization
rooted in ideas from the numerical analysis of differential equations, and we have discussed
the specific examples of gradient descent and the heavy ball method. Our method has the
advantage of being computationally cheap and easy to tune. Experiments on strongly convex
functions indicate that for ill-conditioned problems our approach is able to reduce the number
of iterations compared to the state of the art, and is competitive across all problem instances.
Experiments on principal components analysis further highlight the potential of the approach
even for nonconvex optimization problems.

The adaptive step size method applies to any algorithm with a well-defined continuous-
time representation and is flexible in that it easily admits replacements of all its building
blocks. For example, in any of the problems we discussed, we could replace the Heun method
with a different discretization scheme or use a different controller. There are a wide range of
possibilities for further theoretical and practical research.

73

Bibliography

[1] Steven Abney. Semisupervised learning for computational linguistics. Chapman and
Hall/CRC, 2007.

[2] A. Achille and S. Soatto. “Emergence of Invariance and Disentangling in Deep Repre-
sentations”. In: Proceedings of the ICML Workshop on Principled Approaches to Deep
Learning (2017).

[3] Alessandro Achille and Stefano Soatto. “Where is the Information in a Deep Neural
Network?” In: arXiv preprint arXiv:1905.12213 (2019).

[4] Naman Agarwal, Brian Bullins, and Elad Hazan. “Second-Order Stochastic Opti-
mization for Machine Learning in Linear Time”. In: arXiv preprint arXiv:1602.03943
(2016).

[5] Naman Agarwal et al. “Efficient Full-Matrix Adaptive Regularization”. In: Proceedings
of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri
and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long
Beach, California, USA: PMLR, June 2019, pp. 102–110.

[6] Kyle Aitken and Guy Gur-Ari. “On the asymptotics of wide networks with polynomial
activations”. To appear.

[7] Alexander A Alemi et al. “Deep Variational Information Bottleneck”. In: arXiv:1612.00410
(2016).

[8] Shun-ichi Amari et al. When Does Preconditioning Help or Hurt Generalization? 2020.
arXiv: 2006.10732 [stat.ML].

[9] Rana Ali Amjad and Bernhard C Geiger. “How (not) to train your neural network using
the information bottleneck principle”. In: arXiv preprint arXiv:1802.09766 (2018).

[10] Anders Andreassen and Ethan Dyer. “Asymptotics of Wide Convolutional Neural
Networks”. To appear.

[11] Rohan Anil et al. “Memory-Efficient Adaptive Optimization for Large-Scale Learning”.
In: arXiv preprint arXiv:1901.11150 (2019).

[12] Larry Armijo. “Minimization of Functions Having Lipschitz Continuous First Partial
Derivatives”. In: Pacific Journal of Mathematics 16.1 (1966), pp. 1–3.

https://arxiv.org/abs/2006.10732

BIBLIOGRAPHY 74

[13] Joseph J. Atick and A. Norman Redlich. “What Does the Retina Know About Natural
Scenes?” In: Neural Comput. 4.2 (Mar. 1992), pp. 196–210.

[14] Fred Attneave. “Some informational aspects of visual perception”. In: Psychol. Rev
(1954), pp. 183–193.

[15] Saman Babaie-Kafaki. “On Optimality of the Parameters of Self-Scaling Memory-
less Quasi-Newton Updating Formulae”. In: Journal of Optimization Theory and
Applications 167 (2015), pp. 91–101.

[16] Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund. “The Fast Convergence of
Incremental PCA”. In: Advances in Neural Information Processing Systems. Ed. by
C. J. C. Burges et al. Vol. 26. Curran Associates, Inc., 2013, pp. 3174–3182.

[17] Arindam Banerjee. “On bayesian bounds”. In: Proceedings of the 23rd international
conference on Machine learning. ACM. 2006, pp. 81–88.

[18] Horace Barlow. “Possible Principles Underlying the Transformations of Sensory Mes-
sages”. In: Sensory Communication 1 (Jan. 1961).

[19] Peter L. Bartlett et al. “Benign overfitting in linear regression”. In: Proceedings of the
National Academy of Sciences 117.48 (2020), pp. 30063–30070.

[20] Raef Bassily et al. “Learners that Use Little Information”. In: arXiv preprint arXiv:1710.05233
(2017).

