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Optimally Balanced Gaussian Process Propensity Scores for
Estimating Treatment Effects

Brian G. Vegetabile1, Daniel L. Gillen2, Hal S. Stern2

1RAND Corporation, Santa Monica, CA, 90401, USA

2Department of Statistics, Donald Bren School of Information & Computer Sciences, University of
California, Irvine, CA, 92697-3425, USA

Abstract

Propensity scores are commonly employed in observational study settings where the goal is to

estimate average treatment effects. This paper introduces a flexible propensity score modeling

approach, where the probability of treatment is modeled through a Gaussian process framework.

To evaluate the effectiveness of the estimated propensity score, a metric of covariate imbalance is

developed that quantifies the discrepancy between the distributions of covariates in the treated and

control groups. It is demonstrated that this metric is ultimately a function of the hyperparameters

of the covariance matrix of the Gaussian process and therefore it is possible to select the

hyperparameters to optimize the metric and minimize overall covariate imbalance. The

effectiveness of the GP method is compared in a simulation against other methods of estimating

the propensity score and the method is applied to data from Dehejia and Wahba (1999) to

demonstrate benchmark performance within a relevant policy application.

Keywords

Causal Inference; Covariate Balance; Gaussian Process; Nonparametric Estimation

1 | INTRODUCTION

The propensity score was introduced in Rosenbaum and Rubin (1983) in the context of study

designs with binary treatment regimes and has become a common tool for conducting causal

inference in observational studies. The propensity score is loosely defined as the probability

of an individual or unit in a study being in the treated group given a set of pretreatment

covariates. Rosenbaum and Rubin (1983) demonstrated that under certain assumptions,

adjustment on the propensity score enables unbiased estimation of the average treatment

effect or the average treatment effect among the treated.

There is a large literature on estimating the propensity score for binary treatment regimes. A

common approach is to utilize a statistical model building procedure (e.g. logistic

regression) that is iterated until a functional form of the propensity score is arrived at that
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sufficiently “balances” covariates (Imbens and Rubin, 2015; Imai and Ratkovic, 2014).

Procedures of this type are computationally fast to perform since models are often built in a

step-wise fashion. They typically achieve the goal of approximately balancing covariates

but, because of their restricted parametric form, may not accurately estimate treatment

assignment. Alternative approaches rely on nonparametrically estimating the propensity

score through modern statistical learning methods without a need to specify a functional

form (Woo et al., 2008; Lee et al., 2010; McCaffrey et al., 2004). These methods are

attractive because they can provide accurate estimation of the treatment assignment

mechanism while requiring fewer modeling decisions to be made. However, they are often

computationally demanding due to their flexibility. This paper focuses on a new procedure

for nonparametric estimation of the propensity score using Gaussian processes. In contrast to

other nonparametric estimation procedures which focus on hyperparameter selection to

provide unbiased estimation of the propensity score, the hyperparameters of the model are

selected to optimally balance the marginal distributions of pretreatment covariates in the

treated and control groups.

In a study comparing two groups, say a treated and a control group, estimation of the

propensity score can be addressed as a binary regression problem. A Bayesian latent variable

approach to binary regression is to assume that the probability of success (in this example

the probability of being treated) given a set of covariates is related to a random (e.g.

Gaussian) latent “score” for each observation. An extension of this approach is to assume

that these latent scores arise from a Gaussian process. A Gaussian process (GP) is a

collection of random variables, for which any finite subset of the collection has a joint

Gaussian distribution. The GP is described by specifying a mean function and a covariance

function, where the mean and covariance may depend on the set of covariates and unknown

parameters. Rasmussen and Williams (2006) provide an overview of GP modeling in the

context of classification problems.

In the context of propensity score estimation, the covariance function of the GP plays a key

role in modeling the latent scores which determine the probability of treatment. Generally,

covariance functions are constructed by using a kernel function that relates the covariance of

the latent scores for two individuals to the distance between the covariates for those

individuals. The idea being that if two individuals’ observed covariates are similar, then they

should have a similar probability of being assigned to the treatment (control) group. In this

way, estimation of the propensity score using a GP is analogous to methods in observational

studies that make use of the distance between sets of covariates to create matched pairs

(Stuart, 2010; Rosenbaum, 2010). The covariance function of the GP can also be

parameterized by hyperparameters that allow for heterogeneity in how each dimension of the

covariate space affects the covariances of the latent scores. Methods that utilize GPs (e.g.

Rasmussen and Williams (2006) for binary classification) typically optimize the

hyperparameters with respect to the marginal likelihood function (where the latent score

variables have been marginalized over). This does not address one of the key assumptions

required for causal inference in observational studies, that of covariate balance, thus we

propose a method to optimize hyperparameters with respect to a metric of covariate

imbalance.
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This paper introduces a new approach to estimating the propensity score using Gaussian

processes and optimizing hyperparameters with respect to covariate balance. Section 2

provides an overview of causal inference, defines a function for measuring covariate

imbalance, and introduces our method for estimating the propensity score. Section 3

provides a simulation study comparing the optimally balanced Gaussian process approach

against other methods currently in use for estimating the propensity score in binary settings.

Section 4 applies the method to data from LaLonde (1986) in order to compare with results

from Dehejia and Wahba (1999) and to provide benchmark performance against this

common data set. Section 5 provides discussion and conclusions.

2 | METHODOLOGY

2.1 | Overview of Causal Inference

We utilize the potential outcomes framework of Neyman and Rubin (Splawa-Neyman et al.,

1990; Rubin, 1974) for estimating causal effects. For each sampled unit i, let Ti ∈ {0, 1}

represent a binary treatment assignment, where Ti = 1 and Ti = 0 represent membership in a

treated group and a control group, respectively. Let Y i
t be defined as the potential response

for unit i under the treatment exposure T = t, e.g., Y i
0 would represent the potential response

for unit i under the control exposure. One possible measure of the effect of treatment for unit

i is τi ≡ Y i
1 − Y i

0, which can be summarized across individuals by assessing the average

treatment effect (ATE), τATE = E(Y1 − Y0). Alternatively it may make more sense to

measure the average treatment effect in the treated group (ATT), which is the average of the

individual treatment effects conditioned upon the treatment exposure, τATT = E(Y1 − Y0 | T
= 1). An example of when this estimand may be useful is in situations where a treated group

is observed and a control group is constructed from a large data source for which relevant

data is available and therefore an estimate of a treatment effect is only suitable for those who

have been treated. We cannot observe both Y i
1 and Y i

0 for a given unit under the exact same

conditions (i.e., time, environment, etc), and can therefore never measure a true causal effect

for a unit in the counterfactual sense (see Holland, 1986, the Fundamental Problem of
Causal Inference). What we do get to observe is the response for that unit arising from the

treatment actually received, that is Y i
obs = I Ti = 1 Y i

1 + I Ti = 0 Y i
0, complicating estimation

and inference for τATE and τATT.

