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NOTATION

• R and C denote the set of real and complex numbers, respectively, and j is the unit
imaginary number satisfying j2 = −1.

• Lower-case and upper-case boldface letters denote column vectors and matrices, re-
spectively.

• 1 is a vector where every element is equal to one.

• E[·] represents expectation.

• P[·] is the probability of some event

• I[·] represents the indicator function, which equals 1 if the argument event is true and
equals 0 otherwise.

• Depending on the context, the operator | · | is used to denote the absolute value of a
number, or the cardinality of a set.

• ∥ · ∥ and ∥ · ∥F denote the ℓ2-norm of a vector and the Frobenius norm of a matrix,
respectively.

• The transpose and conjugate transpose are denoted by [·]T and [·]H , respectively.

• The operator mod(a, b) calculates a modulo b.

• The notations Var[·] and Cov[·, ·] denote the variance and covariance, respectively.

• The integral Φ(a) = 1√
2π

∫ a

−∞ e−t2/2dt is the cumulative distribution function (cdf) of
the standard normal random variable.

• The notation ℜ{·} and ℑ{·} respectively denotes the real and imaginary parts of the
complex argument.

• N (·, ·) and CN (·, ·) represent the real and the complex normal distributions respec-
tively, where the first argument is the mean and the second argument is the variance
or the covariance matrix.

• The operator blkdiag(A1, . . . ,An) represents a block diagonal matrix, whose main-
diagonal blocks are A1, . . . ,An.

Note that if ℜ{·}, ℑ{·}, or Φ(·) are applied to a matrix or vector, they are applied separately
to every element of that matrix or vector.
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Due to the proliferation of mobile devices and services, the scale of multiple-input-multiple-

output (MIMO) communication systems is getting larger and larger and can be massive in

future wireless networks. This results in significant increases in hardware cost and power

consumption. Recently, low-resolution analog-to-digital converters (ADCs) have been con-

sidered as a practical solution for reducing hardware cost and power consumption in MIMO

systems. This is because low-resolution ADCs have simple hardware architectures as well

as very low power consumption. However, the severe nonlinearity of low-resolution ADCs

causes significant distortions in the received signals and therefore makes signal processing

tasks such as channel estimation and data detection much more challenging compared to

those in high-resolution systems. Motivated by the fact that machine learning is very pow-

erful in solving non-linear problems, this dissertation exploits machine learning to develop

low-complexity yet efficient and robust algorithms for channel estimation and data detection

in MIMO systems with low-resolution ADCs.

First, the blind detection problem, i.e., detection without channel state information (CSI), in

MIMO systems with low-resolution ADCs is studied. Two learning methods, which employ

a sequence of pilot symbol vectors as the initial training data, are proposed. A performance
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analysis of the vector error rate is then derived for the case of 1-bit ADCs. Based on the

analytical results, a criterion for designing transmitted signals is also presented.

Next, we show how support vector machine (SVM) – a well-known supervised-learning tech-

nique in machine learning – can be exploited to provide efficient and robust channel es-

timation and data detection in MIMO systems with 1-bit ADCs. Both uncorrelated and

spatially correlated channels are considered. An SVM-based joint channel estimation and

data detection method and an extension to frequency-selective fading channels will also be

proposed.

Then, a deep learning framework for low-resolution MIMO channel estimation, data detec-

tion, and pilot signal design is proposed. The proposed estimation and detection networks

are model-driven and have special structures that take advantage of domain knowledge in

the low-resolution quantization process. An important feature of the proposed channel esti-

mation network is that the pilot matrix is integrated into the weight matrices, which leads

to a joint optimization of both the channel estimator at the base station and the pilot signal

transmitted from the users. We also develop a nearest-neighbor search method to further

improve the data detection performance.

Finally, via numerical results, the proposed machine learning-based methods are shown to

be efficient and outperform existing ones. They are also shown to be robust against inherent

computational issues in the low-resolution MIMO framework.
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Chapter 1

Introduction

1.1 Wireless Communications

Wireless communication has a long history of over a hundred years dating back to the inven-

tion of the first photophone by Alexander Graham Bell and Charles Sumner Tainter in 1880.

