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ABSTRACT OF THE DISSERTATION

Human Hand Pose Estimation and Artificial Tactile Sensing in Harsh Environments

by

Eric Richard Peltola

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2022

Professor Veronica J. Santos, Chair

In Study #1, we develop a novel, data-driven method to estimate the kinematic param-

eters of multi-joint linkages such as the human hand. The method can identify up to two

consecutive revolute joint axis orientations between connected rigid bodies. We introduce

kinematic constraints into a Generative Topographic Mapping formulation in order to esti-

mate the joint axis parameters. The method was evaluated using simulated motion and via

motion capture and a physical 2-DOF mechanism modeled after the metacarpophalangeal

joint of the human finger. Our method compares well against state-of-the-art kinematic

parameter estimation techniques with regards to reliability and computational efficiency.

In Study #2, we introduce a sensor-embedded soft skin capable of multimodal sens-

ing (contact force and two axes of shear force) in pressurized underwater environments up

to 1000kPa. We embed liquid-metal strain gauges within a durable elastomeric skin that

is molded around a solid finger core. We demonstrate that the sensor skin is capable of

measuring forces up to 220N underwater and while subjected to a range of hydrostatic pres-
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sures. We determine that the performance of the sensor skin is unaffected by the submerged,

pressurized environment.

In Study #3, we propose a set of design considerations for tactile sensor skins using

embedded, microfluidic single-axis strain gauges for the purpose of estimating 3D forces and

1D torque about the skin’s surface normal. By displacing shear force taxels such that their

principal axes are offset from the point of contact, we are able to more accurately measure

torque. We use an experimental testbed to apply force-torque loads to the sensor skin. We

develop CNN-based models to evaluate the combined force-torque estimation performance of

numerous taxel configurations and provide a detailed discussion of how performance relates

to design choices.

In summary, we developed methods that improve sensing in harsh environments such as

granular media and underwater. Kinematic and kinetic considerations during hand-object

interaction were carefully integrated into the development of novel sensing hardware, data-

driven estimation methods, and task-specific sensor design criteria. We advanced the state-

of-the-art in tactile sensing using tactile sensor skins and improved the accuracy of hand

pose estimation using low-cost motion tracking tools.
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CHAPTER 1

Introduction

1.1 Motivation

A persistent theme in robotics research is the emulation of human capability. While we

might take for granted the ability to grasp a sweaty cup on a hot day, this seamless integration

of cognition, sensing, and action has remained elusive to generations of roboticists. Perhaps

the most elusive is the complexity and elegance of the human hand; 35 actuators, 22 degrees

of freedom, and over 17,000 mechanoreceptors act in harmony to carry out countless tasks,

often with minimal cognitive burden to the human.

Much as modern technology has its roots in the international space race of the 1960’s, the

broad pursuit of human-like robotic systems has opened up deep research efforts in a wide

variety of disciplines. For instance, the task of recognizing one’s place in the environment

spurred decades of specialized work in computer science, applied mathematics, electronics,

and optics to give us facial recognition and self-driving cars. It is a convenient metaphor

to consider the goal of robotics research as bestowing our own senses and behaviors on

robotic systems. Now that the robots can see (the sense afforded by computer vision), many

researchers are now turning to robot hands and exploring the significantly subtler sense of

touch.
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1.1.1 Human Hand Motion Tracking

Human motion capture is a robust and mature research field, enabling applications in

diverse areas such as sports science, virtual reality, gaming, remote surgery, and rehabil-

itation [3, 4, 5, 6, 7, 8]. Many of the fundamental aspects of human motion capture are

considered a solved problem; optical-based marker methods such as the VICON system, as

well as computer vision methods often provide enough accuracy [9]. These systems often

come at a high price and are subject to application-specific errors. Chief among the error

modes in optical systems is marker occlusion, which can occur often in scenarios where it is

desirable to let the subject move freely [10]. If the motion capture system cannot reliably

detect marker locations, it will fail to reliably capture motion data.

The occlusion problem is especially difficult when considering the high degree-of-freedom

motion of the human hand digging through granular media; resolving the 3D orientation

of a rigid body requires placement of marker triads, and these finger-mounted markers are

bound to overlap during complex motion. Furthermore, an optical system will fail outright

if the subject’s hands are buried beneath the surface of granular media.

1.1.2 Artificial Tactile Sensing

The field of tactile sensing in robotics has been exposed by many as the logical “next

step” in robotic research, following the successes of robotic perception via vision. In many

situations, vision can provide an accurate model of the environment in which a robot works.

However, robotic manipulation of objects which is based on vision alone often does not

account for the kinetics of a robot-object interaction. Affording a robot with tactile sensing

gives it critical information at the point of contact, allowing the measurement of grasp

2



quality, perception of invisible properties of the object, and more intuitive and human-like

interaction with the object.

One focus of this dissertation is to answer the question, “what considerations do we

need when performing tactile perception and manipulation underwater?” In the human case,

much has been reported about the sensitivity of manipulation tasks to the moisture content

of the finger pads, predominantly investigated via friction models. Clearly the kinetics of a

submerged grasp will change due to buoyancy, but to uncover the full effects of submerged

grasp, an experimental plan must be put in place to compare the properties of single and

multi-digit grasps in water and out of water. My first research question sets out a series

of experiments to address underwater tactile perception by first demonstrating a perception

algorithm in a dry environment before performing the same task underwater. Submerged

tactile sensing is an unexplored research area, so I intend to develop the experiments in a

way that provides transparency to the systemic effects of underwater tactile perception.

In addition to investigating the unique requirements of underwater tactile sensing, I

intend to improve the state of tactile sensing for robot-object interaction by developing

the capability to detect and quantify in-plane torsion induced between a sensorized gripper

and a rotating object or environment. With the ability to detect and quantify rotational

forces, robot manipulators will be able to perform more advanced manipulation tasks. As

an instructive example, consider the task of pouring liquid out of a cup. Instead of gripping

the cup firmly and rotating the entire hand, I believe a more efficient and dexterous method

would be to rotate the cup relative to the fingers — this will produce a rotation in-plane,

or torsion, on the surface of the sensorized fingertips. I believe that the ability to quantify

torsion will enable an artificial manipulator to pour in a way that a human observer would

consider more intuitive and human-like.

3



1.2 Prior Applications

1.2.1 Human Hand Motion Tracking

Capturing and analyzing human motion has been an active research area for many

decades, with diverse applications including rehabilitation, sports, gaming, and entertain-

ment. Major success has been found in applications where human movement tracking has

contributed to improved results in ambulatory care [11, 12]. The technologies used in cap-

turing human movement are varied and have heavily favored computer vision in the past

decade [13]. Reliance upon computer vision limits the use scenarios to those with a well-

defined visual setting and low environmental occlusion. Non-visual tracking systems do not

suffer this “line-of-sight” problem and are therefore considered more robust in many motion

capture scenarios [10].

The number of non-visual human motion capture systems based on Inertial Measurement

Units (IMUs) has increased rapidly since feasibility was demonstrated. An IMU utilizes

multiple sensors to estimate the inertial state of the body to which it is attached, such

as its angular and linear motion, and 3D orientation. Sensor fusion algorithms have been

developed to reduce inherent error which would be present in inertial measurements based

on the individual sensors’ raw data. An algorithm developed by Sebastian Madgewick uses

a magnetometer to correct for gyroscopic drift [14]. This results in a 9-DOF IMU which can

accurately resolve absolute three-dimensional orientation.

With advancements in production of cheap and accurate IMUs, development of hand-

worn sensor gloves emerged as a viable human motion capture method. Liu et al. developed

a glove-based system to perform simultaneous hand pose and force sensing in real time [15].

Using 15 IMUs and a network of Velostat piezoresistive fabric, they performed an experiment

4



which quantitatively characterized the accuracy of the kinematics and kinetics of hand-

object interaction. Another active research field related to hand-worn IMU sensor gloves is

rehabilitation, where dynamic measurements of hand kinematics provides clinicians with a

measurement of movement deficiencies in patients with rheumatoid arthritis [16].

My previous work on the design and fabrication of an IMU sensor glove was aimed at

alleviating a common and often necessary drawback of IMU gloves, which is the requirement

of bulky hardware to ensure proper fastening of sensors. The existing research commonly

employs a tight-fitting and robust glove superstructure, which ensures that the motion of

the sensors is directly coupled to the hand kinematics. This bulk, however, often impedes

the natural motion of the hand and corrupts the analysis of glove-worn hand motion. The

team of Kortier et al. approached this issue by using a dorsally-mounted array of sensors and

flexible PCBs to leave the palm and finger pads exposed during motion [17]. My palmless

IMU glove was designed in a similar manner, using a minimum of attachment hardware as

shown in Figure 1. This design requirement allows the wearer to freely explore a tactile

environment or to perform complex gestures with as little added constraint as possible.

1.2.2 Artificial Tactile Sensing

Humans can make excellent use of tactile sensing to recognize grasped objects, as well

as naturally and adeptly manipulate objects and interact with the environment even in the

absence of vision. In order to afford robots and prostheses with these same abilities, research

has predominantly focused on building tactile sensor networks that mimic human capability.

Among the most mature of these hardware systems are the BioTac [18] and the GelSight [19]

sensors.

The BioTac’s biomimetic approach is based on a rigid core surrounded by a weakly
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conductive fluid contained within an elastomeric skin. The deformable nature of the sensor

allows for multimodal measurements of the deforming liquid. Electrodes mounted within the

conductive fluid perceive changes in voltage as a function of liquid deformation, and pressure

and temperature transducers detect changes in the bulk properties of the encapsulated liquid.

The GelSight sensor takes a different approach, borrowing its fundamental sensing capac-

ity from computer vision. Using an elastomeric slab covered with a reflective membrane, the

GelSight can achieve high accuracy in estimating contact surface geometry. Bulk movement

of the sensor surface can be measured by tracking the optical flow of an array of dots on the

inside of the sensor’s contact surface.

Current literature surrounding tactile sensing for robotics is dense with examples of

utilizing available sensor hardware to demonstrate simple tasks, such as preventing a grasped

object from slipping relative to the hand. Su et. al developed an algorithm for reactive

control of grip forces when grasping an object [20]. Using a pair of BioTac sensors, finger

forces were estimated and fed into their algorithm, shown in Figure 8, to detect and classify

slip events. Fig. 9 shows the difference between a grip controller based on position data only

(left) compared to their proposed force-based controller (right). This research exposes a key

advantage of incorporating tactile information into the control of grip; in addition to the

robot’s internal kinematic model of finger position, sensory data from the touched surface

provides valuable information to ensure an optimal grasp.

The simple model of “if slipping, grip harder” has been employed successfully in many

cases where the only goal was to ensure a simplistic form of grasp stability. Wettels et. al

presented a method for controlling the grasp of an anthropomorphic prosthetic hand by using

the BioTac sensor, Bayesian inference, and simple algorithms for estimation and control [21].

A pair of sensorized fingertips were first employed to estimate the coefficient of friction of
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the finger/object pair. Using tactile feedback-based force control and the estimated friction

model, the prosthetic hand was able to maintain the object within the friction cone to prevent

object slip. Song et. al used a similar approach with a more advanced LuGre friction model,

which accounts for nonlinearity of the friction coefficient during the “incipient slip” state that

occurs shortly before full object slip [22]. Whereas the friction estimation method proposed

in [21] was dependent on an initial routine of letting the object slip, the method of Song et

al. could perform slip detection without requiring the initial routine.

The above-mentioned methods highlight the importance of an accurate estimation of

friction during object manipulation. During underwater manipulation, the friction model

is likely to be affected by the moisture content of the finger-object interface. Additionally,

there is no guarantee that the modification of an in-air grip control algorithm for underwater

use is trivial. It is a major focus of my proposed work to investigate the effect of submersion

on tactile perception.

There is a wealth of underwater robots, some employing a form of tactile sensing for

submerged manipulation. For instance, a sensorized manipulator with inherent resistance

to hydraulic pressure was developed by O’Brian and Lane, whose artificial fingertip with

embedded strain gauges and PVDF films could detect grip force and slip via vibration,

respectively [23]. The feasibility of underwater use of rigid fingertips with strain gauge-based

tactile sensing was evaluated by Sans et. al, whose multi-fingered gripper demonstrated the

underwater manipulation of a wooden trunk [24]. Kampmann and Kirchner took this same

concept into deep-sea applications, where a complete manipulation system was developed

for use at extreme depths up to 6km [25]. This system incorporated a novel optical tactile

sensor array using an open-cell foam matrix for exterioceptive tactile input.

Critically, although the available underwater tactile-based manipulators are informed by
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the submerged application requirements, none of the related work examined the influence

of water submersion on the model of automated grasping. Research into the relationship

between contact surface wetness and grasp quality is found in the biomechanics community,

where fingertip hydration was found to have a dramatic effect on the dynamics of the contact

region during the transition between sticking and slipping [26]. The resultant effect of skin

hydration was to reduce the transition of stick to slip, regardless of the coefficient of friction.

A similar effect was shown by Nacht et. al, who observed a temporary increase of skin friction

coefficient after water application [27]. This effect was observed to dissipate after roughly 10

minutes. Presumably, this effect disappeared due to the absorption and evaporation of water

from the skin’s surface. An interesting extension of the above-mentioned research would be

to study the friction properties of a fully submerged hand.

The existing literature surrounding the tactile perception of in-plane torsion is limited.

The group of Dr. Danica Kragic has approached this problem through a series of experiments

with increasing complexity. First, a simple rubberized two-fingered gripper was used along

with a force-torque sensor mounted in the wrist of the gripper [28]. Using the aid of gravity,

a grasped object was allowed to rotate relative to the gripper using a controlled-slip method.

Critical to this research was an adaptive friction model, which used cues from the force-torque

sensor to update the friction coefficient of the rubberized fingertips in real time. See Figure

10 for a visualization of this experiment, where a desired angular trajectory was followed

by the real-time controller. Although this work quantified torsion, the method relied on a

frictional model of the grasp and did not quantify torsion directly via tactile sensing.

The GelSight sensor, with high-resolution spatiotemporal sensing of a touched object via

computer vision techniques, should be readily able to quantify torsion [19]. This can be done

by tracking the visual flow of a matrix of dots etched into the elastomeric fingertip (Figure
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11). Although a visualization of torsion has been shown, a quantification of rotational motion

due to in-plane torsion was not demonstrated. In a similar implementation, Padmanabha

et. al created a multi-camera optically-based tactile sensor called OmniTact for multi-axis

force-torque estimation. Relying on the high-resolution camera input and a high-curvature

finger surface, the sensor was shown to be capable of full 6-axis force-torque estimation.

Building upon the optics-based tactile sensing method, Li et. al developed a finger capable

of not only pressure distribution but also 6-axis force-torque measurement. Their finger,

called the F-TOUCH, incorporates spring-like mechanisms within the body of the finger to

measure applied forces and torques, while the fingertip measures contact distribution via an

embedded camera system. Using an experimental apparatus to create repeatable applied

loads, the force-torque estimation performance of the sensor was validated. They showed

that the additional spring-like elements of their sensor marked a significant improvement in

a comparison study against the GelSight sensor.

1.3 Contributions

This dissertation presents contributions to sensing in robotics and biomechanics, inspired

by the kinematics and kinetics of the human hand.

Chapter 2 presents a novel data-driven method for the estimation of human hand kine-

matic parameters based on observations of hand motion. Using the exponential coordinates

of rotation, the observations form a manifold that is uniquely determined by the kinematic

parameters of the hand. We determine the parameters of this manifold using a novel variant

of the Generative Topographic Mapping (GTM) algorithm, which is a nonlinear latent vari-

able model. By modifying the GTM to operate on the Product-of-Exponentials formulation
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of robot kinematics, we can extract the hand parameters directly from the mapping between

observations and the underlying kinematic structure.

Chapter 3 presents a novel skin-like tactile sensor for use in underwater, pressurized

environments. Fabricated using microfluidic strain gauges embedded in elastomer, this sensor

can exhibit multimodal force sensing (contact normal and two axes of in-plane shear) while

standing up to the harsh environment equivalent to 100 meters of ocean depth. We outline the

fabrication process, which builds on previous work in tactile sensing via liquid metal strain

gauges. We then characterize the environmental sensitivity and force estimation behavior of

the sensor skin as a function of the underwater, pressurized environment.

Chapter 4 outlines the process by which skin-like tactile sensor arrays are designed in

order to measure in-plane torque. We provide criteria for the geometric placement of indi-

vidual sensing elements (taxels) within an elastomeric contact medium in order to optimize

the sensitivity of the sensor skin during contact. Using the experimental sensor skin of 3,

we test the hypothesis that a certain placement of taxels within the medium will enable

the sensor skin to accurately measure in-plane torque. We use an experimental testbed to

create contact forces and torques at the surface of the sensor skin, and a data acquisition

system to capture both taxel readings and ground-truth force-torque readings. To investi-

gate torque estimation capabilities of the sensor, we train a simple CNN model on the data

collected with the testbed. By comparing the performance metrics of the CNN model using

subsets of the taxel array, we are able to validate our suggested design criteria for torque

sensing. In addition to in-plane torque sensing, we show the skin-like sensor is capable of

4-axis force-torque estimation (three axes of linear force and 1 axis of torque).