Inference in the potential outcome framework within observational settings can be made

possible through the use of two assumptions: strong ignorability given a set of pretreatment

covariates and the stable unit treatment value assumption (see Imbens and Rubin, 2015,

Chapter 1 for an overview). An assumption of strong ignorability implies that a unit’s

potential outcomes are conditionally independent of the treatment assignment given

covariates and that there is a positive probability of being assigned to either treatment group,

mathematically that is Y i
1, Y i

0 ∐Ti Xi and 0 < P(Ti = 1|Xi = xi) < 1 for all i and where xi is a

D-dimensional vector of pretreatment covariates; for example xi may be a vector embedded

in ℛD. The stable unit treatment value assumption further implies that there is no

interference between units and that there is no hidden treatment variability at different
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treatment levels. Under these assumptions it is possible to obtain unbiased estimates of the

ATE, or the ATT, using observational data by conditioning on the observed covariate vector

X.

Conditioning on a D-dimensional vector of covariates may be difficult and thus it may be

desirable to condition upon a transformation of X that is of lower dimension. Rosenbaum

and Rubin (1983) defined one such transformation as a balancing score, where a balancing

score is any function b(·) such that X ∐ T | b(X). If treatment assignment is strongly

ignorable given X, then it is strongly ignorable given a balancing score b(X) (see

Rosenbaum and Rubin, 1983, Theorem 3). Thus, under strong ignorability, conditioning on a

balancing score enables unbiased estimation for the ATT or ATE. Rosenbaum and Rubin

(1983) demonstrated that the propensity score, defined as e(x) = Pr(T = 1|X = x), is a

balancing score. This implies that conditioning on the propensity score is adequate for

estimating treatment effects under strong ignorability. In this paper we focus on weighting

estimators of the ATE and ATT based on inverse probability weighting similar to those

devised in Horvitz and Thompson (1952). Specifically, given a sample i = 1, …, N and

estimates of the propensity score, e xi , the ATE or the ATT may be estimated as follows,

τ∗ = i = 1
N wi∗I T i = 1 Y obs

i = 1
N wi∗I T i = 1

− i = 1
N wi∗I T i = 0 Y obs

i = 1
N wi∗I T i = 0

(1)

The weights w∗ are chosen for the appropriate estimand (defined later in Section 2.3 for the

ATE and ATT) and the expression I ⋅  is an indicator function that evaluates to one if the

statement is true. Weighting estimators can be shown to provide unbiased estimates for the

ATE and the ATT (Hirano et al., 2003; Stuart, 2010; Imbens and Rubin, 2015).

The assertion of the assumption of strong ignorability requires further discussion. In

practice, the assumption that Y i
1, Y i

0 ∐Ti Xi, will require that all confounding covariates

have been identified; an untestable assumption in observation settings (see Imbens and

Rubin (2015)). While this is a clear limitation of observational studies, there have been many

proposed methods to address the sensitivity of estimates of treatment effects to the presence

of potentially unobserved confounding variables (e.g., the methods outlined in Rosenbaum

(2010)). The assumption that 0 < P(Ti = 1|Xi = xi) < 1 is often referred to as the positivity

assumption, or the overlap assumption, and is also an important assumption that must be

well understood when performing an analysis. This positivity assumption, in large samples,

provides a region of the covariate space where we would expect to observe outcomes under

both treatments, i.e., overlap. Therefore estimates of causal effects within the potential

outcomes framework can only be obtained for this region where we observe both outcomes.

To enforce this assumption in practice many choose some threshold η ∈ (0, 0.5) and restrict

the analysis to individuals whose estimated propensity score satisfies e xi > η and

e xi < 1 − η. We note that this changes the applicable population of individuals that are

available to study and therefore changes the causal estimand (see Li et al. (2017)). While it

is useful to understand these assumptions in practice, we will assume they hold throughout

the remainder of this manuscript.
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2.2 | Estimation of Propensity Scores using Gaussian Processes

To estimate the propensity score, we assume that it can be modeled through a probit

transformation of a latent variable fi, i.e., e(xi) = P(Ti = 1|Xi = xi) = Φ(fi), where Φ(·) is the

cumulative distribution function of the standard normal distribution and the dependence of fi

on Xi is left implicit to keep notation simple. For i = 1, …, N, let,

T i Xi = xi ∼ Bernoulli Φ fi , (2)

and make the assumption that the collection of latent scores fi arise from a Gaussian process.

Let X represent the N × D matrix of pretreatment covariates for all units and let θ be a

vector of hyperparameters. Then

f X, θ ∼ GP 0, K X, θ , (3)

where K(X, θ) models the covariance of the observed set of the process and we make the

common a priori assumption that the mean of the process is zero.

The covariance matrix K(X, θ) describes the ‘similarity’ between the latent scores for units

within the study. The matrix is constructed using a kernel function, k(xi, xj; θ), to compute

the covariance between the latent score for unit i and the latent score for unit j given

hyperparameters θ. There are many specifications for kernel functions that may be chosen

(see Rasmussen and Williams, 2006, Chapter 4 for designing kernel functions). Two

common kernel functions for binary regression models are the squared-exponential kernel,

kse xi,xj; ρ = exp − ρ2
2 d = 1

D
xi, d − xj, d

2 , and the normalized polynomial kernel,

Knp xi,xj; σ0, ρ =
xiTxj + σ0

2

xiTxi + σ0
2 xjTxj + σ0

2

p
. To estimate the propensity score, our model uses an

additive function of the squared exponential and the normalized polynomial kernel which is

a valid kernel (Rasmussen and Williams, 2006, see Section 4.2.4). That is, we consider a

kernel of the form

k xi, xj; θ = kse xi, xj; ρ + Knρ xi, xj; σ0, p = 1 , (4)

where we fix p = 1 to only consider first-order polynomial terms and therefore θ = (ρ, σ0).

The first-order normalized polynomial kernel allows for long range dependencies of the

latent scores within the data, while the squared exponential kernel captures local variability

in the latent scores.

Within this model both f and θ are unknown. One approach to inference is to specify a fully

Bayesian model by providing a prior distribution for θ and then sample from the posterior

distribution of f, θ|T, X using Markov Chain Monte Carlo (MCMC). What complicates this

approach is that causal applications require a specification of the propensity score that is also

a balancing score, and therefore only vectors of f that balance covariates are helpful.

Therefore in practice it is adequate to find θ such that a functional of f|T, X, θ balances

covariates (e.g., a function of E(f|T, X, θ)). One way to choose such a θ would be to

maximize a form of the marginal likelihood with respect to θ where the latent scores have
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been integrated out of the joint distribution of f, T|X, θ. This approach is complicated by the

non-Gaussian likelihood (though it is not impossible) and it is an approach that indirectly

attempts to balance covariates by using an unbiased estimate of E(f|T, X, θ), relying on the

fact that an unbiased estimate of the propensity score is a balancing score. We propose an

approach that is more direct in that we model f|T, X, θ and select the value of θ that yields

propensity score estimates, i.e. Φ(E(f|T, X, θ)), that provide an optimal level of covariate

balance.