Nearly two decades later, in 1897, the first wireless telegraph system using radio waves was

successfully developed by Guglielmo Marconi. However, the revolution of wireless commu-

nications did not really begin until the 1990s when the semiconductor technology achieved

advanced developments with millions of electronic components packed in a single chip, and

thus paved the way for the feasibility of implementing advanced digital signal processing

techniques and algorithms. Since the start of the revolution, wireless communication tech-

nologies have quickly and fundamentally changed the way we live and communicate. Thanks

to the over-the-air broadcast nature of electromagnetic waves, we can now keep connected

wirelessly and almost anywhere were go. This mobility convenience has urged the rapid de-

velopment of wireless applications and services. From only text and voice services in the early

wireless generations, nowadays, we can use a wide variety of other high quality applications

1



and services such as web browsing and transactions, on-demand multimedia streaming, on-

line gaming, video conferencing, and so on, all possible through wireless links. We are even

moving toward a society where smart homes, cities, and factories can be fully-connected.

Wireless connectivity has become an essential part of our daily life.

With the proliferation of mobile devices and services, the amount of wireless data traffic has

grown at an exponential pace for many years. The number of mobile users and connections

is expected to reach 5.7 billion and 12.3 billion in 2022 [1], respectively; generating a mobile

data traffic of about 77 billion gigabytes per month. The demand for ubiquitous access and

very high-speed wireless links will definitely continue to increase in future wireless networks.

Satisfying this demand is a very challenging problem due to two fundamental phenomena of

wireless channels: fading and interference.

• Fading is the variation of the channel strength over time and frequency due to small-

scale and large-scale effects [2]. The small-scale effect is the result of receiving multiple

signal copies over multiple paths between the transmitter and receiver. Since the signal

copies travel in different paths, they experience different attenuations, different delays,

and different phase shifts. This results in constructive or destructive addition of the

signal copies. While the constructive addition amplifies the received signal strength,

the destructive addition causes attenuation. The large-scale effect is due to path loss

via distance attenuation and shadowing by large objects such as buildings and hills.

The fading effect causes channel uncertainty over time and frequency and therefore

makes it very difficult to maintain reliable communication. In the worst case, the link

can be completely disrupted if the channel is in deep fade (strong destructive addition

of the signal copies). This deep fade phenomenon is highly probable in practice, espe-

cially when the transmitter and/or the receiver are moving. Furthermore, for reliable

communication, the power of the received signal has to be above a certain minimum

level since there always exists noise at the receiver. This requirement can be trouble-
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some in practice due to the rapid attenuation over distance of electromagnetic waves,

which is even more severe at high frequency bands, e.g., millimeter-wave (mmWave)

bands.

• Interference is the phenomenon in that a wireless link is interfered by other co-channel

links. It is a direct consequence of the broadcast nature of wireless channels and is

therefore inevitable. Interference happens when different transmitters communicate

with a common receiver, when a transmitter sends signals to unintended receivers, or

when different transmitter–receiver pairs share a common channel. In cellular wireless

networks, interference is often categorized into two sources: intra-cell interference and

inter-cell interference. While the former interference source comes from devices in the

same cell, the latter is from other cells. To mitigate inter-cell interference, a practical

approach that has been used in commercial systems is called “frequency reuse”. This

approach assigns adjacent cells to operate on different bands and makes sure that the

cells operating on the same band are far apart from each other. Since electromagnetic

waves rapidly attenuate over distance, the inter-cell interference would be negligible

and can be treated as background noise. The frequency reuse approach however reduces

spectral efficiency since each cell can only exploit parts of the available spectrum. If

universal frequency reuse (all cells operate on the entire available spectrum) is used,

the spectral efficiency can be improved but advanced interference management and

mitigation techniques are required.

Fading and interference are two critical aspects of wireless channels that have to be suffi-

ciently addressed in order to achieve reliable communications. How to deal with fading and

interference is considered as the central design of wireless communications systems [2].
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Figure 1.1: Illustration of a wireless communications system with multiple transmit and multiple receive
antennas.

1.2 MIMO Communications: A Disruptive Wireless

Technology

This section presents multiple-input multiple-output (MIMO) communications and briefly

explains why it is a disruptive technology that can efficiently address the multi-path fading

and interference issues as well as significantly improve the system throughput.