Chapter 5 provides a summary of the work presented, along with several detailed sug-

gestions for future work on these topics.
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CHAPTER 2

Kinematic Parameter Estimation Using Workspace

Manifold Mapping

This chapter was based on work co-authored with Dr. Eunsuk Chong and Dr. Xiaoyu Wang.

2.1 Abstract

Objective: Inference of the kinematic parameters of one and two degree of freedom (DOF)

joints, such as the metacarpophalangeal and interphalangeal joints of the hand, is achieved

by applying a novel data-driven method on observations of the motion of two rigid bodies

connected to the joint. Methods : Our proposed estimation algorithm relies on a unique

geometry that arises within the motion observations. Using the exponential representation

of rotations, we describe in detail how we formulate the algorithm to successfully extract

kinematic information from the geometry. We verify our method using simulated data from

an ideal 2-DOF linkage and real data collected from a motion capture experiment using a

2-DOF biologically inspired mechanical linkage. With the simulated data, we perform model

sensitivity analysis with respect to parameters and measurement noise. A quantitative and

qualitative comparison study between the proposed algorithm and several benchmark kine-

matic estimation algorithms is provided with an experiment using a 3D-printed finger and
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motion capture data. Results : The mean estimates of the 2-DOF joint axis orientations

deviate from ground truth estimates by 2.46°, with a standard deviation of 3.42°. Con-

clusion: Our method can identify the orientations of a 2-DOF revolute joint axes between

two connected rigid bodies, outperforming existing methods in terms of precision, reliability,

and computational time. Significance: Our proposed method provides improved reliability

for the kinematic parameter estimation task compared to existing state-of-the-art methods.

This method, demonstrated here in the context of human hand motion, can be extended to

any 1- or 2-DOF joint without loss of generality.

2.2 Introduction

The study of multi-joint systems is ubiquitous in fields such as robotics [4], rehabilita-

tion [3, 6], ergonomics [7], animation [8], and sports [5]. In such systems, the underlying

kinematic model that represents physical dimensions and joint structure is a major consid-

eration. In practice, errors between a real-world system and its model are inevitable. In

mechanical systems, these errors can arise from manufacturing variability and mechanical

wear [29]. In biological systems, errors from the non-rigidity and complexity of biological

structures, as well as inherent anatomical variability between individuals, render a priori

kinematic models inaccurate [30]. Accordingly, there is a need to estimate the kinematic

parameters of multi-joint systems, particularly those systems exhibiting many sources of

variability, such as the human hand. In this work, we present a novel data-driven

method that uses workspace manifold mapping and exponential representations

of 3D rotations to estimate the kinematic parameters of multi-joint systems

where direct measurement is infeasible.
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2.2.1 Kinematic Parameter Estimation for Rigid Robots

For systems comprised of rigid links, such as traditional robotic arms, specifying the

position and orientation of the end-effector requires identification of kinematic parameters,

such as link dimensions and joint axis orientations. The field of robot calibration emerged

due to a need for implicit parameter measurement [29]. In a typical implementation, a

robotic end-effector is calibrated across a series of predefined poses [31]. For each pose,

an external reference system, such as a motion capture system, provides a ground truth

measurement that is used to refine a kinematic model of the robot. Similar techniques are

described in [29, 32, 31].

There are significant challenges to applying the aforementioned robot calibration tech-

niques to biological systems for estimating kinematic parameters. A robot’s design specifi-

cations provide estimates for link lengths and revolute joint location and orientation. These

kinematic parameter estimates can be refined using precise calibration poses and direct

measurement of joint angles by encoders. In contrast, design specifications do not exist for

biological systems and it is not possible to command precise, repeatable calibration poses.

2.2.2 Kinematic Parameter Estimation for Human Hands

The kinematic parameters of biological systems, such as the human hand, are generally

unknown. Benoit et. al performed kinematic parameter estimation for knee kinematics

by precisely positioning inertial measurement units (IMUs) according to intra-cortical bone

pins inserted into the proximal tibia and distal femur bones [33]. Due to the intricate and

comparatively small nature of the human hand, however, it is difficult to precisely position

sensors relative to anatomical landmarks non-invasively. In addition, estimation of kinematic
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parameters can be challenging due to factors such as skin motion artifacts, unexpected sensor

movement relative to the skin [33], and soft tissue deformation [34].

A number of methods have been proposed to identify kinematic parameters non-invasively

and without precise placement of sensors relative to anatomical landmarks [35]. For example,

Taylor et al. identified parameters for a one degree-of-freedom (DOF) revolute joint using a

method that exploits the circular motion of two reference frames attached to opposite sides

of the joint [30]. This algorithm, called the Symmetrical Axis of Rotation Approach (SARA),

is commonly implemented by commercially available motion capture system software, such

as Nexus (Vicon, Colorado, USA) [9].

Seel, et al. proposed an alternative algorithm for estimating the kinematics of a 1-DOF

revolute flexion/extension axis of the knee joint [36]. Two IMU sensors were attached to

opposite sides of the joint. The algorithm relied explicitly on kinematic constraints inherent

to the knee structure in order to determine the common rotation axis that linked the motion

of the two rotating sensor frames.

Whereas kinematic parameters for 1-DOF joints can be quickly computed via optimization-

based methods, the estimation of kinematic parameters for 2-DOF joints can be more chal-

lenging. Some estimation methods designed for 1-DOF joints can be applied to 2-DOF joints

if motion is constrained such that the range of joint angles about the dominant axis is at

least twice as large as the range about the non-dominant axis [37]. These methods, which

track optical markers in 3D, rely on the fact that markers will trace out a circle around the

dominant axis. When the non-dominant motion becomes too large, the performance of these

methods deteriorates.

Muller et al. [2] developed a similar measurement system to the 1-DOF method developed

by Seel, et al. [36] to determine the optimal joint axes for a 2-DOF elbow model. Seel, et al.’s

14



Figure 2.1: Schematic of a 2-DOF kinematic chain. Two reference frames (Distal:
MD ∈ SO(3), Proximal: MP ∈ SO(3)) are attached to rigid bodies on either side of two
intersecting revolute joints. The joint axis unit vectors ω̂1, ω̂2 are expressed in the world
frame.

1-DOF method was combined with numerical optimization methods and gradient descent in

order to identify the joint axes in real time using arbitrary motions of the kinematic system.

The 2-DOF method was validated in an experiment where IMUs were placed on proximal

and distal sides of the elbow joint.

Todorov presented a probabilistic framework for estimating the orientations of 2-DOF

joint axes that outputs the most likely kinematic parameters as well as confidence measures

for the estimated parameters [1]. Treating the unknown quantities (joint angles and joint axis

orientations) as state variables of a dynamical system allows the use of an extended Kalman

filter for parameter estimation. One limitation of the approach in [1] is that a sufficiently

close a priori estimate of joint axis orientations is required in order to properly initialize

the optimization routine and converge to accurate kinematic parameter values. Convergence
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does not always occur.

As in Seel, et al. [36], Muller, et al. [2], and Todorov [1], we apply a data-driven method

to discrete-time observations of 1-DOF and 2-DOF motion in order to estimate joint axis

orientations. In contrast to existing algorithms that focus on temporal properties of the

motion dataset, we exploit the geometric structure of the motion dataset. Whereas previous

methods incrementally update the parameter estimates as new data arrives, our method

leverages a batch of discrete-time measurements. We adopt the exponential representation

of 3D rotation [38] and characterize a workspace manifold structure that is inherent to the

discrete-time kinematic dataset.

We refer to our novel method as “workspace manifold mapping.” Critical to our method

is a novel implementation of the Generative Topographic Mapping (GTM) approach [39],

which is a data-driven method developed for parameterizing the structure of manifolds. In

this paper, we show how GTM can be modified to model the exponential representation of

the 3D kinematics of a 2-DOF, revolute joint system. We demonstrate that our proposed

geometric method offers several advantages over prior approaches for kinematic parameter

estimation in terms of accuracy, reliability, and computational time.

The structure of this paper is as follows. In Section 4.4, we introduce the mathemat-

ical formulation for solving the kinematic parameter estimation problem using workspace

manifold mapping. In Section 2.4, we describe the experimental procedure and performance

evaluation using computer simulated data and experimental data from a motion capture

system. In Section 2.5, we discuss a number of advantages and limitations of our novel kine-

matic parameter estimation approach. Section 2.6 concludes with a summary of findings

along with directions for future work.
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2.3 Framework for Kinematic Parameter Estimation via Workspace

Manifold Mapping

The following section describes the process by which the kinematic parameter estimation

problem is solved using workspace manifold mapping. It begins with an introduction to the

requisite techniques in rigid body kinematics and robot modeling. These techniques lead to

a key geometric insight in Subsection 2.3.3 that enables the proposed method of parameter

estimation.

The objective of the proposed workspace manifold mapping method is to identify the

orientations of the axes of rotation that comprise a 2-DOF system. The example shown in this

work is based on a 2-DOF joint with intersecting axes, as for the metacarpophalangeal (MCP)

joint of the human hand [40]. However, the mathematical formulation applies to a 2-DOF

kinematic relationship between any two bodies, regardless of the physical construction of the

joint. The revolute joint axes need not be orthogonal, intersecting, or part of the physical

system (e.g. “virtual” joints, as in models of the human thumb [41]). For convenience,

we will refer to the 2-DOF kinematic relationship as a 2-DOF joint. It should be noted

that, while link lengths are required for a complete set of kinematic parameters, link length

estimation is beyond the scope of this work.

2.3.1 Problem Statement for a 2-DOF Joint

Kinematic parameter estimation of 1-DOF joints has been demonstrated widely using

approaches such as those reviewed in Section 2.2. When the number of revolute joint axes

between adjacent links is two or greater, the task of estimating joint axes is non-trivial.

Consider a kinematic system that is comprised of two rigid bodies connected by a series
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of one or more revolute joints. More specifically, consider a kinematic chain with two inter-

secting revolute joint axes [ω1, ω2] in 3D space (Fig. 2.1). Given our interest in the study of

human hand motion, we demonstrate our method for the metacarpophalangeal joint, which

is typically modeled as having two intersecting and orthogonal axes of rotation [40]. How-

ever, our method does not strictly require the joint axes ω1 and ω2 to be orthogonal. We

affix a distal reference frame MD and a proximal reference frame MP to rigid bodies on ad-

jacent sides of the 2-DOF joint (Fig. 2.1). Using observations of relative rotations between

reference frames MD and MP , we will estimate the revolute joint axes ω1 and ω2.

We can express the relative 3D rotation F of the distal reference frame MD relative to

the proximal reference frame MP as the output of a forward kinematics function FK that

takes as input the revolute joint axes in unit vector form ω̂1 and ω̂2 and joint angles θ1 and

θ2, about each axis of rotation, respectively.

F = FK([θ1, θ2]; ω̂1, ω̂2) (2.1)

Using an inverse kinematics function FK−1, joint angles can be calculated using kinematic

parameters and a relative 3D rotation F .

[θ1, θ2] = FK−1(F ; ω̂1, ω̂2) (2.2)

For both forward and inverse kinematics, the kinematic parameters are assumed to be

known, which allows for the calculation of relative rotation via (2.1) or joint angles via (2.2)

(Fig. 2.2).

We assume that the orientations of reference frames MD and MP are observable, while
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Figure 2.2: Flowchart of quantities and processes related to kinematic chains. White boxes
denote the quantities used to represent system parameters. Shaded boxes denote processes
that produce an output quantity. Dotted and solid lines represent process inputs and outputs,
respectively. Notably, unlike forward and inverse kinematics which can produce a single
output for a single input, kinematic parameter estimation requires a collection of end-effector
orientation observations.

the constant joint axes and time-varying joint angles are unknown. Under these assumptions,

the estimation of the two 3D revolute joint axes in unit vector form ω̂1 and ω̂2 poses a six-

parameter problem. The estimation of the joint angle trajectories {θ1,k, θ2,k}Nk=1 becomes a

2N-parameter problem, where N is the total number of discrete-time observations indexed

by k.
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Given a set of N observations of relative rotations, {Fk}Nk=1, our goal is to estimate

the kinematic parameters [ω̂1, ω̂2] and joint angles {θ1,k, θ2,k}Nk=1 that minimize the error E

between the observed rotation Fk and the estimated rotation F̃k. We define the following

objective function L for the 2-DOF kinematic parameter estimation problem.

min
ω̂1,ω̂2,{θ1,k,θ2,k}

L =
N∑
k=1

E(Fk, F̃k) (2.3)

The kinematic parameter optimization problem stated in (2.3) is nonlinear, and the

solution is not straightforward. In general, closed-form gradients for parameters of kinematic

chains can be derived [42], which allow for the use of gradient-based optimization methods.

However, the computational cost is high due to operations such as integration and matrix

inversion during the gradient evaluation in a high-dimensional space (in our case, a (6 + 2N)-

dimensional space). Additionally, solutions to nonlinear optimization problems are sensitive

to initial conditions and convergence is not always guaranteed.

Our proposed method for solving the kinematic parameter estimation problem expressed

by (2.3) does not rely on computing closed-form gradients. Rather, the workspace mani-

fold mapping approach relies on characterizing a unique geometry that is inherent in the

observations {Fk}Nk=1 when represented using exponential coordinates.

2.3.2 Robotics-based Geometric Representation of 3D Kinematics

Here we provide a brief overview of the exponential representation of 3D rotations and

how a product-of-exponentials formulation designed for robotics can be applied generally

to kinematic chains. The exponential representation is essential to our geometry-based

approach to the kinematic parameter estimation problem. This work builds upon a product-
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of-exponentials framework for the analysis of robotic systems, which was introduced by Lynch

and Park [38].

2.3.2.1 Exponential Representation of 3D Rotation

Underlying the algorithm presented in this paper is the rotation matrix group SO(3), the

Lie group of all 3D rotations [38]. A set of observations of relative 3D rotations {Fk}Nk=1 for

a kinematic chain, as in Fig. 2.1, can be represented as elements of SO(3), which are 3 × 3

real matrices, R ∈ SO(3). These matrices have the properties RTR = I and det(R) = 1.

The matrix Lie group SO(3) has an associated Lie algebra, so(3), which is the set of

3 x 3 real skew-symmetric matrices. We can represent an arbitrary 3D rotation vector

ω = [ωx, ωy, ωz]
T ∈ R3 in skew-symmetric form [ω] ∈ so(3).

[ω] =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.4)

The relationship between SO(3) and so(3) is the matrix exponential map R = e[ω]. The

exponential map, along with its inverse, allows us to transform between SO(3) and so(3).

For any rotation R ∈ SO(3), the vector ω ∈ R3 represents the 3D orientation of a revolute

axis and the magnitude of a rotation about that axis. It is convenient to represent the axis

orientation and magnitude separately as ω = ω̂θ, where the unit vector ω̂ represents the

unit 3D axis of rotation, and θ represents the magnitude (angle) of rotation about the axis.

The quantities ω̂ and θ are known as the exponential coordinates used for the exponential

representation of 3D rotation, and they form the foundation of our proposed kinematic
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parameter estimation method.

A rotation about ω̂ by +π produces the same SO(3) element as a rotation about the

same axis by −π. As such, the set of all 3D rotations in terms of ω can be represented as

a solid sphere with radius of π, with antipodal points representing identical rotations. A

single instance of ω is shown in Fig. 2.3 as an example.

Figure 2.3: Exponential representation ω = ω̂θ of an arbitrary rotation R ∈ SO(3). The unit
vector in the direction of ω represents the unit axis of rotation between the identity matrix
and R, and θ represents the rotation magnitude. The sphere has a radius of π radians.

Any 3D rotation R ∈ SO(3) can be expressed using exponential coordinates and the

initial orientation of the rotated frame R0 ∈ SO(3).

R = eω̂θR0 (2.5)

That is, a coordinate frame initially given by R0 is rotated about a unit axis ω̂ by an angle

θ to become R. The quantities R0, R, and ω̂ are represented in the world frame.
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2.3.2.2 Product-of-exponentials (PoE) Formulation for Kinematic Chains

The product-of-exponentials (PoE) formulation is derived directly from the exponential

representation of 3D rotation. When applied to kinematic chains, the PoE formulation en-

ables the representation of the kinematics of a serial linkage without the need for explicit, a

priori expressions of intermediate reference frames, as with the Denavit-Hartenberg parame-

ter approach to kinematic representation [38]. The ability to represent kinematics using only

base (proximal) and end-effector (distal) reference frames is particularly beneficial when one’s

goal is to estimate the location and orientation of multiple joint axes between the frames.

Applying the PoE formulation to the kinematics of the 2-DOF system in Fig. 2.1, we

assert the following expression for the rotation of a distal body with respect to the world

frame.

