
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Modeling aberrant volatility estimates in Autism Spectrum Disorder

Permalink
https://escholarship.org/uc/item/9084q9jj

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Niehaus, Hauke
Stroth, Sanna
Kamp-Becker, Inge
et al.

Publication Date
2022
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9084q9jj
https://escholarship.org/uc/item/9084q9jj#author
https://escholarship.org
http://www.cdlib.org/


Modeling aberrant volatility estimates in Autism Spectrum Disorder
Hauke Niehaus1, Sanna Stroth2, Inge Kamp-Becker 2, Dominik Endres1

1Department of Psychology, Philipps-University Marburg
2Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Clinic, Philipps-University Marburg

{niehaush, stroth, endresd}@staff.uni-marburg.de, {kampbeck}@med.uni-marburg.de

Abstract

Computational cognitive theories of Autism Spectrum Disor-
der have received renewed attention in recent years. Con-
sistent with the predictive processing framework, ASD has
been re-conceptualized as a disorder of aberrant prediction and
learning-rate estimation involving multiple levels of a puta-
tive cognitive computational hierarchy. Specifically, behav-
ioral symptoms of individuals with ASD might manifest due
to an aberrant overestimation of the volatility of environmental
contingencies (i.e. tendency of change in cue-outcome prob-
abilities) which in turn might induce a dysfunctional setting
of learning rates. In this work, we attempted to conceptu-
ally replicate computational modeling analyses of an impactful
study of the recent ASD modeling literature in an independent
sample of subjects. We were not able to replicate some prior
reported effects likely due to differences in model architecture
and cognitive task setup. We found statistical trends in similar
directions.

Keywords: autism spectrum disorder; predictive processing;
cognitive modeling; Wisconsin card sorting test; volatility

Introduction
Autism-Spectrum-Disorder (ASD) is currently classified as
a Pervasive Neurodevelopmental Disorder with a point-
prevalence of 1% in the general population (Happé & Frith,
2020; Lord & Bishop, 2015) with significant genetic associ-
ations (de La Torre-Ubieta, Won, Stein, & Geschwind, 2016;
Waye & Cheng, 2018). The diagnosis of ASD requires the
presence of symptoms from two main symptom clusters. (A)
persistent and context-invariant deficits in social communi-
cation and interaction including socio-emotional reciprocity,
nonverbal behavior, and relationship formation. (B) repetitive
patterns of behavior, interests, or activities including motor
movements, speech or use of objects, a strong insistence on
routines and sameness, fixated and singular interests, and pe-
culiar differences in sensory processing (Diagnostic and sta-
tistical manual of mental disorders: DSM-5, 2013).
Until recently, pathomechanistic and etiological theories of
ASD were focused on domain-specific theories attempting to
explain the symptom clusters separately like e.g. the weak-
central coherence theory (Happé, 2005) and the enhanced
perceptual functioning theory (Mottron, Dawson, Soulières,
Hubert, & Burack, 2006) for perceptual peculiarities or e.g.
the extreme male brain theories (Baron-Cohen, 2002; Green-
berg, Warrier, Allison, & Baron-Cohen, 2018) for behavioral
atypicalities. A coherent framework linking the symptoms
clusters was largely missing (Haker, Schneebeli, & Stephan,
2016).

