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Abstract

As microbes face changing environments, they dynamically allocate macromolecular resources to 

produce a particular phenotypic state. Broad “omics” data sets have revealed several interesting 

phenomena regarding how the proteome is allocated under differing conditions, but the functional 

consequences of these states and how they are achieved remain open questions. Various types of 

multi-scale mathematical models have been used to elucidate the genetic basis for systems-level 

adaptations. In this review, we outline several different strategies by which microbes accomplish 

resource allocation and detail how mathematical models have aided in our understanding of these 

processes. Ultimately, such modeling efforts have helped elucidate the principles of proteome 

allocation and hold promise for further discovery.

Introduction

Microbes face transiently changing environments that require the expression of new proteins 

and the dilution or degradation of others. To adapt to these environmental changes, cells 

preferentially allocate these macromolecular resources to achieve certain objectives, a 

process typically referred to as “resource allocation.” The total amount and allocation of 

these proteins is fundamentally limited by constraints such as enzyme kinetics, cell size, and 

nutrient availability [1–4]. Therefore, microbes are regularly under selection pressure to 

optimize their resource allocation.

The macromolecular state of a cell can be measured using “omics” technologies, allowing 

insights into how resource allocation changes in a given condition. Omics data have revealed 

a highly skewed distribution of macromolecular resource allocation. For example, the most 

abundant 190 proteins in E. coli are estimated to account for about 60% of the total protein 

†To whom correspondence should be addressed: Laurence Yang, University of California, San Diego, 9500 Gilman Drive, La Jolla, 
CA 92093, lyang@eng.ucsd.edu. 

Conflict of interest
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Curr Opin Microbiol. Author manuscript; available in PMC 2019 October 01.

Published in final edited form as:
Curr Opin Microbiol. 2018 October ; 45: 8–15. doi:10.1016/j.mib.2018.01.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mass [5]. The functional consequences of such skewed macromolecular compositions—and 

how microbes regulate their state—are open questions. Over the past few years, studies that 

integrate omics and mathematical modeling have increased our knowledge of how microbes 

allocate macromolecular resources and of the genetic basis of these allocation strategies.

In this review, we summarize the current understanding of microbial resource allocation 

based on recent omics measurements from the perspective of biochemical networks. We 

discuss how computational models have been used to elucidate the functional significance of 

a cellular state and how these functions are linked to a genetic basis. We close with 

perspectives on promising directions for future modeling studies and the potential for 

examining resource allocation in the context of human health.

Proteome pre-allocation provides fitness benefits at a cost

The most direct way for microbes to alter the proteome is to synthesize proteins as needed. 

The maximum translation rate in E. coli is 16–20 amino acids per second per ribosome [6–

8], implying synthesis in ~15 seconds for a copy of protein. However, protein abundances 

range from ~1 to >100,000 copies per cell [9], and ribosome abundances from ~7,000 to 

>70,000 per cell [7]. Therefore, during a nutrient shift where hundreds of thousands of 

additional protein copies can be needed [9], cells must utilize efficient strategies to 

dynamically allocate expression machinery resources. One strategy to minimize the delay of 

protein synthesis is to constitutively express proteins even when they are not immediately 

beneficial. This pre-allocation strategy incurs the cost of using up expression machinery that 

could be used to express immediately useful proteins, and a metabolic (energetic) cost of 

expression. Combined omics and modeling analyses have been used to test the hypothesis of 

pre-allocation.

In E. coli, up to half of expressed protein mass potentially provides no immediate benefit for 

a given growth condition [10]. Even when grown on glucose minimal medium, at least 13% 

of the proteins expressed confer no immediate fitness benefit based on ribosomal profiling 

and transposon mutagenesis [11]. Genome-scale model computations suggested that pre-

allocating the E. coli proteome toward alternative carbon sources may provide a fitness 

benefit when alternative carbon sources are encountered [10].

Pre-allocation also applies to expressing more expression machinery than immediately 

needed to ensure fast expression rates when needed in a new environment. For example, 

when growing E. coli under feast-famine cycles, growth recovery during the feast phase was 

maximized by strategically allocating a ribosomal protein reserve [12].