MD,k = e[ωP ]e[ω̂1]θ1,ke[ω̂2]θ2,kMD,0 (2.6)

where [ω̂1], [ω̂2] ∈ so(3) represent the intersecting joint axes, [θ1,k, θ2,k] represent the angles

of rotation about the joint axes for the kth discrete observation, and MD,0 represents the

initial orientation of the distal reference frame. Additionally, e[ωP ] represents the rotation of

the proximal reference frame MP with respect to the world frame.

e[ωP ] = MP,kM
−1
P,0 (2.7)

The relative 3D rotation F ∈ SO(3) (or f ∈ so(3)) represents the rotation of the distal

reference frame from the perspective of the proximal reference frame. We define the relative

rotation F ∈ SO(3) and its associated Lie algebra f ∈ so(3) expression as follows.
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F ≜ e[ω̂1]θ1e[ω̂2]θ2 (2.8)

f = log(F ) = log(e[ω̂1]θ1e[ω̂2]θ2) (2.9)

We can also express the relative 3D rotation F in (2.8) using rotations expressed in the

world frame.

F = MP,0M
−1
P MDM

−1
D,0 (2.10)

Importantly, (2.10) can be evaluated using observations, denoted by Fk and fk = log(Fk),

that can be collected using a motion capture system or IMUs, for example. The kinematic

parameters and joint angles in (2.8) and (2.9) are unknown and will be estimated by lever-

aging experimental data and (2.10).

2.3.3 The Workspace Manifold

In this subsection we describe how the workspace of a kinematic chain can be visualized

in 3D using exponential coordinates. We show how 1-DOF and 2-DOF systems of revolute

joints result in canonical forms that can be characterized and used to estimate kinematic

parameters and joint angles simultaneously.

Recall from Section 2.3.2.1 that any 3D rotation R ∈ SO(3) can be represented in

exponential coordinates by ω̂θ, where ω̂ is the unit joint axis vector of the rigid body rotation,

and θ is the joint angle about that axis.

Consider a kinematic chain with a 1-DOF revolute joint whose joint angle can vary from

θ = [−π, π). If the system is moved throughout the entirety of its reachable space, the

workspace manifold would be represented as a line in so(3) that passes through the center
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of a 3D sphere (Fig. 2.4a). The linear form of the workspace manifold reflects the fact that

there is a single revolute joint axis and the axis has a constant 3D orientation ω̂1. While

the radius of the 3D sphere is π, the length of the line depends on the allowable joint angle

range.

Now, consider the extension of this visualization to a kinematic chain with two intersect-

ing revolute joints. As is common for simple kinematic models of MCP joints of the human

hand, we have chosen an orthogonal, intersecting pair of axes ω̂1, ω̂2 [40]. When the 2-DOF

system moves within its workspace, the observations of the end-effector orientation within

so(3) take on a unique form. A surface emerges that is a smooth 2D manifold in so(3) and

is uniquely determined by the two joint axes (Fig. 2.4b).

The collection of so(3) observations lie on the workspace manifold of the kinematic chain

that represents the set of all possible relative rotations between the proximal and distal

reference frames of the kinematic chain. All points that lie on this workspace manifold

surface are explicitly determined by (2.9). The surface is curved, but there exist two straight

lines that lie completely within the surface. Those two lines are equivalent to the two unit

joint axes ω̂1 and ω̂2.

That there exist two straight lines in so(3) that lie completely within a given 2-DOF

workspace manifold arises from the fact that the observations represent a combination of

two revolute joint motions. If the second joint angle trajectory were fixed at zero, then the

system would appear to be 1-DOF, and the workspace manifold would collapse into a single

line representing ω̂1θ1, where θ1 = [−π, π). The best fit line to that 1D manifold is the ω̂1

joint axis. Likewise, if the first joint angle trajectory were fixed at zero, then the workspace

manifold would collapse into a single line representing ω̂2θ2. Combining motion for both

axes, the manifold is curved due to the non-commutativity of 3D rotations. It is important
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Figure 2.4: (a) 1-DOF workspace manifold comprised of a straight line (red). The red points
indicate elements of so(3) corresponding to arbitrary relative rotations of a 1-DOF kinematic
system with angles θ ∈ (−180, 180] about a common axis ω̂1. (b) 2-DOF workspace manifold
comprised of a curved surface (red). The red points indicate elements of so(3) corresponding
to arbitrary relative rotations of the 2-DOF kinematic system represented in (2.9) with two
example axes ω̂1 (black) and ω̂2 (blue).

to note that the intersection of ω̂1 and ω̂2 in so(3) is a result of the so(3) visualization and

is entirely independent of whether the two joint axes intersect physically in the kinematic

chain. The geometry of the workspace manifold is discussed further in Section 2.5.2.
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The task of estimating the joint axes from observed motion of 1-DOF and 2-DOF kine-

matic chains is, therefore, reduced to the task of finding the lines that exist completely within

the observed workspace manifold. The following subsections detail our estimation method

that leverages this geometric interpretation of the workspace manifold.

2.3.4 Parameter Estimation of the Workspace Manifold

The workspace manifold is a collection of relative rotations between proximal and distal

reference frames in a kinematic chain, which is a 2-DOF system in our example (Fig. 2.1).

The PoE formulation provides an analytical approach for expressing a relative 3D rotation

in terms of joint axis orientations and joint angles. The problem of estimating joint axis

orientations given a single observation of a relative rotation is underdetermined since the

joint angles are also unknown.

2.3.4.1 Latent Variable Models

In order to estimate joint axes when joint angle trajectories are unobserved, we consider

a latent variable model. Latent variable models such as the hidden Markov model [43] are

useful when observations of a system can be explained by a function of unobserved variables

of the system.

The expectation-maximization (EM) algorithm is a commonly used iterative method for

estimating the observed and unobserved (latent) variables [44]. The kinematic parameter

estimation problem is well-suited for this approach, as we can treat the joint axis orientations

as the model parameters and the joint angles as the model’s latent variables. Given an initial

estimate for the latent variables, the EM algorithm determines an estimate for the model
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parameters that maximizes the log-likelihood function of the model given the observed data.

The updated model parameter estimates produce updated estimates for the latent vari-

ables, which are then fed back into the likelihood maximization. This process is repeated

until the model parameters converge. The following subsubsection explains the process by

which we manipulate (2.9) such that maximum likelihood estimates of the joint axes can be

found.

2.3.4.2 Generative Topographic Mapping (GTM) Algorithm

The GTM algorithm is a geometrically-inspired, latent variable model that can be used

to estimate the parameters of a nonlinear mapping function between a high-dimensional

data representation (observations) and a low-dimensional latent representation (latent vari-

ables) [39]. Points in a high-dimensional data space RD are assumed to have intrinsic di-

mensionality that is of a lower dimension, called the latent space RL. A simple example is a

curved 2D manifold in R3 similar to that shown in Fig. 2.4b.

The GTM is often used as a method of nonlinear dimensionality reduction (i.e. RD → RL)

for visualization of high-dimensional data [39, 45, 46]. One of the GTM’s utilities is the

estimation of the mapping function f(Θ|W ),RL → RD, which maps points from the low-

dimensional latent space representation to their corresponding points in the high-dimensional

data space RD. The latent variables are denoted by Θ and the mapping parameters are

denoted by W .

The algorithmic structure of the GTM algorithm is based on that of the expectation-

maximization algorithm. However, the GTM approach modifies two central components:

the definitions of the prior distribution and the likelihood function. The prior distribution θ
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is comprised of a grid of points in latent space RL. The GTM makes an initial hypothesis

for the mapping function parameters W , which results in a hypothetical distribution f̃ in

RD. In general, the distribution f appears to be that same grid of points, transformed to lie

on a smooth L-dimensional manifold. The GTM uses a likelihood function that compares

the set of observations {f} with the hypothetical manifold formed by f̃ . Maximizing this

likelihood function with respect to the mapping parameters produces the optimal estimates

of the latent space representation, which are the joint angle trajectories θ1, θ2 in our example.

Bishop et al. proposed a generalized linear regression model for the nonlinear mapping

that uses a vector of basis functions Φ(Θ) = [ϕ1(Θ), ϕ2(Θ), ...] where Θ are the latent vari-

ables, andW [39] is the matrix of weight coefficients.

f(Θ;W ) = Wϕ(Θ) (2.11)

This generalized linear regression model can approximate any mapping from RL → RD as

a sum of Gaussians. However, the number of basis functions and scaling of the Gaussian

distributions must be selected a priori. Improper scaling of the Gaussian distributions can

significantly affect the smoothness of the estimated manifold and is commonly avoided by

hand-tuning the relative magnitudes of the weights in W [39].

A key contribution of our work is the introduction of a principled alternative to Bishop

et al.’s generalized model for the nonlinear mapping [39] that does not require hand-tuning

the relative weight magnitudes W in (2.11). Specifically, we modify the generalized linear

regression model to reflect the kinematic constraints expressed by (2.9). In the following

subsection, we describe our alternative model, which is explicitly defined in terms of the

2-DOF kinematic equations.
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2.3.5 GTM Algorithm with Kinematic Constraints (GTM-KC)

Here we present our method of modifying the GTM algorithm for estimating the joint

axes in kinematic chains. As our method introduces kinematic constraints into

the GTM formulation, we refer to our algorithm as the GTM algorithm with

kinematic constraints (GTM-KC).

We seek a nonlinear mapping function with the following matrix form:

F = Φ(θ)W (ω) ∈ RN×3 (2.12)

where the discrete-time observation matrix F = [vec([f1]), ..., vec([fk]), ..., vec([fN ])]
T for

[fk] ∈ so(3) comes from the nonlinear mapping (2.9) and contains a collection of observations

of the end-effector orientation. The mapping parameters ω represent the joint axes of the

kinematic chain, and the joint angles are represented by θ.

The kinematic equation laid out in (2.9) is not immediately compatible for use with

the GTM algorithm, which requires the product of two functions as in (2.12): a set of

basis functions of the form ϕ(θ) and a parameter matrix W (ω). At the same time, we

recognize there is no closed-form simplification of the right-hand side, log(e[ω̂1]θ1,ne[ω̂2]θ2,n)

since rotations in SO(3) do not generally commute.

To ensure compatibility between the GTM algorithmic structure and the kinematics

representation in (2.9), we employ a numerical approximation to the product of matrix

exponentials, called the Baker-Campbell-Hausdorff (BCH) formula [47]:
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BCH(A,B) = log(eAeB)

= A+B +
1

2
⟨A,B⟩

+
1

12
(⟨A, ⟨A,B⟩ − ⟨B, ⟨B,A⟩) + ...

(2.13)

where angle brackets denote the commutator, ⟨A,B⟩ = AB −BA. In the case where A and

B commute, then ⟨A,B⟩ = 0 and we are left with the trivial solution, log(eAeB) = A + B

(note: this does not apply to SO(3), in general). The BCH formula is an effective and

appropriate numerical approximation of the log of the product of two matrix exponentials,

as it represents the solution as a series of nested commutator operations, which are easily

accessible in the case of the group SO(3).

For clarity, (2.14) shows the BCH formula explicitly applied to the nonlinear mapping

(2.9):

fk = log(Fk) = log(e[ω̂1]θ1,ne[ω̂2]θ2,k)

= ω̂1θ1 + ω̂2θ2 +
1

2

〈
ω̂1θ1, ω̂2θ2

〉
+

1

12

(〈
ω̂1θ1,

〈
ω̂1θ1, ω̂2θ2

〉〉
−
〈
ω̂2θ2,

〈
ω̂2θ2, ω̂1θ1

〉〉)
+ ...

(2.14)

where we have modified the commutator operator for vectors,
〈
ω1θ1, ω2θ2

〉
≜ vec

(〈
[ω1θ1], [ω2θ2]

〉)
.

We can express the BCH series in (2.14) as a matrix formula by executing the com-

mutators and recognizing that joint angles θ1,n, θ2,n are scalars that can be pulled out of

the commutator terms. This allows us to separate (2.14) into the product of two matrix

functions as desired in (2.12):
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Φ(θ1,n, θ2,n) =[
θ1,n θ2,n

1

2
θ1,nθ2,n

1

12
θ21,nθ2,n

−1

12
θ1,nθ

2
2,n

] (2.15)

W (ω1, ω2) =



ω1

ω2

[ω1, ω2][
ω1, [ω1, ω2]

]
[
ω2, [ω2, ω1]

]


(2.16)

Separating (2.14) into a product of basis functions that operate on the latent variables

(2.15), and the kinematic parameter matrix (2.16) allows the nonlinear mapping of the GTM

to be replaced by the 2-DOF kinematics representation of (2.9).

2.3.5.1 PCA Initialization

Iterative optimization methods, of which the GTM-KC method can be considered a

member, require an initial estimate where the search within the solution space begins. For

the optimization method to be robust against convergence to a suboptimal minimum, it is

critical that the initial condition be carefully chosen.

The GTM-KC method determines its own initial condition by solving a low-order ap-

proximation of the kinematics equation (2.14). Instead of fitting a workspace manifold to

the observations in so(3), the initial iteration of the GTM-KC algorithm fits a plane. This

plane is found by performing PCA on the observations. The first two principal components

of the data are used as the initial conditions for ω1 and ω2.
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2.3.5.2 Inverse Kinematics via the GTM-KC Method

Reconstructing the motion of a kinematic chain requires the constant joint axes and time-

varying joint angles. With the constant parameters identified via the GTM-KC method, the

task becomes estimating the joint angle trajectories via inverse kinematics. The matrix form

of our kinematics equations (2.12) can provide insight into the joint angle trajectories that

created the end-effector orientation trajectories F . Solving for Φ(θ) in a least-squared sense

leads to:

Φ̃(θ) = FW (ω)+ (2.17)

where we take the Moore-Penrose pseudoinverse of the parameter matrix W . This provides

joint angle trajectory estimates, as the first two columns of Φ are θ1 and θ2, respectively. The

system of equations being solved in (2.17) is highly nonlinear, so solutions are not unique.

In Section 2.4.2, we show that while (2.17) is not sufficient for inverse kinematics alone, the

joint angle trajectory estimate is accurate enough to act as the initial condition for typical

numerical methods of inverse kinematics, such as the Newton-Raphson method [48].

2.4 Experimental Procedure and Evaluation

With the method now developed, we present a series of case studies that test the perfor-

mance of the GTM-KC kinematic parameter estimation algorithm and compare its perfor-

mance against four benchmark methods. Performance metrics for the GTM-KC algorithm

were obtained from simulations of an idealized 2-DOF system (Fig. 2.1). With the simulated

data we justify a key algorithm design choice and evaluate the robustness of the algorithm
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against sensor noise.

Additionally, we present the results of an experiment in which a motion capture system

was used to measure the movement of a 3D-printed kinematic chain similar to an MCP joint.

Using the motion capture data, we provide performance metrics for the GTM-KC algorithm

alongside four alternative methods [30],[36],[2],[1].

2.4.1 Performance Metrics

Here, we present the metrics used to assess the performance of our GTM-KC method

and benchmark kinematic parameter estimation techniques. We assess the performance of

the methods on simulated kinematic data and data from motion capture experiments.

The application of a parameter estimation algorithm on collections of observations of

2-DOF motion will produce estimates for the joint axis orientations [ω1, ω2]. A batch of

observations, when fed into the parameter estimation method, produces joint axis estimates.

The error of an estimated joint axis from a single batch is defined as the angle between the

estimated axis unit vector and the “ground-truth” axis unit vector ωGT . In order to further

assess estimation performance, we collect multiple batches for a given kinematic chain. These

batches have a common pair of ground-truth axis vectors such that the mean estimated axis

ω̄ and standard deviation of the estimation algorithm from batch to batch can be evaluated.

For a given number of batches B, the metrics of bias and standard deviation will be used:

bias = ∠
(
ω̄, ωGT

)
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std dev =

√√√√ 1

B − 1

B∑
b=1

∠
(
ωb, ωGT

)2
where ωb represents the estimated joint axis for batch index b, and ∠

(
ωi, ωj

)
denotes an

operator that calculates the angular difference between two axes ωi and ωj.

2.4.2 Performance Assessment: Simulated Model

The first case study of the GTM-KC algorithm was to evaluate estimation performance

using simulated data from an idealized 2-DOF kinematic model. Additionally, estimation of

1-DOF motion was evaluated by constraining one joint from the idealized model.

We chose biomechanically relevant joint parameters [ω1, ω2, θ1, θ2] using an idealized

metacarpophalangeal (MCP) joint of a human index finger as a model. The joint axes

were chosen to be orthogonal and intersecting.

First, we generated a pair of orthogonal joint axes, which we created by using the first

two columns of a randomly generated SO(3) matrix:


| | |

ω1 ω2 ∗

| | |

 = Rx(θx)Ry(θy)Rz(θz)

:
[
θx, θy, θz

]
∼ unif(0, 2π)

(2.18)

where Rx(θx) represents a rotation about the x axis by the amount given by θx, and similarly

for y and z. The distribution unif(a, b) notes that θx, θy, θz were drawn from a uniform

distribution between a and b.