The term “multiple-input-multiple-output” originated from electric circuit and filter theory

in the 1950s and referred to circuits that had multiple input and multiple output ports [3].

However, in the 1990s, it was adopted by the information and communication societies to

refer to wireless communications systems that involve multiple antennas. Strictly speaking,

MIMO indicates wireless systems equipped with multiple antennas at both the transmitter

and receiver sides as illustrated in Figure 1.1. However, in a broader sense, it implies a collec-

tion of signal processing techniques that use multiple antennas to improve the performance

of wireless communications systems and thus multiple antennas can be at the transmitter

side, receiver side, or both.

A key feature of MIMO communications is the ability to combat multipath fading and im-

prove the communication reliability through the creation of diversity, which refers to trans-

mitting the same information over different wireless channels. Each channel in this context
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Figure 1.2: Simulated received signal strength comparison between one receive antenna and two combining
methods SC and MRC of four receive antennas in Rayleigh fading with a single-antenna transmitter.

indicates the wireless link between a transmit and a receive antenna. Since these channels

have different fading effects, the probability that all of them are in deep fade is significantly

smaller than the case where only one receive antenna is used. Multiple observations of the

transmitted signal obtained from multiple receive antennas are then used for a combining

process where the transmitted information is recovered. The simplest combining method

is called selective combining (SC), which simply takes the highest-power observation as the

output of the combiner. An illustrative example for the benefits of diversity is given in

Figure 1.2, which clearly shows that the fading issue can be efficiently addressed by the

use of multiple antennas. There is a high chance that the channel is in deep fade if only

one receive antenna is used. For systems with a single-antenna transmitter, the optimal

combiner is called maximal ratio combining (MRC), whose output is a weighted sum of the

observations from the receive antennas. The weights of an MRC are equal to the complex

conjugate of the corresponding channel gains. In systems with a multiple-antenna transmit-

ter, space-time codes are often used to improve the communication reliability. In space-time

codes, redundant information for creating diversity is spread over both spatial and temporal
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dimensions.

Another key feature of MIMO communications is the ability to enhance system through-

put through spatial multiplexing, which refers to simultaneously transmitting multiple data

streams over a multipath fading environment without the need for increasing the transmission

bandwidth. For example, each data stream is transmitted by one antenna of a multi-antenna

transmitter. At the receiver side, if the number of receive antennas is greater than or equal

to the number of transmit antennas, then a demultiplexing process can be utilized to recover

the transmitted data streams. It was theoretically proved that the maximum number of

data streams that can be supported by a MIMO system is given by the number of transmit

antennas or the number of receive antennas, whichever is lesser [2, 3]. Thus, the system

throughput can be significantly enhanced by increasing the number of deployed antennas.

The use of multiple antennas in MIMO communications can also helps mitigate interference.

As mentioned earlier, interference is a direct consequence of the broadcast nature of wire-

less channels and is therefore inevitable. However, if the transmitted signal is directional

instead of being broadcast over the air, interference can be mitigated. In the downlink trans-

mission, the directivity of a transmitted signal can be obtained through a technique called

beamforming. This technique controls the phase and amplitude of radiated waves emitted

from the antenna elements so that the superposition of the waves forms a transmitted signal

which travels along intended directions. This means the beamforming technique makes the

radiated waves add constructively in the intended directions but destructively in the others.

The signal part in each intended direction is set to carry data for a corresponding receiver.

It is well known that the directional intensity of the transmitted signal is proportional to the

number of transmit antennas [4] as illustrated in Figure 1.3. More transmit antennas result

in more directional beamforming and consequently less interference. In cellular networks,

beamforming helps reduce both intra-cell and inter-cell interferences. Another advantage of

beamforming is that, since the transmitted power is focused on certain intended directions,
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Figure 1.3: Directional beamforming through the use of multiple transmit antennas.

the transmitted signal can travel farther and so resulting in a larger coverage area. In the

cellular uplink transmission, users are physically apart from each other and if they have no

corporation, beamforming from them is not possible and interference at the base station

certainly occurs. However, if the BS is equipped with multiple antennas and the number of

BS antennas is greater than or equal to the number of data streams transmitted from the

users, the BS can use observations from its multiple receive antennas to perform interfer-

ence cancellation and extract data transmitted from different users. Such uplink interference

cancellation is similar to demultiplexing as mentioned earlier.

