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Improved characterization of sub-centimeter enhancing breast
masses on MRI with radiomics and machine learning in BRCA
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Abstract
Objectives To investigate whether radiomics features extracted from MRI of BRCA-positive patients with sub-centimeter
breast masses can be coupled with machine learning to differentiate benign from malignant lesions using model-free
parameter maps.
Methods In this retrospective study, BRCA-positive patients who had anMRI fromNovember 2013 to February 2019 that led to
a biopsy (BI-RADS 4) or imaging follow-up (BI-RADS 3) for sub-centimeter lesions were included. Two radiologists assessed
all lesions independently and in consensus according to BI-RADS. Radiomics features were calculated using open-source CERR
software. Univariate analysis and multivariate modeling were performed to identify significant radiomics features and clinical
factors to be included in a machine learning model to differentiate malignant from benign lesions.
Results Ninety-six BRCA mutation carriers (mean age at biopsy = 45.5 ± 13.5 years) were included. Consensus BI-RADS
classification assessment achieved a diagnostic accuracy of 53.4%, sensitivity of 75% (30/40), specificity of 42.1% (32/76), PPV
of 40.5% (30/74), and NPV of 76.2% (32/42). The machine learning model combining five parameters (age, lesion location,
GLCM-based correlation from the pre-contrast phase, first-order coefficient of variation from the 1st post-contrast phase, and
SZM-based gray level variance from the 1st post-contrast phase) achieved a diagnostic accuracy of 81.5%, sensitivity of 63.2%
(24/38), specificity of 91.4% (64/70), PPV of 80.0% (24/30), and NPV of 82.1% (64/78).
Conclusions Radiomics analysis coupled with machine learning improves the diagnostic accuracy of MRI in characterizing sub-
centimeter breast masses as benign or malignant compared with qualitative morphological assessment with BI-RADS classifi-
cation alone in BRCA mutation carriers.
Key Points
• Radiomics and machine learning can help differentiate benign from malignant breast masses even if the masses are small and
morphological features are benign.

• Radiomics and machine learning analysis showed improved diagnostic accuracy, specificity, PPV, and NPV compared with
qualitative morphological assessment alone.
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Abbreviations
BI-RADS Breast Imaging Reporting and Data System
BPE Background parenchymal enhancement
FGT Fibroglandular tissue
GLCM Gray level co-occurrence matrix
ML Machine learning
NPV Negative predictive value
PPV Positive predictive value
RLM Run length matrix
SZM Size zone matrix

Introduction

Women who inherit BRCA1 and BRCA2 mutations lack tu-
mor suppressor proteins that repair damaged DNA [1]. These
women have an increased risk of developing breast cancer at a
younger age compared with women who do not have these
mutations. MRI is the most sensitive imaging modality for
breast cancer detection and therefore, the American Cancer
Society and the American College of Radiology recommend
yearly mammography in BRCA mutation carriers starting at
age 30 years and yearly MRI beginning at age 25 [2–7].

A significant proportion (45%) of BRCA1-related cancers
are seen only on MRI [8] where they tend to be cellular with
round pushing margins rather than scirrhous with irregular
infiltrating margins as seen in other breast cancers.
Therefore, early/small tumors may not exhibit classic malig-
nant features but rather may exhibit a benign imaging appear-
ance [9]. As these cancers are alsomore likely to be high grade
and frequently triple negative (hormone receptor and HER-2
negative), the threshold for the recommendation of a biopsy
should be low [10, 11]. Prior studies [12, 13] showed how
benign morphology is common in invasive cancers of less
than 5 mm in diameter regardless of BRCA mutation status
and suggested that all masses representing an interval change
as well as lesions increasing in size should lead to a biopsy.
Unfortunately, BRCA carriers are also more prone to devel-
oping benign tumors of the breast [14, 15], resulting in nu-
merous benign biopsies during their life unless prophylactic
mastectomy is performed.

