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Total Synthesis of Pentacyclic (–)-Ambiguine P Using Sequential 
Indole Functionalizations

Rebecca E. Johnson†, Hwisoo Ree, Marco Hartmann, Laura Lang‡, Shota Sawano§, 
Richmond Sarpong*

Department of Chemistry, University of California, Berkeley, California 94720, United States

Abstract

The first synthesis of a pentacyclic ambiguine (ambiguine P) is reported. The synthesis takes 

advantage of sequential alkylations of an indole core to rapidly construct the pentacyclic 

framework of the natural product. Key to the success of the synthesis was the use of a Nicholas 

reaction to alkylate at C2, crafting a fused seven-membered ring that is characteristic of the 

pentacyclic ambiguines, as well as the use of an amidedirected functionalization at C12 to set a 

requisite quaternary center. A versatile late-stage intermediate was prepared that may be 

applicable to the synthesis of the other pentacyclic ambiguines.

The ambiguine natural products,1 selected examples of which are shown in Figure 1, are a 

subset of a larger family of indole secondary metabolites known as the hapalindoles.2 With 

the exception of four ambiguines, including A (1) and H (2), which are tetracyclic, the 

ambiguines possess a fused pentacyclic scaffold featuring a characteristic seven-membered 

ring moiety. Since the first reported isolation of ambiguine congeners in 1992 from 

Fischerella ambigua,1a there have been continued efforts aimed at their total synthesis3–5 

given their intriguing structures. In addition, some members of the hapalindole family, such 

as the fischerindoles6 and welwitindolinones,6b,7 exert a broad spectrum of biological 

activities, including antimicrobial, antifungal, insecticidal, and anticancer activity as well as 

phytotoxicity.1a,c,2a,c,d,6b,8 Therefore, there has also been interest in exploring the function 

of the ambiguines in a biological context. While preliminary bioactivity studies on the 

ambiguines have been conducted,1c–f comprehensive studies have yet to be undertaken. It is 

our anticipation that structurally related derivatives of the ambiguines, which may be 

accessed en route to their chemical preparation, may also possess interesting activity. As 

such, a total synthesis of the pentacyclic ambiguines could unveil their biological potential 
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as well as set the stage for an understanding of their biosynthesis, especially the poorly 

understood late-stage oxidations of the fused seven-membered ring.9a–c

No syntheses exist for the pentacyclic ambiguines (3–11) despite numerous reported 

attempts.3 On the other hand, successful syntheses of tetracyclic ambiguine H (2) were 

disclosed by the Baran group in 20074 and the Maji group in 2018.5 Presumably, the seven-

membered E ring that is resident in the pentacyclic ambiguines poses an added synthetic 

challenge. Herein we report a strategy for the preparation of the pentacyclic ambiguines that 

has culminated in the total synthesis of (−)-ambiguine P (11).

In our retrosynthesis (Scheme 1), we envisioned that ambiguine P and related pentacyclic 

congeners could arise from common intermediate 14 via late-stage oxidation and/or 

chlorination. Pentacyclic isocyanide 14 could be accessed from 15, which in the forward 

sense would require olefination of the formyl group and conversion of the angular nitrile 

group to an isonitrile group. The C12 quaternary center in 15 would be installed using the 

primary amide of 16 as a directing group. To access the pentacyclic core of 16, we 

envisioned sequential indole C3, C2, and C4 functionalizations, which would ultimately 

allow the use of readily available starting materials (see 16 ⇒ 19 + 20 + 21). Notably, to 

forge the seven-membered ring of the pentacyclic framework, a cobaltmediated Nicholas 

alkylation at C2 of 18 would be employed, followed by Friedel–Crafts cyclization at C4 to 

build the C ring.

The key synthetic challenge that had to be considered in preparing the pentacyclic 

ambiguine natural products lay in the diastereoselective α-functionalization at C12 (see the 

structure of 5 in Figure 1 for numbering). The stereochemical outcome of this α-

functionalization on related systems10 is dictated by the stereochemistry at C15 leading to 

the cis-disposed stereodiad, whereas the trans-disposed grouping is required in our case (see 

the relative stereochemistry between C12 and C15 in 5). In our approach, we take advantage 

of a directed α-functionalization using the amide group in 16 to overcome this challenge.11

Our synthesis commenced with the elegant Cu(II)-mediated oxidative coupling of indole 