These results suggest that omics data contain information both on the immediate response to 

the current environment and the regulatory program shaped by the organism’s evolutionary 

history. Computational models help to distinguish environment-specific response from pre-

programmed responses shaped by evolutionary history.
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Hierarchical regulation of resource allocation robustly improves fitness

Cellular metabolism has long been recognized to be regulated through a hierarchical 

network of regulatory processes [13]. The slow processes of transcriptional regulation and 

post-translational modifications act together with fast metabolite-level allosteric regulation 

to control metabolic fluxes [14,15]. Metabolites also modify transcription factors (TFs), 

leading to a coupling between metabolism and transcriptional regulation.

Recently, there has been increasing recognition of the importance of growth rate-associated 

global transcriptional regulation for resource allocation. For example, a recent study [16] 

showed that over 90% of transcriptional changes in 100 E. coli genes across 26 

environments could be explained by a surprisingly small number of metabolite-TF 

interactions along with global regulation. In response to nutrient shifts, E. coli was found to 

use a global proteome reallocation strategy [17] instead of a theoretically optimal strategy of 

sequentially de-bottlenecking the rate limiting enzymes [18]. This apparently conservative 

strategy was hypothesized to be robust by confining metabolic bottlenecks to central 

precursors that drive global regulatory control [17].

However, growth rate-dependent regulation is not always dominant and appears to be 

context specific. A recent study subjected E. coli to a transient nutrient stress by starvation 

or by switching to a lower quality carbon source [19]. The study revealed a central role for 

proteome allocation in triggering the “persister” phenotype, a metabolically active but non-

growing state with increased antibiotic tolerance [20]. Analysis of time-course proteomics 

from the nutrient-stressed cells (including persisters) and proteomics from other stress 

conditions (pH, temperature, and osmotic) revealed that proteome allocation was mainly 

driven by ppGpp-mediated regulation rather than a global growth rate effect [19]. 

Interestingly, a recent modeling study [21] showed that the optimal control strategy for E. 
coli to dynamically allocate resources during environmental changes involves an iterative 

on-off control strategy that resembles the structure of ppGpp-mediated regulation of 

ribosomal RNA transcription [22]. It thus appears that resource allocation under a variety of 

stresses may be mediated through overlapping mechanisms that are distinct from those of 

unstressed conditions.

Laboratory evolution aids in understanding the genetic basis of cellular 

resource allocation

Adaptive laboratory evolution (ALE) is an experimental method of serially passaging cells 

under a selection pressure. The outcome of ALE is a set of strains possessing adaptive 

mutations. ALE has now been automated [23], enabling large-scale production of evolved 

strains, followed by phenotyping and system-level characterization by DNA re-sequencing, 

RNA-Seq, 13C-metabolic flux analysis, etc. ALE has been used to reveal the genetic basis of 

growth rate-selection under various conditions: different carbon sources [24], thermal stress 

[25], osmotic and chemical stress [26,27], oxidative stress [27], and gene knockouts [28].

Multiple studies have connected the systems-level adaptations in an evolved strain to a 

genetic basis. For example, strains of E. coli were evolved for fast aerobic growth on glucose 
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minimal media, yielding frequent key mutations in genes including rpoB and hns. Despite 

the potentially broad effects of mutations in these global regulators, the strains showed little 

change in intracellular metabolic pathway usage. Rather, the mutations enabled higher fluxes 

for glucose uptake, oxygen uptake, and central carbon metabolism [29]. Interestingly, TCA 

cycle enzymes have been reported to be transcriptionally repressed under similar selection 

pressure, yet TCA cycle metabolic flux did not decrease [29]. This result suggests potential 

nonlinearities between transcriptome abundance, proteome allocation, and flux capacity. A 

genome-scale model-based analysis further suggests that this nonlinearity arises in part from 

the flexibility of metabolic states that support optimal growth under these conditions [29]. 

Specifically, simulations showed that growth at 99% of the computed maximum rate could 

be supported by TCA cycle fluxes at 19% of the glucose uptake rate (GUR) but also as low 

as 8% of the GUR.

A recent study performed ALE under dynamic switching carbon sources, which led to either 

generalists or co-existing specialist subcommunities [30]. Transcriptomics and genome-scale 

modeling showed that the evolution of generalists versus specialists could be explained by 

the distance between computed metabolic states for two substrates [30]. Indeed, generalists 

evolved when the alternating substrates were metabolically “closer” and specialists evolved 

when metabolic states were more “distant.”