1.3 Low-Resolution MIMO Communications

This section presents the research motivation for this dissertation. As explained in the

previous section, MIMO is a disruptive wireless technology to improve the communication

reliability, enhance system throughput, and mitigate interference. All these benefits are

achievable at the expense of hardware cost and power consumption due to the use of multiple
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(a) A conventional high-resolution receiver structure.
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(b) A 1-bit ADC receiver structure.

Figure 1.4: Conventional high-resolution versus 1-bit receiver structures: (a) The ADCs have a high-
resolution, e.g. 12-16 bits, and the LNA is required to behave linearly; (b) The 1-bit ADC is equivalent to
a sign function, which can be implemented by a simple comparator. The AGC is not needed and the LNA
can be replaced by a simple amplifier (Amp).

antennas. In particular, each receive antenna is connected to a radio frequency (RF) chain

consisting of a series of components such as band-pass filter (BPF), low-noise amplifier

(LNA), mixer, low-pass filter (LPF), automatic gain control (AGC), and analog-to-digital

converters (ADC) as illustrated in Figure 1.4a. Conventionally, the RF chain is designed in a

way that minimizes signal distortion and makes the overall system behavior linear. This asks

for high-quality components in the RF chains, e.g., highly-linear LNAs and high-resolution

ADCs. Thus, hardware cost and power consumption in MIMO systems are clearly much

more critical compared to single-antenna systems.

Recently, massive MIMO has been widely considered as one of the core technologies for

emerging 5G and future wireless networks [5–9]. This is because massive MIMO can improve

the system performance by several orders of magnitude over small-scale MIMO systems

thanks to the significant increase in the spatial degrees of freedom obtained by combining

tens to hundreds of antennas at the BS [10–13]. This means the hardware cost and power

consumption problems in massive MIMO systems are even more severe since scaling the
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conventional RF chain implementation in Figure 1.4a to a massive number of antennas can

be too costly and power-consuming.

Since high-resolution ADCs are expensive and very power-hungry, e.g., the hardware com-

plexity and power consumption of a flash ADC are exponentially proportional to the resolu-

tion bit [14,15], a practical approach to the hardware cost and power consumption problems

in MIMO systems is to use low-resolution (e.g., 1–3 bits) ADCs. The use of low-resolution

ADCs not only reduces their hardware complexity but also results in the simplification or

removal of other components in an RF chain. For example, as illustrated in Figure 1.4b,

the architecture of a 1-bit ADC is as simple as a comparator whose power consumption is

negligible. When one-bit ADCs are used, the AGC can be removed since only the sign of the

real and imaginary parts of the received signals is retained. The stringent linearity require-

ment of the LNA can be relaxed and a simpler low-cost amplifier can be used instead. In

addition, the use of low-resolution ADCs also helps reduce the prohibitive demand for high

bandwidth on the fronthaul link between the baseband processing unit and the RF chains.

For example, a receiver that is equipped with 500 antennas, where each antenna employs two

separate ADCs for the in-phase and quadrature components, and where each ADC samples

at a rate of 1 GS/s with 10-bit precision would produce 10 Terabit/s of data, which is much

higher than the rates of the common public radio interface in today’s fiber-optical fronthaul

links [16].

The benefits on the hardware side make it easy to deploy low-resolution ADCs in practical

systems. However, the lower-complexity and lower-power-consumption hardware necessitates

special care in the subsequent signal processing. More specifically, the severe nonlinearities

introduced by the low-resolution ADCs make signal processing tasks such as channel estima-

tion and data detection in low-resolution MIMO systems much more challenging compared

to those in high-resolution systems. Therefore, it is crucial that efficient signal processing

methods for channel estimation and data detection be developed for such systems so that

9



they can be transitioned to commercial systems.

