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Effective and efficient algorithm for multiobjective optimization of
hydrologic models
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[1] Practical experience with the calibration of hydrologic models suggests that any
single-objective function, no matter how carefully chosen, is often inadequate to properly
measure all of the characteristics of the observed data deemed to be important. One
strategy to circumvent this problem is to define several optimization criteria (objective
functions) that measure different (complementary) aspects of the system behavior and to
use multicriteria optimization to identify the set of nondominated, efficient, or Pareto
optimal solutions. In this paper, we present an efficient and effective Markov Chain Monte
Carlo sampler, entitled the Multiobjective Shuffled Complex Evolution Metropolis
(MOSCEM) algorithm, which is capable of solving the multiobjective optimization
problem for hydrologic models. MOSCEM is an improvement over the Shuffled Complex
Evolution Metropolis (SCEM-UA) global optimization algorithm, using the concept of
Pareto dominance (rather than direct single-objective function evaluation) to evolve the
initial population of points toward a set of solutions stemming from a stable distribution
(Pareto set). The efficacy of the MOSCEM-UA algorithm is compared with the original

MOCOM-UA algorithm for three hydrologic modeling case studies of increasing

complexity.
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1. Introduction and Scope

[2] Many hydrologic models contain parameters that
cannot be measured directly, but must be estimated
through indirect methods such as calibration. In the
process of calibration, the hydrologist adjusts the values
of the model parameters such that the model is able to
closely match the behavior of the real system it is intended
to represent. In its most elementary form, this calibration is
performed by manually adjusting the parameters while
visually inspecting the agreement between observations
and model predictions [Janssen and Heuberger, 1995].
In this approach, the “closeness” of the model with the
measurements is typically evaluated in terms of several
subjective visual measures, and a semi-intuitive trial-and-
error process is used to perform the parameter adjustments
[Boyle et al., 2000]. Because of the subjectivity and time-
consuming nature of manual trial-and-error calibration,
there has been a great deal of research into the develop-
ment of automatic methods for calibration of hydrologic
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models [e.g., Gupta and Sorooshian, 1994]. Automatic
methods seek to take advantage of the speed and power of
digital computers, while being objective and relatively
easy to implement.

[3] Research into the development of automatic calibra-
tion methods has focused mainly on the selection of a
single-objective measure and the selection of an automatic
optimization strategy that can reliably optimize (maximize
or minimize, as appropriate) that measure. In this regard,
the Shuffled Complex Evolution (SCE-UA) global optimi-
zation algorithm developed by Duan et al. [1992, 1993]
has proved to be consistent, effective, and efficient in
locating the parameter values of a hydrologic model that
optimize a given objective function. However, practical
experience with the calibration of hydrologic models
suggests that single-objective functions, no matter how
carefully chosen, are often inadequate to properly measure
all of the characteristics of the observed data deemed to be
important. Consequently, single-objective calibration meth-
ods do not usually provide parameter estimates that are
considered acceptable by practicing hydrologists. Another
emerging problem is that many of the latest hydrologic
watershed or land-surface models simulate several output
fluxes (e.g., water, energy, chemical constituents, etc.) for
which measurement data are available, and all these data
must be correctly utilized to ensure proper model calibra-
tion [Beven and Kirkby, 1979; De Grosbois et al., 1988;
Kuczera, 1982, 1983; Woolhiser et al., 1990; Kuczera and
Mroczkowski, 1998; Gupta et al., 1998]. One strategy to
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explicitly recognize the multiobjective nature of the calibra-
tion problem is to define several optimization criteria (ob-
jective functions) that measure different (complementary)
aspects of the system behavior and to use a multicriteria
optimization method to identify the set of nondominated,
efficient, or Pareto optimal solutions [Gupta et al., 1998;
Yapo et al., 1998; Boyle et al., 2000]. The Pareto solutions
represent tradeoffs among the different incommensurable
and often conflicting objectives, having the property that
moving from one solution to another results in the improve-
ment of one objective while causing deterioration in one or
more others.

[4] A simple way to obtain a crude approximation of
the Pareto solution set is to weigh the different criteria
into a single aggregated scalar and to run a large number
of independent single-criteria optimization runs using
different values for the weights. Popular aggregation
methods include the weighted-sum approach, target vector
optimization, and the method of goal attainment [Srinivas
and Deb, 1994; Fonseca and Fleming, 1995]. Recently,
Madsen [2000] used an aggregation approach, in combi-
nation with the single-criterion SCE-UA global optimiza-
tion algorithm, to construct an estimate of the Pareto front
for a rainfall-runoff model application. Although the
aggregation method is (in principle) simple to implement,
a complete single-objective optimization must be solved
to obtain each discrete Pareto solution, making this
approach inefficient, cumbersome, and time-consuming.
Moreover, there is arguably a significant advantage to
maintaining the independence of the various criteria,
because a full multicriteria optimization will allow an
analysis of the tradeoffs among the different criteria and
enable hydrologists to better understand the limitations of
the current hydrologic model structure, thereby gaining
insights into possible model improvements [Gupta et al.,
1998].

[s] Recently, a variety of evolutionary algorithms have
become available which are designed to evolve multiple
nondominated solutions concurrently in a single optimiza-
tion run, thereby guiding the search in several directions at
the same time. These algorithms use the concepts of Pareto
dominance, rather than single-objective function evalua-
tions, to construct a uniform estimate of the Pareto
solution set. In the context of hydrologic modeling, Yapo
et al. [1998] developed the Multiobjective Complex Evo-
lution (MOCOM-UA) global optimization method, which
solves the multiobjective calibration problem by combin-
ing the strengths of the complex shuffling strategy and
downhill Simplex evolution (adapted from the SCE-UA
global optimization algorithm) with the concepts of Pareto
dominance. Various hydrologic and hydrometeorologic
calibration and evaluation studies have demonstrated that
the MOCOM algorithm can provide an efficient estimate
of the Pareto set of solutions [Gupta et al., 1998, 1999;
Yapo et al., 1998; Bastidas et al., 1999; Boyle et al., 2000,
2001; Wagener et al., 2001; Xia et al., 2002; Leplastrier et
al., 2002]. However, during the course of these investiga-
tions, we became aware that the current procedure has
several weaknesses [Gupta et al., 2003], including the
tendency of the MOCOM algorithm to cluster the Pareto
solutions into a central compromise region of the Pareto
set, and a tendency to converge prematurely for case
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studies involving larger numbers of parameters and strongly
correlated performance criteria.

[6] In this paper, we present an effective and efficient
Markov Chain Monte Carlo (MCMC) sampler, entitled the
Multiobjective Shuffled Complex Evolution Metropolis
(MOSCEM-UA) algorithm, which is capable of generating
a fairly uniform approximation of the “true” Pareto frontier
within a single optimization run. The algorithm is closely
related to the SCEM-UA algorithm [Vrugt et al., 2003],
recently developed to infer the probabilistic uncertainty
associated with the use of a single-objective function, and
uses a newly developed, improved concept of Pareto
dominance to generate a fairly uniform approximation of
the ““true” Pareto frontier (thereby also containing the
single-criteria solutions at the extremes of the Pareto solu-
tion set). The features and capabilities of the MOSCEM-UA
algorithm are illustrated using three hydrologic modeling
case studies of increasing complexity, and the results are
compared with the original MOCOM-UA algorithm.

2. Multiobjective Optimization

[7] To facilitate the description of the multiobjective
optimization approach, let us write the hydrologic model
n as follows:

y=m(£l6) (1)

where y denotes the model output, € is the input data, and 0
is a vector with #» unknown parameters. We assume that the
model structure specified by equation (1) is predetermined
and fixed, and that realistic upper and lower bounds for each
of the model parameters can be specified, thereby defining
O, the feasible parameter space:

hcoCR )

Here " denotes the n-dimensional Euclidean space. If © is
not the entire domain space R”, the identification problem is
said to be constrained.

[8] We first consider the situation in which the hydrolog-
ical model is required to simulate only one aspect of the
system and for which z directly observed output values, {y;,
i = 1,...z}, are available. The difference between the
model-simulated output and the observed data can be
represented by the residual vector:

E(6) = G[3(0)] — G[y] = {e1(6), e2(0),,e:(0)} 3)

where the function G(-) allows for linear or nonlinear
transformations of the simulated and observed data. The
development of a measure F(0), hereafter referred to as
objective function, that mathematically measures the “size”
of E(0) is typically based on assumptions regarding the
distributions of the measurement errors presented in the data.
By far the most popular objective function is the Simple
Least Squares (SLS), which is also the maximum likelihood
estimator when the measurement errors are known to be
Gaussian, homoscedastic, and uncorrelated.