To avoid missing significant cancers as well as exposing
women to unnecessary biopsies, additional tools to help dis-
criminate benign from malignant lesions should be used to
predict the likelihood of malignancy. Radiomics analysis in-
volves the quantitative assessment of the pixel intensity ar-
rangement within specific regions of interest (ROIs) and ex-
tracts quantitative features that can be used for further disease
characterization. Initial results in women at average risk of
breast cancer indicate that radiomics analysis and machine
learning (ML) are of value in distinguishing benign and ma-
lignant small breast masses [16].

The purpose of our study was to investigate whether
radiomics features extracted fromMRI of BRCA-positive pa-
tients with sub-centimeter breast masses can be coupled with
machine learning to differentiate benign from malignant le-
sions using model-free parameter maps.

Materials and methods

Study population

This was a retrospective Health Insurance Portability and
Accountability Act–compliant study conducted at Memorial
Sloan Kettering Cancer Center. The study was approved by
the Institutional Review Board (protocol number 19-119) and
the need for written informed consent was waived.

A review of the Department of Radiology database was
performed to identify consecutive patients with genetic testing
results available and who had anMRI fromNovember 2013 to
February 2019 that led to a biopsy or a short-term follow-up.
We identified 430 patients. Our inclusion criteria were as fol-
lows: BRCA 1– or BRCA 2–positive patients; breast masses
with the longest diameter ≤ 10 mm; and BI-RADS 3, 4, or 5
on MRI further assessed with follow-up or vacuum-assisted
breast biopsy (MRI or ultrasound-guided) yielding benign or
malignant histology. Findings described as non-mass en-
hancements on MRI were not included. We excluded patients
with mutations other than BRCA 1 and 2 and those with a
follow-up of less than 2 years when biopsy was not performed
(BI-RADS 3 and BI-RADS 4 when target was not visualized
at the time of biopsy).

Breast MRI technique

Breast MRI was performed on either a 1.5-T or a 3-T magnet
(Sigma; GE) using an 8-channel or 16-channel dedicated sur-
face breast coil. The imaging sequences are included in
Table 1.

Imaging assessment by radiologists

All images were independently assessed by two dedicated
fellowship-trained breast radiologists in one session (R1:
R.L., and R2: I.D., both with 4 years of experience in breast
imaging and interpreting breast MRI) blinded to the final his-
topathological diagnoses and prior or subsequent convention-
al and MRI imaging. For each lesion, the following morpho-
logical features were assessed according to the BI-RADS lex-
icon on post-contrast-enhanced T1-weighted images: lesion
shape, margin, and internal enhancement characteristics.
Readers also assigned a BI-RADS classification. Lesion size
was measured as the single largest diameter. On T2-weighted
and DW images, signal intensity, morphology, background
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parenchymal enhancement (BPE), and fibroglandular tissue
(FGT) for each breast were also assessed. Time–intensity ki-
netic curve analysis (signal enhancement in relation to time
after contrast injection) was performed on a dedicated work-
station with a commercially available computer-aided diagno-
sis system (OsiriX, OsiriX Foundation) by R1. The reader
qualitatively measured the kinetic curve pattern described as
washout, plateau, or persistent, according to the BI-RADS
lexicon. The location of lesions within the breast (anterior,
middle, or posterior depth) was also assessed by R1.

After independent review was conducted, the cases in
which there was disagreement between the two readers were
re-reviewed in consensus to generate an overall consensus
assessment.

Reference standard

Preferentially, histopathology was used as the reference stan-
dard established by either image-guided needle biopsy or sur-
gery. In two patients who had benign high-risk lesions on
biopsy, the histological report from the surgical biopsy was
recorded to confirm the benign nature of the lesion. When
biopsy was not performed, stability of more than 2 years on
follow-up MRI was considered benign.

Radiomics analysis

Digital Imaging and Communications in Medicine (DICOM)
images from the DCE-MRI and non-contrast-enhanced T1-
weighted MRI were loaded into the open-source image pro-
cessing tool OsiriX. Both radiologists reviewed the images in
consensus before delineating the ROIs and R1manually delin-
eated the ROIs, tracing the borders of each lesion to include
the entire enhancing lesion.

