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ABSTRACT 

The question of the existence of deeply bound positive parity 

non-strange di-baryon resonances is addressed in the context of ·a 

QCD-like potential model. Hyperfine effects are found to produce 

strong binding in certain non-NN channels, notably the I=O S=3 

channel which is predicted to lie well below N611" threshold. 
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1. Introduction 

The presence of a confined, SU(3) valued color degree of free-

dom in ordinary hadrons makes possible the existence of exotic multi-

quark bound states as part of the physical hadronic spectrum. Among 

these states are the six-quark or di-baryon states, which, owing to 

the absence of annihilation effects and the existence of successful 

models of baryon structure based on QCD, are expected to be especially 

amenable to phenomenological study. Recently such states have been 

1-16) * the subject of considerable experimental interest . Experimental 

backgrounds are generally held to be well-understood, although it is 

not clear that this is actually the case since the relative importance 

of soft QCD effects and meson exchange in the short and intermediate 

range regions of the NN force is not yet fully clarified. While it 

seems likely that these regions are dominated by quark and gluon degrees 

17-23) 24) of freedom , this view is not universally accepted and, at any 

rate, the lack of a solid quantitative framework within which to include 

both quark and meson exchange effects means that non-traditional contri-

butions to backgrounds are difficult to estimate reliably. In addition 

the experimental situation itself remains somewhat unclear. Interesting 

effects have been seen (and in some cases then not seen) in a number of 

different experiments and in several channels, but as yet the identifi-

cation of these effects with dibaryon resonances, with the possible 

* References to pre-1982 experimental results may be found in Refs. 1-3). 
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exceptions of the I=l 1n2 and 3r3 states, remains controversial. 

Theoretically, most of the work on di-baryon resonances has been per-

25-29) . formed in the context of the bag model • Apart from phenomeno-

logical extensions to orbitally excited configurations in hypothetical 

stretched bags27 ) these calculations have been restricted to the spher-

ical static cavity approximation. While the usual difficulties of the 

bag model--the CM motion in the bag and the artificial confinement of 

color singlet sub-units--are understood and reasonably well under 

30 31) control ' , the restriction to a permutationally symmetric, (6), 

spatial configuration is less satisfactory since it is known that the 

color hyperfine interaction tends to favor configurations of lower 

spatial symmetries32). QCD-like potential models, the commonly used 

alternative to the bag in low energy phenomenology, have been applied 

33 34) only to the I=O S=3 and I=3 S=O channels ' , with not completely 

compatible results. Nonetheless, such models have certain advantages, 

primarily that the lower spatial symmetry (42) configuration may be 

included with no particular technical complications. This is expected 

to be. a significant advantage in studying channels in which there is 

potentially deep binding due to the short range hyperfine forces, In 

addition, owing to the absence of any artificial confinement of the 

* lowest lying asymptotic state with given quantum numbers , potential 

* Note that this is not true for higher lying states, e.g., a6~ state in 
the deuteron channel bound with respect to6A will in general still have 
super-allowed rearrangement decays into free NN states. 

.. -- ... ( 
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models provide a useful framework for bridging the gap between channels 

in which two baryons are bound by short range forces and those in which 

they are not. 

In this paper we apply a QCD-like potential model to the study of 

possible deeply bound positive parity di-baryon states. Before proced-

ing, a few comments are in order regarding motivation and limitations. 

Our aim here is to attempt to identify only those channels in which 

~ bound states might exist. The reasons for this are two-fold. 

First, such states should be more accessible to experiment than corr-

esponding states above hadronic thresholds, for which fall-apart decay 

modes exist, and second, the nature of the physics of the s-wave NN 

channels suggests that such states might actually exist and be unambig­

* uous predictions of the model . As we shall see, such states are indeed 

predicted, in particular an interesting state in the I=O, S=3 channel 

which lies below NAI threshold. It is important, however, to temper 

* Recall that the NN channels are dominated by the repulsive nature 
of the NN exchange hyperfine interaction. This repulsion inhibits 
mixing with orthogonal hidden color configurations which, owing to 
confinement, must be localized at short distances. Since the hyper­
fine interaction is sensitive to the spin-color-isospin couplings of 
a state, one expects that there may exist channels in which the in­
duced exchange interaction is strongly attractive and in which, there­
fore, significant mixing may also occur. In terms of theoretical 
underpinnings the hyperfine potential is the most firmly established 
of the quark-quark interactions so that effects arising from it are 
expected to be accurately predicted in the model. 

