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The crystal structure of the protein kinase HIPK2 reveals a
unique architecture of its CMGC-insert region
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The homeodomain-interacting protein kinase (HIPK) family
is comprised of four nuclear protein kinases, HIPK1– 4. HIPK
proteins phosphorylate a diverse range of transcription factors
involved in cell proliferation, differentiation, and apoptosis.
HIPK2, thus far the best-characterized member of this largely
understudied family of protein kinases, plays a role in the acti-
vation of p53 in response to DNA damage. Despite this tumor-
suppressor function, HIPK2 is also found overexpressed in sev-
eral cancers, and its hyperactivation causes chronic fibrosis.
There are currently no structures of HIPK2 or of any other HIPK
kinase. Here, we report the crystal structure of HIPK2’s kinase
domain bound to CX-4945, a casein kinase 2� (CK2�) inhibitor
currently in clinical trials against several cancers. The structure,
determined at 2.2 Å resolution, revealed that CX-4945 engages the
HIPK2 active site in a hybrid binding mode between that seen in
structures of CK2� and Pim1 kinases. The HIPK2 kinase domain
crystallizedintheactiveconformation,whichwasstabilizedbyphos-
phorylation of the activation loop. We noted that the overall kinase
domain fold of HIPK2 closely resembles that of evolutionarily
related dual-specificity tyrosine-regulated kinases (DYRKs). Most
significant structural differences between HIPK2 and DYRKs
included an absence of the regulatory N-terminal domain and a
unique conformation of the CMGC-insert region and of a newly
defined insert segment in the �C–�4 loop. This first crystal struc-
ture of HIPK2 paves the way for characterizing the understudied
members of the HIPK family and for developing HIPK2-directed
therapies for managing cancer and fibrosis.

The homeodomain-interacting protein kinases (HIPKs)5 are
a family of nuclear dual-specificity serine/threonine and tyro-
sine kinases that belong to the CMGC superfamily of protein
kinases. Within the CMGC family on the kinome tree, HIPKs
reside on a branch together with dual-specificity tyrosine-reg-
ulated kinases (DYRKs), CDC-like kinases (CLKs), serine/argi-
nine-rich protein kinases (SRPKs), and the pre-mRNA pro-
cessing factor 4 kinase (PRPF4B) (Fig. 1A). This group is
separate from the well-studied CMGC kinases, such as cyclin-
dependent kinases (CDKs), cyclin-dependent-like kinases
(CDLKs), mitogen activates kinases (MAPKs) and glycogen
synthase kinases (GSKs) (1). HIPKs act as transcriptional regu-
lators and corepressors for homeodomain transcription factors
(2) and regulate a diverse range of cellular functions, including
cytokinesis and apoptosis, ultimately playing roles in adipogen-
esis, tumor suppression, angiogenesis, and inflammation (3–5).
Based on similarity of the kinase domain sequence, HIPK
kinases are most closely related to DYRK kinases, which
are involved in cell survival, differentiation, and neurogenesis
(6 –8). Like DYRKs, HIPK kinases are also involved in the
pathology of certain neurodegenerative diseases. Dysregulation
of DYRK1A plays a significant role in Down syndrome and Alz-
heimer’s disease through a gene dosage– dependent mecha-
nism (9 –11). HIPK2 activity positively correlates with neuro-
degeneration in ALS (12). Loss of function of HIPK2 has been
linked to the development of Alzheimer’s disease (13), whereas
loss of HIPK3 was implicated as beneficial in Huntington’s dis-
ease (14).

Three of four HIPK protein kinases in humans, HIPK1,
HIPK2, HIPK3, and HIPK4, share a common domain architec-
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domain and several C-terminal regulatory domains (Fig. 1B).
Directly C-terminal to the kinase domain is the homeoprotein-
interacting domain (HID) (2), followed by the speckle retention
sequence (SRS) (15) in HIPK2 or the proline, glutamate, serine,
and threonine (PEST)-rich domain in HIPK1 and HIPK3 (16).
In HIPK1–3, the HID and SRS/PEST domains precede the
autoinhibitory domain (AID) (17) and the serine, glutamine
and alanine (SQA) repeat region at the C terminus (18). HIPK4
stands out as a unique family member because it consists of only
a kinase domain. The HIPK4 kinase domain is also the most
divergent and shares only �50% sequence identity with the
kinase domains of HIPK1–3, which have �90% sequence iden-
tity among themselves. Genetic studies point to some func-
tional differences and redundancies between the HIPK kinases,
in particular HIPK1 and HIPK2. Individual loss of Hipk1 or
Hipk2 does not manifest as an abnormal phenotype in mice (19,
20). However, dual loss of Hipk1 and Hipk2 results in embry-
onic lethality due to developmental defects (20). HIPK3 and
HIPK4 carry more distinct functions. Loss of Hipk3 results in
decreased insulin secretion and impaired glucose tolerance,
potentially driving type 2 diabetes (21). Hipk3�/� mice also
display lower levels of mutant huntingtin protein, making
HIPK3 a potential therapeutic target in Huntington disease
(14). Hipk4 knockdown studies identified HIPK4 as a key regu-
lator of human skin epithelial cell differentiation (22).

The archetypal member of the HIPK family, HIPK2, was dis-
covered as an interactor and positive regulator of the repressor
activities of NK homeodomain-containing transcription fac-
tors (2). Under normal conditions, HIPK2 has a short half-life as
a result of constitutive ubiquitination by the SIAH-1 ubiquitin
ligase, resulting in HIPK2 proteasomal degradation (23). Upon
DNA damage, HIPK2 is stabilized and catalytically activated by
caspase-mediated cleavage that removes the C-terminal AID
and SQA domains, releasing kinase inhibition (17). HIPK2 acti-
vation results in phosphorylation and degradation of the p53
repressor MDM2 (24 –26), phosphorylation of the apoptotic
regulator CtBP (24), and modulation of p73 activity (25). Col-
lectively, these events contribute to p53-dependent DNA lesion
repair and, if the damage is irreparable, activation of cellular
apoptosis. Due to its role in activating the DNA damage

response, HIPK2 is a canonical tumor suppressor. Hence, in
addition to its role in neurodegenerative diseases, HIPK2 has
also been implicated in the pathology of several cancers (3).

Inhibition of HIPK2 kinase activity through therapeutic
intervention seems counterproductive in light of its character-
istics as a tumor suppressor. However, elevated HIPK2 levels
have also been shown to be cytoprotective and are detected in
cervical cancers, glioblastoma, pilocytic astrocytomas, and ton-
sillar squamous cell carcinoma (26 –29). The cytoprotective
mechanism of HIPK2 signaling relies in part on a positive feed-
back between HIPK2 and the oxidative stress response tran-
scription factor, NRF2, which promotes cancer cell survival
(30). These findings suggest that pharmacological inhibition of
HIPK2 kinase activity might be of therapeutic benefit in a sub-
set of cancers.