Given the small size of the lesions sampled yielding a small
number of pixels per slice, an in-house code written in
MATLAB (The MathWorks, Inc.) was used to input the
ROIs into the open-source CERR software environment (free-
ly available through GitHub) which calculated the radiomics
features [17]. Data was reduced to 16 gray levels and only an
interpixel distance of one was considered (for small lesions,
higher interpixel distances are not appropriate and would re-
duce counting statistics drastically). CERR analysis resulted
in 102 radiomics features sub-divided into six categories: 22
first-order features, 26 features based on the gray level co-
occurrence matrix (GLCM), 16 features based on the run
length matrix (RLM), 16 features based on the size zone ma-
trix (SZM), 17 features based on the neighborhood gray level
dependence matrix, and 5 features based on the neighborhood
gray tone difference matrix. Since patients were scanned at
either 1.5 T (27 benign cases and 17 malignant cases) or 3 T
(49 benign cases and 23 malignant cases), ComBat harmoni-
zation (Supplemental Info A1) was employed prior to statisti-
cal analysis to remove center effects [18].

Univariate analysis was initially performed to select signif-
icant radiomics features able to differentiate between benign
and malignant lesions. An AUC cutoff of ≥ 0.65 was used to
reduce the number of features of interest. Correlation analysis
was then employed to further remove redundant features. For
any significant correlations in which the Spearman rank cor-
relation coefficient > 0.9, the feature with the lowest AUCwas
removed from consideration. This resulted in a more manage-
able number of features for subsequent multivariate modeling.
Using a fine Gaussian support vector machine, perfect sepa-
ration of benign and malignant cases was obtained. To limit
data overfitting, a fivefold cross-validation was employed to
develop a robust ML model which should produce similar
results for new data.

Table 1 Summary of imaging
sequences and acquisition
parameters used for the study

MR sequences Acquisition parameters

Axial fat-suppressed 2D T2-weighted imaging TR, 5000–6000 ms; TE, 90–110 ms; refocusing flip
angle, “auto”; slice thickness, 3 mm; gap, 0 mm;
field of view, 34–38 cm; matrix size, 320 × 320;
bandwidth, 125 kHz for 1.5 T and 83 kHz for 3.0 T;
parallel imaging, “ASSET”

Axial non-fat-suppressed 3D T1-weighted imaging

Axial fat-suppressed 3D T1-weighted imaging using a
Volume Image Breast Assessment (VIBRANT)
gradient echo. One sequence before and 3 se-
quences after intravenous administration of a
gadolinium-based contrast agent

TR, 4–4.5 ms; TE, 2.1 ms; flip angle, 10°; bandwidth,
62 kHz; field of view, 34–38 cm; matrix size, 320 ×
192 (for 1.5 T) and 300 × 300 (for 3.0 T); slice
thickness, 1.1 mm; gap, 0 mm; parallel imaging,
“ASSET”

Axial DWI using single-shot with echo-planar imag-
ing (EPI)

2 b-values (b = 0, 800); TR, 6000 ms; TE, “mini-
mum”; flip angle, 90°; field of view, 34–38 cm,
matrix size, 128 × 128 (for 1.5 T), 256 × 256 (for 3
T); fat suppression, “special”; dual shims, “on”;
slice thickness, 4–5 mm; parallel imaging,
“ASSET”

ADC mapping available in 65 lesions

ASSET, array spatial sensitivity encoding technique; TR, repetition time; TE, echo time
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Statistical analysis

Statistical analysis was conducted using SAS (version 9.4,
SAS Institute). Continuous variables were summarized using
means (± standard deviation) and medians (range); categorical
variables were summarized using proportions. Univariate
analysis using the chi-square test or Fisher’s exact test was
performed to assess associations between the imaging param-
eters (from independent and consensus assessment) with

disease status (malignant vs. benign). p values < 0.05 were
considered significant. To determine inter-observer agree-
ment, weighted Cohen’s κ was used to assess ordinal param-
eters, while simple Cohen’s κ was used to assess the inter-
reader agreement for nominal parameters.