[9] For single-objective problems (where F(0) is a scalar),
the Shuffled Complex Evolution (SCE-UA) global optimi-
zation algorithm developed by Duan et al. [1992, 1993] has
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Ilustration of the concept of Pareto optimality for a problem having two parameters (6, 0,)

and two criteria (£, F,), in the (a) parameter and (b) objective space. The points A and B indicate the
solutions that minimize each of the individual criteria | and F,. The thick line joining A and B
corresponds to the Pareto set of solutions; <y is an element of the solution set, which is superior in the

multicriteria sense to any other point in o.

proved to be consistent, effective, and efficient in locating
the values of the hydrologic model parameters that minimize
(or maximize) the objective function. However, to quote
Kuczera and Parent [1998] “...no hydrologist should be
naive enough to rely on a uniquely determined value for
each of the model parameters 6, whatever the skill and
imagination of the modeler might be.” In fact, it is typical
that the vicinity of the global optimum contains several
behavioral parameter sets with similar performance in
reproducing the observed data. This issue prompted the
design of a new methodology, entitled the Shuffled Complex
Evolution Metropolis (SCEM-UA) algorithm that infers the
best attainable parameter values and simultaneously esti-
mates its underlying posterior distribution within a single
optimization run [Vrugt et al., 2003]. The uncertainty in the
parameter estimates, based on probabilistic arguments, can
subsequently be used to summarize the uncertainties in the
output predictions of the hydrologic model.

[10] The classical single-objective optimization approach
operates under the central assumption that a single-objective
function is able to properly extract all of the information
contained in the time series of observations. However,
practical experience with the calibration of hydrologic
models suggests that the magnitude of structural error in
the model for some portions of the model response may, in
general, be equivalent to or even substantially larger than
the measurement error and that these structural or model
errors do not necessarily have any inherent probabilistic
property that can be exploited in the construction of an
objective function [Gupta et al., 1998]. Because of the
presence of these structural inadequacies in the hydrologic
model, any single (scalar) objective function, no matter how
carefully chosen, is inadequate to properly measure all of
the characteristics of the observed data deemed to be
important.

[11] These considerations imply the design of a calibra-
tion strategy that has the ability to simultaneously incorpo-
rate several objective functions. A strategy that can address
this challenge is multiobjective optimization, which has its
roots in late nineteenth century welfare economics, in the
work of Edgeworth [1881], and can be stated as follows:

Fi(0)
minF(6) = 70 4)
[ISC] :

Fy(0)

where F;(0) is the ith of M objective functions. The solution
to this problem will in general, no longer be a single “best”
parameter set but will consist of a Pareto set P(©) of
solutions in the feasible parameter space © corresponding to
various trade-offs among the objectives. The Pareto set of
solutions defines the minimum uncertainty in the parameters
that can be achieved without stating a subjective relative
preference for minimizing one specific component of F(0) at
the expense of another. Figure 1 illustrates the Pareto
solution set for a simple problem where the aim is to
simultaneously minimize two objectives (F, F3) with
respect to two parameters (0;, 6).

[12] The individual points A and B minimize objectives
F, and F,, respectively, whereas the solid line joining A and
B represents the theoretical Pareto set of solutions. The
black dots indicate an initial set of parameter estimates,
while the number in subscript denotes their corresponding
Pareto rank. Moving along the line from A to B results in
the improvement of F, while successively causing deterio-
ration in F. The points falling on the line AB represent
trade-offs between the objectives and are called nondomi-
nated, noninferior, or efficient solutions. Put simply, the
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feasible parameter space (shaded region) can be partitioned
into “good” or Pareto solutions and “bad” or “inferior”
solutions. In the absence of additional information, it is
impossible to distinguish any of the Pareto solutions (rank 1
points) as being objectively better than any of the other
Pareto solutions. Furthermore, every member of the Pareto
set will match some characteristic of the observed data
better than any other member of the Pareto set, but the
trade-off will be that some other characteristic of the
observed data will not be as well-matched [Yapo et al.,
1998]. Because of errors in the model structure (and other
possible sources), it is usually not possible to find a single
point 6 at which all of the criteria have their minima. Note
that this multiobjective equivalence of parameter sets is
different from the probabilistic representation of parameter
uncertainty, estimated using the SCEM-UA algorithm.

3. Effective and Efficient Algorithm to Solve
the Multiobjective Optimization Problem

[13] While it may be relatively simple to pose the
optimization problem into a multicriteria framework, solv-
ing this problem to identify the Pareto set of solutions is not
casy and has been the subject of much research. Ideally, the
multiobjective optimization algorithm should find the set of
all nondominated solutions, which will constitute the global
trade-off surface. However, because computational resour-
ces are finite, multiobjective solution algorithms typically
approximate the Pareto set using a number of representative
solutions.

[14] The Vector Evaluated Genetic Algorithm (VEGA),
developed by Schaffer [1985], was the first algorithm able
to cope with multiple objectives simultaneously, without
resorting to a strategy of scalarization by aggregation in
order to solve a single-objective surrogate problem instead.
However, case studies have demonstrated that the VEGA
algorithm has a tendency to ignore the most compromising
points among the objectives on the trade-off curve, and
that the algorithm eventually converges to a single point
on the Pareto set. The first problem is an artifact of the
VEGA strategy in which the evolution tends to favor
individuals with extremely good performance among one
of the objectives. To avoid these problems, Ritzel et al.
[1994] modified the evolution process in VEGA by select-
ing parents based on a nondominance ranking procedure
called “Pareto ranking” [Goldberg, 1989]. Performance
testing demonstrated that the resulting Pareto genetic algo-
rithm (GA) was superior to VEGA. However, the Pareto
GA has an inherent tendency to converge too quickly,
especially when the algorithmic parameters are not set
properly, thereby yielding indistinguishable solutions that
do not necessarily belong to the Pareto set.

[15] In response to these issues, Yapo et al. [1998] devel-
oped the Multiobjective Complex evolution (MOCOM-UA)
method, a general-purpose multiobjective global optimiza-
tion algorithm designed to efficiently generate a fairly
uniform approximation of the Pareto set for a broad class
of problems. The MOCOM-UA algorithm is an extension of
the successful SCE-UA single-objective global optimization
algorithm developed by Duan et al. [1992, 1993] and merges
the strengths of controlled random search [Price, 1987] with
a competitive evolution [Holland, 1975], Pareto ranking
[Goldberg, 1989], and multiobjective downhill Simplex
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strategy. For a detailed description and explanation of the
algorithm, please refer to Yapo et al. [1998]. Various appli-
cations of the MOCOM algorithm in hydrologic and hydro-
meteorologic calibration and evaluation studies [Gupta et al.,
1998, 1999; Yapo et al., 1998, Bastidas et al., 1999; Boyle
et al., 2000, 2001; Wagener et al., 2001; Xia et al., 2002;
Leplastrier et al., 2002] have demonstrated the usefulness of
the MOCOM algorithm. However, during the course of these
investigations, it has become apparent that the current
methodology has some serious weaknesses that need to be
resolved. In further investigations, we discovered that these
weaknesses are typical of the evolutionary algorithms,
which are currently available for solving the multiobjective
optimization problem.

[16] The first failing of the MOCOM-UA algorithm is
that it does not consistently generate a uniform approxima-
tion to the Pareto front, but tends to cluster the solutions in
the compromise region among the objectives (e.g., see
points on the Pareto set of Figure 1b), thereby leaving the
ends of the Pareto frontier unrepresented. Consequently, the
Pareto set of solutions does not contain the individual
single-criterion (SCE-UA) solutions, which represent the
theoretical extreme ends of the Pareto frontier. The second,
perhaps more important, failure is the inability of the
evolution strategy in the MOCOM algorithm to converge
to solutions within the “‘true” Pareto set for case studies
involving large numbers of parameters and highly correlated
performance criteria (e.g., typical of soil-vegetation-atmo-
sphere transfer scheme (SVATS) models, also known as
land-surface models (LSMs)). The algorithm tends, instead,
to converge to a fuzzy region surrounding the Pareto set
and, in some cases, does not converge at all. Note, that the
phenomenon of genetic drift, where the members of the
population drift to a single solution, is a characteristic
typical of many evolutionary search algorithms. To prevent
the collapse of the algorithm to a single region of highest
attraction, the evolutionary algorithm incorporates a strategy
that preserves the diversity of the sampled population.

