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ABSTRACT. This is an entry for The Encyclopedia of Statistics in Be-

havioral Science, to be published by Wiley in 2005.

A mixed linear model is a regression model of the form

y = Xβ + Zγ + ε.

The convention of underlining random variables shows that the regression

coefficientsβ are fixed constants, while the regression coefficientsγ are

modeled as random variables. Thusγ is allowed to vary under repeated

sampling. If we replicate our experiment, we will expect to see the same

fixed regression coefficients, but a different realization of the random re-

gression coefficients. In the social and educational sciences the most com-

mon mixed linear models are multilevel models, but random coefficient re-

gression models are important in a much wider context, including biomet-

rics and econometrics.

Date: April 29, 2004.
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In particular, mixed models often show up in the seemingly more general

form

y
t
= Xβ + Zγ

t
+ εt ,

where we have different, but related, regression models in different con-

texts, occasions, time points, or groups. One then supposes theγ
t

are

independent realizations of the same random vector, and they differ only

because of random variation. This is a useful model, intermediate between

assuming that all regression coefficients are equal to the same fixed vec-

tor γ or assuming they are different unrelated fixed vectorsγt for different

contexts.

Alternatively, we can understand mixed linear models as heteroscedastic

regression models with a specific covariance structure for the disturbances.

We typically suppose thatγ andε both have expectation zero and are un-

correlated, and have dispersionsV(γ ) = � andV(ε) = σ 2I . Then

E(y) = Xβ,

V(y) = Z�Z′
+ σ 2I .

Thus we see that the covariance of the disturbances has a factor analytic

structure, with known factor loadingsZ and with equal unique variances.

As in factor analysis, it is often convenient to require� to be diagonal, with

diagonal elementsω2
s. In that case we have only variance components, no
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covariance components, and we can write

V(y) = ω2
1V1 + · · · + ω2

pVp + σ 2I ,

whereVs = zsz
′
s. This shows that linear mixed models have a linear model

for the expectations, and also a linear model for the variance components.

Expected values ofy are an unknown linear combination of the known

columns ofX, and the dispersion matrix ofy is an unknown non-negative

linear combination of the known positive semi-definite matricesVs.

Linear mixed models are plausible whenever the covariance structure of

the observations can plausibly be modeled by one of these factor analysis

type specifications. If we compare the mixed model with the fixed model

E(y) = Xβ + Zγ andV(y) = σ 2I we see that in mixed models more effort

goes into modeling the dispersions, while in fixed models more effort goes

into modeling the expectations. The fixed model says that if we remove

X and Z the errors are homoscedastic, the mixed model says that if we

removeX only the errors have factor structure with loadingsZ�Z′
+ σ 2I .

For diagonal� the number of parameters of both models is the same.

There is a voluminous literature on estimating mixed linear models [5].

Most methods are based on the multinormal likelihood. This amounts to
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minimizing the deviance function

1(β, θ) = logdet6(θ) + (y − Xβ)′6−1(θ)(y − Xβ),

where6(θ) is a nonnegative linear combination of known positive semi-

definite matrices (one of which is the identity). This function is easily min-

imized, for instance, by alternating minimization overβ for fixed θ and

minimization ofθ for fixed β until convergence. But it is also possible to

treat the random coefficients as missing data and apply the EM algorithm, or

apply Newton’s method to the marginal likleihood obtained by minimizing

the full likelihood overβ [1]. Models for nonlinear mixed effects models

are discussed in [2].

We illustrate the various options with a small dataset taken from the clas-

sical paper by Pothoff and Roy [3]. Distances between pituitary gland and

pterygomaxillary fissure were measured using x-rays inn = 27 children

(16 males and 11 females) atm = 4 time points, at ages 8, 10, 12, and 14.

Data can be collected in an × m matrix Y. We also use am × p matrix X

of the first p = 2 orthogonal polynomials on them time-points.

The first class of models we consider isY = B X′
+ E with B a n ×

p matrix of regression coefficients, one for each subject, and withE the

n × m matrix of disturbances. We suppose the rows ofE are independent,

identically distributed centered normal vectors, with dispersion6. Observe
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that the model here tells us the growth curves are straight lines, not that the

deviations from the average growth curves are on a straight line.