1.4 Dissertation Contributions and Organization

This dissertation deals with the channel estimation and data detection problems in MIMO

systems with low-resolution ADCs. The idea is to exploit machine learning to address the

severe nonlinarities caused by the low-resolution ADCs since machine learning techniques

have been shown to be powerful in solving nonlinear problems. The main contributions of

this dissertation are to develop machine learning-based low-complexity yet efficient frame-

works for channel estimation and data detection in low-resolution MIMO systems. We show

via numerical results that the proposed solution approaches significantly outperform existing

methods. Additionally, the developed algorithms are also robust against inherent computa-

tional issues in low-resolution MIMO systems. The remainder of the dissertation is organized

as follows:

Chapter 2 starts with describing a general system model, a quantization model, and the

problem of interest. Then, a literature survey of related works is given. Finally, the chapter

presents the Bussgang decomposition from which several linear receivers are introduced.

Chapter 3 studies the blind detection problem in single-user MIMO systems with low-

resolution ADCs. Blind detection in this context means detection without information about

the channel state information (CSI). Two learning methods, which employ a sequence of pilot

symbol vectors as the initial training data, are proposed. The first method exploits the use

of a cyclic redundancy check (CRC) to obtain more training data, which helps improve the

detection accuracy. The second method is based on the perspective that the to-be-decoded

data can itself assist the learning process, so no further training information is required

except the pilot sequence. For the extreme case of 1-bit ADCs, we provide a performance
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analysis of the vector error rate (VER) for the proposed methods. Based on the analytical

results, a criterion for designing transmitted signals is also presented.

In Chapter 4, we show how support-vector machine (SVM ), a well-known supervised-learning

model in machine learning, can be exploited to provide efficient and robust channel estimation

and data detection in massive MIMO systems with 1-bit ADCs. First, the problem of channel

estimation for uncorrelated channels is formulated as a conventional SVM problem. The

objective function of this SVM problem is then modified for estimating spatially correlated

channels. Next, a two-stage detection algorithm is proposed where SVM is further exploited

in the first stage. The performance of the proposed data detection method is very close

to that of maximum-likelihood (ML) data detection when the channel is perfectly known.

We also propose an SVM-based joint Channel Estimation and Data Detection (CE-DD)

method, which makes use of both the to-be-decoded data vectors and the pilot data vectors

to improve the estimation and detection performance. Finally, an extension of the proposed

methods to OFDM systems with frequency-selective fading channels is presented.

In Chapter 5, we propose a deep learning framework for channel estimation, data detec-

tion, and pilot signal design to address the nonlinearity in low-resolution MIMO systems.

The proposed channel estimation and data detection networks are model-driven and have

special structures that take advantage of domain knowledge in the low-resolution quanti-

zation process. While the first data detection network, B-DetNet, is based on a linearized

model obtained from the Bussgang decomposition, the channel estimation network and the

second data detection network, FBM-CENet and FBM-DetNet respectively, rely on the

original quantized system model. To develop FBM-CENet and FBM-DetNet, the maximum-

likelihood channel estimation and data detection problems are reformulated to overcome the

indeterminant gradient issue. An important feature of the proposed FBM-CENet structure

is that the pilot matrix is integrated into the weight matrices of its channel estimator. Thus,

training the proposed FBM-CENet enables a joint optimization of both the channel estima-
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tor at the base station and the pilot signal transmitted from the users. We also propose a

nearest-neighbor search method to further improve the data detection performance. Unlike

existing search methods that typically perform the search over a large candidate set, the pro-

posed search method generates a limited number of most likely candidates and thus limits

the search complexity.

Finally, Chapter 6 presents concluding remarks and potential directions for future work.
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Chapter 2

Problem Statement and Literature

Survey

2.1 Problem Statement

2.1.1 General System Model

We consider an uplink MIMO system where the transmitter side can be an Ntx-antenna user

or Ntx single-antenna users that are located apart from each other and the receiver side is

a base station (BS) equipped with Nrx receive antennas. It is assumed that Nrx > Ntx. Let

xC ∈ CNtx and HC ∈ CNrx×Ntx denote the transmitted signal vector and the channel matrix,

respectively. In this dissertation, the superscript C is used to indicate the complex domain.