For radiomics data, statistical analysis was performed
using SPSS (version 25, IBM Corp.) and MATLAB
(R2017b, The MathWorks, Inc.). Univariate analysis
was performed to identify radiomics features that were
significantly different between malignant and benign le-
sions. Since the number of patients was not large (espe-
cially in the malignant cohort), normality in the malig-
nant and benign cohort distributions was tested using the
Shapiro–Wilk test and Q-Q plots. For a minority (21/
102) of normally distributed features, a two-tailed inde-
pendent t test was used to determine the significant fea-
tures. For the majority of non-normally distributed fea-
tures (81/102), the Mann–Whitney U test for two inde-
pendent samples was used to determine the significant
features.

Clinical factors considered as potential predictors of
malignancy (age, BRCA status, menopausal status, and
lesion location) were assessed for statistically significant
associations with disease status using the Mann–Whitney
U test (for age) and the Pearson chi-square test (for all
other clinical factors). Significant clinical factors were in-
corporated into multivariate modeling along with signifi-
cant radiomics features to produce a robust ML model for
discriminating between benign and malignant lesions. All
ML modelling was performed using a predefined Gaussian
support vector machine.

Fig. 1 Flowchart of inclusion and exclusion criteria for the study

Table 2 Histopathology of the 76 benign and 40 malignant masses

Benign (n = 76) Malignant (n = 40)

FAD 21; complex FAD 1;
FAD with atypia 1

IDC 29

Ruptured cyst, adenosis,
stromal fibrosis and
normal breast parenchyma 21

IDC + DCIS 4

PASH 12 ILC + DCIS 1

Papilloma 3 DCIS microinvasive 1

Usual ductal hyperplasia 2 DCIS 4

Fat necrosis 1 Metastatic intramammary
lymph node 1

LCIS 1; ALH 1

Columnar changes with atypia 1

Benign follow-up (BI-RADS 3) 8
Benign follow-up (BI-RADS 4),

not visible at time of biopsy 3

FAD, fibroadenoma; PASH, pseudoangiomatous stromal hyperplasia;
LCIS, lobular carcinoma in situ; ALH, atypical lobular hyperplasia;
IDC, invasive ductal carcinoma; DCIS, ductal carcinoma in situ
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Fig. 3 Transverse first post-
contrast bilateral dynamic MR
images (TR/TE, 4.5/2.1 ms; flip
angle, 10°) of four patients with
benign-appearing small breast
masses (white arrows) in which
biopsy yielded invasive ductal
carcinoma

Fig. 2 Patient and breast lesion characteristics
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Results

Patient population and breast lesion characteristics

The study population included 96 patients (Fig. 1).
Table 2 and Fig. 2 show the patient and breast lesion char-

acteristics. Figures 3 and 4 are examples of benign and malig-
nant breast masses included in this study. After segmentation,
the median benign lesion size was 514.5 pixels (range 85–
2425 pixels) and the median malignant lesion size was 816
pixels (range 66–2116 pixels).

Imaging assessment by radiologists

Consensus BI-RADS classification achieved a sensitivity of
75%, specificity of 42.1%, PPV of 40.5%, NPV of 76.2%, and
accuracy of 53.4%. Time–intensity kinetic curve analysis was
performed of 109/116 lesions; 7 lesions were not analyzed due
to motion-related artifacts. Progressive contrast enhancement
was present in 54.2% of patients with benign lesions (38/70)
and in 23% of patients with malignant lesions (9/39); there
was a statistically significant association with disease status
based on kinetic analysis (p = 0.01).

Table 3 shows the results from univariate analysis accord-
ing to independent assessments by the two radiologists.

Table 4 shows the results from univariate analysis ac-
cording to overall consensus assessment as well as accord-
ing to singular assessment performed for kinetics and le-
sion location, BRCA mutation status, and menopausal sta-
tus. In consensus reading, there was no significant associ-
ation with disease status based on margin (p = 0.11), shape
(p = 0.97), enhancement pattern (p = 0.05), T2 signal in-
tensity (p = 0.16), DWI (p = 0.54), BPE (p = 0.32), and
BRCA mutation status (BRCA1 vs. BRCA2, p = 0.79).
There was a statistically significant association with dis-
ease status based on lesion location within the breast (p =
0.03), menopausal status (p = 0.0001), and BI-RADS clas-
sification (p < 0.001).

