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ABSTRACT OF THE DISSERTATION

Password-Based Cryptographic Protocols in the Client-Server Setting

By

Jiayu Xu

Doctor of Philosophy in Computer Science

University of California, Irvine, 2019

Professor Stanislaw Jarecki, Chair

Passwords have become the most ubiquitous form of client-server authentication on the

Internet nowadays. Password-over-TLS, the almost universal password authentication

protocol in practice, suffers from two major drawbacks: (i) it requires a secure channel; and

(ii) the server sees the client’s password in the clear.

This dissertation focuses on another approach of password authentication, which eliminates

the two shortcomings above. We study cryptographic protocols in the password-only setting,

that is, the only information shared between the client and the server is the short and low-

entropy password. We present highly efficient realizations of two kinds of such protocols:

(1) Password-Protected Secret Sharing (PPSS), in which the client stores a long secret (e.g.,

its private key) in a group of servers, and recovers the secret via interacting with a subset

of servers using a password; and (2) asymmetric Password-Authenticated Key Exchange

(aPAKE), in which the client (which enters a password) and the server (which stores a

password file) establish the same secret key. All these protocols are resilient to man-in-the-

middle attacks (i.e., no authenticated channel is required) as well as server compromise: the

only forms of attacks are the unavoidable ones, namely online password guessing attacks and

offline dictionary attacks in case of server compromise.

We present thorough description of our protocols, the proofs of their security, and analyses

x



of their computational costs. All security proofs are in the Universally Composable (UC)

framework, which addresses subtle vulnerabilities of passwords (non-uniform distribution

over the dictionary, reuse of the same password over different accounts, etc.) in a natural

and easy-to-argue way, and thus is preferred over the traditional game-based security model.
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Chapter 1

Introduction

1.1 Problem Statement

Password-over-TLS. Passwords constitute the most ubiquitous form of authentication

on the Internet, from the most mundane to the most sensitive applications. The almost

universal password authentication method in practice relies on TLS/SSL and consists of the

client sending its password to the server under the protection of a client-to-server confidential

TLS channel. At the server, the password is decrypted and verified against a one-way image

typically computed via hash iterations applied to the password and a random “salt” value.

Both the password image and salt are stored for each client in a so-called “password file.”

In this way, an attacker who succeeds in compromising the server and stealing the password

file is forced to run an exhaustive offline dictionary attack to find clients’ passwords given a

set (“dictionary”) of candidate passwords. The two obvious disadvantages of this approach

are: (i) the password appears in cleartext at the server during login; and (ii) security breaks

if the TLS channel is established with a compromised server’s public key (a major concern
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given today’s too-common Public-Key Infrastructure (PKI) failures1).

Password-Authenticated Key Exchange (PAKE) and its weaknesses. Password

protocols have been extensively studied in the cryptographic literature – including in the

above client-server setting where the client is assumed to possess an authentic copy of the

server’s public key [41], but the main focus has been on password-only protocols where the

client does not need to rely on any outside keying material (such as public keys). The

basic setting is modeled as Password-Authenticated Key Exchange (PAKE), which considers

two parties that share the same low-entropy password with the goal of establishing shared

session keys secure against offline dictionary attacks, namely, against an active attacker that

possesses a small dictionary from which the password has been chosen. The only viable

option for the attacker should be online guessing attacks, where the adversary runs the

prescribed PAKE protocol on a password guess with either the client or the server, and

succeeds if its guess was correct. While such attack is unavoidable, its effect can be reduced

by limiting the number of unsuccessful authentication session each party is willing to run.

The PAKE security model was introduced by Bellovin and Merritt [12] and was formalized

by Bellare et al. [10] and Boyko et al. [19] via a game-based definition, and then by Canetti

et al. [26] in the Universally Composable (UC) framework [24]. The UC definition of PAKE

has become the de facto standard in the cryptographic literature on PAKEs because it is

widely recognized as capturing several security issues pertinent to PAKEs which the

game-based PAKE notions of [10, 19] do not cover. Specifically, apart of standard UC

guarantee of security under arbitrary protocol composition, UC PAKE implies forward

security, i.e., security of past protocol sessions in case of password compromise, and

security for arbitrary password distribution, which implies security for password mistyping

1PKI failures include stealing of server private keys, software that does not verify certificates correctly,
clients that accept invalid or suspicious certificates, certificates issued by rogue Certificate Authority (CA)’s,
servers that share their TLS keys with others – e.g., CDN providers or security monitoring software,
information (including passwords) that traverses networks in plaintext form after TLS termination, and
more. For an overview of this topic, see e.g., [60].
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and for related passwords.

Most of cryptographic PAKE literature focuses on the symmetric PAKE setting, where both

parties hold the same password. However, if the client-to-server password authentication was

implemented with a symmetric PAKE, a compromise of the server would leak the passwords

of all clients who authenticate to that server.

T-PAKE, PPSS, and aPAKE protocols. In order to overcome the weakness of PAKE

protocols in the event of server compromise as described above, we study two types of PAKE

extensions which are resilient to some form of server compromise.

• In a (t, n)-Threshold PAKE (T-PAKE) protocol, the single authentication server is

replaced by a group of n servers, and no information on passwords is leaked (i.e.,

offline dictionary attacks are eliminated) even if up to t servers are compromised.

T-PAKE was introduced by Mackenzie et al. [63]. Bagherzandi et al. [8] proposed

a related notion of Password-Protected Secret Sharing (PPSS), which simplifies the

notion of T-PAKE by reducing the goal of key exchange between client and servers

to that of the client retrieving (in the reconstruction phase) a single secret previously

shared with the servers (in the initialization phase). Due to the low-overhead generic

PPSS-to-T-PAKE compiler [8, 43], the design of T-PAKE’s is essentially reduced to

the design of PPSS. On the other hand, PPSS is also an important primitive in its

own right, allowing for online storage of sensitive information like keys, credentials, or

personal records, with availability and privacy protection. The only token needed for

retrieving stored information is a single password, and both information and password

remain private if no more than t servers are compromised (and if the adversary does

not guess or learn the password).

• In an asymmetric PAKE (aPAKE) (a.k.a. augmented or verifier-based PAKE)
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protocol, the server stores a password file, which consists of a one-way image of the

password, as in the aforementioned password-over-TLS approach. Hence, upon a

server compromise and the stealing of the password file, an attacker is forced to

perform an exhaustive offline dictionary attack as in password-over-TLS. No other

attack, except for an inevitable online guessing attack, should be feasible.

The first formalization of aPAKE was introduced by Bellovin and Merrit [13] and

formalized in the game-based approach by Boyko et al. [19]. Subsequently, Gentry et

al. [40] extended the UC PAKE model of [26] to the case of an adaptive server

compromise, and forcing the adversary to stage an offline dictionary attack to recover

the password after such compromise. While several aPAKE protocols were proven

secure in game-based models, some argued only informally, e.g.,

[19, 62, 61, 4, 21, 14, 54], the UC aPAKE notion is stronger than game-based aPAKE

for the same reasons that UC PAKE notion is stronger than game-based PAKE, thus

ideally we would like to know protocols which realize the UC aPAKE notion of [19]

and are comparable in efficiency and cryptographic assumptions to standard

authenticated key agreement protocols used in TLS. However, not much is known

about provably secure UC aPAKE’s.

Weaknesses of aPAKE protocols. A common deficiency of all aPAKE protocols in

the literature, including those being proposed for practical use and regardless of their

underlying formalism, is that they are all vulnerable to pre-computation attacks. Namely,

the attacker can pre-compute a table of values based on a password dictionary D, so as

soon as it succeeds in compromising a server it can instantly find a client’s password. This

weakens the benefits of security against server compromise that motivate the aPAKE

notion in the first place. Moreover, while current definitions require that the attacker

cannot exploit a server compromise without incurring a workload proportional to the

dictionary size |D|, these definitions allow all this workload to be spent before the actual

4



server compromise happens. Indeed, this weakness in the existing UC aPAKE security

definition [40] is needed to accommodate aPAKE protocols that store a one-way

deterministic mapping of the client’s password at the server, say H(pw). Such protocols

trivially fall to a pre-computation attack as the attacker can build a table of (H(pw), pw)

pairs for all pw ∈ D, and once it compromises the server, it finds the value H(pw)

associated with a client and immediately, in log(|D|) time, finds that client’s password.

Such attack can be mitigated by “personalizing” the password map, e.g., hashing the

password together with the user ID. This forces the attacker to pre-compute separate

tables for individual clients, yet all this effort can still be spent before the actual server

compromise.

Note that the standard password-over-TLS protocol prevents pre-computation by hashing

passwords with a random salt visible to the server only. In contrast, existing aPAKE

protocols that do not rely on PKI, either do not use salt or if they do, the salt is

transmitted from server to client during login in the clear.2 Given that password stealing

via server compromise is the main avenue for collecting billions of passwords by attackers,

the above vulnerability of existing aPAKE protocols to pre-computation attacks is a

serious flaw, and in this aspect password-over-TLS is more secure than all known aPAKE

protocols.

1.2 Our Contributions

In this study, we present highly efficient PPSS and aPAKE protocols proven secure in the

UC framework, and we propose strong aPAKE (saPAKE), a new notion of aPAKE which

eliminates pre-computation attacks described above. We list our specific contributions below:

2 Note that even if the aPAKE protocol runs over TLS, the transmitted salt is open to a straightforward
active attack. An additional weakness introduced by the use of public salt is enabling “username enumeration
attacks” that help attackers identify clients and targets – see [30].
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• In Chapter 3 we present TOPPSS, a simple PPSS protocol with remarkable and hard-

to-beat performance. The reconstruction procedure requires just 1 exponentiation per

server and a total of 2 (multi-)exponentiations for the client (independent of the number

of servers), plus O(t) modular multiplications by each party. Communication is also

optimal: The client sends a single group element to a subset of t + 1 servers and gets

one group element from each server. Furthermore, we present a UC notion of PPSS,

which can be seen as a significant relaxation of the UC PPSS notion of [22] (called

T-PASS therein), and show that TOPPSS satisfies this UC notion under the One-More

Diffie-Hellman (OMDH) assumption.

• In Chapter 4 we present a new compiler which convert any UC secure symmetric

PAKE protocol into a UC secure asymmetric PAKE protocol. It adds only a single

additional message to the underlying PAKE; moreover, this single extra message is

sent from client to server, and therefore in an application where the PAKE instance,

which establishes a secure session key for both parties, is followed by an explicit client-

to-server entity authentication, e.g., the client uses the session key output by PAKE

to send a MAC on the PAKE transcript to the server, this additional message can

be piggybacked with the client’s explicit entity authentication flow. Likewise, if the

last message of the symmetric UC PAKE is client-to-server, our compiler also adds no

additional communication flow to the protocol. We show that the compiler satisfies

the UC notion of aPAKE under the Computational Diffie-Hellman (CDH) assumption.

• In Chapter 5 we initiate the study of strong aPAKE (saPAKE) protocols that

strengthen the aPAKE security notion by disallowing pre-computation attacks. We

first formalize this notion in the UC framework by modifying the aPAKE

functionality from [40]. We then present two generic constructions. The first builds

the saPAKE protocol from any UC aPAKE protocol (namely one that satisfies the

original definition from [40]) so that one can “salvage” existing aPAKE protocols.

6



The second builds the saPAKE protocol from any regular Authenticated Key

Exchange (AKE) protocol resilient to “Key-Compromise Impersonation (KCI)”

attacks. Both constructions satisfies our UC notion of saPAKE under the OMDH

assumption. Finally, we provide a highly efficient instantiation of our second

transformation, which we call the OPAQUE protocol. OPAQUE combines the best

properties of existing aPAKE protocols and of the password-over-TLS protocol. As

any secure aPAKE protocol, it offers two fundamental advantages over the

TLS-based solution: It does not rely on PKI, and the plaintext password is never in

the clear at the server. The only way for an attacker that observes (or actively

controls) a session at a server to learn the password is via an exhaustive offline

dictionary attack; watching or participating in a session with the client does not help

the attacker. At the same time, OPAQUE resolves the major flaw of existing aPAKE

protocols relative to password-over-TLS, namely, their vulnerability to

pre-computation attacks.

7



Chapter 2

Preliminaries

2.1 Notations

Throughout this study, we use the following notational conventions:

• If a and b are strings, then [a||b] denotes their concatenation;

• If D is a set, then |D| denotes its cardinality;

• “:=” denotes the computation of a deterministic function, while ← denotes the

computation of a randomized algorithm;

• For an integer n, we write n++ as an abbreviation for n := n + 1, and n−− as an

abbreviation for n := n− 1;

• If D is a set, then x ←R D denotes the procedure of picking x uniformly at random

from D;

• If E is an event, then Pr[E] denotes its probability;
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• κ denotes the security parameter (presented in its unary form 1κ while given as an

input). The adversary against a primitive is always given 1κ as an input, so we omit

it.

We also list the abbreviations which appear in this study in Table 2.1 for readers’ reference.

Abbreviation Stands for

AKE Authenticated Key Exchange

aPAKE Asymmetric Password Authenticated Key Exchange

CDH Computational Diffie-Hellman (Assumption)

IC Ideal Cipher

KCI Key-Compromise Impersonation

KE Key Exchange

MAC Message Authentication Code

OMDH One-More Diffie-Hellman (Assumption)

OPRF Oblivious Pseudorandom Function

PKI Public-Key Infrastructure

PPSS Password-Protected Secret Sharing

ROM Random Oracle Model

saPAKE Strong Asymmetric Password Authenticated Key Exchange

T-OMDH Threshold One-More Diffie-Hellman (Assumption)

T-OPRF Threshold Oblivious PseudoRandom Function

T-PAKE Threshold Password Authenticated Key Exchange

UC Universally Composable

Table 2.1: List of abbreviations

9



2.2 Cryptographic Assumptions and Primitives

We briefly review the cryptographic assumptions and primitives used in this study.

The CDH assumption. Let G be a cyclic group with g as a generator and m as its order.

We assume that m is a prime with |m| polynomial in κ. The Computational Diffie-Hellman

(CDH) assumption in (G, g,m) states that for any efficient algorithm A,

AdvCDH,G
A = Pr

a,b←RZm

[A(g, ga, gb) = gab]

is a negligible function of κ.

In other words, given two challenge values ga and gb which are random group elements, A

cannot compute gab except with negligible probability.

The (Gap) OMDH assumption. The (N,Q)-One More Diffie-Hellman (OMDH)

assumption [9] in a group (G, g,m) states that for any efficient algorithm A,

AdvOMDH,G
A = Pr

k←RZm,g1,...,gN←RG
[A(·)k(g, gk, g1, . . . , gN) = S]

is a negligible function of κ, where S = {(gjs , gkjs)|s = 1, . . . , Q + 1}, Q is the number of

A’s queries to the (·)k oracle which on input a ∈ G outputs ak, and js ∈ {1, . . . , N} for

s ∈ {1, . . . , Q+ 1}.

In other words, suppose A has access to a “k-th power” oracle, to which the number of

queries is limited by Q. A is given N random elements in G as the challenge values. Since

A is allowed to query the (·)k oracle Q times, it is able to compute the k-th power of any

Q of the N challenge values g1, . . . , gN . The assumption postulates that A cannot compute
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the k-th power of any Q+ 1 of the N challenge values (i.e., compute the k-th power of “one

more” challenge value) except with negligible probability.

Note that CDH is equivalent to (1, 0)-OMDH.

The (N,Q)-Gap OMDH assumption is the same with the (N,Q)-OMDH assumption, except

that the adversary A is additionally given access to a DDH oracle in G, DDH(·, ·, ·, ·), which

on inputs a, b, c, d ∈ G outputs 1 if loga b = logc d and 0 otherwise. Formally, the (N,Q)-Gap

OMDH assumption in a group (G, g,m) states that for any polynomial-time algorithm A,

AdvGap-OMDH,G
A = Pr

k←RZm,g1,...,gN←RG
[A(·)k,DDH(·,·,·,·)(g, gk, g1, . . . , gN) = S]

is a negligible function of κ, where S, Q, (·)k and js are the same as in the definition of the

(N,Q)-OMDH assumption.

Authenticated encryption. An authenticated encryption scheme AE is a tuple of efficient

algorithms (KeyGen,AuthEnc,AuthDec), where

• KeyGen(1κ) outputs a key k (where |k| ≥ κ);

• AuthEnck(m) outputs a ciphertext c;

• AuthDeck(c) outputs a message m. Without loss of generality, we assume that AuthDec

is a deterministic algorithm.

The correctness property of AE requires that for any κ and any message m in the message

space, if k ← KeyGen(1κ) and c← AuthEnck(m), then m = AuthDeck(c).

The security of AE states that for any efficient algorithm A,

AdvSEC,AE
A = |Pr[AAuthEnck(·)(c0) outputs 1]− Pr[AAuthEnck(·)(c1) outputs 1]|
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is a negligible function of κ, where k ← KeyGen(1κ), m0,m1 ← AAuthEnck(·),

c0 ← AuthEnck(m0), and c1 ← AuthEnck(m1).

In other words, consider two security games G0 and G1. In Gb (b ∈ {0, 1}), A first outputs

two messages m0 and m1, and then receives cb, an encryption of mb. Throughout the game,

A is given access to the encryption oracle AuthEnck(·). The security property states that G0

and G1 are indistinguishable in A’s view.

The authenticity of AE states that for any efficient algorithm A,

AdvAUTH,AE
A = Pr[AAuthEnck(·) outputs c s.t. m := AuthDeck(c) 6= ⊥ and m /∈ Q]

is a negligible function of κ, where k ← KeyGen(1κ) and Q is the set of all A’s queries to the

AuthEnck(·) oracle.

In other words, suppose that A is given access to the encryption oracle AuthEnck(·). Then

A is able to generate some valid ciphertexts (i.e., ciphertexts that do not decrypt to ⊥) via

querying the encryption oracle. The authenticity property states that A cannot generate

another valid ciphertext except with negligible probability.

2.3 Security Models and Frameworks

The random oracle model. All security results in this study are proven in the Random

Oracle Model (ROM). For a description of ROM and its implementation, see [11].

The UC framework. All security results in this study are in the Universal Composability

(UC) framework, proposed by Canetti in [24]. Here we provide a very high-level and informal

overview of the UC framework based on [25]; for a detailed description, we refer to [24].
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The UC framework is an example of simulation-based security definition. In this paradigm,

the security notion is captured by a trusted party (called the functionality) which interacts

with the protocol participants and an ideal adversary; the input-output behaviors of these

protocol participants and the ideal adversary are specified in the description of the

functionality (hence the attacking ability of the ideal adversary is clearly defined). We say

that a protocol is secure if the real adversary cannot gain more information than the ideal

adversary which merely interacts with the functionality. Looking a bit closer, consider a

real world where there is an adversary against the protocol, and an ideal world where the

adversary interacts with the functionality. We say that the protocol is secure if for any

efficient real adversary A, there is an efficient ideal adversary (also called the simulator)

SIM which generates a view indistinguishable to A’s real-world view (i.e., SIM “simulates”

A’s real-world view).

The traditional simulation-based security model only provides security guarantee for a stand-

alone execution of the protocol. In contrast, UC security implies that the protocol remains

secure even when arbitrarily composed with other protocols, including insecure ones. In order

to model such composed protocols which might be insecure, another adversarial party called

the environment is added. The environment specifies the inputs for all protocol participants,

receives all outputs, and interacts with the adversary in an arbitrary way. A protocol is

UC secure (also called realizes the UC functionality) if for any efficient environment Z and

any efficient real adversary A, there is an efficient simulator SIM which generates a view

indistinguishable to Z’s real-world view.

The UC theorem states the follows. Consider a UC functionality F and a protocol Π in

which all participants have access to F (as a trusted party). Let ρ be any protocol which

UC realizes F , and Πρ be the composed protocol where interactions with F are replaced

with participating in an instance of ρ. Then Π and Πρ have the same input-output behavior;

in particular, if Π UC realizes a functionality G, then Πρ also UC realizes G.
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Chapter 3

TOPPSS: Cost-minimal

Password-Protected Secret Sharing

Based on Threshold OPRF

In this chapter we present TOPPSS, the most efficient PPSS protocol to date – and using

the PPSS-to-T-PAKE compiler of [43] also the most efficient T-PAKE – with a hard-to-beat

complexity. Informally, a (t, n)-PPSS protocol, as formulated in the PKI-free setting by

[43], allows a client to share a random secret s among n servers under the protection of its

password pw such that (1) a reconstruction protocol involving at least t + 1 honest servers

recovers s if the client inputs the (correct) password pw; (2) the compromise of up to t servers

leaks no information about either s or pw; (3) an adversary who corrupts t′ ≤ t servers and

has qC interactions with the client and qS interactions with the uncorrupted servers can test

at most qS
t−t′+1

+ qC passwords. (In the PKI setting one can set qC = 0.)

Our starting point is the PPSS protocol of Jarecki et al. [43], the most efficient PPSS

protocol to date, without PKI authentication in reconstruction, with a reconstruction phase
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that takes a single round (2 messages) between a client and each server and only costs 2

(multi-)exponentiations per server for the client and roughly 2 (multi-)exponentiations per

each participating server. [43] used a game-based definition of PPSS security adopted from

[8] to the password-only setting (i.e., no PKI assumption). We modify and improve the

PPSS protocol in [43] in several ways:

• Highly efficient performance: We reduce the computational cost of the protocol in [43]

to a single exponentiation per server and a total of 2 exponentiations for the client

(independent of the number of servers).

• Non-reliance on PKI and secure channels: A main accomplishment of the PPSS

protocols of [22] and [43] is the non-reliance on secure channels or PKI during the

reconstruction phase. This is a major benefit since PPSS assumes a client that only

knows its user ID and password, and does not carry auxiliary devices with

authenticated information. Moreover, the increasing vulnerabilities of

certificate-based authentication translate into weaknesses in protocols that rely on

such authentication. Fortunately, we achieve our optimal performance while still

dispensing with the need of secure channels or PKI (except for a trusted initialization

phase needed in all PPSS protocols).

• UC security: In addition to the significant performance improvement relative to [43], we

also improve on their security analysis by providing a proof that our protocol satisfies

a UC formalization of PPSS. This formalization is in itself a significant contribution of

our work. Indeed, while a UC definition of PPSS appeared in the work of Camenisch

et al. [22], our formulation significantly relaxes this functionality in a way that enables

the proof of a much more efficient protocol. To obtain this relaxed UC functionality

(and the UC proof of our protocol) we utilize a ticketing mechanism, used e.g., by [43]

in their formalism of V-OPRF (see below), which allows us to dispense with the need

to extract the client’s input (in this case, the client’s password) during an execution

15



of a UC PPSS protocol, something that requires heavier cryptographic mechanisms

and results in higher performance costs, as with the protocol of [22]. The ticketing

mechanism ensures that in order to test a single password guess, the attacker must

impersonate the client to t+ 1 servers or impersonate t+ 1 servers to the client, which

is optimal in terms of security against guessing attacks and constitutes the very essence

of the PPSS security notion. By relaxing the UC functionality for PPSS, we allow for

much more efficient realizations, while maintaining the security of the PPSS-to-T-

PAKE compiler.

The results presented in this chapter are based on the work published in [44] and [45], with

significant revision of the security proofs.

3.1 Overview

Oblivious Pseudorandom Function (OPRF). A central ingredient in the protocol of

[43] that we preserve in our solution is the notion of an Oblivious Pseudorandom Function

(OPRF) [37]. Roughly speaking, an OPRF is a protocol between two parties, one (the

server as in the context of application to PPSS) holding a key k for a PRF F and one (the

client) holding an input x, where no party learns anything except for the input holder who

learns Fk(x). This notion has been shown to be useful in many different contexts [37, 47],

but defining it so that it can be implemented inexpensively is non-trivial. For example,

using an Multi-Party Computation (MPC)-type definition would require a costly

implementation to achieve concurrent security (as needed here) and would require secure

channels (undesired here). To resolve this problem, [43] introduced a UC-based OPRF

definition that allowed them to build a PPSS protocol with concurrent security and

without secure channels for reconstruction. Moreover, their use of a “ticketing mechanism”

in their OPRF definition (which is also similar in spirit to e.g., blind signature definitions,
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cf. [7]) allowed them to obtain very efficient instantiations by avoiding extractable proofs of

knowledge or similar costly mechanisms (this is the ticketing mechanism that, as

mentioned before, we have borrowed for our own UC formulation of PPSS). At the same

time, in order for the OPRF to fit their PPSS protocol, [43] strengthened the security

notion of OPRF adding a verifiability property that allows clients to detect dishonest

behaviors of the PPSS servers during reconstruction. Unfortunately, this additional

property introduces the need to use zero-knowledge proofs in the implementation of their

OPRF, costing one multi-exponentiation for the client and server in each client-server

interaction and leads to an increase in the amount of communication as well.

As our first observation to reduce the PPSS computational costs, we resolve this problem

by relaxing the Verifiable OPRF (V-OPRF) notion of [43] into a plain UC OPRF

functionality that does not provide verifiability, and therefore enables an optimal

implementation without zero-knowledge proofs at all (it also has the potential of better

fitting other OPRF applications). We note that forgoing the verifiability property weakens

the robustness of our PPSS solution, namely, the ability to discard incorrect computations

during reconstruction. Yet, we can enjoy the best of the two worlds: We can run the highly

efficient protocol without zero-knowledge proofs, and only resort to the zero-knowledge

proofs in case the reconstruction fails. Thus, in the normal case of a non-adversarial run

the cost of zero-knowledge is saved. Finally, we remark that in real-world applications we

expect n to be a small number, in which case checking different subsets of t + 1 servers

until finding a non-corrupted subset is a practical approach that completely dispenses with

zero-knowledge proofs.

Threshold Oblivious Pseudorandom Function (T-OPRF). Our second observation

is that the OPRF in the protocol of [43] can be replaced with its threshold (or multi-party)

counterpart which we define as Threshold OPRF (T-OPRF). We provide a UC definition
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of T-OPRF as a functionality that allows a group of n servers to secret-share a key k for

PRF F with a shared PRF evaluation protocol which lets the client compute Fk(x) on its

input x, such that both x and k are secret if no more than t of n servers are corrupted.

T-OPRF can be viewed as an input-oblivious strengthening of Distributed PRF (DPRF) of

Naor et al. [64], hence in particular T-OPRF can replace DPRF in all its applications, e.g.,

for corruption-resilient Key Distribution Center, and long-term information protection (see

[64]). We design a T-OPRF protocol, which we call 2HashTDH. This T-OPRF protocol is

essentially a “threshold exponentiation” protocol, where each server computes mki on input

m where ki is the server’s secret-share of the PRF key k.

TOPPSS: PPSS based on T-OPRF. Using the strong notion of T-OPRF security above

we show TOPPSS, a compiler which transforms UC T-OPRF into UC PPSS at negligible

additional cost in the Random Oracle Model (ROM). We prove that TOPPSS realizes UC

PPSS under the following assumptions in ROM. Let t′ ≤ t denote the number of parties

actually controlled by an attacker. First, our results imply that in the so-called full corruption

case, i.e., if t′ = t, the same (Gap) One-More Diffie-Hellman (OMDH) assumption used in

[43] implies that the attacker must query one uncorrupted party per each input on which the

attacker wants to obtain the function value. Since this is the case where the attacker controls

the full threshold t of servers it is also the case for any t′ < t. In the application to PPSS

this means that the attacker can test up to qS + qC passwords, which matches the qS
t−t′+1

+ qC

bound for t′ = t. Since many existing works on T-PAKE, e.g., [63, 33, 20, 51, 3, 75], implicitly

assume the t′ = t case by defining security using the simplified qS + qC bound on the number

of passwords the adversary can test, we call this level of security a standard threshold security

for T-PAKE/PPSS.

Secondly, for the general case of t′ ≤ t, we show that TOPPSS achieves the stronger qS
t−t′+1

+qC

bound assuming a generalization of the OMDH assumption which we call (Gap) Threshold
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One-More Diffie-Hellman (T-OMDH). As a sanity check for the T-OMDH assumption we

show that the T-OMDH problem is hard in the generic group model in Appendix A. Since

OMDH is a special case of T-OMDH, to the best of our knowledge this is also the first generic

group analysis of OMDH. The stricter bound implies that an adversary controlling t′ ≤ t

servers must contact t−t′+1 uncorrupted servers for each input on which it wants to compute

the function, which coincides with the standard threshold security notion when t′ = t, but

it is stronger for t′ < t. For example, it means that the default network adversary who does

not corrupt any party but runs q sessions with each server, can test up to qn
t+1

passwords,

whereas the standard threshold security would in this case upper-bound the number of tested

passwords only by qn.

As a point of comparison we consider a generic compiler from any OPRF to T-OPRF.

This compiler performs multi-party computation of the server code in the underlying OPRF

protocol, but in the case of the OPRF of Section 3.2 such MPC protocol has the same low

computational cost as the customized T-OPRF protocol 2HashTDH discussed above, i.e., 1

exponentiation per server and 2 for the client, with the only drawback of adding an additional

communication round to enforce an agreement between the servers on the client’s input to

the MPC protocol. On the other hand, since the security depends only on the basic OPRF,

the resultant two-round T-OPRF protocol achieves the qS
t−t′+1

+ qC bound based solely on

OMDH for all t′ ≤ t.

Related work. The first T-PAKE by Mackenzie et al. [63] required ROM in the security

analysis and relied on PKI, namely, it assumed that the client can validate the public keys

of the servers during the reconstruction phase.1 Gennaro and Raimondo [33] dispensed with

ROM and PKI (in authentication) but increased protocol costs. Abdalla et al. [3] showed a

1When we say that PPSS/T-PAKE assumes PKI we mean that it relies on it for the security of the
reconstruction/authentication phase. By contrast, the initialization phase of any PPSS/T-PAKE solution
must assume some trusted infrastructure, e.g., PKI, or otherwise each party could be initializing the protocol
with an impostor.
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PKI-free T-PAKE in ROM with fewer communication rounds than the T-PAKE of [63], but

the client establishes a key with only one designated gateway server. Yi et al. [75] showed

a similar round-reduction without ROM. The case of n = 2 servers, known as 2-PAKE,

received special attention starting with Brainard et al. [20, 73] on 2-PAKE in ROM and

PKI, and several works [51, 54, 16, 55] addressed the non-PKI and non-ROM case. Still,

each of these T-PAKE protocol requires server-to-server communication. If communication

is mediated by the client then the lowest round complexity is 3 for n > 2 [3] and 2 for n = 2

[16, 55].

Bagherzandi et al. [8] introduced the notion of PPSS with the goal of simplifying T-PAKE

protocols. Specifically, they showed a PPSS protocol in ROM assuming PKI, with 2 rounds,

constant-sized messages, and 8(t+1) (multi-)exponentiations per client, and a low-cost PKI-

model compiler from PPSS to T-PAKE. Camenisch et al. [22] constructed another PPSS

protocol, called T-PASS (for Threshold Password-Authenticated Secret Sharing), without

assuming PKI but with 14n exponentiations for the client, 7 exponentiations per server, and

5 rounds of communication.

Jarecki et al. [43] showed significantly faster PPSS protocols, also without assuming PKI:

The PPSS of [43] takes a single round (two messages) between a client and each server,

and uses 2 (multi-)exponentiations per server and 2t + 3 (multi-)exponentiations for the

client, secure under (Gap) OMDH in ROM. (They also showed a 4-message non-ROM PPSS

with O(n · |pw|) exponentiations using Paillier encryption.) In related works, [23] showed

a single-round proactive PPSS in the PKI setting for the case of t = n, and [5] showed

general methods for ensuring robustness in PPSS reconstruction, and a non-ROM PPSS

using O(|pw|) exponentiations in a prime-order group.

