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Abstract

Purpose—Intratumoral hypoxia in non-Hodgkin’s Lymphoma (NHL) may interfere with 

chimeric antigen receptor T-cell (CAR-T) function. We conducted a single-center pilot study 

(clinicaltrials.gov ID NCT04409314) of [18F]fluoroazomycin arabinoside, a hypoxia-specific 

radiotracer abbreviated as [18F]FAZA, to assess the feasibility of this positron emission 

tomography (PET) imaging modality in this population.

Methods—Patients with relapsed NHL being evaluated for CAR-T therapy received a one-time 

[18F]FAZA PET scan before pre-CAR-T lymphodepletion. A tumor to mediastinum (T/M) ratio of 

1.2 or higher with regard to [18F]FAZA uptake was defined as positive for intratumoral hypoxia. 

We planned to enroll 30 patients with an interim futility analysis after 16 scans.
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Results—Of 16 scanned patients, 3 had no evidence of disease by standard 

[18F]fluorodeoxyglucose PET imaging before CAR-T therapy. Six patients (38%) had any 

[18F]FAZA uptake above background. Using a T/M cutoff of 1.20, only one patient (a 68-year-old 

male with relapsed diffuse large B-cell lymphoma) demonstrated intratumoral hypoxia in an 

extranodal chest wall lesion (T/M 1.35). Interestingly, of all 16 scanned patients, he was the only 

patient with progressive disease within 1 month of CAR-T therapy. However, because of our low 

overall proportion of positive scans, our study was stopped for futility.

Conclusions—Our pilot study identified low-level [18F]FAZA uptake in a small number of 

patients with NHL receiving CAR-T therapy. The only patient who met our pre-specified threshold 

for intratumoral hypoxia was also the only patient with early CAR-T failure. Future plans include 

exploration of [18F]FAZA in a more selected patient population.
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Introduction

CD19-directed chimeric antigen receptor T-cell (CAR-T) therapies have led to durable 

complete responses in approximately 30–40% of patients with relapsed non-Hodgkin’s 

lymphoma (NHL) [1, 2]]. However, almost half of CAR-T failures in NHL occur within 

the first month of infusion [3]. Various tumor-specific mechanisms have been postulated 

for early CAR-T failure: high tumor bulk, elevated lactate dehydrogenase (LDH), tumor-

mediated immune dysregulation, and high baseline levels of systemic inflammation [3–6]. 

Some of these factors may be associated with hypoxia within the tumor microenvironment, 

a known driver of lymphomagenesis and aggressive disease biology [7–9]. Intratumoral 

hypoxia also mediates T-cell dysfunction through upregulation of hypoxia-inducible 

factor (HIF) 1α, generation of extracellular free adenosine, and prevention of oxidative 

phosphorylation by CD4 T cells [10–13]. Downstream effects of intratumoral hypoxia 

include direct T-cell inhibition, decreased effector function, and increased exhaustion. In 

pre-clinical models, intratumoral hypoxia has been shown to impair effector CAR-T activity 

as well [14, 15].

Intratumoral hypoxia may thus predict inferior clinical outcomes to CAR-T therapy 

in lymphoma. [18F]fluoroazomycin arabinoside, abbreviated as [18F]FAZA, is a hypoxia-

specific radiotracer that is trapped within cells when the partial pressure of oxygen falls 

below 10 mm of mercury [16]. Compared to older hypoxia-specific radiotracers like 

[18F]fluoromisonidazole, [18F]FAZA has favorable biokinetics in terms of hydrophilicity 

and differential clearance from hypoxic tissues versus blood [17–19]. Compared to HIF 1α 
immunohistochemical staining from tissue biopsies, [18F]FAZA non-invasively and directly 

measures hypoxia throughout the entire body. Elevated [18F]FAZA uptake on positron 

emission tomography (PET) imaging has been associated with worsened outcomes in solid 

malignancies [20, 21]. However, [18F] FAZA has not yet been studied in the setting of 

CAR-T therapies for hematologic malignancies.