35



This method of selecting joint axes enforced orthogonality, since any two columns of an

SO(3) matrix are necessarily orthogonal. While we assume orthogonality of ω1 and ω2 to

represent the MCP joint as in [40], there is no assumption of orthogonality when solving

for ω1 and ω2 using the GTM-KC method. Assigning θ1 as an adduction/abduction joint

angle and θ2 as a flexion/extension joint angle, we imposed bioinspired constraints l1, l2 on

a random sampling of the joint angle space:

[
θ1,k θ2,k

]
∼

[
unif(−l1, l1) unif(0, l2)

]
, (2.19)

where l1 = 30◦, l2 = 135◦ based on [49], k = 1 : N , and the number of simulated data points

N was set to 2000.

One could choose a more biomimetic approach by generating joint angle trajectory func-

tions that more realistically represent the motion of a human finger (e.g. sinusoids or other

continuous functions). Given that the performance of the algorithm is independent of the

shape and smoothness of the joint angle trajectories, we simply sampled joint angles from

uniform distributions as in (2.19). In order to create the timeseries of so(3) observations s,

we expressed the forward kinematics in terms of our generated joint parameters as per the

process outlined in (2.5) through (2.8):

Mk = e[ω1]θ1,ke[ω2]θ2,kM0 (2.20)

A matrix logarithm was then used to create a timeseries in so(3) according to (2.9).

To simulate 1-DOF input data, we simply set θ2,k = 0, k = 1 : N and use the same

generative method as in the 2-DOF case.
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We then applied the GTM-KC algorithm to the simulated kinematic data. We generated

100 datasets for both 1-DOF and 2-DOF motion according to the procedure described in

(2.19) - (2.20). Table 2.1 and Fig. 3.5 show the GTM-KC algorithm’s estimation results for

idealized 1-DOF and 2-DOF motion.

Figure 2.5: (a) 1-DOF and (b) 2-DOF simulation results. Figures show simulated obser-
vations (black points), estimated ω1 and ω2 axes (red and blue arrows, respectively), and
ground truth ω1 and ω2 axes (red and blue dotted lines, respectively).
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2.4.2.1 Sensitivity to Noise Magnitude

In practice, body-worn sensors suffer from sensor slip and skin motion artifacts. In

addition to sensor measurement noise, these artifacts prevent the observed data from lying

perfectly within the workspace manifold. In simulation, we can investigate the robustness

of the algorithm to noise that is purposely added to each of the simulated end-effector

observations sk.

sk = log(e[ω1]θ1,ke[ω2]θ2,k) + ϵk (2.21)

where ϵk ∈ R3 represents a stochastic error vector that is added to each simulated observation

of MD. The magnitude of the error vector was drawn from a uniform distribution having

a lower bound of 0° and an upper bound that ranged from 3° to 30° in 3° increments. The

direction of the error vector was randomized using the first column of a randomly generated

SO(3) matrix as in (2.18). The data collection procedure was comprised of 100 trials per

maximum noise magnitude.

Fig. 3.6 shows the error in the estimated rotation axes as a function of the maximum

noise magnitude ∥ϵ∥max. When applied to kinematic data with no added noise, the GTM-

KC algorithm yielded axis estimates with an average bias of 0.57°. The bias and standard

deviation of the estimated axes increased as the maximum noise magnitude increased. The

degradation of performance of the GTM-KC algorithm at increased noise amplitude indicates

it should only be used in cases with an acceptable amount of noise. In order to determine

this noise threshold, pairwise t-tests were performed between the zero-noise axis estimates

and estimates with increasing noise. The null hypothesis (that the axis estimates from a

dataset with elevated noise come from the same distribution as the zero-noise dataset) failed
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to be rejected above 8° of noise. Thus, we can say that the GTM-KC is robust to noise up

to 8°.

Figure 2.6: Sensitivity of the GTM-KC algorithm to simulated noise for a 2-DOF kinematic
chain is shown using box and whisker plots. Each boxplot indicates the 25th, 50th, and 75th

percentiles. The whiskers extend to the most extreme data points that are not considered
outliers (“+”) having values of more than 1.5 times the interquartile range from the top or
bottom of the box. The error shown is the pooled average across all axis estimates.

Table 2.1: Kinematic Parameter Estimation, Simulated Results
1-DOF Simulation

Results
2-DOF Simulation

Results

Joint
Axis

Bias Std. Dev Bias Std. Dev

ω1 0.04° 0.13° 0.17° 0.87°
ω2 - - 0.03° 0.92°
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Table 2.2: Sensitivity of joint axis estimates to order of the BCH approximation function

Order of Approx. Bias Std. Dev

1 11.6° 1.62

2 0.91° 1.71

3 0.87° 1.42

2.4.3 Sensitivity to Order of the BCH Approximation Function

The number of terms used in the BCH approximation function (2.14) is a design choice.

With higher-order approximations comes higher accuracy, but at the cost of increased com-

putational cost. We assess here the performance of the GTM-KC algorithm as a function of

the number of BCH terms used in the mapping.

The nonlinear mapping F = Φ(θ)W (ω) in (2.12) is the matrix form of the BCH formula,

which is an infinite series. The higher order terms contribute to the warped nature of the

workspace manifold, with lower-order approximations of (2.14) more closely resembling a

flat plane.

In Table 2.2, we show the relationship between the order of the BCH approximation

function and estimation error for the simulated 2-DOF kinematic chain data. For an order-1

approximation, only the first two terms of the BCH formula were used. These two terms

are simply the linear combination of θ1 and θ2. The order-2 and order-3 approximations

additionally use nonlinear combinations of θ1 and θ2, as in (2.15) and (2.16). The inclusion

of the order-2 term greatly improved the performance of the estimation (Table 2.2). Approx-

imations beyond order-3 were tested, but the additional nonlinear terms had a diminishing

effect on the performance of the GTM-KC method.

Based on the results from Table II, we recommend using an order-3 approximation to

the kinematic equation of (2.14), as it yields accurate estimates at a negligible increased
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computational cost. In the motion capture study of Section IV.B, we used the order-3

approximation, which uses the first five elements as shown in (2.15) and (2.16).

2.4.4 Performance Assessment on Motion Capture Dataset

In order to experimentally validate the GTM-KC algorithm, we collected motion capture

data from physical 1-DOF and 2-DOF systems. Critical to this experiment was a well-defined

ground truth measurement of joint axis parameters. We designed a 3D-printed, passive

mechanical linkage inspired by the dimensions and degrees of freedom of the human finger

(Fig. 2.7). In particular, we modeled the MCP joint as two independent, orthogonal and

intersecting degrees of freedom [40]. Observations of the orientations of bodies on opposite

sides of the 2-DOF joint (MD,MP , as in Fig. 2.1) were used to estimate the kinematic

parameters of the joint axes.

Evaluating the performance metrics described in Section 2.4.1, required an accurate

ground truth measurement must be made. The mechanical setup shown in Fig. 2.7 makes

clear the ground truth values for the kinematic parameters ω̂1, ω̂2. It is pictured in the initial

pose M0, with θ1 and θ2 set to zero. The initial orientations of the ground truth axes ω̂1, ω̂2

are assumed to be equivalent to the z and y axis of the proximal frame.

A motion capture system (six MX T40 cameras, Vicon, UK) was used to collect observa-

tions of motion capture markers affixed to the physical model at a sampling rate of 100 Hz.

During data collection, the mechanical linkage was moved randomly through its workspace

by an experimenter. The linkage’s motion was kept within the bioinspired workspace limits

described in Section IV.B. Two datasets were captured: The 2-DOF dataset, in which both

axes were allowed to rotate, and the 1-DOF dataset, in which the joint axis ω1 was fixed to

only allow flexion/extension of the distal frame. The total number of observations for each
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Figure 2.7: Mechanical linkage with motion capture markers representing reference frames
that are distal (MD) and proximal (MP ) to a 2-DOF joint, [ω1, ω2].

dataset was 60,000. The so(3) observations of a representative subset of 2-DOF motion from

the motion capture study are shown in Fig. 2.8.

In order to evaluate the performance of the GTM-KC algorithm and benchmark methods,

each method was applied to a number of subsets of the dataset. Each dataset was partitioned

into 20 equal batches, such that each batch contained 3,000 sequential observations and no

batches overlapped. The ground truth kinematic parameters were held constant within each

dataset, so estimates from batch to batch could be evaluated according to the performance

metrics laid out in Section 2.4.1.

Fig. 2.9 and Table 2.3 show the performance of the GTM-KC method and benchmark

methods applied to the motion capture datasets. On the 1-DOF dataset, the GTM-KC was

compared to the symmetrical axis of rotation (SARA) method [30], Todorov’s method [1],
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Figure 2.8: A continuous subset of observations of 2-DOF motion taken from the motion
capture study.

and the method of Seel et al. [36]. For the 2-DOF dataset, the GTM-KC was compared to

the methods of Todorov [1] and Muller et al [2].

On the 1-DOF motion capture dataset, the GTM-KC outperforms the benchmarks with

respect to bias, standard deviation, and computation time. Within the N = 20 dataset the

1-DOF estimates were robust, in that each algorithm did not include any significant outliers

(bias > 15°).
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Table 2.3: Parameter estimation results for 1-DOF and 2-DOF physical models
1-DOF Physical Model (N=20) 2-DOF Physical Model (N=20)

Algorithm
ω2

Bias(°)
ω2

Std. Dev (°)
Computation
Time (s)

ω1

Bias(°)
ω1

Std. Dev (°)
ω2

Bias(°)
ω2

Std. Dev (°)
Computation
Time (s)

GTM-KC 1.41 (0) 0.20 0.0008 2.46 (0) 3.42 2.41 (0) 2.70 1.72
Seel et al. 2.11 (0) 0.39 0.14 1.52 (0) 4.01 2.29 (4) 9.86 8.54
Todorov 0.85 (2) 0.97 17.01 1.64 (0) 2.68 5.01 (4) 7.41 25.64
Todorov 0.76 (3) 1.10 16.99 4.25 (2) 21.67 2.59 (6) 22.02 25.71
SARA 1.74 (0) 0.22 *

Parenthetical entries in the [ω1, ω2] bias columns represent the number of significant outliers
for that algorithm (bias > 15°) within the N=20 experiment.
* The SARA method is implemented within the VICON Nexus proprietary development
environment, so a comparable computational time estimate could not be taken.

Figure 2.9: 2-DOF joint axis orientation estimation results from the GTM-KC method
compared to two existing estimation methods [1, 2]. dotted lines represent ground truth
measurements of ω1 (red) and ω2 (blue) joint axis orientations.

The behavior of the benchmark algorithms was less repeatable on the 2-DOF set than

on the 1-DOF dataset. As such, the performance metrics listed in Table 2.3 do not include

significant outliers. In the 2-DOF case, the GTM-KC and the method of Muller et al [2]. both

produced biases below 3° for both axes, with zero and four total outliers, respectively. The

standard deviation of the estimates of the GTM-KC method were not significantly different

from that of Muller et al.’s method for the ω1 axis (σ = 4.09° vs 4.01°, respectively),

and outperformed Muller et al.’s method in estimating the ω1 axis (σ= 3.41° vs 9.86°,

respectively).
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The protocol for applying Todorov’s method in [1] to the motion capture dataset was

modified in light of the method’s sensitivity to initial conditions. An a priori estimate of

each joint axis was required to seed their optimization-based algorithm. Using the ground

truth values of the joint axes as the initial conditions resulted in joint axis estimates with low

bias and low standard deviation (e1, e2=(1.64° ,5.01°), σ1, σ2=(2.68°,7.41°)). The robustness

of Todorov’s algorithm also appeared to be better with ideal initial conditions, with zero

ω1 outliers and four ω2 outliers. To reflect the uncertainty of a real-world scenario, an

additional evaluation of Todorov’s algorithm was performed, where the a priori joint axis

estimates were selected to be 5° offset from the ground truth values. This resulted in

increased ω1 bias (e1=(4.25°)), increased standard deviations ((σ1, σ2)=(21.67°,22.02°)) and

an increase in the number of outliers (2 and 6, for ω1, ω2, respectively). Without explicit

knowledge of Todorov’s procedure of selecting these initial conditions, we present these split

results in a good-faith attempt at evaluation relative to the other methods.

2.4.5 Assessment of Inverse Kinematics via the GTM-KC

The Product-of-Exponentials (PoE) kinematic model, upon which the GTM-KC per-

forms parameter estimation, can also be used to estimate joint angle trajectories. Using the

inverted axis estimation equation (2.17), we solved for joint angle trajectories [θ1, θ2] on a

representative sample of the motion capture dataset (Fig. 2.10).

In addition to the “Inverse-GTM-KC” inverse kinematics results, results from a stan-

dard Newton-Raphson iterative root finding method were also provided [48]. For a highly

nonlinear joint angle parameter space, fast and robust convergence of the Newton-Raphson

method requires a set of initial joint angle estimates that is close to the true joint angle

values. As such, the Newton-Raphson results seen in Fig. 2.10 were initialized by the results
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Figure 2.10: The joint angle estimates for a) θ1 and b) θ2 are shown for two inverse kinematics
approaches: using a Newton-Raphson method (dashed line) and using the inverse of the
GTM-KC equation (solid thick line). The true joint angle values are shown with a solid thin
line.

from the Inverse-GTM-KC method. While the Inverse-GTM-KC is an intriguing prospect

as it provides a single-shot estimate of the inverse kinematics, its performance is inferior to

that of a typical iterative Newton-Raphson root-finding method when that method is first

seeded by the Inverse-GTM-KC (mean error of 11.2° vs. 1.4°, respectively).
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2.5 Discussion

2.5.1 Comparison: GTM-KC and Benchmark Methods

There were two general families of algorithms available for estimating the parameters of

a kinematic chain: (i) real-time iterative methods whose estimates converge after a finite

number of steps [2],[1] and (ii) a post-process method which relies on the geometry of a

sufficiently large set of observations (the GTM-KC). One stated advantage of the iterative

methods was the ability to estimate the constant and varying kinematic parameters in real

time, with new observations updating the parameter estimates. While the GTM-KC could

be modified to compete in this regard, the focus of this paper was to estimate the constant

axes representing the MCP joint. With a sufficient number of observations (3000 for the

motion capture study), the GTM-KC can produce joint axis estimates accurate to within 3°,

which can then be used as a calibrated kinematic model for animation and further motion

analysis.

A tricky aspect of the comparison study of Section 2.4.4 was the diversity of methods

to address the initial conditions of an optimization. The 2-DOF algorithm of Muller et al.

used a hard-coded set of initial conditions for their optimization algorithm which appear to

generalize to any set of joint axes [2]. As per Fig. 2.9 and Table 2.3, Todorov’s algorithm

appears to perform better when the initial conditions are close to the ground truth axes.

The immunity of the GTM-KC to initial condition sensitivity comes from it producing its

own initial condition via PCA. This low-dimensional linear model of the kinematics appears

to produce estimates which are close enough to the optimal axis orientations such that the

nonlinear GTM-KC method does not produce significant outliers.

47



2.5.2 Geometry of the Workspace Manifold

At the core of this work is the geometry of the observations of 2-DOF kinematics in

so(3). The workspace manifold can be understood as the set of all output points of the PoE

formula log(e[ω̂1]θ1e[ω̂2]θ2), with a static pair ω̂1, ω̂2 defining the shape of the manifold, and

variables θ1, θ2 defining points along that manifold. The PoE formulation and the exponential

representation of rotation are often touted for their geometrical interpretation, which our

estimation method leverages.

The curved nature of the workspace manifold arises due to the fact that rotations are

non-commutative. If the rotations defined by e[ω̂1]θ1 and e[ω̂1]θ1 commute, then the exponents

in the PoE formula combine in the trivial fashion. In this case, according to (2.14) the

workspace manifold would be defined as ω1θ1 + ω2θ2, the range of which is a plane in R3.

Since the rotations do not commute, we need the nonzero commutator terms from the BCH

formula found in Equation (2.14). As more terms from (2.14) are added, the workspace

manifold deviates from this plane.

In reality, the so(3) observations of end-effector orientation are only partially described by

the workspace manifold; the real-world observations do not exist precisely on the manifold.

The observations deviate from the surface due to approximation errors from the BCH formula

in (2.14), sensor noise, and sensor drift. Performing the GTM-KC method can be understood

as finding the best-fit 2-DOF workspace manifold that fits the data. The surface normal

distance between the best-fit manifold and a given end-effector observation can be interpreted

as a component of motion that is not allowed for that specific 2-DOF system. As an example,

if the distal sensor in Fig. 2.1 started rotating around an axis orthogonal to both ω1 and ω2,

this would appear in the sphere of so(3) to be a point moving off of the 2-DOF workspace
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manifold, along a line which is normal to the manifold. Performing inverse kinematics for a

given observation can be understood as projecting the end-effector observation onto the 2-

DOF workspace manifold and finding the corresponding parameters [θ1, θ2], which minimizes

the distance to the end-effector observation.

We chose the PoE formulation as a model-based method for describing the two joint

axes, and the GTM-KC algorithm as an approach that is built directly on top of the PoE.

Alternative model-free methods to estimate the joint axes are also possible, which could

identify the two straight lines that best fit within the manifold without explicitly utilizing

the PoE formulaic description of the manifold. However, we believe the model-based method

has the most merit, since it provides explicit prior knowledge to GTM-KC algorithm.