More recently, attempts have been made to unify all behav-
ioral and perceptual atypicalities of ASD using the Bayesian
Brain hypothesis (BB) (Lawson, Rees, & Friston, 2014; Pel-
licano & Burr, 2012; van de Cruys et al., 2014). In essence,
the BB postulates that the human brain performs Bayesian
inference through a generative model of the world and repre-
sents information via probability density functions or approx-
imations thereof (Knill & Pouget, 2004). More specifically,
Pellicano and Burr (2012) hypothesized on a computational
level that people with ASD rely in their inferences about the
world less on their learned prior information (‘hypo-prior’)
than normally developing individuals. Formally, they pro-
posed that the construction or updating of Bayesian priors
(i.e. the contextually sensitive expectations of sensory inputs)
might be aberrant in ASD leading to attenuated and overly
imprecise prior expectations. This in turn manifests in a mal-
adaptive perceptual style largely unbiased by the priors and
closely oriented toward the sensory input. As the prior gen-
erally serves an important function in reducing uncertainty
in Bayesian formulations of perception, Pellicano and Burr
(2012) hypothesized that this aberrant construction of priors
in ASD might lead to context-invariant and broad expecta-
tions necessarily leading to generally increased differences
between prior expected and observed sensory input. Many
ASD-associated perceptual and behavioral phenomena may
be explained by this aberrant computational process (Haker).
Lawson et al. (2014) adapted this computational hypothesis
of Pellicano and Burr (2012) into the neurobiologically con-
strained predictive coding framework (also Predictive Pro-
cessing, from here on PP) and extended it to the temporal and
hierarchical dimensions. PP is a process theory that describes
how computational Bayesian inference might be realized in
the human brain (Clark, 2013). A central role falls to top-
town predictions that attempts to explain away neuronal ac-
tivity at lower levels of the neurocomputational hierarchy. A
mismatch between top-down predictions and bottom-up ac-
tivity leads to the generation of a weighted prediction error
(PE) that is passed up the hierarchy to improve predictions.
Importantly, PP departs from the representational framework
of cortical computation by proposing that only PEs are passed
upwards the cortical hierarchy (Keller & Mrsic-Flogel, 2018).
Moreover, the (contextual) weighting of PEs is important in
this scheme and, if estimated correctly, functions by discern-
ing between irreducible noise in the environment and rele-
vant contingencies. Finally, more shallow/bottom-up layers
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of the proposed neurocomputational hierarchy are assumed
to encode domain-specific PEs regarding temporally and spa-
tially ’smaller’ environmental aspects whereas higher levels
encode domain-general PEs over temporally and spatially ab-
stract environmental aspects (Clark, 2013; Perrykkad & Ho-
hwy, 2020).
Specifically for ASD, Lawson et al. (2014) hypothesized that
the aberrant Bayesian inference as described by Pellicano and
Burr (2012) manifests in a relatively increased subjective pre-
cision (inverse variance) of sensory evidence relative to top-
down prior beliefs, especially in moments of high ambiguity
or uncertainty. This prevents the adequate weighting of PEs
along the cortical hierarchy rendering them generally less in-
formative in updating the generative model. This effect might
be more pronounced the more domain-general the PEs be-
come. This failure to accurately inform the generative model
with only relevant prediction errors, especially on higher lev-
els, might additionally prevent the formation of adequately
abstract (or ’deep’) generative models over time. As the accu-
rate PE-weight (and precision) estimation requires contextual
knowledge of the environment, ASD has consequently been
described as a meta-cognitive disorder (Friston, Lawson, &
Frith, 2013). In summary, many characteristic ASD symp-
toms might be compensatory behavioral mechanisms to re-
duce the aberrant PE weighting. For examples see e.g. (Haker
et al., 2016).
After this introduction, we will summarize the methods em-
ployed in this study. Then, the main findings of Lawson,
Mathys, and Rees (2017) will be summarized and our hy-
potheses based on those original results will be presented.
Then, findings from our study will be reported and replica-
tion success will be critically evaluated. Finally, we will give
an outlook for further research.

Methods
Subjects and demographic data
Subjects in our sample were screened for Autism between
the years 2001 and 2009 as part of a research project on high-
functioning autism and Asperger syndrome at the University
Hospital Marburg. All subjects were classified as ASD or
non-ASD cases based on best-estimate clinical (BEC) diag-
nosis according to ICD-10, comprising a comprehensive clin-
ical investigation with physical examination, medical history-
taking, assessment of intellectual ability with the HAWIK-3
(Tewes, Rossmann, & Schallberger, 1999), ADOS, ADI-R
and differential diagnostic examination. Additionally, sub-
jects completed several neuropsychological tests including
the Wisconsin Card Sorting test. Informed consent was ob-
tained either from the subjects or a legal guardian. Ethics
approval for this study was given by the Ethics committee of
the medical department of the University Marburg.
The sample consists of a total of N=33 adolescent and adult

subjects (Female=2) of which N=22 received an ASD diagno-
sis after BEC. Additional demographic details can be seen in
Table 1. The mean age of the entire sample was 18.99(SD =

Table 1: Demographic data of both groups with mean (M) and
standard deviation (SD). Correct responses are displayed rel-
ative to all possible cards (either 96/128). Perservative errors
as a subset of the overall false responses are given in propor-
tion of the individual played cards.