Radiomics analysis

ML Model using only the first post-contrast phase

At univariate analysis, 37/102 radiomics features were found to
be significantly different between benign and malignant lesions
(Supplemental Table S1). The AUC cutoff of ≥ 0.65 reduced
the number of features of interest to 21/102. Correlation

Fig. 4 Transverse first post-
contrast bilateral dynamic MR
images (TR/TE, 4.5/2.1 ms; flip
angle, 10°) of four patients with
suspicious-appearing small breast
masses categorized as BI-RADS
4 in which biopsy results yielded
fibroadenoma (white arrows) and
pseudoangiomatous stromal hy-
perplasia (white arrow)
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analysis resulted in 11 features (from 5 classes) for subsequent
multivariate modeling (Supplemental Table S2). Using a fine
Gaussian support vector machine with all 11 parameters, a per-
fect separation of benign and malignant cases was obtained,
demonstrating 100% accuracy. However, this ML model un-
doubtedly overfitted the data (Supplemental Table S3).

After fivefold cross-validation, LASSO (least absolute shrink-
age and selection operator) was used to further reduce the

number of parameters. The final MLmodel utilized three param-
eters (GLCM-based correlation, SZM-based gray level non-
uniformity normalized, and SZM-based zone emphasis). This
ML model achieved a diagnostic accuracy of 75% but it can be
regarded as a robust ML model which should produce similar
results for new data (Supplemental Table S4). This ML model
achieved a sensitivity of 55.0% (22/40), specificity of 85.5% (65/
76), PPV of 66.7% (22/33), and NPV of 78.3% (65/83).

Table 3 Univariate analysis according to independent radiologist assessment

Reader 1 Reader 2

Imaging feature Malign. Benign p value Malign. Benign p value

BI-RADS 0.003 0.002
2 1 (1) 1 (1) 3 (3) 12 (10)
3 8 (7) 29 (25) 8 (7) 21(18)
4 26 (22) 46 (40) 22 (19) 43 (37)
5 5 (4) 0 (0) 7 (6) 0 (0)

BPE 0.047 0.33
Minimal 20 (17) 20 (17) 23 (20) 35 (30)
Mild 13(11) 33 (29) 10 (9) 25 (22)
Moderate 5 (4) 14 (12) 5 (4) 8 (7)
Marked 1 (1) 9 (8) 1 (1) 8 (7)

Bilateral mastectomy 1 1
Contrast enhancement 0.07 0.04
Homogeneous 11 (10) 25 (22) 10 (9) 17 (15)
Heterogeneous 15(13) 14 (12) 17 (15) 16 (14)
Rim enhancement 10 (9) 18 (16) 7 (6) 16 (14)
Dark internal septations 4 (4) 19 (16) 6 (5) 27 (23)

DWI signal 0.22 0.91
Homogeneous 12 (19) 19 (30) 9 (14) 16 (25)
Heterogeneous 0 (0) 3 (5) 1 (2) 5 (8)
Rim 2 (3) 1 (2) 1 (2) 3 (5)
No correlation 7 (11) 21 (32) 10 (15) 20 (31)

Margins 0.06 0.01
Circumscribed 22 (19) 54 (47) 18 (16) 48 (41)
Irregular 16 (14) 22 (19) 18 (16) 28 (24)
Spiculated 2 (2) 0 (0) 4 (3) 0 (0)

Shape 0.19 0.03
Oval 11 (10) 34 (29) 13 (11) 36 (31)
Round 15 (13) 21 (18) 11 (10) 27 (23)
Irregular 14 (12) 21 (18) 16 (14) 13 (11)

T2 signal intensity 0.02 0.17
Hypointense 6 (5) 4 (4) 3 (3) v6 (5)
Isointense 6 (5) 13 (11) 11 (10) 17 (15)
Hyperintense 24 (21) 35 (30) 23 (20) 35 (30)
No correlation 4 (4) 24 (21) 3 (3) 18 (16)