Another important aspect of these PPSS solutions is the type of security notion they achieve.

Both the PKI-model PPSS notion of [8] and the PKI-free PPSS notion of [43] were game-

based, while [22] provided UC definitions of the PPSS functionality. The essence of the UC
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PPSS definition is that the only attack the adversary can stage is the inevitable one, namely,

an online dictionary attack where validating a single password guess requires interaction

with either t+ 1 instances of the servers or with the client. The UC definitions have further

advantages for a password-based notion like PPSS, as discussed in Section 1.1.

3.2 The OPRF Functionality FOPRF and Its Realization

Here we introduce our UC functionality, FOPRF, presented in Figure 3.1. It is derived from

the FVOPRF functionality of [43] by stripping off the “verifiability” properties of the latter.

Specifically, FVOPRF allows a client to check consistency between different runs of the OPRF;

namely, that each time that the function is run with the same server on the same input,

the same answer is received (otherwise the client aborts). This requires servers to have

public keys and requires the OPRF implementation to involve zero-knowledge proofs. By

omitting the verifiability condition we simplify the OPRF definition, implementation and

applicability.

In the description below, we assume that P ∈ {C,A∗}.
Public Parameter: PRF output-length `, polynomial in security parameter κ.
For every server S, initialize tickets(S) to 0.

• On (Eval, sid ,S, x) from P, record 〈P, S, x〉 and send (Eval, sid ,P,S) to A∗.

• On (SvrComplete, sid) from S, set tickets(S)++ and send (SvrComplete, sid , S) to A∗.

• On (RcvComplete, sid ,P,S∗) from A∗, retrieve 〈P, S, x〉; abort if there is no such record, or
tickets(S∗) = 0. Else set tickets(S∗)−− and send (Eval, sid , FS∗(x)) to P (pick FS∗(x)←R

{0, 1}` if undefined).

Figure 3.1: Functionality FOPRF
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Description of FOPRF. The functionality FOPRF involves clients, senders and an (ideal-

world) adversary, denoted C, S and A∗, respectively. We denote by ` the output size of the

PRF.

OPRF evaluation is triggered by an (Eval, sid , S, x) command from client C requesting the

computation of the PRF of server S on input x. Commands SvrComplete and RcvComplete

denote the completion of S’s and C’s computation, respectively. Operation (Eval, sid , S, x)

from a client C with server S is completed by a (RcvComplete, sid ,C, S∗) where S∗ is the

identity of a server that is specified by A∗ and, in the case S is corrupted, it may or may not

be equal to the server S specified by C in the Eval command. In the case S = S∗ we have a

computation with the intended server S, while the case S 6= S∗ corresponds to the attacker

channeling the request to a different server, possibly a corrupted one. In fact, we allow the

adversary to specify a value S∗ which may not even be an identity of any physical server, and

each value S∗ is interpreted as a pointer to an independent random function FS∗(·). Thus,

there is no guarantee of correctness of the evaluation request and, moreover, two OPRF

requests for a same (S, x) pair can be answered differently if S is corrupted. This is where

our OPRF formalism FOPRF differs fundamentally from the definition of FVOPRF in [43]

which ensures correct and client-verifiable OPRF computation. This relaxation simplifies

the OPRF functionality by dispensing with two essential elements in FVOPRF, namely, the

“public parameters” π associated with each server (and used by the client to check correct

evaluation) and the requirement that even corrupted senders must commit to computing an

arbitrary but deterministic function (represented in FVOPRF by the circuit M).

While we allow A∗ to route a client’s request to the wrong server, we do make sure that

A∗ cannot forge computations by honest servers. As in [43] this is enforced via a “ticketing

mechanism” that ensures that for any honest server S, the number of client-completed OPRF

evaluations (i.e., RcvComplete activations) with S is no more than the number of SvrComplete

activations of S. Specifically, each server S is associated with a ticket value tickets(S). Each
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time that a server S completes its interaction with a client, tickets(S) increases by 1; each

time a client, either honest or corrupted, completes an interaction that is associated to S,

tickets(S) decreases by 1 (provided that it was not 0). This ticketing approach dispenses

with the need to extract clients’ inputs when building a simulator for proving the security

of a given realization of the functionality. This simplification (which is shared with [43]),

together with the relaxation of the verifiability property as discussed above, allows for the

very simple and efficient OPRF realization presented in the next section.

On the “strong (pseudo)randomness” of functionality FOPRF. Functionality

FOPRF keeps record of a family of functions F for the results of the PRF evaluation by

different servers (including corrupted ones) on requested inputs. Specifically, FS(x) is

defined as the value of the PRF tied to some server identity S (honest, corrupted, or

created by an adversary), on input x specified in some Eval command which is completed

by a subsequent RcvComplete with server tag S (see above on the semantics of the

Eval-RcvComplete sequence). The function values are initially undefined and are picked at

random by FOPRF upon RcvComplete activations. We note that FS(x) is chosen at random

even in case that server S is corrupted and/or it corresponds to some virtual server created

by the adversary. As a result, any realization of FOPRF needs to ensure that OPRF

evaluations with corrupted servers result in outputs which are (pseudo)random even to the

adversary: Note that FOPRF provides the adversary with direct access to all function

input-output tables by allowing A∗ to issue Eval requests to FOPRF. In particular, for the

case where S∗ is either the identity of a corrupted server or a virtual identity established by

A∗, an adversary can evaluate function FS∗(·) on any argument x only by a series of

explicit calls to FOPRF, e.g., (Eval, sid , S∗, x), (SvrComplete, sid) (sent via S∗), and

(RcvComplete, sid ,A∗, S∗). This means that FOPRF learns all inputs on which A∗ evaluates

the OPRF functions controlled by A∗, and that these adversarial evaluations must even

respect the ticket-counter mechanism. In particular, this implies that if a real-world
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adversary A locally evaluates the (O)PRF on an adversarially chosen key k and any x then

(1) the output Fk(x) will appear pseudorandom to A, and (2) an efficient simulator will

extract the argument x (although not necessarily the key k) whenever such local evaluation

occurs. This strongly suggests that an efficient construction of such FOPRF requires ROM

(or some other non-black-box model).

It follows that functionality FOPRF we introduce is not a strict weakening of the verifiable

OPRF functionality FVOPRF of [43]: Functionality FVOPRF is stronger than FOPRF in the

sense that it ensures that value y which C receives in response (Eval, sid , y) to request

(Eval, sid , S, x) satisfies y = FS(x), while functionality FOPRF ensures only that y = FS∗(x)

(in case S is corrupted) for a well-defined but arbitrary S∗ specified by A∗. However, in the

case of corrupted servers S, functionality FVOPRF allows the adversary to specify FS(·) as

an arbitrary circuit, which means that values FS(·) are predictable to A∗ and that A∗ can

evaluate them locally without the FVOPRF’s knowledge. By contrast, FOPRF ensures that

FS(·) is a random function even for corrupted server identities S.

The 2HashDH protocol. In Figure 3.2, we present an efficient realization of FOPRF in

ROM, based on the 2HashDH-NIZK construction of FVOPRF in [43], from which we eliminate

the zero-knowledge proofs and the corresponding “public keys” of servers.

This construction relies on a cyclic group G of prime order m, with g being a generator.

The private key k is chosen at random from Zm. Each client C records tuples of the form

(S, x, r, y). The construction uses two hash functions, H(·, ·) and H ′(·) (hence the name

2HashDH), both modeled as random oracles.

The PRF is defined as Fk(x) = H(x,H ′(x)k). For each value x the client C wants to

evaluate in an OPRF instance, C picks a random element r in Zm, which can be used for

OPRF evaluations with the same x but different servers. When C wants to compute Fk(x)
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Let H(·, ·) and H ′(·) be hash functions with ranges {0, 1}` and G, respectively (modeled as
random oracles).

• On input (Eval, sid , S, x), C proceeds as follows:

– If there is a record 〈S, x, r, y〉, C outputs (Eval, sid , y).

– Else if there is a record 〈S′, x, r, y〉 (where S′ 6= S), C records 〈S, x, r,⊥〉 and sends
a := H ′(x)r to S.

– Else C picks r ←R Zm, records 〈S, x, r,⊥〉 and sends a := H ′(x)r to S.

• On input (SvrComplete, sid) and a from C, S sends b := ak to C.

• On b from S, C retrieves 〈S, x, r,⊥〉, replaces ⊥ with y := H(x, b1/r) and outputs
(Eval, sid , y).

Figure 3.2: Protocol 2HashDH (for PRF output length `)

where k is the private key of a specific server S, it sends a := H ′(x)r to S; S sends back

b := ak = H ′(x)rk to C, and C outputs y := H(x, b1/r) = H(x,H ′(x)k).

We describe the protocol in detail in Figure 3.2.

Security analysis. We prove the security of the 2HashDH protocol under the Gap OMDH

assumption:

Theorem 1. Suppose that the (Q + qH′ , Q)-Gap OMDH assumption holds for (G, g,m),

where Q is the number of Eval messages sent to C and qH′ is the number of H ′(·) queries.

Then protocol 2HashDH in Figure 3.2 realizes functionality FOPRF in ROM.

Proof. Let N = Q+ qH′ . For any efficient adversary A against the protocol, we construct a

simulator SIM as in Figure 3.3. To keep notation brief we denote functionality FOPRF as F .

We now argue that for any efficient environment Z, its view in the simulated ideal world

(henceforth simulated world) which SIM produces and its view in the real world are

indistinguishable. Without loss of generality, suppose A is a “dummy” adversary who
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1. Pick r1, . . . , rN ←R Zm and compute g1 := gr1 , . . . , gN := grN . Set counter J := 1.

2. On A making a fresh query H ′(x), answer it with gJ and record (x, rJ , gJ). After that,
set J++.

3. On (Eval, sid ,C, S) from F , record 〈C,S, rJ , gJ〉 and send gJ to A as C’s message to S.
After that, set J++.

4. On (SvrComplete, sid , S) from F and a from A as some client C’s message to S, find record
〈S, k, z〉. If there is no such record, pick k ←R Zm, compute z := gk and record 〈S, k, z〉.
Regardless, send ak to A as S’s response to C.

5. On b from A as some server S’s message to a client C, retrieve 〈C, S, rj , gj〉 and find record
〈S′, ·, z〉 such that b = zrj . If there is no such record, create a new server identity S′ and
record

〈
S′,⊥, b1/rj

〉
. Regardless, send (RcvComplete, sid ,C,S′) to F .

6. On A making a fresh query H(x, u),

(a) If there is a record (x, rj , gj) and a record 〈S′, ·, z〉 such that u = zrj , send
(Eval, sid ,S′, x) and then (RcvComplete, sid ,A∗, S′) to F .
If F ignores this message, output fail and abort.
Else on F ’s response (Eval, sid , y), set H(x, u) := y.

(b) Else pick H(x, u)←R {0, 1}`.

Figure 3.3: The simulator SIM for the 2HashDH protocol

merely passes through all its messages to and from Z, and all its computation to Z.

The argument of indistinguishability uses a sequence of games. We start from Z’s interaction

with other parties in the real world, and end at the simulated world. For each two adjacent

games Gi and Gi+1, we show that Z’s distinguishing advantage between them is negligible.

We denote such distinguishing advantage as Dist
Gi,Gi+1

Z , i.e.,

Dist
Gi,Gi+1

Z = |Pr[Z outputs 1 in Gi]− Pr[Z outputs 1 in Gi+1]|.

G0 is the real world.

In G1, we make two changes: (1) For every server S, record its key and the corresponding

group element; that is, record
〈

S, k, z := gk
〉
. (2) When C computes a or A queries H ′(x),
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record the discrete logarithm of H ′(x); that is, pick h←R Zm and record (x, h,H ′(x) := gh).

Obviously,

DistG0,G1

Z = 0.

In G2, for an input (Eval, sid , S, x) to C, while computing a, pick w ←R Zm, set a := gw and

record 〈C, S, w, a〉; also, pick h ←R Zm and record (x, h,H ′(x) := gh). Then when A sends

b to C, retrieve (x, h, ·) and C outputs (Eval, sid , y := H(x, bh/w)).

The difference between G1 and G2 is that in G1, a is defined as H ′(x)r = ghr, where

h, r ←R Zm; and y is defined as b1/r. In G2, hr is replaced with w ←R Zm, and 1/r is

replaced with h/w. Clearly this does not change the distribution of a or y, so we have that

DistG1,G2

Z = 0.

In G3, on b from A to C, retrieve 〈C, S, w, a〉 and find record 〈S′, ·, z〉 such that b = zw. If

there is no such record, create a new server identity S′ and record
〈

S′,⊥, b1/w
〉

in addition.

(Note that in this way we guarantee that there is always a record 〈S′, ·, z〉 such that b = zw,

or equivalently, z = b1/w.) Obviously,

DistG2,G3

Z = 0.

In G4, C outputs (Eval, sid , y ←R {0, 1}`) unless A queries H(x, u), and there is a record

(x, h, gh) and a record 〈S′, ·, z〉 such that u = gh (mark this case (∗)). In addition, if A makes

such H(x, u) query after C outputs (Eval, sid , y ←R {0, 1}`), set H(x, u) := y.

In G3, y is random in Z’s view unless and until A queries H(x, u = bh/w) (where h is the

value in the record (x, h,H ′(x))). Call this a “crucial query (on u).” We have pointed out

that there must be a record 〈S′, ·, z〉 such that z = b1/w. Therefore, if A makes a “crucial

query,” there must be a record (x, h, gh) and a record 〈S′, ·, z〉 such that u = zh, so case (∗)
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happens, hence G3 and G4 are identical. (If A makes no “crucial query,” G3 and G4 are

also identical). We have that

DistG3,G4

Z = 0.

Note that in G4, for every input (Eval, sid , S, x) to C, there is always a record (x, h,H ′(x) =

gh). In G5, do not record (x, h,H ′(x)) and leave H ′(x) undefined unless and until A queries

H ′(x).

In G4, h and H ′(x) are used only when A makes a “crucial query” on gh = H ′(x). Therefore,

Z’s views in G4 and G5 are identical unless A does not query H ′(x) but makes a “crucial

query” on H ′(x). If A does not query H ′(x), then H ′(x) is a random element in G. Assuming

that A queries H(·, ·) qH times, for every H ′(x), the probability that A makes a “crucial

query” on H ′(x) is at most qH/m; therefore, assuming that there are qC client sessions, there

are qC H ′(x)’s, so the probability that A makes a “crucial query” on any H ′(x) is at most

qCqH/m. We have that

DistG4,G5

Z ≤ qCqH

m
,

which is a negligible function of κ.

G6 is the simulated world. We can see that the only difference between G5 and G6 is that

G6 aborts when a certain event fail (as in step 6 in the description of SIM) occurs.

Now we upper bound Pr[fail]. Event fail occurs in case (a) of step 6, where SIM sends a

(RcvComplete, sid ,A∗, S) message to F but it is ignored. This can only happen when

tickets(S) = 0. For every server S̃, let fail(S̃) be the particular event that the

(RcvComplete, sid ,A∗, S̃) message is ignored. Then

Pr[fail] ≤
∑
S̃

Pr[fail(S̃)].
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We now upper bound Pr[fail(S̃)] by reducing fail(S̃) to the (N,Q)-Gap OMDH problem in

(G, g,m). The reduction, RS̃, is shown in Figure 3.4.

Observe the following two facts for RS̃:

• Every time the (·)k̃ oracle is queried (in step 4), there is a (SvrComplete, sid , S̃) message,

so tickets(S̃) increments.

• Every time tickets(S̃) decrements (in the first case of step 5 or the first condition of the

first case of step 6), a pair of the form (gj, g
k̃
j ) is recorded (as underlined).

Therefore, if fail(S̃) occurs, the number of pairs recorded is more than the number of DDH

oracle queries by one, so RS̃ solves the (N,Q)-Gap OMDH problem in (G, g,m). Therefore,

we have that

Pr[fail(S̃)] ≤ AdvGap-OMDH,G
RS̃

,

so

DistG5,G6

Z ≤ Pr[fail] ≤
∑
S̃

Pr[fail(S̃)] ≤
∑
S̃

AdvGap-OMDH,G
RS̃

,

which is a negligible function of κ.

Summing up all results above, we conclude that Z’s distinguishing advantage between the

real world and the simulated world is a negligible function of κ. This completes the proof.

3.3 The Threshold OPRF Functionality FTOPRF and Its

Realization

In this section, we provide a formal definition of the Threshold Oblivious PRF (T-OPRF)

notion, namely as a secure realization of a UC functionality FTOPRF shown in Figure 3.5. The
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On input (y = gk̃, g1, . . . , gN ) as an instance of the (N,Q)-Gap OMDH problem in (G, g,m),
RS̃ runs the code of the simulator SIM, with the following changes:

• In step 1, only set J := 1 and omit all other processes.

• In step 2 and step 3, use the challenges instead of random elements in G as g1, . . . , gN .
Furthermore, since there is no rj , only record (x, gj) (in step 2) and 〈C,S, gj〉 (in step 3).

• In step 4, if ã acts as a message to S̃, then use the (·)k̃ oracle to compute b̃ := ãk̃ and

record (ã, b̃) instead of
〈

S̃, k̃, z̃ := gk̃
〉

.

• In step 5, do the following instead: On b from A as some server S′’s message to a client
C, retrieve 〈C,S, gj〉 and do:

– If there is a record (ã, b̃) and DDH(gj , b, ã, b̃), then record (gj , b) and send

(RcvComplete, sid ,C, S′, S̃) to F .

– Else if there is a record
〈
S, k, z = gk

〉
such that b = ak, then send

(RcvComplete, sid ,C,S′, S) to F .

– Else if there is a record (aS∗ , bS∗) such that DDH(gj , b, aS∗ , bS∗), then send
(RcvComplete, sid ,C,S′, S∗) to F .

– Else create a new server identity S∗, set aS∗ := gj and bS∗ := b, and send
(RcvComplete, sid ,C,S′, S∗) to F .

• In case (a) of step 6 (i.e., there is a record (x, gj)), use the following criteria to determine
S′ (and then proceed as SIM):

– If DDH(gj , u, ã, b̃), then record (gj , u) and set S′ := S̃.

– Else if there is a record
〈
S, k, z = gk

〉
such that u = gki , then set S′ := S.

– Else if there is a pair (aS∗ , bS∗) such that DDH(gi, u, aS∗ , bS∗), then set S′ := S∗.

Finally, if fail(S̃) occurs, output the set of all underlined recorded pairs.

Figure 3.4: The reduction RS̃ to the Gap OMDH problem (for a single server S̃)
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FTOPRF functionality defined here is a generalization of the single-server OPRF functionality

FOPRF in Section 3.2 to the multi-party setting. In the FTOPRF setting, the PRF key is

effectively controlled by a collection of n servers, and it remains secret as long as no more

than a threshold t of these servers are corrupted (hence FOPRF is a specific case of FTOPRF

where (t, n) = (0, 1)). Then we show 2HashTDH, a protocol which realizes such (t, n)-

threshold “collective control” over a functionality using secret-sharing.

3.3.1 The Threshold OPRF Functionality FTOPRF

The T-OPRF functionality of Figure 3.5 has two phases, initialization and evaluation. The

T-OPRF functionality enforces that the values of any such function remain random to the

adversary, similarly as the single-server OPRF notion in Section 3.2, even in the case that

the adversary controls the private key and/or its sharing among the n servers (but is not

privy to the value the T-OPRF is evaluated on).

In more details, in the initialization phase, a set of n servers, denoted SI, are activated at

the discretion of the adversary. The phase is complete when all servers become active. Note

that the set may include adversarial servers, yet the functionality guarantees that all servers

identified in SI become active by the end of the initialization phase. During this phase a

ticket counter associated with the function controlled by the set of servers is initialized, and

so is an empty table implementing the random function shared by the SI servers.

In the evaluation phase, clients connect to an arbitrary set of servers SE chosen by the

adversary and which may arbitrarily overlap with SI (representing the fact that the client

has no memory of who the servers in SI are). When, at the discretion of the adversary, a

server S ∈ SI completes its interaction, the functionality increases the counter tickets(p, S).

Eventually, the adversary can trigger a response to the client which will be the output from

one of the functions recorded by the functionality. Recall that in addition to the proper
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In the description below, we assume that P ∈ {C,A∗}.
Public Parameter: PRF output-length `, polynomial in security parameter κ.
For every server S, initialize tickets(S) to 0.
Initialization

• On (Init, sid ,SI) from S where |SI| = n, ignore this message if S is marked active. Else
mark S as active. Furthermore, if there is no record for SI, pick any previously unused
label p, record 〈SI, p〉 and send (Init, sid , S,SI, p) to A∗.

• On (Init, sid , p) from A∗, check if p is a label that has not been used before, and if so,
record 〈A∗, p〉 and send (Init, sid ,A∗, p) to A∗.

• On (InitComplete, sid ,S) from A∗, retrieve 〈SI, p〉; ignore the message if (i) there is no
such record, or (ii) S 6∈ SI, or (iii) not all servers in SI are marked active. Else send
(InitComplete, sid) to S and mark S initialized.

Evaluation

• On (Eval, sid , ssid ,SE , x) from P where |SE| = t+1, retrieve 〈SI, p〉 (if P = C) or 〈A∗, p〉
(if P = A∗); ignore this message if (i) there is no such record, or (ii) there is a record
〈ssid ,P, ·, ·, ·〉. Else record 〈ssid ,P, p,SE , x〉 and send (Eval, sid , ssid ,P,SE) to A∗.

• On (SvrComplete, sid , ssid ,S) from A∗, retrieve 〈SI, p〉; ignore this message if (i) there is
no such record, or (ii) S 6∈ SI, or (iii) S is not marked initialized. Else set tickets(p,S)++
and send (SvrComplete, sid , ssid) to S.

• On (RcvComplete, sid , ssid ,P, p∗) from A∗, retrieve 〈SI, p〉 and 〈ssid ,P, p,SE , x〉; ignore
this message if there is no such record, or p∗ = p but |{S ∈ SI | tickets(p,S) > 0}| ≤ t.
Else if p∗ = p then set tickets(p,S)−− for any t+1 distinct S ∈ SI such that tickets(p,S) >
0. Finally, send (Eval, sid , ssid , Fp∗(x)) to P (pick Fp∗(x)←R {0, 1}` if undefined).

Figure 3.5: Functionality FTOPRF with parameters (t, n)
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function Fp(·) the adversary can register additional functions Fp∗(·) and may connect an

evaluation request from a client to any such function of its choice.

The security guarantees provided by the T-OPRF functionality are the following: (1) it

enforces the use of the proper function Fp(·) whenever the set of servers SE selected for

an evaluation are all honest; (2) it “charges” t + 1 server tickets for accessing the proper

function Fp(·) by decrementing (non-zero) ticket counters tickets(p, S) for an arbitrary set

of t + 1 servers in SI; and (3) the outputs of all functions F (the proper function Fp(·)

as well as any additional ones set by the adversary with p∗ 6= p) are picked at random,

chosen on demand as the functionality responds back to the client. These guarantees ensure

that at least t− t′ + 1 honest servers from SI need to be contacted for the proper function

to be evaluated once. To see why this is the case, observe that t + 1 tickets are “spent”

(decremented) during evaluation which correspond to at least t− t′ + 1 tickets from honest

ticketing counters. This implies that t+1 servers in SI have registered a SvrComplete message

as this is the only event that triggers a counter increment. In the real world this corresponds

to the event that a server has completed its interaction with a client that attempts to perform

an evaluation.

It is important to highlight that the functionality does not necessarily decrement the ticketing

counters of the servers identified in the chosen evaluation set SE ; rather, it decrements an

arbitrary set of t + 1 non-zero counters for servers in SI. This reflects the fact that the

functionality does not provide any guarantee about the identities of the responding servers.

For instance, this means that we allow for an implementation of T-OPRF where an honest

client C attempts to connect to a set of servers SE1 that are corrupted and its message is

rerouted by the adversary so that, unbeknownst to C, an honest set of servers SE2 becomes

the responder set.

Another important point regarding the T-OPRF functionality is that while it guarantees

correct OPRF evaluation in case the client completes an undisturbed interaction with t+ 1
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honest servers in SI, the ideal adversary may also maintain an arbitrary collection of random

function input-output tables and connect a client to them if desired, as long as the responder

set is not composed of honest servers only. For instance, the adversary can assign to a subset

of corrupted servers connects to. We stress that this does not jeopardize the privacy of the

input value x in any way. At the same time, observe that the randomness requirement

imposed for adversarial function outputs restricts our ability to implement the functionality

to ROM (just as in OPRF).

3.3.2 Generic T-OPRF Construction from Any OPRF

One can use generic Multi-Party Computation (MPC) to convert any OPRF protocol into a

threshold OPRF protocol. The following is a blueprint for a T-OPRF with parameters (t, n)

given an OPRF protocol, a Message Authentication Code (MAC) scheme, and a generic

MPC protocol:

1. Initialization: The initialization runs a (t, n)-threshold MPC for the C-S initialization

protocol of the OPRF, where S’s output state k is replaced by the secret-sharing (k1, . . . , kn)

of k where each Si receives ki. In addition, each pair of servers (Si, Sj) establishes a shared

MAC key Kij.

2. Evaluation: The client C’s evaluation algorithm is as in the underlying OPRF, except

that it broadcasts each message to all servers. However, the server’s evaluation algorithm is

replaced by the following protocol. Let ri be the randomness Si chooses in its first protocol

message. Then in each protocol round p the servers do the following:

(1) S1, . . . , Sn agree on the message a(p) which C sent in this protocol round as follows: For

every i and j, Si sends a MAC on this message using key Kij to Sj. Sj aborts if no server

sends a valid MAC on a(p) to Sj.
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(2) S1, . . . , Sn run a (t, n)-threshold MPC protocol for computing S’s response in p-th round

of the OPRF protocol, given the public input C’s messages a(1), . . . , a(p) and S’s local input

k and r. The local input of Si in this MPC is (ki, ri) where (k1, . . . , kn) is the secret-sharing

of k and r = r1 ⊕ . . . ⊕ rn. The MPC protocol computes S’s response in the p-th round of

the OPRF protocol, and this output is received by C.

When applying this transformation to the OPRF from Figure 3.2 where the only operation

by the server is to raise the value a sent by the client to the power of k, we get a T-OPRF

protocol where each server Si first verifies the MAC’s on value a from all other servers

and then computes an exponentiation aki where k1, . . . , kn is a secret sharing of k. This

is the same protocol as 2HashTDH below except for the added MAC-verification round.

While a round of MAC broadcast would be computationally inexpensive, requiring an extra

round of interaction would make this protocol less practical. However, while less efficient

than 2HashTDH, the security of such generically constructed T-OPRF can be shown based

on the same assumption needed for the base OPRF, namely, Gap OMDH. Note that the

PPSS protocol can be obtained from this T-OPRF, at the same cost and under the same

assumptions, using the T-OPRF-to-PPSS compiler of Section 3.5.

3.3.3 The 2HashTDH Protocol

Here we present our threshold oblivious PRF protocol, 2HashTDH, that instantiates the

FTOPRF functionality. Thus, 2HashTDH provides a secure T-OPRF for use in general

applications and, in particular, as the basis for our PPSS protocol, TOPPSS. The

2HashTDH protocol is formally defined as a realization of FTOPRF in Figure 3.6. In a

nutshell, it is a threshold version of the single-server 2HashDH OPRF protocol from

Section 3.2. The underlying PRF, Fk(x) = H(x,H ′(x)k), remains unchanged, but the key k

is shared using Shamir secret-sharing across n servers, where server Si stores the key share
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Let H(·, ·) and H ′(·) be hash functions with ranges {0, 1}` and G, respectively (modeled as
random oracles).
Initialization

1. On input (Init, sid ,SI) where |SI| = n, S passes this input to FDKG.
On (InitComplete, sid , y, ki) from FDKG, S records 〈SI, y, i, ki〉, marks itself active, and
outputs (InitComplete, sid).

Evaluation

1. On input (Eval, sid , ssid ,SE , x), C picks r ←R Zm and sends a := H ′(x)r to all S ∈ SE .

2. On a from C, Si, provided it is marked active, computes bi := aλiki where λi is a
Lagrange interpolation coefficient for index i and index set SE , sends bi to C and outputs
(SvrComplete, sid , ssid).

3. When C receives bi from all Si ∈ SE , it outputs (Eval, sid , ssid , H(x, (
∏

Si∈SE bi)
1/r)).

Figure 3.6: Protocol 2HashTDH in the FDKG-hybrid model

ki. The initialization of such secret-sharing can be done via a Distributed Key Generation

(DKG) for discrete-log-based systems, e.g., [38], and in Figure 3.6 we assume it is done

with a UC functionality FDKG which we discuss further below.

For evaluation, given any subset SE of t+ 1 servers, the client C sends to each of them the

same message a := H ′(x)r for random r in Zm, exactly as in 2HashDH. If each server

Si ∈ SE returned bi := aki , then C could reconstruct the value ak using standard Lagrange

interpolation in the exponent, i.e., ak =
∏

Si∈SE b
λi
i with the Lagrange coefficients λi

computed using the indexes of servers in SE . After computing ak, the value of Fk(x) is

computed by C by deblinding ak exactly as in the case of protocol 2HashDH. Note that

this takes a single exponentiation for each server and 2 exponentiations for the client (to

compute a and to deblind ak) plus 1 multi-exponentiation for the client to compute the

Lagrange interpolation on the bi values.

We optimize this function evaluation by having each server Si compute bi := aλiki , which costs

1 exponentiation and O(t) multiplications and divisions in Zm to compute λi. (Note that Si

36



must know set SE to compute λi.) This way C can compute ak using only t multiplications

instead of a multi-exponentiation, and the total costs are 1 exponentiation for each Si and 2

exponentiations for C.

Protocol 2HashTDH can be also be seen as a simplification of the protocol resulting from a

generic transformation of any OPRF to T-OPRF using MPC in Section 3.3.2. The server

in 2HashDH computes ak on input a, and the MPC protocol for it is exactly the threshold

exponentiation protocol described above, except that this generic OPRF to T-OPRF

transformation must assure that the servers perform the MPC sub-protocol on the same

input a, and this involves an additional round of server-to-server interaction, which the

2HashTDH protocol avoids.

Our 2HashTDH protocol realizes the UC T-OPRF functionality FTOPRF under the T-OMDH

assumption in ROM. As we will argue in Section 3.3.4, this implies security under OMDH

in ROM in several cases, including the full corruption case, where the adversary corrupts

t′ = t servers, and the additive sharing case, where t = n− 1. Functionality FDKG has well-

known efficient realizations in ROM under the Diffie-Hellman assumption which is implied

by OMDH, and hence also by T-OMDH.