• ---.. 
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the conclusions of these calculations with a realistic evaluation 

of the uncertainties. First, we do not attempt to include the quark-

quark tensor interactions which, while negligible in the deuteron, 

may be significant in a tightly bound system. Second, we do not in-

elude mixings with p-wave color octet states, states analogous to 

those which appear responsible for much of the intermediate range 

23' attraction in the NN channels 1
• Third, since the two body con£-

inement potentials employed are purely phenomenological, and since 

baryon spectroscopy constrains only interactions between quarks in 

an antisymmetric color state, the energies of hidden color configur-

ations are subject to unknown uncertainties. While there are some 

indications that such two body confinement forces may be equivalent 

to string effects in multi-quark systems35), there is no clear reason, 

for example, to expect the strength of the interaction to be identical 

to that determined in the baryon sector. This means that, while the 

qualitative picture of hidden color states lying above corresponding 

hadronic thresholds is satisfied, the magnitudes of the splittings 

predicted by the model and the consequences of these splittings for 

mixing should be viewed with some caution. Finally, note that we 

make no attempt to include picnic corrections. In chiral extensions 

29 36) of the bag model, such as the cloudy bag • , such corrections may 

be made in a reasonably quantitative manner. For di-baryon states 
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they are generally of order 10 to 40 MeV, and may be either binding 

or anti-binding. Since potential models do not incorporate chiral 

symmetry in any obvious way one cannot expect to make quantitative 

estimates of these effects in the present calculation. Cloudy bag 

estimates, however, should provide reasonable guidelines, especially 

regarding the sign of the corrections. 

2. The Model and Methodology 

In Table 1 we display all non-strange six quark states which 

can be constructed from two three quark clusters in spatial ground 

states and in a relative s-wave. The three quark clusters are taken 

to be completely antisymmetrized and are coupled to the appropriate 

total spin, isospin and zero net color in the usual manner. The 

form of the full six quark antisymmetrizer is considerably simplified 

if these states are also antisymmetrized·with respect to cluster 

interchange, where required. This categorization of states provides 

a natural framework for investigating the possibility of deep binding 

in various hadronic channels. We will proceed as follows, motivated 

by the physics of the NN channels, as studied previously by many 

* authors. The first step is to evaluate the "diagonal" hadronic 

potentials, i.e. the induced exchange potential between two (color 

singlet) baryons in the channel in question. If this potential is 

* See Refs. 17-23 and further references therein. 

(.__ ,(. 
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repulsive, i.e., if the trial bound state wavefunction is depleted 

at short distances, then the situation is as in the NN channels and 

there will be no deep binding. Note that, as in the NN case, there 

is stil~ the possibility of weak binding but this may depend crit­

* ically on a reliable evaluation of mixing and pionic effects. If, 

on the other hand, the. diagonal potential is attractive, one must 

expect significant mixing with available hidden color excitations 

and strong binding. The degree of binding is then a detailed dyn-

amical question. Many of the channels contain a large number of 

such available states so that, in general, this program might re-

quire many calculations of a complexity comparable to that required 

in the two NN channels--a rather unpalatable prospect. As it turns 

out, however, the majority of the channels have clearly repulsive 

short range diagonal potentials so that this is not a problem. 

The model used in these calculations is one that has been 

applied previously, with considerable success, to both baryon spectre-

* In channels involving one or more A's there is an additional un-
certainty due to ambiguities regarding the correct mass parameter 
to associate with the inter-cluster motion. In potential models 
the naturally occurring mass is 3m ~ M., and not, for example mA 
as would be appropriate for weaklyqboun3 ~·s. Although the poten­
tial model value may be reasonable for tightly bound AA systems, 
at least in the spirit of viewing the constituent quark model as 
an effective theory below a chiral symmetry breaking scale, T~, 
little of a quantitative nature can be said in this regard so that, 
at least in potential models, predictions regarding weakly bound 
di-baryon states in non-NN channels, are likely intrinsically un­
reliable. 