In addition to its role in cancer, HIPK2 has also been impli-
cated as an important regulator of renal, hepatic, and pulmo-
nary fibrosis (31–33). In an HIV transgenic mouse model
(Tg26) of renal fibrosis, HIPK2 protein levels are elevated in the
kidneys, and HIPK2 knockout attenuates the development of
fibrosis (31). Upon activation, HIPK2 triggers several pro-fi-
brotic, pro-inflammatory, and pro-apoptotic pathways, includ-
ing TGF-�/Smad3, Wnt/Notch, NF-�B, and p53, which are all
known to increase expression of pro-fibrosis markers (34 –37).
Consequently, HIPK2 activation promotes cellular epithelial-
to-mesenchymal transition (EMT) (32, 38). Expression of
kinase-dead HIPK2 or its knockdown in human renal tubular
epithelial cells significantly attenuates HIV-induced apoptosis
and down-regulates EMT markers in Tg26 mice (31). Likewise,
inhibition of HIPK2 by a small-molecule inhibitor ameliorates
fibrosis in the Tg26 mice by suppression of the TGF-�/Smad3
pathway (39). Together, these results suggest that targeting
HIPK2 kinase activity could be of significant benefit in treat-
ment of chronic fibrosis (40 –42).

The activation mechanism of CMGC kinases involves phos-
phorylation of a conserved tyrosine residue in the activation
loop, which in MAPK kinases is encoded within the TXY motif
(43). DYRK kinases contain a YXY motif in which the second
tyrosine is phosphorylated (44 –46). HIPK1, HIPK2, and HIPK3
have an SXY motif, and the related member HIPK4 contains an

Figure 1. The HIPKs are members of the CMGC kinase family. A, phylogenetic tree of the CMGC kinase family branch that includes the HIPK family. B, domain
architecture of the four HIPK family members. The construct boundaries for crystallized HIPK2 are indicated.
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EPY motif. The phosphorylation of tyrosine 361 in the SXY
motif was shown to activate HIPK2 (47). In contrast to other
dual-specificity kinases, mutation of the activation loop tyro-
sine (Y361F) does not completely inactivate HIPK2, but it sig-
nificantly reduces its catalytic efficiency and expands substrate
recognition to encompass noncanonical tyrosine residues
within HIPK2 (48). HIPK2 autophosphorylates its activation
loop via a unique mechanism, first described in DYRK kinases,
in which the tyrosine 361 is co-translationally phosphorylated
(48 –51). In addition to autophosphorylation, full activation of
HIPK2 has been described to involve acetylation and sumoyla-
tion of the HIPK2 protein (41, 52). HIPK2 is acetylated on
multiple lysines throughout the protein, including the kinase
domain (53), and sumoylated on Lys25 located N-terminally to
the kinase domain (54).

Despite the promising therapeutic potential of targeting the
HIPKs, there are currently no crystal structures of kinases in
this family. To aid in the design of specific therapeutics for
HIPK2, we determined the first crystal structure of a HIPK
kinase, HIPK2, in complex with CX-4945, previously character-
ized as a casein kinase 2 subunit � (CK2�) inhibitor (55).
CX-4945 (silmitasertib) is currently in phase I/II clinical trials
for cholangiocarcinoma (56) and multiple myeloma (57). We
describe the unique features of the HIPK2 kinase domain
revealed by our crystal structure and discuss how they could be
explored for design of HIPK2-targeted therapeutics.

Results

Overall structure of the HIPK2 kinase domain

To obtain a crystal structure of the HIPK2 kinase domain, we
generated a construct corresponding to the kinase domain of
human HIPK2 (residues 177–547), expressed it in Escherichia
coli, and purified the protein to homogeneity. Crystallization
trials were conducted in the absence or presence of potential
active site ligands, including nucleotides such as ATP, ADP,
and AMP-PNP. We tested a panel of inhibitors known to act on
HIPK2 and a broad range of CMGC family kinases (58 –60).
Under the conditions tested, HIPK2 crystallized in the presence
of the CK2� ATP-competitive inhibitor CX-4945, previously
shown to inhibit HIPK2, HIPK3, and a number of other kinases
(62, 76), and crystallized in complex with CK2�, the proviral
integration site for Moloney murine leukemia virus-1 kinase
(Pim1), and CLK2– 4 kinases (63–65).

We determined the HIPK2 kinase domain structure at 2.2 Å
resolution in the P62 space group with one molecule in the
asymmetric unit (Table 1). In the structure, HIPK2 adopts the
classical two-lobe kinase domain fold. The CX-4945 inhibitor
binds to the ATP-pocket of the kinase in the type I active kinase
conformation (DFG-in, helix C-in; Fig. 2A). The N-lobe of the
HIPK2 kinase domain is mostly well-resolved and is comprised
of the five-�-sheet fold and a fully ordered helix C (�C). The
electron density for three loops within the N-lobe is absent.
These loop regions encompass residues 208 –210 located in the
tip of the P-loop, residues 231–236 located in the �3-�C linker
region and residues 269 –272 that connect the �4 and �5
strands. The HIPK2 C-lobe is fully resolved, including an insert
region characteristic for the members of the CMGC family

(Fig. 2A). Our structure reveals that the insert is built by four
short helices with an anti-parallel �-strand and extends across
the base of the C-lobe, occluding helix G. This region of the
structure is discussed in more detail below.

The HIPK2 kinase adopts an active conformation in the
structure, with helix C swung toward the active site, permitting
hydrogen bonds between the catalytic lysine (Lys228; PKA resi-
due Lys72), the carboxylate group of the CX-4945 molecule, and
Glu243 (PKA residue Glu91) in helix C (Fig. 2B). The N-terminal
portion of the activation loop adopts an extended conforma-
tion, but the loop is only partially ordered in the structure, with
insignificant electron density for residues 354 –359. The DFG
motif aspartate (Asp346; PKA residue Asp184) points toward the
active site, occupying the DFG-in conformation. In the struc-
ture, Asp346 and Asp324 play a central role in stabilization of an
active conformation; the Asp346 amino group forms a hydrogen
bond with the CX-4945 carboxylate, and the Asp346 carbonyl
forms electrostatic interactions with His322 (PKA residue
Tyr164) within the HXD motif. The side chains of Asp346 and
Asp324 make interactions with the side chain of Asn329 and the
backbone amino group of Gly348 (Fig. 2B and Fig. S1). Asp324

forms two additional ionic pairings with His322 and Ser364. The
activation loop tyrosine, Tyr361, is phosphorylated in the struc-
ture, and the phosphate group forms hydrogen bonds with the
guanidine side-chain groups of Arg365 and Arg368, further sta-
bilizing the active conformation of the activation loop (Fig. 2B).