Unless otherwise stated, the channel is assumed to be block flat fading, i.e., it does not

change over a certain interval of time. The unquantized received signal vector at the base

station rC ∈ CNrx is given as

rC = HCxC + zC (2.1)
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where zC ∈ CN (0, N0INrx) is a noise vector. Each received analog signal is quantized by a

pair of b-bit ADCs, denoted as Qb, to produce the quantized received signal:

yC = Qb

(
rC
)
= Qb

(
ℜ{rC}

)
+ jQb

(
ℑ{rC}

)
. (2.2)

For vector or matrix arguments, the operator Qb(·) is applied separately to every element.

2.1.2 Quantization Model

The considered system employs an ADC that performs b-bit mid-rise uniform scalar quanti-

zation, b ∈ {1, 2, 3, . . .}. The b-bit ADC model is characterized by a set of 2b − 1 thresholds

denoted as {τ1, . . . , τ2b−1}. Without loss of generality, we assume −∞ = τ0 < τ1 < . . . <

τ2b−1 < τ2b = ∞. Let ∆ be the step size, so the thresholds of the uniform quantizer are given

as

τl = (−2b−1 + l)∆, for l ∈ L = {1, . . . , 2b − 1}. (2.3)

The step size ∆ is chosen to minimize the distortion between the quantized and non-quantized

signals. The optimal value of ∆ depends on the distribution of the input signals [17]. For

standard Gaussian signals, the optimal step size ∆standard
opt can be found numerically as in [18].

For non-standard complex Gaussian signals with variance σ2
rx ̸= 1, the optimal step size for

each real/imaginary signal component can be computed as ∆opt =
√
σ2
rx/2∆

standard
opt . The

quantized output is then defined as

Qb(r) = ql =


τl − ∆

2
if r ∈ (τl−1, τl] with l ∈ L

(2b − 1)∆
2

if r ∈ (τ2b−1, τ2b ].

(2.4)
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For the case of 1-bit quantization, the ADC is equivalent to a sign(·) function, which means

Q1(r) = sign(r) =


+1 if r ≥ 0,

−1 otherwise.

(2.5)

2.1.3 Problem of Interest

This dissertation focuses on the channel estimation and data detection in MIMO systems

equipped with low-resolution ADCs. Each block fading interval of length Tb is divided into

two phases. In the first phase, a pilot sequence XC
t ∈ CNtx×Tt of length Tt is used to generate

the training data

YC
t = Qb

(
RC

t

)
= Qb

(
HCXC

t + ZC
t

)
. (2.6)

In the second phase, a data matrix XC
d ∈ CNtx×Td where Td = Tb−Tt is transmitted and the

received data matrix is given as

YC
d = Qb

(
RC

d

)
= Qb

(
HCXC

d + ZC
d

)
(2.7)

The problem of interest is to estimate the channel matrix HC and detect the transmitted

data matrix XC
d using XC

t , Y
C
t , and YC

d . Note that the subscripts t and d are used to indicate

the training and data transmission phases, respectively.

The work in this dissertation assumes perfect synchronization between the transmitter and

receiver sides. It is also assumed that there is no inter-cell interference as single-cell com-

munication is considered in this work. Additionally, we assume no hardware impairments in

the transceiver.
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2.2 Literature Survey

One of the first studies on MIMO systems with low-resolution ADCs is in [19], which shows

that the mutual information of 1-bit ADC MIMO systems degraded by only a factor of

2/π at low SNRs compared to systems with infinite-resolution ADCs. Since then, a lot

more attention and efforts have been spent on this research topic. The capacity in case of

correlated noise and spatially correlated channels are studied in [20] and [21], respectively.

Bounds on the high SNR capacity are derived in [22]. Capacity analysis with channel state

information at transmitter (CSIT) is carried on in [23]. An approximate uplink achievable

rate for massive MIMO systems is calculated in [24] by using the additive quantization

noise model (AQNM). The achievable rate of hybrid analog-digital MIMO architectures is

investigated in [25, 26]. A study of achievable rate for mixed-ADC massive MIMO systems

is in [27], which is extended for frequency-selective channels in [28]. While a capacity lower

bound for wideband massive MIMO systems with a large number of channel taps is derived

in [29], throughput analysis based on the Bussgang decomposition is performed in [30].

