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SPARSE APPROXIMATE MULTIFRONTAL FACTORIZATION
WITH BUTTERFLY COMPRESSION FOR HIGH FREQUENCY

WAVE EQUATIONS

YANG LIU∗, PIETER GHYSELS∗, LISA CLAUS∗, AND XIAOYE SHERRY LI∗

Abstract. We present a fast and approximate multifrontal solver for large-scale sparse linear
systems arising from finite-difference, finite-volume or finite-element discretization of high-frequency
wave equations. The proposed solver leverages the butterfly algorithm and its hierarchical matrix
extension for compressing and factorizing large frontal matrices via graph-distance guided entry evalu-
ation or randomized matrix-vector multiplication-based schemes. Complexity analysis and numerical
experiments demonstrate O(N log2 N) computation and O(N) memory complexity when applied to
an N ×N sparse system arising from 3D high-frequency Helmholtz and Maxwell problems.

Key word. Sparse direct solver, multifrontal method, butterfly algorithm, randomized algo-
rithm, high-frequency wave equations, Maxwell equation, Helmholtz equation, Poisson equation.

AMS subject classifications. 15A23, 65F50, 65R10, 65R20

1. Introduction. Direct solution of large sparse linear systems arsing from e.g.,
finite-difference, finite-element or finite-volume discretization of partial differential
equations (PDE) is crucial for many high-performance scientific and engineering sim-
ulation codes. Efficient solution of these sparse systems often requires reordering
the matrix to improve numerical stability and fill-in ratios, and performing the com-
putations on smaller but dense submatrices to improve flop performance. Examples
include supernodal and multifrontal methods [12] that perform operations on so-called
supernodes and frontal matrices, respectively. For multifrontal methods, the size n of
the frontal matrices can grow as n = O(N1/2) and n = O(N2/3) for typical 2D and 3D
PDEs with N denoting the system size. Performing dense factorization and solution
on the frontal matrices requires O(n3) operations, yielding the overall complexities of
O(N3/2) in 2D and O(N2) in 3D. The same complexities also apply to supernodal
methods.

For many applications arising from wide classes of PDEs, these complexities can
be reduced by leveraging algebraic compression tools to exploit rank structures in
blocks of the matrix inverse. For example, it can be rigorously shown that, for el-
liptical PDEs with constant or smooth coefficients, certain off-diagonal blocks in a
frontal matrix exhibit low-rankness [11]. Low-rank based fast direct solvers, includ-
ing H [23, 18] and H2 matrices [24], hierarchically off-diagonal low-rank (HOD-LR)
formats [1], sequentially semi-separable formats [47], hierarchically semi-separable
(HSS) formats [47], and block low-rank (BLR) formats [44, 2], represent off-diagonal
blocks as low-rank products and leverage fast algebras to perform efficient matrix
factorization. These methods were first developed for solving dense systems, e.g.,
arising from boundary element methods, in quasi-linear complexity and have been
recently adapted for sparse systems. Examples include solvers coupling H [53], HOD-
LR [3], HSS [49, 48, 16] or BLR [2] with multifrontal methods, which we will refer
to as rank structured multifrontal methods, and solvers coupling HOD-LR [10] or
BLR [39] with supernodal methods, and solvers based on the inverse fast multipole
method [43]. Available software packages include STRUMPACK [16], MUMPS [2],
and PaStiX [28, 39]. It is worth mentioning that many of these methods rely on fast
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entry evaluation or randomized matrix vector multiplication (matvec) to compress the
frontal matrices, without explicitly forming them. Despite differences in the leading
constants, implementation details and applicability of these compression formats, in
general they lead to quasi-linear complexity direct solvers and preconditioners when
applied to many elliptical PDEs. Unfortunately, when applied to wave equations, such
as Helmholtz, Maxwell, or Schrödinger equations with constant or non-constant co-
efficients, the frontal matrices exhibit much higher numerical ranks due to the highly
oscillatory nature of the numerical Green’s function [15] and consequently no as-
ymptotic complexity reduction compared to the exact sparse solvers can be attained.
That said, the low-rank based sparse direct solver packages (e.g., STRUMPACK and
MUMPS) oftentimes significantly reduce the costs (up to a constant factor) of exact
sparse solvers for practical wave equation systems [41].

In contrast to low-rank-based algorithms, we consider another algebraic compres-
sion tool called butterfly [37, 34, 32, 31, 42], for constructing fast multifrontal meth-
ods for wave equations. Butterfly is a multilevel matrix decomposition algorithm
well-suited for representing highly oscillatory operators such as Fourier transforms
and integral operators [9, 51, 50] and special function transforms [46, 6, 40]. When
combined with hierarchical matrix techniques, butterfly can also serve as the building
block for accelerating iterative methods [38], direct solvers [19, 20, 22, 33] and pre-
conditioners [35] for boundary element methods for high-frequency wave equations.
These techniques essentially replace low-rank products in the H [20], H2 [52, 8] and
HOD-LR formats [33] with butterflies, and leverage fast and randomized butterfly
algebra to compute the matrix inverse (for direct solvers and preconditioners). We
particularly focus on the butterfly extension of the HOD-LR format [33], called HOD-
BF in this paper. The HOD-BF format yields smaller leading constants and better
parallel performance compared to other butterfly-enhanced hierarchical matrix for-
mats. Moreover, HOD-BF can attain an O(n log2 n) compression complexity and
an empirical O(n3/2 log n) inversion complexity given a n× n HOD-BF compressible
dense matrix. HOD-BF has been previously applied to both 2D [33] and 3D boundary
element methods.

In this paper, we leverage the HOD-BF format for compressing the frontal matri-
ces in the multifrontal method. Specifically, any non-root frontal matrix has a 2 × 2
blocked partition, and each block represents numerical Green’s function interactions
between unknowns residing on planar or crossing planes (or lines). These blocks are
compressed as butterfly or HOD-BF by extracting selected matrix entries [37, 42]
guided by graph distance, from the children frontal matrices and the original sparse
matrix. Moreover, the method factorizes the leading diagonal block using the HOD-
BF inversion technique [33] and compute its Schur complement with the randomized
butterfly construction algorithm [34]. Given a frontal matrix of size n×n, the construc-
tion and factorization can be performed in O(n3/2 log n) complexity. Consequently,
for a sparse matrix resulting from 2D and 3D wave equations, the solver can attain an
overall complexity of O(N) and O(N log2N), respectively. It is worth mentioning the
same complexities can be attained for 2D and 3D low-frequency or static PDEs such
as the Poisson equation as well. To the best of our knowledge, the proposed solver
represents the first-ever quasi-linear complexity multifrontal solver for high-frequency
wave equations.

As a related work, the sweeping preconditioner-based domain decomposition
solvers [45] represent another quasi-linear complexity technique for wave equations
and impressive numerical results have been reported for both 2D and 3D cases. How-
ever, sweeping preconditioners only apply to regular grids and domains and do not
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work well for domains containing resonant cavities. In comparison, the proposed solver
does not suffer from these constraints and applies to wider classes of applications. In
addition, the proposed solver can be used inside domain decomposition solvers, which
often use multifrontal solvers for their local sparse systems.

The rest of the paper is organized as follows. The multifrontal method is pre-
sented in section 2. The butterfly format, construction and entry extraction algo-
rithms are described in section 3, followed by their generalization to the HOD-BF
format in section 4. The proposed rank structured multifrontal method is detailed
in section 5, including complexity analysis. Numerical results demonstrating the ef-
ficiency and applicability of the proposed solver for the 3D Helmholtz, Maxwell, and
Poisson equations are presented in section 6.

2. Sparse Multifrontal LU Factorization. We consider the LU factorization
of a sparse matrix A ∈ CN×N , as P (DrADcQc)P

> = LU , where P and Qc are
permutation matrices, Dr and Dc are diagonal row and column scaling matrices and
L and U are sparse lower and upper-triangular respectively. Dr, Dc and Qc are
optional and are applied for numerical stability. Qc aims to maximize the magnitude
of the elements on the matrix diagonal. Dr and Dc scale the matrix such that the
diagonal entries are one in absolute value and all off-diagonal entries are less than one.
This step is implemented using the sequential MC64 code [13] or the parallel method
– without the diagonal scaling – described in [5]. The permutation P is applied
symmetrically and is used to minimize the fill, i.e., the number of non-zero entries
in the sparse factors L and U . This permutation is computed from the symmetric
sparsity structure of A + A>. For large problems the preferred ordering is typically
based on the nested dissection heuristic, as implemented in METIS [30] or Scotch.