• -~ 
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37) 38) 23) scopy and decays , as well as to the NN problem • For a 

more detailed discussion of the model, especially with regard to 

its use in the six quark sector, the reader is referred to Ref. 

23. We record here only the model Hamiltonian. 

~ 2 l ij ij H e'-(mi +pi /2mi) + (H f + Hh ) . . . con yp 
1.=1 A.(J 

where, with !ij = .!i - .!j and 

s 2 
ij .. 3~i.£ij~j.!i/rij -~i·~j 

the two body confining potential Hij f is given by con 

ij 1 2 1t 1~ 
Hconf = -(eo+2krij + U~ij))(2 i)•(l~j) 

and the two body color hyperfine interaction, Hhij , arising from one yp 

gluon exchange, by 

hyp = - _s_ 81 ~i·.§j~ (rij) + 5ijrij (211i)• (2~j). Hij ~c( ~( 3 -3~ 1~ 1_. 
mimj 3 

(1) 

( 2) 

( 3) 

The anharmonicity, U, in (2) is meant to include, as well as departures 

from the harmonic limit, spin independent contributions due to one 

gluon exchange, notably the attractive short range color Coulomb inter-

- _( 
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* action. The parameters appearing in (2), (3) are determined from 

baryon spectroscopy and given in Ref. 23. 

Consider a given channel in Table 1 and let I I'), I J), ... 

be the available partially antisymmetrized states contained therein. 

We indicate the quark content of the two three quark clusters (ijk) 

and (rst) in II) as follows 

I I(ijk;rst)) • 

Restricted to states of this structure the six quark antisrmmetrizer 

takes the simple form 

A=1- L.rr 
meti,j ,k\ mn 
n6tr,s, t} 

where Tt' is the transposition operator m .. n. The norllialized, fully mn 

antisymmetrized state I IA) corresponding to I I) in (4) is then 

\ IA) = J,(lr(l23;456)). 
NI 

Using permutational symmetries one can readily show that 

*rn practice U is taken to be a &.function in order to simplify 
calculations. Since cluster sizes are fixed and the interaction 
is smeared over clusters, the sensitivity to this choice is greatly 
reduced. 

(4) 

(5) 

(6) 
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NI = ,/10(1-9 (I(l23;456) I I(l26;453))) • {7) 

Note that IIA~, IJA) ••• are not, in general, orthogonal. An ortho­

normal set is constructed from the states (6) in the.usual manner. 

Using permutation symmetri~s one readily obtains, for any permutation-

ally symmetric operator such as H 

(rA(H(JA) = /~ <I(l23;456)\H(l-9IT36)\ J(l23;456)) 
I J 

(8) 

from which the Hamiltonian matrix in the orthonormal basis may be con­

structed once the values of <IA(JA) are known. 

In order to evaluate the matrix elements in (8) we require the 

spatial wavefunctions of the incompletely antimsymmetrized six quark 

states !I(l23;456)) • We choose the form 

where 

with 

I (123;456) = '1'<!123 : 456>~123)¢<456) 

¢(123) • 0(.3 exJ-vt.2(fl232+~2/>t2) 
rr3t2 '"\ 

!123 <!1- .!2>1,/i 

~123 • <.;1 +.!2 - 2_!3> t,/6 

'- i: 

(9) 

(10) 

(11) 
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is the ground state three quark cluster wavefunction taken from 

baryon spectroscopy and ~(]123 ; 456) is a variational wavefunction 

forth~ intercluster coordinate!123 ; 456 = (,!1+E2+,!3)/3-(J4+J5+J6)/3, 

chosen to be of the form 

1/1(!) = l :Z ~i exp( -,4i
2
R

2 
/2) 

N i 
(12) 

with ~· fli the variational parameters and N a normalization constant 

such that i of (9) is normalized with respect to the measure d 't' = 

3 3 3 3 3 . d R123 ; 456 d 1123d .\ 123d ! 456d J\456 . The vanational parameters are 

allowed to vary independently for each state in a given channel. 