Banerjee et al. Page 2

Eur J Nucl Med Mol Imaging. Author manuscript; available in PMC 2024 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Materials and methods

We conducted a single-center Phase 1 study of [18F]FAZA in adult patients receiving 

CD19 CAR-T therapy for NHL (including indolent NHL) to assess its feasibility and safety 

and secondarily to explore any associations between [18F] FAZA uptake and post-CAR-T 

outcomes. There were no restrictions on CAR-T product, disease status at the time of 

[18F]FAZA scan, bridging therapy, or ambulatory pulse oximetry values. Our study was 

registered at clinicaltrials.gov (NCT04409314) and received approval from the University of 

California San Francisco Institutional Review Board.

After providing informed consent, enrolled patients received a one-time intravenous dose of 

10–25 μg of [18F]FAZA followed by a PET scan 2 h later. The radiotracer was produced 

at our facility using the same synthesis process described previously [22]. All scans 

were performed using a fully digital time-of-flight PET scanner with continuous-motion 

images acquired from vertex to mid-thigh and 2 min per bed position. With regard to 

timing, [18F]FAZA PET scans were performed at any feasible timepoint between initial 

evaluation and lymphodepletion. Based on previous work in solid oncology [23, 24], we 

defined a positive scan as any lymphoma-attributable volume of interest with a tumor to 

mediastinum (T/M) ratio of ≥ 1.20 in terms of maximum standard uptake value (SUVmax) 

versus background uptake in the descending aorta or (for patients with mediastinal disease) 

unaffected hepatic parenchyma.

Other pertinent data points included the most recent LDH value before [18F]FAZA scan 

as well as the results of standard of care (SOC) [18F]fluorodeoxyglucose ([18F]FDG) PET 

imaging both before and after CAR-T therapy. Day + 30 responses to CAR-T therapy were 

calculated using Lugano 5-point scale (PS) criteria as applied to SOC [18F]FDG imaging. 

Based on limited data with [18F]FAZA from an early study of multiple types of cancer that 

included 15 patients with NHL [18], we hypothesized that positive [18F]FAZA scans in ≥ 

60% of patients would warrant further investigation. Using the Simon two-stage minimax 

design to reject the null hypothesis (that < 40% would have positive scans) with alpha 0.10 

and power 0.80, we planned to enroll 30 patients with an interim futility analysis after 

16 scans and study closure for ≤ 6 positive scans. The results of this interim analysis are 

described here.

Results

As shown in Table 1, 16 patients (14 with aggressive B-cell lymphomas, 1 with mantle cell 

lymphoma, and 1 with follicular lymphoma) underwent [18F]FAZA PET scans between 

August 2021 and December 2022. Importantly, 3 patients had no evidence of disease 

on SOC [18F] FDG imaging obtained at roughly similar timeframes to their [18F]FAZA 

scans before CAR-T therapy. Three patients received bridging chemotherapy after T-cell 

collection, in two cases before the [18F]FAZA scan and in one case afterward. Two patients 

did not ultimately receive CAR-T therapy, in one case due to personal preference and in one 

case due to lymphoma-related death. Of the 14 patients who did receive CAR-T therapy, 

[18F]FAZA scans occurred a median of 16 days (range 7–70 days) prior to CAR-T infusion. 
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[18F]FAZA was well tolerated, with only a single episode of Grade 1 nausea in one patient 

that resolved the following day.

Overall, 6 patients (38% of the cohort) had any [18F] FAZA uptake above background. 

Using our pre-specified T/M cutoff of 1.20, however, only one patient (Patient 05) 

demonstrated intratumoral hypoxia. This patient, a 68-year-old male with relapsed diffuse 

large B-cell lymphoma, had multiple [18F]FDG-avid lesions on pre-CAR-T imaging 

including an extranodal chest wall mass with a metabolic tumor volume of 3.5 cm3 

(Fig. 1A). Subsequent [18F]FAZA imaging performed 20 days before CAR-T therapy 

without interceding bridging chemotherapy (Fig. 1B) demonstrated this mass as his only 

[18F]FAZA-avid lesion with an SUVmax of 2.12. [18F]FDG imaging at Day + 30 and Day 

+ 90 after lisocabtagene maraleucel, a CD19-directed CAR-T therapy (Fig. 1C and D), both 

demonstrated PS5 responses consistent with progressive disease (PD). Of our 16 scanned 

patients, he was the only patient with PD as the best response to CAR-T therapy. However, 

because of our low overall proportion of patients with a priori defined positive [18F]FAZA 

scans, our study was stopped for futility.