The multifrontal method [14] relies on a graph called the assembly tree to guide
the computation. Each node τ of the assembly tree corresponds to a dense frontal ma-

trix, with the following 2×2 block structure: Fτ =

[
F11 F12

F21 F22

]
, with F11 of dimension

#Isτ and F22 of dimension #Iuτ . Let nτ = #Isτ + #Iuτ denote the dimension of Fτ .
A frontal matrix is an intermediate dense submatrix in sparse Gaussian elimination.
The rows and columns corresponding to the F11 block are called the fully-summed
variables because when the front is constructed, these variables have received all their
Schur complement updates. The fully-summed variables correspond to Isτ , which are
mutually exclusive, with

⋃
τ I

s
τ = {1, . . . , N}. In the context of nested dissection,

the sets Isτ correspond to individual vertex separators. The Iuτ index sets define the
temporary Schur complement update blocks. Note that the frontal matrices tend to
get bigger toward the root of the assembly tree. Furthermore, if ν is a child of τ in the
assembly tree, then Iuν ⊂ {Isτ ∪ Iuτ }. For the root node t, Iut ≡ ∅. When considering a
single front, we will omit the τ subscript.

The multifrontal method casts the factorization of a sparse matrix into a series of
partial factorizations of many smaller dense matrices and Schur complement updates.
It consists in a bottom-up traversal of the assembly tree following a topological order.
Processing a node consists of four steps:
1. Assembling the frontal matrix Fτ , i.e., combining elements from the sparse matrix
A with the children’s (ν1 and ν2) Schur complement updates F22 into the (larger)
Fτ . This involves a scatter operations and is called extend-add, denoted by l↔:

Fτ =

[
A(Isτ , I

s
τ ) A(Isτ , I

u
τ )

A(Iuτ , I
s
τ )

]
l↔ F22;ν1 l↔ F22;ν2 = l↔ l↔
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2. Elimination of the fully-summed variables in the F11 block, i.e., dense LU factor-
ization with partial pivoting of F11.

3. Updating the off-diagonal blocks F12 and F21.

4. Compute the Schur complement update: F22 ← F22 − F21F
−1
11 F12. We will also

denote the Schur updated F22 for front τ as the contribution block CBτ . F22 is
temporary storage (pushed on a stack), and can be released as soon as it has been
used in the front assembly (step (1)) of the parent node.

After the numerical factorization, the lower triangular sparse factor is available in the
F21 and F11 blocks and the upper triangular factor in the F11 and F12 blocks. These
can then be used to very efficiently solve linear systems, using forward and backward
substitution. A high-level overview is given in Algorithm 2.1.

We implemented the multifrontal method in the STRUMPACK library1, using
C++, MPI and OpenMP, supporting real/complex arithmetic, single/double precision
and 32/64-bit integers.

For any frontal matrix Fτ of size nτ , its LU factorization (only on F11) and storage
costs scale as O(n3τ ) and O(n2τ ), severely limiting the applicability of the multifrontal
method to large-scale PDE problems. In what follows, we leverage the butterfly
algorithm and its hierarchical matrix extension for representing frontal matrices and
constructing fast sparse direct solvers, particularly for high-frequency wave equations.

Algorithm 2.1 Sparse multifrontal factorization and solve.

Input: A ∈ RN×N , b ∈ RN
Output: x ≈ A−1b

1: A← DrADcQc . (optional) col perm & scaling
2: A← PAP> . symm fill-reducing reordering
3: Build assembly tree: define Isτ and Iuτ for every frontal matrix Fτ
4: for nodes τ in assembly tree in topological order do
5: . sparse with the children updates extended and added

6: Fτ ←
[
A(Isτ , I

s
τ ) A(Isτ , I

u
τ )

A(Iuτ , I
s
τ ) 0

]
l↔ Fν1;22 l↔ Fν2;22

7: PτLτUτ ← Fτ ;11 . LU with partial pivoting
8: Fτ ;12 ← L−1τ P>τ Fτ ;12
9: Fτ ;21 ← Fτ ;21U

−1
τ

10: Fτ ;22 ← Fτ ;22 − Fτ ;21Fτ ;12 . Schur update
11: end for
12: x← DcQcP

> bwd-solve (fwd-solve (PDrb))

3. Butterfly Algorithms. As the building block of our butterfly algorithms, we
first present some background regarding the interpolative decomposition (ID). Given
a matrix A ∈ Rm×n, a row ID represents or approximates A in the low-rank form
UAI,:, where U ∈ Rm×r has bounded entries, AI,: ∈ Rr×n contains k rows of A, and r
is the rank. Symmetrically, a column ID can represent or approximate A column-wise
as A:,JV

> where V ∈ Rn×r and A:,J contains r columns of A.
Using an algebraic approach, an ID approximation with a given rank or a given er-

ror threshold can be computed using for instance the strong rank-revealing or column-
pivoted QR decomposition with typical complexity O(rmn) (or O(rmn logm) in rare
cases). Note that we use base 2 for the logarithm throughout this paper. The matrix

1http://portal.nersc.gov/project/sparse/strumpack/
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U obtained by rank-revealing QR can have all its entries bounded by a prespecified
parameter Cqr ≥ 1. In practice, pivoted QR decomposition is more commonly used
while entries of the obtained U are mostly also bounded (but without theoretical
guarantee). Specifically, an ID approximation is calculated as follows. Calculate a
QR decomposition of A> and truncate it with a given error threshold as

A>P =
[
A>1 A>2

]
=
[
Q1 Q2

] [R11 R12

R22

]
≈ Q1

[
R11 R12

]
= A>1

[
I R−111 R12

]
,

where P is a permutation matrix that indicates the important rows (oftentimes re-

ferred to as row skeletons) of A. The ID approximation is A ≈ P
[

I
(R−111 R12)>

]
A1 =

UA1 where U is the interpolation matrix.
In addition to the above-described deterministic algorithm, an ID approximation

can also be constructed in a randomized fashion, via random matrix-vector products
as described in [27]. Both the deterministic and randomized ID algorithms will be
used in our butterfly algorithms below. Unless otherwise stated, all the ID algorithms
in this paper are deterministic algorithms.

3.1. Complementary Low-Rank Property and Butterfly Decomposi-
tion. We consider the butterfly compression of a matrix A = K(O,S) ∈ Rm×n
defined by a highly-oscillatory operator K(·, ·) and point sets S and O. For example,
one can think of K as the free-space Green’s function for 3D Helmholtz equations,
and S and O as sets of Cartesian coordinates representing source and observer points
in the Green’s function. However, we do not restrict ourselves to analytical functions
and geometrical points in this paper. For simplicity, we assume m = O(n) and we
partition S and O using bisection, resulting in the binary trees TS and TO. We num-
ber the levels of TO and TS from the root to the leaves. The root node, denoted by
t in TO and s in TS , is at level 0; its children are at level 1, etc. All the leaf nodes
are at level L. At each level l, TO and TS both have 2l nodes. Let Oτ be the subset
of points in O corresponding to node τ in TO. Furthermore, for any non-leaf node
τ ∈ TO with children τ1 and τ2, Oτ1 ∪ Oτ2 = Oτ and Oτ1 ∩ Oτ2 = ∅. With a slight
abuse of notation, we also use τi, i = 1, . . . , 2l to denote all nodes at level l of TO.
The same properties hold true for the partitioning of S.

A = K(O,S) satisfies the complementary low-rank property if for any level 0 ≤
l ≤ L, node τ at level l of TO and a node ν at level (L − l) of TS , the subblock
K(Oτ , Sν) is numerically low-rank with rank rτ,ν bounded by a small number r; r is
called the (maximum) butterfly rank. For simplicity, we assume constant butterfly
ranks r = O(1) throughout sections 3 and 4. As explained in Section 4.5 of [34],
low complexities for butterfly construction, multiplication, inversion and storage can
still be achieved even for certain cases of non-constant ranks, e.g., r = O(log n) or
r = O(n1/4). We will further discuss the non-constant rank case in subsection 5.3.
The complementary low-rank property is illustrated in Figure 3.1. At any level l of
TO, K(Oτ , Sν) with all nodes τ at level l of TO and nodes ν at level (L − l) of TS
(referred to as the blocks at level l) form a non-overlapping partitioning of K(O,S).

For any level l, we can compress K(Oτ , Sν) via row-wise and column-wise ID as

(3.1) K(Oτ , Sν) ≈ Uτ,νK(Ōτ , S̄ν)V >τ,ν = Uτ,νBτ,νV
>
τ,ν .

Here, Ōτ represents skeleton rows (constructed from Oτ ), S̄ν represents skeleton col-
umns (constructed from Sν), and Bτ,ν is the skeleton matrix. The row and column

5
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K(Oτ , Sν) τ

TO

ν
TS

Fig. 3.1: For a 4-level butterfly decomposition, the complementary low-rank property
states that each of the illustrated sub-blocks K(Oτ , Sν), τ ∈ TO, ν ∈ TS are low-rank.

interpolation matrices Uτ,ν and Vτ,ν are defined as

(3.2) Uτ,ν =

[
Uτ1,pν

Uτ2,pν

]
Rτ,ν , V >τ,ν = Wτ,ν

[
V >pτ ,ν1

V >pτ ,ν2

]
.

where Rτ,ν and Wτ,ν are referred to as the transfer matrices, and pτ , pν denote the
parent nodes of τ, ν. Oftentimes we choose a center level l = lc = L/2, and the
butterfly representation of K(O,S) is constructed as,

(3.3) K(O,S) =


K(Oτ1 , Sν1) K(Oτ1 , Sν2) · · · K(Oτ1 , Sνq )
K(Oτ2 , Sν1) K(Oτ2 , Sν2) · · · K(Oτ2 , Sνq )

...
...