[21] Mikhail Belkin, Daniel Hsu, and Ji Xu. “Two Models of Double Descent for Weak
Features”. In: SIAM Journal on Mathematics of Data Science 2.4 (2020), pp. 1167–
1180.

[22] Anthony J. Bell and Terrence J. Sejnowski. “The “independent components” of natural
scenes are edge filters”. In: Vision Research 37.23 (1997), pp. 3327–3338.

[23] Albert S. Berahas, Majid Jahani, and Martin Takáč. “Quasi-Newton Methods for Deep
Learning: Forget the Past, Just Sample”. In: arXiv preprint arXiv:1901.09997 (2019).

[24] Valentin Blickle and Clemens Bechinger. “Realization of a micrometre-sized stochastic
heat engine”. In: Nat Phys 8.2 (Feb. 2012), pp. 143–146.

[25] Raghu Bollapragada et al. “A Progressive Batching L-BFGS Method for Machine
Learning”. In: Proceedings of the 35th International Conference on Machine Learning.
Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning
Research. Stockholmsmässan, Stockholm Sweden: PMLR, July 2018, pp. 620–629.

[26] Aleksandar Botev, Hippolyt Ritter, and David Barber. “Practical Gauss-Newton
Optimisation for Deep Learning”. In: Proceedings of the 34th International Conference
on Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org,
2017, pp. 557–565.

[27] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. “Optimization Methods for Large-
Scale Machine Learning”. In: SIAM Review 60.2 (2018), pp. 223–311.

BIBLIOGRAPHY 75

[28] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. USA: Cambridge
University Press, 2004. isbn: 0521833787.

[29] Rasmus Bro and Age K Smilde. “Principal component analysis”. In: Analytical Methods
6.9 (2014), pp. 2812–2831.

[30] Dorje Brody and Nicolas Rivier. “Geometrical aspects of statistical mechanics”. In:
Phys. Rev. E 51 (2 Feb. 1995), pp. 1006–1011.

[31] CG Broyden. “The convergence of a class of double-rank minimization algorithms 2.
The new algorithm”. In: IMA Journal of Applied Mathematics (1970).

[32] Jacob Burbea and C Radhakrishna Rao. “Entropy differential metric, distance and
divergence measures in probability spaces: A unified approach”. In: Journal of Multi-
variate Analysis 12.4 (1982), pp. 575–596.

[33] RH Byrd et al. “A Stochastic Quasi-Newton Method for Large-Scale Optimization”.
In: arXiv preprint arXiv:1401.7020 (2014).

[34] Richard H Byrd et al. “On the use of stochastic hessian information in optimization
methods for machine learning”. In: SIAM Journal on Optimization 21.3 (2011), pp. 977–
995.

[35] Yair Carmon et al. “Lower bounds for finding stationary points II: first-order methods”.
In: Mathematical Programming (2019). Preprint available online.

[36] Sadi Carnot. Refléxions sur la puissance motrice du feu et sur les machines propres à
développer cette puissance. Paris: Chez Bachelier, Libraire, 1824.

[37] Gavin E. Crooks. “Measuring Thermodynamic Length”. In: Phys. Rev. Lett. 99 (10
Sept. 2007), p. 100602.

[38] Frank E. Curtis and Xiaocun Que. “A quasi-Newton algorithm for nonconvex, nons-
mooth optimization with global convergence guarantees”. In: Mathematical Program-
ming Computation 7 (2015), pp. 399–428.

[39] Frank E. Curtis, Daniel P. Robinson, and Baoyu Zhou. “A self-correcting variable-metric
algorithm framework for nonsmooth optimization”. In: IMA Journal of Numerical
Analysis 40 (2020), pp. 1154–1187.

[40] Yang Dan, Joseph J. Atick, and R. Clay Reid. “Efficient Coding of Natural Scenes in
the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory”. In:
Journal of Neuroscience 16.10 (1996), pp. 3351–3362.

[41] Yann N. Dauphin et al. “Equilibrated adaptive learning rates for non-convex opti-
mization”. In: Advances in Neural Information Processing Systems 28 (2015), pp. 1–
9.