2.5.3 Limitations

We describe here the limitations of the method introduced in this paper, and the chal-

lenges that persist in real-world implementation.

We believe a primary limitation is that the GTM-KC output is sensitive to the quality

of motion used to create the input dataset. As an illustrative example, consider a 2-DOF

motion dataset where one of the degrees of freedom was restricted to only allow negligible

rotations. It is likely that the estimation of this restricted axis would suffer compared to

an axis with higher magnitude rotations. While this sensitivity to the characteristics of the

input data was addressed briefly in 2.4.2, a more detailed characterization of input data

sensitivity is required in order to develop guidelines for proper use of the GTM-KC method

with human hand motion.

A critical difference betweeen the GTM-KC method and the benchmark methods is that
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the GTM-KC is intended to be used off-line. Whereas the 2DOF methods of Muller et. al

[2] and Todorov [1] incrementally improve joint axis estimates as new data is fed into the

algorithm, the GTM-KC was developed to produce axis estimates only after a batch of data

was previously collected. In our study, we collected 3,000 samples over 30 seconds to be used

as input for the axis estimation algorithm. The convergence of the iterative Expectation

Maximization model underlying the GTM-KC was not directly assessed; the comparison

study in 2.4.4 used an N = 3, 000 dataset, but the performance behavior of the GTM-KC

was not assessed at smaller sample sizes.

The case studies presented in 2.4 assumed that the rotation axes of the 2-DOF joint

were orthogonal. While we believe that the GTM-KC does not rely on that assumption, the

generalization of the GTM-KC algorithm to non-orthogonal axes was not demonstrated.

The primary application of this method, as discussed throughout this paper, has been

the study of human hand motion. While we believe that the 3d-printed finger model is a

reasonable facsimile to the MCP joint, our work did not evaluate the kinematic parameter

estimation method on actual human hand motion.

2.6 Conclusion and Future Work

We introduced the GTM-KC method as a novel and effective approach for estimating the

kinematic parameters of 1- and 2-DOF kinematic chains of revolute joints. The GTM-KC

method matches or outperforms benchmark algorithms [30, 36, 2, 1] in terms of accuracy

and precision, and it outperforms in terms of computational efficiency.

A long-term goal of this work is to apply the GTM-KC method to develop accurate,

subject-specific biomechanical models of the human hand. Merging the work discussed in this
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paper with state-of-the-art techniques in human hand motion capture should be considered

as the first step toward this goal. A simple extension of the GTM-KC method should provide

the ability to estimate the joint axes for multiple consecutive joints in a kinematic chain, such

as a finger. This would involve recursively performing the algorithm; using the terminology

introduced in Fig. 2.1, the sensor which is distal to the MCP joint would be used as the

proximal sensor MP while estimating the proximal interphalangeal joint (PIP) parameters.

A complete model of kinematic structures such as the human hand requires the estimation

of joint lengths in addition to joint axis orientations. We posit that the extension of the GTM-

KCmethod, founded upon the PoE formulation, provides a potential path towards addressing

this challenge. The PoE formulation of open chain kinematics can be extended to include

3D position information about the end-effector. Readers interested in this extension are

referred to [38]. This introduces the exciting prospect of building a complete biomechanical

model of a multi-joint serial linkage by solving for 3D positions and orientations of joint axes

simultaneously.
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CHAPTER 3

Multimodal Tactile Sensor Skin for Underwater,

Pressurized Environments

This chapter was based on work co-authored by Dr. Minyung Song, Dr. Arif M. Abdullah,

Conner J. Smith, Daniel L. Balducci, and Dr. Jonathan D. Posner at the University of

Washington.

3.1 Abstract

Challenges in underwater robotic manipulation are addressed by integrating tactile sens-

ing systems that provides the sense of touch in uncertain environments, such as low-light or

occluded scenarios where vision-based sensing may fail. We describe the design, fabrication,

and characterization of a sensor-embedded soft skin capable of multimodal sensing (contact

force and two axes of skin shear) submerged in water and under hydrostatic pressure up to

1000 kPa. Using a multilayer molding process, we embed liquid-metal strain gauges within a

durable elastomeric skin that is molded around a solid finger core. We embed strain gauges

with two different geometries in strategic locations relative to the surface of the finger to

measure both skin shear and contact force. We demonstrate that the sensor skin is capable

of measuring forces up to 220 N under water and hydrostatic pressure.
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3.2 Introduction

The skin on the human fingertip contains approximately three thousand sensitive nerve

endings that detect stimuli such as skin strain, vibration, and temperature. Artificial tactile

sensing systems attempt to emulate human fingertips through tactile perception. Tactile

sensors have progressively embraced the use of highly deformable materials and their appli-

cations in dexterous robotic systems have been increasingly explored because they have the

potential to positively transform lives and work practices [50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

60]. Robotic systems can reduce occupational risk for humans when employed in hazardous

environments. Robotic systems can handle heavy loads, toxic substances, and repetitive

tasks. High-resolution, deformable tactile sensors that use cameras (e.g., GelSight [61],

TacTip [62], DIGIT [63], etc.) or multiple transducer signals (e.g. BioTac [64]) have high-

dimensional sensor output that can encode complex contact information [65, 66, 67, 68, 69].

These full finger tactile sensors may be problematic to integrate into robotic manipulation

systems [51] due to space requirements and sensor geometry. This results in designers having

to make compromises in the robotic finger to accommodate the tactile sensing hardware [52].

Flexible skin tactile sensing systems wrap around arbitrary geometries and can conform

to surfaces, such as a robotic end effector. A common technique is to produce sensor ar-

rays based on flexible printed circuit boards (PCBs), which can bend uniformly around

curved surfaces [70, 71, 72]. PCBs can be carefully designed for complex 3-dimensional

geometries; however, they lack the continuous flexibility of elastomer-based tactile sensing

systems. Elastomer-embedded soft sensors, in which the sensing elements deform along with

the embedding material, allow direct measurement of local strain [56], [73, 74, 75]. Flexible

versions of standard electrical components, such as piezoresistors, capacitors, and transis-
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tors have been successfully integrated into sensing systems [76, 77, 78, 79]. Soft artificial

skin comprised of liquid metal-filled microchannels within a Polydimethylsiloxane (PDMS)

substrate are capable of sensing both shear and normal forces [79]. Liquid metal-based tac-

tile sensors achieve high-resolution contact localization and multimodal tactile sensing (i.e.

measurement of contact force, skin shear, and vibration) [74, 80].

Top-side controlled vehicle systems (e.g. remotely operated vehicles, unmanned under-

water vehicles, autonomous underwater vehicles) with robotic manipulators are being em-

ployed to access environments with challenging underwater conditions in applications such

as oceanography, deep sea biology, renewable marine energy, drilling for oil and gas, and a

wide range of defense applications [81, 82, 83]. Tactile sensors may play an important role in

underwater environments where unpredictable disturbances, underwater currents, and poor

visual perception in murky waters cause uncertainties in manipulation [81, 84, 85, 86]. To

meet the requirements of underwater environments, tactile sensing systems should operate

underwater and under significant hydrostatic pressures and should be able to sense large

loads [81, 86, 87, 88]. Industrial underwater robots with rigid grippers can exert grip forces

of more than 6 kN at depths up to 11 km [89]. Soft robotic grippers have been tested for

grip strength up to 150 N in the ocean at depths of 2.4 km [90]. Literature in tactile sensing

for underwater manipulators shows a trade-off between maximum operating depth and max-

imum grip force. As part of the TRIDENT gripper project, a novel optoelectronic tactile

sensor was developed that was capable of estimating contact force with grip forces up to 150

N at depths of 5-25 m [91, 92, 93]. A soft fiberoptic tactile sensing system was integrated

into the SeeGrip underwater gripper, which performed highly accurate estimation of contact

force distribution for grip forces up to 10 N at extreme pressures in a laboratory tank up to

600 bar (6 km ocean depth) [84, 86]. To date, these two examples represent the state of the
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art in advanced tactile perception as it relates to deep operation and large grip forces.

In this paper, we describe the development and characterization of a multimodal tactile

sensor skin—normal strain and two orthogonal directions of shear strain—that operates

under large applied loads in an underwater environment at pressures up to 1000 kPa. The

tactile skin is constructed using liquid metal-filled microchannel embedded resistive strain

gauges encapsulated in multiple layers of three-dimensionally embedded in silicone elastomer.

The skin is characterized in dry conditions and underwater at hydrostatic pressure conditions

from 0-1000 kPa. We show that the skin force response to loads of up to 220 N is independent

of environmental hydrostatic pressure.

3.3 Experimental Methods

This section presents the design and methodologies used to develop and evaluate a mul-

timodal skin tactile sensor array for use deep under water. To balance the performance

requirements of tactile sensing with the robustness requirements of underwater operation,

we encapsulate an array of liquid metal-based soft strain gauges within a durable, three di-

mensionally embedded in elastomeric skin, as shown in Figure 1. This multi-layered approach

balances the competing skin requirements of robustness and force sensitivity.

We fabricate the sensor through a sequence of molding processes. First, we cast a base

layer of elastomer onto a solid finger core. Next, liquid metal filled microchannel sensing

elements (taxels) are fixed on the base layer. Finally, an outer layer of elastomer is over-

molded to embed the taxels into an all-elastomer tactile sensor. Taxels are embedded in

a soft elastomer matrix and experience larger strains in response to a given stress than

would be expected if placed directly adjacent to a rigid core [94]. We incorporate circu-
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lar spiral taxels to measure normal forces and rectangular serpentine channels to measure

shear forces [55, 79]. Normal taxels, which measure contact force between the finger and

an object, are placed directly in fingerpad areas of anticipated contact. Shear taxels, which

measure circumferential skin strain, are placed along the perimeter of the finger at locations

of maximum strain and away from locations of direct contact with objects [55].

3.3.1 Liquid metal taxels

The taxels are constructed from microchannels cast in PDMS and filled with liquid metal.

The master molds for the microchannels are made of FR4 printed circuit boards with elec-

troless nickel immersion gold surface finish. The taxel geometry was designed with a PCB

design tool (EasyEDA, Guangdong, China) and fabricated by a commercial vendor (Chi-

naPCBOne, Guangdong, China). The measured patterned features were 150 m wide and

60 m tall (3D Optical Profilometer VR-6000, Keyence America). We coat the PCB master

molds with Trichloro(1H,1H,2H,2H-perfluorooctyl) silane (Sigma-Aldrich, St. Louis, MO) in

a vacuum chamber to reduce the adhesion between the master and the silicone elastomeric

layers. The taxels were molded from 10:1 (base: crosslinker) Poly(dimethylsiloxane) (PDMS)

(SYLGARD™ 184, Dow corning) mixed using a planetary mixer (THINKY mixer ARV-310,

THINKY corporation) for 2 min at 2000 rpm.

We construct the microfluidic channels using two layers of PDMS (one planar and the

other with the microfluidic features) that are bonded together (see Supporting Information,

Figure S1). The molded channel layer is constructed by spin-coating (400 rpm, 1 min 30

secs) PDMS onto the microfluidic master and a silicon wafer twice to obtain a 500 m thick

layer. The first PDMS layer was cured at 80 ºC for 12 min before applying the subsequent

coating. Reservoirs are punched in the channel ends using a 15 AWG blunt tip needle to
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produce holes near the inlet and outlet of each taxel. The planar layer is fabricated using the

same process as the channel layer on a silicon wafer. The partially cured layers are brought

into contact and cured together at 80 ºC for 30 min to develop a complete microfluidic

channel [95, 96].

We fill the microchannels with liquid eutectic gallium-indium alloy (EGaIn) (Indalloy 60,

Indium Corporation), using a vacuum filling method [97]. In brief, we place a drop of EGaIn

on the inlet and outlet channel reservoirs and place the taxel in a vacuum chamber that

is pumped down to 0.08 MPa and then returned to atmospheric pressure. After filling the

microchannels, we inserted 29 AWG wire (9511T513, Calmont Inc.) into the EGaIn-filled

reservoirs and sealed the inlets and outlets using a drop of the PDMS that is cured at 80°C

for 30 min. (An image of the completed taxel is shown in Supporting Information, Figure

S2).

3.3.2 Fabrication of taxel-embedded artificial skin

The three-dimensional artificial skin is fabricated using two elastomer molds around a

rigid finger core and embedded taxels, as shown in Figure 1. The mold shell components were

designed in CAD software (SolidWorks, Waltham, MA), 3D printed using a FDM printer

(Ultimaker, Ultimaker S3), and assembled via through bolts (Supporting Information, Figure

S2).

The first mold forms a 2 mm thick base layer of skin around the core, as shown in

Figure 1a (see Supporting Information, Figure S2). We pour silicone-based elastomer (DS-30,

Smooth-On, Macungie, PA) mixed with 10% by weight silicone thinner (Silicone ThinnerTM,

Smooth-On, Macungie, PA) (10% by weight of the DS-30 mixture) into the mold. The

elastomer is placed in a vacuum chamber (–90 kPa) for 20 min to remove any gas bubbles,
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cured at room temperature and atmospheric pressure for 2 h and then removed from the

mold. Next, we fix normal and shear force taxels onto the 2 mm skin (Figure 1a-b) using

silicone adhesive (Sil-poxy, Smooth-On). We then over mold a 2 mm thick elastomer layer

to embed the taxels and lead wires in elastomer (Supporting Information, Figure S2). The

completed artificial tactile skin with two normal force sensors (one on each of the proximal

and distal faces) and three shear force sensors (on distal face) is shown in Figure 1c-e. The

shear force taxels on the distal face are arranged to detect shear in two in-plane directions

of the distal face.
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Figure 3.1: Artificial tactile skin with embedded liquid metal microchannel taxels. Schematic

of the taxel embedded skin (a) showing 1st and 2nd layer of elastomer and the design of the

normal and shear taxels. Scale bar: 2 mm. (b) CAD drawing of the skin with one normal

taxel and three shear taxels on the distal face and one normal taxel on the proximal face.

Scale bar: 1 cm. (c-e) Image of the taxel embedded skin prototype at different angles.

3.3.3 Dry, static force characterization

The dry, static taxel response at atmospheric conditions is characterized on an optical

breadboard stage (PBH11105, Thorlabs Inc., NJ, USA), where the normal and shear forces

were applied through the linear motion of three single-axis translation stages (433 translation

stage, Newport, CA, USA) as shown in Figure 2. The sensorized end effector and a load
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cell 6-axis force/torque (F/T) transducer (Nano-25, ATI, Apex, NC) were attached to linear

stages so that linear motions of the stages could impart shear force to the skin. The forces

were applied via a 3D-printed flat-profile probe that made contact with the entire skin

surface. A current source (Keithley Model 6430, OH, USA) supply a 10 mA DC current to

each taxels and a data acquisition card (NI USB 6210, National Instruments Corporation,

TX, USA) was used for data collection at a frequency of 10 Hz.

Figure 3.2: (a) Optical table setup for characterizing the shear taxel embedded skin. The

3D printed force loading tip (grey) is connected to the F/T transducer on the top. (b) An

intermediate state of the F/T transducer and skin contact during the application of a shear

force, indicated by the red arrow. (c) Image of the F/T transducer and skin contact for the

two directional shear force application.
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3.3.4 Wet testing under hydrostatic pressure

We demonstrate underwater tactile sensing using a modified benchtop watch tester, as

shown in Figure 3. We simulate performance of the sensor skin at depths up to 100 m by

pressurizing the watch tester with a commercial air compressor to a pressure of 1000 kPa.

The sensor skin was submerged below the waterline within the chamber of the watch tester.

A single-axis linear actuator (23HS30-3004S, STEPPERONLINE, NY, USA) moved a shaft

to transmit loads to the surface of the submerged sensor skin. A single-axis, vented load

cell (LC201Z0010-75, Omega Engineering, CT, USA) was fixed to the end of the shaft in

order to measure the applied load. The load was applied to the sensor skin through a 3D

printed probe tip. The probe tips were designed specifically for each experiment and are

detailed in the following section. The hydrostatic pressure within the chamber was collected

via a digital pressure gauge (PX309-200G5V, Omega Engineering, CT, USA), and recorded

simultaneously along with taxel resistance using a data acquisition system (NI USB-6225,

National Instruments Corporation, TX, USA).

We evaluate the normal taxel response of the proximal face underwater at pressures up

to 1000 kPa as shown in Figure 3a. We also measure the taxel response to loads that are a

combination of normal and two-dimensions of shear force. The finger is oriented so that the

load is applied 35° from the surface normal axis and 60° from the radioulnar axis, as shown

in Figure 3b.
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Figure 3.3: Experimental setup for characterization and evaluation of the sensor skin be-

havior underwater, under hydrostatic pressure. A linear actuation system, equipped with a

vented load cell, applies a load to the sensor skin within the pressurized chamber. (a) The

sensor skin is mounted to apply a normal force to the proximal face. (b) The sensor skin

is mounted at an angle such that the actuation system produces a three-dimensional force

relative to the distal face of the sensor skin.
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3.4 Results

We present the results of three characterization experiments that evaluate the sensor’s

behavior in an both and dry and underwater, under hydrostatic pressure environments. We

establish the characteristics of the sensor skin in a dry, ambient environment by two dimen-

sions of shear force. We perform underwater characterization of the sensor by evaluating

the unloaded taxel response as a function of hydrostatic pressure. Finally, we demonstrate

three-dimensional load response of the sensor skin in and underwater, pressurized environ-

ment.