FGT breast with mass 0.07 0.07
Almost entirely fat 5 (4) 2 (2) 5 (4) 9 (8)
Scattered FGT 13 (11) 24 (21) 21 (18) 25 (22)
Heterogeneous FGT 13 (11) 21 (18) 8 (7) 17 (15)
Extreme FGT 8 (7) 29 (25) 5 (4) 25 (22)
Mastectomy 1 0 1 0

FGT contralateral breast 0.13 0.07
Almost entirely fat 3 (3) 1 (1) 3 (4) 8 (7)
Scattered FGT 12 (11) 24 (22) 20 (18) 24 (22)
Heterogeneous FGT 12 (11) 20 (18) 7 (6) 17 (16)
Extreme FGT 8 (7) 29 (27) 5 (5) 25 (23)
Mastectomy 5 2 5 2

Values represent number of patients (percentages)

BI-RADS, Breast Imaging and Reporting and Data System; BPE, background parenchymal enhancement; DWI, diffusion-weighted imaging; FGT,
fibroglandular tissue
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ML model combining radiomics features from the first
post-contrast phase and clinical factors

We included clinical factors in multivariate modeling to fur-
ther improve the model. Multivariate results showed that
disease status was associated with menopausal status (χ2 =
11.86, p = 0.001), age (p < 0.0005), and lesion location (χ2 =
6.84, p = 0.03). There was no association with BRCA status
(χ2 = 0.17, p = 0.68). A fivefold cross-validation was again
employed to develop a robust ML model. The final ML
model utilized six parameters (age, first-order coefficient of
variation, GLCM-based joint entropy, GLCM-based corre-
lation, GLCM-based cluster prominence, and RLM-based
run emphasis). This robust ML model resulted in a diagnos-
tic accuracy of 79.3% (Supplemental Table S5). This ML
model achieved a sensitivity of 52.5% (21/40), specificity of
93.4% (71/76), PPV of 80.8% (21/26), and NPV of 78.9%
(71/90).

ML model combining radiomics features from all dynamic
phases and clinical factors

The results for the ML model using all dynamic phases and
clinical factors are provided in the Supplemental Data
(Supplemental Info A2, Table S6, Table S7, Table S8).
This ML model resulted in a diagnostic accuracy of 81.5%
and can be regarded as a robust model. The results from all
radiomics models are illustrated in Table 5.

Discussion

In this study, we investigated whether radiomics analysis
and ML with MRI can accurately differentiate sub-
centimeter benign from malignant lesions in BRCA muta-
tion carriers using model-free parameter maps. We demon-
strated that radiomics analysis coupled with ML aids in the
differentiation of benign and malignant enhancing sub-
centimeter masses in these patients. The T2-weighted signal
intensity and DW imaging did not help to differentiate be-
nign frommalignant lesions. While larger cancers have been
well-described and characterized on MRI, sub-centimeter
lesions, particularly those less than 0.5 cm, have traditionally
been regarded as being too small to characterize according to
morphological descriptors, negatively impacting accuracy.
With advancements in hardware and software, the spatial
resolution of MRI has improved, allowing not only the de-
tection but also the morphologic characterization of small
enhancing lesions [19].

Meissnitzer et al [13] showed that sub-centimeter invasive
breast cancers often present with benign morphologic features
such as persistent enhancement (30%) and high T2 signal
(17%). Raza et al [20] demonstrated that breast cancers

smaller than 5 mm tend to present with circumscribed margins
(71%), benign shape (67%), and benign kinetic characteristics
(41%). The presence of a BRCA mutation is an additional
confounding factor as breast cancers in this population often
present with benign morphologic features (e.g., oval shape