[42] Ofir David, Shay Moran, and Amir Yehudayoff. “On Statistical Learning via the
Lens of Compression”. In: Proceedings of the 30th International Conference on Neural
Information Processing Systems. NIPS’16. Barcelona, Spain: Curran Associates Inc.,
2016, pp. 2792–2800.

BIBLIOGRAPHY 76

[43] John E Dennis Jr and Jorge J Moré. “Quasi-Newton methods, motivation and theory”.
In: SIAM review 19.1 (1977), pp. 46–89.

[44] Guillaume Desjardins et al. “Natural Neural Networks”. In: Advances in Neural Infor-
mation Processing Systems 28. Ed. by C. Cortes et al. Curran Associates, Inc., 2015,
pp. 2071–2079.

[45] Jelena Diakonikolas and Michael I. Jordan. “Generalized Momentum-Based Methods:
A Hamiltonian Perspective”. In: arXiv:1906.00436 [math.OC] (2019), pp. 1–30.

[46] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”. In: Journal of Machine Learning Research 12
(2011), pp. 2121–2159.

[47] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for online
learning and stochastic optimization”. In: Journal of Machine Learning Research 12.Jul
(2011), pp. 2121–2159.

[48] Ethan Dyer and Guy Gur-Ari. “Asymptotics of Wide Networks from Feynman Dia-
grams”. In: ArXiv abs/1909.11304 (2020).

[49] R. P. Feynman. “Forces in Molecules”. In: Phys. Rev. 56 (4 Aug. 1939), pp. 340–343.

[50] R Fletcher. “A new approach to variable metric algorithms”. In: The computer journal
(1970).

[51] R. Fletcher. Practical Methods of Optimization. second. John Wiley & Sons, 1987.

[52] Thomas George et al. “Fast Approximate Natural Gradient Descent in a Kronecker-
Factored Eigenbasis”. In: Proceedings of the 32nd International Conference on Neural
Information Processing Systems. NIPS’18. Montréal, Canada: Curran Associates Inc.,
2018, pp. 9573–9583.

[53] Alan R Gillespie, Anne B Kahle, and Richard E Walker. “Color enhancement of highly
correlated images. I. Decorrelation and HSI contrast stretches”. In: Remote Sensing of
Environment 20.3 (1986), pp. 209–235.

[54] D Goldfarb. “A family of variable-metric methods derived by variational means”. In:
Mathematics of computation (1970).

[55] Roger Grosse and James Martens. “A Kronecker-factored approximate Fisher matrix
for convolution layers”. In: arXiv preprint arXiv:1602.01407 (2016).

[56] Vineet Gupta, Tomer Koren, and Yoram Singer. “Shampoo: Preconditioned Stochastic
Tensor Optimization”. In: CoRR abs/1802.09568 (2018). arXiv: 1802.09568.

[57] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I.
second. Springer, 1993.

[58] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations II. second.
Springer, 1996.

https://arxiv.org/abs/1802.09568

BIBLIOGRAPHY 77

[59] Trevor Hastie et al. “Surprises in High-Dimensional Ridgeless Least Squares Interpola-
tion”. In: Annals of Statistics 50 (2 2022), pp. 949–986.

[60] Takahiro Hatano and S. I. Sasa. “Steady-State Thermodynamics of Langevin Systems”.
In: Phys. Rev. Lett. 86 (16 Apr. 2001), pp. 3463–3466.

[61] P Hennig. “Fast probabilistic optimization from noisy gradients”. In: International
Conference on Machine Learning (2013).

[62] P. D. Hislop and I. M. Sigal. Introduction to Spectral Theory with Applications to
Schrödinger Operators. New York: Springer, 1996.

[63] Jiaoyang Huang and H B Yau. “Dynamics of Deep Neural Networks and Neural
Tangent Hierarchy”. In: ArXiv abs/1909.08156 (2019).

[64] Lei Huang et al. “Decorrelated Batch Normalization”. In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2018), pp. 791–800.

[65] Aapo Hyvärinen, Jarmo Hurri, and Patrick O. Hoyer. Natural Image Statistics: A Prob-
abilistic Approach to Early Computational Vision. 1st. Springer Publishing Company,
Incorporated, 2009.

[66] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: Proceedings of the 32Nd Inter-
national Conference on International Conference on Machine Learning - Volume 37.
ICML’15. Lille, France: JMLR.org, 2015, pp. 448–456.