Note on Distributed Key Generation. Protocol 2HashTDH assumes that servers in

SI establish a secret-sharing (k1, . . . , kn) of a random key k over authenticated channels via a

DKG functionality FDKG, shown in Figure 3.7. The DKG sub-protocol for discrete-log based

cryptosystems can be efficiently realized without client’s involvement [38, 74], but if the call to

initialize a T-OPRF instance is executed by an honest client, then the DKG sub-protocol can

be even simpler, because the client can generate sharing (k1, . . . , kn) of k and then distribute

the shares among the servers in SI. Note that since our realizations of FTOPRF pertains

only to the static adversarial model, where the identity of corrupt parties is determined at

the outset, we would not explicitly require that the parties erase the information used in
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• On (Init, sid ,SI) from S where |SI| = n, ignore this message if S is marked active or
S /∈ SI. Else let Corrupted be the subset of SI that is corrupted and t′ := |Corrupted|.
If there is no record for sid , then if t′ ≤ t then pick a0, a1, . . . , at−t′ ←R Zm and
record 〈SI, a0, a1, . . . , at−t′〉; else record SI. Regardless, mark S as active and send
(Init, sid ,S,SI) to A∗.

• On (Init, sid ,SI, s) from a corrupted S ∈ SI, if there is a record for SI, record 〈A∗, S, s〉,
mark S active and send (Init, sid ,A∗, S) to A∗.

• On (InitComplete, sid ,Si) from A∗, retrieve 〈sid ,SI, a0, a1, . . . , at−t′〉; ignore the message
if (i) there is no such record, or (ii) Si /∈ SI, or (iii) not all servers in SI are marked active.
Else send (InitComplete, sid , ga0 , i, si) to Si and (InitComplete, sid , Si, g

a0) to A∗, where
si = p(i) and p(x) is a polynomial whose first t− t′+ 1 coefficients match a0, a1, . . . , at−t′

and p(j) = sj for each j such that Sj ∈ Corrupted and there is a record 〈A∗, Sj , sj〉.

Figure 3.7: Distributed key generation functionality FDKG [74]

initialization, but any implementation should erase such information. In our specification of

protocol 2HashTDH we rely on the FDKG functionality to abstract from any specific DKG

implementation, e.g., whether it is done by the server or by an honest client.

3.3.4 The (Gap) Threshold OMDH Assumption

Additional notations. If |~a| = n and J is a sequence in {1, . . . , n}, then ~aJ denotes the

components of ~a with indices in J , i.e., ~aJ = [ai1 , . . . , aik ]T if J = (i1, . . . , ik).

Let Iw be the set of w-element subsets of {1, . . . , n}, i.e., Iw = {I ⊆ {1, . . . , n} | |I| = w}.

Let W (~a) be the Hamming weight of ~a. Let Vw be the set of n-bit binary vectors ~q such

that W (~q) = w, i.e., Vw = {~v ∈ {0, 1}n | vi = 1 iff i ∈ Iw}. For ~q = [q1, . . . , qn]T define

Cw(~q) as the maximum integer m for which there exist ~v1, . . . , ~vm ∈ Vw (not necessarily

distinct) such that ~v1 + . . .+~vm ≤ ~q. In other words, Cw(~q) is the maximum number of times

one can subtract elements in Vw from ~q such that the result remains ≥ ~0. For example, if

~q = [3, 3, 4]T then C2(~q) = 5 because ~q = 2× [1, 0, 1]T + [1, 1, 0]T + 2× [0, 1, 1]T .
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T-OMDH intuition. Let G be a cyclic group of prime order m > n. The T-OMDH

assumption considers the setting where a random exponent k ∈ Zm is secret-shared using a

random t-degree polynomial p(·), and the n trustees holding shares k1 = p(1), . . . , kn = p(n)

implement a “threshold exponentiation” protocol which computes ak for any given a ∈ G

and k = p(0). Let T-OMDHp(·, ·) be an oracle which on input (i, a) ∈ {1, . . . , n} × G

outputs ap(i). The standard way to implement threshold exponentiation is to choose a set

I ∈ It+1, compute bi = T-OMDHp(i, a) = aki for each i in I and derive ak as
∏

i∈I b
λi
i using

Lagrange interpolation coefficients λi such that k =
∑

i∈I λiki. The T-OMDH assumption

states that querying oracle T-OMDHp(·, ·) on at least t + 1 different points i ∈ {1, . . . , n}

is necessary to compute ap(0) for a given random challenge a. More generally, T-OMDH

considers an experiment where the attacker A receives a challenge set S = {g1, . . . , gN} of

random elements in G and is given access to the T-OMDHp(·, ·) oracle for random t-degree

polynomial p. T-OMDH assumption states that A can compute gkj for k = p(0) for no more

than Ct+1(q1, . . . , qn) elements gj ∈ S, where qi is the number ofA’s queries to T-OMDHp(i, ·).

The above intuition and Definition 1 below correspond to the setting where the attacker

does not control any of the trustees holding shares of p, hence it needs t + 1 queries to

T-OMDHp(·, ·) to compute ap(0) for each random challenge a. Later we extend this definition

to the case where A controls a subset of trustees.

Definition 1. The (t, n,N,Q)-Threshold One-More Diffie Hellman (T-OMDH) assumption

holds in group G of prime order m if the probability of any polynomial-time adversary A

winning the following game is negligible:

A, on input S = {g1, . . . , gN} where gi ←R G for i ∈ {1, . . . , N}, is given access to an oracle

T-OMDHp(·, ·) for a random t-degree polynomial p(·) over Zm. A wins if it outputs gkj where

k = p(0) for Q + 1 different elements gj ∈ S, and if Ct+1(q1, . . . , qn) ≤ Q where qi is the

number of A’s queries to T-OMDHp(i, ·).
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Note that the (N,Q)-OMDH assumption [9, 47] is the (t, n,N,Q)-T-OMDH assumption for

t = 0 and any n ≥ 1, because then p(·) is a constant polynomial and C1(~q) = W (~q), i.e., the

total number of A’s T-OMDHp(·, ·) queries.

T-OMDH: the general case. In its general form, the T-OMDH assumption corresponds

to computing gkj if some subset of t′ ≤ t trustees holding shares ki = p(i) is corrupt, and

hence the adversary can not only learn these shares but can also set them at will.

Definition 2. The (t′, t, n,N,Q)-T-OMDH assumption holds in group G of prime order m

if for any Bad ⊆ {1, . . . , n} such that |Bad| = t′ ≤ t, the probability of any polynomial-time

adversary A winning the following game is negligible:

A, on input S = {g1, . . . , gN} where gi ←R G for i ∈ {1, . . . , N}, specifies a set of t′

values {αj}j∈Bad in Zm. A random t-degree polynomial p(·) over Zm is then chosen subject

to the constraint that p(j) = αj for j ∈ Bad, and the adversary A is given access to oracle

T-OMDHp(·, ·). A wins if it outputs gkj where k = p(0) for Q+1 different elements gj ∈ S, and

if Ct−t′+1(q1, . . . , qn) ≤ Q where qi for i /∈ Bad is the number of A’s queries to T-OMDHp(i, ·),

and qi = 0 for i ∈ Bad.

Note that (t′, t, n,N,Q)-T-OMDH is identical to (t, n,N,Q)-T-OMDH for t′ = 0.

Gap T-OMDH. In order to prove the security of T-OPRF, we need to extend the T-

OMDH assumption stated in Definition 2 to its “gap” form, i.e., suppose G is a gap group

where A is in addition given access to the DDH oracle in G.

Definition 3. The (t′, t, n,N,Q)-Gap T-OMDH assumption is the T-OMDH assumption of

Definition 2, except that A is also given access to the DDH(·, ·, ·, ·) oracle in group G, which

on input (a, b, c, d) ∈ G4 outputs 1 if loga b = logc d and 0 otherwise.
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In Theorem 12 in Appendix A we show that the (t, t′, n,N,Q)-(Gap )T-OMDH assumption

holds in the generic group model for any (t′, t, n). Specifically, the advantage of a T-OMDH

adversary restricted to r generic group operations is upper-bounded by O(Qr2/m), assuming

r ≥ Q ≥ N . This is larger by factor Q from the O(r2/m) upper-bounds on generic group

attacks against many static problems related to discrete logarithm [71], and this weakening

is caused by the presence of up to Q-degree polynomials of the “target” secret k = p(0) in

the representation of the group elements which the adversary can compute given access to

T-OMDHp(·, ·) using the query pattern ~q = [q1, . . . , qn]T such that Ct−t′+1(~q) ≤ Q. Since

(N,Q)-OMDH is equivalent to (t′, t, n,N,Q)-T-OMDH for (t′, t) = (0, 0) and any n, the

same upper-bound applies to OMDH, and to the best of our knowledge this is the first

generic model security hardness argument for the OMDH (or Gap OMDH) assumption.

T-OMDH = OMDH in full corruption and additive sharing cases. The T-OMDH

and OMDH assumptions are equivalent in two important cases, namely the full corruption

case of t′ = t, for any (t, n), and in the additive sharing case of t = n − 1, for any t′. The

following two theorems relate the non-gap versions of T-OMDH and OMDH, but equivalent

statements hold for the gap versions of these assumptions as well.

Theorem 2. The (t′, t, n,N,Q)-T-OMDH assumption is equivalent to the (N,Q)-OMDH

assumption for t′ = t.

Proof. If t′ = t, then the bound Ct−t′+1(~q) on Q simplifies to
∑

i 6∈Bad qi, i.e., the bound on

the number of gj’s for which A can compute g
p(0)
j is the total number of A’s queries to

non-corrupted trustees.

LetA be an adversary against the (t, t, n,N,Q)-T-OMDH assumption making a total number

of Q =
∑

i 6∈Bad qi queries, for some t-element set Bad = {α1, . . . , αt} and an assignment

F : Bad → Zm of shares of corrupt trustees. Note that k, Bad and F define a unique
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t-degree polynomial p(·) such that p(0) = k and p(α) = F (α) for all α ∈ Bad. For any

i ∈ {1, . . . , n} \ Bad, let λi,0, . . . , λi,t be the Lagrange coefficients such that p(i) = λi,0p(0) +∑t
j=1 λi,jp(αj). We construct a reduction R which solves the (N,Q)-OMDH problem as

follows:

R, on input S = {g1, . . . , gN}, passes it to A. On F : Bad → Zm and A querying

T-OMDHp(i, a), R queries ak to compute b = ak, and returns b′ = bλi,0 · aλi,1F (α1)+...+λi,tF (αt)

to A. Finally, R copies A’s output.

We can see that R consistently answers A’s queries to T-OMDHp(·, ·) for the unique t-degree

polynomial p(·) such that p(0) = k and p(α) = F (α) for α ∈ Bad. Hence in particular if A

wins, i.e., its output includes g
p(0)
j for at least Q+ 1 of gj’s, then R solves the (N,Q)-OMDH

problem on S. We have that

AdvOMDH,G
R ≥ AdvT−OMDH,G

A ,

so

AdvT−OMDH,G
A ≤ AdvOMDH,G

R ,

which is a negligible function of κ.

Theorem 3. The (t′, t, n,N,Q)-T-OMDH assumption is equivalent to the (N,Q)-OMDH

assumption for n = t+ 1.

Proof. If n = t + 1, then shares ki = p(i) for i ∈ {1, . . . , n} \ Bad are uniformly random in

Zm, and p(0) =
∑n

i=1 λip(i) for known constants λi. Note also that Cn−t′(~q) = mini 6∈Bad qi,

i.e., the bound on the number of gj’s for which A can compute g
p(0)
j is the minimal number

of queries the adversary makes to an uncorrupted trustee.

Let A be an adversary against the (t′, t, n,N,Q)-T-OMDH assumption for n = t+1, making

qi queries to the uncorrupted trustee i 6∈ Bad such that mini 6∈Bad qi ≤ Q, for some t′-element
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subset Bad ⊆ {1, . . . , n} and an assignment F : Bad→ Zm of shares of corrupt trustees. We

construct a reduction R which solves the (N,Q)-OMDH problem using A as follows:

R, on input S = {g1, . . . , gN}, passes it to A. R picks i∗ ←R ({1, . . . , n} \ Bad) (a guess

of the index of the trustee whom A will query the least), picks shares ki ←R Zm for i ∈

{1, . . . , n} \ (Bad ∪ {i∗}) and sets ki := F (i) for i ∈ Bad. On A querying T-OMDHp(i, a),

if i 6= i∗, R returns aki to A; if i = i∗, R queries ak to compute b = ak, and returns

(b·a
∑

i 6=i∗ λiki)1/λi to A. Finally, R copies A’s output.

We can see that R consistently answers A’s queries to T-OMDHp(·, ·) for the random (n−1)-

degree polynomial p such that p(0) = k and p(i) = F (i) for i ∈ Bad. IfR’s guess i∗ is correct,

then it makes at most mini qi = Q queries to (·)k, and if A wins, i.e., it computes g
p(0)
j = gkj

for at least Q+ 1 of gj’s, then R solves the (N,Q)-OMDH problem on S. We have that

AdvOMDH,G
R ≥ 1

n
·AdvT−OMDH,G

A ,

so

AdvT−OMDH,G
A ≤ n ·AdvOMDH,G

R ,

which is a negligible function of κ.

T-OMDH vs. OMDH for General Threshold Parameters. It is less clear how to

relate the T-OMDH and OMDH problems for any t′ and t, in the case that t′ < t, and

t < n− 1. Consider a specific case that t′ = 0 and n = 2(t+ 1). Adversary A breaks the T-

OMDH assumption if, for example, it computes gkj on 2s+1 challenges after making s queries

to T-OMDHp(i, ·) for each i ∈ {1, . . . , n} where k = p(0) and ki = p(i) for i ∈ {1, . . . , n}.

(Note that if ~q = [s, . . . , s]T and n = 2(t + 1) then Ct+1(~q) = 2s, hence computing gkj on

2s + 1 challenges breaks the assumption.) It is not clear how an efficient reduction R can

break the OMDH problem given access to A, because R would seemingly have to satisfy the
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following constraints: (1) R would have to make only 2s queries to (·)k, but it would have to

service s queries to T-OMDHp(i, ·) for each i, i.e., ns queries to T-OMDHp(·, ·) in total, and

n = 2(t + 1) ≥ 4; (2) R would presumably need to equate secret k in its OMDH challenge

with value p(0) in the T-OMDH challenge; (3) R would presumably need to answer each

T-OMDHp(i, ·) query consistently, i.e., R has to reply to T-OMDHp(i, a) with aki for some

fixed vector of exponents ~k = [k1, . . . , kn]T , because otherwise A can distinguish interaction

with R from the real security game by checking if T-OMDHp(i, a)r = T-OMDHp(i, a
r). Since

ar and a are independent group elements for r ←R Zm, it is not clear how R could detect

A’s queries which are designed to test if R responds to A’s T-OMDHp(i, ·) queries with

consistent answers; (4) Finally, values (k1, . . . , kn) = (p(1), . . . , p(n)) would need to satisfy

linear constraints imposed by the polynomial of degree t < n− 1, because A could test

that R’s responses to T-OMDHp(·, ·) queries satisfy these constraints, similarly as described

above. Conditions (2)-(4) can be met e.g., if R picks ki = p(i) at random for i = 1, . . . , t,

and sets p(i) for i > t as a linear function of k = p(0) and these first t values of p(·). But

then it is not clear how R could reply to any T-OMDHp(i, ·) query for i > t without querying

(·)k, thus making (n− t)s = (t+ 2)s > 2s queries to (·)k, violating condition (1).

3.3.5 Security Analysis of 2HashTDH

Theorem 4 below states that protocol 2HashTDH of Figure 3.6 is secure under the T-OMDH

assumption in ROM. According to Theorem 2 from Section 3.3.4, Theorem 4 also implies

that 2HashTDH is secure under the OMDH assumption in ROM in the full corruption case

of t′ = t. Also, note that Theorem 1 is equivalent to Theorem 4 in the special case of

(t′, t, n) = (0, 0, 1).

Theorem 4. Suppose that the (t′, t, n,Q + qH′ , Q)-Gap T-OMDH assumption holds for

(G, g,m), where Q is the number of Eval messages sent to C, qH′ is the number of H ′(·)

queries and t′ < t is the number of corrupted servers in SI. Then protocol 2HashTDH in
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Figure 3.6 realizes functionality FTOPRF with parameters (t, n) in the FDKG-hybrid world in

ROM.

Proof. We only provide a proof sketch. Let N = Q + qH′ . The simulator SIM is shown in

Figure 3.8. To keep notation brief we denote functionality FTOPRF as F .

Similar to the argument for Theorem 1, we conclude that if fail does not occur, Z’s view in

the real world and the simulated world are indistinguishable. Now we upper-bound Pr[fail].

For every sid , we reduce Pr[fail] for this sid to the (t′, t, n,N,Q)-Gap T-OMDH problem in

(G, g,m). The reduction, R, is shown in Figure 3.9. It follows that we can bound Pr[fail]

using qT hybrids, where qT denotes the number of sid ’s in total.

The reduction R, given (Q, g1, . . . , gN), simulates the UC execution, until the moment that

it produces the special private output (~F , σ). Observe that at this moment no T-OMDHp(·, ·)

queries have been issued. R appends to σ the random coins of Z up until this moment and

produces (~F , σ) as the output. In the second stage R receives σ as the input and is thus

capable of continuing the UC execution while enjoying now access to the T-OMDHp(·, ·) with

a polynomial p(·) which is suitably defined based on the corrupted servers’ values. In this

way the oracle queries of SIM can be served using the access that R has to the T-OMDHp(·, ·)

and DDH(·, ·, ·, ·) oracles. Finally, R outputs (J,V ) so that for each pair (gd, b) recorded in

the special output tape of SIM, J contains d and b is included in V (in case no pairs are

found R fails).

We finally argue that R′ will break the T-OMDH assumption with the same probability of

success as the fail event. Recall that Event fail occurs in the first case of step 9, when SIM

sends a (RcvComplete, sid , ssid ,A∗, p) message to F but it is ignored. This can happen only

if |{S | tickets(p, S) > 0}| ≤ t, i.e., there are not enough servers with positive ticket counters.

We can see the following two facts:
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1. Pick r1, . . . , rN ←R Zm and compute g1 := gr1 , . . . , gN := grN . Set counter D := 1.

2. On A making a fresh query H ′(x), answer it with gD and record (x, rD, gD). After that,
set D++.

3. On (Init, sid , S,SI, p) from F , if there is no record for SI, pick k ←R K, record
〈S,SI, p, k〉, compute z := gk and record (p, z). Regardless, mark S active and send
(Init, sid ,S,SI) to A as a message from FDKG.

4. On (Init, sid ,SI, s) from a corrupted S∗ ∈ SI aimed at FDKG, if there is a record for SI,
record 〈A,S∗, s〉, mark S∗ active and send (Init, sid ,A,S∗) to A.

5. On (InitComplete, sid , S) from A aimed at FDKG, retrieve 〈S,SI, p, k, z〉; ignore this
message if (i) there is no such record, or (ii) S /∈ SI, or (iii) not all servers in SI
are marked active. Else if there is no record 〈SI, k1, . . . , kn〉, create it by setting
ki := p(i) for each Si ∈ SI where p(·) is a random polynomial subject to the restriction
p(i) = si for each record of the form 〈A, Si, si〉. Regardless, record 〈Si,SI, i, ki〉 and send
(InitComplete, sid ,S) to FTOPRF.

6. On (Eval, sid , ssid ,C,SE) from F , record 〈ssid ,C,SE , rD, gD〉 and send (SE , gD) as a
message to each S ∈ SE . After that, set D++.

7. On (SvrComplete, sid , ssid , Si) from F and (SE , a) from A as some client C’s message
to server Si, retrieve 〈Si,SI, i, ki〉 (ignore this message if there is no such record or if
SE * SI), compute interpolation coefficient λi corresponding to index i and set SE and
send aλiki to A as Si’s response to C.

8. As soon as bi for all S ∈ SE defined in a record 〈ssid ,C,SE , rd, gd〉 have been received
from A, compute b :=

∏
S∈SE bi and find record (p, z) such that b = zrd . If there is

no such record, choose a unique label p, record (p, b1/rd) and send (Init, sid ,A∗, p) to
FTOPRF. Regardless, send (RcvComplete, sid , ssid ,C, p) to FTOPRF.

9. On A making a fresh query H(x, u),

(a) If there is a record (x, rd, gd), find record (p, z) such that u = zrd . If
there is no such record, choose a unique label p, record (p, u1/rd) and send
(Init, sid ,A∗, p) to F . Regardless, choose a new unique label ssid , send
(SvrComplete, sid , ssid , S∗) for the t′ corrupted servers S∗, (Eval, sid , ssid , (A∗)t+1, x)
and then (RcvComplete, sid , ssid ,A∗, p) to F .
If F ignores this message, output fail and abort.
Else on F ’s response (Eval, sid , y), set H(x, u) := y.

(b) Else pick H(x, u)←R {0, 1}`.

Figure 3.8: The simulator SIM for the 2HashTDH protocol
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On input (Q, g1, . . . , gN ) as an instance of the (t′, t, n,N,Q)-Gap T-OMDH problem in (G, g,m),
R runs the code of the simulator SIM, with the following changes:

• In step 1, only set D := 1 and omit all other processes.

• In step 2 and step 6, use the challenges instead of random elements in G as g1, . . . , gN .
Furthermore, since there is no rd, only record (x, gd) in step 2 and 〈ssid ,C,SE , gd〉 in step
6.

• In step 3, omit the choice of k and only record 〈S,SI, p〉. Furthermore, for all honest
server Si, set qi := 0.

• In step 4, on (Init, sid ,SI, s) from server Si which is marked active, add s to the i-th
location of the ~F vector. When ~F has all corrupted, t′ in number, locations complete,
set σ to the complete view of SIM so far and generate (~F , σ) in a special (private) output
tape.

• In step 5, in the case that there is no record 〈SI, k1, . . . , kn〉, query T-OMDHp(0, g) to
compute gk, retrieve 〈S,SI, p〉 and record (p, g, gk).

• In step 7, query T-OMDHp(i, a) to compute ki for honest server Si. Set qi++.

• In step 8, as soon as bi for all S ∈ SE defined in a record 〈ssid ,C,SE , gd〉 have been
received from A, compute b :=

∏
S∈SE bi, record (gd, b) and find record (p∗, g∗d, b

∗) such
that DDH(gd, b, g

∗
d, b
∗). If there is no such record, choose a unique label p∗ and record

(p∗, gd, b). Regardless, send (RcvComplete, sid , ssid ,C, p∗) to F .

• In case (a) of step 9 (i.e., there is a record (x, gd)), find record (p∗, g∗d, b
∗) such that

DDH(gd, u, g
∗
d, b
∗). If there is such a record, record (gd, u). If there is no such record,

choose a unique label p∗. After that, proceed as SIM.
Finally, if fail(S̃) occurs, output the set of all underlined recorded pairs.

Figure 3.9: The reduction R to the Gap T-OMDH problem (for a single sid)
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• Every time the T-OMDHp(i, ·) oracle is queried (in step 7), there is a

(SvrComplete, sid , ssid , Si) message, so tickets(p, Si) increments.

• Every time tickets(p, Si) decrements (in step 8 and step 9), a pair (gd, g
k
d) is recorded

(as underlined).

Therefore, let Q be the total number of T-OMDHp(·, ·) queries made byR, which corresponds

to the number of (SvrComplete, sid , ssid , Si) messages, and Q′ be the total number of triples

recorded. Event fail suggests that Q′ has exceeded Ct−t′+1(~q), violating the Gap T-OMDH

assumption.

3.4 UC Security Definition of PPSS

Password-Protected Secret Sharing (PPSS) was defined in [8] as (password-protected)

secret-sharing of an arbitrary message and re-defined in [43] as protecting a random key.

Both definitions are in the game-based setting. Here we define a UC notion of PPSS as a

secure realization of an ideal PPSS functionality FPPSS presented in Figure 3.10. The PPSS

functionality we define is weaker than the UC PPSS functionality of [22] (called T-PASS

therein), since it obviates the need for extracting malicious clients’ inputs at the time the

PPSS reconstruction protocol takes place. In order to avoid requiring such online input

extraction we use a “ticketing mechanism” which is similar to the one we use in the UC

definition of OPRF in Section 3.2. We believe that any protocol that realizes the T-PASS

functionality of [22] should also realize our functionality FPPSS of Figure 3.10; however, our

functionality can also be implemented by a much more lightweight protocol that most likely

do not realize the T-PASS functionality of [22]. Functionality FPPSS we propose has three

interfaces, initialization, reconstruction, and password test, on which we elaborate below.

The initialization command Init represents a client with a unique username, represented by
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For every server S, initialize tickets(S) to 0; initialize tested(pw) to ∅.
Initialization

• On (Init, sid ,SI, pw) where |SI| = n from C, if this is the first Init message for sid ,
pick K ←R {0, 1}κ, record 〈Init,C,SI, pw〉 and send (Init, sid ,C,SI) to A∗. Also, if
|SI ∩ CorrSrv| ≥ t+ 1, then send (K, pw) to A∗.

• On (SvrInit, sid ,S) from A∗, if there is a record 〈Init,C,SI, pw〉 and S ∈ SI, then mark
S as active and send (SvrInit, sid) to S.

• On (CltInit, sid) from A∗, if there is a record 〈Init,C,SI, pw〉 and all servers in SI are
marked active, then augment the record to 〈Init,C,SI, pw,K〉 and send (CltInit, sid ,K)
to C.

Reconstruction

• On (Rec, sid , ssid ,SR, pw′) where |SR| = t+ 1 from C′, if this is the first Rec command
for ssid , retrieve 〈Init,C,SI, pw,K〉, record 〈Rec, ssid ,C′,SI,SR, pw, pw′〉 and send
(Rec,C′, sid , ssid ,SR) to A∗.

• On (SvrRec, sid , ssid , S) from A∗, if S is marked active, then set tickets(S)++ and send
(SvrRec, sid , ssid) to S.

• On (CltRec, sid , ssid ,SC, flag, pw∗,K∗) where |SC| = t + 1 from A∗, if there is a record
〈Rec, ssid ,C′,SI,SR, pw, pw′,K〉 such that SR \ CorrSrv ⊆ SC and tickets(S) > 0 for all
S ∈ SC, then set tickets(S)−− for all such S and do:

– If pw′ = pw ∧ SC ⊆ SI ∧ (flag = 1 ∨ SR ∩ CorrSrv = ∅), then set Res := K.

– If pw′ = pw∗ ∧ SC ⊆ CorrSrv ∧ flag = 2, then set Res := K∗.

– Else set Res := fail.

Finally, send (CltRec, sid , ssid ,Res) to C′.

Password Test

• On (TestPwd, sid ,Si, pw∗) from A∗, ignore this message if tickets(Si) = 0. Else set
tested(pw∗) := tested(pw∗) ∪ {Si} and tickets(Si)−−, retrieve 〈Init,C,SI, pw,K〉, and
if |SI ∩ (tested(pw∗) ∪ CorrSrv)| ≥ t + 1, then return K to A∗ if pw∗ = pw and fail
otherwise.

Figure 3.10: Functionality FPPSS for parameters (t, n)
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sid , at some network entity C initializing a PPSS instance with a set of n servers SI =

{S1, . . . , Sn} on input a password pw. The servers in SI become activated for this instance,

provided that the ideal-world adversary A∗ agrees by sending command SvrInit, and if all

servers in SI are activated the instance generates a random secret K output by C if A∗ agrees

by sending command CltInit. (In the real protocol this corresponds to adversary forwarding

protocol messages correctly.) If set SI contains t + 1 corrupted servers then A∗ receives

(pw, K), which corresponds to C creating a PPSS among n servers of whom more than t are

corrupted, at which point a (t, n)-threshold secret-sharing no longer protects its secrets.

The reconstruction command Rec represents a client at a potentially different network entity

C′ attempting to recover the secret initialized above using password pw′, which might or might

not equal to pw above. The reconstruction operation is directed to some set of t+ 1 servers

SR, which might or might not overlap with set SI above. It is important to emphasize that

the client maintains no state between the initialization and the reconstruction operations

except for memorizing password pw (and username sid), although a failure to remember pw

correctly is also allowed, and it is modeled by setting pw′ 6= pw. In particular, the client might

connect to a different set of servers in the initialization and in the reconstruction. Hence,

for example, if a client falls prey to a phishing attack, she could execute the reconstruction

protocol with servers SR such that SR ∩ SI = ∅ and all servers in SR are corrupted.

However, by the rules of the FPPSS functionality which we explain below, the worst thing

that can happen in this case is the inevitable online guessing attack: The adversary can

execute the reconstruction protocol on behalf of the corrupt servers SR for some chosen

password pw∗ and secret key K∗, and in the case pw∗ = pw it would cause C to reconstruct

K∗ instead of K (or ⊥).

SvrRec and CltRec commands control the view of the reconstruction protocol by the servers

and the client in a similar way as in the Init above, but with some significant differences.

First, C’s sessions with any corrupt server in SI can be “routed” by A∗ to any other server,
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hence in CltRec command A∗ specifies a set SC of servers who effectively participate in

this reconstruction, with the only constrain that SC must contain all uncorrupted servers in

SI. Secondly, client’s completion can result in two different outcomes (in addition to failure

which A∗ can except in the case when pw′ = pw and SR contains only uncorrupted servers

in SI): The default case is that the reconstruction works and C′ outputs key K created

in the initialization, which happens when pw′ = pw, i.e., C′ ran on the correct password,

SC ⊆ SI, i.e., C′ connected to servers participating in the initialization, and there were

either no corrupt servers in the set SR with which C′ attempted the reconstruction, or,

if some of those servers are corrupted, A∗ still allowed the protocol to succeed by setting

the flag variable to 1. Another case is when C′ connected only to corrupt servers (and A∗

does not route these connections to uncorrupted servers, hence we require not only that

SR ⊆ CorrSrv but also that SC ⊆ CorrSrv, which is stronger because SR \ CorrSrv ⊆ SC),

because such reconstruction session offers A∗ an ability to perform an online guessing attack

on the client, i.e., A∗ can specify its password guess pw∗ and, in case pw∗ = pw, cause C′ to

output any value K∗ specified by A∗. Indeed, a PPSS protocol which, like ours, does not

assume any other source of client’s security apart of the password, and in particular does

not assume PKI for security, cannot offer stronger protection in the case the client executes

the protocol with an adversary who guesses her password.

Finally, the test password command TestPwd lets the adversaryA∗ perform an online guessing

attack on the servers, i.e., specify a password guess pw∗ and a set S of at least t+ 1 servers

in SI, and learn key K if pw∗ = pw. However, FPPSS allows such guessing attack to proceed

only if A∗ engages the servers in S in reconstruction protocol instances for username sid ,

as represented by SvrRec commands. Every time such command is issued for some server

S, functionality FPPSS increments a ticket counter tickets(S), and the adversary can make

a password guess only tickets(S) > 0 for all S ∈ S, and the counters of serves in S are

decremented as result of such password-testing attempt. Since a PPSS server cannot tell if

a reconstruction protocol instance is originated by an honest client or by the adversary, any
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such reconstruction session can be used either for completion of honest client reconstruction

instances or for instances executed by the adversary. However, the ticket-counting mechanism

of FPPSS enforces that any PPSS instance completed by t + 1 can be “used up” either for

a single instance of the honest client reconstructing its secret or for a single instance of an

adversary who attempts the reconstruction on a guessed password pw∗.

3.5 TOPPSS: A PPSS Protocol Based on T-OPRF

In Figure 3.11 we show a compiler which converts a T-OPRF protocol which realizes the UC

T-OPRF notion in Section 3.3 into a PPSS protocol, called TOPPSS, which realizes the UC

PPSS functionality FPPSS in Section 3.4.