From (8) we see that, given the form of the states 11(123;456)>, 

it is convenient to evaluate the spin, color and isospin matrix elements 

entering the calculation in a basis characterized by specific s; 2 3<s~56 

permutational symmetries. The required color matrix elements have been 

evaluated previously23) and are not reproduced here. Similarly the 

spin matrix elements in the total spin 5=0,1 channels. In the Appendix 

we briefly sketch the decomposition of the states \!(123;456);> into 

products of spin, color and isospin states with well-defined permuta-

tional symmetries and list the required matrix elements of ·the operator 

Tr36 • Those matrix elements required to generate all desired expecta­

tions in the 5=2,3 sectors are also presented. 

• ~{ 
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3. Diagonal Hadronic Potentials 

c In what follows the spatial matrix elements k , k
0

, B, b , - -~ sn 
h 

bsn' etc. are as defined in the Appendix. Evaluating spin, isospin 

and color expectations we obtain Hamiltonian matrix elements as 

linear combinations of these quantities. Note that for color singlet 

hadrons, direct cross-cluster interactions vanish for color reasons 

so that, apart from the effect of the normalizing constants, NI' the 

direct two body terms in (8), with I=J, are given by the sum of the 

interquark interactions in the corresponding isolated hadrons. Let 

us write 

2 
NI = lO(l+B/~I). (13) 

The values of VI for NN, N4, and46 in the various spin-isospin channels 

are given in Table 2. In terms of the ~I the exchange confinement term 

in (8) can then be shown to reduce to 

1 4 (198MeV(B+4bc -be -bci) - 176MeV(B+4bh -bh -bhi)) 
3VI (l+B/V I) sn nc n sn nc n 

where the 198 MeV term arises from the quadratic piece of the confine-

ment interaction and the 176 MeV term from the U perturbation. The 

constant term in the confinement potential, while contributing to (8), 

not only vanishes between orthogonal states, but also adds the same 

(14) 

• __ ( 
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constant energy to all states in the problem and so has not been 

included in (14). Similarly, the exchange hyperfine contribution 

in (8) can be written 

260 MeV ( h h h ) 
9VI(l+B/~I) clB+c2bsn+c3bnc+c4bni (15) 

with the values of the ci as given in Table 2. The kinetic energy, 

in terms of kD, k0 is 

(kD+kO/~I)/(l+B/~1) (16) 

where the direct term kD contains the i_nternal kinetic energy of the 

three quark clusters as well as _that associated with the intercluster 

motion. One can now minimize the energy of the state I IA~ with 

respect to the variational parameters. In the event that no binding 

is found, the system is put in a weak harmonic box in order to ascer-

tain whether or not the lack of binding results from an effective 

short range repulsive interaction. The results are given in Table 3, 

where we list only those states for which the short range behavior 

is not strongly repulsive. Note that the results for the I•O 5•3 

and I•3 s-o channels are in agreement with those found previously by 

Oka and Yazaki33), The I-D S•l 6A state is of interest, being the 
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only one in which two ordinary baryons are strongly bound by diagonal 

exchange forces. This may have some bearing on the physics of the 

deuteron channel, especially since, treated as independent states and 

not as part of an orthonormalized basis, the hidden color states in 

that channel also turn out to relatively low lying as a result of the 

hyperfine interaction. However, any di-baryon resonances in either of 

the two NN channels are likely to be very broad owing to the existence 

of super-allowed (rearrangement) decays to NN, so that, practically 

speaking, we focus our attention on the I=O S=3 and Ic3 S=O channels. 

In the next section we allow the hidden color states to mix with the 

44 states in these channels. We also consider mixing in the I=S=2 

channel, since·it contains only one hidden color state and is, therefore, 

readily studied, as a test of the overall strategy. Finally we evalu­

ate the energies of the hidden color states in the !=2 S=O and I=O S=2 

channels, as these channels contain no states consisting of only two 

ground state color singlet baryons, so that, if the hidden color states 

lie low enough in energ~ they will be expected to dominate the compos­

ition of the lowest lying di-baryon states in these channels. 