[67] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel: Con-
vergence and generalization in neural networks”. In: Advances in neural information
processing systems. 2018, pp. 8571–8580.

[68] Fredrick A Jenet et al. “Detecting the stochastic gravitational wave background using
pulsar timing”. In: The Astrophysical Journal Letters 625.2 (2005), p. L123.

[69] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[70] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: arXiv:1412.6980 [cs.LG] (2014), pp. 1–9.

[71] T Koide. “Perturbative expansion of irreversible work in Fokker–Planck equationà
laquantum mechanics”. In: Journal of Physics A: Mathematical and Theoretical 50.32
(July 2017), p. 325001.

[72] Artemy Kolchinsky, Brendan D Tracey, and Steven Van Kuyk. “Caveats for information
bottleneck in deterministic scenarios”. In: arXiv preprint arXiv:1808.07593 (2018).

[73] Hanspeter Kraft and C. Procesi. Classical invariant theory: a primer. 1996.

[74] Walid Krichene, Alexandre M. Bayen, and Peter L. Bartlett. “Accelerated Mirror
Descent in Continuous and Discrete Time”. In: Advances in Neural Information
Processing Systems 28 (2015), pp. 2845–2853.

BIBLIOGRAPHY 78

[75] L. D. Landau and E. M. Lifshitz. Quantum Mechanics (Non-relativistic theory), Third
Edition. Oxford, UK: Butterworth-Heinemann, 1977.

[76] Yann Le Cun et al. “Efficient Backprop”. In: Neural Networks, Tricks of the Trade.
Lecture Notes in Computer Science LNCS 1524. Springer Verlag, 1998.

[77] Jaehoon Lee et al. “Finite Versus Infinite Neural Networks:an Empirical Study”. In: in
preparation (2020).

[78] Jaehoon Lee et al. “Wide neural networks of any depth evolve as linear models
under gradient descent”. In: Advances in neural information processing systems. 2019,
pp. 8570–8581.

[79] Chih-Jen Lin, Ruby C Weng, and S Sathiya Keerthi. “Trust region newton method for
logistic regression”. In: The Journal of Machine Learning Research 9 (2008), pp. 627–
650.

[80] Etai Littwin, Tomer Galanti, and L. Wolf. “On the Optimization Dynamics of Wide
Hypernetworks”. In: ArXiv abs/2003.12193 (2020).

[81] Dong C DC Liu and Jorge Nocedal. “On the limited memory BFGS method for large
scale optimization”. In: Mathematical programming 45.1-3 (1989), pp. 503–528.

[82] Yao Lu et al. “Block Mean Approximation for Efficient Second Order Optimization”.
In: ArXiv abs/1804.05484 (2018).

[83] Christian Maes and Karel Netočný. “A Nonequilibrium Extension of the Clausius Heat
Theorem”. In: Journal of Statistical Physics 154.1 (2014), pp. 188–203.

[84] Maren Mahsereci and Philipp Hennig. “Probabilistic Line Searches for Stochastic
Optimization”. In: Journal of Machine Learning Research 18 (2017), pp. 1–59.

[85] Dibyendu Mandal and Christopher Jarzynski. “Analysis of slow transitions between
nonequilibrium steady states”. In: Journal of Statistical Mechanics: Theory and Exper-
iment 2016.6 (2016), p. 063204.

[86] James Martens. “Deep learning via Hessian-free optimization”. In: Proceedings of the
27th International Conference on Machine Learning (ICML). Vol. 951. 2010.

[87] James Martens, Jimmy Ba, and Matt Johnson. “Kronecker-factored Curvature Approx-
imations for Recurrent Neural Networks”. In: International Conference on Learning
Representations. 2018.

[88] James Martens and Roger Grosse. “Optimizing neural networks with kronecker-factored
approximate curvature”. In: International conference on machine learning. 2015,
pp. 2408–2417.

[89] I. A. Martínez et al. “Brownian Carnot engine”. In: Nat Phys 12 (Jan. 2016), pp. 67–70.

[90] Michael Muehlebach and Michael I. Jordan. “A Dynamical Systems Perspective on
Nesterov Acceleration”. In: Proceedings of the International Conference on Machine
Learning (2019), pp. 1–7.