. . .
...

K(Oτp , Sν1) K(Oτp , Sν2) · · · K(Oτp , Sνq )


where τ1, τ2, . . . , τp are the p = 2lc nodes at level lc of TO, and ν1, ν2, . . . , νq are the
q = 2L−lc nodes at level (L− lc) of TS .

K(O,S) ≈


Uτ1,ν1Bτ1,ν1V

>
τ1,ν1 Uτ1,ν2Bτ1,ν2V

>
τ1,ν2 · · · Uτ1,νqBτ1,νqV

>
τ1,νq

Uτ2,ν1Bτ2,ν1V
>
τ2,ν1 Uτ2,ν2Bτ2,ν2V

>
τ2,ν2 · · · Uτ2,νqBτ2,νqV

>
τ2,νq

...
...

. . .
...

Uτp,ν1Bτp,ν1V
>
τp,ν1 Uτp,ν2Bτp,ν2V

>
τp,ν2 · · · Uτp,νqBτp,νqV

>
τp,νq

(3.4)

=
(
ULRL−1RL−2 . . . Rlc

)
Blc
(
W lcW lc−1 . . .W 1V 0

)
(3.5)

where UL = diag(Uτ1,s, . . . , Uτ2L ,s) consists of column basis matrices at level L, and

each factor Rl, l = L− 1, . . . , lc is block diagonal consisting of diagonal blocks Rν for
all nodes ν at level L− l − 1 of TS

(3.6) Rν =
[
diag(Rτ1,ν1 , . . . , Rτ2l ,ν1) diag(Rτ1,ν2 , . . . , Rτ2l ,ν2)

]
.

Here, τ1, τ2, . . . , τ2l are the nodes at level l of TO and ν1, ν2 are children of ν. Similarly,
V 0 = diag(V >t,ν1 , . . . , V

>
t,ν2L

) with t denoting the root of TO, and the block-diagonal

inner factors W l, l = 1, . . . , lc have blocks Wτ for all nodes τ at level l − 1 of TT

Wτ =

[
diag(Wτ1,ν1 , . . . ,Wτ1,ν2L−l

)
diag(Wτ2,ν1 , . . . ,Wτ2,ν2L−l

)

]
(3.7)

Here, ν1, ν2, . . . , ν2L−l are the nodes at level L − l of TS and τ1, τ2 are children of τ .
Moreover, the inner factor Blc consists of blocks Bτ,ν at level lc in (3.4). For sim-
plicity assuming rτ,ν = r, Blc is a p × q block-partitioned matrix with each block of

6

This manuscript is for review purposes only.



U4 R3 R2 B2 W 2 W 1 V 0

Fig. 3.2: Illustration of a 4-level butterfly representation. For a butterfly representa-
tion, we typically put the inner factor Bl at the center level (l = lc = L/2).

size qr× pr; the (i, j) block is a q× p block-partitioned matrix with each block of size
r × r, among which the only nonzero block is the (j, i) block and equals Bτi,νj . We
call (3.5) a butterfly representation of K(O,S), or simply, a butterfly. These struc-
tures are illustrated in Figure 3.2. Once factorized in the form of (3.5), the storage
and application costs of a matrix-vector product scale as O(n log n). Naive butterfly
construction of (3.5) requires O(n2) operations. However, we consider two scenarios
that allow fast butterfly construction: when individual elements of the matrix can be
quickly computed, subsection 3.2, or when the matrix can be applied efficiently to a
set of random vectors, subsection 3.3.

3.2. Butterfly Construction using Matrix Entry Evaluation. Oftentimes
fast access to any matrix entry is available, e.g., when the matrix entry has a closed-
form expression, or the matrix has been stored in full or compressed forms. If any entry
of the matrix can be computed in less than e.g., O(log n) operations, the butterfly
construction cost can be reduced to quasi-linear.

Starting from level L of TO, we need to compute the interpolation matrices Uτi,s
via row ID such that K(Oτi , Ss) = Uτi,sK(Ōτi , Ss), i = 1, . . . , 2L for the root node
s of TS . Note that it is expensive to perform such direct computation as there are
2L = O(n) IDs each requiring at least O(m) operations. Instead, we consider using
proxy columns to reduce the ID costs. Specifically, we choose O(r) columns Sτi,s from
Ss and compute Uτi,s from K(Oτi , Sτi,s) = Uτi,sK(Ōτi , Sτi,s). There exists several
options on how to choose the proxy columns, including uniform, random or Chebyshev
samples [31]. However, uniform or random samples often yield inaccuracies when the
operator represents interactions between close-by spatial domains, and Chebyshev
samples only apply to regular spatial domains. Instead we pick (α+knn)|Oτi | columns
with α|Oτi | uniform samples (α is an oversampling factor) and knn nearest points per
row using a certain distance metric, see also subsection 5.2 for its application to frontal
matrix compression.

At any level l = L− 1, . . . , lc, we can compute the transfer matrix Rτ,ν for node
τ at level l of TO and node ν at level L− l of TS , from
(3.8)

K(Oτ , Sν) =

[
Uτ1,pν

Uτ2,pν

] [
K(Ōτ1 , Sν)
K(Ōτ2 , Sν)

]
=

[
Uτ1,pν

Uτ2,pν

]
Rτ,νK(Ōτ , Sν).

From (3.8), the transfer matrix Rτ,ν can be computed as the interpolation matrix in
the row ID of K(Ōτ1 ∪ Ōτ2 , Sν). Just like level L, we choose (α + knn)|Ōτ1 ∪ Ōτ2 |
columns Sτ,ν from Sν as the proxy columns to compute Rτ,ν .

Similarly, we compute the interpolation matrices Vτ,ν at level 0 and transfer
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matrices Wτ,ν at levels l = 1, . . . , lc using column IDs with uniform and nearest
neighboring sampling. Finally, the skeleton matrices Bτ,ν are directly assembled at
center level lc.

The above-described process is summarized as BF entry eval(A) (Algorithm 3.1).
Note that at each level l = 0, . . . , L one needs to extract O(n) submatrices of size
O(r) × O(r) using the element extraction function extract(L, A) at lines 12, 28, 34.
This function can efficiently compute a list of submatrices indexed by a list of (rows,
columns) index sets L = {(X1, Y1), (X2, Y2), . . . }. When A has a closed-form ex-
pression or has been stored in full, extract(L, A) takes O(n) time and the butterfly
construction requires O(n log n) time; when A has been computed in some compressed
form (e.g., as summation of two butterflies), extract(L, A) often takes O(n log n) time
and the butterfly construction requires O(n log2 n) time. As we will see, the latter case
appears when compressing the frontal matrices and we describe the extract function
with compressed A in subsection 3.4.

Algorithm 3.1 BF entry eval(A): Butterfly construction of matrix A with entry
evaluation.

Input: A routine extract(L, A) to extract a list of sub-matrices of A with L
denoting the list of (rows, columns) index sets, an over-sampling parameter α, nearest
neighbor parameter knn, ID with a tolerance ε named IDε, and binary partitioning
trees TS and TO of L levels.

Output: A = K(O,S) ≈ (ULRL−1RL−2 . . . Rlc)Blc(W lcW lc−1 . . .W 1V 0) with
lc = L/2

1: for l = L to lc do . Uτ,ν , Rτ,ν
2: L ← {}
3: for (τ, ν) at (l, L−l) of (TO, TS) do
4: if l = L then
5: L ← {L, (Oτ , Sτ,ν)} with
6: |Sτ,ν | = (α+ knn)|Oτ |
7: else
8: L ←

{
L, (Ōτ1 ∪ Ōτ2 , Sτ,ν)

}
with

9: |Sτ,ν | = (α+ knn)|Ōτ1 ∪ Ōτ2 |
10: end if
11: end for
12: {∀(X,Y)∈L :K(X,Y)}←extract(L,A)
13: for (X,Y )∈L (corresp. (τ, ν)) do
14: Uτ,ν(or Rτ,ν), Ōτ ← IDε of K(X,Y )
15: end for
16: end for

17: for l = 0 to lc do . Vτ,ν ,Wτ,ν

18: L ← {}
19: for (τ, ν) at (l, L−l) of (TO, TS) do
20: if l = 0 then
21: L ← {L, (Oτ,ν , Sν)} with
22: |Oτ,ν | = (α+ knn)|Sν |
23: else
24: L ←

{
L, (Oτ,ν , S̄ν1 ∪ S̄ν2)

}
with

25: |Oτ,ν | = (α+ knn)|S̄ν1 ∪ S̄ν2 |
26: end if
27: end for
28: {∀(X,Y)∈L :K(X,Y)}←extract(L,A)
29: for (X,Y )∈L (corresp. (τ, ν)) do
30: Vτ,ν(or Wτ,ν), S̄ν ← IDε of K(X,Y )
31: end for
32: end for
33: L ←

{
∀ τ, ν at level lc : (Ōτ , S̄ν)

}
34: {∀ τ,ν at level lc :Bτ,ν}←extract(L, A)

3.3. Randomized Matrix-Free Butterfly Construction. When fast matrix
entry evaluation is not available, but the matrix can be applied to arbitrary vectors in
quasi-linear time, typically O(n log n), the randomized matrix-free butterfly methods
from [21] and [34] can be used. We use a slight modification based on the method
from [34], which, given a O(n log n) matrix-vector product, requires O(n3/2 log n)
operations and O(n log n) storage.