Channel estimation for massive MIMO systems with low-resolution ADCs has attracted

significant research interest and has been studied intensively. The majority of the exist-

ing approaches focus on one-bit systems in different scenarios, e.g., [31–51]. For example,

maximum-likelihood (ML) and least-squares (LS) channel estimators were proposed in [31]

and [32], respectively. The work in [33] exploits the Bussgang decomposition to form a one-

bit Bussgang-based minimum mean-squablue error (BMMSE) channel estimator. Another

BMMSE channel estimator was also proposed in [34] but for one-bit spatial sigma-delta

ADCs in a spatially oversampled array. Channel estimation with temporally oversampled

one-bit ADCs is studied in [35] and [36]. It has been shown that one-bit ADCs with spa-

tial and temporal oversampling can help improve the channel estimation accuracy but more

resources and computation are required due to the oversampling process. A channel esti-

mation method based on SVM with 1-bit ADCs, referred to as soft-SVM, was presented
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in [37]. Angular-domain channel estimation for one-bit massive MIMO systems was studied

in [38–40]. Spatially/temporally correlated channels and multi-cell processing with pilot con-

tamination were investigated in [41] and [42], respectively. For sparse millimeter-wave MIMO

channels, ML and maximum a posteriori (MAP) channel estimation were examined in [43]

and [44], respectively. Taking into account the sparsity of such channels, the one-bit ADC

channel estimation problem has been formulated as a compressed sensing problem in [45–47].

Performance bounds on the channel estimation of mmWave one-bit massive MIMO channels

were reported in [48]. It is also worth noting that the work in [49] requires multiple OFDM

symbols in the training sequence and the work in [51] is restricted to systems with only one

single-antenna user.

Recently, there are several MIMO channel estimation methods for few-bit ADCs [52–57].

For example, the Bussgang decomposition was exploited in [52] to derive two linear channel

estimators for few-bit ADCs including an extension of the BMMSE approach as well as a

Bussgang-based weighted zero-forcing (BWZF) algorithm. A DNN-based joint pilot signal

and channel estimator design is proposed in [53] where a conventional DNN structure was

used. The work in [54,55] studied mixed-resolution channel estimation where low-resolution

ADCs were used for only some of the receive antennas, while the rest are equipped with

conventional ADCs. The works in [56, 57] address the sparse channel estimation problem

in massive MIMO systems where both hybrid analog-digital processing and low-resolution

ADCs are utilized.

Data detection in MIMO systems with low-resolution ADCs has also been studied inten-

sively in the literature, e.g., [31,52,58–72]. The one-bit ML detection problem is formulated

in [31, 58]. For large-scale systems where ML detection is impractical, the authors in [31]

proposed a so-called near-ML (nML) data detection method. The ML and nML methods

are however non-robust at high signal-to-noise ratios (SNRs) when channel state information

(CSI) is imperfectly known. ML detection with low-resolution ADCs is studied in [59,60]. A
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one-bit sphere decoding (OSD) technique was proposed in [61]. However, the OSD technique

requires a preprocessing stage whose computational complexity for each channel realization

is exponentially proportional to both the number of receive and transmit antennas. The

exponential computational complexity of OSD makes it difficult to implement in large scale

MIMO systems. Generalized Approximate Message Passing (GAMP) and Bayes inference

are exploited in [62,63] but the proposed methods are sophisticated and expensive to imple-

ment. Various one-bit linear detectors were introduced in [52,64] and several learning-based

methods are also proposed in [65,66,68]. The linear receivers in [64] are easy to implement but

their performance is often limited by an error floor. The learning-based methods in [65–67]

are blind detection methods for which CSI is not required, but they are restricted to MIMO

systems with a small number of transmit antennas and only low-dimensional constellations.

A DNN-based one-bit detector was proposed in [73] but it requires online training since the

network has to be retrained whenever the channel changes. This significantly increases the

computational complexity and resources as well as the pilot overhead. Several other data

detection approaches were proposed in [68, 70–72], but they are only applicable in systems

where either a Cyclic Redundancy Check (CRC) [68,70,71] or an error correcting code such

as Low-Density Parity-Check (LDPC) code [72] is available. The authors in [69] proposed a

one-bit detection method based on the alternating direction method of multipliers (ADMM)

algorithm that takes hardware impairments into account.