Network models capture the molecular basis of cellular resource allocation 

strategies

Biochemical network models, including genome-scale models of metabolism (M-models) 

[31,32] have traditionally been used to compute resource allocation at the level of small 

molecules and currency metabolites, such as NAD(P)(H) and ATP. GEMs were then 

extended to account for macromolecular resource allocation along two paths of 

development: (i) phenomenological (coarse-grained), and (ii) multi-scale (fine-grained) 

extensions to GEMs (Fig. 1). Here, we briefly review each category of models, followed by 

the new knowledge they have contributed.

Beginning with FBAwMC (flux balance analysis with molecular crowding) [33], a series of 

methods have been developed to extend M-models with macromolecular resource allocation 

constraints [34–38]. While these models do not explicitly compute the cost of expressing 

proteins based on the expression machinery network, they have been effective for integrating 

omics data to address many specific questions in different microbes: e.g., the basis of 

hierarchical substrate uptake [33], overflow metabolism [36,38,39], and metabolic states at 

sub-optimal growth rates [34]. One method extended an M-model of E. coli by integrated 

growth laws and proteome sector constraints [39]. The proteome sectors were derived from 

previous studies showing that the E. coli proteome can be partitioned into five coarse sectors 

whose total mass abundance correlates linearly with growth rate [5]. This coarse-grained 

model had been used previously to show that overflow metabolism occurs because the 

proteome cost of energy biogenesis by respiration exceeds that by fermentation [1].

In S. cerevisiae, an M-model extension named GECKO was developed [38]. This method 

constrains metabolic fluxes based on enzyme abundances that are bounded by proteomics 
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measurements, and turnover rates obtained from BRENDA [38]. GECKO enabled prediction 

of new phenotypes and reduced flux variability in over 60% of metabolic reactions.

Multi-scale models of metabolism and macromolecular Expression

In a parallel effort, multi-scale models of Metabolism and macromolecular Expression (ME 

models) have been developed. A multi-scale biological model has been defined as one that 

includes components from two or more levels of biological organization (length scales) or 

processes occurring much faster than others (time scales) while conserving information 

across scales [40–42]. ME models integrate reconstructions of the macromolecule 

expression machinery with metabolism, enabling simultaneous computation of these two 

temporally and organizationally distinct but coupled processes [43,44]. These models 

compute steady states of the integrated system using linear or nonlinear optimization; 

therefore, they face technical challenges (i.e., ill-conditioning [45–47]) that are distinct from 

dynamic multi-scale models (e.g., stiff systems of differential equations [41]) or agent-based 

models [48]. ME models account for up to 80% of protein mass under fast growth conditions 

[44]. Protein complex stoichiometry is available for 95% of complexes in the E. coli ME 

model, iOL1650 [49]. ME models have been expanded to account for protein translocation 

[4], the proteostasis network, and temperature dependence of protein activity and stability 

[50]. ME models have been used to improve in silico strain performance predictions [51] 

and for a variety of fundamental studies. We highlight some of these studies below.

ME models have been used to identify a core set of proteins that must be expressed 

(resources must be allocated) to sustain microbial growth by simulating growth across 333 

conditions [52] Methods have been developed to calibrate ME models to improve prediction 

accuracy. One method defined constraints on the mass fraction of proteome sectors, and 

calibrated these sectors using proteomics from 15 carbon sources [9] to improve growth rate 

and flux predictions [53]. Further refinement of ME model parameters was achieved using 

an optimization pipeline that integrated proteomics, RNA-Seq, and fluxomics [54]. This 

pipeline enabled a genome-wide estimation of in vivo enzyme turnover rates, based on 

simulated reaction fluxes and measured protein abundances across four growth conditions. 

Intriguingly, 284 estimated turnover rates corresponding to high-flux metabolic reactions 

were relatively invariant across growth conditions [54]. This result suggests that once 

accurately measured, the turnover rates for these reactions may be applicable across many 

conditions. Prioritizing the measurement of these relatively invariant kinetic parameters may 

be one way to approach the larger challenge of measuring the entire “kinetome” (i.e., 

kinetics of all enzymes) [55].