3.1.

[17] To find a set of nondominated solutions, rather than a
single-point solution, a multiobjective evolutionary algo-
rithm must perform a multimodal search that samples the
Pareto-optimal set uniformly [Zitzler and Thiele, 1999]. We
believe that there are two main reasons why current strat-
egies for solving the multiobjective calibration problem do
not preserve the diversity in the population, thereby tending
to converge toward a compromise solution among the
objectives instead.

[18] 1. The first is replacement strategy. Replacement of a
member of the existing population occurs only if the
generated offspring has a higher fitness than its parent.
Although this evolution strategy essentially causes the
algorithm to converge to a set of Pareto solutions, in the
case of complex-shaped response surfaces with different
regions of attraction (i.e., in the case of hydrologic models),
this might cause the algorithm to prematurely converge to a
single region of highest attraction surrounding the Pareto
set.

[19] 2. The second is fitness assignment. In a multi-
objective problem, several objectives are to be considered
simultaneously, and ordered ranking of the population by
conventional scalar sorting is therefore not possible. Fortu-

Preservation of Diversity in Population
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nately, Goldberg [1989] suggested an elegant superiority-
inferiority method for the ranking of a population of criteria,
based on their mutual dominance relations. However, this
widely used concept of Pareto ranking for fitness assign-
ment in the case of multiple objectives does not distinguish
between members having an identical rank. The solutions at
the extreme ends of the Pareto frontier are assigned an
identical “fitness” as the members of the Pareto set located
in the most compromised region; however a greater number
of solutions are usually found in this compromise region or
“niche” of the parameter space.

[20] With regard to the “‘replacement strategy” problem,
the clumping tendency might be overcome by using a large
initial population size, but this will significantly increase the
number of required function evaluations and adversely
affect the efficiency of the search algorithm. In examining
ways to preserve the diversity in the sampled population
and therefore avoid clumping of the solutions and premature
convergence of the MOCOM algorithm, it seems natural to
consider the evolution strategy employed in the SCEM-UA
algorithm [Vrugt et al., 2003], which is also designed to
converge to a distribution of points, rather than a single
“best” parameter set. The stochastic nature of the Metrop-
olis-annealing scheme in the SCEM-UA algorithm counters
any tendency to collapse to a single region of attraction,
thereby making possible the simultaneous identification of
the “best” parameter set as well as its underlying posterior
distribution. With regard to the “fitness assignment” prob-
lem, we propose a new (improved) concept of Pareto
dominance that enables an evolutionary algorithm to pre-
serve the diversity in the population.

3.2. Fitness Assignment Based on the Number of
External Nondominated Points

[21] The rank fitness assignment procedure begins by
identifying all of the nondominated individuals in the
population and assigning them rank “one”. While the
original Pareto ranking concept now proceeds by peeling
off these points and identifies the nondominated points of
the remaining population (assigned rank “two”), the pro-
posed fitness assignment by Zitzler and Thiele [1999]
proceeds as follows.

[22] 1. Store all of the rank “one” points in an external
nondominated set P’ and the remaining dominated points of
the population in a set entitled P.

[23] 2. Each solution i € P’ is assigned a real value r; €
[0, 1), called strength. The strength is proportional to the
number of population members j € P for which i = j. Let N
be the number of individuals in P that are covered by i and s
is the population size (P + P’). The strength is now defined
as, r; = % For each member i of P, the fitness (f}) is
identical to its computed strength (7;).

[24] 3. The fitness of the remaining dominated individu-
als j € P is calculated by summing the strengths of all
external nondominated solutions i € P’ that cover j:

X

fi=1 +Zri
=1

To ensure that the members of P have a lower fitness than
the members of P, the number one is added to the total sum.
The closer the computed f'value (in equation (5)) is to zero,
the higher the fitness of the sampled point.

where f; € [1,5) (5)
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[25] To illustrate the proposed fitness assignment method
and the difference with the conventional ranking method for
a two-objective (F, F,) problem, consider Figure 2 which
presents computed fitness values for each ranking method at
two different stages during the optimization.

[26] In the case of conventional Pareto ranking (Figures 2a
and 2b), points having an identical rank number are not
distinguishable, even though the solutions at the extreme end
are in some sense much more unique than other solutions
having the same rank. In the case of the proposed fitness
assignment (Figures 2¢ and 2d), nondominated individuals
at the extreme end of the Pareto cluster are preferred, and
individuals having many neighbors in their niche are penal-
ized due to the high strength value of the associated non-
dominated point (see shaded area in Figure 2c). Both of these
principles of the proposed fitness assignment method pre-
serve the diversity of the population and therefore favor
uniform spacing of the solutions along the Pareto frontier
(see Figure 2c), thereby further reducing the chances of
clumping of the solutions in the most compromised region
(e.g., Figure 2b) and of premature convergence.

[27] Although the fitness assignment method by Zitzler
and Thiele [1999] aims to preserve the diversity in the
population, our attempts to apply the method to hydrologic
models containing large numbers of parameters and with
correlated objectives has revealed a major drawback of the
method. When the nondominated external set (P) contains
only one member, which tends to occur when evaluating a
population of points having strongly correlated objectives,
the total set of dominated points will then appear to have
identical fitness, thereby making it difficult for the MO
algorithm to find a direction of improvement. To circumvent
this problem, we modified the fitness assignment of the
members of the dominated set, previously defined in step 3,
by adding the Pareto rank of each of the members of P
computed using the traditional ranking concept of the
dominated set [Goldberg, 1989] to the sum of strengths
calculated in equation (5). We found that this modification
further improves the convergence properties of the
MOSCEM algorithm.

3.3. Multiobjective Shuffled Complex Evolution
Metropolis (MOSCEM) Algorithm

[28] In this section, we present the newly developed
Multiobjective Shuffled Complex Evolution Metropolis
(MOSCEM-UA developed in collaboration between the
University of Amsterdam and University of Arizona) algo-
rithm. The evolution strategy employed in the MOSCEM-
UA algorithm is identical to the strategy utilized in the
SCEM-UA algorithm [Vrugt et al., 2003], with the excep-
tion that, to evolve the initial population of points toward a
set of solutions stemming from a stable distribution, the
probability ratio concept in the SCEM-UA algorithm is
replaced with a multiobjective fitness assignment concept.
The MOSCEM-UA algorithm is presented below and
illustrated in the Figures 3 and 4.

Setup (see Figure 3)

1. To initialize the process, choose the population size s

and the number of complexes gq.

2. Generate s samples {6, 0,,..., 0} from the prior

distribution and compute the multiobjective vector
F(6;) at each point 6;.
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Conventional Pareto ranking

F,

Fy —»

Fa

Proposed fitness assignment

Cc

Figure 2. (a and b) Illustration of the conventional Pareto ranking concept and (¢ and d) the proposed
fitness assignment concept for a two-objective (F;, F»>) problem. For more explanation, see text.

3. Compute the fitness f; for each individual of the sample
(section 3.2), sort the s individuals by decreasing fitness
value, and store them in an array D [1:s,1:n + M + 1],
where n is the number of parameters, so that the first
row of D represents the point with the “best” fitness.
The extra columns in D are used to store the
multiobjective vector and the fitness values.

4. Initialize the starting points of the parallel sequences,
S', S§%..., S% such that S* is D[k, 1:n + 1], where
k=1,2,...,q.

5. Partition D into ¢ complexes C!, C2..., C% each
containing m points, such that the first complex
contains every ¢g( j — 1) sorted point of D, the second

complex contains every g( j — 1) + 2 sorted point, and
so on, where j =1, 2,..., m.

Sequence Evolution (see Figure 4): For k =1 tok = ¢ Do
Begin

For 3 =1 to 3 =L Do Begin

Compute the covariance structure X¥ of the parameters

of C*.

Randomly draw a uniform label Z over interval [0,1].
While Not Drawn Feasible Offspring Do Begin
Generate offspring according to:

gl — N(e(t)7 Ek) (6

=

where 0 is the current draw of S¥.