Overview. To explain the mechanics of TOPPSS based on the T-OPRF functionality, it

is instructive to compare it to the OPRF-based PPSS protocol of [43]. In that protocol

each server holds its own independently random key ki for an OPRF F . At initialization,

the secret to be protected is processed with a (t, n) secret sharing scheme and each share is

stored at one of n servers, where server Si stores the i-th share encrypted under Fki(pw). At

reconstruction, the client receives the encrypted shares from t+ 1 servers which it decrypts

using the values Fki(pw) that it learns by running the OPRF on pw with each of these servers.

By contrast, in our TOPPSS protocol, which is T-OPRF-based, the (random) secret to be

protected is defined as a single PRF value v = Fk(pw) where k is a key secret-shared as

part of a T-OPRF protocol. This provides a significant performance gain by reducing the

number of exponentiations performed by the client from t+2 to just 2. In the protocol of [43]

implemented with 2HashDH, the client computes the OPRF sub-protocol with each server

independently, which involves one blinding operation re-used across all servers, but requires

one de-blinding operation per server for a total of t+ 2 exponentiations. By contrast, in the

52



Let H(·) be a hash function with range {0, 1}2κ (modeled as a random oracle).
Initialization (assume an authenticated channel)

1. On input (Init, sid ,SI, pw), C sends SI to all S ∈ SI.

2. On SI from C, S sends (Init, sid ,SI) to FTOPRF.
On FTOPRF’s response (InitComplete, sid), S sends done to C.

3. On done from all S ∈ SI, C sends (Eval, sid , 0,SE , pw) to FTOPRF for any SE ⊆ SI where
|SE| = t+ 1.
On FTOPRF’s response (Eval, sid , 0, v), C parses H(v) as [C||K] and sends C to all S ∈ SI.

4. On C from C, S records C, sends ack to C and outputs (SvrInit, sid).

5. On ack from all S ∈ SI, C outputs (CltInit, sid ,K).

Reconstruction

1. On input (Rec, sid , ssid ,SR, pw′), C sends (Eval, sid , [1||ssid ],SR, pw′) to FTOPRF.

2. On (SvrComplete, sid , [1||ssid ]) from FTOPRF, if S holds record C, then it sends C to C
and outputs (SvrRec, sid , ssid).

3. On FTOPRF’s response (Eval, sid , [1||ssid ], v′) and C ′ from all S ∈ SR, C outputs
(CltRec, sid , ssid ,Res) where Res is defined as follows:

• If each message contains C ′ such that [C ′||K ′] = H(v′), then C sets Res := K ′.

• Else C sets Res := fail.

Figure 3.11: The TOPPSS protocol in the FTOPRF-hybrid world
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T-OPRF protocol 2HashTDH the client performs a single blinding and de-blinding, hence

just 2 exponentiations, regardless of the number of servers and threshold t.

Note that the T-OPRF functionality allows the client to evaluate function Fk(·) on the

client’s password pw, without leaking any information about pw, but it does not let the

client verify whether the function is computed correctly. Indeed, following the rules of

functionality FTOPRF, either corrupt servers or a man-in-the-middle adversary could make

the client compute Fk(pw) on key k of its choice. If the dictionary D from which the client

draws her password is small, the adversary can potentially pick k such that function Fk(·)

behaves on domain D in some ways the adversary can exploit (e.g., reducing the number of

possible outputs). However, since FTOPRF assures that Fk(·) behaves like a random function

for all k’s, even for k’s chosen by the adversary, it suffices to include a commitment to the

master secret v = Fk(pw) in the information that the servers send to the client, so that the

client can verify its correctness. The adversary can still pick k but if Fk(·) is pseudorandom

for all k then the adversary cannot change either k or v without guessing pw. Note that the

randomness for verifying this commitment must be derived from the committed plaintext

Fk(pw) itself as this is the only value the client can retrieve using its only input pw. Although

this mechanism requires the commitment scheme to be deterministic, the hiding property of

the commitment is still satisfied thanks to the pseudorandomness of the committed plaintext

v = Fk(pw) (and assuming no more than t corruptions).

Since our realizations of FTOPRF, protocol 2HashTDH, requires the ROM for hash functions

in the security analysis, we implement this commitment simply with another hash function

modeled as a random oracle. Finally, since the client needs to verify the master-secret v as

well as to derive a key K from it, we implement both operation using a single hash function

call, i.e., we set [C||K] to H(v) where H(·) hashes onto strings of length 2κ.

Theorem 5. Protocol TOPPSS in Figure 3.11 realizes functionality FPPSS in the FTOPRF-

hybrid world in ROM.
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For every index p and every server S, initialize tickets(p,S) to 0; initialize counter to 0.
Initialization

1. On (Init, sid ,C,SI) from F where |SI| = n, if this is the first Init message for sid , set
counter++, record 〈C,SI, counter〉 and send SI to A as a message from all S ∈ SI. Also,
if FPPSS sends (pw,K), record it.

2. On SI from A as a message from S ∈ SI, mark S active and send (Init, sid ,S,SI, counter)
to A.

3. On (InitComplete, sid ,S) from A aimed at FTOPRF for some S ∈ SI, if there is a record
〈C,SI, counter〉, and all servers in SI are marked active, send done to A as a message
from S.

4. On done A as a message from all S ∈ SI, send (Eval, sid , 0,C,SE) to A for any SE ⊆ SI
where |SE| = t+ 1.

5. On (RcvComplete, sid , ssid ,P, p∗) from A aimed at FTOPRF, retrieve 〈C,SI, p〉; ignore
this message if there is no such record, or p∗ = p but |{S ∈ SI | tickets(p,S) > 0}| ≤ t.
Else pick C ←R {0, 1}κ, augment 〈C,SI, p〉 to 〈C,SI, p, C〉 and send C to A as a message
from C to all S ∈ SI.
Also, if there is a record (pw,K) and Fp(pw) is defined, then set H(Fp(pw)) := [C||K];
else pick K ←R {0, 1}κ.
Furthermore, if p∗ = p, then set tickets(p∗,S)−− for any t + 1 distinct S such that
tickets(p,S) > 0.

6. On C from A for some S ∈ SI, send ack to A and (SvrInit, sid , S) to F .

7. On ack from A as a message from S ∈ SI, mark S completed. As soon as all servers in
SI are marked as completed, send (CltInit, sid ,K) to F .

Figure 3.12: The simulator SIM for TOPPSS in the initialization phase

Proof. For any efficient adversary A against the protocol, we construct a simulator SIM as

in Figure 3.3. To keep notation brief we denote functionality FPPSS as F .

First, note that SIM assigns an H(·) value to a certain string in step 5 in initialization, and

steps 3, 4 and 5 in reconstruction; if there is a conflict in such assignments, that is, when SIM

assigns a value H(·) to a certain string in one of the above four steps, but it was assigned

previously, SIM outputs halt. We show that Pr[halt] is negligible:

• Step 5 in initialization: Here H(Fp(pw)) is set to [C||K] if at least t+ 1 servers in SI
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Reconstruction

1. On (Rec,C, sid , ssid ,SR) from F , record 〈ssid ,C,SR〉 and send (Eval, sid , ssid ,C,SR)
to A.

2. On (SvrComplete, sid , ssid , S) from A aimed at FTOPRF, retrieve 〈C,SI, p〉, set
tickets(p,S)++ and send (SvrRec, sid , ssid , S) to F .

3. On (RcvComplete, sid , ssid ,C, p∗) from A aimed at FTOPRF and C ′ from A as a message
to C from all S ∈ SR, retrieve 〈ssid ,C,SR〉 and 〈C,SI, p〉; ignore this message if (i)
there is no such record, or (ii) all servers in SE are honest but p∗ 6= p, or (iii) p∗ = p
but |{S ∈ SI | tickets(p,S) > 0}| ≤ t. Else if p∗ = p, then set tickets(p∗,S)−− for any
t+ 1 distinct S such that tickets(p,S) > 0, and send (CltRec, sid ,SR, flag, pw∗,K∗) to F
where (flag, pw∗,K∗) is defined as follows:

(a) If not all C ′’s are the same, then set (flag, pw∗,K∗) := (0,⊥,⊥).

(b) Else retrieve 〈C,SI, counter〉. If p∗ = p and C ′ = C, then set (flag, pw∗,K∗) :=
(1,⊥,⊥).

(c) Else for every x such that Fp∗(x) is defined, set v′ := Fp∗(x) and check if C ′ =
HL(v′). If so, then set K ′ := HR(v′) and (flag, pw∗,K∗) := (2, x,K ′) and break the
loop. If there is no such x, then set (flag, pw∗,K∗) := (0,⊥,⊥).

4. On (Eval, sid , ssid ,SE , x) from P ∈ {C,A} and (RcvComplete, sid , ssid ,P, p∗) from A
aimed at FTOPRF, retrieve 〈ssid ,C,SR〉 and 〈C,SI, p〉; ignore this message if there
is no such record, or p∗ = p but |{S ∈ SI | tickets(p,S) > 0}| ≤ t. Else send
(Eval, sid , ssid , Fp∗(x)) to A (pick Fp∗(x) ←R {0, 1}κ if undefined). If p∗ = p, then
also set tickets(p∗,S)−− for any t + 1 distinct S such that tickets(p,S) > 0, add every
S ∈ SE to tested(x) and send (TestPwd, sid ,S, x) to F . If F returns K, then also set
H(Fp∗(x)) := [C||K].

5. Answer A’s H(·) queries via lazy sampling unless described in previous steps. If there is
a conflict in the assignment of H(·) values, output halt and abort.

Figure 3.13: The simulator SIM for TOPPSS in the reconstruction phase
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are corrupted. Suppose in this step H(Fp(pw)) is already assigned to another value (i)

in step 3 in reconstruction: according to the syntax of FPPSS, reconstruction cannot be

proceeded before initialization, so this is impossible. (ii) in step 4 in reconstruction: if

step 4 in reconstruction is proceeded before step 5 in initialization, there is no C found,

and SIM will ignore C∗ and A’s message. So there will be no assignment. (iii) in step 5

in reconstruction: unless and until A queries Fp(pw), Fp(pw) is a random string in

{0, 1}κ in Z’s view, so the probability that Z queries H(Fp(pw)) is at most 1/2κ. Once

Z queries Fp(pw) (note that this query can be done only in step 4 in reconstruction),

this case transfers to case (ii).

• Step 4 in reconstruction: Here H(Fp∗(x)) is set to [C||K] if there are at least t + 1

servers in either tested(x) or the corrupted server subset of SI, and x = pw. Suppose in

this step H(Fp∗(pw)) is already assigned to another value (i) in step 5 in initialization:

note that in step 4 in reconstruction, C and K are exactly the same with those in step 5

in initialization, so there is no possibility of conflict. (ii) in step 3 in reconstruction:

in this step, the computation of Fp∗(pw) may occur in case (c), where Fp∗(pw) is

already defined. However, Fp∗(pw) can be defined only through querying it in step 4 in

reconstruction, and once it is queried, Fp∗(pw) will be assigned to [C||K] immediately.

Therefore, it is impossible that SIM needs to set Fp∗(pw) to some value after it has

already been assigned in step 3 in reconstruction. (iii) in step 5 in reconstruction:

similar to case (iii) in the bullet above, in this case fail occurs with probability at most

1/2κ.

• Steps 3 and 5 in reconstruction: These two cases are trivial, since here H(·) is assigned

to a certain value only if it has not been set previously; that is, there is no possibility

that H(·) is assigned again after it has been assigned to another value.

Below we assume that halt does not occur.
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We now show that the distinguishing advantage of Z between the real world and the

simulated world is negligible. As before, the argument uses a sequence of games, starting

from the real world and ending at the simulated world.

G0 is the real world and shown in Figure 3.14, where we make a number of simplifications

explained below:

• For all messages input from and output to Z, the names of them (e.g., Init and Rec)

and session IDs (i.e., sid and ssid) are omitted.

• There is no difference between the real world and the simulated world regarding done,

ack (sent from S to C in initialization), and (SvrRec, sid , ssid) (output by S in

reconstruction), so we omit these messages below.

• Z’s input in FTOPRF queries includes (Eval, sid , ssid ,SE , x) (sent to SIM via A or a

corrupt client C∗) and (RcvComplete, sid , ssid ,P, p∗) (sent to SIM via A). The messages

are ignored if one of the conditions listed as (i), (ii) and (iii) in Figure 3.13 holds;

therefore, if one of those conditions holds, the case is trivial and we do not consider

such cases below. Otherwise the output is computed as Fp∗(pw∗). Therefore, step

8 of SIM is essentially querying the F functions maintained by FTOPRF. Thus, we

simplify the input to the function pointer p and the variable x, and the output to the

function value v = T (p, x), and omit all other messages and entries exchanged among

the participating parties.

• Z’s view in reconstruction includes messages (Rec, [...], pw′) output by C,

(SvrComplete, [...]) output by S, and (RcvComplete, [...], p∗) output by C. As in the

bullet above, if the whole process ends with C outputting either a string K ′ ∈ {0, 1}κ

or fail, then SR is not related to the final result. Therefore, we do not show them

below, and simplify Z’s input to pw′ and C ′. Furthermore, C outputs fail immediately

if it receives two different C ′’s, so this case is trivial. We only consider the other case,
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i.e., all C ′’s are the same, in the games.

Set Fp(·) to a random function with range {0, 1}κ.
Initialization
On inputs SI and pw:

1. Set p to a fresh non-negative integer and compute v := Fp(pw).

2. Output K := HL(v) and C := HR(v).

Reconstruction
On inputs p∗, pw′ and C ′:

1. Set v′ := Fp∗(pw′).

2. Check if C ′ = HL(v′). If so, output K ′ := HR(v′); else output fail.

FTOPRF Queries

On inputs p∗ and x, output Fp∗(x).

Hash Function Queries

On input x, output H(x).

Figure 3.14: Game G0 in the security proof for TOPPSS (simplified)

In G1, reconstruction is proceeded as follows:

• If p∗ = p and C ′ = C (we denote such event as EC below), then output K to Z if

pw′ = pw and fail otherwise.

• Else let X be the set of all x in the dictionary such that Fp∗(x) is queried. Iterate

through all x ∈ X in lexicographic order and perform reconstruction as in G0, except

that pw′ is replaced with x; that is, compute v′ := Fp∗(x), check if C ′ = HL(v′), and if

so,

– If x = pw′, then output K ′ := HR(v′).

– Else output fail.

In either case, break the loop. If the loop ends without a break (i.e., the check does

not pass for every x ∈ X), output fail.
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We compare Z’s views in G1 and G0. Let K ′1 and K ′0 be the output at the end of

reconstruction in G1 and G0, respectively. Let event E be K ′1 6= K ′0.

First, note that if K ′0 = fail, then K ′1 = fail. This is equivalent to if K ′1 6= fail, then K ′0 6= fail.

This is because: (1) If EC occurs and K ′1 6= fail, this means that pw′ = pw, in which case

C = HL(Fp(pw)), so the check in G0 passes; that is, K ′0 6= fail. (2) If EC does not occur and

K ′1 6= fail, then C ′ = HL(T (p∗, pw′)), so the check in G0 passes; that is, K ′0 6= fail. Therefore,

E can only occur when K ′0 6= fail.

Next we break E into several sub-events:

• E1: EC ∧K ′1 6= K ′0.

In this case, pw′ 6= pw must hold (otherwise K ′1 = K ′0 = K where K is the output

in initialization of G1 and G0), and since K ′0 6= fail, the check in G0 passes; that is,

C ′ = C = HL(v′). On the other hand, we know from initialization that C = HL(v).

Note that v′ = Fp(pw′), v = Fp(pw), and pw′ 6= pw; therefore, if E1 occurs, (pw, pw′)

forms a pair of collision of HL(Fp(·)), which is a random function with range {0, 1}κ.

Assuming that there are qC C sub-sessions, there is one pw and qC pw′’s, so we have

that Pr[E1] ≤ qC/2
κ.

• E2: ¬EC ∧ pw′ /∈ X ∧K ′1 6= K ′0.

First consider the case that p∗ = p and pw′ = pw. If so, since K ′0 6= fail, we have

that C ′ = HL(Fp∗(pw′)) = HL(Fp(pw)) = C. However, since EC does not occur and

p∗ = p, C ′ 6= C must hold, which contradicts the former. Therefore, if E2 occurs,

either p∗ 6= p or pw′ 6= pw. In either case, since pw′ /∈ X, that is, Fp∗(pw) is not

queried, Fp∗(pw) is a random string in {0, 1}κ in Z’s view. Thus, for a single C ′,

Pr[C ′ = HL(Fp∗(pw))] ≤ 1/2κ. Assuming that there are qS S sub-sessions, we have

that Pr[E2] ≤ qS/2
κ.

• E3: ¬EC ∧ pw′ ∈ X ∧K ′1 6= K ′0.
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In this case, G1 will search X in lexicographic order, and once it comes to pw′, it

will find out that C ′ = HL(Fp∗(pw′)) (this is implied by K ′0 6= fail) and output K ′1 :=

HR(Fp∗(pw′)) = K ′0. Therefore, if E3 occurs, there exists x < pw′ such that C ′ =

HL(Fp∗(x)). But C ′ = HL(Fp∗(pw′)), so (x, pw′) forms a pair of collision of HL(Fp∗(·)).

Assuming that F is queried qF times, we have that Pr[E3] ≤ qCqF/2
κ.

We conclude that

DistG0,G1

Z ≤ Pr[E] ≤ Pr[E1] + Pr[E2] + Pr[E3] ≤ qF(qC + 1) + qS

2κ
,

which is a negligible function of κ. Let G2 be a modification of G1, where in initialization,

pick [C||K] ←R {0, 1}2κ, and once Fp(pw) is queried, set H(Fp(pw)) := [C||K]. We can see

that G2 is essentially the same with the security game in the simulated world.

In G1, before Fp(pw) is queried, it is random in Z’s view, so the probability that Z queries

H(Fp(pw)) is negligible. If Z does not query H(Fp(pw)), C and K are random strings in

Z’s view; that is how they are generated in G2. After Fp(pw) is queried, G2 are G1 are

identical. Therefore, we have that

DistG1,G2

Z = 0.

Summing up all results above, we conclude that Z’s distinguishing advantage between the

real world and the simulated world is a negligible function of κ. This completes the proof.

61



Chapter 4

A Round-Reduced Modular

Construction of Asymmetric

Password-Authenticated Key

Exchange

In this chapter we show a new compiler which converts any UC secure symmetric PAKE

protocol into a UC secure asymmetric PAKE. Our construction relies on ROM, as do all UC

asymmetric PAKE protocols proposed so far [40, 49], and the Computational Diffie-Hellman

(CDH) assumption. Our starting point is the Ω-method due to Gentry et al. [40], which

transforms any UC PAKE protocol into a UC aPAKE secure in ROM. The main point of

our compiler is that they add only a single additional message to the underlying PAKE, in

contrast to the Ω-method which adds two messages.

The results presented in this chapter are based on the work published in [42], with the

security proof added. [42] includes two general PAKE-to-aPAKE compilers, and we only
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include one of them here.

4.1 Overview

Round complexity of our compiler v. the Ω-method compiler. The Ω-method

compiler adds (up to) two communication rounds to the underlying PAKE. In constract,

our PAKE-to-aPAKE compiler adds only a single additional message. Moreover, the single

extra message in our PAKE-to-aPAKE compiler is sent from client to server, and therefore

in an application where the aPAKE instance, which establishes a secure session key for both

parties, is followed by an explicit client-to-server entity authentication, e.g., the client uses

the session key output by PAKE to send a MAC on the aPAKE transcript to the server, this

additional message can be piggybacked with the client’s explicit entity authentication flow.

Likewise, if the last message of the symmetric UC PAKE is client-to-server, our compilers

also add no additional communication flow to the protocol. By contrast, the Ω-method

would add 2 message flows in the latter case.

We note that if the last round in the symmetric UC PAKE was server-to-client, then our

compilers would offer no advantage over the Ω-method: Our compilers would add one client-

to-server round, and so would the Ω-method because its first message c′ (see Figure 1 in [40])

would be piggybacked on the last server-to-client flow of the underlying UC PAKE. Moreover,

note that the symmetric UC PAKE, by its very nature, has no fixed roles, therefore every

UC PAKE protocol can be executed so that the last message flow is server-to-client. Indeed,

if the underlying n-round UC PAKE is executed in this way then the UC aPAKE resulting

from both our compilers and the Ω-method would have n+1 rounds, with the last flow being

client-to-server. However, the optimal way to arrange the n-round UC PAKE for the purpose

of our compiler is so that its last flow is client-to-server, in which case our compilers output

n-round UC aPAKE, while the Ω-method outputs an (n + 2)-round UC aPAKE. Finally,
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note that sometimes one will not have the flexibility of arranging the underlying PAKE in a

way that optimizes the resulting aPAKE, because sometimes the choice of party who starts

the interaction, i.e., whether it is the client or the server, will be fixed by an application.

Computational cost of our compiler vs. the Ω-method compiler. The computation

overhead of the Ω-method compiler is dominated by a signature generation for the client and

signature verification for the server. Instantiated with ECDSA signatures, both of these costs

are only 1 (multi-)exponentiation per party.

However, since the Ω-method is a compiler, the exact costs of UC aPAKE it produces depend

on the costs of the UC PAKE with which it is instantiated. While there is very active

research on standard-model UC PAKEs, including round-minimal PAKEs [52, 39, 53, 48],

these constructions are typically more expensive and require stronger assumptions than

protocols satisfying game-based PAKE notions [10, 19] in ROM. Since any UC aPAKE

construction requires non-black-box assumptions (see below), it makes sense to instantiate

the Ω-method with a UC PAKE secure in ROM. However, while there are many 2-round

game-based PAKEs whose cost is close to (intuitively minimal) 2 exponentiations per party

of Diffie-Hellman Key Exchange (see e.g., [6] and references therein), we know of only one

UC PAKE with comparable efficiency, by Abdalla et al. [2], which relies on the DDH

assumption in ROM and the Ideal Cipher (IC) model, and uses 2 exponentiations per party.

Combined with the Ω-method of Gentry et al., the UC symmetric PAKE of [2] implies a UC

asymmetric PAKE with 3 exponentiations per party, secure under the DDH assumption in

ROM+IC model.

In contrast, the computational costs of our compiler is 1 exponentiation per client and 2

per server, which is slightly higher than that of the Ω-method complier. Looking a little

closer, the costs of each option can be affected by the fact that in our compiler, the client’s

exponentiation is variable-base and the two server’s exponentiations are fixed-base, with one
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base fixed globally and the second base fixed per each user account.

Related work. We know of only one further UC aPAKE constructions in addition to the

Ω-method of [40]. Jutla and Roy [49] proposed a round-minimal UC aPAKE in ROM, i.e.,

client and server send a single message and they can do so simultaneously, but their protocol

requires groups with bilinear maps, uses significantly more exponentiations (and bilinear

maps) per party.

We note that Benhamouda and Pointcheval [14] upgraded the game-based definition of

aPAKE, called verifier-based PAKE therein, by strengthening the game-based aPAKE

model of [19] to arbitrary password distributions and related passwords. One point of

strengthening game-based aPAKE notion given that a UC aPAKE notion exists is a

potential for better efficiency, but the other is that the UC aPAKE model of [40] seems not

to be realizable without some non-black-box assumption on the adversary’s local

computation, like ROM, IC, or a generic group model. Indeed, the UC aPAKE model

requires the simulator to extract offline password tests from the adversary’s local

computation of the hash function applied to password guesses. However, [14] relies on the

tight one-wayness requirement on the hash function applied to passwords when creating

the hashed password on the server, namely that given hash of a password chosen with δ

min-entropy, the adversary has to compute 2δ hash function instances to find it.

Unfortunately, this notion also seems impossible to realize without similar non-black-box

assumptions on the adversary, and [14] also relies on ROM to argue that this property is

satisfied. Regarding computational costs, by avoiding random oracles on the protocol level

(but not on the level of the underlying hash function), the aPAKE’s of [19] are significantly

more expensive than the UC aPAKE resulting from [40, 2]. Their 2-round protocol uses

significantly more exponentiations per party, and the 1-round protocol requires groups with

bilinear maps and has a still higher local computation cost.
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4.2 Security Model

Our protocols convert any UC secure symmetric PAKE into a UC secure asymmetric PAKE,

exactly like the protocol of [40], and we assume the same models of UC (revised) symmetric

PAKE and asymmetric PAKE as in [40], denoted FrPAKE and FaPAKE, respectively. (In [40]

they were denoted FrpwKE and FapwKE, respectively.) For completeness we include the full

description of both functionalities in Figure 4.1, Figure 4.2 and Figure 4.3. Below we sketch

the most important points in which these functionalities differ from the standard UC PAKE

functionality of [24], and we refer to [40] for their full exposition.

The revised PAKE functionality FrPAKE. The symmetric PAKE functionality FrPAKE

defined by [40] is a revision of the original PAKE functionality FPAKE defined by Canetti et

al. [26]. Namely, it allows the functionality to produce a bitstring representing a transcript

of the real-world execution of the PAKE protocol. Clearly, every real-world protocol has a

transcript, but a typical UC functionality is concerned only with its “functional”

input/output behavior and often omits the fact that various “objects” involved in protocol

operation, e.g., private keys, public keys, transcripts, have physical encodings as bitstrings.

This is unfortunate (and it is often not easy to do) because in protocol composition it can

be very useful to process such objects through other cryptographic mechanisms, e.g., to

sign them, encrypt them, secret-share them, etc. The idea of the PAKE-to-aPAKE

compiler of Gentry et al. [40] was for the client to sign the PAKE transcript using a key

encrypted by the server using the session key output by the symmetric PAKE. This

signature acts in the Gentry et al. construction as a proof of possession of the password.

However, for this modular construction to work, the UC symmetric PAKE functionality

must expose some bitstring as the transcript to the environment. This is the sole point of

the revised UC PAKE functionality FrPAKE compared to the one defined in [26], and we

adopt this revision because our compilers will likewise use the transcript of the symmetric
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PAKE to bind the proof-of-password-possession to the underlying symmetric PAKE

instance, although we will implement this proof-of-password-possession using different

cryptographic mechanisms than the encrypted-key/signature-on-transcript protocol of

Gentry et al.

The Asymmetric PAKE Functionality FaPAKE. The asymmetric functionality

FaPAKE is a more fundamental modification of the symmetric PAKE functionality FPAKE

[26], which models password authentication in the setting where only one party, the client,

authenticates using a password, while the other, the server, uses a password file, which

without loss of generality is an output of some (randomized) one-way function applied to

the password during the initialization procedure. For example, in the standard

password-over-TLS implementation the password file is a pair consisting of a random nonce

known as salt and a hash of the password concatenated with this salt value. In the FaPAKE

functionality, creation of the password file on the server is modeled by command

StorePwdFile, and note that the server-side invocation of the authentication protocol

instance, via command SvrSession, does not take the password as an input, because its

implicit input is the stored password file corresponding to session ID sid of this aPAKE

instance. (It is assumed that a unique sid would be assigned to each user account held by a

given server.)

The other fundamental difference between the asymmetric PAKE functionality FaPAKE and

the symmetric PAKE functionality FPAKE is that an adversary may adaptively compromise

the server and learn the stored password file, which is modeled by query StealPwdFile. Such

adaptive server compromise allows the adversary to then impersonate the server to the client,

modeled via the Impersonate command, because a real-world adversary could use the stolen

password file to emulate the server in the authentication protocol. Finally, since the password

file is w.l.o.g. an output of some one-way function applied to the password, an adaptive server
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Password Authentication

• On (NewSession, sid ,P′, pw, role) from party P, send (NewSession, sid ,P,P′, role) to A∗.
Also, if this is the first NewSession message, or this is the second NewSession message and
there is a record 〈P′,P, ·〉, record 〈P,P′, pw〉 and mark it fresh.

Active Session Attacks

• On (TestPwd, sid ,P, pw∗) from A∗, if there is a record 〈P,P′, pw〉 marked fresh, do: if
pw∗ = pw, mark it compromised and return “correct guess” to A∗; otherwise mark it
interrupted and return “wrong guess.”

Key Generation and Authentication

• On (NewKey, sid ,P, SK∗) from A∗ where |SK∗| = κ, if there is a record 〈P,P′, pw〉 not
marked completed, do:

– If the record is marked compromised, or either P or P′ is corrupted, set SK := SK∗.

– If the record is marked fresh, a (sid , SK ′) pair was sent to P′, and at that time there
was a record 〈P′,P, pw〉 marked fresh, set SK := SK ′.

– Else pick SK ←R {0, 1}κ.

Finally, mark 〈P,P′, pw′〉 completed and send (sid , SK) to P.

• On (NewTranscript, sid ,P, tr∗) from A∗, if there is a record 〈P,P′, pw〉 marked completed,
do:

– If (i) there is a record 〈P′,P, pw′〉 for which a (transcript, sid , tr) message was sent
to P′, and (ii) either 〈P,P′, pw〉 or 〈P′,P, pw′〉 was ever marked compromised or
interrupted, ignore this message.

– Else send (transcript, sid , tr) to P.

Figure 4.1: Functionality FrPAKE
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compromise allows the adversary to stage an offline dictionary attack: The adversary can

compute the same one-way function, a.k.a. password hash, on any password guess, which is

modeled by the OfflineTestPwd query. If the password file is stolen, this computation allows

the adversary to test if its password guess is correct, because then the password hash would

match the one in the password file. If the password file is not stolen yet, the adversary

can store these pre-computed hashes, which FaPAKE models by storing the password guesses

made by the adversary via the OfflineTestPwd command, and learn if any of these guesses

were correct at the moment of server compromise. This is modeled by functionality FaPAKE

checking after the StealPwdFile command whether any of the password guesses made via

OfflineTestPwd queries is equal to the password used in to create the password file.

We note that the functionality FaPAKE has effectively two separate notions of a server

corruption. Formally, it considers a static adversarial model where all entities, including

clients and servers, are either honest or corrupted throughout the life-time of the protocol.

In addition, it allows for an adaptive server compromise of an honest server, via the

StealPwdFile, which leaks to the adversary the server’s private state corresponding to a

particular password file, but it does not give the adversary full control over the server’s

entity. In particular, the accounts on the same server for which the adversary does not

explicitly issue the StealPwdFile command must remain unaffected. We adopt this

convention from [40] and we call a server “corrupted” if it is (statically) corrupted and

adversarially controlled, and we call a session “compromised” if the adversary steals its

password file from the server.

Non-black-box assumptions. Note that the aPAKE functionality requires the simulator,

playing the role of the ideal adversary, to detect offline password guesses made by the real-

world adversary. As pointed out by [40], this seems to require a non-black-box hardness

assumption on some cryptographic primitive, e.g., ROM, which would allow the simulator
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In the description below, we assume P ∈ {C,S}.
Password Registration

• On (StorePwdFile, sid ,C, pw) from S, if this is the first StorePwdFile message, record
〈file,C, S, pw〉 and mark it uncompromised.

Stealing Password Data

• On (StealPwdFile, sid) from A∗, if there is no record 〈file,C, S, pw〉, return “no password
file” to A∗. Otherwise, if the record is marked uncompromised, mark it compromised;
regardless,

– If there is a record (offline, pw), send pw to A∗.
– Else return “password file stolen” to A∗.

• On (OfflineTestPwd, sid , pw∗) from A∗, do:

– If there is a record 〈file,C, S, pw〉 marked compromised, do: if pw∗ = pw, return
“correct guess” to A∗; else return “wrong guess.”

– Else record (offline, pw).