ME models have enabled deeper investigation of limitation in micronutrients or stress 

responses. A ME model of E. coli correctly predicted shifts in fermentation versus oxidative 

phosphorylation pathways in response to iron availability [56]. This simulation provided a 

possible explanation for why Fur regulates acnA (a TCA cycle enzyme) in a dual-mode 

manner of direct activation under iron-replete conditions and indirect repression under iron 

starvation. In a study of acid stress response in E. coli, a ME model was used to compute the 

fitness benefit of three alternative stress relief systems [57]. The model predicted that the 
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active proton transporter, ndh-cbo system was more efficient than gadABC or adiC, which 

was consistent with up-regulation of ndh-cbo under acid stress.

Very recently, the ME model of E. coli was extended to include part of the cytoplasmic 

proteostasis network, and to account for temperature-dependent protein stability and activity 

[50]. The model, called FoldME, recapitulated changes in growth rate as a function of 

temperature in three different media conditions. Additionally, the model computed the 

change in abundances for the approximately 450 proteins that were predicted to be 

expressed at a given temperature (ranging between 28°C to 45°C). Despite the lack of high-

quality protein thermostability data for the majority of the 1,554 modeled proteins, 

temperature-dependent growth rate predictions were robust against parameter uncertainty 

[50].

Macromolecular expression networks have also been reconstructed for other organisms 

besides E. coli and T. maritima. A genome-scale model of the plant pathogen Ralstonia 
solanacearum was recently reconstructed, and it included macromolecule biosynthesis and 

secretion, host interaction, and DNA modification [58]. The macromolecule network 

included 135 reactions for macromolecule biosynthesis, and 165 reactions for secretion 

processes. The model could compute the cost of synthesizing virulence factors, including 

exopolysaccharides.

A genome-scale model of Bacillus subtilis integrated 72 cellular processes including 

metabolism, protein translation and folding, ribosome maturation, and flagella synthesis 

[37]. The model included 614 reactions, 467 metabolites and ions, and 672 protein-coding 

genes, and was solved using a new method called Resource Balance Analysis (RBA) [59]. 

While the metabolic and expression machinery networks are less detailed than a typical ME 

model, the RBA model parameters could be calibrated using proteomics data, enabling 

quantitative prediction of protein abundance in new environments. RBA showed that protein 

allocation for most cellular processes in B. subtilis agrees well with the growth rate 

maximization objective but that a few processes integrate more complex objectives such as 

stress or survival [37].

Models can identify simple biological principles and connect them back to 

biomolecular mechanisms

Mathematical models aid knowledge expansion by distilling complex data into simple 

principles that may be transferable to other biological systems or contexts. Examples include 

phenomenological models that describe bacterial growth laws that dictate the allocation of 

proteome sectors [5,60]https://paperpile.com/c/ZDFrmo/j1wl+3H60. Computational models 

of microbes have been increasing in detail, with detailed models such as the whole-cell 

model of Mycoplasma genitalium [61] and ME models for T. maritima [62] and E. coli 
[43,44] being examples of detailed biomolecular and biochemical network models. We posit 

that such models help to reveal principles from complex interactions and data with the added 

benefit of connecting these principles back to biomolecular mechanisms and specific genes 

that can be validated using omics.
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For example, Chen et al. [50] simulated growth, metabolism and response of the chaperone 

network under thermal stress and recovered a simple, linear “growth law.” This linear 

relationship described the mass fraction of ribosomes, molecular chaperones, and metabolic 

enzymes as a function of temperature and growth rate. The study additionally showed that 

thermosensitivity of growth was attributable not to a few rate-limiting enzymes but to many 

enzymes. Thus, in addition to computing the global consequences of thermal stress, the 

model also could enumerate plausible biomolecular responses.

Conclusions and Outlook

Our current understanding of cellular resource allocation has expanded toward a deeper 

appreciation of the coupling between regulatory processes across multiple biological scales. 

Fast metabolite-level regulation feeds back into slow transcriptional regulation, which in 

turn is hierarchically organized into general growth-associated regulation, global 

transcriptional programs, and local regulons. Advances in omics technologies and 

accumulation of multi-omics data have provided readouts of cellular state at these multiple 

biological scales. More than ever, there is a need for multi-scale network models that 

integrate these scales. Genome-scale models have risen to this challenge from two directions 

(Fig. 2). One is developing multi-scale reconstructions of macromolecular expression 

networks that are integrated with metabolism. This approach, while powerful, is time-

consuming and has led to reconstructions for two different organisms so far. Research to 

accelerate reconstruction of these networks is ongoing [63]. The second approach is 

extending existing metabolic reconstructions with coarse-grained (phenomenological) 

constraints and variables that incorporate macromolecular abundance and catalytic 

efficiency. Based on these advances, we suggest two parallel, near-term efforts.