End
Begin Metropolis Step
[[) Compute f; using the points in CF
and the current draw of S*.
[II) Compute the ratio, o = ()"
where (3 is a scaling factor and f; is the fitness
associated with the current draw of S.



VRUGT ET AL.: MULTIOBJECTIVE OPTIMIZATION OF HYDROLOGIC MODELS

Input: n = dimension, g = number of complexes
s = population size, m=s/q.

v

Sample s points in @ using prior distribution
Compute the multiobjective vector F at each point.

v

Compute fitness for each individual of sample and sort the
s points in order of decreasing fitness. Store them in D.

v

Initialize g parallel sequences S starting
at the g points of D with highest fitness.

v

Partition D into g complexes ck k= 1,2,...q of m points.

v

SwC

Evolve each sequence k  [&—— SEM algorithm
s k=124 — (see Figure 4)

v

Replace C¥, k= 1,2,...,q, into D and
sort D in order of decreasing fitness.

No

Convergence criteria
satisfied?

Figure 3. Flowchart of the MOSCEM-UA algorithm.

[LI) If o > Z, then accept the offspring.
However, if o < Z, then reject the offspring
and remain at the current position, that is,
pth Z O
[IV) Add the point 6" to the sequence S*.
[V) Replace the worst point of C* with 6.
End Metropolis Step
End
End
6. Unpack all complexes C back into D and sort the
points in order of increasing fitness value.
7. Check convergence statistic. If convergence criteria are
satisfied, stop; otherwise, return to step 5.

The MOSCEM-UA algorithm combines the strengths of
(1) the complex shuffling employed in the SCE-UA algo-
rithm [Duan et al, 1992, 1993], (2) the probabilistic

covariance-annealing search procedure of the SCEM-UA
algorithm [Vrugt et al., 2003], and (3) our improved version
of the fitness assignment concept of Zitzler and Thiele
[1999] to construct an efficient and uniform estimate of the
Pareto solution set.

[29] To summarize, the MOSCEM algorithm takes an
initial population of points, randomly spread out in the
feasible parameter space. For each individual of the popu-
lation the multiobjective vector F is computed and the
population is ranked and sorted using an improved version
of the fitness assignment concept developed by Zitzler and
Thiele [1999]. The population is partitioned into several
complexes and, in each complex k (k= 1, 2,. . ., q), a parallel
sequence is launched starting from the point that exhibits
the highest fitness. A new candidate point in each sequence
k is generated using a multivariate normal distribution
centered around the current draw of sequence (k) augmented
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Y

ot _ o |

No
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Figure 4. Flowchart of the Sequence Evolution
MOSCEM-UA algorithm.

with the covariance structure induced between the points in
complex k. A Metropolis-type of acceptance rule is used to
test whether the offspring should be added to the current
sequence or not. Ifthe offspring (candidate point) is accepted,
it replaces the worst member of the current complex k.
However, if the candidate point is rejected, the worst member
of C* is replaced with the last member of S*. Finally, after a
prescribed number of iterations, the complexes are replaced
into the fixed population of points and new complexes are
formed through a process of shuffling. Iterative application of
the various algorithmic steps causes the population to
converge toward the Pareto set of solutions.

[30] The newly developed MOSCEM algorithm differs
from the original MOCOM algorithm in three essential
ways. These modifications prevent premature convergence
of the algorithm to an indistinguishable region surrounding
the Pareto set and help to avoid clustering of solutions in the
most compromised region among the objectives. In the first
place, the MOSCEM algorithm uses an improved fitness
assignment method, which preserves the diversity of the
population, whereas the MOCOM algorithm uses the stan-

Return to MOSCEM

Metropolis (SEM) algorithm employed in the

dard Pareto ranking concept introduced by Goldberg
[1989]. In the second place, the multiobjective downhill
simplex method used by the MOCOM algorithm is replaced
with a probabilistic covariance-annealing search method,
which is well-suited to deal with the strong correlation
structures between the parameters in the Pareto set that are
typically encountered in hydrologic modeling. Moreover,
the stochastic nature of the annealing scheme prevents the
collapse of the MOSCEM algorithm into a relatively small
region of some single “best” parameter set, thereby further
preserving diversity of the sampled population and enabling
the algorithm to generate a fairly uniform approximation of
the Pareto front. Finally, the MOSCEM algorithm uses the
strengths of the shuffling procedure and complex partition-
ing employed in the single-objective SCE-UA global
optimization algorithm [Duan et al., 1992, 1993] to conduct
an efficient search of the parameter space.

[31] The MOSCEM algorithm has four algorithmic
parameters that must be specified by the user: the popula-
tion size (s), the number of complexes-sequences (g), which
in turn also determine the number of points within each
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complex (m = s/q), the number of evolutionary steps in each
complex before reshuffling (L), and the scaling factor (3)
that directly determines the acceptance probability of the
generated offspring. The version of the MOSCEM-UA
algorithm used for the optimizations reported in this paper
used the values of L = (m/4) and 3 = (1/2). Therefore the
only variables that need to be specified by the user are the
population size s and the number of complexes p. In the first
case study, we will pay special attention to the sensitivity of
the performance of the MOSCEM algorithm to the
algorithmic parameters s and p.

3.4. Performance Criteria

[32] In multiobjective optimization, the definition of
performance is substantially more complex than for sin-
gle-objective optimization problems, because the optimiza-
tion goal itself consists of various subgoals: (1) The distance
of the nondominated solution set to the Pareto-optimal front
should be minimized. (2) A uniform distribution of the
solutions along the Pareto front is desirable. (3) The Pareto
solution set should cover the full trade-off range of the
various objectives, thereby including the single-objective
solutions, which represent the theoretical ends of the Pareto
frontier. In the literature, attempts can be found that try to
formalize the above objectives by means of quantitative
measures. However, in this study, we used a visual com-
parison of the results obtained using the MOCOM and
MOSCEM algorithms to evaluate performance in terms of
the three factors mentioned above.

3.5. [Initial Sampling Distribution

[33] The purpose of the initial (prior) sampling distribu-
tion is to quantify the knowledge which is available before
collecting and processing any data about the location of the
Pareto solution set in the parameter space. If the initial
sampling distribution is selected in order to closely approx-
imate the true joint distribution of the parameters associated
with the “true” Pareto set of solutions, the MOSCEM
algorithm will very rapidly generate a set of nondominated
solutions that closely approximates this “true” Pareto set.
However, in the case of hydrologic models, usually very
little a priori knowledge is available about the location of
the Pareto set in the parameter space. Consequently, if the
initial sampling distribution is chosen to express this high
level of initial uncertainty (for example, Beven and Binley
[1992] suggested a uniform distribution over a large
rectangle of parameter values), the rate of convergence of
the algorithm to the final Pareto set of solutions will tend to
be slow.

[34] To explicitly address the influence of the prior
sampling distribution on the effectiveness and computational
efficiency of the MOSCEM algorithm for constructing an
estimate of the Pareto solution set, we conducted two
different experiments (case studies 2 and 3). In the first
experiment, we assumed that there was no prior information
available about the location of the Pareto solution set in the
parameter space. Accordingly, a uniform prior distribution
over the pre-specified upper and lower bounds for each of
the model parameters was used to initialize the MOSCEM
algorithm (step 2). In the second experiment, we initialized
the MOSCEM algorithm using approximate prior informa-
tion about the location and structure induced in the joint
distribution of the parameters in the Pareto set of solutions.

SWC 5-9
Such a prior sampling distribution was approximated with
the following steps.

[35] 1. Use each of the M objective functions, F;
involved in the multicriteria framework (i = 1, 2,..., M)
to separately locate the best attainable parameter values
(Oi0pt) using the SCE-UA global optimization algorithm
[Duan et al., 1992, 1993].

[36] 2. Use a traditional first-order approximation to
estimate the multivariate posterior joint probability density
function, p(6;]y), at each of the solutions i:

p(0:]y) o exp —%(e — Orpr) XX (0= ;1) (7)

where o is the root mean square error (RMSE) of the fit at
the final solution, and X is the Jacobian or sensitivity matrix
evaluated at 0; o

[37] 3. For each of the objectives under consideration,
generate s/M points using the multivariate posterior joint
probability distribution specified in equation (7). The initial
population of points for the MOSCEM algorithm now
constitutes the total of s/M generated samples corresponding
to each objective i.