The algorithm works as follows. First, multiply A = K(O,S) ∈ Cm×n, from the
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right, with a random matrix Γs ∈ R|Ss|×(r+p), where r is an estimate of the butterfly
rank and p is a small oversampling parameter: K(O,Ss)Γs with s denoting the root
node of TS . From this product, one can easily extract the submatrix K(Oτ , Ss)Γs and
construct Uτ,s for all τ at level L of TO using a randomized low-rank approximation
algorithm, as described in detail in [27]. This can be repeated with increasing r
until convergence, see for instance [17] for a detailed discussion of the adaptive rank
determination. Similarly, Vt,ν with t the root node of TO and ν all the nodes at level
L of TS , can be obtained by multiplying K(Ot, S) from the left with a random matrix.

In the following phases, the individual block diagonal matrices of Rl can be re-
constructed by multiplication with random matrices structured as

(3.9) Γ0 = Γs, Γ1 =

[
Γν1

Γν2

]
, . . . , Γl =

Γν1
. . .

Γν
2l


where Γl, l ≤ lc is used to construct the Rl factors. Specifically, from the product
K(O,Sνj )Γνj , j = 1, . . . , 2l, we can extract the product K(Oτ , Sνj )Γνj for any node
τ at level L − l of TO. One can further extract the product K(Ōτ1 ∪ Ōτ2 , Sνj )Γνj
(recall that Ōτ1 and Ōτ2 are previously computed row skeletons as in (3.8)) and
compute its interpolation matrix as Rτ,νj using the randomized ID algorithm [27].
Note that here the column dimension of Γνj , i.e., r + p, can be estimated since the
upper bound on the rank r can be directly computed from the constructed factors
at the previous level. Throughout this paper, we name this randomized algorithm
as BF random matvec(A). Similarly, the W l and Bl factors can be reconstructed by
multiplying K from the left with structured random vectors similar to (3.9). We refer
the reader to [34] for the details of this algorithm.

Algorithm 3.2 extract BF(L, A): Extraction of a list L of sub-matrices of a
butterfly-compressed matrix A.

Input: A = (ULRL−1RL−2 . . . Rlc)Blc(W lcW lc−1 . . .W 1V 0) ≈ K(O,S). A list
of (rows, columns) index sets L = {(X1, Y1), . . . }.

Output: ∀(X,Y ) ∈ L : K(X,Y ).

1: for (X,Y ) in L do
2: for l = 0 to L do
3: Generate a list Ll of (τ, ν) at

level (l, L − l) of (TO, TS) with X ∩
Oτ 6= ∅ and Y ∩ Sν 6= ∅

4: end for
5: for l = L to lc do
6: for (τ ,ν) in Ll do
7: if l = L then
8: Elτ,ν = Uτ,ν(I, :)
9: I corresponds to points in X∩Oτ

10: else
11: Elτ,ν = [El+1

τ1,pν , E
l+1
τ2,pν ]Rτ,ν

12: end if
13: end for
14: end for

15: for l = 0 to lc do
16: for (τ ,ν) in Ll do
17: if l = 0 then
18: F lτ,ν = V >τ,ν(:, J)
19: J corresponds to points in Y ∩ Sν
20: else
21: F lτ,ν = Wτ,ν [F l−1pτ ,ν1 ;F l−1pτ ,ν2 ]
22: end if
23: end for
24: end for
25: K(X,Y )←Elcτ,νB

lc
τ,νF

lc
τ,ν ∀(τ, ν) ∈ Llc

26: end for

9
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(a)

U2
R1 B1 W 1 V 0

(b)

Fig. 3.3: The extract routine, see Algorithm 3.2, to compute a list of submatrices from
a 2-level butterfly matrix. (a) This shows the center level partitioning of the 2-level
butterfly matrix and the two submatrices (with sizes 1 × 1 and 1 × 2, colored green
and blue respectively) to be extracted. (b) The transfer, interpolation and skeleton
matrices required for the extraction of the two subblocks are highlighted.

3.4. Extracting Elements from a Butterfly Matrix. As explained in more
detail in section 5, incorporating butterfly compression in the sparse solver requires
both the BF entry eval and BF random matvec algorithms. In one step of the mul-
tifrontal algorithm, a subblock of a frontal matrix will be constructed as a butterfly
matrix using the BF entry eval Algorithm 3.1. Since fronts are constructed as a combi-
nation (extend-add) of other smaller fronts, the extract routine used in BF entry eval
will need to extract a list of submatrices from other fronts which might already be
compressed using butterfly. Therefore it is critical for performance to have an efficient
algorithm to extract a list of submatrices from a butterfly matrix. This is presented
as extract BF in Algorithm 3.2.

Given an m × n butterfly matrix A ≈ K(O,S) and a list of (rows, columns)
index sets L inquiring a total of ne =

∑
(X,Y )∈L |X||Y | matrix entries, Algorithm 3.2

extracts all required elements inO(ne log n) operations. In other words, this algorithm
requires O(log n) operations per entry regardless of the number of entries needed.
Consider for example the case where one wants to construct a butterfly matrix from
the sum of two butterfly matrices. This can be done by calling BF entry eval with an
extract routine, implemented using two calls to extract BF.

In a nutshell, extracting a submatrix from a butterfly can be performed via EAF
with selection matrices E and F that pick the rows and columns of the submatrix.
However, an efficient algorithm requires multiplying only selected transfer, interpola-
tion and skeleton matrices. Specifically, Algorithm 3.2 computes, for each (X,Y ) ∈ L,
lists Ll of (τ, ν) pairs indicating the required butterfly blocks (see Algorithm 3.2).
These blocks are then multiplied together to compute the submatrix K(X,Y ) (see
lines 11, 21, 25), which requires O(ne log n) operations. For example, Figure 3.3 shows
an extraction of two submatrices (with sizes 1×1 and 1×2 and colored green and blue)
from a 2-level butterfly, with the required transfer, interpolation and skeleton matri-
ces also highlighted. To further improve the performance, we modify Algorithm 3.2
by moving the outermost loop into the innermost loops at lines 6 and 16. This way
any butterfly block is multiplied at most once, and the communication is minimized
when A is distributed over multiple processes.

4. Hierarchically Off-Diagonal Butterfly Matrix Representation. The
hierarchically off-diagonal low-rank (HOD-LR) matrix representation is a special case
of the more general class of H matrices. For HOD-LR every off-diagonal block is
assumed to be low-rank, which corresponds to so-called H-matrix weak admissibil-
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ity [25]. The hierarchically off-diagonal butterfly (HOD-BF) format, however, is a
generalization of HOD-LR where low-rank approximation is replaced by butterfly
decomposition [33].

For dense linear systems arising from high-frequency wave equations, the HOD-
BF format is a suitable matrix representation, since butterfly compression applied to
the off-diagonal blocks reduces storage and solution complexity, as opposed to H or
HOD-LR matrices which do not reduce complexity for such problems. The HOD-BF
matrix format was first developed to solve 2D high-frequency Helmholtz equations
with O(n log2 n) memory and O(n3/2 log n) time [33]. Recent work shows that the
same complexity can also be obtained for 3D Helmholtz equations despite the non-
constant butterfly rank due to weak-admissibility [34]. It is also worth mentioning
that compared to butterfly-based H matrix compression with strong admissibility
[21, 22], HOD-BF enjoys simpler butterfly arithmetic, smaller leading constants in
complexity, and significantly better parallelization performance. In what follows, we
briefly describe the HOD-BF format, which is used in section 5 to construct the
quasi-linear complexity multifrontal solver.