Given a value of θ, the conditional posterior distribution f|T, X, θ is as follows,

p f T, X, θ ∝ p T X,f p f X, θ

∝ K X, θ −1/2exp − 1
2fTK X, θ −1f

i = 1

N
Φ fi

Ti 1 − Φ fi
1 − Ti . (5)

This conditional posterior distribution is not tractable and must be approximated. Three

common methods exist for approximation (Rasmussen and Williams, 2006): (1) Laplace

Approximation; (2) MCMC sampling; and (3) Expectation Propagation. We utilize

expectation propagation (EP) for its computational efficiency relative to MCMC and the fact

that, in classification problems, the EP approximation has been shown to provide more

comparable results to those obtained through MCMC sampling of the conditional posterior

distribution than the Laplace Approximation (Kuss and Rasmussen, 2005).

In this setting, expectation propagation replaces each individual treatment assignment

likelihood component, i.e. gi = Φ fi
Ti 1 − Φ fi

1 − Ti, with an approximation that is a scaled

Gaussian distribution, qi =
Zi∗

2πσi∗
2 exp −

fi − μi∗
2

2σi∗
2 . The terms μi*, σi ∗2  are the center and

scale of the Gaussian approximation, respectively. The factor Zi*, ensures that the constant

of integration between the true posterior distribution and the approximation agree. Using this

approximation it follows that

p f T, X, θ ∝ K X, θ −1/2exp − 1
2fTK X, θ −1f

i = 1

N
Φ fi

Ti 1 − Φ fi
1 − Ti (6)

≈ K X, θ −1/2exp − 1
2fTK X, θ −1f

i = 1

N Zi ∗
2πσi ∗2 exp − fi − μi ∗

2

2σi ∗2 (7)

∝ exp − 1
2fTK X, θ −1f exp − 1

2 f−μ∗
T ∑∗

−1 f−μ∗ (8)

where μ* is the vector of μi∗ and ∑∗ = diag σi ∗2 . Note that in Equation (8) it appears that

the Zi* are irrelevant, but they play an important role in the EP algorithm to ensure that the

appropriate μi*, σi ∗2  are selected.
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The EP approximation to the distribution of f|T, X, θ can then be found using properties of

normal distributions. The utility of the approach depends on finding acceptable Zi*, μi*, and

σi ∗2  for all i. The EP algorithm as specified in Rasmussen and Williams (2006) and Kuss and

Rasmussen (2005) is performed in an iterative fashion until the approximating parameters

converge to stable values. The EP algorithm of Rasmussen and Williams (2006) can be

significantly improved with respect to computational runtime if done in parallel (Van Gerven

et al., 2010; Tolvanen et al., 2014). The implementation that we utilize is a parallel version

of the EP algorithm (See Van Gerven et al. (2010) and Tolvanen et al. (2014) for overviews).

Using the approximation of the distribution f|T, X, θ resulting from the EP algorithm, the

propensity score can be estimated from its mean, e xi = Φ E fi T,X,θ . The results in this

section assume that θ is already known, Section 2.4 describes our approach for selecting θ in

order to minimize covariate imbalance.

2.3 | Measuring Covariate Imbalance

One method of assessing the adequacy of a propensity score model is to measure the degree

to which it balances the distributions of the pretreatment covariates in the treated and control

groups. Here we develop a measure of covariate imbalance as a function of the moments of

the covariate distributions conditioned upon treatment type. Let Xi,d be the dth dimension of

the covariate vector for individuali. Then for each dimension of the covariate space

corresponding to a continuous covariate, we define

Xd t = i = 1
N wi∗I T i = t Xi, d

i = 1
N wi∗I T i = t

and sd
2 t

= i = 1
N wi∗I T i = t Xi, d − Xd t 2

i = 1
N wi∗I T i = t

(9)

as the weighted mean and weighted sample variance for each covariate in each group,

respectively. For binary covariates let Xd t  be defined the same way but let

sG, d
2 = Xd t 1 − Xd t . In this work, ordinal covariates are treated as continuous covariates

and categorical covariates are transformed to binary covariates using dummy variables. The

weights, wi∗, are defined in two different ways, depending on the estimand of interest. They

are defined for the ATE and the ATT as follows (Hirano et al., 2003; Stuart, 2010):

wiATE = I T i = 1
e xi

+ I T i = 0
1 − e xi

and wiATT = I T i = 1 + I T i = 0 e xi
1 − e xi

(10)

The weighted means and variances defined in Equation (9) can be used to assess covariate

imbalance. Imbens and Rubin (2015) define the standardized difference in the means and the

logarithm of the ratio of the sample standard deviations as

Δd = Xd 1 − Xd 0
sd

2 1 + sd
2 0 /2

and Γd = log sd 1 − log sd 0 , (11)
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respectively. When the propensity score adequately balances the conditional distributions of

the pretreatment covariates, both |Δd| and |Γd| should be small. We operationalize this notion

by defining ℬd as the covariate imbalance in dimension d, where

ℬd =
Δd

2 + Γd
2 if Xd is a continuous covariate

Δd
2 if Xd is a binary covariate

(12)

and use a measure of overall covariate imbalance that is a sum of the covariate imbalance in

each dimension,

ℬ =
d = 1

D
ℬd . (13)

Two choices made in the proposed definition of ℬ deserve further explanation. First, the

balance metrics used for continuous and binary distributions differ. The purpose of the

measure of covariate imbalance is to quantify the total difference between the moments of

the distributions of the pretreatment covariates between the treated and control groups. The

distribution of a binary covariate is completely defined by the first moment and therefore Γd

for such a covariate is a function of the first moment. This implies that including Γd in the

imbalance measure for binary covariates would, in effect, more heavily weight the first

moments of binary covariates than those of continuous covariates. In simulation studies this

negatively impacted performance. The variance terms, Γd, are needed for continuous

covariates to reduce the bias that would arise if the distributions were not balanced with

respect to the second moment. A second feature of our measure is that each term in ℬd is

squared. The typical advice is to evaluate covariate balance by considering the absolute

value of each term (Imbens and Rubin, 2015). Squaring each term in ℬd penalizes solutions

that allow some dimensions of imbalance to remain large while others approach zero. In

simulations this was found to improve performance by ensuring that no dimensions have

substantial imbalance. This is analogous to the difference between minimizing absolute error

loss and minimizing squared error loss in multivariate estimation problems.

2.4 | Minimizing Covariate Imbalance

Section 2.2 described our approach for estimating propensity scores given hyperparameter θ.

Section 2.3 defined a measure of the overall covariate imbalance, ℬ, which is a function of

the estimated propensity scores (and hence a function of θ). We propose to find a value of θ
which minimizes total covariate imbalance,

θopt = arg min
θ

ℬ θ . (14)

The function ℬ θ  relies on the EP approximation to find E(f|T, X, θ), and therefore the

derivatives of ℬ θ  are not easily obtained. To optimize covariate imbalance we utilize a

derivative-free optimization routine called “Bounded Optimization BY Quadratic

Approximation (BOBYQA)” defined in Powell (2009) and implemented in the R package
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minqa. The algorithm is a method that optimizes a function when first derivatives are not

available, as in our application. Additionally, the boundedness of the optimization routine

allows for specifying regions of the parameter space that are valid, such as specifying that

the parameter θ must be positive. The algorithm requires starting estimates for θ. If all

covariates have been standardized (i.e., mean zero and variance of one for continuous

covariates and binary covariates transformed to Xi ∈ {1, −1}), then the initial value of θinit =

(1, 1) has provided satisfactory performance in our simulations. Once a vector of parameter

values, θopt, has been found that minimizes covariate balance, the propensity score is

estimated as e xi = Φ E fi T, X, θopt  and an estimate of a treatment effect can be found

using weighted least squares.