[38] Empirical investigations reported in this paper reveal
that the latter approach, of first approximating the structure
induced in the joint distributions of the Pareto solutions
followed by initializing the MOSCEM algorithm with this
distribution, is computationally very efficient and, because
the theoretical ends of the Pareto frontier are reflected in the
prior, helps to reduce the typical MO algorithm problems
reported above.

4. Case Studies

[39] We compare the power and applicability of the
original MOCOM and MOSCEM algorithm for three case
studies with increasing complexity. The first is a standard
mathematical case study using a simple two-dimensional
multiobjective (MO) test problem. This illustrates the con-
cepts of indistinguishability and demonstrates the ability of
each algorithm to infer the known location of the Pareto
optimal set. The second and third case studies explore the
relative effectiveness and efficiency of the MOCOM and
MOSCEM algorithms for two multicriteria calibration hy-
drological model applications; the Sacramento Soil Mois-
ture Accounting model (SAC-SMA) conceptual watershed
model, and the Biosphere Atmosphere Transfer Scheme
(BATS) land surface model. In these case studies, we are
especially concerned with the robustness of the MOCOM
and MOSCEM algorithms by comparing the results of the
multiobjective optimization with individual single-criterion
solutions obtained using the SCE-UA global optimization
algorithm developed by Duan et al. [1992, 1993]. We also
explicitly examine the influence of the initial sampling
distribution on the effectiveness and efficiency of the
MOSCEM algorithm.

4.1. Case Study I: A Simple Two-Dimensional
MO Problem

[40] The applicability of the MOCOM and MOSCEM
algorithms for generating an approximation of the Pareto set
was examined using a simple mathematical test problem for
which the exact location and shape of the Pareto set is
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Figure 5. Scatterplots of the final set of rank 1 points after performing 5000 function evaluations with

the (a—d) MOCOM and (e—g) MOSCEM algorithm

using a population size (s) of 10, 20, 50, and 100

points for a two-dimensional mathematical test problem having three objectives.

known and can be easily computed using geometry. Con-
sider the following two-dimensional MO test problem:

min F(O) {0} + 03, (0 — 17+63,0 + 0 - 1} (8)

The Pareto solution set corresponding to equation (8) con-
sists of a triangular-shaped area in the parameter space,
having the corner points (0, 0)—(0, 1) and (1, 0) for 6; and 6,,
respectively.

[41] Figure 5 presents scatterplots of the final rank 1
points after performing 5000 function evaluations with the
MOCOM (Figures 5a—5d) and MOSCEM (Figures Se—5g)
algorithms using population sizes (s) of 10, 20, 50, and
100 points, respectively. In general, the MOCOM- and
MOSCEM-generated points are consistent with the Pareto
target distribution of points defined in equation (8) and are
indicated by the dashed gray lines in Figure 5. Note,
however, that the MOCOM algorithm does not generate a
uniform sampling of the Pareto set of solutions, but has the
tendency to cluster the sampled points around a single
mode, even with increasing population size. On the
contrary, the MOSCEM algorithm maintains a uniform
sampling density within the Pareto set of solutions, and the
results are relatively insensitive to the specified population
size and number of complexes (see also Table 1). Hence a
more diverse population yields better estimates of the final
statistical moments of the Pareto distribution of points and
as such is an additional advantage of the MOSCEM
algorithm over the MOCOM algorithm.

4.2. Case Study II: The Sacramento Soil Moisture
Accounting Model

[42] We compare the effectiveness and efficiency of the
MOCOM and MOSCEM algorithms by means of a case
study involving calibration of the Sacramento soil moisture
accounting (SAC-SMA) model using data from the Leaf
River watershed (1950 km?) near Collins, Mississippi. The

SAC-SMA model is used by the National Weather Service
(NWS) for flood forecasting throughout the United States
and has 16 parameters that need to be specified by the user
(see Table 2). While a few of these parameters might be
estimated by relating them to observable watershed charac-
teristics, most of the parameters are abstract conceptual
representations of the watershed and must be estimated
through calibration. On the basis of a recommendation by
Peck [1976], the parameters SIDE, RIVA, and RSERV were
fixed at prespecified values. The remaining 13 parameters
were selected for the multicriteria optimization, and the
feasible parameter space was defined by fixing the upper
and lower bounds at their “level zero” estimates presented
by Boyle et al. [2000].

[43] The data, obtained from the National Weather Service
Hydrology Laboratory (HL), consist of mean areal precipi-
tation (mm/day), potential evapotranspiration (mm/day),
and streamflow (m>/s). Because the SAC-SMA and Leaf
River data have been discussed extensively in previous work
[see, e.g., Sorooshian et al., 1993; Duan et al., 1993, 1994;
Yapo et al., 1998], the details of these will not be reported
here. In keeping with previous multicriteria studies [Boyle
et al., 2000], approximately 10 years (28 July 1952 to

Table 1. Total Number of Rank 1 Points After Performing 5000
Function Evaluations With the MOSCEM Algorithm as a Function
of the Population size s and the Number of Complexes g

Population Size s

Number of

Complexes ¢ 10 20 50 100 250
1 1789 1970 2282 2728 2515
2 2931 1934 2047 2327 2484
5 1915 1740 1846 2085
10 1582 1856 1885

20 1572
50 1384
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Table 2. Parameters of the SAC-SMA Model, With Their Initial Uncertainty and Multicriteria Calibrated Range Using the MOCOM and
MOSCEM Algorithm

Parameter Description Units  “Level Zero” Range MOCOM MOSCEM
Capacity Thresholds
1 UZTWM  upper zone tension water maximum storage [mm] 1.0-150.0 4.01-5.20 3.52-9.74
2 UZFWM upper zone free water maximum storage [mm] 1.0-150.0 25.37-36.53 4.37-34.02
3 LZTWM lower zone tension water maximum storage [mm] 1.0-500.0 284.32-302.42 241.90-302.48
4 LZFPM  lower zone free water primary maximum storage [mm] 1.0—-1000.0 56.05-101.69  59.26-115.15
5 LZFSM  lower zone free water supplemental maximum storage [mm] 1.0-1000.0 13.18-19.10 12.68-27.44
6  ADIMP additional impervious area [-] 0.0-0.40 0.35-0.36 0.31-0.40
Recession Parameters
7 UZK upper zone free water lateral depletion rate [day '] 0.1-0.5 0.15-0.24 0.10-0.45
8§ LZPK lower zone primary free water depletion rate [day™"] 0.0001-0.025 0.01-0.02 0.01-0.02
9 LZSK lower zone supplemental free water depletion rate [day "] 0.01-0.25 0.22-0.25 0.22-0.25
Percolation and Other
10  ZPERC maximum percolation rate [-] 1.0-250.0 222.75-240.98 58.46-242.59
11  REXP exponent of the percolation equation [-] 0.0-5.0 1.08—1.66 0.07-1.62
12 PCTIM impervious fraction of the watershed area [-] 0.0-0.1 0.00-0.00 0.00-0.01
13 PFREE fraction percolating from upper to lower zone free water storage [-] 0.0-0.1 0.00-0.00 0.00-0.02
Not Optimized
14 RIVA riparian vegetation area [-] 0.0
15 SIDE ratio of deep recharge to channel base flow [-] 0.0
16 RSERV fraction lower zone free water not transferable to tension water  [-] 0.3

30 September 1962) of historical hydrological data were used
for model calibration. To reduce sensitivity to state-value
initialization errors, a 65-day warm-up period was used.

[44] Because any conceptual watershed model will, in
general, be unable to match all of the different aspects of the
watershed’s behavior observed in the measured hydrograph,
we follow a method similar to Boyle et al. [2000] and
partition the hydrograph into a driven (D) and nondriven
(ND) part, based on information from the measured
hyetograph. A pair of root mean square error (RMSE)
objective functions were computed, F, to measure the
ability of the model to simulate the driven portion of the
hydrograph, and Fyp to measure the ability of the model to
simulate the nondriven part of the hydrograph. The Pareto
optimal solution space for the two criteria was estimated
using a population size of 500 points and 100,000 trials with
the MOCOM and MOSCEM algorithms. The results of this
two-criteria {Fnp, Fp} calibration are summarized in
Figures 6, 7, and 8.