The deviance for this class of fixed coefficient regression models is

1(B, 6) = n logdet 6 + tr (Y − B X′)6−1(Y − B X)′

Within this class of models we can specify various submodels. The most

common one supposes that6 = σ 2I , in which case the regression coeffi-

cients are estimated simply bŷB = Y X. But many other specifications are

possible. We can, on the one hand, require6 to be scalar, diagonal, or free.

And we can, on the other hand, require the regression coefficients to be all

the same, the same for all boys and the same for all girls, or free (all dif-

ferent). These are all fixed regression models. The minimum deviances are

shown in the first three rows of Table 1. In some combinations the deviance

is unbounded below and the minimum does not exist.

equal gender free

scalar 307(3) 280(5) 91(55)

diagonal 305(6) 279(8) −∞(58)

free 233(12) 221(14) −∞(64)

random 240(6) 229(8) −∞(58)

TABLE 1. Mixed Model Fit
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We show the results for the simplest case, with the regression coefficients

“free” and the dispersion matrix “scalar”. The estimated growth curves are

in Figure 1. Boys are solid lines, girls are dashed. The estimatedσ 2 is 0.85.
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FIGURE 1. Growth Curves for the Free/Scalar Model

We also give the results for the “gender” regression coefficients and the

“free” dispersion matrix. The two regression lines are in Figure 2. The

regression line for boys is both higher and steeper than the one for girls.

There is much less room in this model to incorporate the variation in the

data using the regression coefficients, and thus we expect the estimate of

the residual variance to be larger. In Table 2 we give the variances and
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FIGURE 2. Growth Curves for the Gender/Free Model

correlations from the estimated6. The estimated correlations between the

errors are clearly substantial.

8 10 12 14

Correlations 1.00

0.54 1.00

0.65 0.56 1.00

0.52 0.72 0.73 1.00

Variances 5.12 3.93 5.98 4.62

TABLE 2. 6 from Gender/Free Model
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The general problem with fixed effects models in this context is clear from

both the figures and the tables. To make models realistic we need a lot of

parameters, and if there are many parameters we cannot expect the estimates

to be very good. In fact in some cases we have unbounded likelihoods and

the estimates we look for do not even exist. Also, it is difficult to make

sense of so many parameters at the same time, as Figure 1 shows.

Next consider random coefficient models of the formY = BX′
+ E, where

the rows ofB are uncorrelated with each other and with all ofE. By write

B = B + 1 with B = E(B) we see that we have a mixed linear model of

the formY = B X′
+ 1X′

+ E. The deviance now is

1(B, 6,�) = n logdet (X�X′
+ 6)+

+ tr (Y − B X′)(X�X′
+ 6)−1(Y − B X′)′,

where� is the dispersion of the rows of1. It seems that we have made

our problems actually worse by introducing more parameters. But allowing

random variation in the regression coefficients makes the restrictive models

for the fixed part more sensible. We fit the “equal” and “gender” versions

for the regression coefficientsB, together with the “scalar” version of6,

leaving� “free”.
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Deviances for the random coefficient model are show in the last row of

Table 1. We see a good fit, with a relatively small number of parameters.

To get growth curves for the individuals we computeE(B|Y), which turns

out to be

E(B|Y) = B̃[I − �(� + σ 2I )−1
] + B̂�(� + σ 2I )−1,

where B̃ is the mixed model estimate and̂B = Y X is the least squares

estimate portrayed in Figure 1. Using the “gender” restriction on the re-

gression coefficients the conditional expectations, also known as thebest

linear unbiased predictorsor BLUP’s [4], are plotted in Figure 3.
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FIGURE 3. Growth Curves for the Mixed Gender Model
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We see they provide a compromise solution, that shrinks the ordinary least

squares estimates in the direction of the “gender” mixed model estimates.

We more clearly see the variation of the growth curves for the two genders

around the mean gender curve. The estimatedσ 2 for this model is 1.72.
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