2.5 | Software Implementation

The methods developed here have been implemented within the R programming language in

a package called gpbalancer. The primary function gpbal takes as inputs a set of observed

covariates and treatment assignments and a covariance function and finds the set of

hyperparameters of the defined covariance function that minimize Equation 13. The package

contains a few covariance functions that are useful for estimation, but these can be extended

if necessary. At the time of publication the development version of this package can be

found at https://github.com/bvegetabile/gpbalancer where examples of usage can be found.

3 | SIMULATION STUDY

We provide a simulation study to investigate the performance of our method and compare its

effectiveness in estimating treatment effects against other propensity score estimation

methods. Section 3.1 focuses on estimating the ATE where there is a true propensity score

model used to generate the treatment assignments. In this setting we can compare results

with the true propensity score, as well as against other methods, to assess the relative

performance of our approach. Section 3.2 focuses on simulation results for estimating the

ATT. These sections consider estimating treatment effects under two potential outcome

models: (1) potential outcomes are linearly related to a covariate with a constant treatment

effect and (2) there is a non-constant treatment effect (effect modification by a covariate).

3.1 | ATE Simulation Study

3.1.1 | Simulation Setting—To compare methods for estimating the ATE, 1000 data

sets, each consisting of 500 observations, were simulated with treatment assignment

determined using a true propensity score model that is a function of two covariates X1 and

X2, such that X1 ∼ N 0, 1  and X2 ∼ Bernoulli(0.4). The potential outcome models for this

section are defined to be functions of the continuous covariate X01 and are described in

Table 1. The simple potential outcome models of this section demonstrate settings where the

bias of the estimated treatment effect is a function of differences in the distributions of the

covariate X1 conditioned upon treatment type. The first potential outcome model only

requires balancing the mean of the covariate as this is the only characteristic of the

distribution that will affect the treatment effect estimates. Because the second potential

outcome model includes an exponential term the bias is a function of more moments than we
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include in our imbalance metric; this case demonstrates the performance where we only

consider the first two moments of X1.

In this section we consider two different models for the true propensity score,

P Ti = 1 X1, i, X2, i = α1 × Φ gj Xi, β + α2,

for j = 1, 2. The function gj(Xi, β) takes one of two forms: a polynomial with linear and

interaction terms, g1(Xi, β) = β0 + β1X1 + β2X2 + β3X1X2, or a second order polynomial

with no interaction terms, g2 Xi, β = β0 + β1X1 + β2X1
2 + β3X2. The values α1 and α2 were

chosen to restrict the values of the propensity score to be in the interval (α2, α1 + α2) and

thereby ensure that the positivity assumption is valid. Additionally, by strategically choosing

α and β values, it is possible to construct functions that are difficult to model using logistic

or probit regression. Settings of the parameters for the two propensity score models are

defined in Table 2. Figure 1 visualizes these functions for 500 sample draws as functions of

X1 and X2.

Within each simulation, eight approaches for estimating the ATE are compared. They are

defined in Table 3. First the ME is estimated without adjustment, i.e.

τ = iTiY obs

iTi
− i 1 − Ti Y obs

i 1 − Ti
, to provide baseline measures of performance. The average

treatment effect is then estimated by weighting using the true propensity score to construct

the weights and provides performance measures that could be obtained if the true propensity

score were known. Next, weighting adjustment is performed using four nonparametric

propensity score estimation methods. The first two methods are our optimally balanced

Gaussian process model using the ATE weights previously defined. The first specification of

our model utilizes the additive kernel defined in Equation (4) and the second model has a

kernel such that κse Xi, Xj; ρ = exp − d = 1
D ρd

2 Xi, d − Xj, d
2/2  a version of the squared

exponential kernel where each dimension has its own inverse-length scale parameter ρd.

Additionally, we add a small value (i.e., 1e–6) to the diagonal of each kernel for numerical

stability. The other two nonparametric approaches are a method utilizing gradient boosting

machines (GBM) available in the twang package in R (McCaffrey et al., 2004) and Bayesian

additive regression trees (Chipman et al., 2010; Hill, 2011) available in the BART package

in R. Finally we compare the nonparametric methods against methods where the propensity

score is estimated parametrically. We consider two methods: the Covariate Balancing

Propensity Score, CBPS (Imai and Ratkovic, 2014) available in the CBPS package in R and

a generalized linear model (GLM) using logistic regression. For each of these parametric

models the model is a misspecified model as defined in Table 3. We note that any parametric

model would be “misspecified” if it is missing parameters to capture the effect of α1 and α2.

3.1.2 | ATE Simulation Results—Each table of results provides simulation summaries

for the eight different adjustment methods outlined in Table 3 under the two different

potential outcome models defined in Table 1. The columns of the tables are grouped together

into three sections. The first three columns provide the proportion of the 1000 simulations
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that were declared to be mean balanced, i.e., |Δd | < δ for all d and for various thresholds of

δ. The next four columns are results for the potential outcomes that were linear and related

to X1 and the last four columns are results when the treatment effect varies as a function of

X1. Each group of four columns contains the following simulation summaries without

conditioning on balance: the mean bias and mean absolute bias, the mean reduction in bias

as compared with no adjustment by the propensity score, the empirical standard error of the

simulation ATE estimates, and finally the empirical mean squared error for the ATE. The

rows of the table are in the same order as Table 3.

Tables 4 and 5 provide results for the cases where nonparametric modeling should

outperform models utilizing parametric assumptions. Table 4 contains results for when the

true data generating propensity score was a linear polynomial with interaction terms and

Table 5 contains results for when it was a second-order polynomial. The first significant

result is that the optimally balanced Gaussian process propensity score methods balance

covariates more effectively than other methods, across different thresholds of δ and under

both propensity score settings. When the true propensity score was a linear function with

interaction terms (Table 4) the CBPS methods also performed well for balancing covariates,

while the other nonparametric methods performed well when the true propensity score was a

second-order polynomial (Table 5). Neither performed well under both propensity score

functions. This suggests that our method is applicable in a wider range of data-generating

settings than competing methods for estimating the ATE.

While balancing covariates is an important step in performing causal inference, the primary

goal is to minimize the bias of the estimated average treatment effect through adjustment on

an estimated propensity score. Tables 4 and 5 demonstrate that the optimally balanced

Gaussian process propensity score provides unbiased estimation of the ATE. This

demonstrates that the balance achieved through the optimization procedure is not at the

expense of other properties of the estimator. Additionally, we see that the mean squared error

is often the smallest value in each table and correspondingly provides low empirical standard

errors of the estimator.