[45] Figure 6 presents normalized parameter plots for
each of the parameters of the SAC-SMA model using either
MOCOM algorithm (Figure 6a), the MOSCEM algorithm
with uniform prior sampling on the feasible parameter space
(Figure 6b), or the MOSCEM algorithm utilizing prior
sampling information (Figure 6¢). The 13 SAC-SMA model
parameters are listed along the x axis, while the y axis
corresponds to the parameter values scaled according to
their prior uncertainty ranges (defined in Table 2) to yield
normalized ranges. Each line across the graph represents
one parameter set. The solid and dashed black lines going
from left to right across the plots correspond to the single-
objective solutions of Fp and Fyp obtained by separately
fitting to each criterion using the SCE-UA global optimiza-
tion algorithm [Duan et al., 1992], while the gray lines
denote members of the Pareto set of solutions. The objective
function plots on the right-hand side in Figure 6 depict
two-dimensional projections of the bicriterion trade-off

surfaces represented by the Pareto set of solutions.
Additionally, Table 2 lists the Pareto uncertainty intervals
of the parameters estimated with the MOCOM and
MOSCEM algorithms in the nontransformed parameter
space. Figure 6a clearly illustrates that the MOCOM
algorithm has generated a fairly uniform approximation of
the Pareto frontier only in the most compromised region
among the objectives and does not represent the extreme
points of the Pareto frontier well. This clustering of solutions
in the middle region of the Pareto frontier is also
demonstrated in the estimated Pareto uncertainty intervals
of the parameters, which for seven of the 13 SAC-SMA
parameters (UZFWM, UZK, ADIMP, ZPERC, REXP,
LZTWM, and LZPK) does not bracket the single-objective
solutions (Figure 6a). On the contrary, the MOSCEM
algorithm generates a fairly uniform approximation of the
“true” Pareto solution set, which contains the single-criterion
solutions at the extreme ends of the Pareto frontier. This is
especially true when using prior information about the
location of the Pareto solution set in the parameter space in
the sampling strategy (Figure 6¢). As a consequence, the
estimated Pareto uncertainty intervals of the SAC-SMA
parameters contain the single-criterion SCE solutions. Notice
that, for most of the parameters, the Pareto solution set tends
to cluster closely in the parameter space for the two
objectives. However, there is considerable uncertainty
associated with the percolation parameter ZPERC and the
recession parameters UZK and LZPK in the SAC-SMA
model, which play a major role in determining the shape of the
hydrograph during recession periods. Also notice the close
match between the Pareto uncertainty intervals estimated with
the MOSCEM algorithm as illustrated in Figures 6b and 6c.

[46] To further illustrate the advantage of using prior
information about the location of the Pareto solution set
in the parameter space in the initial sampling with the
MOSCEM algorithm, consider Figure 7, which presents
the evolution of the bicriterion trade-off surface in the two-
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Figure 6. Normalized parameter plots for each of the SAC-SMA model parameters using a two-criteria
{Fnp, Fp} calibration with the (a) MOCOM, (b) MOSCEM with no prior information, and (c) MOSCEM
with prior information algorithm. Each line across the graph denotes a single parameter set: shaded is
Pareto solution set; solid and dashed lines are single-criterion solutions of Fp and Fp, respectively. The
squared plots at the right-hand side are two-dimensional projections of the objective space of the Pareto
set of solutions. See color version of this figure in the HTML.

dimensional objective space as a function of the number of
SAC-SMA model evaluations.

[47] When utilizing a uniform initial sampling of the
feasible parameter space (no prior information) with the
MOSCEM algorithm, typically 30,000 SAC-SMA model
evaluations are needed to construct an estimate of the Pareto
solution set. The benefit of going from 30,000 to 50,000
model evaluations can be considered to be marginal given
the extra cost in terms of model runs. When prior informa-
tion is used, 10,000 independent model evaluations with the
SCE-UA algorithm are first needed (separately) for each of
the two objectives to identify the single-criterion ends of the
Pareto frontier. Notice that the initial population of points,
stemming from this approach (outlined in section 3.5) using
the single-criterion ends of the Pareto cluster, directly
approximates the Pareto solution set as depicted with the
upper triangular symbols in the two-dimensional bicriterion
plot in Figure 7b. This suggests that the structure induced in
the joint distribution of the parameters in the Pareto solution

set can be well approximated using information from the
single-criterion ends of the Pareto frontier. Clearly, the use of
prior information in the initial sampling with the MOSCEM
algorithm is not only computationally more efficient, but
also generates a more uniform estimate of the Pareto frontier
which includes the single-criterion SCE solutions.

[48] The hydrograph uncertainty ranges (shaded area)
associated with the Pareto solution set estimated with the
MOSCEM algorithm for a 500-day portion of the calibra-
tion period are displayed in Figure 8 using a logarithmic
transformation of the streamflows.

[49] The observed streamflows are indicated with dots,
while the single-criterion solutions for the driven and
nondriven portions of the hydrograph are indicated with
the solid and dashed black lines, respectively. Note that
the streamflow prediction uncertainty ranges match the
medium- and high-flow events very well, but do not bracket
the observations and display bias (systematic error) on the
long recessions, suggesting that the model structure may be
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Figure 7. Evolution of the bicriterion trade-off surface in the two-dimensional objective space as a
function of the number of SAC-SMA model evaluations using the MOSCEM algorithm (a) without and
(b) with prior information about the location of the Pareto solution set in the parameter space.

in need of further improvement. Notice that the relatively
large uncertainty found during low flow and recession
periods is consistent with the relatively large uncertainty
in the UZK and LZPK parameters.

4.3. Case Study III: The Biosphere Atmosphere
Transfer Scheme (BATS) Model

[s0] The third case study illustrates the power of the
MOSCEM algorithm to perform a multicriteria {H, \E}

calibration of the biosphere-atmosphere transfer scheme
(BATS) land-surface model [Dickinson et al., 1993] using
measured sensible (H) and latent heat (AE) fluxes from
the Oklahoma ARM-CART site. BATS is a conceptual
parameterization of the ecohydrological processes at the
scale of individual plots of vegetation (50—1000 m). The
model consists of six interacting hydrometeorological
components (three layers of soil, a canopy air component,
a canopy leaf-stem component, and a snow covered portion)
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Figure 8. Hydrograph prediction uncertainty ranges (shaded area) associated with the Pareto solution set
estimated with the MOSCEM algorithm for a 500-day portion of the calibration period. The solid circles
correspond to the observed streamflow data; the solid line corresponds to the minimal Fp, solution, and the
dashed curve corresponds to the minimal Fyp solution. See color version of this figure in the HTML.
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Table 3. Parameters of the BATS Model, Including Their Initial Uncertainty and Final Multicriteria Calibrated Range Obtained With the

MOSCEM Algorithm

Parameter Description Units Initial Reasonable Range Multicriteria Range
Parameters Associated With Vegetation (18 Vegetation Types)
1 vege vegetation cover [-] 0.40-0.95 0.40-0.95
2 seasf difference between vege and fractional cover at 269 °K [-] 0.00—0.80 0.00-0.79
3 rough aerodynamic roughness length [m] 0.01-0.35 0.01-0.03
4 displa displacement height [m] 0.05-1.50 0.06—1.48
5 rsmin minimum stomatal resistance [s/m] 50.0-200.0 50.01-199.94
6. Oxla maximum leaf area index [-1 0.05-6.00 0.06—5.94
7 xlai0 minimum leaf area index [-] 0.05-4.00 0.05-3.99
8 sai stem area index [-] 1.00-3.00 1.11-2.98
9 aqrtdi inverse square root of leaf dimension [mm ] 5.00—10.00 5.00-9.99
10 fc light dependence of stomatal resistance [m*/W] 0.02-0.06 0.02-0.06
11 depuv depth of topsoil layer [m] 0.01-0.20 0.01-0.20
12 deprv depth of root zone layer [m] 0.50—-2.00 0.50—1.98
13 deptv depth of total zone layer [m] 5.00-10.00 5.00-9.88
14 albvgs vegetation albedo for shortwave <0.7 pm [-] 0.10-0.20 0.10-0.19
15 albvgl vegetation albedo for longwave >0.7 pm [-] 0.20-0.40 0.20-0.40
16 rootf ratio of roots in upper layer to roots in root layer [-] 0.10-0.90 0.10-0.89
Parameters Associated With Soil Texture (12 Textures)
17 Xmopor porosity [-] 0.33-0.66 0.33-0.66
18 XmOosuc minimum soil suction [mm)] 30.0-200.0 30.08-196.25
19 xmohyd maximum hydraulic conductivity [mm/s] 0.0008—-0.0100 0.00-0.01
20 xmowil water content at which permanent wilting point occurs [-1*
21 xmofc ratio of field capacity to saturated water content [-]*
22 bee Clapp and Hornberger “b” parameter [-] 3.50-10.80 3.50-10.79
23 skrat ratio of soil thermal conductivity to that of loam [-] 0.70—1.70 0.70—1.70
Parameters Associated With Soil Color (8 Colors)
24 solour soil albedo for different colored soils [-] 0.05-0.12 0.05-0.12
Initial Conditions
25 SSW surface zone water content [m] 0.0-0.2 0.00-0.20
26 sw root zone water content [m] 0.0-5.0 0.00-4.97
27 tsw total zone water content [m] 0.0-10.0 0.17-9.99