ASD (N=22) non-ASD (N=11)
M SD M SD

IQ score 95.45 17.99 114.54 15.84
Correct responses

(%) 81.20 10.35 81.39 7.51

Persev. Err.
(%) 4.26 5.98 5.29 4.83

False responses
(%) 18.79 8.22 18.79 10.35

3.06). A series of Brunner-Munzel test (BMT from here on)
(Brunner & Munzel, 2000) revealed no significant group dif-
ferences for the relevant variables in Table 1 (p > .337) with
exception of the IQ score. The IQ-score in the ASD-group
(Mdn = 95.45) was significantly lower than in the N-ASD
group (Mdn = 114.54) with B =−3.60, p = .0012.

Wisconsin card-sorting task
As part of a larger diagnostic program, subjects performed a
modified and computerized version of the Wisconsin Card-
Sorting test (WCST) (Grant & Berg, 1948). The WCST
is considered the neuropsychological gold standard in mea-
suring executive functions like cognitive flexibility and set-
shifting (Kopp, Maldonado, Scheffels, Hendel, & Lange,
2019; Lange, Seer, & Kopp, 2017) with adequate psychome-
tric properties (Kopp, Lange, & Steinke, 2021).
In this WCST version, there were four target cards displayed
on a monitor each card showing colored groups of geomet-
ric symbols. The subjects were tasked to discover a ‘hidden’
sorting rule by iteratively allocating one of the sorting cards
per trial to one of the four target cards. After card allocation,
subjects received binary feedback if the allocation followed
the current sorting rule (‘correct’) or not (‘incorrect’). There
are three possible ‘hidden’ sorting rules i.e. sorting cards ei-
ther by color, by number, or by a geometric symbol. The hid-
den rule changed after 10 successful allocations (completing
a ’cognitive set’) without explicit instructions and subjects
were required to infer the new sorting rule. Note, that two
versions of this computerized task were used in our data col-
lection which had a different total numbers of sorting cards
i.e. 96 and 128. However, both versions employed the same
criteria for completing the task: either 6 cognitive sets of 10
successful card allocations following a current sorting rule or
after all sorting cards were used.
Additional to the number of correctly allocated cards (cards
with ’correct’ feedback from experimenter), the WCST im-
plementation used in this work considers four main error vari-
ables: (1) the total number of non-perseverative errors, (2)

1737



a subset of the non-perseverative errors called the set-loss
errors, (3) ’normal’ non-perseverative errors and (4) perse-
verative errors. The total number of errors is a composite
of all four error variables. Perseverative errors are defined
as the continued application of the immediate prior sorting
rule despite receiving at least one prior negative feedback on
that sorting rule indicating a rule-change. Complementary
to the perseverative errors are the non-perseverative errors
and the sum over both error-types describes the total errors
made with its inverse the total cards correctly allocated. Non-
perseverative errors are comprised of two subsets: ’normal’
errors and set-loss errors. A set-loss error describes the loss
of a cognitive set i.e. applying a wrong sorting rule after ini-
tial correct identification of the change in sorting rule. A ’nor-
mal’ error describes all other non-perseverative errors.
Note, that N=21 performed the 96-card version and N=12
the 128-card version. Importantly, of those performing the
128-card version only N=3 subjects required > 96 sorting
cards to reach the end-criterion. To reduce the possibility
of bias these subjects might contribute, all WCST error vari-
ables (Table 1) were normalized by the individual total num-
ber of played cards. A recent meta-analysis hints towards a
large increase in perseverative errors with a mean cohen’s D
of d = 1.47(SE = .02) in people with ASD when compared
to mental-age matched controls (Landry & Chouinard, 2016).
For brevity, only those errors are reported and discussed.