4. Effects of the Hidden Color Configurations 

Constructing the hidden color states as indicated in the Appen-

dix and evaluating the necessary spin, color and isospin matrix ele-

C, ::: 
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ments one obtains for the direct part of the expectation of the 

Hamiltonian in these states 

( 
c h h ) k0+198 MeV(l+3n )-176 MeV(l+3n )+260 MeV(a

1
+a

2
n )/4 

/(l+BN) 

and for the exchange part 

( 
c c c c c c c ) 

6k0/~+198 MeV(c1B+c2bsn+c3bnc+c4bni 

c c.h ch c.h 
-176 MeV(c1B+c2osn+c3bnc+c4oni) 

+260·MeV(c~+c~~n+c~b~c+c~~i)/4}16(1+B/~) 

As before we omit the contributions due to the constant piece of the 

confinement potential in (17), (18). The values of V, ai, c~, and 

c~ for the channels of interest are given in Table 4. 

(17) 

(18) 

The expressions (17), (18) allow us to complete the calculation 

in the !=2 S•O and I-D S=2 ch<imnels. The. result is that the hidden 

color states lie at 3600 MeV and 3350 MeV respectively, well above 

thresholds for available states consisting of baryons with internal 

spatial excitations. As· a· result these channels are not of physical 

interest. 

II' --·( •. / 
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Two further elements are required to perform the mixing calcu-

lation in the remaining channels: first the off-diagonal Hamiltonian 

matrix elements and second, the overlap between states in the channel 

in question. Let us write the overlap between the states of a 'given 

two-state channel as 

EBT= _e_ BT 
Nl(c) 

(19) 

where Ng' N(c) are the normalization factors for the ground and hidden 

color states respectively. The values of e ~~e giv~n in Tabie 5. Ex­

plicit evaluation of the spin, c~lor and isospin matrix elements .than 

yields, for the off-diagonal Hamiltonian matrix element, the expression 

( 
c c c c c · c··c c c 

JNg~(c) 198 MeV(cTlBT+cT2bTsn(c)+cT3bTns(c)+cT4bTnc+cT5bTni) 

c c h c h. c h c h ) 
-l76 MeV(cTlBT+cT2bTsn(c)+cT3bTns(c)+cT4bTnc+cT5bTni 

h h h h h h h h h h ' h h 
+260 MeV(cTO~+cTlBT+cT2bTsn(c)+cT3bTns(c)+cT4bTnc+cT5bTni)/4 

+3ek0T/2) (20) 

c h 
where the spatial matrix elements BT' bT, bT and k0T are as defined 

in the Appendix and the coefficients c~, c~ for the channels of interest 

Ill ... 
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are given in Table 5. The results of the mixing calculations are 

presented in Table 6. 

5. Discussion 

We see that the only channels which exhibit clear binding with 

respect to available s-wave two baryon thresholds are the I=O 5=3 and 

I=3 S=O channels. The former is of interest since its ground state 

lies 260 MeV below A6 threshold and hence also well below N~~ thresh-

old. The decay modes will thus not be simply those of a bound A. 

The ground state of the latter channel, on the other hand, is open 

with respect to Nel, although this channel, in the cloudy bag, is 

subject to an unusually large 100 MeV downward shift in energy due to 

pionic corrections29). While one cannot simply carry over cloudy bag 

results to potential models, it is likely that non-trivial pionic cor-

rections to binding will be present in this channel. 

It is inst~uctive to isolate the physical origin of the binding 

effects in the two channels under consideration~ In both cases the 

deep binding with respect to AA is due, not to diagonal exchange 

interactions, but to mixing, although the mixing .!!.·facilitated by 

the non-repulsive nature' of the diagonal potentials. The difference 

between the two channels results from the hyperfine interaction. In 

the I=O 5=3 channel the. couplings required to form a state with the 
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correct quantum numbers are such that the state orthogonal to the 

bound AA configuration may lie as low in energy as 120 MeV above 

~~ threshold. Mixing is thus strong and this produces considerable 

additional binding. Note that, here, the phenomenological uncert­

ainties in treating hidden color configurations are undoubtedly sig­

nificant. However, the nature of the effect of the hyperfine inter­

action in this channel, especially with regard to significantly low­

~ring the energy of the orthogonal hidden color state, is independent 

of this uncertainty. In the I=3 S=O channel, on the other hand, the 

orthogonal state lies at least 650 MeV above ~6 threshold, with the 

result that the mixing effects are much less significant. In the 

"color only" channels I=2 S=O and I=O 5=2 it is again the hyperfine 

interaction which is responsible for pushing the optimized hidden 

color state energies well above excited two baryon thresholds. 