(20) with (S)-carvone (21) to afford C3-functionalized indole 22 (Scheme 2), following the 

precedent of Baran.10 Subsequent 1,2-addition of propargylic alcohol 19 to the enone 

carbonyl of 22 and Babler–Dauben oxidative transposition12 afforded enone 18 in 44% yield 

over the two steps. Cyclization to forge the seven-membered ring that is characteristic of the 

pentacyclic ambiguines was accomplished in excellent yield through an intramolecular 

Nicholas reaction13 wherein the indole C2 site preferentially reacted over C3 and C4. While 

site-selective Friedel–Crafts alkylation at C4 of the indole nucleus is often challenging 

because of competition with C2 and C3,14 with the seven-membered E ring in place in 23, 

we found that the combination of 15 equiv each of aluminum chloride and methanol 

successfully furnished the C ring in the desired pentacycle 17. Conjugate addition of cyanide 

to the enone moiety using Nagata’s reagent15 installed a nitrile group that would later serve 

both as a directing group and a surrogate for the isonitrile moiety. Concomitant trapping of 

the enolate that resulted from conjugate addition of the cyanide with trimethylsilyl chloride 

(TMSCl) accomplished in situ protection of the carbonyl group. At this stage, reductive 
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removal of the dicobalt group using tributyltin hydride16 yielded pentacycle 24 in 49% yield 

over three steps.

With access to the key pentacycle 24 in gram quantities over a seven-step sequence from 

carvone, we sought to address the challenge of setting the C12 quaternary center. Not 

surprisingly, direct α-vinylation at C1217 yielded the transdisposed vinyl group (with respect 

to C15) in accord with Fürst–Plattner selectivity.18 To overcome this undesired 

diastereoselectivity, we sought to employ the nitrile group as a directing group. Thus, Rh(I)-

catalyzed nitrile hydration19 gave a mixture of 25 and 16 (Scheme 3). Treatment of this 

mixture with methyl formate under basic conditions afforded the hemiaminal ether in 54% 

yield, setting the C12 quaternary center with complete selectivity for the desired 

stereochemistry. Reduction of the ketone group with sodium borohydride generated alcohol 

26.20

Ring opening of hemiaminal ether 26 to give β-cyano aldehyde 27 occurred in 51% yield 

using triflic anhydride.21 Presumably, the triflate is ejected upon aqueous workup, which 

leads to opening of the hemiaminal ether ring.22 At this stage, transforming 27 by Barton–

McCombie deoxygenation23 of the corresponding thiocarbamate intermediate gave 15 in 

43% yield over two steps. While exploring the olefination and nitrile hydration sequence, we 

discovered that these two transformations could be achieved in a single step. In the event, 

treatment of 15 with TMSCH2Li produced the secondary alcohol, which engaged the nitrile 

group in the presence of pyridinium p-toluenesulfonate (PPTS)24 under microwave 

irradiation. Subsequent cleavage of the TMS group with tetrabutylammonium fluoride 

(TBAF) yielded the primary amide and the vinyl group, resulting in an effective marriage of 

a Peterson-type olefination25 and nitrile hydration. At this stage, it was necessary to convert 

the primary amide at C11 to an isonitrile, a functional group that is present in the majority of 

ambiguine natural products. Hypervalent iodine-mediated Hofmann rearrangement26 of 

amide 29 progressed in 39% yield to give the desired tertiary amine 30 along with 

indolenine 31, which presumably arose from competing aziridination of the indole C2–C3 

double bond27 followed by ring opening. Subjecting the intermediate tertiary amine (30) to a 

formylation–dehydration sequence yielded pentacyclic isonitrile 14. Sequential elimination 

of the isonitrile and allylic oxidation using selenium dioxide gave ambiguine P (11) as a 

mixture of diastereomers (1.5:1 ratio in favor of 11).

In summary, the first total synthesis of a pentacyclic ambiguine has been achieved in 20 

steps from C3-functionalized indole 22, which is readily available in multigram quantities in 

a single step from commercial materials.10 Overall, our approach to the pentacyclic 

ambiguines highlights rapid construction of the pentacyclic skeleton through sequential 

alkylative functionalizations of indole using robust C–C bond-forming reactions as well as a 

novel application of an amide group to accomplish a stereoselective C12 functionalization. 

With ready access to pentacyclic isonitrile 14, current efforts are being directed toward its 

late-stage derivatization to access other pentacyclic members of the ambiguine family that 

retain the isonitrile group.
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Figure 1. 
Selected ambiguine natural products.
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Scheme 1. 
Retrosynthesis
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Scheme 2. 
Construction of the Pentacyclic Core
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Scheme 3. 
Setting the Quaternary Center at C12 and Completion of Ambiguine P
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