BIBLIOGRAPHY 79

[91] Michael Muehlebach and Michael I. Jordan. “Continuous-time Lower Bounds for
Gradient-based Algorithms”. In: Proceedings of the International Conference on Ma-
chine Learning (2020), pp. 1–13.

[92] Michael Muehlebach and Michael I. Jordan. “Optimization with Momentum: Dynami-
cal, Control-Theoretic, and Symplectic Perspectives”. In: arXiv: 2002.12493 (2020).

[93] Yurii Nesterov. Introductory Lectures on Convex Optimization. Springer, 2004.

[94] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. second. Springer
Science and Business Media, 2006.

[95] Erkki Oja and Juha Karhunen. “On Stochastic Approximation of the Eigenvectors and
Eigenvalues of the Expectation of a Random Matrix”. In: Journal of Mathematical
Analysis and Applications 106 (1985).

[96] K. Osawa et al. “Scalable and Practical Natural Gradient for Large-Scale Deep
Learning”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2020), pp. 1–1.

[97] G. A. Pavliotis. Stochastic Processes and Applications. Vol. 60. Texts in Applied
Mathematics. New York: Springer-Verlag, 2014.

[98] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. “Resurrecting the sigmoid
in deep learning through dynamical isometry: theory and practice”. In: Advances in
neural information processing systems. 2017, pp. 4785–4795.

[99] Eric Poisson. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cam-
bridge University Press, 2004.

[100] Nasim Rahaman et al. “On the spectral bias of neural networks”. In: arXiv preprint
arXiv:1806.08734 (2018).

[101] Hannes Risken. Fokker-Planck Equation. Berlin: Springer, 1984. isbn: 978-3-642-96807-
5.

[102] Hannes Risken. “Solutions of the Fokker-Planck Equation in Detailed Balance”. In: Z.
Physik 251 (1972), pp. 231–243.

[103] Michal Rolínek and Georg Martius. “L4: Practical loss-based stepsize adaptation for
deep learning”. In: Advances in Neural Information Processing Systems 31 (2018),
pp. 1–11.

[104] Basri Ronen et al. “The Convergence Rate of Neural Networks for Learned Functions
of Different Frequencies”. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 4761–4771.

[105] Grant M. Rotskoff and Gavin E. Crooks. “Optimal control in nonequilibrium systems:
Dynamic Riemannian geometry of the Ising model”. In: Phys. Rev. E 92 (6 2015),
060102(R).

BIBLIOGRAPHY 80

[106] Grant M. Rotskoff, Gavin E. Crooks, and Eric Vanden-Eijnden. “Geometric approach to
optimal nonequilibrium control: Minimizing dissipation in nanomagnetic spin systems”.
In: Phys. Rev. E 95 (1 2017), p. 012148.

[107] George Ruppeiner. “Thermodynamics: A Riemannian geometric model”. In: Phys. Rev.
A 20 (4 Oct. 1979), pp. 1608–1613.

[108] P Salamon, J Nulton, and E Ihrig. “On the relation between entropy and energy
versions of thermodynamic length”. In: The Journal of Chemical Physics 80.1 (1984),
pp. 436–437.

[109] Peter Salamon and R Stephen Berry. “Thermodynamic length and dissipated avail-
ability”. In: Physical Review Letters 51.13 (1983), p. 1127.

[110] Andrew M Saxe et al. “On the information bottleneck theory of deep learning”.
In: Journal of Statistical Mechanics: Theory and Experiment 2019.12 (Dec. 2019),
p. 124020.

[111] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. “Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks”. In: 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2014.

[112] F Schlögl. “Thermodynamic metric and stochastic measures”. In: Zeitschrift für Physik
B Condensed Matter 59.4 (1985), pp. 449–454.

[113] Tim Schmiedl and Udo Seifert. “Optimal Finite-Time Processes In Stochastic Ther-
modynamics”. In: Phys. Rev. Lett. 98 (10 Mar. 2007), p. 108301.

[114] Nicol Schraudolph, Jin Yu, and Simon Günter. “A stochastic quasi-Newton method
for online convex optimization”. In: AIstats (2007).