Arg368 is located at the base of the P�1 substrate-binding
pocket and corresponds to the “CMGC arginine,” a character-
istic feature present in the sequence of the CMGC family of
kinases (66). As in most active CMGC kinases (67), the HIPK2
CMGC arginine side chain hydrogen-bonds to the main-chain
oxygen of another residue in the activation loop and stabilizes a

Table 1
Data refinement and statistics for HIPK2 � CX-4945
Statistics for the highest-resolution shells are shown in parentheses. RMSD, root
mean square deviation from ideal geometry.

Parameter Value

Resolution range (Å) 56.36–2.194 (2.273–2.194)
Space group P 62
Unit cell 130.16 Å, 130.16 Å, 52.25 Å, 90°, 90°, 120°
Total reflections 52,069 (5,102)
Unique reflections 26,108 (2,564)
Multiplicity 2.0 (2.0)
Completeness (%) 99.98 (99.96)
Mean I/�(I) 17.63 (2.65)
Wilson B-factor (Å2) 54.92
R-merge 0.02135 (0.2447)
CC1⁄2 0.998 (0.857)
Reflections used in refinement 26,106 (2563)
Reflections used for R-free 1,296 (125)
R-work 0.2025 (0.2612)
R-free 0.2436 (0.2847)
Number of non-hydrogen atoms 2,691

Macromolecules 2,601
Ligands 25
Solvent 65

Protein residues 333
RMSD (bonds) (Å) 0.008
RMSD (angles) (degrees) 1.01
Ramachandran favored (%) 95.60
Ramachandran outliers (%) 0.94
Clashscore 5.85
Average B-factor (Å2) 65.79

Macromolecules 66.05
Ligands 60.37
Solvent 57.49
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somewhat strained backbone conformation of the activation
loop in this region. The interacting residue is typically small
(Ala, Ser, and Val) in most CMGC kinases, with the excep-
tion of DYRKs and SRPKs, where it is a glutamine (Fig. 2C)
(68). In HIPK2, this residue is also a glutamine (Gln-363).
The CMGC arginine in HIPK2 is further stabilized by the
interaction with Glu406. The glutamate carboxylate side
chain bonds with the guanidinium of Arg368 and with the
amino side chain of Lys430, located in the CMGC-insert (Fig.
2D). This network of interactions connects the CMGC argi-
nine to the CMGC-insert, orienting the insert toward the
activation loop (Fig. 2D).

The active state of the HIPK2 kinase in our structure is also
evident in the conformation of the hydrophobic spines (Fig. S1).
The catalytic C-spine is a noncontiguous hydrophobic zone
that is connected by interactions with the nucleotide adenine
ring (69 –71). In human HIPK2, the C-spine is composed of
Val213 and Ala226 in the N-lobe and Leu284, Ile330, Met331,
Leu332, Val390, and Leu394 in the C-lobe. In our structure, the
CX-4945 naphthyridine group completes the C-spine by inter-
acting with Ala226 and Met331. Val213 also stabilizes the bound
inhibitor through favorable contacts with the chloroanilino
moiety (Fig. S1). The regulatory R-spine in HIPK2 is also in the
active assembled conformation. The bottom of the R-spine is
stabilized in the C-lobe by Asp383, which interacts with the
backbone of His322 in the HAD motif. The side chain of His322

contacts the phenyl ring of Phe347 in the DFG motif, stabilizing
the kinase in the active state. Phe347 in turn interacts with
Leu247 from the C-helix, and the top of the R-spine is completed
through hydrophobic bonds to Ala263 in the N-lobe (Fig. S1).

Binding of CX-4945 to the ATP site of HIPK2

The kinases within the CMGC family are attractive thera-
peutic targets. Ongoing efforts aim to synthesize selective
inhibitors against various members, including HIPK2 (60,
72–74). Whereas our attempts to crystallize HIPK2 with the
specific inhibitor TBID (60) or with ATP analogs were unsuc-
cessful, we obtained diffracting crystals with CX-4945 (55, 62),
a rationally designed inhibitor to selectively bind to the active-
site ATP-pocket of CK2�, a Ser/Thr kinase that positively reg-
ulates cellular proliferation (75). The CX-4945 compound is
well-resolved in the electron density map and makes several
interactions with the residues in the ATP-pocket of HIPK2 (Fig.
3A). The carboxylate group of the inhibitor forms a hydrogen
bond network with the catalytic lysine (Lys228), the amino
group of Asp346 within the DFG motif, and a water molecule.
Secondary stabilizing hydrogen bonds are made between the
water, the amino nitrogen of Phe347, and the carboxylate side
chain of Glu243, which also hydrogen-bonds to Lys228. In
HIPK2, the ATP-pocket is formed by Leu205, Val213, Ala226,
Val261, Phe277, Met279, Leu280, Met331, and Ile345. The naphthy-
ridine ring of CX-4945 is tightly bound by the R-spine residues

Figure 2. Structure of HIPK2 kinase domain. A, crystal structure of HIPK2 kinase domain bound to inhibitor CX-4945 in the active site. The helix C (�C) is
shown in blue, the activation loop in red, the CMGC-insert in violet, and the inhibitor in yellow. B, active site of the HIPK2 kinase showcasing the bound CX-4945
inhibitor. Key residues are depicted as sticks and numbered. Hydrogen bonds are shown as dashed black lines. C, sequence alignment of active-site residues for
selected CMGC kinases. D, a hydrogen bond network in HIPK2 that stabilizes the activation loop conformation via an interaction between the CMGC arginine
(Arg368) and the phosphorylated activation loop tyrosine (Tyr361).
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present in the ATP-pocket: Met331, Val213, and Ala226. Addi-
tional contacts are made with the ring by the side chain of
Phe277, at the back of the ATP-pocket, and by Met279 in the
hinge region. The chloroanilino group is predominantly sta-
bilized by Leu205 and Val213 in the P-loop. Despite the chlo-
rine being oriented toward the tip of the P-loop, no density is
seen for the P-loop apex residues (208 –210), indicating that

they do not participate in stabilizing the inhibitor– kinase
complex.

