UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Inversting A Connectionist Network Mapping By Back-Propagation of Error

Permalink
https://escholarship.org/uc/item/9054f864)

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 8(0)

Author
Williams, Ronald J.

Publication Date
1986

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/9054f864
https://escholarship.org
http://www.cdlib.org/

INVERTING A CONNECTIONIST NETWORK MAPPING
BY BACK-PROPAGATION OF ERROR

Ronald J. Williams
Institute for Cognitive Science
University of California, San Diego

ABSTRACT

The back-propagation learning algorithm (Rumelhart, Hinton, & Williams, 1986) for connection-
ist networks works by adjusting the weights along the negative of the gradient in weight space of a
standard error measure. The back-propagation techmique is simply an efficient and entircly local
means of computing this gradient. Using what is essentially the same back-propagation scheme, one
may instead compute the gradient of this error measure in the space of input activation vectors; this
gives rise to an algorithm for inverting the mapping performed by a network with specified weights.
In this case the error is propagated back to the input units and it is the activations of these units —
rather than the values of the weights in the network — that are adjusted so that a specified output
pattern is evoked. This technique is illustrated here with a small network which is a much simplified
version of the NETtalk text-to-speech network studied by Sejnowski and Rosenburg (1986). The idea
is to run this network backward so that it attempts to spell words based on their phonetic representa-
tions. This example further illustrates the use of this technique in a sequential interpretation setting
in which phonemes are presented to the system one at a time and the system must refine its previous
guess at the correct spelling as each new phoneme is presented.

INTRODUCTION

This paper explores the use of the technique of back-propagation of ecrror (Rumelhart, Hinton,
& Williams, 1986) to invert the mapping performed by a connectionist network. While the technique
was introduced in that paper as a mecans of finding a set of weights which would achieve a certain
mapping in a network of given topology, it is equally applicable to the problem of finding what input
pattern would give rise to a specified output pattern in a network with given weights. Table 1 sum-
marizes how it is possible to solve for any one of the three items inpur pattern, weight matrix, and ous-
put pattern given the other two, such that a network with that weight matrix maps that input pattern
to that output pattern. The back-propagation input adjustment algorithm will be described further in

Table 1
Given Solve For Using
input pattern, weights output pattern | forward propagation
input pattern, output pattern | weights back-propagation learning
output pattern, weights input pattern | back-propagation input adjustment

859

WILLIAMS

the next section, following which its use in inverting a particular network mapping will be explored.

Although no specific network implementation of the back-propagation mechanism is proposed
here, these ideas hint at the intriguing possibility that there might exist a design for a network which
contains within it the mecans for production, for comprechension, and for learning, all integrated
together.

THE BACK-PROPAGATION INPUT ADJUSTMENT ALGORITHM

Just as the back-propagation learning algorithm (Rumelhart, Hinton, & Williams, 1986) is an
incremental procedure for adjusting the weights in a network, the back-propagation input adjustment
algorithm to be explored here is an incremental procedure. This means that it requires an initial
"guess” at the input vector, which it successively modifies until the resulting input vector gives the
desired output in the given network. The mathematical details of this algorithm, although straightfor-
ward, will not be given here, in the interest of brevity; suffice it to say that the algorithm moves down
the negative of the gradient of the same squared-crror performance measure used for the back-
propagation learning algorithm. The difference is that this gradient is computed in the space of input
vectors rather than in weight space. The derivation of this algorithm proceeds almost identically to
the derivation of the learning algorithm, with the chain rule for partial derivatives giving rise to its
back-propagation flavor, in which error-correction information is required to flow backwards along
the connections in the network.

Just as in the learning case, back-propagation of error-correction information must be inter-
spersed with forward propagation in the net to determine what additional adjustments are necessary.
Thus the entire algorithm for inverting the network mapping for a particular specified output pattern
consists of starting with an initial input pattern and modifying this pattern by repeated application of
what will be called a basic adjustment cycle. Such a basic adjustment cycle consists of propagating
activity forward in the network, back-propagating the error-correction information, and incrementing
the input vector accordingly.

SOME SIMULATION RESULTS

The NETtalk text-to-speech network of Sejnowski and Rosenburg (1986) is a network whose
input represents a seven-character window on a potentially much longer string of text and whose out-
put represents the single phoneme which is appropriate for the character at the center of the window
in the context of the remaining six characters. The network operatcs on an arbitrary-length text
string by successively sliding its seven-character window along this string by one character at a time.
Here we consider a drastically simplified version of such a net and study its ability to run “backwards”
— i.c., its ability to spell a word given its phonectic representation. Furthermore, since the network
represents only a single phoneme at a time, this problem will take on a sequential interpretation
flavor: as successive phonemes are presented, the system will be forced to update its “preferred spell-
ing” as these phonemes come along, rather than in parallel. It thus becomes interesting to examine
the sequence of results obtained by the system.