As illustrated in Figure 4.1, in the HOD-BF format diagonal blocks are recursively
refined until a certain minimum size is reached. For a square matrix A ∈ Rn×n, this
partitioning defines a single binary tree TH , as shown on the right in Figure 4.1. The
root node is at level 0; its children are at level 1, etc. All the leaf nodes are at level L.
Each node τ at level l in the HOD-BF tree has an index set T lτ ⊂ TH = {1, . . . , n},
where TH is the index set corresponding to all rows and columns of the matrix. For
an internal node τ at level l with children τ1 and τ2, T lτ = T l+1

τ1 ∪ T l+1
τ2 . At the

lowest level of the hierarchy, the leaves of the HOD-BF tree, the diagonal blocks
Dτ = A(TLτ , T

L
τ ) are stored as regular dense matrices, while off-diagonal blocks are

approximated using butterfly decomposition. Let τ1 and τ2 be two siblings in TH
on level l with the two trees T lτ1 and T lτ2 , subtrees of TH , rooted at nodes τ1 and τ2
respectively. These two sibling nodes correspond to two off-diagonal blocks Bτ1 =
A(T lτ1 , T

l
τ2) and Bτ2 = A(T lτ2 , T

l
τ1), approximated using butterfly decomposition. One

of those butterfly blocks is defined by TO = T lτ1 and TS = T lτ2 , while the other is
defined by TO = T lτ2 and TS = T lτ1 .

4.1. HOD-BF Construction Using Entry Evaluation. An HOD-BF matrix
representation based on sampling matrix entries can be constructed upon applying
the BF entry eval algorithm (Algorithm 3.1) to all off-diagonal blocks of the HOD-BF
matrix. The construction can be done in O(n log2 n), or in O(n log3 n) operations, if
an individual matrix entry can be computed in O(1), or in O(log n) time. We name
the HOD-BF construction of a matrix A as HODBF entry eval(A), where A is passed
in the form of a routine that extracts a list of (rows, columns) index sets from A.

Similar to the butterfly extract routine in subsection 3.4, we also implement a
routine to extract a list L of (rows, columns) index sets from an HOD-BF matrix A,
called extract HODBF(L, A). This routine is implemented using extract BF for the
off-diagonal blocks of A.

4.2. Inversion of HOD-BF Matrices. Once constructed, the inverse of the
HOD-BF matrix can be computed in O(n3/2 log n) operations based on the random-
ized matrix-vector product algorithm BF random matvec described in subsection 3.3.
The inversion algorithm has been previously described in [33] and is briefly summa-
rized as HODBF invert, Algorithm 4.1.

Let Dτ = A with τ denoting the root node of TH . The algorithm first computes
D−1τ1 and D−1τ2 using two recursive calls. Then the two off-diagonal butterflies are
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Fig. 4.1: Illustration of a 4-level hierarchically off-diagonal butterfly matrix. The root
node is at level l = 0, all the leaf nodes are at level L = 3. The two largest off-diagonal
blocks are approximated using 2-level butterfly matrices. The 4 off-diagonal blocks
one level down in the hierarchy are approximated using a 1 level butterfly (U1B1V 0).
Finally, the smallest off-diagonal blocks are approximated as low-rank, i.e., 0-level
butterfly matrices. Note that these different butterfly blocks are not related. The
hierarchy is illustrated using the tree on the right. Each leaf node stores a dense
diagonal block Dτ , the parent nodes store 2 off-diagonal (butterfly) blocks.

updated as Bτi ← D−1τi Bτi using BF random matvec (at lines 7 and 8) as both D−1τi
and Bτi are already compressed. Finally the updated matrix [I,Bτ1 ;Bτ2 , I] is inverted
using the butterfly extension of the Sherman-Morrison-Woodbury formula [26], named
BF SMW, which in turn requires BF random matvec (at lines 16 and 18) to facilitate
the computation.

5. Rank Structured Multifrontal Factorization. It has been studied by
several authors that although the frontal matrices are dense, they are data-sparse for
many applications and can often be well approximated using rank-structured matrix
formats. Algorithm 5.1 outlines the rank-structured preconditioner using HOD-BF
compression for the fronts. However since the more complicated HOD-BF matrix
format has overhead for smaller matrices – compared to the highly optimized BLAS
and LAPACK routines – HOD-BF compression is only used for fronts larger than a
certain threshold nmin. Typically, the larger fronts are found closer to the root of the
multifrontal assembly tree. This is illustrated in Figure 5.1 for a small regular 112

mesh (Figure 5.1a), and Figure 5.1c shows the corresponding multifrontal assembly
tree, where only the top 3 fronts are compressed using HOD-BF.

We now discuss the construction and partial factorization of the HOD-BF com-
pressed fronts. To limit the overall complexity of the solver, a large front in the
rank-structured multifrontal solver is never explicitly assembled fully as a large dense
matrix. Instead, the solver relies on butterfly and HOD-BF construction using ei-
ther element extraction, as described in subsection 3.2 and section 4 or randomized
sampling, as in subsection 3.3. Recall that a front Fτ is built up from elements
of the reordered sparse input matrix A, and contributions from the Schur comple-
ments, called the contribution blocks, of the children of the front in the assembly
tree: CBν1 = Fν1;22 and CBν2 = Fν2;22, where ν1 and ν2 are the two children of τ .
Since multifrontal factorization traverses the assembly tree from the leaves to the root,
these children contribution blocks might already be compressed using the HOD-BF
format. Hence, extracting frontal matrix elements requires getting them from fronts
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Algorithm 4.1 HODBF invert(A): Inversion of a square HOD-BF matrix.

Input: A in HOD-BF form with L levels
Output: A−1 in HOD-BF form

1: Let Dτ = A with τ denoting the root node.
2: if Dτ dense then
3: Directly compute D−1τ
4: else
5: D−1τ1 ← HODBF invert(Dτ1) . Dτ1 is HODBF with L− 1 levels
6: D−1τ2 ← HODBF invert(Dτ2) . Dτ2 is HODBF with L− 1 levels
7: Bτ1 ← BF random matvec

(
D−1τ1 Bτ1

)
8: Bτ2 ← BF random matvec

(
D−1τ2 Bτ2

)
9: D−1τ ← BF SMW

([
I Bτ1
Bτ2 I

])[
D−1τ1

D−1τ2

]
10: end if
11: function BF SMW(A)
12: Input: A− I is a butterfly of L levels . If L = 0, the low-rank SMW [26]

can be used instead.
13: Output: A−1 as a butterfly of L levels added with the identity I
14: Split A into four children butterflies of L − 2 levels: A = [A11, A12;A21, A22]

using TO and TS
15: A−122 ← BF SMW(A22)
16: A11 ← BF random matvec(A11 −A12(I +A22)A21)
17: A−111 ← BF SMW(A11)

18: A−1←I+BF random matvec

([
I

−A−122 A21 I

][
A−111

A−122

][
I −A12A

−1
22

I

]
−I
)

19: end function

S0

S1
0 S1

1

(a)

S0

S1
0 S1

1

(b)

S0

S1
0 S1

1

(c)

Fig. 5.1: (a) The top three levels of nested dissection for an 112 mesh. (b) The root
separator S0 is a vertical 11 point line, which is recursively bisected to define the
hierarchical matrix partitioning. The next level separators S1

0 and S1
1 , are similarly

partitioned. (c) The root separator corresponds to the top level front, and its HOD-
BF partitioning is defined by the recursive bisection of the root separator, as shown
in (b), and similarly for the next level down in the assembly/frontal tree. For the
lower levels, the fronts are regular dense matrices. Note that the fronts in (c) are to
scale, but from this figure it is not obvious that the fronts typically get smaller lower
in the tree (except for the root front, which has no Schur complement). Only the top
3 fronts are compressed using HOD-BF, while the others are treated as regular dense
matrices.
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previously compressed as HOD-BF. The end result looks like:

(5.1) Fτ =

F12

F21

=

sparse

l↔

CBν1

l↔

CBν2

,

with F11 and F22 compressed as HOD-BF, and F12 and F21 compressed as butterfly.
For each front to be compressed, the following operations are in order:
1. At first, the F11 block of F ≡ Fτ is compressed as an HOD-BF matrix via

HODBF entry eval, see subsection 4.1, which calls BF entry eval, Algorithm 3.1,
for each of the off-diagonal blocks, using a routine extract(L, F11) to extract ele-
ments from F11 = A(Isτ , I

s
τ ) l↔ CBν1 l↔ CBν2 , see line 8 in Algorithm 5.1. Here

CBν1 refers to the contribution block, the Fν1;22 block including its Schur update,
of the first child of node τ in the assembly tree. Note that in this case, the extend-
add operation just requires checking whether the required matrix entries appear
in the sparse matrix, or in the child contribution blocks, and then adding those
different contributions together. Consider for example the extraction of a single
2 × 2 subblock from a front, i.e., L = {({x1, x2}, {y1, y2})} is a list with a single
(rows, columns) index set. Note that in general, the list can contain multiple index
sets for extracting multiple subblocks. This might look as follows:

(5.2)

x1x2

y1y2

=

x1x2

y1y2

l↔

CBν1

x2

x1

y1 y2

l↔

CBν2

y2

x2
,

where one element (x1, y2) corresponds to a nonzero element in the sparse ma-
trix, and all 2 × 2 elements also appear in CBν1 , but only one of them is part
of CBν2 . In other words, the list L is converted to three separate lists, one as-
sociated with the sparse matrix, and one with each of the two child contribu-
tion blocks CBν1 and CBν2 . The routine extract HODBF (see subsection 4.1),
used to extract a list of subblocks from an HOD-BF matrix, is then called twice,
once as extract HODBF({({x1, x2}, {y1, y2})}, CBν1) for the first child contribu-
tion block (with the list for this specific example), and for the second child once as
extract HODBF({({x2}, {y2})}, CBν2). Extracting the 2 × 2 submatrix from the
HOD-BF matrix CBν1 in this case requires extracting one element (x1, y1) from a
low-rank product, one element (x1, y2) from a dense block (leaf of the HOD-BF
matrix), and extracting a 1 × 2 submatrix (x2, {y1, y2}) from a butterfly matrix
(lower left main off-diagonal block of the CBν1 HOD-BF matrix). Extraction from
a butterfly matrix is explained in subsection 3.4, Algorithm 3.2 and Figure 3.3b.