The Hierarchical Gaussian Filter
The HGF is a hierarchical probabilistic time-series model
that can be understood as a hierarchical generalization of the
Kalman-Filter with dynamic learning rates. The HGF was de-
rived by C. Mathys, Daunizeau, Friston, and Stephan (2011);
C. D. Mathys et al. (2014) as a generic neurocomputational
model of learning under uncertainty and has been utilized
multiple times in the context of ASD (Lawson et al., 2017;
Sevgi, Diaconescu, Henco, Tittgemeyer, & Schilbach, 2020).

Specifically, the HGF was derived within the meta-
Bayesian ‘Observing-the-observer’-framework (Daunizeau,
Den Ouden, Pessiglione, Kiebel, Stephan, & Friston, 2010;
Daunizeau, Den Ouden, Pessiglione, Kiebel, Friston, &
Stephan, 2010) i.e. this model aims to enable experimenters
to infer information about (approximate) Bayesian inferences
performed by a subject presented with a specific cognitive
task. Specifically, the HGF-framework consists of a genera-
tive model and a variationally inverted inference model. For
full mathematical derivation and assumptions see (C. Mathys
et al., 2011) and (C. D. Mathys et al., 2014).

The generative model of the HGF is a set of formal as-
sumption over how hidden or latent quantities (x) of a dy-
namic environment (e.g. cognitive task) are assumed to
evolve over time. In the HGF, the environmental generative
model is described as a hierarchically interconnected set of
Gaussian random walks of which the lowest level produces
the observed outcomes. A full treatment can be found in
C. Mathys et al. (2011).
The inference model of the HGF consists of a perceptual

model and a decision model (or response model). It de-
scribes the inverted (via Gaussian Mean-Field variational ap-
proximation) HGF generative model which can be fitted to
an agent. Mean-field variational Gaussian expectations over
trial-by-trial hidden environmental quantities x entertained by
the agent are denoted by the q(x) in Figure 1. As highlighted
by C. Mathys et al. (2011); C. D. Mathys et al. (2014), this
variational Bayesian inversion leads to closed-form update
equations of trial-by-trial Gaussian expectations over new ob-
servations q(x̂) akin to generic delta-learning rules. These
prior expectations about sensory input are encoded by a mean
µ̂ and precision π̂ (inverse variance) for each level of the HGF
and are updated via prediction errors (PE) passed up the hier-
archy weighted by a dynamic learning-rate α. Once updated,
prior expectations become posterior expectations (µ,π) which
are then used to predict input at the next time-step t + 1. At
the lowest level, the HGF decision model converts prior es-
timates ˆq(x) over latent quantities into probabilistic expecta-
tions of observations. The HGF inference model allows bi-
nary, categorical, and continuous outcomes to be predicted.
In the case of the 3-level HGF perceptual model as employed
by Lawson et al. (2017) and here, the first level encodes
trial-by-trial outcome probabilities of observations q(x1). As
Lawson et al. (2017) also predicted the reaction times, their
decision model was continuous. As we predicted the cate-
gories (color, geometric form, or form count), our decision
model was categorical with three outcomes corresponding to
the WCST sorting rules. The trial-by-trial probabilistic ex-
pectations over obseravtions are converted from the second
level of the HGF via a softmax function (s(.) in Figure 1).
The second level keeps track of the unbounded outcome ex-
pectations over WCST categories q(x2) at time t. Prior ex-
pectations are parameterized by a mean µ̂2 and a precision
π̂2. Importantly, the precision of this expectation is a func-
tion of the trial-by-trial estimate of the next upper (third) level
(q(x3)) and a subject-specific model parameter ω2 encoding
the time-invariant (tonic) expected tendency of change in out-
comes (volatility). Again, predictions at this level are updated
via a closed-form update equation yielding posterior expecta-
tions µ2 and π2 used to predict the upcoming observations.
Updates are calculated using the weighted prediction error
(PE1

t ∗α2
t ) from the lower level defined by the difference of

the prediction q(x1
t ) and observation Ot at the current trial.