[115] Daniel V. Schroeder. An Introduction to Thermal Physics. Oxford: Oxford University
Press, 2021.

[116] Ravid Schwartz-Ziv and Alexander A Alemi. “Information in Infinite Ensembles of
Infinitely-Wide Neural Networks”. In: arXiv preprint arXiv:1911.09189 (2019).

[117] Udo Seifert. “Stochastic thermodynamics, fluctuation theorems and molecular ma-
chines”. In: Reports on Progress in Physics 75 (Dec. 2012), p. 126001.

[118] Ken Sekimoto. “Kinetic Characterization of Heat Bath and the Energetics of Thermal
Ratchet Models”. In: Journal of the Physical Society of Japan 66.5 (1997), pp. 1234–
1237.

[119] Ken Sekimoto. Stochastic Energetics. Springer Berlin Heidelberg, 2010. isbn: 978-3-
642-05411-2.

[120] Ken Sekimoto and Shin-ichi Sasa. “Complementarity Relation for Irreversible Process
Derived from Stochastic Energetics”. In: Journal of the Physical Society of Japan 66.11
(Nov. 1997), pp. 3326–3328.

BIBLIOGRAPHY 81

[121] Christopher J Shallue et al. “Measuring the effects of data parallelism on neural
network training”. In: arXiv preprint arXiv:1811.03600 (2018).

[122] DF Shanno. “Conditioning of quasi-Newton methods for function minimization”. In:
Mathematics of computation (1970).

[123] Noam Shazeer and Mitchell Stern. “Adafactor: Adaptive learning rates with sublinear
memory cost”. In: arXiv preprint arXiv:1804.04235 (2018).

[124] Ravid Shwartz-Ziv and Naftali Tishby. “Opening the black box of deep neural networks
via information”. In: arXiv preprint arXiv:1703.00810 (2017).

[125] Eero P Simoncelli and Bruno A Olshausen. “Natural Image Statistics and Neural
Representation”. In: Annual Review of Neuroscience 24.1 (2001), pp. 1193–1216.

[126] David A. Sivak and Gavin E. Crooks. “Thermodynamic geometry of minimum-
dissipation driven barrier crossing”. In: Phys. Rev. E 94 (5 Nov. 2016), p. 052106.

[127] David A. Sivak and Gavin E. Crooks. “Thermodynamic Metrics and Optimal Paths”.
In: Phys. Rev. Lett. 108 (19 May 2012), p. 190602.

[128] Jascha Sohl-Dickstein. “The natural gradient by analogy to signal whitening, and
recipes and tricks for its use”. In: arXiv preprint arXiv:1205.1828 (2012).

[129] Jascha Sohl-Dickstein, Ben Poole, and Surya Ganguli. “Fast large-scale optimization by
unifying stochastic gradient and quasi-newton methods”. In: International Conference
on Machine Learning. 2014, pp. 604–612.

[130] Weijie Su, Stephen Boyd, and Emmanuel J. Candès. “A Differential Equation for
Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights”. In: Journal
of Machine Learning Research 17.153 (2016), pp. 1–43.

[131] Peter Sunehag et al. “Variable metric stochastic approximation theory”. In: arXiv
preprint arXiv:0908.3529 (Aug. 2009). arXiv: 0908.3529.

[132] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning.
2012.

[133] Naftali Tishby and Noga Zaslavsky. “Deep learning and the information bottleneck
principle”. In: 2015 IEEE Information Theory Workshop (ITW). IEEE. 2015, pp. 1–5.

[134] C. Van den Broeck, S. I. Sasa, and U. Seifert. “Focus on stochastic thermodynamics”.
In: New Journal of Physics 18 (2016), p. 020401.

[135] Sharan Vaswani et al. “Painless Stochastic Gradient: Interpolation, Line-Search, and
Convergence Rates”. In: Advances in Neural Information Processing Systems 32 (2019),
pp. 1–14.

[136] Sharan Vaswani et al. To Each Optimizer a Norm, To Each Norm its Generalization.
2020. arXiv: 2006.06821 [cs.LG].

https://arxiv.org/abs/0908.3529
https://arxiv.org/abs/2006.06821

BIBLIOGRAPHY 82

[137] Oriol Vinyals and Daniel Povey. “Krylov subspace descent for deep learning”. In: arXiv
preprint arXiv:1111.4259 (2011).