860

WILLIAMS

The network uscd in these experiments is depicted in Figure 1. The input units encoded eight
characters in each of three positions, with unuscd character/position combinations eliminated. The
output units encoded nine phonemes. Both the input and the output representations were local rather
than distributed. This was done strictly as a matter of convenicnce in setting up the network and also
to make it easier to interpret arbitrary pattern vectors in a reasonable way, as will be discussed below.

The network was first trained (using back-propagation Iecarning) to produce the appropriate
phonemes for seven words. In the manner of NETtalk, cach word was trained in each relevant posi-
tion in the 3-character window. The training data is listed in Table 2. These words were chosen

Tablc 2
Input Word | Output Phonemes
(3 positions)
can Ik/, 1@/, In/
car I/, la/, It]
con /k/, la/, Inl
wan Iwl, lal, In/
war Iwl, Icl, Itl
was Iwl, I°1, Iz
won Iwl, I"l, Inl

because of the interesting problems they present for a system trying to determine the spelling as the
phonemes appear sequentially. Note that determination of the correct vowel cannot be made for
some of these before the final consonant phoneme has been presented. Thus particular interest in
these experiments was centered on the ability of the network to infer the vowel as each phoneme was
presented.

Once the network had been trained to achieve essentially perfect performance, the weights were
fixed; this network then formed the basis of the system on which all the experiments reported here
were performed. In all these experiments, character positions to be determined had all their character
units’ outputs initialized to the same nominal value (typically .1). Also, for all the experiments the
"solution” obtained by the system for any particular character position was interpreted to be that char-
acter having the largest output. This is consistent with the Sejnowski & Rosenburg interpretation of
the "best guess” output of their system as the vector making the smallest angle with the output vector.

The results of the experiments are summarized in Table 3, where an asterisk is used to denote a
character position which is to be determined. Experiments 4-7 involved presenting sequences of
phonemes to the system, and these experiments were run as follows:

(1) The letter units were initialized to nominal values.

(2) The given phoneme was selected as the target output pattern to be achieved.

(3) The character units had their values adjusted via several iterations (typically 50, using a rate
parameter of .1) of the basic adjustment cycle. At this point the target output was well
matched by the output actually achicved using the adjusted input pattern.

861

WILLIAMS

1 0 0 0 0 6 0 0 0

OEDEOEDEE

/I TN

0/0]0/010]0]0/0]0/010,010/0]0,

OPEO® OO®ROO® OO®EOE

0 01 0 O 1 0 0 0 0 0 O 0 0 0 01 O

Figure 1. The network used in the experiments. The input layer is divided into three parts, one for each of three charac-
ter positions. There is complete connectivity between layers. The input vector shown represents the word car. The
corresponding output vector shown represents the appropriate phoneme /a/. The printed representation used here for these
phonemes is taken directly from Sejnowski and Rosenburg (1986). The sounds they denote can be inferred from the descrip-
tion of the training data for the nctwork given in Table 2. The underscore represents the < space> character.

862

WILLIAMS

(4) The output values of the character units were shifted one slot to the left in preparation for
receipt of the next phoneme. This set of output values represented the starting point for the
attempt to match the next phoneme. (The rightmost character slot had all its units’ outputs
set to the default nominal value.)

Steps (2)-(4) were repeated for each phoneme in the string of phonemes which the network was to
spell. At each iteration of this cycle of steps the pattern of activity in the character units was exam-
ined at the end of step (3).

Table 3
Character Units
Experiment | Target Phoneme | Initial State Winners
After Convergence

1 @l e can
2 fa/ c’r car
3 lal c*n con
4 fwl vee _wa
i | wos
/a/ on_
5 fwl Ll _wa
" wos
s/ as_
6 k! e _cr
la/ cor
It/ ar_
7 k! e _er
la/ cor
fa/ on_

In every one of these sequential experiments there was ambiguity concerning the correct choice
of vowel at the time that phoneme was presented; subsequent presentation of the next phoneme pro-
vided disambiguating information which enabled the system to choose the correct vowel even after the
corresponding phoneme was no longer available to the system. In every case the system made the
correct vowel its clear favorite once this disambiguating information was made available.