As the precision π̂2 of the trial-by-trial expectation µ̂2 over
q(x2) is partly determined by the third level, this third
level encodes expectations regarding the trial-by-trial (pha-
sic) volatility of outcomes q(x3) i.e. the phasic tendency of
change in the outcome expectations q(x2). Similarly, this
volatility expectation is represented by a mean π̂3 and pre-
cision µ̂3. Note, that the trial-by-trial precision of this expec-
tation µ̂3 is partially a function of the tonic and individually
estimated model parameter called the meta-volatility estimate
(ω3). This parameter reflects the time-invariant belief of the
subject in the instability of the instability in environmental
contingencies. Only µ̂3 is updated by a closed-form equation
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Figure 1: Schematic depiction of the three-level categorical HGF. q(x) are the variational Gaussian approximations of the
inverted HGF inference model over hidden states xas represented by the generative model of the subject. O represents input
observed by the subject (and the HGF). q(x) denotes trial by trial hierarchical prediction errors and α the respective weights.
ω2 and ω3 denote individual tonic volatility estimates.

to the posterior volatility expectation µ3.
The priors over the HGF parameters of our model were

adapted from the publication of Lawson et al. (2017) when
applicable. The Gaussian prior on ω2 (µ = −5 and σ2 =
16) was adapted directly as they were estimated in an un-
transformed space. Note, that ω2 was transformed after
model fitting into the positive domain via exponentiation to
aid in interpretation. As ω3 was estimated in log-space in the
HGF model used by Lawson et al. (2017) but in logit space
here, due to differences in model derivation for the categor-
ical HGF, the prior µ was transformed via the exponential
function. The Gaussian prior for ω3 was (µ = .002478 and
σ2 = 4). We utilized the BFGS implementation for maximum
likelihood estimation of the individual model parameters and
starting points for the BFGS implementation were drawn
from the prior distributions.The categorical HGF-model is
implemented in the proprietary language used by MATLAB
and was published as part of the TAPAS toolbox (Frässle et
al., 2021). The model-implementation is available under an
open-source license as part of the TAPAS toolbox (Frässle et
al., 2021) on Github 1. For model fitting in this study, the
TAPAS toolbox was installed on a Windows 10 machine run-
ning MATLAB r2020. Model fitting of the HGF was done
within a MATLAB environment accessed from a Python en-
vironment (3.7) via the MATLAB Engine API for Python.
All subsequent analyses and plots were performed in Python.
Supplementary material to this study (incl. code and data)

1https://github.com/translationalneuromodeling/
tapas/tree/master/HGF

can be accessed at the data UMR Repo2.

Original results and hypotheses
To follow up on this novel theoretical view provided by
Lawson et al. (2014) on ASD, Lawson et al. (2017) tested
several tenets and corollaries of the their theory in a sample
of people with an ASD diagnosis (N=24) and normally devel-
oping individuals (N=25, IQ and age-matched) using a cued
probabilistic learning task and a combination of computa-
tional modeling and pupillometry. More specifically, through
this model-based inference Lawson et al. (2017), reported
four central computational modeling results. These results
may be understood as ASD-specifc computational marker of
aberrant predictive processing.
Firstly, the individual model parameter ω3 encoding meta-
volatility showed a marked group difference between people
with and without ASD. Specifically, this parameter showed
a significant increase in people with ASD. In line with their
theoretical work, the authors concluded that people with ASD
have difficulties in adaptively responding to uncertainty in
perception which may be manifested in this tendency to gen-
erally (over-) expect the unexpected. In other words, a mal-
adaptive over-expectation of meta-volatility of environmental
contingencies might be the manifestation of a compensatory
meta-cognitive inference that one is unable to construct infor-
mative predictions regarding sensory input.
Secondly, the individual meta-volatility model parameters