Previous crystal structures have determined the mode of
CX-4945 binding to CK2� (63, 76), Pim1 (64), and CLK2– 4
(65). The core hydrophobic active-site residues are well-con-
served between HIPK2, CK2�, and the CLKs, whereas the
sequence of the Pim1 hinge region is different at several posi-

Figure 3. Binding of CX-4945 to HIPK2 ATP-pocket. A, zoomed-in view of the active site in the crystal structure of the HIPK2 kinase in complex with CX-4945.
Inhibitor is shown with the 2Fo � Fc map contoured to 1.5�. Hydrogen bonds are shown as black dashes, and a water molecule is shown as a red sphere. B, for
clarity, identifiers of all residues in structure images shown in C–F were reduced to single letters. A table summarizing the correspondence of the letters to
individual residues in each structure is shown here. C–F, zoomed-in views of the active sites of the indicated CMGC kinases crystallized in complex with the
CX-4945 inhibitor. Inhibitor binding is shown face-on and upon 70° rotation. C, HIPK2 bound to CX-4945; D, CK2� bound to CX-4945 (PDB code 3NGA); E, CLK1
bound to CX-4945 (PDB code 6FYV); F, Pim1 bound to CX-4945 (PDB code 5O11).
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tions, which make contact with CX-4945 (Fig. 3, B–E). In CK2�
and the CLKs (only CLK2 is shown for clarity in Fig. 3), the
hinge region (CK2� (His115–Thr119) and CLK2 (Leu245–
Leu248)) interacts with the CX-4945 in the ATP-binding pocket
through electrostatic interactions. Pim1 contains a proline
insertion in the hinge region, which reduces connections
between the inhibitor and kinase backbone. In HIPK2, the
hinge region extends toward the active site and contacts the
inhibitor via Met279 and Leu280, which are buried in the back of
the active site. The naphthyridine group of CX-4945 forms a
hydrogen bond with the backbone nitrogen of Leu280 (Fig. 3A).
This interaction is conserved in CK2� and the CLKs (Fig. 3, C
and D) but is absent in Pim1 in which this position is occupied
by a proline (Pro123) (Fig. 3E). CK2� makes a unique interaction
with the inhibitor via His160, which is positioned toward the
ATP-pocket, likely accounting for the increased high affinity of
CK2�/CX-4945 binding (Fig. 3C). CLKs, Pim1, and HIPK2 con-
tain a glutamate at this position (Glu328 in HIPK2), which is
oriented away from the active site. Whereas the apex of the
P-loop in HIPK2 is disordered and does not participate in the
contact with the inhibitor, in the structures of CK2�, CLKs, and
Pim1, the P-loop apex makes direct interactions with the inhib-
itor. This unique feature of the P-loop in HIPK2 presents an
opportunity for design of more potent and selective HIPK2
inhibitors.

Comparison of the HIPK2 kinase domain with CMGC family
members

The HIPK2 kinase domain structure shares a notable degree
of similarity with solved structures of the CMGC kinases but
also includes several unique features. The closest homologs of
HIPK kinases, the DYRK family of kinases, includes DYRK1A,
DYRK1B, DYRK2, DYRK3, and DYRK4. Structures of DYRK1A,
DYRK2, and DYRK3 have been solved (77, 78). Alignment of
these kinase structures with the HIPK2 kinase domain shows
high conservation of the global architecture of the kinase
domain, and the structures superimpose with a root mean
square deviation of 0.91 Å for DYRK1A, 0.82 Å for DYRK2, and
0.82 Å for DYRK3 over 218 C� atoms (Fig. 4A). The residues in
the active site of these kinases, specifically the interactions
mediated by the activation loop, are highly conserved (Fig. 4B).
There are only minor hydrophobic substitutions in the ATP-
pocket in HIPK2 when compared with DYRK kinases (Fig.
S2A). The tyrosine phosphorylation site within the activation
loop is conserved among CMGC family members, including
MAPK, GSK, RCK, CDKL, DYRK, and HIPK members. Analo-
gous interactions to the ones observed between phosphorylated
Tyr361, Arg365, and Arg368 in HIPK2 are present in the struc-
tures in DYRK1A, DYRK2, DYRK3, ERK2, and GSK3� (77–79)
(Fig. 4B and Fig. S2, B–D). An exception is seen in the apo-
structure of the closely related kinase, PRPF4B, where the phos-
phorylated tyrosine is rotated away from the stabilizing argi-
nine residues (Fig. S2D).

A distinguishing feature of the HIPK2-containing branch of
the CMGC family is the lack of the conserved HRD motif,
which is replaced in DYRKs by HCD, in SRPKs by HTD, and in
HIPKs by HAD (Fig. 2C). The role of HRD arginine is to stabi-
lize the active conformation of the kinase via interaction with

the phosphorylation site in the activation loop (70). Typically,
activation of kinases that lack the HRD arginine does not
depend on activation loop phosphorylation. In CMGC kinases
that contain an HRD motif, like MAPKs, the HRD arginine
interacts with the first phosphorylation site in the TXY motif
(79). The corresponding residue in the HIPK2 kinase is Ser359

(within the SXY sequence), which in our structure is disor-
dered, making it impossible to conclude what its putative inter-
actions with the kinase domain are. Previous studies showed
that mutation of Ser359 does not affect catalytic activity of
HIPK2 (5), implicating phosphorylation of the activation loop
tyrosine (Tyr361) as the most important determinant of kinase
activity (48, 51). As seen in our structure, and previously that of
DYRKs, pTyr361 is not in direct contact with the HXD motif
(Figs. 2B and 4B). Hence, lack of conservation of the HRD argi-
nine likely is a consequence of a unique activation mechanism
that evolved in the HIPK2-containing branch of the CMGC
family.

Many CMGC kinases feature intramolecular interactions
that the N-lobe and the C-lobe domains make with adjacent
domains. Our structure reveals that HIPK2 forms interactions
that are distinct from those characterized in the most closely
related DYRK kinases. The N-lobe of DYRK kinases interacts
directly with the N-terminally located DYRK homology (DH)
box, which in DYRK2 is preceded by the N-terminal autophos-
phorylation accessory (NAPA) domain (80). The DH box of DH
box/NAPA module packs against the groove in the N-lobe,
making extensive interactions with all five � strands and the N
terminus of helix C (Fig. 4A). Whereas HIPK kinases have a
divergent N terminus that lacks the DH box and the NAPA
domain, in our structure, the N-terminal extension of HIPK2
packs in the same groove in the N-lobe. Whereas the electron
density in this region was poor, preventing us from modeling
the side chains, we were able to build the backbone atoms con-
fidently. Hence, HIPK2 appears to engage its N-terminal region
in the same pocket as DYRKs while forming a different set of
interactions (81, 82).