2. Second, line 9 approximates F−111 from the butterfly representation of F11, see
subsection 4.2.

3. Next, lines 10 and 11, the F12 and F21 front off-diagonal blocks are each ap-
proximated as a single butterfly matrix, using routines to extract elements from
A(Isτ , I

u
τ ) l↔ CBν1 l↔ CBν2 and A(Iuτ , I

s
τ ) l↔ CBν1 l↔ CBν2 respectively. For F12,

the tree TH corresponding to F11 is used as TO, and the tree corresponding to F22
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is used for TS , and vice versa for F21. Note that we truncate the trees TH if needed
to enforce that TS and TO have the same number of levels. Subsection 5.1 discusses
the generation of the hierarchical partitioning.

4. Next, see line 12 of Algorithm 5.1, the Schur complement update S = F21F
−1
11 F12

is computed as a single butterfly matrix using randomized matrix-vector products,
see subsection 3.3. The matrix vector products can be performed efficiently, since
both F12 and F21 are already compressed as butterfly and F−111 is approximated as
an HOD-BF matrix.

5. The final step for this front is to construct F22 = CB as an HOD-BF matrix, again
using element extraction, now from CBν1 l↔ CBν2 − S, where CBν1 and CBν2 are
in HOD-BF form and S is a single butterfly matrix. S can be released as soon as
the contribution block has been assembled, and the contribution block is kept in
memory until it has been used to assemble the parent front.

Algorithm 5.1 Sparse rank-structured multifrontal factorization using hierarchically
off-diagonal butterfly matrix compression, followed by a GMRES iterative solve using
the multifrontal factorization as an efficient preconditioner.

Input: A ∈ RN×N , b ∈ RN
Output: x ≈ A−1b

1: Ã← P (DrADcQc)P
> . scaling, and permutation for stability and fill reduction

2: Â← P̂ ÃP̂> . rank-reducing separator reordering, subsection 5.1
3: build assembly tree: define Isτ and Iuτ for every frontal matrix Fτ
4: for nodes τ in assembly tree in topological order do
5: if dimension(Fτ ) < nmin then
6: construct Fτ as a dense matrix . Algorithm 2.1
7: else
8: F11 ← HODBF entry eval

(
Â(Isτ , I

s
τ ) l↔ CBν1 l↔ CBν2

)
. subsection 4.1

9: F−111 ← HODBF invert (F11) . Algorithm 4.1

10: F12 ← BF entry eval
(
Â(Isτ , I

u
τ ) l↔ CBν1 l↔ CBν2

)
. Algorithm 3.1

11: F21 ← BF entry eval
(
Â(Iuτ , I

s
τ ) l↔ CBν1 l↔ CBν2

)
. Algorithm 3.1

12: S ← BF random matvec
(
F21F

−1
11 F12

)
. subsection 3.3

13: CBτ ← HODBF entry eval
(
CBν1 l↔ CBν2 − S

)
. subsection 4.1

14: end if
15: end for
16: x← GMRES(A, b,M : u← DcQcP

>P̂> bwd-solve(fwd-solve(P̂PDrv)))

The final sparse rank-structured factorization can be used as an efficient precondi-
tioner M in GMRES for example, line 16 in Algorithm 5.1. Preconditioner application
requires forward and backward solve phases. The forward solve traverses the assem-
bly tree from the leafs to the root and applies F−1τ ;11 followed by Fτ ;21, and then the
backward solve traverses back from the root to the leafs, applying Fτ ;12. Currently,
we do not guarantee that the preconditioner is symmetric (or positive definite) for a
symmetric (or positive definite) input matrix A.

5.1. Hierarchical Partitioning from Recursive Separator Bisection. The
butterfly partitioning, illustrated in Figure 3.1, can typically be constructed by a hi-
erarchical clustering of the source and observer point sets, S and O, and similarly,
point set coordinates can be used in clustering to define the HOD-BF partitioning hi-
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erarchy. However, in the purely algebraic setting considered here, geometry or point
coordinates are not available. Instead we define the HOD-BF hierarchy of F11 by per-
forming a recursive bisection (using METIS) of the graph corresponding to A(Isτ , I

s
τ ).

This defines the HOD-BF tree and a corresponding permutation of the rows/columns
of F11, and hence also the partitioning of the butterfly off-diagonal blocks of F11.
This permutation – globally denoted as P̂ , see line 2 in Algorithm 5.1 – drastically
reduces the ranks encountered in the off-diagonal low-rank and butterfly blocks. See
Figure 5.1b for the recursive bisection, and Figure 5.1c for the corresponding HOD-
BF partitioning. For the F22 block, no such recursive bisection is performed, but the
indices in Iuτ are sorted and partitioned using a balanced binary tree.

5.2. Graph Nearest Neighbor Search. During the graph bisection from sub-
section 5.1, to define the hierarchical matrix structure, edges in the graph of A(Isτ , I

s
τ )

will be cut by the partitioning. These edges correspond to nonzero entries in the off-
diagonal blocks of the F11 HOD-BF matrix. For a 2D problem, with 1D separators,
there are O(1) such entries, while for a 3D problem there are O(k) with k denoting
the number of grid points along each dimension. As shown in (5.1), these nonzeros are
combined with the dense contribution blocks from the children fronts. However, these
nonzero entries which come directly from the sparse matrix contribute significantly
to the off-diagonal blocks, and to the numerical rank of these blocks. Based on the
graph distance, we select for each point the knn nearest neighbors and pass them to
the butterfly matrix construction, see subsection 3.2 and Algorithm 3.1. Recall that
we use nearest neighbors in addition to uniform points as proxy points to accelerate
the ID in Algorithm 3.1.

More specifically, we consider the graph of Â(Isτ , I
s
τ ), and for each vertex in this

graph we search, using a breadth-first search, for the knn nearest-neighbors in any of
the off-diagonal blocks of the HOD-BF representation of F11. This means we look at
all length-knn connections in the graph. Similarly, for F22 we look for the knn nearest
neighbors in the graph Â(Iuτ , I

u
τ ). For the main off-diagonal blocks F12 (and F21), we

look for the nearest neighbors in the graph Â(Isτ , I
u
τ ) (and Â(Iuτ , I

s
τ )) by performing

a breadth-first search in the graph Â(Isτ , I
s
τ ) ∪ Â(Isτ , I

u
τ ) ∪ Â(Iuτ , I

u
τ ).

A similar pseudo-skeleton low-rank approximation scheme based on graph dis-
tances was proposed in [3], where it is referred to as the boundary distance low-rank
approximation scheme.

5.3. Complexity Analysis. For the complexity analysis, we consider regular
d-dimensional meshes with k gridpoints per dimension, for a total of N = kd degrees
of freedom, with a stencil that is 3 points wide in each dimension. For the sparsity
preserving ordering, we use nested dissection to recursively divide the mesh into L =
d log k−O(1) levels. At each level ` = 0, . . . , L there are 2` separators with geometric
span of O(k/2b`/dc) and frontal matrices of size O(n) = O((k/2b`/dc)d−1). For the
analysis of the rank-structured solver, we split the fronts into dense and compressed
fronts using a switching level `s = L − O(1). Fronts closer to the top, i.e., at levels
` < `s, are typically larger and are thus compressed using the HOD-BF format, while
all fronts at levels ` ≥ `s are stored as regular dense matrices. Note that in the
implementation, we do not use a switching level, but instead decide only based on the
actual size of the front. Hence, the total factorization flops F(k, d) and solution flops
S(k, d) for the multifrontal solver are

F(k, d) =

L∑
`=`s+1

2`FD

((
k

2b`/dc

)d−1)
+

`s∑
`=0

2`FBF

((
k

2b`/dc

)d−1)
(5.3)
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S(k, d) =

L∑
`=`s+1

2`SD

((
k

2b`/dc

)d−1)
+

`s∑
`=0

2`SBF

((
k

2b`/dc

)d−1)
.(5.4)

Here FD(n) = O(n3) and SD(n) = O(n2) denote the costs of factorization (includ-
ing construction) and solution of a dense front of size O(n), respectively. Similarly,
FBF(n) and SBF(n) denote the cost of factorization (including construction) and so-
lution of a HOD-BF compressed front of size O(n). In addition, it is straightforward
to verify that the memory requirement of the multifrontal solver M(k, d) ∼ S(k, d)
as the solution phase typically requires a single-pass of the memory storage. In ad-
dition, one can verify that setting `s = −1 yields the exact multifrontal solver with
F = O(N2), S = O(N4/3) for d = 3 and F = O(N3/2), S = O(N logN) for d = 2.