2http://dx.doi.org/10.17192/fdr/87
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made significant contributions in predicting the diagnostic
status (ASD, non-ASD) of an individual.
Thirdly, Lawson et al. (2017) reported that people with and
without ASD differ in their adaptations of learning rates when
transitioning from stable task-phases to more volatile task-
phases. Optimally when transitioning from a stable to a
volatile phase, learning rates should generally increase to al-
low learning of recent contingencies. However, the authors
reported that people with ASD adapted their weights (i.e.
precision or learning-rate) on the hierarchical PE (∆α) differ-
ently to the subjects without ASD. Importantly, people with
ASD adapted their learning-rate less on the relevant level
of outcome expectancies q(x2) in response to volatile task-
phases and adapted learning rates more strongly on the level
of the volatility over outcome expectancies q(x3).
Fourthly, ∆α to task-phases with increased volatility of envi-
ronmental contingencies were significantly predicted by in-
dividual model parameters ω2 and ω3. This further corrob-
orates the first finding. Consequently, we examined the fol-
lowing hypotheses in this work:

1. Increased individual tonic volatility estimates ω3 in the
ASD group.

2. Prediction of the diagnostic status from individual tonic
meta-volatility estimates (ω3).

3. Decreased learning-rate modulation (∆α2, ∆α3) in re-
sponse to increased volatility (i.e. rule changes of the
WCST). Specifically, a decreased ∆α2 updating and a in-
creased ∆α3 updating in the ASD group relative to the non-
ASD group.

4. Prediction of ∆α2 and ∆α3 by individual model parameters
ω2 and ω3. Specifically, ∆α2 should positively predicted
by ω2 and negatively predicted by ω3. In turn, the ∆α3
learning-rate modulation should be positively predicted by
ω2 and positively predicted by ω3

Results
We will briefly summarize the results of our analyses. We
used the non-parametric Median-based Brunner-Munzel test
(BMT from here on) (Brunner & Munzel, 2000) for all subse-
quent analyses of group differences as it still allows reason-
ably robust inferences with heteroscedasticity, violated nor-
mality assumptions and unequal sample sizes without too
much loss of statistical power (Karch, 2021; Fagerland &
Sandvik, 2009). Median will be abbreviated by Mdn from
here on. For all comparisons the common language effect-
size (CLES/ Vargha and Delaney ’A’-measure) will be re-
ported (Vargha & Delaney, 2000). The CLES is interpreted
as the probability that a value from the relevant group will be
greater than a value from the other group. A CLES=.5 de-
notes therefore stochastic equality between groups. Conven-
tions for interpretation are provided by (Vargha & Delaney,
2000) with a small effect from 0.56 to < 0.64, a medium ef-
fect from 0.64 to < 0.71 and a large effect of 0.71.

Hypothesis 1: Group differences in tonic volatility
estimates
In a first analysis, we tested for group differences of (ω3).
Our data are not in line with an increased ω3 estimates in
the ASD group (Mdn = .0481) compared to the NT group
(Mdn = .0538) with B =−.93.0,CLES = .392, p = .8444.

Hypothesis 2: Significant prediction of diagnostic
status from tonic volatility estimates
We fitted a logistic regression model using the mean-centered
both ω2 and ω3 parameters as and the diagnostic status
(ASD=1, ND=0) a the dependent variable. We utilized an
l2-penalty on the coefficients and performed a Leave-one-
out cross-validation procedure (LOOCV) over the predic-
tion success. No HGF model-parameter made a statistically
significant contribution in predicting diagnostic status with
z <= .025, p => .980 for both ω2 and ω3. We estimated a
LOOCV-corrected prediction accuracy of 66.66% using both
ω2 and ω3 estimates as predictors.

Hypothesis 3: Group differences in updating the
learning rates in response to volatile task phases
First, we tested if ∆α2 was indeed decreased for the ASD
group after a rule change. Between the immediate first
and second trial (∆α

t+1
2 ) after a rule change, we found

no significantly decreased ∆α
t+1
2 for the ASD (Mdn =

.2053) versus the NT (Mdn = .2061) group with B =

.076,CLES = .508, p = .530. Similarly, we found no sig-
nificantly decreased learning rate updating (∆α

t+2
2 ) for the

ASD (Mdn = .377) versus the NT (Mdn = .224) group with
B = −.178,CLES = .479, p = .430 between the second and
third trial after a rule change .
Secondly, we tested if ∆α3 was significantly increased for the
ASD group after a rule change. Between the first and sec-
ond trials after a rule change (∆α

t+1
3 ), we found no signifi-

cant increase in updating of learning rates between the ASD
group (Mdn = .0152) and the NT group (Mdn = .0129) with
B = .035,CLES = .504, p = .486. Also, between the sec-
ond and third trials after a rule change (∆α

t+2
3 ), we found no

significantly increased updating of learning rates between the
ASD group (Mdn= .0302) and the NT group (Mdn= .0213)
with B = .588,CLES = .566, p = .281.