Figure 4.2: Functionality FaPAKE, part 1

to extract a password guess from adversary’s local computation, e.g., a local execution of

aPAKE interaction on a password guess and a stolen password file.

Server initialization. We note that while FaPAKE defines password registration as an

internal action of the server, with the client’s password as a local input, one can modify it

to support an interactive procedure between client and server, e.g., to prevent the server

from ever learning the plaintext password. To that end one needs to assume that during

the password registration phase there is an authenticated channel from server to client, so

the client can verify that it is registering the password with the correct server.

(Functionality FaPAKE effectively also assumes such authenticated channel because

otherwise the client’s password cannot be safely transported to the server.) In practice, the

server also needs to verify the client’s identity, and the password file could be created by

the client and transported to the server. However, this is beyond the scope of the formal
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Password Authentication

• On (CltSession, sid , ssid ,S, pw′) from C, send (CltSession, sid , ssid ,C, S) to A∗. Also, if
this is the first CltSession message for ssid , record 〈ssid ,C, S, pw′〉 and mark it fresh.

• On (SvrSession, sid , ssid) from S, retrieve 〈file,C,S, pw〉, and send
(SvrSession, sid , ssid ,C,S) to A∗. Also, if this is the first SvrSession message for
ssid , record 〈ssid , S,C, pw〉 and mark it fresh.

Active Session Attacks

• On (TestPwd, sid , ssid ,P, pw∗) from A∗, if there is a record 〈ssid ,P,P′, pw′〉 marked fresh,
do: if pw∗ = pw′, mark it compromised and return “correct guess” to A∗; else mark it
interrupted and return “wrong guess.”

• On (Impersonate, sid , ssid) from A∗, if there is a record 〈ssid ,C,S, pw′〉 marked fresh, do:
if there is a record 〈file,C, S, pw〉 marked compromised and pw′ = pw, mark 〈ssid ,C,S, pw′〉
compromised and return “correct guess” to A∗; else mark it interrupted and return “wrong
guess.”

Key Generation and Authentication

• On (NewKey, sid , ssid ,P, SK∗) from A∗ where |SK∗| = κ, if there is a record
〈ssid ,P,P′, pw〉 not marked completed, do:

– If the record is marked compromised, or either P or P′ is corrupted, set SK := SK∗.

– If the record is marked fresh, a (sid , ssid , SK ′) tuple was sent to P′, and at that
time there was a record 〈ssid ,P′,P, pw〉 marked fresh, set SK := SK ′.

– Else pick SK ←R {0, 1}κ.

Finally, mark 〈ssid ,P,P′, pw〉 completed and send (sid , ssid , SK) to P.

• On (TestAbort, sid , ssid ,P) from A∗, if there is a record 〈ssid ,P,P′, pw〉 not marked
completed, do:

– If it is marked fresh and record 〈ssid ,P′,P, pw〉 exists, send succ to A∗.
– Else send fail to A∗ and (abort, sid , ssid) to P, and mark 〈ssid ,P,P′, pw〉 completed.

Figure 4.3: Functionality FaPAKE, part 2
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aPAKE functionality.

4.3 Our PAKE-to-aPAKE Compiler

Our construction converts a symmetric UC PAKE protocol Π to an asymmetric UC PAKE,

just as the compiler of Gentry et al. [40], but using a different method.

Our construction, shown in Figure ?? (a graphical illustration is provided in Figure 4.5),

runs the symmetric PAKE protocol Π on hashed password r = H1(pw), but in parallel it

also runs a Diffie-Hellman Key Exchange (DH-KE) where the client’s contribution is fixed

as V = gz for z = H0(pw), i.e., an independent password hash. The server’s contribution,

Y = gy for random y, is the only message transferred in this DH-KE instance, because

the client’s contribution V = gH0(pw) is part of the password file stored on the server. The

key K0 = V y = Y z = gH0(pw)y resulting from this DH-KE could be computed in an offline

dictionary attack given the DH-KE transcript Y , so we hash it together with key K1 output

by the symmetric PAKE protocol Π to derive an authenticator t = H2(K0||K1||[. . .]) which

is sent from the client to the server before another hash of key K1 is used as the session key.

Note that security of Π implies that key K1 is pseudorandom except if the adversary learns

r = H1(pw) and succeeds in an online dictionary attack on Π, hence t is safe from offline

dictionary attacks.

The role key K0 plays in the derivation of authenticator t is to force the adversary to perform

an offline attack against password pw after server compromise. Note that protocol Π plays

no security role after server compromise, because the adversary can then execute Π on the

correct input r = H1(pw). However, the DH-KE key K0 = Y H0(pw) is pseudorandom unless

the adversary queries H0(pw), an event which the UC simulator (assuming ROM) can catch

and identify as an offline password test. Note that the adversary who learns the server-stored

72



Password Registration

1. On input (StorePwdFile, sid ,C, pw), S computes r := H1(pw) and V := gH0(pw), and
records file[sid ] := (r, V ).

Password Authentication and Key Generation

1. On input (CltSession, sid , ssid , S, pw′), C computes r′ := H1(pw) and sends
(CltSession, sid , ssid ,S, r′) to FrPAKE.

2. On input (SvrSession, sid , ssid), S retrieves file[sid ] = (r, V ) and sends
(SvrSession, sid , ssid ,C, r) to FrPAKE; picks y ←R Zm and sends Y := gy to C.

3. On (sid , ssid ,K ′1) and (transcript, sid , ssid , tr′) from FrPAKE and Y from S, C outputs
(abort, sid , ssid) and halts if Y /∈ G or Y = 1G. Else C computes K ′0 := Y H0(pw′),
t := H2(K ′0||K ′1||Y ||tr′) and SK := H3(K ′1), sends t to S and outputs (sid , ssid , SK).

4. On (sid , ssid ,K1) and (transcript, sid , ssid , tr) from FrPAKE and t from C, S computes
K0 := V y and outputs (abort, sid , ssid) and halts if t 6= H2(K0||K1||Y ||tr). Else S
computes SK := H3(K1) and outputs (sid , ssid , SK).

Figure 4.4: Compiler from symmetric PAKE to asymmetric PAKE in the FrPAKE-hybrid
world

values r = H1(pw) and V = gH0(pw) can also perform an offline test by hashing its password

guesses via H0 and H1, but the point is that our DH-KE instance key K1 does not offer any

easier way for the adversary to find a password than an offline dictionary attack, which is

unavoidable in the asymmetric PAKE setting after server compromise.

We state the security of our aPAKE protocol in Theorem 6 below:

Theorem 6. Suppose that the CDH assumption holds for (G, g,m). Then the protocol in

Figure 4.4 realizes functionality FaPAKE in ROM.

Proof. For any efficient environment Z and efficient adversary A against the protocol, we

construct a simulator SIM as in Figure 4.6, Figure 4.7 and Figure 4.8. Without loss of

generality, suppose A is a “dummy” adversary who merely passes through all its messages

to and from Z, and all its computation to Z. To keep notation brief we denote functionality
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C(pw) S(r := H1(pw), V := gH0(pw))

Execute Π on H1(pw) Execute Π on r, but replace its
last message MSGPAKE

L,Server with

Abort if Y = 1G or Y /∈ G Symmetric PAKE Π on H1(pw)←−−−−−−−−−−−−−−−→
with (Y , MSGPAKE

L,Server)
(Y := gy , MSGPAKE

L,Server) for y ←R Zm

Let K1 be local output of Π Let K1 be local output of Π
Let tr be transcript of Π Let tr be transcript of Π

K0 := Y H0(pw) K0 := V y

t := H2(K0||K1||Y ||tr) t−−−−−−−−−−−−−−−→ Abort if t 6= H2(K0||K1||Y ||tr)
Output SK := H3(K1) Output SK := H3(K1)

Figure 4.5: Compiler from symmetric PAKE to asymmetric PAKE (graphical illustration)

FaPAKE as F .

We now show that the distinguishing advantage of Z between the real world and the

simulated world is negligible. As before, the argument uses a sequence of games, starting

from the real world and ending at the simulated world.

G0 is the real world.

In G1, in the case that S is compromised, on (TestPwd, sid , ssid ,C, r∗) from A to FrPAKE

where r∗ = r, return “correct guess” if pw′ = pw, and “wrong guess” otherwise.

In G0, A receives “correct guess” if and only if r∗ = r = H1(pw′). By definition r = H1(pw).

Z’s views in G0 and G1 are identical unless pw′ 6= pw but H1(pw′) = H1(pw) = r (in which

case A receives “correct guess” in G0 and “wrong guess” in G1). Since both H1(pw) and

H1(pw′) are random strings in {0, 1}κ, for a single C sub-session, the probability of the above

is 1/2κ; assuming that there are qC C sub-sessions, we have that

DistG0,G1

Z ≤ qC

2κ
,

which is a negligible function of κ.

In G2, in the case that S is not compromised, on (TestPwd, sid , ssid ,P, r∗) from A to FrPAKE,
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Stealing Password Data and Offline Queries

1. On (StealPwdFile, sid) from A aimed at S, pass this message to F .
If F returns “no password file,” pass this message to A as a message from S.
If F returns “password file stolen,” pick r ←R {0, 1}κ and v ←R Zm, and record (⊥, r, v).
If F returns pw, record (pw, r, v) where r := H1(pw) and v := H0(pw) (pick H1(pw)
and/or H0(pw) at random if undefined); if there is a session record 〈ssid , S,C,⊥,⊥, ·, ·〉,
then also modify it to 〈ssid , S,C, pw, r, ·, ·〉.

2. On A making a fresh query H1(x) or H0(x), if there is a record (pw, r, v) and x = pw
(i.e., A has made one of these two queries [note that when (pw, r, v) is recorded, A must
have queried either H1(pw) or H0(pw)] and is querying the other), send r (if A queries
H1(pw)) or v (if A queries H0(pw)) to A.
Else send (OfflineTestPwd, sid , x) to F .
If there is no response from F , or F returns “wrong guess,” then pick r ←R {0, 1}κ and
v ←R Zm.
If F returns “correct guess”, retrieve (⊥, r, v) (note that in this case S is compromised,
so there is such a record) and replace ⊥ with x.
In either case, set H1(x) := r and H0(x) := v, and send r (if A queries H1(x)) or v (if A
queries H0(x)) to A.

Figure 4.6: The simulator SIM for aPAKE in the stealing password data phase

if there is a record 〈ssid ,P,P′, ·〉 marked fresh, check if there is an x such that r∗ = H1(x).

• If there are more than one such x’s, output collision and abort.

• If there is a unique such x and x = pw′ (if P = C) or x = pw (if P = S), send “correct

guess” to A as a message from FrPAKE.

• In all other cases (i.e., x 6= pw′/pw or there is no such x), send “wrong guess” to A as

a message from FrPAKE.

First consider event collision. collision occurs if and only if there are more than one x’s such

that r∗ = H1(x). This means that there are x1 6= x2 such that H1(x1) = H1(x2). Assuming

that A queries H1(·) qH1 times, there are at most qH1 + qC + 1 H1(·) queries in total (qH1
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Password Authentication

1. On (CltSession, sid , ssid ,C,S) from F , send (NewSession, sid , ssid ,C,S, client) to A as a
message from FrPAKE. Also, if this is the first CltSession message for ssid , record the
session record for C 〈ssid ,C,S,⊥,⊥,⊥,⊥〉 and mark it fresh.

2. On (SvrSession, sid , ssid , S,C) from F , send (NewSession, sid , ssid ,S,C, server) to A
as a message from FrPAKE. Also, if this is the first SvrSession message for ssid ,
record the session record for S 〈ssid , S,C, pw, r,⊥,⊥〉 (if there is a record (pw, r, ·)) or
〈ssid ,S,C,⊥,⊥,⊥,⊥〉 (if there is no such record) and mark it fresh. Furthermore, pick
y ←R Zm and record (ssid , y,⊥,⊥); compute Y := gy and send Y to A as a message
from S to C.

Protocol Messages in PAKE

1. On (TestPwd, sid , ssid ,P, r∗) from A aimed at FrPAKE, if there is P’s session record
marked fresh, do:

• If there is a record (·, r, ·) (i.e., S is compromised), then: (1) if P = S: if r∗ = r, then
return “correct guess” to A; else return “wrong guess.” (2) if P = C: if r∗ = r, then
send (Impersonate, sid , ssid) to F , and pass F ’s response to A; if F returns “correct
guess,” modify C’s session record to 〈ssid ,S,C, ·, r,⊥,⊥〉 and mark this case (∗).
Else move on to the next case.

• Else check if there is an x such that r∗ = H1(x).

– If there are more than one such x’s, output collision and abort.

– If there is a unique such x, send (TestPwd, sid , ssid ,P, x) to F and pass F ’s
response to A.
If F returns “correct guess,” then modify P’s session record to
〈ssid ,P,P′, x, r∗,⊥,⊥〉. Furthermore, if P = C, mark this case (∗∗); if P = S,
record (x, r∗, v) where v = H0(x) (pick v := H0(x)←R Zm if undefined).

– If there is no such x, return “wrong guess” to A.

Finally, if the message is “correct guess,” mark P’s session record compromised; if the
message is “wrong guess,” mark it interrupted.

2. On (NewKey, sid , ssid ,P,K∗1 ) (where |K∗1 | = κ) from A aimed at FrPAKE, if there is P’s
session record not marked completed, mark it completed. Furthermore, if P’s session
record is marked compromised, or either P or P′ is corrupted, then set K1 := K∗1 and
modify the session record to 〈ssid ,P,P′, ·, ·,K1,⊥〉.

3. On (NewTranscript, sid , ssid ,P, tr) from A aimed at FrPAKE, ignore this message if there
is no session record 〈ssid ,P,P′, ·, ·, ·,⊥〉 marked completed; or if (i) there is a peer session
record for P′ 〈ssid ,P′,P, ·, ·, ·, tr〉, and (ii) either of these two records was ever marked
compromised or interrupted. Else modify P’s session record to 〈ssid ,P,P′, ·, ·, ·, tr〉.

Figure 4.7: The simulator SIM for aPAKE in the PAKE protocol
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Protocol Messages

1. On Y ∗ from A aimed at C, if Y ∗ = 1G or Y ∗ /∈ G, send (TestPwd, sid , ssid ,C,⊥) and
then (TestAbort, sid , ssid ,C) to F .
Else if there is C’s session record whose seventh item is a string tr′ and a record
(ssid , y,⊥,⊥), modify the latter to (ssid , y, Y ∗, t); once C’s session record is marked
completed, send t to A (as a message from C to S) and (NewKey, sid , ssid ,C, SK ′) to F ,
where t and SK ′ are defined as follows:

• If the sixth item of the session record is a string K ′1 (this means that
the record was marked compromised, which in turn means that A has sent
(TestPwd, sid , ssid ,C, r′ = H1(pw′)) aimed at FrPAKE), and the fourth item of the
session record is ⊥ (this means that case (∗) happens, which in turn means that S is
compromised and pw′ = pw), then retrieve (·, r, v) and compute K ′0 := (Y ∗)v; pick
t←R {0, 1}κ and set H2(K ′1||K ′0||Y ∗||tr′) := t; pick H3(K ′1) := SK ′ ←R {0, 1}κ.

• If the sixth item of the session record is a string K ′1, the fourth item of the session
record is a password pw′ (this means that case (∗∗) happens, which in turn means
that H1(pw′) has been queried), do:

– If both H0(pw′) and H2(K ′1||K0|′|Y ∗||tr′) where K ′0 = (Y ∗)H0(pw′) have been
queried, then set t := H2(K ′1||K ′0||Y ∗||tr′) and pick H3(K ′1) := SK ′ ←R {0, 1}κ.

– Else pick t ←R {0, 1}κ and H3(K ′1) := SK ′ ←R {0, 1}κ. Furthermore, on
A querying H0(pw′) and H2(K ′1||K ′0||Y ∗||tr′) where K ′0 = (Y ∗)H0(pw′), set
H2(K ′1||K ′0||Y ∗||tr′) := t.

• Else, i.e., if the sixth item of the session record is ⊥, pick t ←R {0, 1}κ and set
SK ′ := 0κ.

2. On t∗ from A aimed at S, if S’s session record is marked completed and its seventh item
is a string tr, and there is a record (ssid, y, ·, ·), do:

• If the record is (ssid, y, Y ∗, t), Y ∗ = gy and t∗ = t, there is C’s session record whose
seventh item is tr, then send (TestAbort, sid , ssid ,S) to F . If F returns succ, send
(NewKey, sid , ssid , S, 0κ) to F .

• Else if there are records 〈ssid ,S,C, pw, r,K1, tr〉 and (pw, r, v), and t∗ =
H2(K1||K0||Y ||tr) where K0 = gvy, then pick H3(K1) := SK ←R {0, 1}κ and
send (TestPwd, sid , ssid , S, pw) and then (NewKey, sid , ssid , S, SK) to F .

• Else send (TestPwd, sid , ssid ,S,⊥) and then (TestAbort, sid , ssid ,S) to F .

Random Oracle Queries

Note that how to answer H1 and H0 queries has been described in “Stealing Password Data.”

Answer H2 and H3 queries via lazy sampling, except in the cases described in “Protocol

Messages.”

Figure 4.8: The simulator SIM for aPAKE in the login phase
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queries by A, qC by C and 1 by S), so we have that

Pr[collision] ≤ (qH1 + qC + 1)2

2κ+1
.

Next assume that collision does not occur. Consider the first message of type

(TestPwd, sid , ssid ,P, r∗) (note that A receives a reply for the first such message only, since

〈ssid ,P,P′, ·〉 becomes either compromised or interrupted after the first message). In both

G1 and G2, A receives “correct guess” if and only if r∗ = H1(pw′) (if P = C) or

r∗ = H1(pw) (if P = S), so Z’s views in G1 and G2 in this case are identical. We have that

DistG1,G2

Z ≤ Pr[collision] ≤ (qH1 + qC + 1)2

2κ+1
.

which is a negligible function of κ.

G3 considers the case that A queries H1(pw′) (denote the result r′), sends

(TestPwd, sid , ssid ,C, r′) to FrPAKE, and then sends Y ∗ to C. If A additionally queries both

H0(pw′) and H2(K ′1||K ′0||Y ∗||tr′) (denote the result t) where K ′0 = (Y ∗)H0(pw′) (call these

two queries “crucial queries”), then send t to A as a message from C to S, just as in G2.

Otherwise send t ←R {0, 1}κ to A as a message from C to S, and when A makes the

“crucial queries,” set H2(K ′1||K ′0||Y ∗||tr′) := t. Clearly this modification does not change

the distribution of t in Z’s view, so we have that

DistG2,G3

Z = 0.

In G4, if A does not send (TestPwd, sid , ssid ,C, r′) to FrPAKE (where r′ = H1(pw′)), send

t←R {0, 1}κ to A as a message from C to S, and C outputs SK ′ ←R {0, 1}κ.

In G3, t (resp. SK ′) is a random string in {0, 1}κ in Z’s view unless and until A queries
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H2(K ′1||K ′0||Y ∗||tr′) (resp. H3(K ′1)). But C’s session in FrPAKE
1 is never marked compromised,

so C’s PAKE output K ′1 is a random string in {0, 1}κ in Z’s view. Assuming that A queries

H2(·) qH2 times and H3(·) qH3 times, the probability that A makes such a query for a single

K ′1 is at most (qH2 + qH3)/2κ. Since there are qC K ′1’s, we have that

DistG3,G4

Z ≤ qC(qH2 + qH3)

2κ
,

which is a negligible function of κ.

In G5, on t∗ from A to S (after S sends Y to C [relayed by A as Y ∗]), if Y ∗ = Y , t∗ = t, and

tr′ = tr, do:

• If pw′ = pw, then S picks SK ←R {0, 1}κ and outputs (sid , ssid , SK);

• If pw′ 6= pw, then S outputs (abort, sid , ssid).

This is the case that A merely passes all messages between C and S (note that condition

tr′ = tr implies that both C and S’s sessions in FrPAKE were never marked compromised

or interrupted, i.e., A passes all messages between C and S in the PAKE protocol). First

consider the subcase that pw′ = pw. In G4, SK is a random string in {0, 1}κ in Z’s view

unless and until A queries H3(K1). But S’s session in FrPAKE was never marked compromised,

so S’s PAKE output K1 is a random string in {0, 1}κ in Z’s view, thus the probability that

A makes such a query for a single K1 is at most qH3/2
κ. Assuming that there are qS S

sub-sessions, there are qS K1’s, so Z’s distinguishing advantage in the subcase that pw′ = pw

is at most qSqH3/2
κ.

Next consider the subcase that pw′ 6= pw. Z’s views in G4 and G5 in this subcase are identical

unless pw′ 6= pw but t∗ = t = H2(K1||K0||Y ||tr) (in which case S outputs (sid , ssid , SK) in

1Note that a C (or S) session in FrPAKE corresponds to a C sub-session in the aPAKE protocol, with
(sid , ssid) as the session ID.
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G4 and (abort, sid , ssid) in G5). By definition t = H2(K ′1||K ′0||Y ∗||tr′) = H2(K1||K ′0||Y ||tr),

K0 = gH0(pw)y, and K ′0 = gH0(pw′)y. Therefore, if t = H2(K1||K0||Y ||tr), either H0(pw′) =

H0(pw), or H0(pw′) 6= H0(pw) but H2(K1||K ′0||Y ||tr) = H2(K1||K0||Y ||tr). Since there are

qC pw′’s and qC K ′0’s, the probability of the above is at most qC/2
κ + qC/2

κ = qC/2
κ−1.

Combining the two results above, we have that

DistG4,G5

Z ≤ 2qC + qSqH3

2κ
,

which is a negligible function of κ.

In G6, on t∗ from A to S (after S sends Y to C), in the case that ¬(Y ∗ = Y ∧t∗ = t∧tr′ = tr),

S outputs (abort, sid , ssid) if A did not query H2(K1||K0||Y ||tr).

Z’s views in G5 and G6 are identical unless A does not query H2(K1||K0||Y ||tr) but t∗ =

H2(K1||K0||Y ||tr) (in which case S outputs (sid , ssid , SK) in G5 and (abort, sid , ssid) in

G6). In this case H2(K1||K0||Y ||tr) is a random string in {0, 1}κ in Z’s view, so Pr[t∗ =

H2(K1||K0||Y ||tr)] ≤ 1/2κ for a single t∗. Since there are qS t
∗’s, we have that

DistG5,G6

Z ≤ qS

2κ
,

which is a negligible function of κ.

In G7, on t∗ from A to S (after S sends Y to C), in the case that ¬(Y ∗ = Y ∧t∗ = t∧tr′ = tr),

S outputs (abort, sid , ssid) if A did not send (TestPwd, sid , ssid , S, r) to FrPAKE.

Z’s views in G6 and G7 are identical unless A does not send (TestPwd, sid , ssid , S, r) to

FrPAKE but queries H2(K1||K0||Y ||tr) (in which case S outputs (sid , ssid , SK) in G6 and

(abort, sid , ssid) in G7). But S’s session in FrPAKE is never marked compromised, so S’s

PAKE output K1 is a random string in {0, 1}κ in Z’s view, thus the probability that A
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makes such a query for a single K1 is at most qH2/2
κ. Since there are qS K1’s, we have that

DistG6,G7

Z ≤ qSqH2

2κ
,

which is a negligible function of κ.

In G8, on t∗ from A to S (after S sends Y to C), in the case that ¬(Y ∗ = Y ∧t∗ = t∧tr′ = tr),

S outputs (abort, sid , ssid) if A did not send (TestPwd, sid , ssid , S, r) to FrPAKE (as in G7)

or query H0(pw).

Z’s views in G7 and G8 are identical unless A does not query H0(pw) but queries

H2(K1||K0||Y ||tr) (in which case S outputs (sid , ssid , SK) in G7 and (abort, sid , ssid) in

G8). Denote this event bad. In this event what Z learns contains V = gH0(π) and Y = gy

only, and according to the CDH assumption in (G, g,m), Z cannot compute K0 = gH0(π)y

except with negligible probability. Concretely, we construct a reduction R to the CDH

problem in (G, g,m):

R, on inputs X and Y , picks i←R {1, . . . , qS} (a guess of bad occurs at which S sub-session)

and j ←R {1, . . . , qH2} (a guess of A causes bad at which H2(·) query). Then R runs the

challenger of G7, except that (1) on (StealPwdFile, sid , S) from A aimed at S, R uses X

in the CDH challenge (instead of gH0(pw)) as the response, and if A queries H0(pw) before

the i-th C sub-session or before making the j-th H2(·) query, R aborts; (2) in the i-th S

sub-session, on (SvrSession, sid , ssid , S,C) from Z, R uses Y in the CDH challenge (instead

of gy for y ←R Zm) as the message from S to C. When A makes the j-th query to H2(·), R

parses A’s input as [K1||Z||Y ||tr], and outputs Z as the solution to the CDH problem.

We can see that if bad occurs and R’s guesses i and j are both correct, then R solves the
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CDH problem. Therefore, we have that

AdvCDH,G
R ≥ 1

qSqH2

· Pr[bad],

so

DistG7,G8

Z ≤ Pr[bad] ≤ qSqH2 ·AdvCDH,G
R ,

which is a negligible function of κ.

In G9, at the beginning of the game, pick r ←R {0, 1}κ (instead of r := H1(pw)) and

v ←R Zm (instead of v := H0(pw)), set V := gv, and leave H1(pw) and H0(pw) undefined.

In addition, if A sends (StealPwdFile, sid) to S and then queries H1(pw) (resp. H0(pw)), set

H1(pw) := r (resp. H0(pw) := v). Clearly this modification does not change the distribution

of r and V in Z’s view, so we have that

DistG8,G9

Z = 0.

Note that in G9, r′ = H1(pw′) is defined no matter whether A queries it or not. In G10,

leave r′ undefined unless and until A queries H1(pw′).

If A does not query H1(pw′), then r′ is a random string in {0, 1}κ in Z’s view. Since there

are qC r′’s, we have that

DistG9,G10

Z ≤ qC

2κ
,

which is a negligible function of κ.

G11 is the simulated world. We can see that the change from G10 to G11 is merely conceptual,

with the game challenger split into the aPAKE functionality F and the simulator SIM. We

have that

DistG10,G11

Z = 0.

82



Summing up all results above, we conclude that Z’s distinguishing advantage between the

real world and the simulated world is a negligible function of κ. This completes the proof.
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Chapter 5

OPAQUE: An Asymmetric PAKE

Protocol Secure Against

Pre-Computation Attacks

In this chapter we initiate the study of strong aPAKE (saPAKE) protocols that strengthen

the aPAKE security notion by disallowing pre-computation attacks, hence forcing the

adversary to perform full offline dictionary attack upon compromising the server (which

takes O(|D|) time where D is the password dictionary). Our contribution is three-fold:

• Security model: We formalize the saPAKE notion in the UC framework by modifying

the aPAKE functionality from [40] to eliminate an adversarial action which allowed

pre-computation attacks. As explained in Chapter 1, allowing pre-computation attacks

was indeed necessary to model the security of existing aPAKE protocols.

• saPAKE protocols: We present two generic constructions. The first builds the saPAKE

protocol from any aPAKE protocol (namely one that satisfies the original definition

from [40]) so that one can “salvage” existing aPAKE protocols. To do so we resort
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to Oblivious PRF (OPRF), as introduced in Chapter 3. We show that by preceding

any aPAKE protocol with an OPRF interaction in which the client computes the value

rw = Fk(pw) (rw for “randomized password”) with the help of the server and uses rw as

the password in the aPAKE protocol, one obtains a strong aPAKE protocol. We show

that if the OPRF and the given aPAKE protocol are, respectively, UC realizations of

the OPRF functionality (defined in Section 3.2, with some minor revisions detailed

below) and the original aPAKE functionality from [40], the resultant protocol realizes

our UC functionality FsaPAKE.

Our second transformation consists of the composition of an OPRF as above with

a regular Authenticated Key Exchange (AKE) protocol, with the server being the

last-to-complete party.1 We require UC security for the AKE protocol as well as a

property known as resistance to Key-Compromise Impersonation (KCI) attacks. The

latter means that an attacker that learns the secret keys of one party P, but does

not actively control P, cannot use this information to impersonate another party P′

to P. KCI resistance is a common property of most AKE protocols. In our saPAKE

construction, the client first runs the OPRF with the server to compute rw = Fk(pw), as

in the first construction; then it runs the AKE protocol with the server using a private

key stored, encrypted using an authenticated encryption under rw, at the server who

sends it to the client. Crucial to the security of the protocol is the use of authenticated

encryption with a “random-key robustness” property, which is achieved naturally by

some schemes or otherwise can be easily ensured, e.g., by adding an HMAC to a

symmetric encryption scheme. Under these conditions we show that the composed

protocol realizes our UC functionality FsaPAKE.

• Concrete instantiation: We use the above second transformation to instantiate an

saPAKE protocol with a very efficient OPRF and any efficient AKE with the KCI

1We also show that if the client is the last-to-complete party, then the composition realizes a relaxed
saPAKE functionality; see Section ?? for more details.
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property. The OPRF protocol we use, 2HashDH, is proven UC secure in Section 3.2;

however, we extend the 2HashDH protocol and show that it remains secure in spite of

changes to the OPRF functionality that we introduce for supporting a stronger OPRF

notion needed in our setting. We call the result of this instantiation, the OPAQUE

protocol.

The results presented in this chapter are based on the work of [46], with significant revision

of the security proofs. [46] incorrectly claims that the 2-round OPAQUE protocol realizes the

FsaPAKE functionality; we correct this mistake by adding a round of explicit authentication,

yielding a 3-round protocol.

5.1 Overview

Properties of OPAQUE. OPAQUE combines the best properties of existing aPAKE

protocols and of the standard password-over-TLS approach of password authentication. As

any aPAKE-secure protocol, it offers two fundamental advantages over the TLS-based

solution: It does not rely on PKI and the plaintext password is never in the clear at the

server. The only way for an attacker that observes (or actively controls) a session at a

server to learn the password is via an exhaustive offline dictionary attack. Watching or

participating in a session with the client does not help the attacker. At the same time,

OPAQUE resolves the major flaw of existing aPAKE protocols relative to

password-over-TLS, namely, their vulnerability to pre-computation attacks.

In addition to the above fundamental properties, OPAQUE enjoys important properties for

use in practice. Its modularity allows for its use with different AKE protocols that can

provide different features and performance tradeoffs. When implemented with a 3-message

AKE protocol with explicit authentication (e.g., HMQV-C [56]), OPAQUE takes only 3
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messages. The computational cost (using the 2HashDH protocol from Section 3.2) is 1

exponentiation for the server and 2 for the client in addition to the AKE protocol cost (with

HMQV, this cost is 2.17 exponentiations per party). OPAQUE offers forward secrecy (a

particularly crucial property for password protocols) if the AKE does.

OPAQUE further supports password hardening for increasing the cost of offline dictionary

attacks (upon server compromise) through client-side iterated hashing without the need

to transmit salt from the server to the client. In Figure 5.11 in Section 5.6 we show an

instantiation of OPAQUE in ROM with HMQV as the AKE.

Compared to the practical aPAKE protocols that have been and are being considered for

standardization (cf., [1, 68]), OPAQUE fares clearly better on the security side as the only

protocol that offers resistance to pre-computation attacks. Performance-wise, OPAQUE is

competitive with the more efficient among these protocols (see Section 5.6).