The alternative nonparametric methods perform similarly to the optimally balanced

Gaussian process propensity score in estimating the ATE. These methods generally obtain

performance in estimating average treatment effects that are similar to the true data

generating propensity score. Across both tables it appears that nonparametric models of the

propensity score provide more consistent performance, for both balancing covariates and

estimating the ATE, than parametric models. Specifically consider row 7 (GLM-Logistic

Regression) of Table 5, the method provides very good performance for estimating the ATE

under the the “Linear Related to X1” setting and in almost all simulations the propensity

score estimates balances the covariates, but the weights did not perform well for estimating

the ATE when the outcome model contained effect modification. Alternatively consider row

8 (CBPS) of Table 4, this demonstrates a setting where there is good covariate balance, yet

the performance in estimating the ATE under the effect modification case is worse than for

all nonparametric methods. These examples demonstrate that while a method may be able to

balance covariates, it does not guarantee optimal performance in estimating treatment

effects.
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Comparing across all ATE simulations, the optimally balanced Gaussian process propensity

score provides the best performance in aggregate for both balancing the covariates and

removing bias in estimating the ATE.

3.2 | ATT Simulation Study

3.2.1 | Simulation Setting—The results of the previous section demonstrated the

performance of the method in estimating the ATE when the outcome models were only

related to one covariate. In this section, we further explore the performance of the optimally

balanced Gaussian process methodology, but in this case for estimating the ATT and when

there is a multivariate covariate distribution consisting of both continuous and binary

random variables that are related to the potential outcome models. Similar to the last section,

we consider 1000 simulated data sets, each of 500 observations each. In this simulation,

each X = (X1, X2, X3, X4, X5)T is generated such that, X1 ∼ N 0, 1 , X2 ∼ N 0, 1 , X3 ∼

Bernoulli(p3 = 0.3), X4 ∼ Bernoulli(p4 = Φ(x1)) and X5 ∼ Bernoulli(p5 = Φ(x2)). Further, the

true propensity score is defined as, P(T = 1|X = x) = Φ(f(x)) where, f(x) = 0.5x1 + 0.25x2 +

0.1x1x2x3 + 0.05x2x5 + 0.025x4. Under this data generation setting, we then simulate Ti | Xi

= xi ∼ Bernoulli(Φ(f(xi))). In this section, we again consider two potential outcome settings,

but they are now functions of more than one covariate as demonstrated in Table 6.

Similar to the ATE Setting discussed in Section 3.1, we compare the optimally balanced

Gaussian process propensity score estimation method against other methods of estimating

the propensity score. For our method, we utilize the kernels defined in Section 3.1.1, but

now we use the ATT weighting as defined in Section 2.3 when measuring covariate

imbalance. We consider seven methods in total for estimating the propensity score in the

ATT case as outlined in Table 7 and described previously. In contrast to the previous section

the “No Adjustment” estimator does not make sense for estimating the ATT and therefore

we do not use it.

3.2.2 | ATT Simulation Results

Similar to Section 3.1.2 we review the results for estimating the ATT using the optimally

balanced GP method and compare it against other methods of estimating the propensity

score; Table 8 provides simulation results. The table is grouped by potential outcome setting

and each group contains performance metrics for the simulations as in Section 3.1 without

conditioning on covariate balance.

Table 8 demonstrates that the optimally balanced Gaussian process propensity score again

performs well for balancing covariates, as it was intended to do. The results also

demonstrate that our method is comparable with CBPS, a method which also optimizes with

respect to covariate balance though with parametric assumptions. Finally, we see that all

methods provide bias reduction for estimating the ATT, but methods that optimize on

covariate imbalance often provide lower levels of MSE and absolute bias.
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4 | APPLICATION

This section focuses on comparing propensity score models constructed in Dehejia and

Wahba (1999) to propensity score estimates from our developed method. The analysis of

Dehejia and Wahba (1999) was itself a replication of earlier work by LaLonde (1986), and

the data set of Dehejia and Wahba (1999) is often considered a benchmark data set to

demonstrate the performance of propensity score estimation methods. The research goal of

LaLonde (1986) was focused on the extent to which observational data can be used to

replicate results obtained through controlled experiments. The original analysis assessed the

effect of a job training program, the National Supported Work (NSW) Demonstration, on

post-exposure earnings. Within the original study there was randomization to either a control

group that did not get training or a treatment group that did receive training. LaLonde (1986)

then collected six observational data sets and tried to use these data as pools of control

individuals with which to replicate the experimental results; three from the Panel Study on

Income Dynamics (PSID-1, PSID-2, PSID-3) and three from the Current Population Survey-

Social Security File (CPS-1, CPS-2, CPS-3). The data sets PSID-2, PSID-3 and CPS-2,

CPS-3 are subsets from PSID-1 and CPS-1 data sets, respectively, and were chosen because

the author believed that the subsetted individuals were more similar to the NSW

experimental treatment group. Dehejia and Wahba (1999) then extended these results using

propensity score estimation based upon the work of Rosenbaum and Rubin (1983) to

estimate the ATT. In this section, we provide similar analyses using the propensity score

models of Dehejia and Wahba (1999) and our optimally balanced Gaussian process

propensity score using inverse-probability weighted estimation for the ATT.

The data we will analyze are the subset of individuals that were utilized in Dehejia and

Wahba (1999). This subset of data focused on men who were assigned to treatment after

1975 and the outcome measure was the post-intervention earnings in 1978. The data set

contains the following variables for each individual: age, education in years, indicators of

whether the individual was black or Hispanic, an indicator of whether the individual was

married, an indicator of “no degree”, and retrospective earnings in 1974 and 1975. Table 9

provides summaries of the data. It is clear that the observational data sets are different from

the experimental data indicating that adjustment is necessary to remove the effects of

potential confounding variables. In particular individuals within the experimental data were

often younger, were less often married, and had significantly less earnings in 1974 and 1975;

additionally there was a higher representation of black individuals within the experimental

data.

Table 10 provides two sections of results for each data set (i.e., a row in this table): 1) the

first two columns contain summaries of unweighted covariate imbalance, as defined by

Equation (13), comparing the control data set to the NSW treatment group, and estimates of

the treatment effect without weighting adjustment; 2) the remaining columns are results for

covariate imbalance measures and estimates of the ATT using propensity score models from

Table 3 of Dehejia and Wahba (1999)1 and propensity scores estimated using our optimally

balanced Gaussian process approach. We note that the original Dehejia and Wahba (1999)

analysis did not contain a similar weighting analysis for the ATT, but we provide one here

using their prescribed propensity score functions. The first point of comparison is that using
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the experimental data (first row of Table 10), the estimated difference in post-intervention

earnings between the treated and control group was $1794, suggesting that the NSW job

training program may have provided a benefit for individuals who were similar to those who

were enrolled within the study. Now, as compared to the experimental results, the

unweighted estimates of the effect of treatment using the observational controls would

suggest that there was no effect of the training program, but this assertion can be doubted as

the value of the covariate imbalance metrics indicates large differences in the covariate

distributions between the experimental and observational control sources. The next result is

that weighting by the estimated propensity score clearly provides benefits for reducing

covariate imbalance to levels that are more comparable with the experimental control group

and that our optimally balanced Gaussian process propensity score estimation method

obtains imbalance metrics that are smaller in magnitude than the experimental covariate

imbalance metric. We also see that the models of Dehejia and Wahba (1999) do not provide

a level of covariate imbalance that is comparable to our method across the PSID data sets,

but the methods are similar across CPS data sets (for a full comparison of covariate

imbalance measures across all covariate dimensions see the supplemental information). In

particular, many of the covariate dimensions within the PSID data sets contain covariate

imbalance measures that are approximately 0.2 or larger, often considered an indicator that

propensity score estimates are inadequate. Next, the results in columns 5 and 7 demonstrate

that estimates similar to those from the experimental results can be obtained using

observational control groups by ATT weighting using the estimated propensity score (though

the results are no longer statistically significant). Both methods provide estimated treatment

effects that are now consistent with those obtained using the experimental data, as compared

with no weighting adjustment, i.e., they are now of a similar magnitude and in the correct

direction. We see that when there is a large remaining imbalance, as demonstrated in the