The above observations make clear the dominant role of the hyper­

fine interaction in determining the qualitative physics of the six 

quark sector. Note the importance of including both the symmetric 

(6) and mixed (42) spatial symmetrie3 in this regard, as well as the 

necessity of configuration mixing. While potential· and bag model 

calculations are not strictly equivalent, hyperfine effects are ex­

pected to be similar in both cases so that the static spherical cavity 

' approximation to the bag is likely to be an inadequate one for calcu-

<.. ._ 
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lations in general multi-quark channels. 

Finally let us note that, apart from the intrinsic interest 

in di-baryon resonances as consequences of the color degree of free­

dom within hadrons, such resonances, if isolated, may provide useful 

constraints on multi-quark phenomenology. Such constraints may be 

necessary in order to successfully untangle quark and meson effects 

and obtain a real understanding of the nuclear physics of few nucleon 

systems. 

~ -, 
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Table 1: Allowed States of the Six Quark System Consisting of Two 

Non-Strange Three Quark Clusters in Spatial Ground States 

X 3 2 1 0 

A3/2A3!2 A3/2A3/2 
3 

~YZJ\112 

A3/2A3/2 Nl/2A3/2 Nl/2A3/2 .6 l/2N 1/2 c c 
Acl/2Nc3/2 63/263/2 

2 41/2A 1/2 c c 
A 1/2N 1/2 c c 
A 1/2N 3/2 c c 

Nl/263/2 Nl/2 3/2 Nl/2Nl/2 

~/263/2 N 1/2A 1/2 A3/2A3/2 c c 
N 3/2N 3/2 A 1/2N 3/2 A 1/2A 1/2 

1 c c c c c c 
A 1/2N 3/2 N 1/2N 3/2 Ncl/2Ncl/2 c c c c 
N 1/2N 3/2 c c N 3/2N 3/2 c c 

N 1/2A 1/2 c c 

A3/263/2 N 1/2N 3/2 c c Nl/2Nl/2 

N 3/2N 3/2 c c A3/2A3/2 

0 A 1/2A 1/2 c c 
N i/2N 1/2 

,, c c 
N 3/2N 3/2 c c 
N 1/2N 3/2 c c 

• "" 
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Table 2: Normalization Constants and Coefficients for the Exchange 

Hyperfine Contribution to Diagonal Hadronic Potentials 

Asymptotic State I s " cl c2 c3 c4 

NN 1 0 9 -51 84 0 93 

0 1 9 -51 84 6 66 

N4 2 2 -1 -6 12 3 -9 

2 1 -9 30 -60 15 -105 

1 2 -9 30 -60 -9 -33 

1 1 -1 2 -4 3 -1 

66 3 2 -1 3 12 9 -15 

3 0 1 3 12 9 21 

2 3 -1 3 12 -3 -3 

2 1 9 3 12 -3 57 

1 2 9 3 12 9 -15 

1 0 -9 3 12 9 21 

0 3 1 3 12 -3 -3 

0 1 -9 3 12 -3 57 
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Table 3: Di-Baryon Channels With Non-Repulsive or Weakly-Repulsive 

Induced Diagonal Potentials 

Asymptotic State I s comment 

AA 3 0 unbound, weak short range repulsion 

1 2 unbound, weak short range repulsion 

1 0 unbound, weak short range repulsion 

0 3 bound by 3 MeV relative to AA 

0 1 bound by 30 MeV relative to .At. 