3.4.1 Shear taxel characterization in a dry, ambient environment

We evaluate the taxel response to static forces in a dry lab at atmospheric pressure.

The shear force was generated by stepwise horizontal motions in increments of 0.1 N. We

evaluate not only the sensor responses to the linear shear force (one-dimensional) (Figure

2b), but also to the two-dimensional shear force (Figure 2c). The normalized taxel response

at ambient pressure ∆̃R was defined as ∆̃R = R−R0

R0
, where R is the measured resistance at

a given load and R0 is the resistance at zero load.

63



Figure 3.4: Normalized shear taxel response as a function of (a) one dimensional shear force

and (b) two dimensional with 5 N normal force applied.

Figure 4 shows normalized resistance due to applied shear forces for an applied 5 N

normal force. As shown in Figure 4a, the shear taxel response is linear with applied shear

force over the examined range. In this experiment, the end effector is translated in the

positive x-direction (radial direction) which imparts a shear force on the skin in the negative

x-direction (ulnar direction). The left taxel is compressed and the right taxel is stretched,

which results in a decrease and increase in normalized resistance, respectively. Additionally,

we measured shear taxel response to two-dimensional shear force (fx, fy) as shown in Figure

4b. This characterization shows that the artificial tactile skin with embedded liquid metal

taxels exhibit shear forces up to 1.2 N in two dimensions.

3.4.2 Taxel characterization in an underwater pressurized environment

The effect of hydrostatic pressure on taxel behavior is shown in Figure 5. First, we evalu-

ate the sensor in a submerged, pressurized environment without applied load. We submerse
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the skin in water and cycle the hydrostatic pressure from 103 kPa to 830 kPa in steps between

35 and 105 kPa. Equilibration of the taxel resistance measurement after a stepwise change

in pressure varied in duration between 10 sec and 40 min, with higher pressures exhibiting

longer equilibration times. The equilibrated taxel responses for three pressure cycles are

plotted as a function of hydrostatic pressure in Figure 5a. This data demonstrates that the

taxel baseline resistance does not substantially depend on the hydrostatic pressure. This

is an expected result because the sensor is constructed of nearly incompressible materials

(silicone elastomer, EGaIn).

Figure 5b shows a normal taxel response to applied load while submerged underwater

and under hydrostatic pressure. We apply loads up to 220 N orthogonally to the submerged

taxel while the watch tester chamber was held at pressures of 0, 345, 690, and 1000 kPa. The

normalized taxel response in the underwater shows that the measured normal taxel response,

while submerged underwater, is independent of hydrostatic pressure up to 1000 kPa.
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Figure 3.5: (a) Zero-load hydrostatic response of representative taxels of each modality. Data

from three pressure cycles are presented. (b) Normal taxel response curves with respect to

the loads between 0 and 220N. Each curve was collected while the taxel was subjected to a

constant hydrostatic pressure of 0, 345, 690, and 1000 kPa.

3.4.3 Multimodal transient response to applied 3D load at pressure

To demonstrate multimodal sensing underwater at hydrostatic pressure, the sensor skin

was submerged 10 mm below the waterline at 690 kPa and oriented such that the linear

actuator simultaneously stimulated all four taxels on the finger’s distal face. A schematic

of the taxel layout relative to the direction of the applied load is shown in Figure 2b. The

loading profile consisted of a 5 sec ramp followed by a 7 sec constant hold. All four taxels were

measured simultaneously while 3D load was applied, and their normalized taxel responses

as a function of time are shown in Figure 6.

The transient 3D load produces tension in the distal and ulnar taxels, and compression

in the radial taxel of the sensor skin. The compressed and stretched shear taxels decrease
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and increase respectively in electrical resistance as shown in Figure 6. The design of the

shear taxel enables the measurement of asymmetric strains across the pair of gauges and

the shear force applied on the sensor skin. This taxel responses demonstrates the capability

of the skin for multimodal, dynamic three-dimensional force sensing underwater and under

pressure.

Figure 3.6: Transient response of taxels embedded in the distal face of the skin during the

application of a 3-dimensional load at 345 kPa. Inset (legend) shows the schematic of taxel

layout relative to the direction of the applied load and the load direction. The true load

direction is rotated 35° relative to the surface of the distal face (a more detailed experimental

setup is shown in Figure 3b).
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3.5 Summary

This paper demonstrates a taxel-embedded artificial skin capable of sensing normal force

and two dimensions of shear force under water and a wide range of hydrostatic pressures. The

embedded taxels response remained constant under hydrostatic pressures of up to 1000 kPa.

The zero-load taxel behavior was shown to be insensitive to hydrostatic pressure, which

enables this sensor skin to be used without pressure-dependent calibration. Additionally,

the sensor skin is capable of detecting large magnitudes of normal force and two-dimensional

shear force, enabling 3-dimensional force sensing in underwater robotic operations. This

result provides a guideline for fabricating soft tactile sensors for various potential robotic

applications in extreme environments, such as deep in the ocean.
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CHAPTER 4

Torque Estimation with a Skin-Like Tactile Sensor

4.1 Abstract

Objective: A set of considerations for the design of strain-gauge based multimodal tactile

sensor skins is presented, with special focus on the estimation of torque normal to the sensor

skin surface. Methods : A sensor skin is developed with the purpose of validating these

design considerations, and is experimentally investigated by applying 3D linear forces and 1D

torques using a custom motion platform. We present single-taxel characterization plots, and

also perform multi-axis estimation using a CNN-based model in order to validate the design

considerations and demonstrate force-torque sensing. Results : The design considerations and

analytical sensor skin model provide verifiable assistance in the design and layout of sparsely

populated sensor skins. The sensitivity of individual taxels to applied forces and torques is

demonstrated to be nonlinear and not entirely predictable. Conclusion: While normal force

taxels and shear force taxels are intended to measure normal and shear force, respectively,

the sensor skin moves monolithically as a result of applied loads and torques. The results

demonstrate significant correlation between taxels. Regardless of this correlation, the design

consideration that was postulated to enable torque sensing was verified through both single-

axis torque response plots as well as combined force-torque estimation results. Significance:

The proposed design criteria and subsequent evaluation yield the first demonstration of
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torque measurement using a tactile sensor skin. With sparsely populated tactile sensor

skins, judicious placement of taxels is critical in order to extract as much information as

possible from the touch interaction.

4.2 Introduction

With the proliferation of advanced sensing techniques in robotic systems, tactile sens-

ing has emerged as a method for filling in the gaps of other senses, such as vision when a

direct line of sight is unavailable. Tactile sensing provides important details during manip-

ulation tasks, such as information about grasp stability and object properties [52]. Tactile

sensing is also used as a means to monitor and enable safe human-robot interaction in col-

laborative human-robot tasks [98]. The past few decades of tactile sensor literature have

gradually transitioned from a focus on the development of hardware to the development of

perception algorithms and the integration of tactile sensors into comprehensive manipulation

pipelines [99], with a focus on motion planning, feedback control, and high-level learning.

Integral to the aim of semi-autonomous manipulation is the real-time construction of a world

model; the robot must be able to adapt in unstructured environments by integrating multi-

modal sensory data.

While implementing tactile sensing systems into semi-autonomous robotic systems re-

mains a tricky task, there are a number of hardware designs which have successfully demon-

strated advanced capabilities such as force-torque sensing, vibration, temperature, and local

geometry estimation through tactile sensing alone [18, 100, 63, 101, 102]. In order to meet

the demands of high accuracy and spatial resolution during robotic manipulation, much focus

has turned to developing sensorized fingertips. In these devices, the tactile sensing elements
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as well as the accompanying electronics and mechanical hardware are fit into a finger-like

form factor.

The objective of this work is to provide a verifiable set of considerations for the design

of tactile sensor skins capable of measuring applied forces and torques. We validate these

design considerations using a tactile sensor skin developed in Chapter 3 and demonstrate

the measurement of three axes of force and one axis of torque.

The contributions of our work are:

1. A set of design considerations for arranging planar strain gauges for improved multi-

modal tactile sensing

2. Rationale for the novel placement of planar strain gauges that enables measurement

of torque about the normal to the sensor skin

3. The first demonstration of force-torque estimation using a wrappable skin-like sensor

4. A framework for the design, characterization, and evaluation of skin-like tactile sensors

4.3 Related Work

4.3.1 Tactile Sensor Skins

The sensorized fingertips mentioned in Section 4.2 consist of complex sensor hardware

that is integrated within the volume of the finger, and cannot be wrapped around existing

robotic fingertips. In contrast to sensorized fingertips, tactile sensor skins allow the tactile

sensor design and mechanical gripper design to be approached independently [103]. Tactile

sensor skins can be fabricated to conform to and wrap around the surface that needs to be
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outfitted with tactile sensors. “Electronic skin” devices are being developed for a multitude

of purposes, for example as a user input device for consumer electronics [104, 105]. Park et

al. produced individual tactile sensing elements (“taxels”) made of microfluidic strain gauge

sensors that demonstrated multiple modalities of force sensing [106].

Aside from the physical differences between wrappable and non-wrappable tactile sensors,

there are often differences in spatiotemporal resolution. For example, resistive, microfluidic

tactile sensor skins can have bandwidths up to 800 Hz [74] while the 30 fps sampling rate for

camera-based tactile sensors limits their ability to measure vibration. However, camera-based

tactile sensors have an advantageous spatial resolution limited only by the pixel resolution

of the camera. In contrast, microfluidic tactile sensors produced using soft lithography

techniques typically incorporate fewer taxels and so their data are comparatively sparse.

Therefore, care must be taken to place individual tactile sensing elements (taxels) throughout

the skin in a way that ensures sensitivity to applied loads of interest, which can include 3D

force as well as 3D torque.

4.3.2 Measurement of Torque at Robot Fingertips

Measurement of only linear forces at the fingertip often suffices in manipulation tasks

such as pick-and-place and parallel static grasps, but complex and dynamic applications are

enhanced by also measuring torque. As an instructive example, consider the task of picking

up the end of a block using a precision pinch. Since the block’s center of mass is offset from

the grip axis, the block will rotate about the grip axis due to gravity. The rotational slip

will occur within the plane of contact about an axis perpendicular to the plane of contact.

Preventing unwanted rotational slip, or controlling rotational slip during in-hand manip-

ulations, is an active research area in tactile sensing for robotics [107, 108, 109].
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Existing tactile sensing systems have been either modified or built from the ground

up to exhibit not only in-plane torque sensing but also tilt torque. The GelSight sensor

and similar optical sensor approaches are capable of estimation of in-plane torque through

tracking the optical flow of markers embedded in an elastomeric fingertip material [19]. In

a demonstration of dynamic tactile sensing and control, Wang et al. used finger-mounted

GelSight sensors to learn the physical features of a grasped object through a set of exploratory

motions [109]. The F-TOUCH sensor enhanced the capabilities of the GelSight by combining

spring-like elements into the construction of a camera-based tactile sensor. This provides

not only optical flow tracking, but also full force-torque tracking of the entire fingertip [101].

Additionally, the OmniTact sensor exploits a high-curvature fingertip surface and multiple

cameras to enable multidimensional torque estimation using only optical flow [102].

Notably, none of the state-of-the-art tactile sensing systems that enable in-plane torque

sensing can be wrapped around existing robot fingertips. In this work, we investigate

design parameters, such as local taxel design and global taxel placement, that

can be exploited to provide in-plane torque sensing capabilities to tactile sensor

skins.

4.4 Framework for Tactile Sensor Skin Design with Planar, Mi-

crofluidic Taxels

There are a number of design parameters that can be considered when developing multi-

modal tactile sensor skins. In this work, we consider microfluidic tactile sensor skins whose

manufacturing process is described in Chapter 3. As such, we assume that the designer can

select the (i) local pattern of the microfluidic channel for each taxel as well as the (ii) global
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placement of taxels throughout the skin as a whole.

As will be discussed in Section 4.4.2, the distinction between normal force and shear

force taxels is somewhat artificial; the designation is primarily assigned according to the

local pattern of the microfluidic channel and the type of load to which the taxel is most

sensitive. Normal force or contact pressure is commonly sensed using a spiral microchannel

(Fig. 4.1a) [79]. Similar to their rigid strain gage counterparts, microfluidic shear force

taxels utilize serpentine microchannels (Fig. 4.1b).

Figure 4.1: Local patterns of microchannels are shown for a single (a) normal force taxel
and (b) shear force taxel. Taxels are designed to be most sensitive along their principal axis,
denoted by dark red arrows. The black area represents the plane along which the local shear
of the elastomer is assumed to be zero.

4.4.1 Individual Taxel: Principal Axis of Sensitivity

At its core, a microfluidic taxel is a highly deformable strain gauge. An elastic medium

such as polydimethylsiloxane (PDMS) surrounds a curvilinear channel of embedded liquid

metal. The taxel’s sensitivity to applied loads is determined by the channel’s cross-sectional

geometry as well as the channel pattern. As the geometry of the microfluidic channel is

mechanically deformed by a load, the voltage drop across the ends of the channel changes.
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In this work, all microfluidic channels have a fixed cross-sectional width of 150µm and height

of 60µm, as shown in 4.1 and described in detail in 3.

4.4.1.1 Normal Force Taxels

With its spiral microchannel pattern, the normal force taxel is predominantly sensitive

to contact forces along the n̂-axis that is orthogonal to the ŝ1 − ŝ2 plane of the taxel, as

shown in Fig. 4.1a. The labels n̂, ŝ1, and ŝ2 indicate a single normal and two shear basis

vectors, respectively. The origin of the local ŝ1 − ŝ2 − n̂ reference frame is located at the

center of the spiral pattern.

For the normal force taxel, the n̂-axis is the principal axis of sensitivity. Compressive

contact forces will point in the (−)n̂ direction and will result in positive changes in voltage.

The microchannels of the normal taxel are designed to have negligible voltage change as a

result of shear within the ŝ1 − ŝ2 plane. However, in practice, planar shear can create a

measurable taxel response.

While the contribution of the normal force taxels to multimodal sensing will be discussed

in Section 4.6.2, we focus most of our analytical efforts on the contribution of the shear

force taxels due to their interesting response characteristics.

4.4.1.2 Shear Force Taxels

With its serpentine microchannel pattern, the shear force taxel is predominantly sensitive

to planar shear deformations that are aligned with the long segments of the channel (Fig.

4.1b). For the shear force taxel, the ŝ1-axis is the principal axis of sensitivity. The origin

of the local ŝ1 − ŝ2 − n̂ reference frame is centered along the edge of the taxel opposite the
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taxel leads.

An unexpected finding from the work in Chapter 3 was that a shear force taxel of the form

shown in Fig. 4.1b could respond to compressive forces along its principal axis if constrained

appropriately. In prior work with comparatively thin tactile sensor skins (1 mm thickness),

the shear force taxels stretched in response to tensile forces along the principal axis. However,

the skin itself would buckle if subjected to compressive forces. As a result, shear force taxels

in regions that buckled did not experience deformation of their serpentine microchannels

and no voltage changes were observed across the taxel leads [55, 74]. The results presented

in 4.6.2 demonstrate that our relatively thick shear taxels are capable of bidirectional shear

force sensing.

In the process of enhancing the robustness of the multimodal skin for use underwater and

under hydrostatic pressure, as described in Chapter 3, thin taxels were embedded in a 4 mm

thick skin. Now embedded and constrained by a thicker skin substrate, shear force taxels

subjected to compressive forces along their principal axes experience deformation of their

serpentine microchannels, resulting in measurable voltage changes across the taxel leads.

For the framework that follows, we assume that the edge of the shear force taxel having

the taxel leads (ends of the microchannel) is fixed in place, and that the microchannel

deforms relative to that fixed edge. As such, taxel deformation will be greatest for those

regions that are closest to the applied load and will decrease gradually until convergence

to an undeformed state along the fixed edge of the taxel (black region noted in Fig. 4.1b).

Similarly, we assume that the bottom surface of the normal taxel is supported by a fixed base

such that the normal taxel geometry is deformed and not translated as a result of applied

force.

Considering shear force taxels constrained within relatively thick skin substrates, the
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change in voltage due to deformation along the taxel’s ŝ1 principal axis will be a signed

value. Specifically, positive voltages will be measured for tensile strain in the (+)ŝ1 direction

while negative voltages will be measured for compressive strain in the (−)ŝ1 direction (Fig.

4.2(a,b)). A single shear force taxel can provide information about both magnitude and

direction of a shear force component along the primary shear ŝ1-axis.

Critically, this signed response is only characteristic of the shear force taxel’s ŝ1 principal

axis, or primary shear axis. Shear force components along the ŝ2-axis, or secondary shear

axis, will skew the shape of the taxel (Fig. 4.2(c)). However, strain along the ŝ2-axis will

always yield a positive change in voltage regardless of whether the shear force component

points in the (+) or (−) direction along the ŝ2-axis (Fig. 4.2(c) and Fig. 4.2(d), respectively).