Hypothesis 4: Significant prediction of learning rate
adaptations by individual tonic volatility
parameters
Here we assessed volatility estimate predicted ∆α2 and ∆α3
after a rule change. Again, we included ω2 (and ω3) as pre-
dictors in two separate multiple linear regression models pre-
dicting ∆α2 and ∆α3 for each of the two timepoints after a
rule-change. The HC1 heteroscedasticity-robust covariance
estimator was used (Hayes & Cai, 2007).
Using both ω2 and ω3 to predict (∆α

t+1
2 ) returned a signifi-

cant model (F(2,30) = 19.37,P < .0001,R2 = .316) with ω2
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(t = 6.19, p < .001) being the only significant predictor. Sub-
sequently, when using ω2 and ω3 to predict ∆α

t+2
2 of the same

level, the model was significant again (F(2,30) = 3.72,P =
.035,R2 = .266) and ω2 was the only significant predictor
(t = 2.72, p = .011). Note, that there was a large deviation
from normality in this model with (JB = 173, p < .001) for
the Jarque-Bera test (Jarque & Bera, 1980).

Including ω2 and ω3 to predict ∆α
t+1
3 returned a significant

model (F(2,30) = 13.54,P < .001,R2 = .403) with ω2 again
being the only driving predictor (t = 5.19, p < .001). Simi-
larly, the model predicting ∆α

t+2
3 was significant (F(2,30) =

15.66,P< .001,R2 = .507) with ω2 again being the only driv-
ing predictor (t = 5.46, p < .001).

Discussion

Following hypothesis 1, we were not able to obtain similar
results for ω3 as reported by Lawson et al. (2017). Con-
trary to their study, our data do not support the hypothesis
of an increase in meta-volatility estimate for the ASD group.
Several explanations are plausible. First, the WCST task
employed here did not require the subject to perform multi-
modal cue-learning and had a deterministic reward schedule
which might have decreased the difficulty considerably. Con-
trary to this, the probabilistic learning task in Lawson et al.
(2017) employed an additional auditory cue with varying re-
liability and social stimuli. Secondly, the WCST has multiple
volatile phases (i.e. rule changes) throughout the trials com-
pared to only one volatile phase in the probabilistic learning
task employed by Lawson et al. (2017). This might allow
even subjects with impaired learning enough time to antic-
ipate volatile phases. This fact likely decreased group dif-
ferences in tonic meta-volatility estimates in our study. Im-
portantly, when testing for group differences in the parameter
coding the tonic volatility of changes in outcome contingen-
cies (ω2), we found a non-significant trend for a small effect
towards an increased ω2 for the ASD-group (Mdn = 0.276)
compared to the non-ASD group (Mdn = 0.251) with B =
1.40,CLES = .644, p.085. In summary, the task environment
presented to the subjects in this sample might simply be too
predictable for aberrations in precision estimation to influ-
ence task-behavior.
In hypothesis 2, we found little influence of individual volatil-
ity estimates (ω2 and ω3) when predicting diagnostic status
as overall group differences in those parameters were already
small.
Following hypothesis 3, we were also not able to find similar
effects for aberrations in PE weights as observed by Lawson
et al. (2017). The original authors highlighted that individ-
uals with ASD likely differed in their adaptive updating of
learning rates in response to phasic volatility in the task en-
vironment i.e. transition from stable to volatile task-phase.
Again, multiple explanations are possible for an unsuccess-
ful replication. First, due to the continuous outcome of the
3-level HGF version used by Lawson et al. (2017)), they only
had to test a single trial-by-trial learning rate per HGF-level