“Here xmowil is function of xmohyd and xmosuc, while xmofc is only used when land cover is assigned semidesert.

and has 27 parameters to be estimated, including 16 related
to vegetation properties and eight related to soil properties,
together with three initial soil moisture conditions (see
Table 3). Two of the parameters, xmowil (the wilting point)
and xmofc (the ratio of field capacity to the saturated water
content) are actually not independent parameters. The
parameter xmowil is computed as a function of the hydraulic
conductivity (xmohyd) and the minimum soil suction
(xmosuc), while xmofc is used only when the land cover
is assigned to be semidesert [Dickinson et al., 1993; Gupta
et al., 1999].

[51] Land Surface Models (LSMs), like BATS, differ from
hydrologic watershed models, such as the SAC-SMA model
used in the previous case study, in that they are concerned
with both water and energy balance (and more recently
carbon and other fluxes): they are driven by multiple input
variables (precipitation, short-wave and long-wave radia-
tion, wind speed, air temperature, humidity, etc.), and they
present the evolution of several observable state variables
(soil temperature, surface soil moisture content, etc.)
and output fluxes (latent heat, sensible heat, runoff, etc.)
[Bastidas et al., 1999]. The hydrometeorological data set
used in this study correspond to station E13 of the
Atmospheric Radiation Measurement Cloud and Radiation
Testbeds (ARM-CART) program in the Southern Great
Plains site (SGP) in Oklahoma. The data cover the 5-month
period from 1 April to 25 August 1995, with a sampling
interval of 30 minutes, and include all of the necessary

atmospheric forcing for the model and observational
information on sensible heat (H in W/m?) and latent heat
fluxes (\E in W/m?). It has been previously established that
the MOCOM algorithm fails to converge for this data set
with this particular combination {H, XNE} of objectives
[Bastidas, 1998]. For each of the two criteria, the simulation
error was measured using the RMSE statistic. For more
information about the BATS model, the hydrometeorologi-
cal data, and multicriteria calibration approaches applied to
the BATS model, please refer to Dickinson et al. [1993],
Bastidas [1998], Bastidas et al. [1999], and Gupta et al.
[1999]. The Pareto optimal solution space for the two
criteria was estimated using a population size of 2,000
points in combination with 100,000 trials with the
MOSCEM algorithm. The results of the two-criteria
{H, N\E} calibration are summarized in Figures 9 and 10
and discussed below.

[s2] Figure 9 presents the results for the two-criteria
{H, X\E} calibration with the MOSCEM algorithm in the
normalized parameter and objective space for three different
cases. In the first case (Figure 9a), a uniform prior sampling
of the feasible parameter space was used, whereas in the
second and third cases, each end ({H} and {\E}) of the
Pareto frontier was first identified by single-objective
optimization using the SCE-UA algorithm [Duan et al.,
1992] (second case, Figure 9b) or the SCEM-UA algorithm
[Vrugt et al., 2003] (third case, Figure 9c), and used to
initialize the prior distribution for the MOSCEM algorithm.



VRUGT ET AL.: MULTIOBJECTIVE OPTIMIZATION OF HYDROLOGIC MODELS SWC 5-15
18 60
@ = | 1 ] I A | i | 1 [ I 1 4 i
=)
s A A PR RN LT R |
E 0.8 ||l o | V I ﬂ‘;| i+ |: : |l 11 : 1 :|‘II |=| ’| i = 50 :
B AR R e B B A LB | S :
] [ L $ I gl i L U ORI 1 - T DA T ’ = i
E O06F v 1 fi R Y A HEEEE O LONINE S RTINS U E i
o] TR 0 ) o R g o el 1 FRCE N T R WP T |lm‘v I i [ S
= RO S - R LU Y v N B [ L |l§]7 w 40 [
o TN G - O Ut [pr 8 Wl -t Bt o0 I.“-l !
Q4F 1 Bl 1 Bl 1 I gL ] 1 I (0 B CA N WAL B e W o I
T (AL RN |'i|‘|l| q] ¥ ]§:7| I[h I B RS R (2] i
| KPR R el WA | L e | £ '
S oot YENELVVE WY N R LY | R e
A A { il ! ; .
E ] u U A Y
Z gl l Wb e g | 0 Ly ) 1 RIS T | = . 20l
60 T
3 A |
5 W ] |
g & 50 i
3 £ :
: & |
nﬂ: | mﬂ 40 i
o 12} I
* = I
= ] o 30 :\.
E
S
= 20
@ 3 60 |
2 /\ - L |
G i s
= : F 1 1 1 o 50} :
% ‘l ST (Y | ": i NE |
E i i ] o : : ": | | 1 E. :
g ! W' Ry TR | a0} Kl
& o4l (4] VE B N ol e R |
o | N ] Erl]I 1 | Ij] . | w |
5 |k AR A R N AT Y R e |
= P8 : o 1‘|_|= (I 1 EE i Y | = 30 t \
E oA X Bl i‘\E? R 2N SR '%
o r= 1 (I < | S L R TR | | | i
= JE T A a0 Iy i RISy i | i 20
oargsse'g%e;azwa=50=§e=--55§§§ 20 25 30 35 40
TEEEETR"y gesoezgEgpesggatr’ RMSE,, [W/m?]
x X = )
Figure 9. Normalized parameter plots for the ARM-CART site using a two-criteria {H,\E} calibration

with the (a) MOSCEM with no prior information, (b) MOSCEM with prior SCE information, and
(c) MOSCEM with prior SCEM information algorithm. Each line across the graph denotes a single
parameter set: solid and dashed lines are single-criterion SCEM solutions of N\E and H, respectively, and
shaded lines are Pareto solution set. Squares and triangles denote single-criterion SCE solutions of \E
and H, respectively. The squared plots at the right-hand side denote two-dimensional projections of the
objective space of the Pareto set of solutions. In these plots, rank 1 solutions are indicated by solid dots.

See color version of this figure in the HTML.

Each line going from left to right across the normalized
parameter plots corresponds to a different parameter set (the
solid and dashed black line denote the {\E} and {H} single-
criterion SCEM solutions, respectively); each gray line
denotes a member of the {H, NE} Pareto set of solutions,
and the square and triangular symbols denote the SCE
solutions for {H} and {\E}, respectively. The 24 BATS
parameters and three initial soil moisture parameters are
listed along the x axis, and the y axis corresponds to the
parameter values, normalized by their initial uncertainty
ranges, as defined in Table 3. The linear-linear squared
shaped plots at the right-hand side in Figure 9 depict two-
dimensional projections of the bicriterion trade-off surface
represented by the total set of points sampled with the
MOSCEM algorithm. The Pareto rank one solutions in
these plots are indicated by the black dots.

[53] The results presented in Figure 9 emphasize several
important observations. In the first place, notice that the
SCEM and MOSCEM single-criterion ({H} and {\E})
solutions are significantly better in terms of their RMSE
performance measures (typically 10%) and occupy a
different part of the parameter space than their counterparts
obtained with the SCE-UA algorithm. To verify the
consistency of the results with the SCE-UA algorithm, we
ran the algorithm ten different times with an increasing
number of complexes. Indeed, the algorithm consistently
converged to the same region in the parameter space, well
removed from the SCEM-identified global minimum.
Consequently, when initialized with prior information
obtained with the SCE-UA algorithm, the MOSCEM
algorithm fails to converge to the “true” Pareto set as
depicted in Figure 9b. In the other cases, however, the
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—— SCE algorithm [Duan et al., 1992]
--- SCEM algorithm [ Vrugt et al., 2003] |
- MOSCEM algorithm [this paper]

T T T T T T T T
10000 15000 20000 25000 30000 35000 40000 45000

T
0 5000

50000
Number of BATS model evaluations [-]

Figure 10. Evolution of the best root mean square error values for (a) sensible and (b) latent heat fluxes as
a function of the number of BATS model evaluations with the SCE-UA, SCEM-UA, and MOSCEM-UA

optimization algorithms.