A single shear force taxel can provide information about the magnitude but not the direction

of a shear force component along the secondary shear ŝ2-axis.

4.4.1.3 3D Deformation Vectors

Consider a tactile sensor skin comprised of n individual planar, microfluidic taxels. For

each of i = 1 . . . n taxels, the location of the ith taxel can be expressed as a 3D position

vector ri that points from the origin of the skin’s global x̂ − ŷ − ẑ reference frame to the

origin of the ith taxel’s local ŝ1 − ŝ2 − n̂ reference frame (Fig. 4.3).

For simplicity, consider a 3D force-torque load [f, τ ]T applied at the origin of the skin’s

global reference frame. The effect of the load on the deformation of the ith taxel will depend

upon (i) the proximity of the taxel to the point of load application and (ii) the orientation

of the taxel’s microchannels relative to the direction of the load.

The force-based deformation components due to f can be expressed for the ith taxel in a

77



Figure 4.2: Shear force taxel behavior under positive and negative deformations along the
principal and secondary axes of the taxel.

normalized manner by considering the projection of the 3D force unit vector f̂ onto the taxel’s

local reference frame axes. Although the equations below do not account for the nonlinear

behavior of compliant materials and the exact proximity of individual taxels relative to the

center of contact, the equations enable the analysis and design of taxel placement for a planar

wrappable sensor skin.

δif,s1 = f̂ · ŝi1 (4.1)

δif,s2 = f̂ · ŝi2 (4.2)
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Figure 4.3: Local deformation of two shear taxels as a result of an applied torque, broken
into its ŝ1, ŝ2 components. The local deformation at the origin of taxel L has no component
parallel to the principal axis (δ̂Lτ,s1 = 0).
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δif,n = f̂ · n̂i (4.3)

The force-based 3D deformation vector δif for the ith taxel can be expressed as

δif = [δif,s1, δ
i
f,s2, δ

i
f,n]

T (4.4)

The torque-based deformation components due to τ can be expressed for the ith taxel in

a normalized manner by first considering the effects of the torque load on the direction of

the torque-based deformation vector δ̂
i

τ

δ̂
i

τ = τ̂ × r̂i (4.5)

and then projecting the torque-based deformation unit vector δ̂
i

τ for the ith taxel onto the

taxel’s local reference frame axes.

δiτ,s1 = δ̂
i

τ · ŝi1 (4.6)

δiτ,s2 = δ̂
i

τ · ŝi2 (4.7)

δiτ,n = δ̂
i

τ · n̂i (4.8)

The torque-based 3D deformation vector δiτ for the ith taxel can be expressed as

δiτ = [δiτ,s1, δ
i
τ,s2, δ

i
τ,n]

T (4.9)

For normal force taxels, we assume δn > (δs1 = δs2). For shear force taxels, we assume

δs1 > δs2 and δn = 0.
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4.4.2 Multiple Taxels: Placement Within a Sensor Skin

For most microfluidic tactile sensor skin designs, the soft lithography manufacturing

method and relatively large size of the taxels limit the total number of taxels that can be

placed on the surface of a wrappable sensor skin. As a result, we must carefully design the

type, location, and orientation of each taxel within a sparsely populated sensor skin.

The design recommendations that follow assume that the center of contact on the sen-

sorized fingerpad is generally known and repeatable. In many grasp and manipulation ap-

plications, the center of contact is often predetermined by mechanical design (e.g., a robotic

gripper with constrained finger motion and convex finger surfaces) and by application (e.g.,

use of the center of a fingerpad for exploratory movements).

For the purposes of illustrating the design criteria, Fig. 4.4 shows the arrangement of

taxels within the sensor skin used in the experimental portion of this paper.

4.4.2.1 Force Sensing

In order to sense a 3D force load, a combination of normal force taxels and shear force

taxels can be used to sense deformation normal to the skin’s surface and 2D, in-plane defor-

mation, respectively.

Normal force taxels: In this work, the global placement of the normal force taxels within

the tactile sensor skin was previously selected based on assumed areas of direct contact be-

tween the robot fingertip and grasped objects, as described in Chapter 3. It is recommended

that normal force taxels be embedded in close proximity to the expected center of contact,

which we show as the origin of the global x̂− ŷ− ẑ reference frame of the skin (Fig. 4.4) for

convenience. Additionally, normal force taxels should be oriented such that their principal
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Figure 4.4: Configuration of taxels used in the sensor skin. Off-axis shear force taxels
(R′, L′) are introduced as well as on-axis shear force taxels in order to validate the design
consideration for torque sensing.
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axis of sensitivity (n̂-axis) is aligned with the skin’s ẑ-axis.

Shear force taxels: While designed to sense in-plane deformation, shear force taxels also

respond to deformations normal to the skin’s surface. This behavior is a consequence of

the sensor skin consisting of a single, continuous, compliant body. In order to minimize the

covariance of normal and shear force taxel responses due to normal forces, it is recommended

to place shear force taxels away from regions of direct contact such that deformation will

occur predominantly along the primary (ŝ1) and secondary (ŝ2) axes. Furthermore, if there

is a specific global axis of interest, such as force along the x̂-axis, it is recommended to align

the primary shear axis ŝ1 of the shear force taxel with the global axis of interest. As an

example, the ’L’ and ’R’ shear force taxels shown in Fig. 4.4 were placed such that their

ŝ1-axes were colinear with the skin’s x̂-axis.

In prior work with comparatively thin sensor skins [55, 74], pairs of shear force taxels

were used to measure shear force along a single axis. The asymmetry in the paired responses

was used to estimate shear force. In this work with a thicker 4 mm skin substrate, only

a single shear force taxel is necessary to extract magnitude and direction of a shear force

component. As an example, the ’D’ shear force taxel shown in Fig. 4.4 was placed such that

its ŝ1-axis were colinear with the skin’s ŷ-axis. Due to constraints such as limited skin area

and the need to accommodate gripper kinematics, only a single shear force taxel could be

placed along the skin’s ŷ-axis.

For the task of sensing a 2D shear force vector, a minimum of two shear force taxels is

needed and their relative orientations must be such that their principal axes of sensitivity are

non-parallel. For example, the ’L’ and ’D’ shear force taxels shown in Fig. 4.4 were placed

orthogonally in order to minimize covariance and redundancy of the taxel responses, and for

convenient alignment with the skin’s x̂- and ŷ-axes, respectively.
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4.4.2.2 Torque Sensing

As a first step towards the development of wrappable sensor skins that can sense torque,

we focused our efforts on the placement of taxels for the sensing of torque about the skin’s

ẑ-axis only. The ẑ-axis was selected because of its relevance to rotational slip in the robotics

literature [110, 109]. The sensing of 3D torque loads is beyond the scope of this work.

To effectively place shear force taxels for the measurement of torque about the ẑ-axis,

consider Fig. 4.3. A shear force taxel, such as L, whose principal axis of sensitivity (ŝ1) is

aligned with the position vector rL, will experience maximal deformation along the ŝ2-axis.

Now consider a circle of radius rL emanating from the center of application of a torque

load about the ẑ-axis. Any shear force taxel whose principal axis of sensitivity ŝ1-axis

intersects with the origin of the global reference frame will not be sensitive to a torque load

about the ẑ-axis. Stated another way, any shear force taxel whose ŝ2-axis lies tangent to a

circle centered at the origin of the global reference frame will not be sensitive to a torque

load about the ẑ-axis.

A shear force taxel, such as L′, is oriented such that it will be sensitive to deformations

due to a force load along the x̂-axis as well as a torque load about the ẑ-axis. This is because

the principal axis of sensitivity (ŝ1) is aligned with neither the radius nor the tangent of the

circle centered at the origin of the global reference frame, where the load is assumed to be

applied. As a result, the deformation components δif,s1 from eq. 4.4.1.3 and δiτ,s1 from eq.

will be nonzero. It is based on this principle, along with the shape of the robot fingertip,

that taxels L′ and R′ were placed for this study (Fig. 4.4).
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4.5 Experimental Procedure and Evaluation

In this section, we describe the specific layout of multiple taxels used in this study, the

experimental procedure for collecting data from the multi-taxel tactile sensor skin, and the

methods for training and testing a CNN model to estimate 3D force and 1D torque loads

using the skin.

4.5.1 Multi-taxel Layout of the Tactile Sensor Skin

The layout of normal force and shear force taxels as described in Chapter 3 is extended

through the addition of L′ and R′ shear force taxels on the left and right edges, respectively,

of the proximal face of the tactile sensor skin (Fig. 4.4). The multi-taxel layout shown in

Fig. 4.4 is a layout that minimizes the number of taxels while leveraging the design criteria

described in Section 4.4.2 to achieve 3D force and 1D torque sensing. The multi-taxel layout

also considers practical constraints such as limited skin area and the need to accommodate

gripper kinematics.

It was hypothesized that normal force taxels N1 and N2 will be most sensitive to the

ẑ-component of a 3D force load applied at the origin of the x̂− ŷ− ẑ global reference frame.

The shear force taxels L and R will be most sensitive to the x̂-component of the 3D force

load. The shear force taxel D, on the distal end of the proximal face of the tactile sensor

skin, will be sufficient to measure the ŷ-component of the 3D force load. Finally, the shear

force taxels L′ and R′ will enable a new sensing capability: the sensing of a torque load

about the ẑ-axis. For the purpose of subsequent discussion, the L − R and L′ − R′ shear

force taxel pairs will be referred to as the “on-axis” and “off-axis” shear force taxel pairs,

respectively.
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4.5.2 Experimental Setup

We characterized the tactile sensor skin’s ability to measure 3D force and 1D torque

loads using the experimental testbed shown in Fig. 4.5. The sensorized finger was mounted

to the print head of a modified benchtop 3D printer (Prusa, Mk3s). Using an open-source

interface (Pronterface), we sent G-code commands to the printer in order to apply loads to

the proximal face of the sensorized fingertip.

Three-dimensional force loads were created with the print head by pushing the fingertip

against a rigid plate atop a 6DOF force-torque sensor (ATI, Nano17). Torque loads were

created by pushing the fingertip against the rigid plate and then simultaneously commanding

a rotary stage (PDV, PT-GD201) beneath the 6DOF force-torque sensor. Combining the 3D

print head movements with the 1D rotary stage movement (driven by the printer extruder’s

stepper motor), the testbed enabled 4DOF control of load stimuli.

We acquired voltage signals from the sensor skin taxels and the 6DOF force-torque sen-

sor using two data acquisition (DAQ) boards: National Instruments, NI-DAQ 6363 and

NI-DAQ 6225, respectively. Raw taxel resistances were converted to DAQ input voltages

using a custom printed circuit board (PCB) having Wheatstone bridge-based signal condi-

tioning circuits. As the nominal resistance of each taxel is on the order of single ohms, each

Wheatstone bridge was excited at 0.25 V, and voltage output of the Wheatstone bridge (on

the order of microvolts) was sent to an instrumentation amplifier (Analog Devices, AD620).

This resulted in analog inputs to the sensor skin DAQ in the [-1.5, 1.5] V range. The sampling

rate of the NI-6225 and NI-6363 were synchronized at 500Hz for all data collections.

For each trial, we collect data from the experimental platform while creating loads on

the sensor skin. For each load, the platform is actuated and then held constant for two
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Figure 4.5: Experimental testbed used during characterization of the sensor skin

seconds. Each load contains the following sequence: (1) baseline readings with no applied

load, (2) ramp-up of taxel readings while the platform is actuating, (3) equilibrated taxel

readings while the platform is held constant, and (4) ramp-down of taxel readings when load

is removed.

4.5.3 Taxel Characterization

4.5.3.1 Data Collection

We assess the performance of the sensor skin with respect to two-dimensional force loads.

For this assessment, we used the experimental testbed shown in Fig. 4.5 to apply 200 ran-

domly generated linear loads along either the x- or y-axis, as defined in Fig. 4.4. Each trial

begins with an initial linear movement along the z-axis in order to generate a static normal
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force load of 10 N (µ = 10.02N, σ = 0.04N), which was held for 0.5 seconds. The subsequent

linear motion command (along either the x- or y-axis of the sensor reference frame) was held

for 1 second.

We assess the performance of the sensor skin as a result of one-dimensional torque loads.

For this assessment, we used the experimental testbed to apply 200 randomly generated

torques between -30 N-mm to 30 N-mm to the surface of the sensor skin, located at the

skin’s global origin, as defined in Fig. 4.4. In order to prevent slip during the experiment,

each rotation command was preceded by a linear movement along the z-axis, in order to

generate a static normal force load of 10 N (µ = 10.02N, σ = 0.04N), which was held for 0.5

seconds. The subsequent rotary command (about the positive z-axis in the counterclockwise

direction) was held for 1 second.

4.5.3.2 Data Processing

Each data point in Fig. 4.7 represents the relative change in taxel voltage as a result of

the applied torque:

∆̃Vk =
Vk − Vk,0

|Vk,0|
(4.10)

where Vk is the mean taxel voltage during the kth applied static torque, and V0,k denotes

the mean taxel voltage during the kth applied static normal force. Normalizing the torque

response data against the static normal load data allows us to visualize taxel response to

torque by decoupling the two simultaneous stimuli.
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4.5.4 Development of a CNN Model for 3D Force and 1D Torque

Tactile images are used as input to a three-layer CNN model, diagrammed in Fig. ZZ.

The architecture of this CNN has been demonstrated to work well for tactile estimation

applications, as in [111] and [112] where this architecture was used to estimate 2D shear force

and contact force using the BioTac tactile sensor. The shear estimation of [112] assumed

that the input was interpolated, whereas the normal force estimation method of [111] was

left sparse. We continue in the vein of [ref] without interpolating between inputs and rely on

the convolutional layers of the CNN to learn the taxel-to-taxel interactions during training.

For each configuration, we trained the CNN model described in Section 4.5.4 on the full

force-torque dataset to create estimates for [f, τ ] in the sensor’s global frame. Only the taxels

included in the configuration were used to create the tactile images input into the model,

with the unused taxel values set to zero.

4.5.4.1 Data Collection

A total of 1000 random deformations were applied to the sensor skin, during which the

data acquisition system was sampling Nano17 force-torque and sensor skin readings at 500

Hz. We used a 50 Hz moving average filter to remove the effects of signal noise. The linear

forces applied during the experiments ranged in magnitude between [−5 . . . 5] N in the x-y

plane, and [0 . . . 10] N along the z axis. The torques applied during the experiments ranged

in magnitude between [−30 . . . 30] mN-m about the z axis. After data was collected, the raw

taxel values were converted to tactile images through a preprocessing step as described in

the following section.
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4.5.4.2 Data Processing

For each trial and ith taxel, the mean of the baseline (undeformed) sensor data V i
k,0

is subtracted from the sensor data during loading V i
k,n. After the removal of the baseline

measurements, the sensor data Ṽ i
k,n are used as inputs for training a 3D force/1D torque

estimation model:

Ṽ i
k,n = V i

k,n − V i
k,0 (4.11)

where n ∈ (1, 40) represents 40 samples taken from the equilibrated readings from the ith

taxel during phase (3) of the kth trial. All samples from all deformations are consolidated

into a single array representing the processed data. Each row of the array consists of all

i = 1 . . . N taxel values for a given sample.

Ṽ0 = [Ṽ 1
0 , Ṽ

2
0 , ..., Ṽ

N
0 ] (4.12)

And the full dataset matrix is defined as

Ṽ = [Ṽ0, Ṽ1, ..., Ṽn×k]
T (4.13)

4.5.4.3 Tactile Images

The final step to prepare the taxel readings for use with the CNN-based force-torque

estimation model is to shape the data into a 2D array which represents the geometric layout

of the sensor skin. We chose to represent the data as a sparse array T where non-zero
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elements are defined as such:

T =



0 0 ṼD 0 0

0 0 0 0 0

0 0 ṼN2 0 ṼR′

0 0 0 0 0

ṼL 0 0 0 ṼR

0 0 0 0 0

ṼL′ 0 ṼN1 0 0

0 0 0 0 0

0 0 ṼD 0 0



(4.14)

4.5.4.4 Model Training

During training, Nano17 force-torque data is used as ground truth to produce labeled

outputs for each tactile image in the training dataset. The entire dataset [X,y] where X is

an Nx7x5 array of taxel reading inputs, y is a Nx4 array of force-torque outputs, and N is

the length of the dataset (in this case, N=40,000), is split such that the model is trained on

80% of the dataset and tested on 20% of the dataset.

During testing, we performed a study comparing different sensor configurations in order

to assess the performance of individual taxels as well as multi-taxel sensor configurations.

For each sensor configuration, the data from specified taxels were removed from the dataset

(and taxel readings set to zero). Comparison between taxel configurations was achieved by

training separate CNN models on each configuration, using the same training dataset.