[138] Neha S. Wadia, Michael I. Jordan, and Michael Muehlebach. “Optimization with
Adapative Step Size Selection from a Dynamical Systems Perspective”. In: Proceedings
of the 35th Conference on Neural Information Processing Systems. NeurIPS Workshop
on Optimization for Machine Learning. 2021.

[139] Neha S. Wadia, Ryan V. Zarcone, and Michael R. DeWeese. “Solution to the Fokker-
Planck Equation for Slowly Driven Brownian Motion: Emergent Geometry and a
Formula for the Corresponding Thermodynamic Metric”. In: Physical Review E 105
(2022), p. 034130.

[140] Neha S. Wadia et al. “Whitening and Second Order Optimization Both Make In-
formation in the Dataset Unusable During Training, and Can Reduce or Prevent
Generalization”. In: ICML. 2021.

[141] Frank Weinhold. “Metric geometry of equilibrium thermodynamics”. In: The Journal
of Chemical Physics 63.6 (1975), pp. 2479–2483.

[142] Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. “A variational perspective
on accelerated methods in optimization”. In: Proceedings of the National Academy of
Sciences 113.47 (2016), E7351–E7358.

[143] Simon Wiesler and Hermann Ney. “A Convergence Analysis of Log-linear Training”.
In: Proceedings of the 24th International Conference on Neural Information Processing
Systems. NIPS’11. Granada, Spain: Curran Associates Inc., 2011, pp. 657–665.

[144] Ashia C Wilson et al. “The marginal value of adaptive gradient methods in machine
learning”. In: Advances in Neural Information Processing Systems. 2017, pp. 4148–
4158.

[145] Ashia C. Wilson et al. “The Marginal Value of Adaptive Gradient Methods in Machine
Learning”. In: Advances in Neural Information Processing Systems 30 (2017), pp. 1–11.

[146] Philip Wolfe. “Convergence Conditions for Ascent Methods”. In: SIAM Review 11.2
(1969), pp. 226–235.

[147] Lechao Xiao et al. “Dynamical isometry and a mean field theory of CNNs: How to train
10,000-layer vanilla convolutional neural networks”. In: arXiv preprint arXiv:1806.05393
(2018).

[148] Aolin Xu and Maxim Raginsky. “Information-theoretic analysis of generalization
capability of learning algorithms”. In: Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. 2017, pp. 2524–2533.

[149] Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks”. In: CoRR
abs/1605.07146 (2016). arXiv: 1605.07146.

https://arxiv.org/abs/1605.07146

BIBLIOGRAPHY 83

[150] Matthew D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”. In: CoRR
abs/1212.5701 (2012). arXiv: 1212.5701.

[151] Guodong Zhang, James Martens, and Roger B Grosse. “Fast Convergence of Natural
Gradient Descent for Over-Parameterized Neural Networks”. In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc.,
2019, pp. 8082–8093.

[152] Guodong Zhang et al. “Three mechanisms of weight decay regularization”. In: arXiv
preprint arXiv:1810.12281 (2018).

[153] Huishuai Zhang et al. “Block-diagonal Hessian-free Optimization for Training Neural
Networks”. In: CoRR abs/1712.07296 (2017). arXiv: 1712.07296.

[154] Patrick R. Zulkowski and Michael R. DeWeese. “Optimal control of overdamped
systems”. In: Phys. Rev. E 92 (3 2015), p. 032117.

[155] Patrick R. Zulkowski et al. “Geometry of thermodynamic control”. In: Phys. Rev. E
86 (4 Oct. 2012), p. 041148.

https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1712.07296

	Contents
	List of Figures
	Introduction
	Optimal protocols for driven Brownian systems
	Driven Brownian motion
	The thermodynamic metric
	The harmonic oscillator in an electric field
	Summary and discussion

	On whitening, exact second-order optimization, and generalization
	On whitening and generalization
	On exact second-order optimization and generalization by analogy with whitening
	Experiments
	Discussion
	Methods

	Adaptive step size selection from a dynamical systems perspective
	Adaptive step size routine
	Benchmark: Strongly convex functions
	A nonconvex problem: principal components analysis
	Discussion

	Bibliography