As in other CMGC kinases, the C-lobe of HIPK2 forms intra-
molecular interactions with the CMGC-insert region. Compar-
ison of the CMGC-insert among the CMGC kinases shows sig-
nificant sequence and structural variation (Fig. 4A and Fig. S3)
(1). HIPK kinases have long CMGC-insert regions; in HIPK1,
HIPK2, and HIPK3 the insert region encompasses 78 residues
(residues 418 – 493 in HIPK2). HIPK4 has the longest CMGC-
insert of any CMGC family member (84 residues). Outside of
the HIPK family, the HIPK2 CMGC-insert has the highest sim-
ilarity to the DYRK family kinases both in length and sequence
(Fig. S3). Despite these similarities, our crystal structure reveals
significant differences in the conformation of the insert region
between HIPK2 and DYRK kinases.

Unique features of the HIPK2 CMGC-insert region

As in other CMGC kinases, the HIPK2 CMGC-insert is
located at the base of the kinase domain C-lobe and makes
direct contacts with the G and H helices of the kinase domain
(Fig. 4C). In HIPK2 and the DYRK kinases (77), the N-terminal
portion of the CMGC-insert forms two short helices (�L and
�L�) before diverging near the G helix. The succeeding region
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in DYRK1A forms a �-hairpin, whereas in DYRK2 and DYRK3
it extends as a short loop (Fig. S3). This region in HIPK2 adopts
a beta hairpin that is significantly longer than the one in
DYRK1A (Fig. 4D). The subsequent region of the CMGC-insert
in HIPK2 adopts a conformation not seen in other CMGC
kinases (Fig. S3), by turning toward helix G and forming a short
two-turn helix, which we have called “helix M”. In DYRK2 and
DYRK3, this region of the insert first turns in the opposite

direction, where it forms a long �-hairpin, and only then comes
back toward helix G to form another �-hairpin located to the
left of where helix M is located in HIPK2 (Fig. 4D). After helix
M, the HIPK2 CMGC-insert region takes a unique path again
and runs in close proximity to the activation loop before it
adopts a short helical structure, called by us “helix N.” The helix
in this position is a universal feature of the insert regions in all
CMGC kinases whose structures have thus far been solved

Figure 4. HIPK2 contains a unique CMGC-insert. A, side-by-side comparison of the crystal structure of the CX-4945– bound HIPK2 kinase domain with
DYRK1A (PDB code 4MQ1), DYRK2 (PDB code 3K2L), and DYRK3 (PDB code 5Y86). B, comparison of active site between HIPK2 and DYRK2; numbering in
parentheses corresponds to DYRK2. C, zoomed-in view of the secondary structural elements in the CMGC-insert visualized in the CX-4945– bound HIPK2 kinase
structure and its trajectory on the kinase C-lobe. D, comparison between the CMGC-insert regions in HIPK2 and DYRK2 kinases made by overlay of the
CX-4945– bound HIPK2 kinase structure and the DYRK2 structure (PDB code 3K2L). E, phosphorylation of CMGC-insert serine residues observed in the struc-
tures of the CX-4945– bound HIPK2 kinase, DYRK2 (PDB code 3K2L), and DYRK3 (PDB code 5Y86).
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(Fig. S3). In all of these structures, helix N connects C-termi-
nally via a short loop with helix H in the core kinase domain. In
HIPK2, this loop portion of the CMGC-insert is also unique
because it is significantly longer than in other kinases and
instead of forming a loop, it adopts a helical structure, becom-
ing an extension of helix H. This results in a considerably longer
helix H in HIPK2 compared with other CMGC family members
(Fig. 4D). The unique features of the HIPK2 CMGC region dis-
cussed above seem integral to its structure and are largely unaf-
fected by the packing of symmetry-related molecules in the
crystal lattice.

Compared with other CMGC kinases, with the exception of
DYRK2 and DYRK3, the long insert region of HIPK2 engages
more extensively with the kinase C-lobe (Fig. S3). Its unique
feature, helix M, is located directly next to the helix G that lines
the so-called P�3 pocket (83). Together with helix L�, helix M
partially blocks the P�3 pocket in HIPK2 (Fig. S4A). Whereas
the functional role of this interaction for HIPK2 is currently
unknown, the P�3 pocket in other CMGC kinases is utilized as
a docking site for signaling partners that often serve as sub-
strate-presenting scaffolds. The axin scaffold, which is critical
for efficient phosphorylation of �-catenin by GSK3�, engages
the P�3 site, and when HIPK2 and GSK3� kinases are overlaid,
a helix within axin directly overlaps with helix L� in the HIPK2
CMGC-insert region (84) (Fig. S4A). Remarkably, in both
kinases, the interaction involves a phenylalanine residue whose
side chain packs into the hydrophobic pocket within the
C-lobe. In HIPK2, the intramolecular interaction is provided by
Phe434 localized in helix L�, whereas in GSK3�, the phenylala-
nine is provided intermolecularly by the axin scaffold (Phe388)
(Fig. S4B). The adaptor protein Cks, which engages CDK sub-
strates primed by phosphorylation and enables their subse-
quent processive multiphosphorylation by CDKs (85–87), also
engages with CDK kinases in this region. This interaction bears
a resemblance to the helix L�/helix M cap made over helix G by
the CMGC-insert in HIPK2 (Fig. S4A).

HIPK2 has a unique serine phosphorylation site within the
CMGC-insert

The CMGC-insert region in HIPK2 contains a phosphoryla-
tion site, pSer441, located in the apex of the �-hairpin, which is
well-resolved in our crystal structure, and a known autophos-
phorylation site (48). This phosphorylation site is unique to
HIPK2 and is not present in other HIPKs. In the structure, the
phosphorylated Ser441 hydrogen-bonds with the adjacent
Arg437 and with Ser426 located on helix L (Fig. 4E). Analysis of
molecular dynamics trajectories for phosphorylated HIPK2
indicates that whereas the interaction between pSer441 and
Ser426 was not stable over the course of the simulations, the
hydrogen bond between pSer441 and Arg437 remained intact
(Fig. S5A). We hypothesized that this hydrogen bond is essen-
tial for the unique conformation of the CMGC-insert region
observed in our HIPK2 kinase structure. However, the unbiased
all-atom molecular dynamics simulations of the HIPK2 kinase
domain structure in the presence or absence of Ser441 phos-
phorylation showed that the root mean square fluctuation of all
residues within the HIPK2 kinase domain was largely unaf-
fected by the removal of Ser441 phosphorylation (Fig. S5B). This

analysis suggests that Ser441 phosphorylation rather plays a dif-
ferent role in HIPK2. Moreover, the secondary structure pre-
diction of the CMGC-insert sequences in HIPK1 and HIPK4
predicts similar secondary structure propensity to HIPK2 (Fig.
S5B), suggesting that the CMGC-insert regions may adopt a
similar structure in these kinases despite the absence of a serine
phosphorylation site.