OPAQUE also provides a unique functionality among aPAKE protocols in that it allows

to store and retrieve the client’s secrets such as a bitcoin wallet, authentication credentials,

encrypted backup keys, etc., thus offering a far more secure alternative to the practice of

deriving low-entropy secrets directly from a client’s password. Furthermore, OPAQUE allows

for a client-transparent server-side threshold implementation (as detailed in Chapter 3) where

the only exposure of the client’s password – or any stored secrets – is in case a threshold of

servers is compromised and even then a full dictionary attack is required.

Finally, we comment that while OPAQUE can completely replace password authentication

in TLS, it can also be used in conjunction with TLS for protecting account information,

for bootstrapping TLS client authentication (via an OPAQUE-retrieved client signing key),

or as an hedge against PKI failures. In other words, while we are accustomed to use TLS

to protect passwords, OPAQUE can be used to protect TLS. We expand on this aspect in

Section 5.6.2.
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Related work. We note that variants of OPAQUE have been studied in prior work in

several settings. While our treatment frames OPAQUE in the context of OPRF [43], its

design can be seen as an instantiation of the Ford-Kaliski paradigm for password hardening

and credential retrieval using Chaum’s blinded exponentiation. Boyen [18] specifies and

studies the protocol (called HPAKE) in the setting of client-side halting KDF [17]. However,

none of these works presents a formal analysis of the protocol as an aPAKE, let alone as a

strong aPAKE, a notion that we introduce here for the first time.

5.2 The Strong aPAKE Functionality FsaPAKE

We present the ideal UC strong aPAKE functionality, FsaPAKE, that will serve as our

definition of strong aPAKE security; namely, we call a protocol a secure strong aPAKE

(saPAKE) if it realizes FsaPAKE. Functionality FsaPAKE is a simple but significant variant of

the UC aPAKE functionality FaPAKE from [40], which is shown in Figure 4.2 and Figure 4.3

in Chapter 4. For an overview of the aPAKE functionality FaPAKE, see Section 4.2.

Strong aPAKE vs. aPAKE. Our functionality FsaPAKE is identical to FaPAKE except

that the underlined text in Figure 5.1 is omitted. (There is no change in the other part

of the functionality, so we omit it.) That is, the only differences between FsaPAKE and

FaPAKE are in the actions upon the stealing of the password file; specifically, FsaPAKE omits

recording the (offline, pw) pairs and does not allow for OfflineTestPwd queries made before the

StealPwdFile query. Let us explain. Let’s consider first the definition of FsaPAKE, i.e., with the

underlined text omitted. In this case, the actions upon server compromise, i.e., StealPwdFile,

are simple. First, a flag (compromised) is defined to mark that the password file has been

compromised. Second, once this event happens, the adversary is allowed to submit password

guesses and be informed if a guess was correct. Note that each guess “costs” the attacker
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Password Registration

• On (StorePwdFile, sid ,C, pw) from S, if this is the first StorePwdFile message, record
〈file,C, S, pw〉 and mark it uncompromised.

Stealing Password Data

• On (StealPwdFile, sid) from A∗, if there is no record 〈file,C, S, pw〉, return “no password
file” to A∗. Otherwise, if the record is marked uncompromised, mark it compromised;
regardless,

– If there is a record (offline, pw), send pw to A∗.
– Else return “password file stolen” to A∗.

• On (OfflineTestPwd, sid , pw∗) from A∗, do:

– If there is a record 〈file,C, S, pw〉 marked compromised, do: if pw∗ = pw, return
“correct guess” to A∗; else return “wrong guess.”

– Else record (offline, pw).

Figure 5.1: Functionalities FaPAKE (full text) and FsaPAKE (underlined text omitted) (the
login phase is identical and thus omitted; see Figure 4.3)

one OfflineTestPwd query. This together with the restriction that these queries can only be

made after the password file is compromised ensure that shortcuts in finding the password

after such compromise are not possible, namely that the attacker needs to pay with one

OfflineTestPwd query for each password it wants to test. Thus, pre-computation attacks are

made infeasible.

Now consider the FaPAKE functionality from [40] which includes the underlined text too. This

functionality allows the attacker, via (offline, pw) records, to make guess queries against the

password even before the password file is compromised. The restriction is that the responses

to whether a guess was correct or not are provided to the attacker only after a StealPwdFile

event. But note that if one of these guesses was correct, the attacker learns it immediately

upon server compromise. This provision was necessary in [40] because the file[sid ] in their

aPAKE construction contains a deterministic publicly-computable hash of the password,

89



thus allowing for a pre-computation attack which lets the adversary instantaneously identify

the password with a single table lookup upon server compromise.2 Indeed, one can think of

the pairs (offline, pw) in the original FaPAKE functionality as a pre-computed table that the

attacker builds overtime and which it can use to identify the password as soon as the server

is compromised. By eliminating the ability to get guesses (offline, pw) answered before server

compromise in our FsaPAKE functionality, we make such pre-computation attacks infeasible

in the case of a strong aPAKE.

Modeling server compromise and offline dictionary queries. As in [40], we specify

that StealPwdFile and OfflineTestPwd messages from A∗ to FsaPAKE are accounted for by the

environment. This is consistent with the UC treatment of adaptive compromise queries and is

crucial to our modeling. Note that if the environment does not observe adaptive compromise

queries then the ideal adversary, i.e., the simulator, could immediately corrupt all parties

at the beginning of the protocol, learning their private inputs and thus making the work

of simulation easier. By making the player-compromise queries (modeled by StealPwdFile

command in our context) observable by the environment, we ensure that the environment’s

view of both the ideal and the real execution includes the same player-compromise events.

This way we keep the simulator “honest,” because it can only compromise a party if the

environment accounts for it.

The same concern pertains to offline dictionary queries OfflineTestPwd, because if they were

not observable by the environment, the ideal adversary could make such queries even if the

real adversary does not. In particular, without environmental accounting for these queries

the FaPAKE and FsaPAKE functionalities would be equivalent because the simulator could

internally gather all the offline dictionary attack queries made by the real-world adversary

before server compromise, and it would send them all via the OfflineTestPwd query to FsaPAKE

2Specifically, [40] stores a hash of the client’s password in the password file, hence allowing an attacker to
pre-compute a table with the hash of all passwords in a given dictionary and perform a simple table lookup
upon compromising the password file.
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after server compromise via the StealPwdFile query. Such simulator would make the ideal-

world view indistinguishable from the real-world view to the environment if the environment

does not observe the sequence of OfflineTestPwd and StealPwdFile queries.

5.3 Oblivious Pseudorandom Function

In the description below, we assume that P ∈ {C,A∗}.
Public Parameter: PRF output-length `, polynomial in security parameter κ.
For every server S, initialize tickets(S) to 0.
Initialization

• On (Init, sid , x) from server S, if this is the first Init message, mark S initialized, pick
FS(x)←R {0, 1}` and send (Init, sid , FS(x)) to S.

Server Compromise

• On (Compromise, sid) from A∗ for a server S, if S is marked initialized, mark it
compromised.

• On (OfflineEval, sid , S, x) from A∗, if S is corrupted or marked compromised, send
(OfflineEval, sid , FS(x)) to A∗.

Evaluation

• On (Eval, sid , ssid , S, x) from party P, if S is marked initialized, record 〈ssid ,P,S, x〉 and
send (Eval, sid , ssid ,P, S) to A∗.

• On (SvrComplete, sid , ssid) from S, if S is marked initialized, send
(SvrComplete, sid , ssid ,S) to A∗. Furthermore, if this is the first SvrComplete
message for ssid , set tickets(S)++.

• On (RcvComplete, sid , ssid ,P,S∗) from A∗, retrieve 〈ssid ,P, S, x〉; abort if there is no such
record, or tickets(S∗) = 0. Else set tickets(S∗)−− and send (Eval, sid , ssid , FS∗(x)) to P
(pick FS∗(x)←R {0, 1}` if undefined).

Figure 5.2: Revised OPRF functionality FOPRF with adaptive compromise

Oblivious Pseudorandom Functions (OPRF) are a central tool in all our constructions. For

an overview of the OPRF and our 2HashDH protocol, see Chapter 3. Here we adopt the

formulation from Section 3.2 as the basis for our revised OPRF functionality FOPRF presented
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in Figure 5.2.

Changes from OPRF functionality of Section 3.2. To use UC OPRF in our

applications we need to make some changes to the way functionality FOPRF was defined in

Section 3.2, as described below. Changes (2) and (3) are essentially syntactic and require

only cosmetic changes in the security argument. Change (1) is the only one which

influences the security argument in a more essential way. Fortunately, the 2HashDH

protocol that we use for OPRF instantiation in our protocols, shown in Section 3.2 to

realize the previous version of the OPRF functionality FOPRF, also realizes our modified

functionality. We recall the 2HashDH protocol in Figure 5.3, adapting its syntax to our

changes in FOPRF, and we argue that the security proof of Section 3.2 which shows that it

realizes FOPRF defined by Section 3.2 extends to the modified functionality FOPRF

presented here.

Let H(·, ·) and H ′(·) be hash functions with ranges {0, 1}` and G, respectively (modeled as
random oracles).
Initialization

• On input (Init, sid , x), if this is the first Init message, S picks and records k ←R Zm, and
outputs (Init, sid , H(x,H ′(x)k)).

Evaluation

• On input (Eval, sid , ssid ,S, x), C proceeds as follows:

– If there is a record 〈S, x, r, y〉, C outputs (Eval, sid , ssid , y) to Z.

– Else if there is a record 〈S′, x, r, y〉 (where S′ 6= S), C records 〈S, x, r,⊥〉 and sends
a := H ′(x)r to S.

– Else C picks r ←R Zm, records 〈S, x, r,⊥〉 and sends a := H ′(x)r to S.

• On input (SvrComplete, sid , ssid) and a from C, S retrieves k and sends b := ak to C.

• On b from S, if this is the first such message for ssid , C retrieves record 〈S, x, r,⊥〉,
replaces ⊥ with y := H(x, b1/r) and outputs (Eval, sid , ssid , y).

Figure 5.3: Revised protocol 2HashDH (for PRF output length `)
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(1) We extend the OPRF functionality to allow the adaptive compromise of a server holding

the PRF key via a Compromise message. Such action is needed in the aPAKE setting where

the attacker A∗ can compromise a server’s password file that contains the server’s OPRF

key. After the compromise, A∗ is allowed to compute that server’s PRF function by itself

on any value of its choice using an OfflineEval command and without the restrictions of the

ticketing mechanism.

We note that functionality FOPRF distinguishes between (statically) corrupted servers and

(adaptively) compromised sessions (the latter representing different OPRF keys at the

same server). This distinction allows for a granular separation between compromised and

uncompromised OPRF keys held by the same server. We adopt this distinction for

consistency with the aPAKE functionality from Figure 4.2 and Figure 4.3 that

distinguishes between an entirely corrupted server and particular aPAKE instances that

can be adaptively compromised by an adversary.

(2) We change the session-ID syntax used in Section 3.2 to model the use of multiple OPRF

keys by the same server. In the formulation of Section 3.2 each PRF key was identified with

a server identity making a one-to-one correspondence between OPRF keys and servers. Here,

we allow multiple OPRF keys to be associated with one server. Each such key is identified

with a tag sid and a server can be associated with multiple such tags. In the context of

our application to aPAKE protocols, each aPAKE session is associated with a unique OPRF

key used by the server for a particular client, so the session-ID sid corresponds to a client

account at that server. Any sid can include sub-sessions, denoted by ssid , corresponding to

different runs of the OPRF protocol between a client and a server.

(3) We add an initialization phase to the functionality, which models a server picking an

OPRF key and, in addition, computing the OPRF value on any input. This interface

simplifies the usage of OPRF in our applications to aPAKE, where the server will pick an
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OPRF key for a new client and evaluate the OPRF on the client’s password (for generating

an encryption key). This modeling differs from Section 3.2 which frames OPRF

initialization as an interactive procedure through an Eval call, while here it is performed

locally by the server.

Theorem 7. Suppose that the (Q+ qH′ , Q)-OMDH assumption holds for (G, g,m), where Q

is the number of Eval messages sent to C and qH′ is the number of H ′(·) queries. Then the

revised protocol 2HashDH in Figure 5.3 realizes the revised FOPRF functionality in ROM.

Proof. We only provide a proof sketch which briefly discusses how our modifications to FOPRF

affect the security proof. Since no message is sent to A∗ in the initialization phase, adding

initialization does not affect the simulation. Allowing for sub-sessions (identified by ssid)

results in adding ssid in the simulator whenever appropriate.

The remaining change is thatAmay compromise a server (for a specific sid) at any time; after

that, A can compute the server’s function value on any valid input. SIM is able to simulate

this by sending OfflineEval messages to F . Furthermore, note that fail may only occur on

servers which are not marked compromised at that time; therefore, the argument upper-

bounding Pr[fail] (in the setting where a server cannot be compromised) is unchanged.

5.4 A Compiler from aPAKE to saPAKE via OPRF

In Figure 5.4 we specify a compiler that transforms any OPRF and any aPAKE into a strong

aPAKE protocol. In UC terms the saPAKE protocol is defined in the (FOPRF,FaPAKE)-hybrid

world, for FOPRF with the output length parameter ` = 2κ. The compiler is simple. First,

the client transforms its password pw into a randomized value rw by interacting with the

server in an OPRF protocol where the client inputs pw and the server inputs the OPRF

key. Nothing is learned at the server about pw (i.e., rw is indistinguishable from random as
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long as the input pw is not queried as input to the OPRF). Next, the client sets rw as its

password in the given aPAKE protocol. Note that since the password rw is taken from a

pseudorandom set, then even if the size of this set is the same as the original dictionary D

from which pw was taken, the pseudorandom set is unknown to the attacker (the attacker

can only learn this set via OPRF queries which require an online dictionary attack). Thus,

any previous ability to run a pre-computation attack against the aPAKE protocol based on

dictionary D is now lost.

We assume that A always simultaneously sends queries (Compromise, sid) and

(StealPwdFile, sid) for the same sid to FOPRF to FaPAKE, respectively, because in any

instantiation of this protocol the server’s OPRF-related state and aPAKE-related state

would be part of the same file[sid ]. Consequently, for a single sid , S’s status (compromised

or not) in FOPRF and FaPAKE is always the same.

Password Registration

1. On input (StorePwdFile, sid ,C, pw), S sends (Init, sid , pw) to FOPRF.
On FOPRF’s response (Init, sid , rw), S sends (StorePwdFile, sid ,C, rw) to FaPAKE.

Password Authentication and Key Generation

1. On input (CltSession, sid , ssid , S, pw′), C sends (Eval, sid , ssid ,S, pw′) to FOPRF.
On FOPRF’s response (Eval, sid , ssid , rw′), C sends (CltSession, sid , ssid , S, rw′) to FaPAKE.

2. On input (SvrSession, sid , ssid), S sends (SvrComplete, sid , ssid) to FOPRF and
(SvrSession, sid , ssid) to FaPAKE.

3. On (sid , ssid , SK) or (abort, sid , ssid) from FaPAKE, the recipient, either C or S, outputs
this message.

Figure 5.4: Strong aPAKE protocol in the (FOPRF,FaPAKE)-hybrid world

We claim the security of our protocol in the following theorem:

Theorem 8. The protocol in Figure 5.4 realizes functionality FsaPAKE in the

(FOPRF,FaPAKE)-hybrid model.
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Proof. For any efficient environment Z and adversary A against the protocol, we construct

a simulator SIM as in Figure 5.5 and Figure 5.6. Without loss of generality, suppose A is a

“dummy” adversary who merely passes through all its messages to and from Z, and all its

computation to Z. To keep notation brief we denote functionality FsaPAKE as F .

For every server S, initialize tickets(S) to 0; initialize tested to ∅.
Stealing Password Data and Offline Queries

1. On (Compromise, sid) from A aimed at FOPRF and (StealPwdFile, sid) from A aimed at
FaPAKE, send (StealPwdFile, sid) to F .
If F returns “no password file,” pass it to A as a message from FaPAKE.
If F returns “password file stolen,” mark S and 〈file,C, S, ·〉 compromised (record
〈file,C,S,⊥〉 and mark it compromised if there is no such record). Furthermore, if ·
is a string rw and rw ∈ tested, then send rw to A as a message from FaPAKE; else send
“password file stolen” to A as a message from FaPAKE.

2. On (OfflineEval, sid ,S, x) from A aimed at FOPRF, if S is corrupted or marked
compromised, send (OfflineEval, sid , FS(x)) to A as a message from FOPRF (pick FS(x)←R

{0, 1}` if it is undefined) and (OfflineTestPwd, sid , x) to F . If F returns “correct guess,”
retrieve 〈file,C, S, ·〉 (there must be such record, since if S is marked compromised, A must
have sent (Compromise, sid) aimed at FOPRF and (StealPwdFile, sid) aimed at FaPAKE

previously, and at that time 〈file,C,S, ·〉 was recorded); if the last item is ⊥, replace it
with FS(x).

3. On message (OfflineTestPwd, sid , rw∗) from A aimed at FaPAKE, add rw∗ to tested.
Furthermore, if there is a record 〈file,C,S, rw〉 marked compromised, do:

• If rw = rw∗, send “correct guess” to A as a message from FaPAKE.

• Else send “wrong guess” to A as a message from FaPAKE.

Figure 5.5: The simulator SIM for the aPAKE-based construction in the stealing password
data phase

We now show that the distinguishing advantage of Z between the real world and the

simulated world is negligible. As before, the argument uses a sequence of games, starting

from the real world and ending at the simulated world.

G0 is the real world.

In G1, on (CltSession, sid , ssid , S, pw′) from Z to C and (RcvComplete, sid , ssid , S, S∗) from
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Password Authentication

1. On (CltSession, sid , ssid ,C,S) from F , send (Eval, sid , ssid ,C,S) to A as a message from
FOPRF. Also, if this is the first CltSession message for ssid , record 〈ssid ,C,S〉 and mark
it fresh.

2. On (SvrSession, sid , ssid ,C, S) from F , if there is no record 〈file,C,S, ·〉, record
〈file,C,S,⊥〉 and mark it uncompromised; regardless, send (SvrComplete, sid , ssid ,S) and
(SvrSession, sid , ssid ,C, S) to A as messages from resp. FOPRF and FaPAKE. Also, if this
is the first SvrSession message for ssid , set tickets(S)++, record 〈ssid ,S,C〉 and mark it
fresh.

3. On (RcvComplete, sid , ssid ,C,S∗) from A aimed at FOPRF, retrieve 〈ssid ,C, S〉; ignore
this message if such record does not exist, or tickets(S∗) = 0. Else set tickets(S∗)−−,
augment the record to 〈ssid ,C, S, S∗〉, mark it fresh and send (CltSession, sid , ssid ,C,S)
to A as a message from FaPAKE.

Active Session Attacks

1. On (TestPwd, sid , ssid ,P, rw∗) from A aimed at FaPAKE, if there is a record 〈ssid ,C, S, S∗〉
(if P = C) or 〈ssid , S,C〉 (if P = S) marked fresh, mark it unfresh and check if there is an
x such that rw∗ = FS∗(x) (if P = C) or rw∗ = FS(x) (if P = S).

• If there are more than one such x’s, output collision and abort.

• If there is a unique such x, send (TestPwd, sid , ssid ,P, x) to F and pass it to A as
a message from FaPAKE.
Also, if P = S and F returns “correct guess”, retrieve 〈file,C,S, ·〉, and if the last
item is ⊥, replace it with rw∗.

• If there is no such x, send “wrong guess” to A as a message from FaPAKE.

2. On (Impersonate, sid , ssid) from A aimed at FaPAKE, if there is a record 〈ssid ,C, S, S∗〉
marked fresh, mark it unfresh and do:

• If S∗ = S, send (Impersonate, sid , ssid) to F , and pass F ’s response (“correct guess”
or “wrong guess”) to A as a message from FaPAKE.

• Else send “wrong guess” to A as a message from FaPAKE.

Key Generation and Authentication

1. On (NewKey, sid , ssid ,P, SK∗) or (TestAbort, sid , ssid ,P) from A aimed at FaPAKE, if
there is a record 〈ssid ,C, S, S∗〉 (if P = C) or 〈ssid ,S,C〉 (if P = S) not marked completed,
pass the message from A to F . In the case of (TestAbort, sid , ssid ,P), also pass F ’s
response (succ or fail) to A as a message from FaPAKE. Finally, mark the record above
completed.

Figure 5.6: The simulator SIM for the aPAKE-based construction in the login phase
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A to FOPRF, record 〈ssid ,C, S, S∗, rw′〉 (instead of 〈ssid ,C, S, rw′〉). Obviously,

DistG0,G1

Z = 0.

In G2, on (TestPwd, sid , ssid ,P, rw∗) from A to FaPAKE, if there is a record 〈ssid ,C, S, S∗, rw′〉

(if P = C) or 〈ssid , S,C, rw〉 (if P = S) marked fresh, check if there is an x such that

rw∗ = FS∗(x) (if P = C) or rw∗ = FS(x) (if P = S).

• If there are more than one such x’s, output collision and abort.

• If there is a unique such x and x = pw′ (if P = C) or x = pw (if P = S), send “correct

guess” to A as a message from FaPAKE.

• In all other cases (i.e., x 6= pw′/pw or there is no such x), send “wrong guess” to A as

a message from FaPAKE.

First consider event collision. collision occurs if and only if there are more than one x’s such

that rw∗ = FS∗(x) (if P = C) or rw∗ = FS(x) (if P = S). This means that there are x1 6= x2

such that FS∗(x1) = FS∗(x2) or FS(x1) = FS(x2). Note that FS(·) and FS∗(·) are both random

functions onto {0, 1}2κ. Assuming that A sends qF Eval and OfflineEval messages aimed at

FOPRF in total and there are qC C sub-sessions, there are at most qF +qC +1 F values defined

in total (qF defined by A’s actions, qC defined by C’s input to the protocol, and 1 by S’s

input to the protocol), so we have that

Pr[collision] ≤ (qF + qC + 1)2

22κ+1
.

Next assume that collision does not occur. Consider the first message of type

(TestPwd, sid , ssid ,P, rw∗) (note that A receives a reply for the first such message only,

since 〈ssid ,P,P′, ·〉 becomes either compromised or interrupted after the first message). In
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both G1 and G2, A receives “correct guess” if and only if rw∗ = FS∗(pw′) (if P = C) or

rw∗ = FS(pw) (if P = S), so Z’s views in G1 and G2 in this case are identical. We have that

DistG1,G2

Z ≤ Pr[collision] ≤ (qF + qC + 1)2

22κ+1
,

which is a negligible function of κ.

In G3, on (Impersonate, sid , ssid) from A to FaPAKE, if there is a record 〈ssid ,C, S, S∗, rw′〉

marked fresh, send “correct guess” to A if S is marked compromised, S∗ = S and pw′ = pw;

otherwise send “wrong guess.”

Similar with above, A receives a reply for the first Impersonate message only, so we only

consider the first such message. Note that in G2 A receives “correct guess” if and only if S

is compromised and rw′ = rw, where rw′ = FS∗(pw′) and rw = FS(pw). Z’s views in G2 and

G3 are identical unless (S∗ 6= S ∨ pw′ 6= pw) ∧ FS∗(pw′) = FS(pw) (in which case A receives

“correct guess” in G2 and “wrong guess” in G3). Since S∗ 6= S or pw′ 6= pw, FS∗(pw′) and

FS(pw) are two independent random strings is {0, 1}2κ; therefore, for a single C session, the

probability that FS∗(pw′) = FS(pw) is at most 1/22κ. We have that

DistG2,G3

Z ≤ qC

22κ
,

which is a negligible function of κ.

In G4, after Z sends (StorePwdFile, sid ,C, pw) to S, record 〈file,C, S,⊥〉 (instead of

〈file,C, S, rw := FS(pw)〉); replace ⊥ with rw := FS(pw) in the following two cases: (i) when

A sends (OfflineEval, sid , S, pw) to FOPRF, and S is corrupted or marked compromised; (ii)

when A sends (TestPwd, sid , ssid , S, rw∗) to FaPAKE, and rw∗ = rw.

If neither (i) nor (ii) happens, rw = FS(pw) is a random string in {0, 1}2κ in Z’s view.

Therefore, replacing rw with ⊥ in this case creates a 1/22κ distinguishing advantage. We
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have that

DistG3,G4

Z ≤ 1

22κ
,

which is a negligible function of κ.

In G5, postpone the recording of 〈file,C, S, ·〉 until (i) A sends (Compromise, sid) to FOPRF

and (StealPwdFile, sid) to FaPAKE, or (ii) S sends (SvrSession, sid , ssid) to FaPAKE. Note that

if neither (i) nor (ii) happens, G4 does not retrieve 〈file,C, S, ·〉. Therefore,

DistG4,G5

Z = 0.

Note that in G5, rw = FS(pw) and rw′ = FS∗(pw′) are defined no matter A queries them

(i.e., A sends (OfflineEval, sid , S, pw) to FOPRF when S is corrupted or marked compromised;

or A sends (Eval, sid , ssid , pw′) and then (RcvComplete, sid , ssid ,A, S∗) to FOPRF) or not. In

G6, leave rw (resp. rw′) undefined unless and until A queries FS(pw) (resp. FS∗(pw′)).

If A does not query FS(pw) (resp. FS∗(pw′)), rw (resp. rw′) is a random string in {0, 1}2κ in

Z’s view. Since there is 1 rw and qC rw′’s, we have that

DistG5,G6

Z ≤ qC + 1

22κ
,

which is a negligible function of κ.

G7 is the simulated world. We can see that the change from G6 to G7 is merely conceptual,

with the game challenger split into the saPAKE functionality F and the simulator SIM. We

have that

DistG6,G7

Z = 0.

Summing up all results above, we conclude that Z’s distinguishing advantage between the

real world and the simulated world is a negligible function of κ. This completes the proof.
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5.5 A Compiler from AKE-KCI to saPAKE via OPRF

Our second transformation for building a strong aPAKE protocol composes an OPRF with

an Authenticated Key Exchange (AKE) protocol, “glued” together using an authenticated

encryption scheme. We require the AKE to be secure in the UC framework, namely, to

realize the UC KE functionality of [28], and to also be “KCI secure.” The latter notion

was defined in [56] under a game-based formulation and formalized in Section 5.5.1 below

in the UC framework. We only prove the OPRF-AKE composition to be saPAKE secure

for protocols where the last party to compute the key in the AKE protocol is the server.

The case where the client is the last party to compute the key (e.g., using a 2-message AKE

protocol without explicit client authentication) needs relaxation of the FsaPAKE functionality,

and we intend to explore this case as future work.

5.5.1 UC Definition of AKE-KCI

The KCI notion for KE protocols, which stands for “Key-Compromise Impersonation,”

captures the property we call “security against reverse impersonation,” which concerns an

attacker A who learns party P’s long-term keys but otherwise does not actively control P.

Resistance to KCI attacks, or “KCI security” for short, postulates that even though A can

impersonate P to other parties, sessions which P itself runs with honest peers need to

remain secure. A game-based definition of this notion appears in [56], and here we

formalize it in the UC framework through functionality FAKE−KCI presented in Figure 5.7.

Functionality FAKE−KCI extends the standard KE functionality of [28] with two adversarial

actions. The first, Compromise, captures the compromise of a party’s keys. The second is

Impersonate which is borrowed from the aPAKE functionality of [40] shown in Figure 4.2

and Figure 4.3. This action is targeted for some party’s sessions with its peer compromised
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In the description below, we assume P ∈ {C,S}.

• On (CltSession, sid , ssid ,S) from C, send (CltSession, sid , ssid ,C, S) to A∗. If it is the first
CltSession message for ssid , record (ssid ,C,S) and mark it fresh.

• On (SvrSession, sid , ssid ,C) from S, send (SvrSession, sid , ssid ,C,S) to A∗. If it is the first
SvrSession message for ssid , record (ssid ,S,C) and mark it fresh.

• On (Compromise, sid ,P) from A∗, mark P compromised.

• On (Impersonate, sid , ssid ,P) from A∗, if P is marked compromised and there is a record
(ssid ,P,P′) marked fresh, mark the record compromised.

• On (NewKey, sid , ssid ,P, SK∗) from A∗ where |SK∗| = κ, if there is a record (ssid ,P,P′)
not marked completed, do:

– If the record is marked compromised, or either P or P′ is corrupted, set SK := SK∗.

– If the record is marked fresh, a (sid , ssid , SK ′) tuple was sent to P′, and at that
time there was a record (ssid ,P′,P) marked fresh, set SK := SK ′.

– Else pick SK ←R {0, 1}κ.

Finally, mark (ssid ,P,P′) completed and send (sid , ssid , SK) to P.

Figure 5.7: Functionality FAKE−KCI

via the Compromise action, and it marks such session as compromised, which implies that the

attacker can determine the session key this session outputs via the NewKey message. This

models the fact that for a compromised party, its peer’s sessions cannot be assumed to be

secure since they could have been run with the adversary who has stolen the server’s keys.

However, sessions at the party itself must not be affected by the Impersonate action, and

they remain secure. All other elements in FAKE−KCI are the same as in the basic UC KE

functionality, except of some syntactic specialization to the client-server setting.

AKE-KCI security of HMQV. Our concrete instantiation of an saPAKE protocol,

OPAQUE (Figure 5.11 in Section 5.6), is illustrated with 3-message HMQV [56] (with

explicit client authentication) as the AKE-KCI component. The KCI property of HMQV

was proved in [56] in the game-based Canetti-Krawczyk model [27] extended to include
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KCI security. Here we require UC security, namely, a protocol that realizes functionality

FAKE−KCI. Fortunately, [28] proves the equivalence of the game-based definition of [27] and

their UC AKE formulation. Thanks to this equivalence, HMQV, as a basic KE, is secure in

the UC framework. More precisely, this applies to the 3-message HMQV (which satisfies

the “ACK” property required for the equivalence in [28]). For our purposes, however, we

need HMQV to realize the extended AKE-KCI functionality of Figure 5.7. The equivalence

with the game-based definition extends to this case. Indeed, since the original equivalence

from [28] holds even in the case of adaptive party corruptions, the Compromise and

Impersonate actions introduced here – which constitute a limited form of adaptive

corruptions – follow as a special case. Finally, we note that the equivalence between the

above models also preserves forward secrecy, so this property (proved in the game-based

Canetti-Krawczyk model in [56]) holds in the UC too. We note that by the results in [56],

the 3-message HMQV enjoys full perfect forward secrecy. The above security of HMQV

(without including security against the leakage of ephemeral exponents) is based on the

CDH assumption in ROM [56].

AKE-KCI with server as last-to-complete party. The UC AKE-KCI protocol (which

realizes FAKE−KCI) above, composed with the UC OPRF protocol, does not necessarily yield

a UC saPAKE. Indeed, suppose that the AKE-KCI allows S to output its key and end its

session before C computes the OPRF output. Then when an adversarial client C∗ tests a

candidate password pw∗ (i.e., upon receiving S’s ciphertext c, C∗ computes the OPRF on

pw∗ and uses the result to decrypt S’s ciphertext), at the time when the simulator is able

to extract pw∗ from C∗’s OPRF computation, S’s session is already completed. Hence the

simulator fails to complete its simulation as it cannot send a TestPwd message to the saPAKE

functionality FsaPAKE (recall that in FsaPAKE, TestPwd queries on a completed session do not

have any effect).
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To overcome this technical difficulty, we require that in the AKE protocol, the client

completes its session and gets its session key before the server does. Formally, we modify

the UC functionality FAKE−KCI to FAKE−KCI+ by adding the following line:

• On (NewKey, sid , ssid , S, SK∗) from A∗, ignore this message if there is no (sid , ssid ,C)

session marked completed.