between groups. The categorical HGF used here employs
a parallel three-level hierarchy for each WCST sorting cat-
egory which gives three learning rates per level. To still cap-
ture this effect meaningfully, we only examined the learning
rates of the two WCST sorting categories that the sorting rule
could change to. If e.g. the correct sorting rule was ‘geomet-
ric form’ in the preceding cognitive set, we only examined
the learning rates for the two remaining outcomes ‘count of
forms’ and ‘color of forms’ as adaptations of learning-rates
should manifest here most prominently. We then calculated
the trial-by-trial average of the per-level learning rates over
both ’learnable’ WCST outcome categories giving a single
average learning rate for these outcomes. This procedure in
itself might have biased the inferences.
Secondly, for brevity, we opted to examine updates in learn-
ing rates up to three trials after each WCST rule-change. Note
that this choice is necessarily arbitrary. Following the proce-
dure described beforehand, this examination yielded two ∆α

values for each level and each WCST rule-change. Therefore,
∆α for each level coded the absolute changes in learning rates
for that specific level following a rule-change.
Thirdly, due to the multiple volatile phases of the WCST, we
calculated the average of those per-level ∆α values through-
out all trials following a rule change for each subject. This
yielded two average ∆α values per level (t+1 and t+2) and
subject. Still, there was only a marginal statistical trend of
differences in individual tonic volatility parameters for ω2.
Without a meaningful group-difference in ω3 (or ω2) in the
ASD group, there is likely also little difference in prior pre-
cision leading to little group differences in how strongly pre-
diction errors are weighted.
Finally, regardless of time after the rule change, ω2 appears
to be the main driving parameter behind learning rate updates
∆α2 and ∆α3 regardless of time after rule-change. This cor-
roborates the findings from Lawson et al. (2017) in general.
In other words subjects with an increased belief in uncertainty
of outcome expectations (ω2), of which there was a marginal
trend in our ASD-group, tended to update their learning rates
more strongly in response to volatile task phases (WCST rule-
change). Contrary to their results, we weren’t able to find
the negative predictive effect of ω3 on either ∆α

t+1
2 or ∆α

t+2
2

i.e. that an increased belief in volatile volatility (i.e. meta-
volatility) decreased learning rate updates on the second level
of outcome expectations. Additionally, we were not able to
find the positive predictive effect of ω3 on either ∆α

t+1
3 or

∆α
t+2
3 .

In summary, we were only able to find a subset of the ef-
fects reported by Lawson et al. (2017) likely due to a differ-
ent task setup, different instances of a similar computational
behavioral model and a small sample size. We are unable to
clearly highlight which factors produced the observed data.
Future research needs to examine what stimuli, structure or
dynamics of a task environment are driving factors behind an
overestimation of volatility in individuals with ASD.
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Frässle, S., Aponte, E. A., Bollmann, S., Brodersen, K. H.,
Do, C. T., Harrison, O. K., . . . Stephan, K. E. (2021).
Tapas: An open-source software package for translational
neuromodeling and computational psychiatry. Frontiers in
psychiatry, 12, 680811. doi: 10.3389/fpsyt.2021.680811

Friston, K. J., Lawson, R., & Frith, C. D. (2013). On hy-
perpriors and hypopriors: comment on pellicano and burr.
Trends in cognitive sciences, 17(1), 1.

Grant, D. A., & Berg, E. (1948). A behavioral analysis of de-
gree of reinforcement and ease of shifting to new responses
in a weigl-type card-sorting problem. Journal of experi-
mental psychology, 38(4), 404.

Greenberg, D. M., Warrier, V., Allison, C., & Baron-Cohen,
S. (2018). Testing the empathizing-systemizing theory
of sex differences and the extreme male brain theory of
autism in half a million people. Proceedings of the Na-

tional Academy of Sciences of the United States of America,
115(48), 12152–12157. doi: 10.1073/pnas.1811032115

Haker, H., Schneebeli, M., & Stephan, K. E. (2016). Can
bayesian theories of autism spectrum disorder help improve
clinical practice? Frontiers in psychiatry, 7, 107. doi:
10.3389/fpsyt.2016.00107
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