DYRK2 and DYRK3 are also phosphorylated within the
CMGC-insert, but at different locations. DYRK2 has two phos-
phorylation sites (pSer369 and pSer385), and DYRK3 has one site
(pSer445). pSer385 in DYRK2 and pSer445 in DYRK3 are located
within the loop regions that occupy a position similar to that of
the �-hairpin in HIPK2, but because the loops are shorter, the
phosphorylation sites in DYRKs are engaged in different inter-
actions. In fact, the phosphoserine residues in DYRK kinases
occupy the same position as Arg437 occupies in HIPK2, and they
form hydrogen bonds with nearby arginine residues (Arg390 in
DYRK2 and Arg450 in DYRK3). pSer369, located on the �L helix,
is unique to DYRK2 and does not form significant interactions
with neighboring residues (Fig. 4E). Whereas HIPK2 has an
alanine in this position (Ala421), interestingly, a neighboring
tyrosine (Tyr423) occupies the position that in DYRK2 is taken
by the phosphorylated Ser369 side chain (Fig. S3B). The differ-
ences in the CMGC-insert regions exhibited by HIPK2 com-
pared with DYRKs make this a potential specific site for target-
ing HIPK2.

Statistical analysis of evolutionary constraints identifies
another unique insert in the �C–�4 loop as distinctive of HIPK
kinases

To expand our understanding of the structural features that
are characteristic of the HIPK family, we performed a statistical
comparison of the evolutionary constraints acting on HIPK
kinase domain sequences in relation to other CMGC kinases.
These constraints generally correspond to residues that are
highly conserved in HIPK sequences (foreground HIPK align-
ment in Fig. S6) and are biochemically distinct in other CMGC
kinases (background CMGC alignment in Fig. S6) (66). Our
analysis reveals that whereas HIPK-specific residues are
broadly dispersed along the kinase sequence, they tend to spa-
tially cluster in the regions of the kinase domain that mediate
interactions with HIPK-specific inserts or flanking sequence
segments, such as CMGC-insert or N-terminal extension,
whose unique conformations are visualized in our HIPK2
kinase structure. For example, stabilization of the unique
CMGC-insert is achieved through multiple interactions across
the kinase C-lobe. Specifically, three residues, Trp398, Arg411,
and Tyr412, in HIPK2 are specific to the HIPK family, and in our
structure they mediate interactions between the CMGC-insert
and the kinase core (Fig. 5, A and B).

In addition, we identified a short insert segment within the
loop connecting the �C helix and �4 strand, defined here as the
�C–�4 loop insert, as a novel distinctive feature of HIPKs (Fig.
5, C and D). The �C–�4 loop insert adopts a unique conforma-
tion in the HIPK2 structure and is stabilized through HIPK-
specific residues in the kinase core (Fig. 5D). In particular,
Tyr258 in the �C–�4 loop insert packs against a lysine in helix E
(Lys314), which is also identified as HIPK-specific in our analy-

EDITORS’ PICK: Structure of HIPK2 bound to CX-4945

13552 J. Biol. Chem. (2019) 294(37) 13545–13559

http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1
http://www.jbc.org/cgi/content/full/RA119.009725/DC1


sis. Lys314 additionally forms a hydrogen bond with Glu253 to
stabilize the loop (Fig. 5D). Other notable evolutionarily con-
strained residues in HIPK kinases include Met331 in the ATP-
binding pocket (Fig. S6), which may contribute to the specificity
of inhibitor binding (Fig. 3B).

Discussion

The atomic structure of the HIPK2 kinase bound to an inhib-
itor provides the first structural insights into the HIPK family of
kinases and opens the door for structure–function studies of

this important class of cellular regulators. The HIPK2 kinase
crystallized in an active conformation stabilized by the bound
inhibitor and by phosphorylation of a conserved tyrosine in the
activation loop. Our structure revealed a highly conserved net-
work of interactions between HIPK2 and the closely related
CMGC kinases: DYRK kinases. In both HIPK2 and DYRK
kinases, phosphorylation of the activation loop appears to
occur intramolecularly during translation before the kinase is
fully folded. In addition to stabilizing an active state, this mod-
ification is important for switching substrate specificity in these

Figure 5. Unique structural features of the HIPK family. A, sequence alignment of a region within the C-lobe in HIPK sequences from diverse phyla, as
revealed by our analysis of evolutionary constraints acting on HIPK sequences (Fig. S6). Three sets of related sequences are shown in the hierarchical alignment:
(i) a foreground set of 1498 HIPK sequences that share a co-conserved pattern, as defined by the Bayesian pattern-partitioning procedure, (ii) a background set
of 14,296 CMGC sequences, and (iii) a display set of HIPK homologs from diverse phyla. Only the display sequences are explicitly shown in the alignment. The
foreground (HIPK) and background (CMGC) alignments are shown as residue frequencies below the display alignment. Residue frequencies are indicated in
integer tenths where, for example, a 9 indicates 90 –100% occurrence of the corresponding residue, at the corresponding position, in weighted foreground or
background sequences. Patterns identified as unique to HIPK sequence are indicated by black dots above the alignment and highlighted in the display
alignment. Evolutionary constraints on the pattern residues are displayed as red histograms above the alignment, where the height of the histogram indicates
the strength of HIPK-specific constraints at the corresponding position. B, evolutionarily constrained residues in the HIPK2 kinase C-lobe that form specific
interactions with the CMGC-insert (shown in surface mode) are shown as sticks. C, distinguishing residues in the �C–�4 loop in HIPK kinases define a unique
insert region. Insert sequences are indicated in lowercase letters, and their frequency is not scored due to their absence in all non-HIPK kinase sequences. D, the
residues stabilizing the unique conformation of the �C–�4 loop insert in HIPK2 are shown as sticks. E, comparison of the �C–�4 loop structure in the HIPK2
kinase with DYRK1A (PDB code 3ANQ) and GSK3� (PDB code 1GNG).
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kinases to serine and threonine residues (51, 52). This unusual
mechanism likely explains the lack of conservation of an HRD
arginine in HIPKs and DYRKs, which typically stabilizes a phos-
phorylation site within the activation loop (70). In HIPK2 and
DYRK kinases, the phosphorylated tyrosine is engaged in alter-
native interactions, engaging a conserved glutamine residue in
the base of the substrate-binding pocket. In HIPK2, as in its
close CMGC relatives, the glutamine participates in stabiliza-
tion of the CMGC arginine residue and its interaction with a
phosphorylated tyrosine in the activation loop. Whereas these
interactions result in a strained backbone of the activation loop,
they represent another unique feature necessary for the active
state of CMGC kinases (67). Thus, the HIPK2 kinase domain
recapitulates many key structural elements that are character-
istic for this subclass of CMGC kinases.