It is clear that the 3-message HMQV realizes the FAKE−KCI+ functionality, since the server

waits for the client’s authentication message before it outputs its session key.

5.5.2 Strong aPAKE Construction from OPRF and AKE-KCI

Our saPAKE protocol based on OPRF and AKE-KCI is shown in Figure 5.8. The protocol

uses the same OPRF tool as the saPAKE construction of Section 5.4, for length parameter

` = 2κ, which defines the “randomized password” value rw = Fk(pw) for client C’s password

pw and OPRF key k held by server S. We assume that in the AKE-KCI protocol Π each party

holds a (private, public) key pair, and that the each party runs the login subprotocol using

its key pair and the public key of the counterparty as inputs. In the password registration

phase, server S generates the client C’s keys, and S’s password file contains S’s key pair

(ps, Ps); C’s public key Pc; and a ciphertext c of C’s private key pc and the public keys Pc

and Ps created using an authenticated encryption scheme with rw = Fk(pw) as the key. After

creating the password file, value pc is erased at S. In the login phase, S runs OPRF with

C, which lets C compute rw = Fk(pw), it sends c to C, who can decrypt it under rw and

retrieves its key pair (pc, Pc) together with the server’s key Ps, at which point both parties

have appropriate inputs to the AKE-KCI protocol Π to compute the session key.
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Public Components

• KCI-secure AKE protocol Π with private/public keys denoted ps, Ps, pc, Pc;

• Random-key robust authenticated encryption AE = (KeyGen,AuthEnc,AuthDec) where
KeyGen(1κ) picks a key uniformly at random from {0, 1}2κ;

• Functionality FOPRF with output length parameter ` = 2κ.

Password Registration

1. On input (StorePwdFile, sid ,C, pw), S generates pairs (ps, Ps) and (pc, Pc), and sends
(Init, sid , pw) to FOPRF.
On FOPRF’s response (Init, sid , rw), S computes c ← AuthEncrw(pc, Pc, Ps) and records
file[sid ] := 〈ps, Ps, Pc, c〉.

Server Compromise

1. On (StealPwdFile, sid) from A, S retrieves file[sid ] and sends it to A (if there is no such
record, sends “no password file” to A).

Login

1. On (CltSession, sid , ssid , S, pw′), C sends (Eval, sid , ssid ,S, pw′) to FOPRF.

2. On (SvrSession, sid , ssid), S retrieves file[sid ] = 〈ps, Ps, Pc, c〉, sends c to C and
(SvrComplete, sid , ssid) to FOPRF, and runs Π on input (ps, Ps, Pc).

3. On (Eval, sid , ssid , rw′) from FOPRF and c from S, C computes AuthDecrw′(c). If the result
is ⊥, C outputs (abort, sid , ssid) and halts. Else C parses (p∗c , P

∗
c , P

∗
s ) := AuthDecrw′(c)

and runs Π on input (p∗c , P
∗
c , P

∗
s ).

4. Given Π’s local output SK, the corresponding party, either C or S, outputs
(sid , ssid , SK).

Figure 5.8: Strong aPAKE based on AKE-KCI in the FOPRF-hybrid world

Role of authenticated encryption. The saPAKE protocol of Figure 5.8 utilizes an

authenticated encryption scheme AE = (KeyGen,AuthEnc,AuthDec) to encrypt and

authenticate C’s AKE “credential” (pc, Pc, Ps). We encrypt the whole payload (pc, Pc, Ps)

for simplicity, because unlike C’s private key pc, values Pc and Ps could be public and need

to be only authenticated, not encrypted. However, the authentication property of AE must

apply to the whole payload. Intuitively, C must authenticate S’s public key Ps, but if C

derived even its key pair (pc, Pc) using just the secrecy of rw = Fk(pw), e.g., using rw as
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randomness in a key generation, and C then executed AKE on such (pc, Pc) pair, the

resulting protocol would already be insecure. To see an example, if an AKE leaks C’s

public key input Pc (note that AKE does not guarantee privacy of the public key) then an

adversary who engages C in a single protocol instance can find C’s password pw via an

offline dictionary attack by running the OPRF with C on some key k∗, and then given Pc

leaked in the subsequent AKE it finds pw such that the key generation outputs Pc as a

public key on randomness rw = Fk∗(pw).

Thus the role of the authentication property in AE is to commit A to a single guess of

rw and consequently, given the OPRF key k∗, to a single guess pw. (Note that our UC

OPRF notion implies that F is collision-resistant.) To that end we need AE to satisfy the

following property which we call random-key robustness:3 For any efficient algorithm A the

probability that A on input (k1, k2) for two random keys k1 and k2 outputs c such that

AuthDeck1(c) 6=⊥ and AuthDeck2(c) 6=⊥ is negligible. In other words, it must be infeasible to

create an authenticated ciphertext that successfully decrypts under two different randomly

generated keys. This property can be achieved in the standard model using e.g., encrypt-

then-MAC with a MAC that is collision resistant with respect to the message and key, a

property enjoyed by HMAC with full hash output. In ROM used by our saPAKE application

one can also enforce it for any authenticated encryption scheme by attaching to its ciphertext

c a hash H(k, c) for a RO hash H(·, ·) with 2κ-bit outputs.

Note on not utilizing FAKE−KCI+. In Figure 5.8 we abstract the OPRF protocol as

functionality FOPRF, but we use the real-world AKE-KCI protocol Π, rather than

functionality FAKE−KCI+. The reason for this presentation is that in the KE functionality

of [28], of which FAKE−KCI is an extension, it is not clear how to support a usage of the KE

protocol on keys which are computed via some other mechanism than the intended KE key

3This notion is a weakening of Full Robustness (FROB) from [35] where the attacker is allowed to choose
k1 and k2 (in our case these keys are random). An even weaker notion, Semi-FROB, is defined in [35] where
k1 and k2 are random but only k1 is provided to A.
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generation. The KE functionality of [28] assumes that each entity keeps its private key as a

permanent state, authenticates to a counterparty given its identity, and a KE party cannot

specify any bitstring as one’s own private key and a counterparty’s public key. This is not

how we use AKE in our saPAKE of Figure 5.8 precisely because the client C does not keep

state and has to reconstruct its keys from a password (via OPRF). However, we can still

use the real-world protocol Π, which UC realizes FAKE−KCI+, giving it the OPRF-computed

information as input. In the proof of security we utilize the simulator SIMAKE, which shows

that Π UC realizes FAKE−KCI, in our simulator construction, but we rely on its correctness

only if C runs Π on the correctly reconstructed (pc, Ps, Ps), and if the adversary causes C to

reconstruct a different string we interpret this as a successful attack on C’s login session.

5.5.3 Proof of Security

Theorem 9. If protocol Π realizes functionality FAKE−KCI+, then the protocol in Figure 5.8

realizes functionality FsaPAKE in the FOPRF-hybrid model.

The proof of this theorem is more complex than the previous proofs, so we provide an

overview of the simulation strategy first. First consider password file storage (i.e., offline

security). The simulator SIM generates the two key pairs (pc, Pc) and (ps, Ps), and instead of

computing rw := FS(pw), it picks rw at random. Then it computes c← AuthEncrw(pc, Pc, Ps)

and records file[sid ] := 〈ps, Ps, Pc, c〉, just as what the real S does. The only way for the

environment Z to learn information about rw is to let the adversary A query FS(pw), either

offline (i.e., A compromises S and sends (OfflineEval, sid , S, pw) aimed at FOPRF) or online

(i.e., A sends (Eval, sid , ssid , S, x) and then (RcvComplete, sid , ssid ,A, S) aimed at FOPRF);

in both cases, SIM is able to “program” the result as rw.

In the login phase (i.e., online security), the key observation is that C outputs

(abort, sid , ssid) with overwhelming probability, except if either of the following happens
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(let c∗ be the ciphertext from A to C):

• (i) A is passive until the execution of Π begins, i.e., S∗ = S and c∗ = c, and (ii) the

two parties’ passwords match, i.e., pw′ = pw (SIM can test if pw′ = pw via a TestAbort

message). In this case the two parties’ inputs in Π match, i.e., C’s input is (pc, Pc, Ps)

and S’s input is (ps, Ps, Pc), so SIM “outsources” the simulation of Π to SIMAKE. Also

note that regarding the statuses of the two parties in the execution of Π,

– If A queries rw = FS(pw), then Z learns pc (as part of AuthDecrw(c)). This is

equivalent to C is compromised in Π. On the other hand, if A does not query

FS(pw), then rw = rw′ = FS(pw) is a random string in the environment Z’s view,

so by security of AE, Z learns no information about pc.

– If A compromises S, then Z learns ps (as part of file[sid ]). This is equivalent to

S is compromised in Π. On the other hand, if A does not compromise S, then Z

learns no information about ps.

Since A’s abilities of compromising S and performing offline attacks are adaptive, we

need to require that in the security notion of AKE, both parties can be compromised

adaptively. In the proof below, we mark this case (∗).

• A queries rw′ = FS∗(pw′) (e.g., by running another sub-session of OPRF with S∗

as the server, or in the case that S∗ = S and pw′ = pw, by compromising S and

computing FS(pw) offline). In this case Z can choose its own (p∗c , P
∗
c , P

∗
s ) and encrypt

c∗ ← AuthEncrw′(p
∗
c , P

∗
c , P

∗
s ). However, SIM, who sees A’s queries, can learn the same

information as well, so it can run Π on C’s behalf, hence simulate C’s behavior in Π.

(Here the random-key robustness of AE is needed, since if c∗ is valid under two different

keys, SIM does not know the plaintext under which key is (p∗c , P
∗
c , P

∗
s ).) Similarly, SIM

can also run Π on S’s behalf. In the proof below, we mark this case (∗∗).

We now proceed to the formal proof.

108



For every server S, initialize tickets(S) to 0.
Generate two key pairs (ps, Ps) and (pc, Pc), pick rw ←R {0, 1}`, compute c ←
AuthEncrw(pc, Pc, Ps), and record file[sid ] := 〈ps, Ps, Pc, c〉.
Let Πc and Πs be C and S’s algorithm in the execution of Π, respectively.
Stealing Password Data and Offline Queries

1. On (Compromise, sid) from A aimed at FOPRF and (StealPwdFile, sid) from A aimed at
S, send (StealPwdFile, sid) to F .
If F returns “no password file,” pass this message to A as a message from S.
If F returns “password file stolen,” mark S compromised and send file[sid ] to A as a
message from S.

2. On (OfflineEval, sid , S, x) from A aimed at FOPRF, if S is marked compromised or
corrupted, send (OfflineTestPwd, sid , x) to F . If F returns “correct guess,” record
〈file,C,S, x〉 and set FS(x) := rw. Regardless, send (OfflineEval, sid , FS(x)) to A as a
message from FOPRF (pick FS(x)←R {0, 1}` if undefined).

Figure 5.9: The simulator SIM for the AKE-based construction in the stealing password data
phase

Proof. For any efficient environment Z and efficient adversary A against the protocol, we

construct a simulator SIM as in Figure 5.9 and Figure 5.10. Since Π realizes FAKE−KCI+,

there is a simulator SIMAKE which produces a view indistinguishable with the view in the

real execution of Π for any efficient environment and adversary; SIM invokes SIMAKE as a

black box (while interacting with SIMAKE, SIM plays the role of both FAKE−KCI and A).

Without loss of generality, suppose A is a “dummy” adversary who merely passes through

all its messages to and from Z, and all its computation to Z. To keep notation brief we

denote functionality FsaPAKE as F .

We now show that the distinguishing advantage of Z between the real world and the

simulated world is negligible. As before, the argument uses a sequence of games, starting

from the real world and ending at the simulated world.

G0 is the real world.

In G1, at the beginning of the game, pick rw ←R {0, 1}` (instead of rw := FS(pw)) and
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Password Authentication

1. On (CltSession, sid , ssid ,C,S) from F , send (Eval, sid , ssid ,C,S) to A as a message from
FOPRF. Also, if this is the first CltSession message for ssid , record 〈ssid ,C,S〉.

2. On (SvrSession, sid , ssid ,C, S) from F , retrieve file[sid ] = 〈ps, Ps, Pc, c〉, send c and
(SvrComplete, sid , ssid ,S) to A as a message from S to C and from FOPRF, respectively,
and send (SvrSession, sid , ssid ,C,S) to SIMAKE. Also, if this is the first SvrSession message
for ssid , set tickets(S)++.

3. On (RcvComplete, sid , ssid ,C,S∗) from A aimed at FOPRF, retrieve 〈ssid ,C, S〉; ignore
this message if such record does not exist, or tickets(S∗) = 0. Else set tickets(S∗)−−,
augment 〈ssid ,C,S〉 to 〈ssid ,C, S, S∗〉 and mark (ssid ,C) completed.

Key Generation and Authentication

1. On (Eval, sid , ssid , S, x) and (RcvComplete, sid , ssid ,A,S) from A aimed at FOPRF, in
addition to simulating FOPRF by running its code, send (TestPwd, sid , ssid ,S, x) to F . If
F returns “correct guess,” record 〈file,C,S, x〉 and set FS(x) := rw.

2. As soon as (ssid ,C) is marked completed and a c∗ is sent from A aimed at C, retrieve
file[sid ] = 〈ps, Ps, Pc, c〉 and 〈ssid ,C, S, S∗〉 and proceed as follows:

• If c∗ = c and S∗ = S, send (TestAbort, sid , ssid ,C) to F .
If F returns succ, send (CltSession, sid , ssid ,C,S) to SIMAKE and do: (1) when S
is marked compromised, send (Compromise, sid , S) to SIMAKE; when a 〈file,C,S, pw〉
is recorded, send (Compromise, sid ,C) to SIMAKE; (2) on (Impersonate, sid , ssid ,S)
from SIMAKE, pass this message to F ; on (Impersonate, sid , ssid ,C) from SIMAKE,
send (TestPwd, sid , ssid , S, pw) to F ; (3) while SIMAKE simulates the execution of
Π, pass messages between it and A; (4) on (NewKey, sid , ssid ,P, SK) from SIMAKE,
pass this message to F . Mark this case (∗).

• Else for every x such that FS∗(x) is defined (denote it y), check if AuthDecy(c
∗) 6=⊥.

– If there are more than one such x’s, output halt and abort.

– If there is a unique such x, send (TestPwd, sid , ssid ,C, x) to F .
If F returns “correct guess,” parse (p∗c , P

∗
c , P

∗
s ) := AuthDecy(c

∗) and do: (1)
on A’s message as from S to C in the execution of Π, run Πc on (p∗c , P

∗
c , P

∗
s );

(2) when Πc is completed with output SK, send (NewKey, sid , ssid ,C, SK) to
F . Mark this case (∗∗).
If F returns “wrong guess,” send (TestAbort, sid , ssid ,C) to F .

– If there is no such x, send (TestPwd, sid , ssid ,C,⊥) and then
(TestAbort, sid , ssid ,C) to F .

3. If case (∗) does not happen, no matter whether case (∗∗) happens or not: (1) when a
〈file,C,S, pw〉 is recorded, send (TestPwd, sid , ssid , S, pw) to F ; (2) on A’s message as
from C to S in the execution of Π, run Πs on (ps, Ps, Pc); (3) when Πs is completed with
output SK, send (NewKey, sid , ssid ,S, SK) to F .

Figure 5.10: The simulator SIM for the AKE-based construction in the login phase
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leave FS(pw) undefined. In addition, if (1) A sends (Compromise, sid) and then

(OfflineEval, sid , S, pw) to FOPRF, or (2) A sends (Eval, sid , ssid , S, pw) and then

(RcvComplete, sid , ssid ,A, S) to FOPRF, set FS(pw) := rw.

Observe that rw is a random string in {0, 1}2κ in Z’s view unless and until either (1) or (2)

occurs; therefore, this modification does not change the distribution of rw in Z’s view, so we

have that

DistG0,G1

Z = 0.

G2 considers the case that (i) c∗ = c and S∗ = S, (ii) pw′ = pw, and (iii) throughout the

execution of Π, FS(pw) is undefined. (As in the description of SIM, we mark the combination

of (i) and (ii) as (∗).) In this case replace c with a “dummy” value c̃← AuthEncrw(p̃c, P̃c, Ps)

where (p̃c, P̃c) is a freshly generated key pair independently random of everything else.

Note that rw is a random string in {0, 1}2κ. By a reduction RSEC to the security of AE,

for a single C sub-session, the distinguishing advantage of Z between c and c̃ is at most

AdvSEC,AE
RSEC

. Assuming that there are qC C sub-sessions, we have that

DistG1,G2

Z ≤ qC ·AdvSEC,AE
RSEC

,

which is a negligible function of κ.

In G3, in the case of (∗), replace the real execution of Π with its simulation by SIMAKE.

Concretely,

(1) When Z inputs (SvrSession, sid , ssid) to S, send (SvrSession, sid , ssid ,C, S) to SIMAKE.

Also, if this is the first SvrSession message for ssid , record (ssid , S,C) and mark it fresh;

(2) When C’s OPRF sub-session is completed and A sends c∗ to C, send

(CltSession, sid , ssid ,C, S) to SIMAKE. Also, record (ssid ,C, S) and mark it fresh;
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(3) When A sends (Compromise, sid) to S, send (Compromise, sid , S) to SIMAKE; when FS(pw)

is defined, send (Compromise, sid ,C) to SIMAKE;

(4) On (Impersonate, sid , ssid ,P) from SIMAKE, if there was a (Compromise, sid ,P) message,

mark (ssid ,C,P) compromised;

(5) While SIMAKE simulates the execution of Π, pass messages between it and A;

(6) On (NewKey, sid , ssid ,P, SK∗) from SIMAKE where |SK∗| = κ, if there is a record

(ssid ,P,P′) not marked completed, do:

• If P = S, ignore this message if there is no (sid , ssid ,C) session marked completed.

• Else if the record is marked compromised, or either P or P′ is corrupted, set SK := SK∗.

• Else if the record is marked fresh, a (sid , ssid , SK ′) tuple was sent to P′, and at that

time there was a record (ssid ,P′,P) marked fresh, set SK := SK ′.

• Else pick SK ←R {0, 1}κ.

Finally, mark (ssid ,P,P′) completed and send (sid , ssid , SK) to P.

We construct an environment ZAKE against Π as follows:

(1) When Z inputs (SvrSession, sid , ssid) to S, send (SvrSession, sid , ssid) to S;

(2) When C’s OPRF sub-session is completed andA sends c∗ to C, input (CltSession, sid , ssid)

to C;

(3) In the execution of Π, ZAKE behaves as Z, with the “dummy” adversary as a sub-

procedure.

(4) ZAKE copies Z’s output. (Intuitively, ZAKE guesses “real world” if Z guesses “G2,” and

“simulated world” if Z guesses “G3.”)

112



Note that pc (resp. ps) is random in Z’s view unless and until a (Compromise, sid ,C) (resp.

(Compromise, sid , S)) message is sent to SIMAKE, which is consistent with the setting of AKE

simulation. Therefore,

DistG2,G3

Z ≤ Dist
Π,{FAKE−KCI,SIMAKE}
ZAKE

,

which is a negligible function of κ.

Note that in G3, C outputs (abort, sid , ssid) if and only if AuthDecrw′(c
∗) = ⊥ (where rw′ =

FS∗(pw′)). In the following three games we gradually change this condition.

In G4, in the case that c∗ = c, S∗ = S but pw′ 6= pw, C outputs (abort, sid , ssid).

Z’s views in G3 and G4 are identical unless c∗ = c, S∗ = S, pw′ 6= pw, but AuthDecrw′(c) 6= ⊥

(in which case C outputs (sid , ssid , SK) in G3 and (abort, sid , ssid) in G4). Since c ←

AuthEncrw(pc, Pc, Ps), we have that AuthDecrw(c) 6= ⊥. But rw′ and rw are independent

random strings in {0, 1}2κ, so by a reduction RRBST1 to the random-key robustness of AE,

we have that

DistG3,G4

Z ≤ qC ·AdvRBST,AE
RRBST1

,

which is a negligible function of κ.

In G5, in the case that ¬(c∗ = c ∧ S∗ = S), output halt and abort if there are x1 6= x2 such

that A queries both y1 = FS∗(x1) and y2 = FS∗(x2) (call “A queries FS∗(x)” if (i) A sends

(Eval, sid , ssid , x) and then (RcvComplete, sid , ssid ,A, S∗) to FOPRF, or (ii) S∗ = S, x = pw,

and A sends (OfflineEval, sid , S, pw) to FOPRF when S is corrupted or marked compromised),

and AuthDecy1(c
∗),AuthDecy2(c

∗) 6=⊥.

Note that y1 and y2 are independent random strings in {0, 1}2κ. By a reduction RRBST2

to the random-key robustness of AE, for a single C sub-session and two fixed y1 and y2,

Pr[AuthDecy1(c
∗),AuthDecy2(c

∗) 6=⊥] ≤ AdvRBST,AE
RRBST2

. Assuming that A sends qF Eval and
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OfflineEval messages to FOPRF in total, by a polynomial reduction, we have that

DistG4,G5

Z ≤ Pr[halt] ≤ q2
FqC ·AdvRBST,AE

RRBST2
,

which is a negligible function of κ.

In G6, in the case that ¬(c∗ = c ∧ S∗ = S), C outputs (abort, sid , ssid) if A does not query

FS∗(pw′).

Z’s views in G5 and G6 are identical unless A does not query rw′ = FS∗(pw′) but

AuthDecrw′(c
∗) = ⊥ (in which case C outputs (sid , ssid , SK) in G5 and (abort, sid , ssid) in

G6). Since A does not query FS∗(pw′), rw′ is a random string in {0, 1}2κ in Z’s view. Z

additionally learns c ← AuthEncrw(pc, Pc, Ps), but if S∗ 6= S, rw is independent of rw′; if

S∗ = S, A’s message is restricted to c∗ 6= c. By a reduction RAUTH to the authenticity of

AE, for a single C sub-session, the probability that A sends c∗ such that

AuthDecrw′(c
∗) = ⊥ is at most AdvAUTH,AE

RAUTH
. We have that

DistG5,G6

Z ≤ qC ·AdvAUTH,AE
RAUTH

,

which is a negligible function of κ.

Note that in G6, rw′ = FS∗(pw′) is defined no matter A queries it or not. In G7, leave rw′

undefined unless and until A queries FS∗(pw′).

If A does not query FS∗(pw′), rw′ is a random string in {0, 1}2κ in Z’s view. There are qC

rw′’s. Therefore, we have that

DistG6,G7

Z ≤ qC

22κ
,

which is a negligible function of κ.

G8 is the simulated world. We can see that the change from G7 to G8 is merely conceptual,
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with the game challenger split into the saPAKE functionality F and the simulator SIM. We

have that

DistG7,G8

Z = 0.

Summing up all results above, we conclude that Z’s distinguishing advantage between the

real world and the simulated world is a negligible function of κ. This completes the proof.

5.6 OPAQUE: A Strong Asymmetric PAKE

Instantiation

Figure 5.11 shows OPAQUE, a concrete instantiation of the generic OPRF+AKE protocol

from Figure 5.8.

The OPRF is instantiated with the 2HashDH protocol, while the AKE protocol can be

instantiated with any 3-message UC-secure AKE-KCI with the server as the last-to-complete

party; in Figure 5.11 this is illustrated with the 3-message HMQV [56]. Note that the two

messages of 2HashDH and two of the three messages from HMQV (or a similar protocol)

run “in parallel,” hence obtaining a 3-message saPAKE.

By Theorem 9 on the security of the generic OPRF+AKE construction, by Theorem 7

on the security of 2HashDH, and by security of HMQV, we get that protocol OPAQUE

realizes functionality FsaPAKE, hence it is a provably-secure strong aPAKE, under the OMDH

assumption in ROM.
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Public Parameters and Components

• Group G of prime order m (|m| = 2κ) and generator g (G∗ denotes G \ {1G}).

• Hash functions H(·, ·) and H ′(·) with ranges {0, 1}2κ and G, respectively.

• PRF f(·) with range {0, 1}2κ.

• Key-committing authenticated encryption scheme AE = (KeyGen,AuthEnc,AuthDec)
where KeyGen(1κ) picks a key uniformly at random from {0, 1}2κ.

• Key exchange formula KE defined below.

Password Registration

1. On (StorePwdFile, sid ,C, pw), S picks k ←R Zm and computes rw := Fk(pw) :=
H(pw, H ′(pw)k); picks ps, pc ←R Zm and computes Ps := gps , Pc := gpc , and c ←
AuthEncrw(pc, Pc, Ps); and records file[sid ] := 〈k, ps, Ps, Pc, c〉.

Login

1. On (CltSession, sid , ssid ,S, pw′), C picks r, xc ←R Zm; computes a := H ′(pw)r and Xc :=
gxc ; and sends a and Xc to S.

2. On (SvrSession, sid , ssid) and a from C, S checks if a ∈ G∗, and if not, it outputs
(abort, sid , ssid) and halts. Else it retrieves file[sid ] = 〈k, ps, Ps, Pc, c〉; picks xs ←R Zm
and computes b := ak and Xs := gxs ; computes Ks := KE(ps, xs, Pc, Xc) and SKs :=
fKs(0); and sends b, Xs and c to C.

3. On b, Xs and c from S, C checks if b ∈ G∗, and if not, it outputs (abort, sid , ssid) and
halts. Else it computes rw′ := H(pw′, b1/r) and AuthDecrw′(c).
If the result is ⊥, C outputs (abort, sid , ssid) and halts.
Else C parses (p∗c , P

∗
c , P

∗
s ) := AuthDecrw′(c); computes Kc := KE(p∗c , xc, P

∗
s , Xs) and

SKc := fKc(0); sends t := fKc(1) to S and outputs (sid , ssid , SKc).

4. On t from C, S checks if t = fKs(1). If so, S outputs (sid , ssid , SKs). Else it outputs
(abort, sid , ssid).

Key exchange formula KE with HMQV instantiation (if any of Xc, Pc, Xs, Ps /∈ G∗, the
receiving party outputs (abort, sid , ssid) and halts)

For S: KE(ps, xs, Pc, Xc) = H ′′((XcP
eu
c )xs+esps)

For C: KE(pc, xc, Ps, Xs) = H ′′((XsP
es
s )xc+eupc)

where eu = H(Xc, S) mod m, es = H(Xs,C) mod m.

Figure 5.11: Protocol OPAQUE
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5.6.1 Protocol Details and Properties

We expand on the specification of OPAQUE and the protocol’s properties.

• Password registration: Password registration is the only part of the protocol assumed

to run over secure channels where parties can authenticate each other. We note that

while OPAQUE is presented with the server doing all the registration operations, in

practice one may want to avoid that. Instead, we can let the server choose an OPRF

key k and the client choose the password pw, and then run the OPRF protocol

between the client and the server so only the client learns its secrets (pw, rw and pc)

and only S learns ps.

A problem arises with this approach if the server’s policy is to check the client’s

password for compliance with some rules. A possible workaround is to adapt

techniques from [54] that present zero-knowledge proofs for proving compliance

without disclosing the password.

• Authenticated encryption: As specified in Section 5.5.2, the scheme AE used in the

protocol needs to satisfy random-key robustness defined there. In practice, using an

encrypt-then-MAC scheme with HMAC-256 (or larger) as the MAC provides this

property (if a scheme does not have this property then adding on top of it such a

HMAC computed on the scheme’s ciphertext will ensure this property).

• Key exchange: The generic AKE representation via the KE formula applies to any

protocol whose session key is computed as a function of the long-term private-public

key pair of each party and ephemeral session-specific private-public values. These

values are represented as (ps, Ps, xs, Xs) for the server and (pc, Pc, xc, Xc) for the client.

We note that while more general key-exchange protocols can be used with OPAQUE,

this representation applies to many such protocols and, in particular, to HMQV [56]

which we use here as our main instantiation.
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• Explicit mutual authentication: The protocol as illustrated only provides explicit

client authentication. With an additional message the protocol achieves mutual

authentication by simply adding the value fKs(2) to the server’s message. The client

verifies that the value received from the server is computed correctly and if not it

aborts.

• Use of HMQV: Recall that the security of OPAQUE depends on the KE protocol being

AKE-secure in the UC framework with the additional KCI property; namely, it should

realize the UC AKE-KCI functionality from Figure 5.7. As argued in Section 5.5.1,

HMQV indeed realizes this functionality (under the CDH assumption in ROM), hence

it is appropriate for use in OPAQUE.

• Forward secrecy: This property (or lack of it) is inherited by OPAQUE from the key

exchange component KE. In the case of (3-message) HMQV, it provides full forward

secrecy, namely, against arbitrary active attacks [56]. One cannot overstate the

importance of forward secrecy in password protocols: it guarantees that past session

keys remain secure upon the compromise of a client’s password (or server’s

information).

• Client iterated hashing: OPAQUE can be strengthened by increasing the cost of a

dictionary attack in case of server compromise. This is done by changing the

computation of rw to rw = Hn(Fk(pw)), that is, the client applies n iterations of the

function H(·) on top of the result of the OPRF value Fk(pw). In practice, the

iterations Hn would be replaced with one of the standard password-based KDFs,

such as PBKDF2 [50] or PM99 [66]. This forces an attacker that compromises the

password file at the server to compute for each candidate password pw′ the function

Fk(pw′) as well as the additional n hash iterations. Note that n does not need to be

remembered by the client; it can be sent from S to C in the server’s message.

Furthermore, one can follow Boyen’s design and apply the probabilistic Halting KDF
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function [17] as used in [18] so that the iterations count is hidden from the attacker

and even from the server.

• Performance: OPAQUE takes three messages; 1 exponentiation for S, 2 and a hashing-

into-G for C, plus the cost of KE. With HMQV, the latter cost is 1 offline fixed-base

exponentiation and 1 multi-exponentiation (at the cost of 1.16 regular exponentiations)

per party (about three exponentiations in total for the server and four for the client).

All exponentiations are in regular DH groups, hence accommodating the fastest elliptic

curves (e.g., no pairings). It is common in PAKE protocols to count number of group

elements transmitted between the parties. In OPAQUE, C sends 2 while S sends 3

(one, Pc, can be omitted at the cost of 1 fixed-based exponentiation at the client).

• Performance comparison: The introduction presents background on OPAQUE and

other password protocols. Here we provide a comparison with the more efficient

among these protocols, particularly those that are being, or have been, considered for

standardization. Clearly, OPAQUE is superior security-wise as the only one not

subject to pre-computation attacks, but it also fares well in terms of performance.

AugPAKE [69] is computationally very efficient with only 2.17 exponentiations per

party; however, it uses 4 messages and does not provide forward secrecy. In addition,

the protocol has only been analyzed as a PAKE protocol, not aPAKE.

Another proposed aPAKE protocol, SPAKE2+ [6, 29], uses two messages only and 3

multi-exponentiations (or about 3.5 exponentiations) per party which is similar to

OPAQUE cost. The security of the protocol has only been informally argued in [29]

and to the best of our knowledge no formal analysis has appeared.

We also mention SRP which has been included in TLS ciphersuites in the past but is

considered outdated as it does not have an instantiation that works over elliptic

curves (the protocol is defined over rings and uses both addition and multiplication).

Its implementations over RSA moduli is therefore less efficient than those over elliptic
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curve; it also takes 4 messages.