PSID data sets using the models of Dehejia and Wahba (1999), that the estimated treatment

effect is larger than the estimated treatment effect using our methodology. When the

methods provide similar levels of covariate imbalance, as is the case in the CPS data sets, the

estimated treatment effects agree more. We note that while the results are similar, the

optimally balanced Gaussian process methodology required many fewer modeling decisions

in specifying afunctional form for the propensity score in each observational data set.

5 | DISCUSSION

Estimation of the propensity score is an often-used tool in causal analyses of observational

data. Estimation of average treatment effects, either the ATE or the ATT, through propensity

score weighting provides a flexible method of allowing researchers to control for

pretreatment covariates. Often though, researchers make parametric modeling assumptions

when estimating the propensity score and these assumptions may not be adequate to remove

bias in the estimated treatment effects due to covariate imbalance. This paper describes a

nonparametric estimation strategy that utilizes a Gaussian process model to estimate the

1All models were logistic regression. For PSID-1, covariates included were: Age, Age2, Education, Education2, I (Married), I
(NoDegree), I (Black), I (Hispanic), RE74, RE75, RE742, RE752, I (RE74 = 0) × I (Black). For PSID-2 & PSID-3, covariates
included were: Age, Age2, Education, Education2, I (Married), I (NoDegree), I (Black), I (Hispanic), RE74, RE75, RE742, RE752, I
(RE74 = 0), I (RE75 = 0). For CPS-1, CPS-2 & CPS-3, covariates included were: Age, Age2, Age3, Education, Education2, I
(Married), I (NoDegree), I (Black), I (Hispanic), RE74, RE75, I (RE74 = 0), I (RE75 = 0), Education × RE74
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probability of treatment given pretreatment covariates. The hyperparameters of the Gaussian

process are chosen to minimize an overall covariate imbalance metric. The potential of the

proposed method was highlighted using a series of simulations and an application that

replicated findings from Dehejia and Wahba (1999).

Our Gaussian process propensity score method is advantageous due to the flexibility in

modeling the propensity score and the fact that what are truly needed in a causal analysis are

estimates from a balancing score. Our paper demonstrated that optimizing propensity score

estimates to minimize a metric of covariate imbalance can provide better performance. This

advantage was demonstrated in Section 3, where the methods that consistently performed

best in estimating either the ATE or the ATT were those that were selected to minimize the

covariate imbalance metric. While the CBPS is also optimized towards this pursuit, it was

demonstrated in Table 4 that nonparametric methods can provide comparable or better

performance as it relates to the treatment effect estimation stage of a causal analysis. The

Gaussian process approach provides propensity score estimates that balance covariates, and

provide the required bias reduction in estimating treatment effects and lower mean squared

error. A secondary advantage relates to the positivity assumption in causal inference.

Logisitic regression and other parametric models make an assumption that as we reach more

and more extreme values of the covariate space the probability of treatment goes to either

zero or one. This may not be a valid assumption and the Gaussian process propensity score

method (and other nonparametric methods) allows flexibility for modeling more extreme

values of the covariate space.

There are limitations associated with our approach though. The first limitation of the method

is that of computational runtime. Gaussian processes are computationally challenged by the

need to invert a dense covariance matrix at each step of the algorithm, a process which

scales at O(N3). These computational restrictions limit the maximum size of a data set that

can be used to estimate the propensity score. For example consider Table 11, which provides

timing comparisons across the various methods under the setting of a propensity score

model that is defined by a linear polynomial with interaction terms similar to the one used in

Section 3.1. We see that as the size of the data set increases, the computational burden of the

GP approach increases exponentially. These simulations were run on a 2013 iMac with a

quad-core 3.4 GHz Intel Core i5 processor and 16 GB of memory.

We have already made attempts to reduce this computational burden by implementing a

version of the expectation propagation algorithm that provides an approximation of the

posterior distribution of the latent scores and is run in parallel across multiple cores. There

are also other considerations to further reduce this computational burden, such as those that

rely on geometric assumptions to create a sparse covariance matrix (e.g., assuming the

correlation between points can be set to zero past a certain distance), reduced rank

approximations to the covariance matrix, or alternative approximations of the posterior

distribution to reduce runtime. Further research will focus on reducing the computational

burden associated with this approach.

Another limitation of our Gaussian process propensity score method is that the optimization

routine could be considered a black-box procedure that does not allow the user to apply
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important domain-specific knowledge. That is, the algorithm provides an optimal solution

with respect to the defined loss function, but that does not mean it provides hyperparameters

such that the imbalance of all, let alone specific, covariate dimensions go to zero. In our

application setting, for example, the mean imbalance of previous earnings covariates (RE74

and RE75) were still found to be somewhat high ( |Δ| ~ 0.2) after propensity score

adjustment in the PSID-1 data set (see the supplemental information for detailed covariate

imbalance metrics). Such considerations are important because previous earnings may be

correlated with both an individual’s inclusion into training programs, and with theirfuture

earnings. Therefore residual imbalance within important dimensions, such as previous

earnings, may imply a certain level of bias cannot be removed when estimating treatment

effects. The implication is that our method does not relieve the analyst from thinking deeply

about the causal mechanisms within the data and potential sources of bias when there is

difficulty in achieving a minimal level of covariate imbalance.

While not demonstrated here, one potential adjustment to our procedure to address this

would be to augment the loss function, prior to estimating treatment effects, so that

imbalance in certain dimensions receive more weight in our metric if they are believed to be

more important in the final analysis. Alternatively, as was demonstrated in Section 3,

different kernel functions have slightly different properties. Choosing, or constructing a new

kernel function for the application at hand may be an alternative way to incorporate domain-

specific structure. This may be necessary to correctly model the propensity score in difficult

situations. Finally, if neither of these solutions provide adequate covariate balance, it may be

a case in which there is no function which can be used to balance covariates for the estimand

of interest.

It is worth noting that convergence of our proposed propensity weighting method is likely to

be slower than root-N. van der Vaart and van Zanten (2011) derive an upper bound for the

quadratic risk of the nonparametricGP model under Matern and squared exponential kernels,

which in turn yields an upper bound on the Kullback-Leibler information between the

predictive and true data distribution. This provides some insight into the rate of convergence

of the GP weights in our propensity model. More specifically, they show that the quadratic

error rate associated with a GP fit is bounded by the smoothness of the underlying function

to be approximated, the smoothness of the specified kernel, and the number of covariates

used in the prediction model. This impact on the propensity weights will then carry through

to the convergence of the estimated treatment effect since consistency of the propensity

weights is necessary to ensure consistency of the estimate of treatment effect. Despite this,

we note the relatively strong performance of our estimator and other flexible nonparametric

estimators that we have compared to in finite sample simulation studies with reasonable

sample sizes.