Whereas interactions in the active site of HIPK2 highly
resemble those described in its closest CMGC relatives, our
structure, which reveals for the first time the conformation of
the HIPK2 CMGC-insert, defines its unique structural features
compared with other members of the CMGC kinase family.
These include the presence of a short helix not seen in other
CMGC kinases, called by us helix M, as well as a notable exten-
sion of helix H in the core of the kinase domain by the C-termi-
nal region of the CMGC insert. As a result, HIPK2 has the
unusually long helix H, which distinguishes it from other
CMGC kinases. These new structural elements within the
CMGC-insert of HIPK2 lead to its unique conformation and
interaction with the kinase C-lobe that is not reminiscent of any
other CMGC-insert/kinase interactions characterized thus far.
Our statistical analysis of the evolutionary constraints acting on
HIPK sequences shows that the residues located at the interface
of the CMGC-insert region and the kinase domain binding are
conserved and distinctive of the HIPK family, prompting us to
speculate that the CMGC-insert region might adopt a similar
structure in all members of the HIPK family.

The CMGC-insert constitutes the most divergent region
across all CMGC kinases, both in length and in sequence (66).
This region equips CMGC kinases with unique functions by
serving as a binding platform for signaling partners (66). These
include the Cks adaptor protein for CDKs (85–87) and an axin
scaffold for GSK3�, which is critical for efficient phosphoryla-
tion of �-catenin (84), as well as an inhibitor of that interaction,
FRAT (88). In ERK2, point mutations in the CMGC-insert
modulate the ability of ERK2 to bind MEK1 (89). Although no
functional roles of the CMGC-insert region in HIPK2 have thus
far been characterized, we describe a curious resemblance of
the CMGC-insert–mediated interactions in HIPK2 to binding
of substrate-presenting scaffolds in CDKs and GSK3�. Hence,
one could speculate that the CMGC-insert will similarly play an
important role in modulation of HIPK2-dependent substrate
specificity and perhaps also processivity of catalysis, in a man-
ner analogous to Cks-mediated regulation of CDKs. In our sta-
tistical analysis of sequence constraints across evolution, we also
identified a new insert region within the kinase domain specific for
the HIPK family, called the �C–�4 loop insert. Our HIPK2 struc-
ture shows that this region adopts a conformation not seen in
other CMGC kinases. It is therefore a possibility that the �C–�4
loop insert may play a specific role in HIPK-dependent signaling,

perhaps by serving as an interaction site for intramolecular regu-
latory domains or intermolecular binding partners and/or by sta-
bilizing conformation of the adjacent helix C.

In addition to phosphorylation on Tyr361 in the activation
loop, in our crystal structure the CX-4945-bound HIPK2 kinase
is phosphorylated on Ser441 in the CMGC-insert region. Both of
these sites were previously characterized as autophosphoryla-
tion sites in HIPK2 (48, 51). The significance of Ser441 phos-
phorylation is unclear, and our studies of HIPK2 dynamics
show that it is not involved in stabilization of the unique con-
formation of the CMGC-insert. Phosphorylation of the HIPK2
kinase domain has been shown to regulate its subcellular local-
ization in addition to activation, possibly via regulation of
HIPK2 oligomerization (48). The exact oligomeric state of
HIPK2 in cells is unknown; however, in vitro studies suggest
that phosphorylation promotes transition between a HIPK2
dimer to a monomer (90). In support of this model, in our struc-
ture, the phosphorylated HIPK2 is a monomer and does not
form extensive interactions with other molecules in the crystal
lattice. In contrast to the co-translational phosphorylation on
Tyr361, which is likely a constitutive modification, phosphory-
lation of Ser441 might serve as a regulatory switch, controlling
events like HIPK2 oligomerization. Hence, the CMGC-insert
could possibly play a role in HIPK2 oligomerization.

HIPK2 is emerging as an exciting therapeutic target, and
efforts to identify modulators of HIPK2 activity have recently
intensified. Small-molecule inhibitors that target either the
hydrophobic ATP-binding pocket or an unknown allosteric site
in HIPK2 have been reported (39, 60). The inhibitor CX-4945
was designed to target CK2�; however, it also inhibits HIPK2
and HIPK3 (85 and 93% inhibition, respectively (76)), with an
IC50 of 1 nM for CK2� and 45 nM for HIPK3 (62). Therefore,
allowances need to be made while using CX-4945 as a scaffold
for the design of specific HIPK2 inhibitors. By revealing the
architecture of the active site, our structure provides a platform
for guided design of such molecules. As demonstrated by recent
findings of a CK2� inhibitor with minimal off-target effects
(92), specificity can be achieved for these closely related kinases.
Importantly, sites other than the nucleotide-binding pocket
could be explored for targeting of the CMGC kinases. The
unique interaction between the CMGC-insert region and the
P�3 site in our structure points to a potential benefit of designing
molecules that bind to the P�3 pocket and disrupt this interaction.
P�3 pocket-targeting molecules have been described for a num-
ber of kinases in recent years (93, 94), underscoring the validity of
this approach. The HIPK2 structure described here will greatly aid
in conceptualizing and optimizing future inhibitors with the over-
arching goal of finding effective treatments for diseases in which
HIPK2 does not function properly. Most importantly, our HIPK2
structure serves as a starting point for characterizing the under-
studied members of the HIPK family.

Experimental procedures

Expression and purification of recombinant HIPK2 kinase
domain

The kinase domain of HIPK2 (residues 178 –547, as per Uni-
Prot accession code Q9H2X6) was cloned into pET28a vector
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and expressed in Rosetta DE3 pLysS cells (MiliporeSigma). A
25-ml lysogeny broth (LB) overnight culture, with 50 mg/liter
kanamycin and 33 mg/liter chloramphenicol, grown at 37 °C
and 220 rpm for 20 h, was used to inoculate 1 liter of 2YT
medium with antibiotics. When cell density reached A600 � 0.8,
the flasks were cold-shocked on ice and transferred to a cold
room for 1 h. Expression was induced by the addition of 0.7 mM

isopropyl 1-thio-�-D-galactopyranoside to 1 liter of culture,
which was then incubated at 18 °C and 190 rpm for 19 h. Cells
were harvested by centrifugation at 5,000 rpm for 40 min, flash-
frozen in liquid nitrogen, and stored at �80 °C.