We also mention two very recent protocols that have been formally analyzed as

aPAKE protocols but, as the rest, are vulnerable to pre-computation. The protocol

VTBPEKE in [65] uses 3 messages and 4 exponentiations per party and was proven

secure in the non-UC aPAKE model of [14], while [49] shows a simultaneous

one-round protocol that they prove secure in the UC aPAKE model of [40]

augmented with adaptive security. The protocol works over bilinear groups and its

computational cost includes 4 exponentiations and 3 pairing per party.

We note that all of the above protocols require an initial message from server to client

in order to transmit salt, which may result in one or two added messages to the above

message counts (except for VTBPEKE which already includes the salt transmission

in its 3 messages). Also, all these protocols, like OPAQUE, work in ROM.

• Threshold implementation: We comment on a simple extension of OPAQUE that can

be very valuable in large deployments, namely, the ability to implement the OPRF

phase as a Threshold OPRF, as introduced in Chapter 3. In this case, an attacker

needs to break into a threshold of servers to be able to impersonate the servers to

the client or to run an offline dictionary attack. Such an implementation requires no

client-side changes, i.e., the client does not need to know if the system is implemented

with one or multiple servers.

• OPAQUE as a general secret retrieval mechanism: An important feature of OPAQUE

is that it can serve not only as an aPAKE protocol but more generally as a means

for retrieving a secret or credential from a server (such a secret is protected under

ciphertext c stored at the server). In this functionality, OPAQUE acts as a 1-out-of-1

implementation of the TOPPSS protocol in Chapter 3. The retrieved secret can be used

to protect information such as a bitcoin wallet, serve as a client-controlled encryption

key for a backup or other information repository (e.g., a password manager), used as
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an authentication or signing key, and more. This offers a far more secure alternative

to the practice of deriving low-entropy secrets directly from a client’s password.

5.6.2 OPAQUE and TLS: Client Authentication and Hedging

Against PKI Failures

As discussed earlier, OPAQUE offers a much more secure alternative to

password-authenticated key exchange than the current practice of transmitting passwords

over TLS. Yet, OPAQUE (as any other aPAKE) still requires additional mechanisms for

negotiating cryptographic parameters (such as crypto algorithms) and for establishing the

means needed to encrypt and authenticate communications using the keys generated by

OPAQUE. Thus, it is natural to compose OPAQUE with the TLS protocol to offer strong

password security while leveraging the standardized negotiation and record-layer security of

TLS. Moreover, TLS can offer an initial server-authenticated channel to protect the privacy

of account information, such as username, transmitted between client and server. Here we

discuss possible protocols for composing OPAQUE and TLS. We consider TLS 1.3 [67] as

the upcoming and more secure version of TLS, although some of the mechanisms can be

implemented via prior versions of TLS.

The simplest TLS-OPAQUE combination is one where C’s private key pc stored by OPAQUE

at the server is used as a signature key for TLS client authentication. In this case, the

OPAQUE-extended handshake protocol includes the following sequential steps (for a total

of 5 messages): (1) a 1-RTT run of TLS 1.3 handshake protocol that produces a session key

authenticated by S’s TLS certificate; (2) the two OPAQUE messages exchanged between

client and server excluding the KE values gx and gy (these were already exchanged as part of

the TLS 1-RTT run); (3) TLS 1.3 client authentication using the client’s private signature

key pc retrieved from the server in step (2).
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These steps result in mutual authentication where server’s authentication is accomplished

based on a TLS certificate. The client can either trust such a certificate or it can verify

equality of the certificate’s public key against Ps as retrieved by OPAQUE. In case of a

mismatch the client can request a signature of S using Ps which is computed on the TLS

transcript4. In the latter case, the protocol does not rely on PKI certificates except for

protecting account information. In all cases, the security of passwords and password

authentication does not rely on PKI but on OPAQUE only.

Variants of the above protocol include the use of a TLS 1.3 0-RTT exchange for sending the

first OPAQUE message (including protected account information) in which case steps (1)

and (2) are executed concurrently for a total of two messages (two flights in TLS jargon).

This variant, while more efficient, relies on 0-RTT which is available only to clients and

servers that have previously shared a key (negotiated in a previous handshake). A 0-RTT

variant independent of pre-shared keys and based instead on a server’s public key is possible

(e.g., [58]) but it is not standardized by TLS 1.3. Finally, if protecting the secrecy of client’s

account information is not considered necessary then steps (1) and (2) can run concurrently

(without using the 0-RTT protocol); in this case server’s authentication is based on the

server’s stored key Ps. This setting also allows for a maximally efficient protocol using HMQV

as illustrated in Figure 5.11 (with additional key derivation and record layer processing based

on TLS).

We note that the security of the above variants and composition rely on the modularity of

OPAQUE that can compose the OPRF steps with arbitrary key-exchange protocols (with

KCI security). We remark that the security of TLS 1.3 has been analyzed in multiple works

(cf. [34, 32, 31, 15, 36, 59] with client authentication via exported authentication (or “post-

handshake authentication”) studied in [57].

4Such additional server authentication and the client authentication in step (3) can be implemented
using TLS exported authenticators as defined in [72] (client authentication in this case corresponds to post-
handshake authentication in [67]).
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Chapter 6

Conclusion and Future Work

This study addresses two major topics in password authentication in the client-server setting,

namely Password-Protected Secret Sharing (PPSS) and asymmetric Password-Authenticated

Key Exchange (aPAKE). For PPSS, we present TOPPSS, which is a highly-efficient PPSS

protocol proven secure in the Universally Composable (UC) framework. For aPAKE, we

first present a round-reduced protocol based on the Ω-method compiler of [40]. We then

propose strong aPAKE (saPAKE), which eliminates the so-called pre-computation attack,

hence achieving the motivation behind the concept of aPAKE. We present OPAQUE, which

is the first saPAKE protocol in the literature, with efficiency comparable to normal aPAKE

protocols, and also prove it secure in the UC framework.

Future work. Below we list several specific problems emerging from this study, which

create possible avenues for further exploration.

• Threshold (a)PAKE: There has been relatively little work on Threshold PAKE (T-

PAKE) since it was proposed in [63]. [43], which shows the close relationship between

PPSS and T-PAKE by constructing a generic compiler from the former to the latter,
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has the security proof in the game-based model. Since we have a UC notion of PPSS

in this study, a natural question is: Can we prove the security of this compiler in the

UC framework?

Furthermore, to the best of our knowledge, there is no threshold (strong) aPAKE

notion in the literature (in either the game-based model or the UC framework), yet

such protocols have much practical value. Thus, “thresholdizing” efficient UC aPAKE

protocols is an interesting open problem.

• Strong aPAKE under weaker assumptions: A drawback of the OPAQUE protocol is

that its security relies on the somewhat non-standard and interactive OMDH

assumption. It is natural to ask whether strong aPAKE protocols can be constructed

under weaker assumptions such as DDH, with similar computational cost. Since

saPAKE is a new research topic and the only existing constructions are the ones

presented in this study, there may be much space for improvement.

• Two-Factor Authentication (TFA): Two-factor authentication (TFA), in which a client

authenticates with a server using a password and a piece of additional information (e.g.,

a PIN) sent from a supplementary device, has been widely used in practice; however,

there is little work on the formal security models and security arguments of such

protocols in the cryptographic literature. The first such formal treatment [70] defines

both online security and offline security (upon server compromise) in the game-based

model, yet the protocols in [70] rely on secure channels.

Similar to the PAKE problem, a natural question is whether we can eliminate the usage

of secure channels, hence achieving the same security level in the password-only setting.

If so, the resulting protocol can be viewed as a strengthening of aPAKE, with offline

security and online security both increasing by a factor of 2t, where t is the length of

the PIN. Specifically, the running time of a successful offline dictionary attack increases

2t times, and the probability of a successful online guessing attack decreases 2t times.
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Appendix A

Hardness of the (Gap) Threshold

OMDH Assumption in the Generic

Group Model

We show the hardness of the (Gap) T-OMDH problem defined in Section 3.3.4 in the generic

group model. First in Theorem 11 we argue the t′ = 0 case of the non-gap version of this

problem, then in Theorem 12 we extend it to general t′, and in Theorem 13 we explain how

the proof is adapted to the case of a gap group. To the best of our knowledge, this is also

the first analysis of generic group hardness of the (Gap) OMDH assumption.

Equivalence of (N,Q)-T-OMDH and (Q+1, Q)-T-OMDH. Note that the point which

Bellare et al. [9] made about the One-More RSA assumption, namely that the (N,Q)-One-

More problem for any N > Q is equivalent to the (N,Q)-One-More problem for N = Q+ 1,

holds for the (Gap) T-OMDH problem as well, and it is a simple observation in this case

because we specify the T-OMDH assumptions only in the context of a group of a known

prime order. This implies in particular that in Theorems 11, 12, and 13 below it suffices to
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consider the case N = Q + 1. The theorem below is stated (and argued) for the non-gap

version of the T-OMDH assumption, but the corresponding fact holds also in the case of the

gap version of this assumption.

Theorem 10. (t′, t, n,N,Q)-T-OMDH is equivalent to (t′, t, n,Q+ 1, Q)-T-OMDH.

Proof. Given algorithm A against the (t′, t, n,N,Q)-T-OMDH problem, we construct a

reduction R which solves the (t′, t, n,Q+ 1, Q)-T-OMDH problem as follows:

On challenges g1, . . . , gQ+1, R picks N sequences of random linear coefficients

β[i, 1], ..., β[i, Q + 1] in Zm for i = 1, . . . , N , sets g′i := g
β[i,1]
1 · . . . · gβ[i,Q+1]

Q+1 , and sends

g′1, ..., g
′
N as challenges set to A. R passes assignment F of shares of corrupted trustees as

A chooses them, and answers its T-OMDH oracle query of A by making the same query

itself. Finally, if A outputs some (Q + 1)-element subset J ⊂ {1, . . . , n} and vj = (g′j)
p(0)

for each j ∈ J , then the (Q + 1)-by-(Q + 1) matrix M where the k-th row is

[β[jk, 1], ..., β[jk, Q + 1]] satisfies that [g′j1 , . . . , g
′
jQ+1

] = [g1, ..., gQ+1] · MT , where matrix

multiplication stands for exponentiation, i.e., g′jk = g
M [k,1]
1 · . . . · gM [k,Q+1]

Q+1 . Since β’s are

random in Zm and gj’s are random in G, the probability that M is non-invertible is

negligible (see [9]), in which case [g1, ..., gQ+1] = [g′j1 , ..., g
′
jQ+1

] · (M−1)T , and if R outputs

[z1, ..., zQ+1] = [vj1 , ..., vjQ+1
] · (M−1)T then zi = g

p(0)
i for each i.

Proof of the main theorem. Before moving on to the proof of the main theorem, we

briefly review the definition and some basic properties of the Hadamard product of two

vectors. Recall that the Hadamard product of ~a = [a1, . . . , an]T and ~b = [b1, . . . , bn]T is

defined as

~a�~b =


a1

...

an

�

b1

...

bn

 =


a1b1

...

anbn

 =


b1

. . .

bn

~a.
From the rule above, we can see the following four properties:

132



(i) ~a�
(∑m

j=1
~bj

)
=
∑m

j=1

(
~a�~bj

)
,

(ii) ~a� (x~b) = x(~a�~b) where x is a scalar,

(iii) If ~k � ~a = ~0 and none of ~k’s entries is 0, then ~a = ~0,

And by (i) and (iii) we also get:

(iv) If
∑m

j=1

(
~k � ~aj

)
= ~0 and none of ~k’s entries is 0, then

∑m
j=1~aj = ~0.

Lemma 1. Let t be any positive integer. Then there does not exist n-dimensional vector ~q

such that

(1) w ≥ Qt, and

(2) for any qi (i = 1, . . . , n), qi ≤ Q,

where w = W (~q), and Q = b~q/Vtc+ 1.

Proof. We prove the proposition by induction on Q. If Q = 1, Ct(~q) = 0, which implies that

there are at most t− 1 non-zero entries in ~q; if ~q satisfies (2), then w is at most t− 1, so (1)

cannot be satisfied.

Now suppose the proposition holds for Q−1, but not for Q, i.e. there exists ~q which satisfies

both (1) and (2). Note that ~q can have at most t − 1 entries that are larger than or equal

to Q (otherwise those t entries that are larger than or equal to Q can be decreased Q times,

so Ct(~q) ≥ Q). Let ~q′ be ~q with the largest t entries decreased, and w′ = W (~q′). Then (1)

w′ = w − t ≥ (Q− 1)t, (2) for any q′i (i = 1, . . . , n), q′i ≤ Q− 1 according to the above, and

Ct(~q) = Q− 2. Therefore, ~q′ is a counterexample for Q− 1, which contradicts our inductive

hypothesis.

Lemma 2. Let t be any non-negative integer, n be any positive integer, ~q be an n-dimensional

vector, w = W (~q), Q = Ct+1(~q) + 1, and ~k be a w-dimensional vector where there are qi
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i’s as its entries (i = 1, . . . , n). Then for any w-dimensional vectors ~b1, . . . ,~bQ, the set

V = {~kj �~bi}j∈{0,...,t},i∈[Q] is linearly dependent.

Proof. Let M : w ×Q(t + 1) be the matrix whose columns are vectors in V . It is sufficient

to show that rank(M) < Q(t+ 1).

For i = 1, . . . , n, there are qi positions in ~k where the entry is i. Consider the corresponding

rows in M ; denote the qi×Q(t+ 1) sub-matrix as Mi. Note that rank(Mi) ≤ Q since all its

columns are multiples of its 1st, [(t+ 1) + 1]-th, . . . , (Q− 1)(t+ 1)-th columns; therefore, for

any qi > Q, we can select Q rows of Mi forming matrix M ′
i s.t. rank(M ′

i) = rank(Mi). For

all other qi’s, let M ′
i = Mi. Let q′i be the number of rows of Mi, i.e. for qi > Q, let q′i = Q,

and for all other qi’s, let q′i = qi; then q′i ≤ Q for all i = 1, . . . , n. Let w′ = W (~q′).

Now let M ′ : w′×Q(t+1) be the concatenation of M1, . . . ,Mn. We can see that rank(M ′) =

rank(M). But Ct+1(~q′) = Ct+1(~q) = Q− 1. (The reason is as follows: obviously Ct+1(~q′) ≤

Q−1. On the other hand, let ~v1, . . . , ~vQ−1 ∈ Vt+1 such that ~v1 + . . .+~vQ−1 ≤ ~q. Clearly each

entry of ~v1 + . . .+ ~vm−1 is at most Q− 1; therefore, ~v1 + . . .+ ~vQ−1 ≤ ~q′ since ~q′ is simply ~q

with entries greater than Q decreased to Q. That implies Ct+1(~q′) ≥ Q − 1.) According to

Lemma 1, we have w′ < Q(t+ 1). So rank(W ) = rank(W ′) ≤ w′ < Q(t+ 1).

Lemma 3. Let t, n, ~q, w, Q be the same with those in Lemma 2. Then there do not exist

matrices A : Q× w, B : w ×Q and full-rank diagonal matrix K : w × w where there are qi

i’s as its entries on the diagonal (i = 1, . . . , n), s.t. AB = I and AKB = . . . = AKtB = O,

where I is the identity matrix and O is the zero matrix.

Proof. Suppose K =


k1

. . .

kw

. Let ~aT1 , . . . ,~a
T
Q be the rows of A, ~b1, . . . ,~bQ be the

columns of B, and ~k = [k1, . . . , kw]T . Then ~a1, . . . ,~aQ,~b1, . . . ,~bQ, ~k are all w-dimension

column vectors, and all entries of ~k are non-zero.
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Let ~kj denote [kj1, . . . , k
j
w]T , and V = {~kj � ~bi}j=0,...,t,i=1,...,Q. The conditions AB = I and

AKB = . . . = AKtB = O can be rewritten as

~aTi
~b =


1 (~b = ~bi)

0 (~b ∈ V \ {~bi})
(i = 1, . . . , Q).

Therefore, ~bi cannot be linearly expressed by V \ {~bi}.

We claim that V \{~b1, . . . ,~bQ} = {~kj�~bi}j=1...,t,i=1,...,Q is linearly dependent. Otherwise since

~b1 cannot be linearly expressed by V \ {~b1}, it cannot be linearly expressed by its subset

V \ {~b1, . . . ,~bQ} as well; therefore, adding ~b1 to V \ {~b1, . . . ,~bQ}, that is, V \ {~b2, . . . ,~bQ}, is

still linearly independent. Similar with above, we can add ~b2, . . . ,~bQ to the set and remain

its linear independency, i.e., V is also linearly independent. But this is impossible according

to Lemma 2.

Since {~kj �~bi}j∈[t],i∈[Q] is linearly dependent, there exist xij (j = 1, . . . , t, i = 1, . . . , Q), at

least one of which is non-zero, such that

t∑
j=1

Q∑
i=1

xij~k
j �~bi = ~0.

Because none of ~k’s entries is 0, we can derive that

t∑
j=1

Q∑
i=1

xij~k
j−1 �~bi = ~0,

i.e.,
Q∑
i=1

xi1~bi +
t−1∑
j=1

Q∑
i=1

xi,j+1
~kj �~bi = ~0.
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Recall that ~bi cannot be linearly expressed by V \ {~bi}, so x11 = . . . = xQ1 = 0. We get that

t−1∑
j=1

Q∑
i=1

xi,j+1
~kj �~bi = 0.

Using the same steps above, we can see x12 = . . . = xQ2 = 0, then x13 = . . . = xQ3 = 0,

. . . , finally x1Q = . . . = xQQ = 0. That is, all xij’s (j = 1, . . . , t, i = 1, . . . , Q) are 0, which

contradicts the claim above.

Theorem 11. (generic group hardness of (0, t, n,Q + 1, Q)-T-OMDH) Let G be a

generic group of prime order m. We use ξ(a) for a ∈ Zm to denote (the encoding of)

elements in G, where ξ(·) is a random 1-1 function mapping Zm to bitstrings of sufficient

size. Let A be an algorithm which can query the following two oracles:

• Group operation oracle, which on input (ξ(a1), ξ(a2)) and an operation, either + or −,

respectively outputs ξ(a1 + a2) or ξ(a1 − a2);

• Oracle T-OMDHp(·, ·), where p(·) is a t-degree polynomial over Zm, which on input

(k, ξ(a)) for k ∈ {1, . . . , n} outputs ξ(a · p(k)).

Let Adv
T-OMDHp(·,·)
A (t, n,Q, r,m) be the probability that A(ξ(1), ξ(u1), . . . , ξ(uQ+1)) outputs

(ξ(u1 · p(0)), . . . , ξ(uQ+1 · p(0))) after making r group operation queries and qi queries to

T-OMDHp(i, ·) such that Ct+1(~q) ≤ Q. Then

Adv
T-OMDHp(·,·)
A (t, n,Q, r,m) ≤ (w + 1)(w +Q+ r + 2)2 + 4

2m
,

where w = W (~q) (i.e., w is the total number of queries to the T-OMDH oracle), and the

probability goes over the random choice of t-degree polynomial p, the randomness of A and

the randomness of oracle ξ(·).

Proof. The proof goes by construction of an algorithm B which simulates the real
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challenger while interacting with A. B maintains a list T := {(Fs, ξs)}s=1,...,σ, where

Fs(U1, . . . , UQ+1, A0, A1, . . . , At) is a polynomial of degree at most w, and ξs’s are random

distinct elements in G. At the beginning, B sets σ := Q + 2 and initializes T by setting

F1 := 1, F2 := u1, . . . , FQ+2 := uQ+1, and picks ξ1, . . . , ξQ+2 as random distinct elements in

G and a0, a1, . . . , at ←R F . B sends ξ1, . . . , ξQ+2 to A as ξ(1), ξ(u1), . . . , ξ(uQ+1). Then A

can make the following two types of queries to B (we assume that A only makes oracle

queries on values that are previously obtained from B):

• Group operation query: A inputs two indices s1 and s2, as well as an operation (either

a multiplication or a division). B computes Fσ+1 := Fs1 + Fs2 if the operation is a

multiplication or Fσ+1 := Fs1 − Fs2 if the operation is a division. If ∃ t ≤ σ s.t.

Fs = Fσ+1, then B outputs ξt to A. Otherwise B picks a group element ξσ+1 which is

different from ξi for all i ≤ σ, outputs ξσ+1 to A, and sets σ++.

• T-OMDHp(·, ·) oracle query: A inputs a k ∈ [n] and an index s ∈ {1, . . . , σ}. Then B

sets Fσ+1 := (~LTk~a) ·Fs and ξσ+1 to a random value which is different from ξs for all s ≤

σ, outputs ξσ+1 to A, and sets σ++, where ~Lk = [1, k, . . . , kt]T and ~a = [a0, a1, . . . , at]
T .

A finally outputs (Fs1 , . . . , FsQ+1
), and it wins if Fsi = ui · a0 for all i ∈ [Q+ 1].

Now we analyze the probability that A succeeds for a random assignment of

(u1, . . . , uQ+1, a0, a1, . . . , at). First, note that the output of A comes from the two types of

oracle queries listed above; therefore, for every s ∈ {s1, . . . , sQ+1}, Fs is a linear

combination of v1, . . . , vw, u1, . . . , uQ+1 and 1, where vi (i = 1, . . . , w) is the value A

obtains from the ith T-OMDHp(·, ·) oracle query. That is,

Fs =
w∑
i=1

α
(s)
i vi +

Q+1∑
i=0

γ
(s)
i ui,
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where

vi =
∑

Z⊆[i]s.t.i∈Z

[(
Q+1∑
j=0

β
(i)
jZuj

)∏
l∈Z

(~LTkl~a)

]

(we set u0 = 1 in the two equations above), where αi’s, γi’s and βjZ ’s are all elements in Zm

specified by A. (Suppose that in the ith T-OMDHp(·, ·) oracle query, A’s second input is ki;

then ~LTki~a must appear in the output. That is why i ∈ Z holds in expression of wi.)

Recall that A wins if and only if Fsi = ui · a0 for all i = 1, . . . , Q + 1. Suppose that there

exists an i ∈ {1, . . . , Q + 1} such that deg(Fsi) > 1 but A still wins, i.e., Fsi = ui · a0

(we view Fsi as a polynomial of a0 here). Since deg(ui · a0) = 1, the only possibility that

this occurs is that the polynomials Fti and ui · a0 evaluates to the same value for random

u1, . . . , uQ+1, a0, a1, . . . , at. Also note that deg(Fsi) ≤ w, thus deg(Fsi−ui ·a0) ≤ w; therefore,

if the above occurs for a certain i, either (i) 1 ≤ deg(Fsi − ui · a0) ≤ w, and random a0 is

a solution of Fsi − ui · a0, or (ii) Fsi − ui · a0 is the zero polynomial for fixed u1, . . . , uQ+1

chosen from random. The probability of (i) is at most w/m, while the probability of (ii) is

at most 1/p. Since there are Q + 1 possible values of i, the probability that there exists an

i ∈ {1, . . . , Q+ 1} such that deg(Fsi) > 1 but A still wins is at most (w + 1)(Q+ 1)/m.

Next consider the case where deg(Fsi) ≤ 1 for all i = 1, . . . , Q+1. Let v′i be vi with all terms

whose degree greater than 1 eliminated, that is, v′i only remains the single term in vi where

Z = {i}, i.e.,

v′i =

(
Q+1∑
j=0

β
(i)
j{1}uj

)
(~LTki~a).

Then

Fs =
w∑
i=1

α
(s)
i v′i +

w+1∑
i=0

γ
(s)
i ui.

We rewrite the expression of Fs in matrix form below. Note that since deg(v′i) ≤ 1, all β
(i)
jZ ’s
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for Z 6= {1} do not appear in the expression of v′i; therefore, we denote β
(i)
j{1} as β

(i)
j :


Fs1
...

FsQ+1

 = A


v′1
...

v′w

+ C~u+


γ

(s1)
0

...

γ
(sQ+1)
0

 , (A.1)


v′1
...

v′w

 = (B~u+~b0)�


~LTk1~a

...

~LTkw~a

 , (A.2)

where

A =


α

(s1)
1 . . . α

(s1)
w

...
...

α
(sQ+1)
1 . . . α

(sQ+1)
Q


(Q+1)×w

, B =


β

(1)
1 . . . β

(1)
Q+1

...
...

β
(w)
1 . . . β

(w)
Q+1


w×(Q+1)

,

C =


γ

(1)
1 . . . γ

(1)
Q+1

...
...

γ
(Q+1)
1 . . . γ

(Q+1)
Q+1


(Q+1)×(Q+1)

, ~u =


u1

...

uQ+1

 ,~b0 =


β

(1)
0

...

β
(w)
0

 .

Let ~b = B~u+~b0. Substituting (A.2) into (A.1), we get that


Fs1
...

FsQ+1

 = A

~b�

~LTk1~a

...

~LTkw~a


+ C~u+


γ

(s1)
0

...

γ
(sQ+1)
0

 .
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Note that
~LTk1~a

...

~LTkw~a

 =


a0 + a1k1 + . . .+ atk

t
1

...

a0 + awkw + . . .+ atk
t
w

 = a0


1

...

1

+ a1


k1

...

kw

+ . . .+ at


kt1
...

ktw

 ,

according to the properties of Hadamard product:


Fs1
...

FsQ+1

 = A(a0I~b+ a1K~b+ . . .+ atK
t~b) + C~u+


γ

(s1)
0

...

γ
(sQ+1)
0



= a0A~b+ a1AK~b+ . . .+ atAK
t~b+ C~u+


γ

(s1)
0

...

γ
(sQ+1)
0

 ,

where K =


k1

. . .

kw


w×w

.

View the right side as a linear function of a0, a1 . . . , at, that is, consider the right side for

some fixed random u1, . . . , uw+1. If A wins, then


Fs1
...

FsQ+1

 = a0~u,

comparing the two equations, we have

A~b = ~u,AK~b = . . . = AKt~b = ~0,
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except for the case where the two linear functions evaluate to the same value for random

a0, a1, . . . , at ∈ Zm. The probability that this occurs is at most 1/p.

Substituting the definition of ~b back, we get that

AB~u+ A~b0 = ~u, i.e. (AB − I)~u+ A~b0 = ~0,

AKB~u+ AK~b0 = . . . = AKtB~u+ AKt~b0 = ~0.

According to Lemma 3, there is at least one of AB − I, AKB, . . . , AKtB which is not O.

Then there exists at least one row of one of the matrices above which is not ~0; let it be the

i-th row of the t0-th matrix (t0 ∈ {0, . . . , t}). Denote that row as ~zT . Then we have

~zT~u+ AKt0β
(i)
0 = ~0

for random u1, . . . , uQ+1 ∈ Zm. The probability that this occurs is at most 1/p.

In sum, we have proved that the probability that A succeeds in the game interacting with

B is at most

(w + 1)(Q+ 1)

m
+

1

m
+

1

m
=

(w + 1)(Q+ 1) + 2

m
.

The difference between A’s views in the interaction with B and with the real challenger of

the T-OMDH assumption in the generic group model appears when there exist s1 and s2

such that Fs1(u1, . . . , uQ+1, a0, a1, . . . , at) = Fs2(u1, . . . , uQ+1, a0, a1, . . . , at) for random

u1, . . . , uQ+1, a0, a1, . . . , at, but the polynomials Fs1 and Fs2 are not the same. There are(
σ
2

)
possible (s1, s2) pairs, and for each such pair, the probability that

Fs1(u1, . . . , uQ+1, a0, a1, . . . , at) = Fs2(u1, . . . , uQ+1, a0, a1, . . . , at) is at most (w + 1)/m.

Thus, the probability that the event above occurs is at most
(
σ
2

)
· (w + 1)/m. Also note

that each time A queries one of the two oracles, σ either remains the same or increases by
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1; there are at most r + w such queries, and σ = Q + 2 at the beginning. So

σ ≤ w +Q+ r + 2.

Therefore, we have proved that the probability that A breaks the T-OMDH assumption

where t′ = 0 in the generic group model is at most

(w + 1)(Q+ 1) + 2

m
+

(
w +Q+ r + 2

2

)
· w + 1

m
≤ (w + 1)(w +Q+ r + 2)2 + 4

2m
.

Next we consider the general case, i.e. t′ > 0 and Bad 6= ∅:

Theorem 12. (generic group hardness of (t′, t, n,Q+ 1, Q)-T-OMDH) Let G and ξ(·)

be the same with those in Theorem 11. Let Bad be any t-element subset of {1, . . . , n}. A

is given ξ(1), ξ(u1), . . . , ξ(uQ+1). Then A outputs a map F : Bad → Zm. After that, A

can query the group operation oracle and the T-OMDH oracle as in Theorem 11, with the

exception that p(·) is a t-degree polynomial over Zm such that p(α) = F (α) for all α ∈ Bad.

A wins if it outputs (ξ(u1 · p(0)), . . . , ξ(uQ+1 · p(0))).

The bound on adversarial advantage, i.e., on probability that A(ξ(1), ξ(u1), . . . , ξ(uQ+1))

outputs (ξ(u1 ·p(0)), . . . , ξ(uQ+1 ·p(0))) after making r group operation queries and qi queries

to T-OMDHp(i, ·) for i 6∈ Bad such that Ct−t′+1(~q) ≤ Q, is exactly the same as the bound on

the adversarial advantage in Theorem 11.

Proof. The proof is an extension of that of Theorem 11, so we only provide a sketch. At the

beginning of the simulated game, A chooses F (α) = ~LTi ~a (α ∈ Bad). Since A knows t′ of

~LTi ~a’s, there are t + 1 variables and t′ linear equations (which are linearly independent), so

there are t − t′ + 1 free variables; in particular, a0, . . . , at−t′ are still independently random
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from A’s view. The whole argument holds until the following step:

A~b = ~u,AK~b = . . . = AKt~b = ~0,

where t should be replaced by t− t′. After that, the argument still holds if we replace t by

t− t′.

Theorem 13. Suppose furthermore that G is a gap group, that is, A can make the following

type of oracle queries in addition:

• DDH oracle, which on input ξ(a1), ξ(a2), ξ(a3), ξ(a4) which are different with each

other, outputs 1 if a1a4 = a2a3, and 0 otherwise. A can make such queries at most q

times.

Then the bound on adversarial advantage of Theorem 12 still holds, with an upper-bound

modified to AdvA ≤ (w+1)(w+Q+r+2)2+2(2w+1)q+4
2m

.

Proof. We construct an algorithm B′ which is exactly the same with B in the previous proof,

except that A can make the following oracle queries to B′ as well:

• DDH oracle query: A inputs four different indices s1, s2, s3 and s4. B′ outputs 1 to A

if Fs1Fs4 = Fs2Fs3 , and 0 otherwise.

Now the difference between A’s views in the interaction with B and in the interaction with

the real challenger appears additionally when there are four different s1, s2, s3, s4 such that

Fs1(u1, . . . , uQ+1, a0, a1, . . . , at)Fs4(u1, . . . , uQ+1, a0, a1, . . . , at) =

Fs2(u1, . . . , uQ+1, a0, a1, . . . , at)Fs3(u1, . . . , uQ+1, a0, a1, . . . , at)
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for random u1, . . . , uQ+1, a0, a1, . . . , at, but the polynomials Fs1Fs4 and Fs2Fs3 are not the

same. Note that deg(Fs1Fs4 − Fs2Fs3) < 2w, and there are at most q such polynomials

evaluated, so the probability that the above event occurs is at most (2w+ 1)q/m. All other

proof steps remain as in the proof of Theorem 12.
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