The sensor skin used in this study is comprised of seven taxels, five shear and two normal,
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arranged in the pattern of Fig. 4.4. The taxels labeled L2 and R2 are the taxels which are

hypothesized to enable torque measurement via the CNN model. As per the mathematical

walkthrough of Section XX, these two taxels are displaced from the intended contact location

such that their principal axes are not coincident with the center of contact. This “lever arm”

of the taxel allows applied torque to be seen locally as a principal deformation. The taxels

labeled L1 and R1 are placed such that their principal axes are collinear with the center of

contact, which should result in poorer torque estimation.

4.6 Results

In this section we present data that corroborates the design considerations and demon-

strate force-torque estimation. (1) taxel-specific responses to single-axis forces, and (2)

combined force-torque estimation results. The goal of this section is to infer whether the

predictions of 4.4 are correct, and to act as a stand-alone empirical model of how multiple

taxels embedded in a single elastomer react to applied forces and torques.

4.6.1 Individual Taxel Responses

This section presents individual taxel responses to single-axis loads, in order to moti-

vate and inform the following section on combined force-torque estimation. Development of

typical strain-gauge sensors and force-torque sensors includes generating calibration curves,

which are functions that represent transducer response to applied loads. While the final

force-torque estimation method of this paper will use a data-driven method that does not

need explicit taxel response curves, we present them here in order to provide more trans-

parency into the analysis of the force-torque estimation results.
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Figure 4.6: Shear force taxel responses to applied linear force within the XY plane. Principal
deformations abide by the behavior outlined in the theoretical model, with positive and
negative deformations resulting in positive and negative taxel responses.

4.6.1.1 Responses to a Shear force Load

The key assumption that underpins the hypothesis that off-axis shear placement enables

torque sensing is investigated in Fig. 4.6. This assumption, that a taxel’s response to a local

deformation along the secondary axis is unsigned, while true per the model, has not been

shown in practice.

This result could indicate several things. During the experiment, care was taken to locate

the contact patch to be colinear with the on-axis shear force taxels. Due to either variability

during fabrication, or failure to find the optimal contact location, the on-axis shear force

taxels were, in actuality, slightly off-axis. Another assumption that could be incorrect is

that the secondary axis is assumed to be unfixed, that a right-handed skew transformation

is in practice not equivalent to a left-handed transformation. This again could be due to
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fabrication issues, such as a thicker material surrounding one edge of the taxel vs. the other.

Most generally, the assumption of a linear sensor model with point contact might not be

applicable, and the model might not capture the mechanics of soft body contact.

4.6.1.2 Responses to 1D Torque Load

We conducted an experiment to investigate taxel response as a function of applied torque

in Fig. 4.7. The function of this experiment was to corroborate and supplement the theo-

retical discussion and modeling of Section 4.4, while also providing an analytical basis for

the combined force-torque estimation results in the following section.

It is clear from Fig. 4.7 that the shear taxels labeled [L′, R′] are the most sensitive to

applied torque. According to the geometric argument of Section 4.4.2.2, it is expected that

shear taxels whose principal axes makes the greatest angle with their taxel origin vector

should exhibit the highest torque sensitivity.

Notably, while normal taxels are not designed in a way which is conducive to torque

measurement, the normal taxel labeled N2 shows an appreciable response to applied torque.

The local deformation at the origin of N2 as a result of an applied torque at the global sensor

origin should be coincident with the taxel’s local s2 axis. While the taxel response plot of this

taxel becomes nonlinear around -20 Nmm, the torque response is nonetheless bidirectional.

This behavior could arise from taxel placement during manufacturing, in which the taxel’s

principal axis n̂ creates a nonzero angle with the taxel origin vector. Alternatively, the

applied torque could cause a change in the normal taxel’s microchannel geometry that is

inherently bidirectional, such as furling and unfurling the spiral.

It is worth considering the sign of the slope of the taxel response curve. For a positive
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torque +τ applied at the sensor’s global origin, the direction of local taxel deformations

extend from their origins in the direction tangent to a circle centered at the origin according

to the right hand rule. The curves for [R′, L′] are clearly positive, as their local deformations

due to torque are most aligned with their principal axes. However, the slopes of the other

taxels are less intuitive. It is possible, in the case of taxel R for example, that the effective

taxel origin is displaced slightly along the −y global axis. If this were the case, a positive

torque at the sensor origin would result in a compressive force along the taxel’s principal

axis s1, creating a negative change in taxel voltage. This is likely the case, as taxel R shows

a weakly negative slope – weekly negative because it’s principal axis is not aligned with

the local deformation, and negative because a positive torque results in a negative voltage

change. A similar rhetoric can be used to explain the slopes and signs of the other taxels.

The behavior of the shear taxel D as a function of torque appears to be a piece-wise linear

function, with a greater sensitivity to negative torque than to positive torque. Whereas

the shear taxels [R,R′, L, L′] are designed and manufactured identically, D was designed

differently. According to requirements inherited from the work in 3, shear taxel D was

embedded in the region between the proximal and distal contact faces of the sensor skin (the

latter of which was not used in this study). As a result, the orientation of taxel D within

the surrounding elastomer is unique. Additionally, the piece-wise behavior could be due

to compressible inhomogeneities in the surrounding elastomer, which is a known problem

with this taxel. These compressible inhomogeneities could create a situation in which the

surrounding elastomer was more stiff in one direction than the other.

Ultimately, while the idealized model would predict that only [R′, L′] exhibit an appre-

ciable response to applied torque, it is clear that all taxels exhibit some sensitivity. Whether

this is due to imperfections in manufacturing or imperfections in the idealized model is
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Figure 4.7: Plot of taxel responses to applied torque. Each data point represents an equili-
brated taxel response to a static load.

unknown.

4.6.2 Combined Force-Torque Estimation

With the taxel behavior now characterized in terms of individual linear forces and torques,

we now turn to the task of simultaneous force-torque estimation using an arrangement of

multiple taxels within a single sensor skin. The purpose of this section is two-fold: (1) to

demonstrate the multi-axis estimation capabilities of our skin-like tactile sensor, and (2) to
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Table 4.1: Force-torque estimation performance of a selection of sensor configurations. Con-
figurations are ordered from left to right according to increasing force-torque estimation
performance. The highest R2 value for each configuration is in bold. Row in blue represents
the R2 averaged across features for a given configuration.
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fx-only 0.023 0.991 0.432 0.875 0.994 0.751 0.990 0.997 0.997 0.998
fy-only 0.918 0.081 0.347 0.309 0.978 0.970 0.979 0.993 0.995 0.996
fz-only 0.104 0.711 0.699 0.313 0.929 0.887 0.719 0.988 0.987 0.991
τz-only 0.102 0.514 0.588 0.694 0.763 0.877 0.923 0.984 0.995 0.995

R2 mean for f, τz 0.287 0.574 0.516 0.548 0.916 0.871 0.903 0.991 0.993 0.995

empirically support the modeling and characterization efforts of the previous sections.

To this end, we evaluate not only the performance of the complete seven-taxel sensor

array shown in 4.4, but also a number of configurations that use a subset of all available

taxels. Table 4.6.2 contains the configurations used in the study, which are arranged from

left to right in order of increasing number of taxels.

It is useful to consider that individual taxels provide information to the CNN model,

inasmuch as a certain taxel should be important for the encoding of a corresponding force-

torque feature. For example, the Distal Only configuration results show that the distal taxel

is important for the estimation of fy. This corroborates both the microfluidic design and

the taxel placement intuition developed earlier, as the taxel’s microfluidic features and its

principal axis align with the sensor’s global y-axis. Moving to the right it’s equivalently

clear that the On-axis Only configuration, with two taxels aligned with the global x-axis,
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successfully encodes fx. Interestingly, this pattern does not hold as clearly for the Normal

Only configuration, instead showing only marginally higher R2 for fz estimation than for the

other force-torque features. This is in part due to the surprising fact that the Normal Only

configuration appears to provide a significant amount of information to the CNN model as

it relates to the other force-torque features. The torque response experiment (Figure 4.7

also supports this finding, as the normal taxel N1 showed a significant sensitivity to applied

torque.

Comparing the force-torque estimation performance of each configuration against the

performance of the All configuration reveals the relative performance of each configuration,

denoted as ∆R2(τz−only). This allows true side-by-side comparison between configurations,

which we can use to corroborate the model and the taxel characterization studies and verify

our taxel design considerations of 4.4.2.

Enabling torque estimation by moving the shear force taxels to be off-axis was the pri-

mary hypothesis of this paper, and close inspection of 4.6.2 supports this hypothesis. The

configurations are grouped according to the number of taxels in the configuration, and sorted

in increasing order. Within each grouping, the highest-performing configuration in terms of

torque estimation performance was the configuration with off-axis shear force taxels.

Another suggestion was the placement of normal taxels closest to the anticipated point

of contact. Surprisingly, the result that most clearly supports this suggestion is seen by

comparing the On-axis Only and Normal Only configurations. Even though the on-axis

shear force taxels are not designed to encode normal force, the configuration outperforms

the Normal Only configuration in estimation of fz. It is clear that taxels of any modality are

capable of encoding force-torque features which are not their primary purpose. In the case

of on-axis shear force taxels, this is amplified by the taxels’ close proximity to the point of
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contact; the on-axis shear force taxels are the closest to the sensor’s origin, where the load

is applied.

4.7 Discussion

4.7.1 Sufficient Torque Estimation Performance from On-axis Shear Force Tax-

els

The model laid out in Sec XYZ predicts that the on-axis shear force taxels of the sensor

skin should perform poorly on torque estimation since the local taxel deformation due to

torque is predominantly along the taxel’s secondary axis. As shown in Fig A and Fig XY, the

experimental results do not entirely corroborate this prediction. While the torque sensitivity

of on-axis shear force taxels is less than that of the off-axis taxels, the hypothesis that on-

axis shear force taxel response is unsigned doesn’t appear in the experimental results. We

believe that, in reality, the “on-axis” shear force taxels are slightly off-axis due to inaccuracy

in the experimental setup and during fabrication. We believe the reason the on-axis model

effectively measures torque is because the CNN is robust enough to extract features from

the on-axis taxel readings, as poor and insensitive as they might be.

We believe that the results presented Fig ABA, showing higher torque sensitivity of

off-axis taxels, is sufficient to corroborate the hypothesis that in-plane torque estimation is

enhanced by placing shear force taxels remotely to the axis of applied torque.
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4.7.2 Limitations

4.7.2.1 Generalization to arbitrary contact geometry

The mathematical formulation presented in Sec. 4.4 is an oversimplification of the contact

dynamics and nonlinear strain behavior of the sensor skin elastomer. In the experiments of

Sec. 4.5, care was taken to ensure that the center of contact and orientation of the fingertip

were held constant. Additionally, the orientation and surface properties of the contacted

surface were held constant. The resultant dataset showed repeatable taxel response and

showed excellent force/torque estimation performance.

While holding variables constant allowed us to demonstrate a hypothesis about force/torque

estimation, the full solution to the problem of “tactile state estimation” is of a much higher

dimension than our experimental testbed was capable of exploring.

4.7.2.2 Overfitting

The full-sensor force-torque estimation performance in Table 4.6.2 should be taken with

a grain of salt, as the dataset it was trained on was generated in a repeatable and heavily

constrained environment. This work was focused on validating our proposed design criteria

for sparse tactile sensor skins, and not on creating a generalizable force-torque sensing model.

4.8 Conclusion

A set of design considerations has been proposed for tactile sensor skins using embedded

single-axis strain gauges with the purpose of enabling the estimation of applied 3D forces

and 1D torque about the skin’s surface normal. By displacing the shear force taxels such

100



that their principal axes do not intersect the anticipated center of contact, the sensor is

able to more accurately measure torque about the sensor skin’s surface normal. Force-

torque estimation results from a CNN-based estimator confer with both the single-axis load

characteristics and the analytical modeling that informed the design considerations.
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CHAPTER 5

Summary and Conclusion

5.1 Contributions

Kinematic Parameter Estimation of the Human Hand: As was made clear by the

palmless glove experiments, hand sensor networks are prone to miscalibration and unwanted

sensor movement. To remediate these issues, we developed a data-driven method to identify

the underlying hand kinematics using a sensor glove in the presence of sensor error. The

method derived in Chapter 2 is used to estimate the parameters of a 2-DOF joint, such

as the metacarpophalangeal (MCP) joint of the human hand. This method was verified to

estimate joint axis orientations to within a few degrees of the ground truth measurements,

and it outperforms existing estimation methods in terms of reliability and computational

complexity.

Skin-like Tactile Sensor Array for Underwater, Pressurized Environments: We

developed a skin-like tactile sensor array capable of multimodal sensing that is invariant to

the effects of an underwater, pressurized environment. Designed as a multi-layer stack of

durable elastomer and liquid-metal strain gauge, the sensor was evaluated in both dry and

underwater environments. Taxel sensitivity to applied loads was shown to be constant as a

function of simulated water depth. We demonstrated the sensor’s multimodal force sensing

capability by simultaneously applying normal force and two directions of shear force while
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in an underwater, pressurized environment.

Tactile Sensor Skin Design for Force-Torque Sensing: We provide criteria for the

geometric placement of individual sensing elements (taxels) within an elastomeric contact

medium in order to optimize the sensitivity of the sensor skin during contact. We test the

hypothesis that a certain placement of taxels within the medium will enable the sensor skin to

accurately measure in-plane torque. We use an experimental testbed to create contact forces

and torques at the surface of the sensor skin, and a data acquisition system to capture both

taxel readings and ground-truth force-torque readings. To investigate torque estimation

capabilities of the sensor, we train a simple CNN model on the data collected with the

testbed. By comparing the performance metrics of the CNN model using subsets of the taxel

array, we are able to validate our suggested design criteria for torque sensing. In addition

to in-plane torque sensing, we show the skin-like sensor is capable of 4-axis force-torque

estimation (three axes of linear force and 1 axis of torque).

5.2 Future Work

5.2.1 Kinematic Parameter Estimation of the Human Hand

The kinematic parameter estimation method presented in Chapter 2 represents the start-

ing point toward creating anatomically correct kinematic models of the hand. The methods

developed so far are extensible in two ways. First, while Chapter 2 was focused on the

estimation of kinematic parameters of a single joint, the method can be used recursively and

in parallel to estimate the multiple serial linkages of human hands. Secondly, the mathe-

matical framework used in the method provides the ability to estimate not only joint axes

(the focus of Chapter 2), but also the common normal distance between axes. With the
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additional estimation of the common normal, the extended estimation method could be used

to identify a complete set of kinematic parameters of the hand. This method could become

part of a calibration sequence prior to interactive VR applications, such as the user donning

a pair of sensor gloves and quickly being able to enter into the virtual setting intimately and

accurately.

5.2.2 Force-Torque Estimation in Underwater Environments via Tactile Sensor

Skins

Chapters 3 and 4 lay out a framework for advanced tactile sensing in an underwater, pres-

surized environment. This framework includes hardware, design optimization, and software

considerations for a sparse taxel array consisting of embedded liquid metal strain gauges.

Other than the hardware validation and brief characterization of Chapter 3, the ultimate

goal of underwater force-torque estimation using a skin-like tactile sensor was not com-

prehensively demonstrated. The technical risk of using the sensor skin at ocean depth was

addressed partially, as Chapter 3 demonstrated taxel sensitivity was not appreciably affected

by hydrostatic pressure. However, the holistic behavior of the sensor skin during submerged

applications could succumb to a variety of issues. A full demonstration of the capabilities

laid out in Chapters 3 and 4 would require an underwater robotic testbed, where forces and

torques could be applied to the sensor skin in situ. In the same way that Chapter 3 laid out

individual taxel response as a function of hydrostatic pressure, a more complete treatment

of underwater force-torque estimation would verify the constraints under which the sensor

skin can be operated in underwater, pressurized environments.
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5.2.3 Tactile State Estimation via Tactile Sensor Skins

Chapter 5 provides a walk-through of how to use a microfluidic-based tactile sensor array

to estimate 3D forces and 1D torques. It lays out a principled framework for the design of such

sensors, and shows force-torque estimation results using a CNN-based tactile force-torque

estimation method. The contribution of Chapter 5 can be extended both inward, toward the

mathematical foundations, and outward, toward additional sensing capabilities and applica-

tions. Regarding the mathematical foundations, the characterization of elastomer-embedded

strain gauges requires treatment of higher-order effects. As all taxels are embedded in a sin-

gle elastomer, there are inter-taxel correlations and nonlinear stress-strain behavior of the

embedding material that need to be accounted for. A more accurate sensor model could be

attained through material mechanics analysis, multiphysics simulation such as COMSOL, or

both.

Additionally, the tactile force-torque estimation demonstrated in Chapter 5 was achieved

using a repeatable testbed that provided a high-quality dataset. In order to use the pro-

posed method in an unstructured environment, further work is needed to test the model on

unstructured data. It is anticipated that refining the pre-trained CNN-based force-torque

estimation model of Chapter 5 using data gathered in a less repeatable environment should

improve the generalization of tactile force-torque measurements.
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Grasper: A multisensory based manipulation system for underwater operations. pages
4036–4041. 2013 IEEE International Conference on Systems, Man, and Cybernetics,
10 2013. ISSN: 1062-922X.

[25] Peter Kampmann and Frank Kirchner. A Tactile Sensing System for Underwater
Manipulators. page 5.
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