The cell pellet was resuspended in lysis buffer (25 mM Tris,
pH 8.5, 500 mM NaCl, 0.02% Triton X-100, 5 mM MgCl2, 2 mg of
DNase I, 3 mM �-mercaptoethanol, 10 mM imidazole, and one
cOmplete EDTA-free mini protease inhibitor mixture tablet)
on ice and sonicated at 4 °C, with a microtip, at 35% amplitude
with 1-s on/4-s off pulses for 6 min using a sonic dismembrator
model 500 (Fisher). Ultracentrifugation at 30,000 rpm for 30
min in a Ti45 rotor clarified the lysate (Optima L-90K ultracen-
trifuge, Beckman Coulter). The supernatant was loaded onto a
1-ml HisTrap FF column (GE Healthcare) equilibrated in Ni-
wash buffer (25 mM Tris, pH 8.5, 500 mM NaCl, 10 mM imidaz-
ole, and 3 mM �-mercaptoethanol) and eluted with a linear
gradient of 60 ml of Ni-elution buffer (25 mM Tris, pH 8.5, 500
mM NaCl, 250 mM imidazole, and 3 mM �-mercaptoethanol).
The protein eluted from 35 to 100 mM imidazole. Fractions
were assessed to contain recombinant HIPK2 kinase domain by
SDS-PAGE and diluted to �1 mg/ml in dialysis buffer (25 mM

Tris, pH 8.5, and 5 mM �-mercaptoethanol), and the His tag was
cleaved with tobacco etch virus protease in dialysis tubing
against 2 liters of dialysis buffer overnight at 4 °C. Uncleaved
protein and protease were removed with nickel-nitrilotriacetic
acid resin. The flow-through was applied to a RESOURCE Q
column equilibrated in Q-wash buffer (25 mM Tris, pH 8.5, 20
mM NaCl, and 3 mM �-mercaptoethanol) and eluted with a
linear gradient of 40 ml of Q-elution buffer (25 mM Tris, pH 8.5,
1 M NaCl, and 3 mM �-mercaptoethanol). The HIPK2 kinase
domain eluted as a broad peak from 230 to 400 mM NaCl, indi-
cating that the kinase domain contained multiple phosphory-
lated species. The protein-containing fractions were applied to
a Superdex 200 column in final buffer (25 mM Tris, pH 8.5, 100
mM NaCl, and 0.5 mM TCEP), which eluted as a single mono-
meric peak. The purified HIPK2 kinase domain was concen-
trated to �20 mg/ml, flash-frozen in liquid nitrogen, and stored
at �80 °C.

Crystallization, data collection, and structural determination
of recombinant HIPK2 kinase domain

Recombinant HIPK2 kinase domain was diluted to 6 mg/ml,
and the inhibitor CX-4945 was added to a final molar concen-
tration of 1.25�. Initial sparse matrix crystallization screening
was performed at 20 °C, by hanging-drop vapor diffusion, with
100-nl � 100-nl drops of protein/inhibitor against reservoir
solution, on a Mosquito crystallization robot (TTP Labtech)
using commercial screens (Qiagen). The vast majority of con-
ditions precipitated the kinase–inhibitor complex; however,
one condition produced small crystals that were subjected to
optimization. Crystals were grown in 24-well plates using hang-

ing-drop vapor diffusion at 20 °C with 1 �l of protein-
inhibitor solution against 1 �l of reservoir solution (final con-
dition: 20% PEG 3350 and 0.2 M KSCN). Initial crystals formed
within 3 days, and large hexagonal pyramids grew to �100 �m
in diameter by 1 week. The crystals were taken to ALS beamline
8.3.1 (Advanced Light Source), cryo-protected with 20% glyc-
erol, and flash-cooled in liquid nitrogen. A single crystal dif-
fracted to 2.2 Å on the Pilatus 6M detector (Dectris). The
images were analyzed and integrated with HKL2000 (95) in
space group P62 with unit cell a � b � 130.2 Å, c � 52.3 Å, � �
� � 90º, � � 120º, and the intensities were scaled and merged in
Aimless (CCP4) (96). The structure was solved by molecular
replacement using Phaser (97) with a poly-Ala model of
DYRK1A (PDB code 3ANQ). The structure was manually built
in Coot (98) and refined with Phenix (99) with subsequent
rounds of model building, refinement, and structural analysis
until Rwork and Rfree stabilized to 0.20 and 0.24, respectively.
Electron density for CX-4945 could be clearly seen in the
hydrophobic ATP-binding pocket. The crystal structure of
HIPK2 kinase domain contains three Ramachandran outliers.
These are located in the N terminus of the kinase. Local packing
constriction places the electron density into suboptimal geo-
metric position. Great care was taken during model building to
place these residues into the map while remaining true to the
calculated electron density map. The final structural coordi-
nates and electron density maps were deposited with the pro-
tein data bank (PDB code 6P5S). Structural visualization and
comparison with related kinases was performed in PyMOL
(Schrödinger, LLC, New York).

Molecular dynamics

All-atom unbiased MD simulations were performed using
GROMACS 2016.4 (100). Structures were parameterized using
the CHARMM36 (101) force field, solvated with TIP3P water,
and neutralized using sodium and chloride ions. The system
was contained in a dodecahedral box at least 1 nm larger than
the protein from all sides with periodic boundary conditions.
Long-range interactions were calculated using particle mesh
Ewald. Neighbor lists were maintained by the Verlet cutoff
scheme (102). The system underwent energy minimization
using steepest descent minimization until the maximum force
was �100 kJ/mol. Canonical ensemble (103) was used to warm
the system from 0 to 310 K in 100 ps. Isothermal-isobaric
ensemble (104) (1 bar, 310 K) was applied for 100 ps. Positional
restraints were applied during equilibration. The unbiased MD
simulation used 2-fs time steps.

Identification and quantification of HIPK-specific evolutionary
constraints

Evolutionary constraints imposed on HIPK sequences were
identified using a Bayesian approach described previously (61,
91). In brief, curated multiple-sequence alignment profiles of
various CMGC kinases families (66) were used to detect and
align 15,280 CMGC sequences from the NCBI-nr database.
The aligned sequences were used as input for Bayesian parti-
tioning with pattern selection, which identified a correlated
residue pattern that most distinguished HIPK sequences
from other CMGC sequences. The HIPK-specific patterns
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are shown in the form of hierarchical multiple-sequence
alignment in Fig. S6.
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