DISCUSSION

There are several remarks to be made here. First, the particular network used for these experi-
ments was quite small and the inversion problems posed were quite simple. It will be interesting to
sce whether similar results are obtained if corresponding experiments are performed in a much larger
network having many more input/output pairs "stored” in its weights.

Second, the problem of inverting a NETtalk-like grapheme-string-to-single-phoneme mapping
was chosen because it illustrated not only the notion of inverting a mapping but also some other issues
which are based on the observation that the network inversion problem and the network learning

863

WILLIAMS

problem are dual instances of the same general mathematical problem. As such, they are both under-
determined, in general, so that what must be sought are simultancous solutions to multiple instances
of such problems, or else solutions which are nearest, in some sense, to a given starting point.

Furthermore, the sequential nature of learning problems — in which the items to be learned are
assumed to be experienced sequentially — is genecrally taken for granted, while the connectionist
approach often suggests solutions to comprehension problems in which a great deal more parallelism is
assumed (often by simply buffering a temporally extended input stream in order to make all com-
ponents of it available for processing simultaneously). In the example considered here, a strictly
sequential process was invoked in which the system was only allowed to examine one phoneme at a
time. An interesting question is what to do at cach step in order to get optimal convergence to the
"correct” answer. The engineering topic of recursive identification (Ljung & Soderstrom, 1982)
addresses such questions, although most such algorithms may be of limited applicability to these net-
work problems since they are based on lincar approximations. The importance of these sequential
issues can be seen by noting that such algorithms applied to the learning problem would provide one-
trial learning. While a parallel approach is possible even in the learning case, it is clearly inappropri-
ate.!

Another remark concerns the implication of the duality between input vector and weight matrix
for the connectionist approach. It is intriguing to speculate on how it might be possible to create
models in which activations and weights play a more symmetric role. There are certainly precedents
for such an enterprise. For example, models have been proposed which essentially replace weights by
activation of units via garing connections on second-order sigma-pi units (Hinton, 1981; Rumelhart,
Hinton, & McClelland, 1986; Williams, 1986). One such model is that of McClelland (1986). Also,
some models have been studied which call for fast short-term changes in weights, which might be con-
sidered a means by which network weights are made to take on a role more like that of activation of
units.

Finally, note that unlike most reports on connectionist-style research, this paper does not actu-
ally propose a network implementation of the computational technique suggested here. Rather, it
suggests the utility of the back-propagation formalism in another setting besides that for which it was
originally proposed. Results such as these suggest that treating back-propagation as a functional prim-
itive in networks may lead to a number of elegant solutions to connectionist-style problems. It
remains an open question just how such functionality may be implemented in more conventional
forward-propagating network fashion. It is clear that the computation explored here has the flavor of
a sequence of settlings, suggesting that a possible implementation might consist of a network designed
to carry out this settling behavior.

1. In fact, it is not hard to devise a general procedure for constructing a larger network, with certain weights constrained to be
equal, such that the sequential problem of determining the weights for a given collection of input/output pairs in a given net-
work amounts to a single training instance in this new (posibly gigantic) network. Furthermore, the usual technique of in-
terspersing the pattern presentations throughout training can be viewed as a time-shared, serial implementation of this parallel
process.

864

WILLIAMS

REFERENCES

Hinton, G. E. (1981). A parallel computation that assigns canonical object-bascd frames of reference.
Proceedings of the Seventh International Joint Conference on Artificial Intelligence, Vancouver, B.C.,
Canada, 683-685.

Ljung, L., & Soderstrom, T. (1982). Theory and Practice of Recursive Identification. Cambridge: MIT
Press.

McClelland, J. L. (1986). The programmable blackboard model of reading. In: Rumelhart, D. E. &
McClelland, J. L. (Eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cogni-
tion. Vol. 2: Psychological and Biological Models. Cambridge: MIT Press.

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework for parallel dis-
tributed processing. In: Rumelhart, D. E. & McClelland, J. L. (Eds.) Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Vol. 1: Foundations. Cambridge: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error
propagation. In: Rumelhart, D. E. & McClelland, J. L. (Eds.) Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Vol. 1: Foundations. Cambridge: MIT Press.

Sejnowski, T. J. & Roscnburg, C. R. (1986). NETralk: a parallel network that learns to read aloud.
Technical Report 86/01, Department of Electrical Engineering and Computer Science, Johns Hop-
kins University.

Williams, R. J. (1986). The logic of activation rules. In: Rumelhart, D. E. & McClelland, J. L. (Eds.)

Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 1: Foundations.
Cambridge: MIT Press.

865

	cogsci_1986_859-865