c" ...... ( 

Table 4: Coefficients for the Energies and Normalizations of Hidden 

Color States 

I s , c c c c h h h h 
al a2 cl c2 c3 c4 cl c2 c3 c4 

0 3 1/7 1 3 2 80 70 16 2 80 70 16 

3 0 1/7 5 5 2 80 70 16 74 272 114 44 

2 2 -1 3 0 10 -32 -10 8 -2 -32 -14 30 

2 0 -1 2 0 1 -14 -10 -1 7 -38 -18 37 

0 2 -1 0 -1 1 -14 -10 -1 7 -14 -10 23 

""·' -r 
" 
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Table 5: Coefficients For Off-Diagonal Hamiltonian Matrix Elements 

in the Non-Orthogonal Bases 

c c c c c h h h h h I s e CTl CT2 cT3 CT4 cT5 CTO CTl CT2 cT3 cT4 

0 3 4 8 16 -2 1 1 0 8 16 -2 1 

3 0 4 8 16 -2 1 1 6 8 16 22 21 

2 2 0 0 0 0 0 0 -2 0 0 0 0 

~ 

c: __ ( 
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Table 6: Results of Mixing Calculations for Two State Channels 

h ordinary baryonic content . I s comment 
CTS 

Ab 0 3 bound by 260 MeV relative to ~.A 
1 A6 3 0 bound by 30 MeV relative to ~/1. 

-1 NA 2 2 unbound relative to lit. 
2 
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Appendix 

The possible configurations of a spatially symmetric three 

quark cluster in an overal color singlet six quark state are 

Nl/2,113/2, Acl/2, Nc3/2, Ncl/2 (Al) 

where by the subscript 'c' we mean that the state transforms as 

a color octet. These configurations represent the totally antisym-

metrized states which can be constructed from basis states in the spin, 

color and isospin sectors having well-defined permutational symmetries 

with respect to the permutation group s 3 • The appropriate basis states 

and the Clebsch-Gordan decomposition corresponding to the choice of a 

~· ~) basis for the mixed representation of s3 have been given pre­

viously in Ref. 23 and are not reproduced here. Pairs of three quark 

states from (Al) are coupled to definite total spin, isospin and zero 

net color in the standard manner, and antisymmetrized, where required, 

with respect to cluster interchange. Such states then consist of a 

123. 456 0 

sum of terms, each with specific joint s 3 "s3 symmetries 1n the 

spin, isospin and color sectors, where the superscripts '123' and '456' 

are particle labels and represent a particular choice of the partitioning 

of quarks between clusters. All calculations are then performed using 

12~- 456 _s
3 
~s3 symmetry bases for each sector. This requires only the evalu-

ation of the matrix elements of the permutation operator, rr36' relative 

£~ ...... 
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to these bases. We order the symmetry basis in the spin (isospin) 

sector as follows: 

S=O ''·'"'."I ,1..1... ss 

S•l 

S•2 

/f,f'A • ¥, ~~, Sf, fS, SA, ~S, SS 

Sf.fS. So\, AS, SS 

S•3 SS 

(A2) 

where S is the symmetric (spin 3/2) three quark spin wavefunction and 

the couplings to the desired total spin are suppressed. Similarly we 

order the symmetry basis for the (zero net) color sector as 

AA.ff• fA, ~f.J\1\ (A3) 

where A is the antisymmetric·three quark color state. The matrix ele-

ments of7T36 with respect to these bases are given in Table Al. Spin 

and isospin matrix elements are identical so we display only the former. 

Of the spin, color and isospin matrix elements required in (8), 

only those of the spin operators~1·~ in the S•2,3 channels have not 

been previously evaluated. These may be obtained, using the transfer-

mation properties of S, A, J and A under s 3 , from the set listed in 

Table A2. 

Owing to the symmetries of the spatial, wavefunction, ]t in (9), 

with respect to both cluster interchange and quark interchange within 

c -~-
j 
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clusters, relations exist between the spatial expectations of two 

body operators for different particle labels i,j. These relations 

are listed in Table AJ, any choice of i,j in a given set serving to 

define the quantity sT, n_, BT' bT , bT , bT , or bT i which 
~ sn(J) ns(J) nc n 

occurs on the right hand side. The notation therein is as follows. 