First, there is a need to continue detailed reconstruction of non-metabolic processes. For the 

E. coli ME model, ~20% of protein mass is not modeled for rapidly growing cells [44]. 

Approximately half of this mass is allocated toward proteostasis and stress response [10]. 

The recent study of E. coli thermosensitivity has taken first steps toward a detailed 

reconstruction of the proteostasis network and thermal stress response [50]. Reconstructing 

periplasmic protein homeostasis and response to additional key stresses (oxidative, acid, 

osmotic, etc.) are likely to be achievable in the near future.

Second, we suggest a systematic interplay between detailed macromolecule expression 

reconstructions and coarse-grained resource allocation models as an attractive direction for 

future modeling studies. In principle, a model’s scope and scale should match the 

requirements (biological question and available data) of a specific study but this selection 

process is not trivial and often iterative [48]. ME models currently provide highly detailed 

reconstructions of expression networks integrated with metabolism. While reliable methods 

are now available to solve these multi-scale and nonlinear models [46,47], they are still 

computationally expensive. Methods for metabolic network reduction [66–68] may be 

adopted to macromolecular networks to reduce complexity. Additionally, methods to 

systematically coarse-grain selected parts of complex models into phenomenological 

constraints having few parameters may benefit future studies [69–71].
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Cellular resource allocation has applications for microbial cell factory design [51] and also 

in the context of infectious disease. For example, recent evidence suggests that the persister 

cellular state, which contribute to chronic infection, may be regulated by a limitation in 

certain metabolic fluxes that triggers resource reallocation from growth to stress protection 

[19,72]. Another study used M-models to show that the environment alters the cost-benefit 

tradeoff of antibiotic resistance mutations through a change in metabolic state [73]. 

Additionally, antibiotic lethality by certain bactericidal antibiotics directly or indirectly 

affect macromolecular processes but the mechanisms of lethality are not fully known [74]. 

Future modeling studies of cellular resource allocation may thus provide new directions for 

therapeutic interventions against infectious disease.
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Highlights

• Microbes allocate macromolecular machinery to perform different tasks

• Proteome pre-allocation and hierarchical regulation give fitness benefits at a 

cost

• Examining evolution helps elucidate the genetic basis of cellular resource 

allocation

• Macromolecular resource allocation can be modeled by coarse-grained 

constraints

• Detailed reconstructions of macromolecular expression networks are growing 

in number
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Fig 1 |. 
Network models of metabolism and macromolecule expression. (A) a metabolic network is 

reconstructed from the microbe’s annotated genome. (B) Metabolic flux (vj) is constrained 

by catalytic efficiency (kj) and enzyme abundance (ej). This general form can be 

reformulated [34]. (C) Macromolecule (xi) capacity is constrained based on its physical 

properties (aj) such as molecular weight and a total cell capacity (C). Macromolecule 

abundance can be computed using a macromolecule expression network (D), which can vary 

in level of detail, or from proteomics data (E). To constrain total mRNA, RNA-Seq is used 

instead.
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Fig 2 |. 
Developmental paths of genome-scale resource allocation models. Models or algorithms 

listed are: FBAwMC [33], FBAME (Membrane Economics) [36], MOMENT [35], corsoFBA 

[34], CAFBA [39], GECKO [38], E-matrix [64], E. coli ME [43,44], T. maritima ME [62], 

iJL1678 (E. coli ME with the protein translocation network) [4], B. subtilis RBA [37], R. 
solanacearum [58], SectorME [53], FoldME [50], and OxidizeME [65].

Yang et al. Page 15

Curr Opin Microbiol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Proteome pre-allocation provides fitness benefits at a cost
	Hierarchical regulation of resource allocation robustly improves fitness
	Laboratory evolution aids in understanding the genetic basis of cellular resource allocation
	Network models capture the molecular basis of cellular resource allocation strategies
	Multi-scale models of metabolism and macromolecular Expression
	Models can identify simple biological principles and connect them back to biomolecular mechanisms
	Conclusions and Outlook
	References
	Fig 1 |
	Fig 2 |