Our simulation results and application show that by using the optimally balanced Gaussian

process approach to propensity score modeling, we are able to balance covariates in many

settings and enable estimation of the ATE or the ATT. It is clear from this study that under

the stable unit treatment value assumption and strong ignorability given the covariates,

estimating the propensity score using Gaussian processes and optimizing parameters of the
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model to minimize metrics of covariate imbalance is an effective nonparametric modeling

strategy which provides unbiased estimation of treatment effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
Visualization of Propensity Score Simulation Settings. Parameter values are described in

Table 2.
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TABLE 1

Models for Potential Outcomes for Section 3.1. The error terms were simulated such that ϵT=t,i ~ N(0,0.52) for

t ∈ {0,1} for each unit i.

Potential Outcome Setting Treatment Response Control Response

1) Linear Related to X1 Y1 = X1 + 3 + ϵT=1 Y0 = X1 + ϵT=0

2) Effect Modification in X1 Y1 = exp(X1) + 4X1 + 3 + ϵT=1 Y0 = −X2
1 − exp(X1) + ϵT=0
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TABLE 2

Parameter settings used to create propensity score functions

Setting Parameters, γ = (β0, β1, β2, β3, α1, α2)

Non-GLM, Linear w/ Interactions (0.5, 4, −0.5, −3, 0.7, 0.15)

Non-GLM, Second Order (2.5, 3, −4, −2, 0.75, 0.125)
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TABLE 3

Models to be compared for estimating the ATE under various simulation settings and the R package used to

estimate them. The first two methods (no adjustment and adjustment by the true propensity score) provide

baseline performance measures. The next four methods are nonparametric methods of estimating the

propensity score. The package gpbalancer can be found at https://github.com/bvegetabile/gpbalancer. The last

two rows are parametric methods of estimating the propensity score. Note that the parametric models are

misspecified in the sense that they are missing terms to handle the fact that α1 ≠ 1 and α2 ≠ 0 in the data-

generating propensity score model.

No. Adjustment Weighting Method R package

1 No Adjustment -

2 True Propensity Score -

3 Optimally Balanced Gaussian Process Propensity Score - (Normalized Polynomial + Squared Exponential, Common ρ) gpbalancer

4 Optimally Balanced Gaussian Process Propensity Score - (Squared Exponential, Covariate specific ρd) gpbalancer

5 Gradient Boosted Machine twang

6 Bayesian Additive Regression Trees BART

7 Generalized Linear Model - g(X, β) = β0 + β1X1 + β2X2 glm

8 Covariate Balancing Propensity Score - g(X, β) = β0 + β1X1 + β2X2 CBPS
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TABLE 4

Simulation results for estimating the ATE in the non-GLM setting where the true propensity score was linear

and included interaction terms. The first column describes the adjustment methods. The next three columns

provide the proportion of simulated data sets where the estimated propensity score balanced covariates. The

next columns demonstrate the mean bias, the mean reduction in bias as compared with no adjustment by the

propensity score, the empirical standard error of the simulation ATE estimates, and finally the empirical mean

squared error for the ATE.

Adjustment
Method

Prop. Bal. (|Δd| < δ for
all d)

Linear Related to X 1 Effect Modification Related to X 1

δ =
0.1

δ =
0.15

δ =
0.2 Bias

Abs.
Bias %ABR

Emp.
S.E. MSE Bias

Abs.
Bias %ABR

Emp.
S.E. MSE

No
Adjustment 0.000 0.000 0.000 0.959 0.959 - 0.082 0.927 1.803 1.803 - 0.383 3.399

True
Propensity

Score
0.380 0.661 0.843 0.002 0.099 89.544 0.125 0.016 −0.031 0.440 73.432 0.552 0.305

Opt. Bal. GP
PS (NPSE) 0.998 1.000 1.000 0.001 0.025 97.352 0.032 0.001 −0.077 0.318 80.457 0.386 0.154

Opt. Bal. GP
PS (SE) 0.994 0.999 1.000 0.008 0.027 97.193 0.034 0.001 −0.020 0.309 81.407 0.382 0.146

GBM
(twang) 0.071 0.449 0.811 0.156 0.156 83.880 0.050 0.027 0.247 0.398 78.439 0.436 0.251

BART 0.000 0.191 0.818 0.169 0.169 82.452 0.038 0.030 0.249 0.376 79.810 0.402 0.223

GLM -
Logistic

Regression
0.090 0.228 0.393 −0.306 0.307 68.066 0.227 0.145 0.628 1.365 24.630 2.258 5.486

CBPS 0.837 0.981 1.000 0.020 0.062 93.471 0.075 0.006 0.532 0.809 56.118 0.943 1.171
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TABLE 5

Simulation results for estimating the ATE in the non-GLM setting where the true propensity score was a

second-order polynomial. The column headings are discussed in Table 4.

Adjustment
Method

Prop. Bal. (|Δd| < δ for
all d)

Linear Related to X 1 Effect Modification Related to X 1

δ =
0.1

δ =
0.15

δ =
0.2 Bias Abs.

Bias %ABR Emp.
S.E. MSE Bias Abs.

Bias %ABR Emp.
S.E. MSE

No
Adjustment 0.000 0.000 0.000 0.426 0.426 - 0.086 0.189 1.332 1.332 - 0.343 1.892

True
Propensity

Score
0.338 0.584 0.804 −0.002 0.103 74.306 0.129 0.017 −0.028 0.566 51.304 0.701 0.492

Opt. Bal. GP
PS (NPSE) 0.969 0.996 1.000 −0.027 0.041 89.804 0.044 0.003 −0.185 0.387 64.966 0.446 0.232

Opt. Bal. GP
PS (SE) 0.973 0.996 0.999 −0.019 0.037 90.793 0.044 0.002 −0.123 0.365 67.624 0.437 0.206

GBM
(twang) 0.665 0.939 0.995 0.055 0.064 85.130 0.053 0.006 0.079 0.382 69.033 0.471 0.228

BART 0.894 0.991 1.000 0.056 0.060 86.152 0.043 0.005 0.106 0.357 71.378 0.429 0.195

GLM -
Logistic

Regression
0.895 0.981 0.997 −0.052 0.057 86.788 0.049 0.005 1.813 1.813 −36.127 0.564 3.606

CBPS 0.004 0.053 0.273 0.224 0.224 47.054 0.048 0.052 1.476 1.476 −10.464 0.413 2.349
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TABLE 6

Models for Potential Outcomes for simulations used for demonstrating performance in estimating the ATT

Potential Outcome Setting Potential Response Functions Difference: E(Y1 – Y0|X)

1) Constant Treatment Effect Y1 = 5X2
1 + X1X3 – 4X2 + 50X5 + 10 + ϵT=1 10

Y0 = 5X2
1 + X1X3 – 4X2 + 50X5 + ϵT=0

2) Effect Modification Y1 = 5X1
2 + X1X3 – 4X2 + 50X5 + 10X1 – 3X2

3 + ϵT=1 10X1 – 3X2
3

Y0 = 5X2
1 + X1X3 – 4X2 + 50X5 + ϵT=0
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TABLE 7

Models to be compared for estimating the ATT under various simulation settings and the R package used to

estimate them.