In what follows, we derive the complexity of the HOD-BF multifrontal solver
and compare with the HSS multifrontal solver in [49] for both high-frequency and
low-frequency wave equations. Note that the complexities of other rank structured
multifrontal solvers are similar to or worse than those of the HSS multifrontal solver.
Here “high-frequency” refers to linear systems whose size is proportional to certain
power of the wavenumber (e.g., by fixing the number of grid points per wavelength to
O(10)), while “low-frequency” refers to linear systems whose size is, roughly speaking,
independent of the wavenumber. We choose the high-frequency Helmholtz equation
and the Poisson equation, both in homogeneous media, as two representative cases.
Note that the proposed solver can be applied to a much wider range of wave equations
and media with low complexities. Let r(n) denote the maximum rank of the HOD-BF
or HSS representation of a front of size O(n). As the front represents a numerical
Green’s function that resembles the free-space Green’s function of the wave equations,
we claim without proof that the rank r(n) also behaves similarly to that arising from
boundary element methods [35, 34]. For more rigorous proofs regarding ranks in
multifrontal matrices, see [15]. We further assume (and observed) that the rank in
HOD-BF or HSS representation of the front remains similar after the inversion process.

Helmholtz equation. Consider the F12 and F21 blocks of a front F of size O(n)
which represent the numerical Green’s function interaction between two crossing sepa-
rators. See Figure 5.1a for an illustration of such an interaction between two crossing
separators, for instance S1

0 and S0. By direct application of the results in Section
3.3.2 in [35] and Section 4.5.2 in [34] for 2D and 3D free-space Green’s functions, one
can show that r(n) = O(log n) for d = 2 and r(n) = O(n1/4) for d = 3. That said,
the costs of construction from entry evaluation and randomized matvec still scale as
O(n log2 n) and O(n3/2 log n) just like the constant rank case in subsection 3.4 and
subsection 3.3. We briefly summarize the computational complexities of lines 8 to
13 of Algorithm 5.1 here and leave their validations to the readers: BF entry eval at
10 and 11 requires O(n log2 n) operations, HODBF entry eval at 8 and 13 requires
O(n log3 n) operations, BF random matvec at line 12 requires O(n3/2 log n) opera-
tions, and HODBF invert at line 9 requires O(n3/2 log n) operations. In addition, the
corresponding storage cost requires O(n log2 n) memory units. Therefore, the cost of
factorization and solution of a HOD-BF compressed front is FBF(n) = O(n3/2 log n)
and SBF(n) = O(n log2 n). Plugging these estimates into (5.3) and (5.4) will yield the
total factorization and solution cost of the HOD-BF multifrontal solver as

F(k, 2) =

L∑
`=`s+1

2`
(

k

2b`/2c

)3

+

`s∑
`=0

2`
(

k

2b`/2c

)3/2

log

(
k

2b`/2c

)
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rank r(n) factor flops F solve flops S
problem dim HOD-BF HSS HOD-BF HSS HOD-BF HSS

Helmholtz
2 logn n N N3/2 N N logN

3 n1/4 n N log2 N N2 N N4/3

Poisson
2 logn logn N N N N

3 n1/4 n1/2 N log2 N N4/3 N N

Table 5.1: Asymptotic complexity of the HOD-BF and HSS multifrontal solvers for
2D and 3D, Helmholtz and Poisson equations. The O(·) has been dropped. Here n
denotes the size of a front and N is the global number of degrees of freedom in the
sparse system.

=

L∑
`=`s+1

k3

2b`/2c
+

`s∑
`=0

k2
2b`/4c

k1/2
log

(
k

2b`/2c

) k

2b`/2c
→2t

== k2 +

log(k)∑
t=0

k2
t

2t/2
= k2(5.5)

F(k, 3) =

L∑
`=`s+1

2`
(

k

2b`/3c

)6

+

`s∑
`=0

2`
(

k

2b`/3c

)3

log

(
k

2b`/3c

)

=

L∑
`=`s+1

k6

2`
+

`s∑
`=0

k3 log

(
k

2b`/3c

)
= k3 + k3 log2 k = k3 log2 k(5.6)

S(k, d) =

L∑
`=`s+1

2`
(

k

2b`/dc

)2(d−1)

+

`s∑
`=0

2`
(

k

2b`/dc

)d−1
log2

(
k

2b`/dc

)

=

L∑
`=`s+1

k2(d−1)

2(1−2/d)`
+

`s∑
`=0

kd
2b`/dc

k
log2

(
k

2b`/dc

) k

2b`/dc
→2t

== kd+

log(k)∑
t=0

kd
t2

2t
= kd.(5.7)

Note that O(·) has been dropped in the above equations. Hence, the HOD-BF multi-
frontal solver can attain quasi-linear complexity for high-frequency Helmholtz equa-
tions. In contrast, one can show, based on the arguments in [7, 15], that the HSS
rank r(n) = O(n) for both d = 2 and d = 3 due to the highly-oscillatory inter-
action between two crossing separators, which yields O(n3) and O(n2) factorization
and solution complexity for one front and hence no asymptotic gains using the HSS
multifrontal solver compared to exact multifrontal solvers. We summarize these com-
plexities in Table 5.1.

Poisson equation. The complexity of the HOD-BF multifrontal solver for the
Poisson equation can be estimated similarly to the Helmholtz equation. First, one
can show that the butterfly rank r(n) = O(log n) for d = 2 and r(n) = O(n1/4)
for d = 3, just like the Helmholtz case. This yields similar complexities as those in
(5.5)–(5.7) with smaller leading constants. For comparison, the HSS rank behaves as
r(n) = O(log n) for d = 2 and r(n) = O(n1/2) for d = 3 (see [29, 11, 15]), which yields
fast HSS mutifrontal solvers. We refer the readers to [49] for detailed analysis and
list the complexities in Table 5.1. One can see that lower complexity can be attained
using HOD-BF multifrontal (O(N log2N)) than HSS multifrontal (O(N4/3)) for the
factorization when d = 3; similar complexities are attained for all the other entries in
the table, despite that HOD-BF multifrontal can yield larger leading constants than
HSS multifrontal.

6. Experimental Results. Experiments reported here are all performed on the
Haswell nodes of the Cori machine, a Cray XC40, at NERSC in Berkeley. Each of the
2, 388 Haswell nodes has two 16-core Intel Xeon E5-2698v3 processors and 128GB of
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2133MHz DDR4 memory. We developed a distributed memory code but we omit the
description of the parallel algorithms here and will discuss this in a future paper.

The approximate multifrontal solver is used as a preconditioner for restarted
GMRES(30) with modified Gram-Schmidt and a zero initial guess. All experiments
are performed in double precision with absolute or relative stopping criteria ‖ui‖ ≤
10−10 or ‖ui‖/‖u0‖ ≤ 10−6, where ui = M−1(Axi− b) is the preconditioned residual,
with M the approximate multifrontal factorization of A. For the exact multifrontal
solver, we use iterative refinement instead of GMRES. For the tests in subsections 6.1
and 6.3, the nested dissection ordering is constructed from planar separators. For the
test in subsection 6.2 the nested dissection ordering from METIS [30] was used. For
all the tests the column permutation and row/column scaling were disabled.

6.1. Visco-Acoustic Wave Propagation. We first consider the 3D visco-
acoustic wave propagation governed by the Helmholtz equation

(6.1)

(∑
i

ρ(x)
∂

∂xi

1

ρ(x)

∂

∂xi

)
p(x) +

ω2

κ2(x)
p(x) = −f(x).