(ij) represents either of the possible two body operators, S3<rij) or 

rij
2

' with Lij • Li- Zj· Matrix elements of the former are denoted 

by a superscript 'h', those of the latter by a superscript 'c'. (f) IJ 
D 

represents the direct spatial matrix element of an operator f, namely, 

1 dt II(l23;456) .f,J(l23;456) (A4) 

with d1: as in the text, and (f) iJ the corresponding exchange matrix 

element, 

J ~~1(123;456)*fJJ(l26;453). 
In exactly the same way we define 

kTD • (x) IJ 
D 

kTO • (K) ~J 

(AS) 

(A6) 

where K is the kinetic energy operator which, in terms of the natural 

coordinates of the 123;456 clustering, can be written 

- 1 (rl. +i. +i +i ) - 1 v2 

2m !123 A123 1456 1456 3m Rl23;456 
(A7) 
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and 

BT"' (1) iJ· 

• --.,_ _ ... 

(AS) 

The subscripts I,J in (A4)-(A8) refer to the fact that the variational 

parameters for the states II), \J) will, in general, be different. 

In the event that either the states are the same or the variational 

parameters for them are the same, we have the additional relation 

b =<b 11b • 
Tsn(J) Tns (J) sn 

(A9) 

In this case we drop the subscript 'T' on the spatial matrix elements 

of (A6) and Table A3. Note that all spatial matrix elements may be 

evaluated by Gaussian integration. Although not terribly complicated 

we do not record the resulting expressions here. In the case I=J 

they reduce to those previously given in Ref. 23. 
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Table Al: Matrix Elements of the Permutation Operator, Tr36* Table Al (continued) 

Spin 

Color 
S=O -1 0 0. 0 0 -1 0 0. 0 1/3 2,fl/3 0 0 0 

1 0 0 -1/3 0 0 0 

1/3 -2/213 -1 0 0 

-1/3 -1 0 

1 

5=1 11 0 0 0 0 0 0 0 0 

1/3 0 0 0 -20/3 0 0 0 

1/3 0 2Jil3 0 0 0 0 

5/9 0 0 -2Jil9 2fil9 -2Ji0/9 

-1/3 0 0 0 0 

-1/3 0 0 * 0 All matrices are symmetric and defined relative to the bases given in 

"7/9 2/9 -fi0/9 the Appendix. Elements not explicitly shown may be obtained by trans-

7/9 .fi0t9 position. 

-1/9 

5=2 11 0 0 0 0 

1 0 0 0 

1/3 2/3 -2/3 

1/3 2/3 

1/3 

5=3 G] 

•.:.. c 4"l ·~ 
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Table A2: A Generating Set for the Matrix Elements of the Spin 
• Operators ,!1•!j in the 5•2,3 Sectors 

(SS(33)j~1·~j\SS(33)) • 1/4 

{ 

1/4 
(ss(22>l~i-~jtss(22)) • 

-1/12 

! +1/2[1 
<ss(22)f~i·~jlsf(22)') ·l ~ 

J -3/4 

(Sf(22)lli·~j\ Sf(22)) ·1.~/4 

s +1/4 
( Sf(22)\ ~t~j\fS(22)) •1~ 

all ij 

ij•l2,13,23,45,46,56 

otherwise 

ij• (14 124 t 34 
1.15,25,35 

otherwise 

ij•45 

ij-12,13,23,26,26,36 

otherwise 

ij {14,25 
- 24,15 

otherwise 

* ( SS (S ,Sz)l• ( s123s 456 (S ,Sz)\ etc.. In applying permuta­

tional arguments note that Jss(22~ is antisymmetric with 

respect to cluster interchange. 

• -~'"~ 
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Table A3: Symmetries Among Spatial Matrix Elements 

sT c,h IJ = 
{ 

c,h 

<(ij) ) D c,h c,h 

< (ij)c,h)IJ = 
E 

sT nT 

c,~c,h 
sT T 
c,~ 

ST Tsn(J) 
c,hb 

ST Tns(J) 
c,hb 

ST Tnc 
c,hb 

ST Tni 

ij=12,13,23,45,46,56 

otherwise 

ij=12,45 

ij=l3,23,46,56 

ij=l6 ,26 ,34. 35 

ij=l4,15,24,25 

ij=36 
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