Table 4 Consensus analysis according to independent radiologist
assessment

Disease status

Imaging feature Malignant Benign p value

BI-RADS < 0.001
2 1 (1) 5 (4)
3 9 (8) 27 (23)
4 22 (19) 44 (38)
5 8 (7) 0 (0)
BPE 0.33
Minimal 23 (20) 35 (30)
Mild 10 (9) 25 (22)
Moderate 5 (4) 8 (7)
Marked 1 (1) 8 (7)
BRCA 0.80
1 20 (18) 38 (33)
2 18 (16) 38 (33)
Contrast enhancement 0.05
Homogeneous 9 (8) 18 (16)
Heterogeneous 20 (17) 21(18)
Rim enhancement 7 (6) 16 (14)
Dark internal septation 4 (4) 21 (18)
DCE (kinetics)* 0.01
Progressive 9 (8) 38 (35)
Plateau 22 (20) 23 (21)
Washout 8 (7) 9 (8)
DWI signal 0.54
Homogeneous 10 (16) 19 (30)
Heterogeneous 0 (0) 3 (5)
Rim 2 (3) 2 (3)
No correlation 8 (13) 19 (30)
Location* 0.03
Anterior 5 (4) 20 (17)
Middle 14 (12) 34 (29)
Posterior 21 (18) 22 (19)
Margins 0.11
Circumscribed 23 (20) 51 (44)
Irregular 15 (13) 25 (22)
Spiculated 2 (2) 0 (0.0)
Menopausal status < 0.001
Fertile 12 (10) 51 (44)
Menopause 28 (24) 25 (22)
Shape 0.97
Oval 14 (12) 28 (24)
Round 14 (12) 25 (22)
Irregular 12 (10) 23 (20)
T2 Signal intensity 0.16
Hypointense 5 (4) 4 (4)
Isointense 8 (7) 12 (10)
Hyperintense 22 (19) 38 (33)
No correlation 5 (4) 22 (19)

Values represent number of patients (percentages)

BI-RADS, Breast Imaging and Reporting and Data System; BPE, back-
ground parenchymal enhancement; DCE, dynamic contrast-enhanced;
DWI, diffusion-weighted imaging. *Evaluated by reader 1
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and well-defined margins) on MRI and can resemble a
fibroadenoma or a cyst in 23–38% of cases [12, 20]. Yet, these
cancers are more aggressive with fast growth rates and a short
lead time [20].

Our results confirmed that for sub-centimeter masses in
BRCA mutation carriers, morphologic BI-RADS descriptors
are not particularly useful for breast cancer diagnosis; there
was only moderate inter-rater agreement for morphology al-
though there was at least substantial inter-rater agreement for
the BI-RADS assessment categories. Compared with Ha et al
[21] who concluded that any T2 hypointense enhancing focus
representing an interval change should be biopsied rather than
undergo short-term follow-up, we found no significant differ-
ence in T2 signal intensity between benign and malignant
lesions. This is in agreement with Zhang et al who also
showed that T2-weighted imaging does not significantly con-
tribute to differentiating benign from malignant lesions [22].
In addition, we found that DWI signal analysis did not con-
tribute to the accuracy of assessing these lesions, which can in
part be explained by its limited spatial resolution whichmakes
it challenging to accurately evaluate sub-centimeter masses.

Several studies have shown that radiomics and machine
learning can be used as adjuvant tools to support radiologist
image interpretation in differentiating benign from malignant
lesions using mammography [23], digital breast tomosynthesis
[24], and MRI [16, 25]. A study by Truhn et al [26] demon-
strated that radiomics and CNN were superior compared with
radiomics analysis in differentiating benign from malignant
breast masses but both were inferior to the assessment per-
formed by the radiologist. However, for this study, the authors
included lesions with overall average diameter of 22.4 ± 20.3;
thus, their results could be due to the fact that when lesions are
larger in size, they are easier to be characterized as benign or
malignant by just analyzing BI-RADS descriptors.