Here x = (x1, x2, x3), ρ(x) is the mass density, f(x) is the acoustic excitation, p(x)
is the pressure wave field, ω is the angular frequency, κ(x) = v(x)(1 − i/(2q(x))) is
the complex bulk modulus with the velocity v(x) and quality factor q(x). We solve
(6.1) by a finite-difference discretization on staggered grids using a 27-point stencil
and 8 PML absorbing boundary layers [41]. This requires direct solution of a sparse
linear system where each matrix row contains 27 nonzeros, whose values depend on
the coefficients and frequency in (6.1).

exact ε = 10−1 ε = 10−2

nmin - 60K 30K 60K 30K
HOD-BF fronts 0 1 3 1 3

Dense fronts 1,869,841 1,869,840 1,869,838 1,869,840 1,869,838
Factor time (sec) 644 610 508 612 527

Factor flops 1.34 · 1016 1.27 · 1016 9.68 · 1015 1.27 · 1016 9.69 · 1015

Factor mem (GB) 1.48 · 103 1.42 · 103 1.27 · 103 1.42 · 103 1.27 · 103

Compression (%) 100 95.9 85.4 95.9 85.5
Maximum rank - 59 153 94 221

Top 3 fronts
Front compr. (%) - 1.6/-/- 1.6/0.90/0.90 2.35/-/- 2.39/1.3/1.3

Rank - 59/-/- 57/152/144 94/-/- 95/221/216
Front time (sec) 57/133/135 22/133/135 28/35/60 33/129/133 36/52/53

GMRES its. 1 15 17 8 9
Solve flops 4.24 · 1012 6.74 · 1013 2.85 · 1011 3.79 · 1013 4.61 · 1013

Solve time (sec) 1.16 13.3 13.1 7.12 8.93

Table 6.1: Results for applying the HOD-BF and exact multifrontal solvers to (6.1)
with constant coefficients and N = 2503. For the top 3 fronts, we give the compression
rate, maximum rank and time spent, separated by ”/”.

Homogeneous media. We consider a cubed domain with v(x) = 4000m/s, ρ(x) =
1kg/m3, q(x) = 104. The frequency is set to ω = 8πHz and the grid spacing is set such
that there are 15 grid points per wavelength. First, we consider a problem with size
N = k3, k = 250 and compare the performance of the HOD-BF multifrontal solver
with the exact multifrontal solver by setting tolerances ε = 10−1, 10−2 and switching
levels `s = 0, 1 (corresponding to minimum compressed separators with sizes nmin =
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60K, 30K). In other words, there are at most three fronts compressed as HOD-BF.
Here, ε refers to the ID tolerance used in BF entry eval and BF random matvec. Ta-
ble 6.1 lists the time, flop counts, memory and ranks for the factor and solve phases,
as well as those for the fronts at ` = 0 and ` = 1, using 32 compute nodes, with 4
MPI ranks per node and 8 OpenMP threads per MPI process. Significant memory
compression of up to 0.9% – meaning the HOD-BF compressed front only requires
0.9% of the memory that a dense front would use – and factor speedups up to 4× are
observed for the compressed fronts. Next, we validate the complexity estimates in Ta-
ble 5.1 when varying N from 1003 to 2503, while compressing all fronts corresponding
to separators larger than 7.5K. Compared to the O(N2) computation and O(N4/3)
memory complexities using the exact multifrontal solver, we observe the predicted
O(N log2N) computation and O(N) memory complexities using the HOD-BF multi-
frontal solver with ε = 10−3 (see Figures 6.1a and 6.1b). Finally, we investigate the
effect of HOD-BF compression tolerance on the GMRES convergence using N = 2003.
The GMRES residual history with different ε are plotted in Figure 6.1c.
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Fig. 6.1: Results for high frequency 3D Helmholtz. (a) The total number of operations,
for both factorization and solve, using iterative refinement for the exact factorization
and preconditioned GMRES for the HOD-BF approximate factorization. The number
of GMRES iterations are shown by every datapoint for the experiments with HOD-BF
compression. (b) Memory usage for the factors (not the peak working memory). (c)
GMRES convergence using the multifrontal+HOD-BF preconditioner for k = 200,
with different compression tolerances ε.

Heterogeneous media. Here we use the Marmousi2 [36] P-wave velocity model for
v(x), and set ρ(x) = 1kg/m3, q(x) = 104. We generate a 174 × 500 grid in the x-z
plane using the Marmousi2 model and duplicate the model 200 times in the y direction,
yielding a mesh of 190×216×516 with N = 21,176,640 and grid spacing 20m including
the PMLs (see Figure 6.2). We set the frequency to ω = 20π corresponding to 7.5
grid points per miminum wavelength. The real part of the pressure field, induced by
a point source located at the domain center, is computed by the proposed HOD-BF
multifrontal solver with 32 compute nodes and plotted in Figure 6.2. The technical
data with different compression tolerance and switching levels is listed in Figure 6.2.
Significant memory compression ratios have been observed. Note that there is a trade-
off between the factor and solve flops when using different tolerances and switching
levels.
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ε 10−3 10−3 10−4

nmin 38.5K 75K 75K
HOD-BF fronts 435 143 143

Dense fronts 2,102,482 2,102,774 2,102,774
Factor time (sec) 3716 2499 3019

Factor flops 1.73 · 1015 2.17 · 1015 2.71 · 1015

Memory (GB) 5.55 · 103 7.53 · 103 7.75 · 103

Compression (%) 28.25 38.3 39.4
Maximum rank 427 422 580

GMRES iterations 41 58 6
Solve flops 1.46 · 1013 2.56 · 1013 3.10 · 1012

Solve time (sec) 220.35 323.6 38.3

Fig. 6.2: Left: Data for applying the HOD-BF solver to (6.1) with the Marmousi2
velocity model. Right: 3D extension of the Marmousi2 velocity model, and the real
part of the pressure wave field p(r) excited by a point source at the domain center
computed by the HOD-BF multifrontal solver.

ε 10−5

HOD-BF fronts 6
Dense fronts 3,773,215

Factor time (sec) 581.1
Factor flops 1.30 · 1015

Flops fraction of direct (%) 61.3
Memory (GB) 426

Compression (%) 78.8
Maximum rank / front size 955 / 78203

GMRES its. 17
Solve flops 5.73 · 1012

Solve time (sec) 23.8

Fig. 6.3: Left: Data for applying the HOD-BF solver to the indefinite Maxwell equa-
tion. Right: Magnitude of computed solution E.

6.2. Indefinite Maxwell. We solve the electromagnetics problem correspond-
ing to the second order Maxwell equation, ∇×∇×E−Ω2E = f , which is given in the
weak formulation as (∇×E,∇×E′) −

(
Ω2E,E′

)
= (f ,E′) with a testing function

E′. Here it is assumed a given tangential field as boundary condition for E. More
specifically, f(x) = (κ2 −Ω2)(sin(κx2), sin(κx3), sin(κx1)) on the domain boundaries.
For large wavenumber Ω, the problem is highly indefinite and hard to precondition, so
typically a direct solver is used. We discretize the weak form with first order Nédélec
elements using MFEM [4]. We use a uniform tetrahedral finite element mesh on a
unit cube, resulting in a linear system of size 14,827,904 and approximately 24 points
per wavelength. The results for Ω = 16 and κ = Ω/1.05 are shown in Figure 6.3.

6.3. 3D Poisson. We solve the Poisson equation on a regular 3D k3 mesh. Fig-
ure 6.4 shows comparison with the multifrontal solver with HSS compression [49, 16],
also implemented in STRUMPACK. Figure 6.4a shows the number of floating point
operations for the combination of the numerical factorization and solve (GMRES)
phases – the number of operations for the solve phase is very small compared to those
for the factorization phase. Figure 6.4b shows that the maximum ranks in the HOD-
BF representation, as a function of the size n of the root front, remain much smaller
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Fig. 6.4: Results for a 3D Poisson benchmark on a regular k3 mesh, with nmin =
7500 and ε = 10−2. (a) Number of floating point operations for both the numerical
factorization and the GMRES solve with a single right hand side. (b) The maximum
ranks encountered in the HSS or HOD-BF representations at the root front, showing
both 3D Poisson and Helmholtz.

than those in HSS. Note the agreement with Table 5.1, which predicts O(n1/2) and
O(n1/4) for HSS and HOD-BF respectively. For the 2503 problem, the top separator
is a 250 × 250 plane, corresponding to a 62,500 × 62,500 frontal matrix. The largest
front is found at the next level, ` = 1, and is 93,7502 (= 250 × 250/2 + 250 × 250).
Using HSS, this front is compressed to 11.3% of the dense storage with a maximum
off-diagonal rank of 3754, while HOD-BF compresses this front to 0.76% with a max-
imum rank of 70.

7. Conclusion. This paper presents a fast multifrontal sparse solver for high-
frequency wave equations. The solver leverages the butterfly algorithm and its hier-
archical matrix extension, HOD-BF, to represent large frontal matrices. The butter-
fly representation is computed via fast entry evaluation based on the graph distance,
and factorized with randomized matrix-vector multiplication-based algorithms. When
compared to the exact solver, HOD-BF can reduce the storage and factorization costs
respectively to 1% and 25% for the larger fronts. The resulting solver can attain
quasi-linear computation and memory complexity when applied to high-frequency
Helmholtz and Maxwell equations. Similar complexities have been analyzed and ob-
served for Poisson equations as well. The code is made publicly available as an effort
to integrate the dense solver package ButterflyPACK2 into the sparse solver pack-
age STRUMPACK. The focus of this work is on asymptotic complexity reduction.
However, for practical applications, a rank structured format with smaller leading
constants in its complexity, such as for instance block low-rank, applied to medium
sized fronts, could further reduce the overall number of operations and especially the
factorization time.
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