MOSCEM algorithm generated a fairly uniform approx-
imation of the Pareto frontier, thereby containing the best
attainable single-objective {H} and {\E} SCEM solutions,
denoted with the solid and dashed lines in the squared plots.

[s4] The second interesting observation is that the Pareto
solution set is discontinuous in the objective space with
clusters of solutions close to the single-criterion ends of the
Pareto frontier, but with no solutions in the most compro-
mised region among these objectives. This discontinuity is
also observed in the normalized parameter plots where, for
some of the BATS model parameters (VEGC, RSMIN,
XLA, SAI, DEPTV, and SKRAT), two separate well-
defined clusters of Pareto solutions can be found close to
the single-criterion {H} and {\E} SCE solutions, while no
Pareto solutions are found in the parameter space in
between these extreme ends.

[s5] Although beyond the scope of this paper, we believe
that the convergence problems of the SCE-UA algorithm are
caused by the large number of interacting parameters in the
BATS model and the highly complex, nonconvex shape of
the response surface mapped out in the parameter space. At
one end of the spectrum, deterministic search methods, like
the Simplex algorithm implemented in the SCE-UA com-
plex evolution strategy, are especially designed for response
surfaces that exhibit a well-defined global minimum. At the
opposite end, however, probabilistic search methods do not
impose constraints on the shape of the response surface and
are especially suited to deal with a high degree of random-
ness in the response surface. We posit that the calibration of
the parameters in the BATS model involves a high degree of
randomness and nonconvexity in the response surface,
thereby causing problems in the identification of the global
minimum for classical deterministic search algorithms.

[s6] This explanation is also supported by Figure 10,
which presents the evolution of the best RMSE values for
the {H} and {\E} criteria, as functions of the number of

BATS model evaluations with the SCE-UA [Duan et al.,
1992], SCEM-UA [Vrugt et al., 2003], and MOSCEM-UA
(this study) optimization algorithms. The results depicted in
Figure 10 show that the SCEM-UA and MOSCEM-UA
algorithms converge more quickly and to smaller function
values, indicating that the probabilistic covariance-based
search method has superior search capabilities over the
Simplex search strategy implemented in the SCE-UA global
optimization algorithm. While the SCE-UA algorithm
requires 75,000 model evaluations to converge to a sub-
optimal solution, only approximately 15,000 trials with the
BATS model are needed with the SCEM-UA and
MOSCEM-UA algorithms to identify the minimal {H}
and {N\E} objective RMSE solutions. Although not
explicitly illustrated here, using this prior information, the
pattern of the resulting population evaluated in the two-
dimensional {H, XE} objective space showed a striking
similarity to the “true” Pareto set of solutions illustrated in
Figure 9c. This suggests again that the joint distribution of
the parameters in the Pareto solution set can be estimated
using information obtained from the single-criterion ends of
the Pareto frontier. This approach to estimating the prior
distribution seems to be both robust and efficient and,
because the theoretical ends of the Pareto frontier are
computed beforehand, should help to minimize pitfalls that
may arise in a wide variety of multiobjective calibration
problem applications.

[57] A third significant and interesting observation (dem-
onstrated in Figure 10) is that the multicriteria calibration
approach seems to provide superior convergence speed
compared to the single-objective (compare the dashed lines
in Figures 10a and 10b) approaches. This suggests that
minimizing several objectives simultaneously can increase
the identifiability of the global minimum in the parameter
space, an observation that deserves further investigation in
future work.
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Figure 11. Time series plots of modeled sensible heat flux (W/m?), latent heat flux (W/m?), ground
temperature (K) and soil moisture content (mm), with the BATS model for a representative 10-day period
of the calibration period. The circles denote observed data, the shaded lines represent the Pareto {H, \E}
set of solutions, and the single-criterion {H} and {\E} SCEM solutions are indicated by the solid and
dashed lines, respectively. See color version of this figure in the HTML.

[s8] Finally, Figure 11 shows time series plots of modeled
sensible heat flux (W/m?), latent heat flux (W/m?), ground
temperature (°K), and soil moisture content (mm) with the
BATS model against the observed data (denoted with
circles) for a representative 10-day period of the calibration
period, during which rainfall occurred. Each of the Pareto
set of solutions corresponding to the {H, \E} two-criteria
calibration is indicated by a gray line, while the single-
criterion {H} and {\E} SCEM solutions are indicated by
the solid and dotted black lines, respectively. The Pareto
prediction uncertainty ranges bracket the sensible and latent
heat fluxes during most of the time, but do not match the
ground temperature (not included in the multicriteria
calibration) very well. It is possible that a better match to
this state variable could be obtained by including the ground
temperature observations in the multicriteria optimization
framework. Notice that the BATS model response to the
observed sensible and latent heat fluxes is quite similar for
each of the two single criterion {H} and {X\E} SCEM
solutions (indicated with the solid and dashed lines), while
two disconnected regions of model response are found for

the ground temperature, which was not included in the
calibration. This clearly implies that, although there are two
disconnected Pareto solution set clusters in the parameter
space associated with each of the two calibration criteria
(see Figure 9), both clusters generate similar model
responses in terms of sensible and latent heat fluxes,
indicating an interesting model structural issue that deserves
further investigation.

5. Conclusions

[s9] This paper has presented a Markov Chain Monte
Carlo sampler, which is well suited for solving the multi-
criteria optimization problem for hydrologic models. The
sampler, entitled the Multiobjective Shuffled Complex Evo-
lution Metropolis (MOSCEM-UA developed in collabora-
tion between the University of Amsterdam and the
University of Arizona), merges the strengths of complex
shuffling employed in the SCE-UA algorithm [Duan et al.,
1992, 1993] with the probabilistic covariance-based search
methodology of the Metropolis algorithm [Metropolis et al.,
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1953] and an improved fitness assignment concept of Zitzler
and Thiele [1999] to construct an efficient and uniform
estimate of the Pareto solution set. The MOSCEM
algorithm is a multiobjective relative of the SCEM-UA
algorithm [Vrugt et al., 2003], originally developed to infer
the probabilistic uncertainty associated with the use of a
single-objective function, but uses an innovative concept of
Pareto dominance rather than direct-objective function
evaluations to generate a fairly uniform approximation of
the “true” Pareto frontier which includes the single-criteria
end points of the Pareto solution set.

[60] The efficiency and effectiveness of the newly devel-
oped MOSCEM-UA algorithm for constructing an estimate
of the Pareto solution set was compared with the MOCOM-
UA algorithm developed by Yapo et al. [1998] for three
case studies of increasing complexity. The first case study
considered a simple two-dimensional mathematical test
problem, while the second and third case studies explored
the effectiveness and efficiency of the MOSCEM algorithm
for a two-criteria calibration of the Sacramento Soil
Moisture Accounting (SAC-SMA) conceptual watershed
model and the Biosphere Atmosphere Transfer scheme
(BATS) land-surface model. The three case studies clearly
demonstrated that the MOCOM algorithm has the tendency
to cluster the Pareto solutions in the most compromised
region among the objectives, in the third case study, the
MOCOM failed to converge. In contrast, the MOSCEM
algorithm generates a fairly uniform approximation of the
entire Pareto front, which includes the single-criterion end
points in the estimated Pareto uncertainty intervals of the
parameters. Furthermore, empirical investigations reported
in this paper revealed that a strategy of first locating the
single-criterion end points of the Pareto frontier, and using
this information as a prior estimate of the structure induced
in the Pareto solution set of the parameters, is computa-
tionally more efficient than imposing a uniform prior
distribution on the model parameters during the initializa-
tion of the MOSCEM algorithm.

[61] Research aimed at further improvements of the
Multiobjective Shuffled Complex Evolution Metropolis
approach is ongoing. The results of this work will be
reported in due course. As always, we invite dialog with
others interested in these topics. The code for the
MOSCEM-UA algorithm is available from the first author
at j.vrugt@science.uva.nl.
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