No. Adjustment Weighting Method R package

1 True Propensity Score -

2 Optimally Balanced Gaussian Process Propensity Score - (Normalized Polynomial + Squared Exponential, Common ρ) gpbalancer

3 Optimally Balanced Gaussian Process Propensity Score - (Squared Exponential, Covariate specific ρd) gpbalancer

4 Gradient Boosted Machine twang

5 Bayesian Additive Regression Trees BART

6 Generalized Linear Model: Logistic Regression - XT β = β0 + β1X1 + β2X1
2 + β3X2 + β4X2

2 + +β5X3 + β6X4 + β7X5 glm

7 Covariate Balancing Propensity Score - β0 + β1X1 + β2X2
1 + β3X2 + β4X2

2 + +β5X3 + β6X4 + β7X5 CBPS

J R Stat Soc Ser A Stat Soc. Author manuscript; available in PMC 2021 August 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vegetabile et al. Page 27

TABLE 8

Results for estimating the ATT. The first column lists the adjustment method and the next three columns

demonstrate the ability of the method to provide mean covariate balance at various thresholds. The next eight

columns are grouped together into two groups of four columns and provide the mean bias for the ATT, the

mean absolute bias of the ATT, the empirical standard error of the ATT estimates, and the empirical mean

squared error across the 1000 simulations.

Adjustment
Method

Prop. Bal. (|Δd| < δ for all d) Linear Related to X 1 Effect Modification Related to X 1

δ = 0.1 δ = 0.15 δ = 0.2 Bias Abs.
Bias

Emp.
S.E. MSE Bias Abs. Bias Emp.

S.E. MSE

True Propensity
Score 0.817 0.976 0.998 0.059 2.249 2.812 7.904 0.054 2.299 2.916 8.497

Opt. Bal. GP PS
(NPSE) 0.793 0.968 0.996 0.648 0.840 0.883 1.199 0.642 1.158 1.345 2.219

Opt. Bal. GP PS
(SE) 0.171 0.577 0.895 0.499 0.727 0.841 0.955 0.493 1.089 1.321 1.985

GBM (twang) 0.770 0.976 0.998 1.388 1.756 1.631 4.584 1.382 1.901 1.923 5.604

BART 0.138 0.492 0.815 0.825 0.996 0.931 1.545 0.819 1.258 1.398 2.622

GLM - Logistic
Regression 0.605 0.908 0.980 0.570 1.252 1.632 2.986 0.563 1.476 1.922 4.007

CBPS 0.706 0.946 0.984 0.778 0.801 0.644 1.020 0.772 1.120 1.202 2.041
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TABLE 9

Summaries of experimental and observational data from Dehejia and Wahba (1999). The first row is the

number of observations from that data source and the next rows provide summaries of the mean and standard

deviations for that specific category. Clearly the observational data sources differ in many ways from the

experimental data set.

Experimental Data Observational Control Data

NSW -
Treated

NSW -
Control PSID-1 PSID-2 PSID-3 CPS-1 CPS-2 CPS-3

Nobs 185 260 2490 253 128 15992 2369 429

Age 25.82 (7.14) 25.05 (7.04) 34.85 (10.44) 36.09 (12.06) 38.26
(12.84)

33.23
(11.04)

28.25
(11.69)

28.03
(10.77)

Education 10.35 (2.01) 10.09 (1.61) 12.12 (3.08) 10.77 (3.17) 10.3 (3.16) 12.03 (2.87) 11.24 (2.58) 10.24 (2.85)

I (Black) 0.84 (0.36) 0.83 (0.38) 0.25 (0.43) 0.39 (0.49) 0.45 (0.5) 0.07 (0.26) 0.11 (0.32) 0.2 (0.4)

I (Hispanic) 0.06 (0.24) 0.11 (0.31) 0.03 (0.18) 0.07 (0.25) 0.12 (0.32) 0.07 (0.26) 0.08 (0.28) 0.14 (0.35)

I (Married) 0.19 (0.39) 0.15 (0.36) 0.87 (0.34) 0.74 (0.44) 0.7 (0.46) 0.71 (0.45) 0.46 (0.5) 0.51 (0.5)

I (No
degree) 0.71 (0.45) 0.83 (0.37) 0.31 (0.46) 0.49 (0.5) 0.51 (0.5) 0.3 (0.46) 0.45 (0.5) 0.6 (0.49)

RE74 2095.57
(4873.4)

2107.03
(5676.96)

19428.75
(13404.18)

11027.3
(10793.28)

5566.87
(7226.76)

14016.8
(9569.5)

8727.96
(8965.95)

5619.24
(6780.83)

RE75 1532.06
(3210.54)

1266.91
(3097.01)

19063.34
(13594.22)

7569.22
(9024.06)

2610.7
(5550.69)

13650.8
(9270.11)

7397.23
(8110.5)

2466.48
(3288.16)
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TABLE 10

Estimates of the ATT and summaries of covariate imbalance using data from Dehejia and Wahba (1999)

before and after adjusting for estimated propensity scores.

Dataset

No Weighting Adjustment Dehejia & Wahba (1999) GP Propensity Scores

Balance, ℬ Est. Diff. Balance, ℬ ATT Est. Balance, ℬ ATT Est.

NSW Control 0.37 1794 (633) - - - -

PSID-1 17.55 −15205 (1155) 0.70 3028 (942) 0.12 892 (1002)

PSID-2 8.36 −3647 (960) 0.50 2112 (1099) 0.10 1708 (1025)

PSID-3 5.47 1070 (900) 0.92 2284 (1250) 0.35 1803 (1075)

CPS-1 16.91 −8498 (712) 0.07 1782 (771) 0.06 1273 (717)

CPS-2 8.89 −3822 (671) 0.15 1735 (1024) 0.09 1748 (735)

CPS-3 4.57 −635 (657) 0.27 1116 (1029) 0.26 1568 (808)
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TABLE 11

Comparisons of computational runtime across the methods considered in Section 3. The runtimes are averaged

across 5 simulated data sets using the data-generating procedure of Section 3.1 where the true propensity score

was a linear function with interaction terms.

Runtime in Seconds

Method Nobs = 100 Nobs = 500 Nobs = 1000

Generalized Linear Model - Logistic Regression <0.01 <0.01 <0.01

Optimally Balanced GP Propensity Score (NPSE) 0.18 3.88 20.57

Optimally Balanced GP Propensity Score (SE) 0.11 2.51 16.63

Bayesian Additive Regression Trees 1.72 2.94 5.15

Covariate Balancing Propensity Score 0.25 0.18 0.29

Gradient Boosted Machines (twang) 2.89 6.64 10.94
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