Discussion

Our pilot study identified low-level [18F]FAZA uptake in a small number of patients with 

NHL receiving CAR-T therapy. The only patient who met our pre-specified threshold for 

intratumoral hypoxia was interestingly also the only patient with early CAR-T failure, 

with progressive disease noted both at Day + 30 and Day + 90. However, elevated 

[18F]FAZA uptake was relatively uncommon among patients in our study. Compared to 

a historical study of [18F]FAZA across cancer types which demonstrated a 40% incidence 

of intratumoral hypoxia in 15 patients with NHL [18], rates of intratumoral hypoxia in our 

study were undoubtedly lower despite a comparable distribution of NHL histology. This 

may reflect differences in patient population given our emphasis on pre-CAR-T imaging, 

including in patients who had achieved a complete response with antecedent pre-CAR-T 

bridging therapy. Alternatively, given that at least half of the cases of intratumoral hypoxia 

in the previous study appeared to involve extranodal disease (similarly noted in our patient 

with a hypoxic chest wall mass), [18F]FAZA avidity may be disproportionately likely to 

occur in extranodal deposits.

Limitations of our study include its small sample size and heterogeneous patient population, 

including many patients who did not require bridging and 3 patients with no evidence of 

pre-CAR-T disease by SOC imaging. The optimal T/M ratio to identify elevated [18F]FAZA 

uptake is unclear. Had we used a more liberal threshold of T/M > 1.00, 38% of our scans 

(n = 6, including half of patients with suboptimal responses to CAR-T therapy) would have 

been classified as positive. Conversely, had we used a T/M threshold of 1.4 as done in 

some previous studies [20, 23, 25, 26], no patients would have been classified as positive. 

This raises the question of whether [18F]FAZA uptake may be prognostically useful in 

a more narrowly defined population of patients with a looser definition of intratumoral 

hypoxia. This selected population might include patients with extranodal disease as noted 

above, high metabolic tumor volume, markedly elevated LDH, or previous failure of other 

CAR-T therapies. Conversely, patients without increased avidity on SOC PET imaging are 
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unlikely to benefit from [18F]FAZA imaging. Steps to accommodate these changes in a 

future iteration of our protocol are underway.

If shown in future studies to be a reliable marker of adverse post-CAR-T outcomes in 

high-risk patients, elevated [18F]FAZA uptake is potentially more actionable than other 

negative prognostic markers such as high tumor burden. For example, targeted radiation 

therapy to sites of intratumoral hypoxia may help promote normoxia and ensure tumor 

control in these areas regardless of T-cell effector function [27, 28]. Alternatively, given 

that CD28 costimulatory domains within CAR-T constructs confer less dependence on 

mitochondrial-driven oxidative respiration than do 4-1BB costimulatory domains [29], 

profound intratumoral hypoxia could theoretically affect the choice of commercially 

available CAR-T therapy. In our study patient with demonstrated intratumoral hypoxia, 

for example, he received a CAR-T product with a 4-1BB costimulatory domain. However, 

these theories are speculative and require further investigation once the prognostic value of 

[18F]FAZA is validated.

Conclusion

In conclusion, our pilot study of [18F]FAZA PET imaging in NHL did not detect 

a significant proportion of study-defined hypoxia. The only patient with unequivocal 

intratumoral hypoxia on [18F]FAZA imaging was also the only patient with early tumor 

progression following CAR-T therapy. Future studies with [18F]FAZA in a more narrowly 

defined patient population are planned.
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Fig. 1. 
Representative PET scan images. Abbreviations: CAR-T, chimeric antigen receptor T-cell 

therapy; 18F-FAZA, [18F] fluoroazomycin arabinoside; 18F-FDG, [18F]fluorodeoxyglucose; 

PET, positron emission tomography
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