Our study shows a more accurate means of differentiating
benign from malignant lesions in BRCA mutation carriers.
Gibbs et al evaluated the utility of radiomics and ML from
DCE-based parameter maps to diagnose small breast lesions in
the general population [16]. The best AUC was 0.78 ± 0.12 and
their results showed that radiomics can potentially improve the

evaluation of small, benign-appearing breast masses, with in-
creased PPV (fewer biopsies needed) and NPV (more cancers
diagnosed) compared with the currently used BI-RADS classifi-
cation alone. In our study population of BRCAmutation carriers,
our data indicate that radiomics analysis andML can in fact spare
women from unnecessary biopsies for benign-appearing small
breast nodules. Three radiomics features (coefficient of variation,
cluster prominence, and Haralick correlation) were able to sepa-
rate benign frommalignant masses with a diagnostic accuracy of
79.3% when only the first post-contrast scan, combined with
clinical data, was used in a ML model.

Another study by D’Amico et al [27] examined 12 malignant
and 33 benign enhancing foci in 45 patients. From these foci,
over 200 radiomics features were extracted and performances of
selected features were evaluated by means of k-nearest neighbor
(kNN). A fast and robust classification algorithm yielded a sen-
sitivity of 27/27 (100%, 95% CI 87–100%), a specificity of 37/
41 (90%, 95% CI 77–97%), and an accuracy of 64/68 (94%,
95% CI 86–98%). Compared with D’Amico et al, our study
compared machine learning to radiologist’s image interpretation
according to BI-RADS from 2 different readers, included a larger
sample size of 116 lesions (vs. 45), and included a more homo-
geneous patient populations with BRCA mutations.

Recently, alternative abbreviated protocols have been pro-
posed for screening women [19, 28] to reduce scan time by
acquiring only one pre-contrast and one early post-contrast T1-
weighted image set. In agreement with the results of Gibbs et al
[16], our results showed that delayed post-contrast phases did
not add any significant discriminative value to the analysis.
This study therefore provides indirect evidence for the poten-
tial use of radiomics analysis in abbreviated protocols which
have been recently proposed as an alternative for screening
high-risk women with dense breast tissue [19] without con-
cerns regarding a decrease in specificity related to the lack of
information of enhancement kinetics in the delayed phases.

This study has limitations. By using only single-center da-
ta, it is difficult to predict how the developed models might
perform with data acquired under different imaging protocols,
especially in the case of poorer spatial resolution and slice
thickness. We included only sub-centimeter breast masses

Table 5 Summary of radiomics features model results

Accuracy Sensitivity Specificity PPV NPV

1st PC phase (no validation) 90.5% (83.7–95.2) 75.0% (58.8–87.3) 98.7% (92.9–100.0) 96.8% (80.9–99.5) 88.2% (81.4–92.8)

1st PC phase (fivefold validation) 75.0% (66.1–82.6) 55.0% (38.5–70.7) 85.5% (75.6–92.6) 66.7% (52.0–78.7) 78.3% (71.7–83.7)

1st PC phase and clinical factors
(fivefold validation)

79.3% (70.8–86.3) 52.5% (36.1–68.5) 93.4% (85.3–97.8) 80.8% (63.1–91.2) 78.9 (72.9–83.9)

All phases and clinical factors
(fivefold validation)

81.5% (72.9–88.3) 63.2% (46.0–78.2) 91.4% (82.3–96.8) 80.0% (64.2–89.9) 82.1% (75.0–87.5)

Confidence intervals are in parenthesis

PC, post-contrast; PPV, positive predictive value; NPV, negative predictive value
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which do not constitute many pixels in an image, leading to
lower spatial resolution and fewer pixels in the final ROI and
an increased proportion of pixels that can be regarded as po-
tentially contaminated by partial volume effects. To ensure
adequate counting statistics, we decreased the data to only
16 gray levels (vs. 32 or 64 gray levels that have previously
been employed in breast MRI) [29]. Another limitation is the
relatively small sample size of 116 breast masses due to our
strict inclusion criteria. With only 40 cases in the malignant
group, feature selection was performed prior to any cross-
validation fold.

In conclusion, radiomics analysis coupled with machine
learning improves the diagnostic accuracy in small breast masses
in BRCA mutation carriers compared with the qualitative mor-
phological assessment with BI-RADS classification alone.
Further studies, preferentially multi-center studies in larger pa-
tient cohorts, are needed to confirm these promising results.
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