2.3 Bussgang Decomposition-based Linear Receivers

In the low-resolution MIMO literature, the Bussgang decomposition is often used for system

analysis and algorithm development. The reason is that the Bussgang decomposition helps

linearize a non-linear system. Thus, the Bussgang decomposition can be used to address the

nonlinearities caused by the low-resolution ADCs. In this section, we introduce the Bussgang
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theorem [74] and the Bussgang decomposition, which is then used to derive linear channel

estimators and data detectors.

2.3.1 Bussgang Decomposition

To obtain the Bussgang decomposition, we start with the Bussang theorem, which states

that the cross-correlation between two Gaussian signals before and after one of them has

passed through a nonlinear operation is the same, albeit a scaling factor. Theorem 2.1 below

is for the case of one-dimensional signals.

Theorem 2.1 (One-dimensional Bussgang theorem [74]). Consider two jointly circularly

symmetric Gaussian random variables r ∈ R and w ∈ R. Let fnl : R → R be a non-linear

distortion function. The cross-correlation of y = fnl(r) and w is Cyw = V Crw where V is

called the Bussgang gain and given as V = Cyr/Cr.

An extension to the case of multi-dimensional signals is given in the following Theorem.

Theorem 2.2 (Multi-dimensional Bussgang theorem [75]). Consider the jointly circularly

symmetric Gaussian random vectors r ∈ RM and w ∈ RM . Let y = fnl(r) be the output of a

non-linear distortion function where fnl : RM → RM . The cross-correlations Cyw = E[ywT ]

and Crw = E[rwT ] are then related as Cyw = CyrC
−1
r Crw.

A direct consequence of Theorem 2.2 is the Bussgang decomposition, which is given as

y = fnl(r) = Vr+ η (2.8)

whereV = CyrC
−1
r and the additive distortion term η is uncorrelated with r. In general, η is

not Gaussian, but it is often assumed in the literature to be Gaussian for ease of derivations.
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2.3.2 Bussgang Decomposition-based Linear Channel Estimators

Here we consider the channel estimation task, which is done in the training phase. We start

with vectorizing the received signal in (2.6) to obtain

yC
t = Qb(P

ChC + zCt ), (2.9)

where yC
t = vec(YC

t ) ∈ CNrxTt , PC = XT
t ⊗ INrx ∈ CNrxTt×NrxNtx , hC = vec(HC) ∈ CNrxNtx ,

and zCt = vec(ZC
t ) ∈ CNrxTt . We convert the notation in (2.9) into the real domain as

yt = Qb(Ph+ zt) (2.10)

where

yt =

ℜ{yC
t }

ℑ{yC
t }

 , h =

ℜ{hC}

ℑ{hC}

 , and P =

ℜ{PC} −ℑ{PC}

ℑ{PC} ℜ{PC}

 .

Note that yt ∈ R2NrxTt , h ∈ R2NrxNtx , P ∈ R2NrxTt×2NrxNtx , and zt ∈ R2NrxTt . We now apply

the Bussgang decomposition to (2.10) to obtain the Bussgang decomposition-based linear

channel estimators BMMSE and BWZF for low-resolution massive MIMO systems [33, 52].

The system model in (2.10) can be linearized by the Bussang decomposition as follows:

yt = VtPh+Vtzt + dt

= Ath+ nt (2.11)
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Table 2.1: Optimum uniform quantizer for N (0, 1) Gaussian inputs.

Resolution b 1-bit 2-bit 3-bit 4-bit

Step size ∆b

√
8/π 0.996 0.586 0.335

Distortion ηb 1− 2/π 0.1188 0.0374 0.0115

where At ≡ VtP, nt ≡ Vtzt + dt combines the receiver and equivalent quantization noise,

and Vt ∈ R2NTt×2NTt is a diagonal matrix and given as [52]

Vt =
∆√
2π

diag(Σrt)
− 1

2 ×
2b−1∑
i=1

exp
{
− 1

2
∆2(i− 2b−1)2 diag(Σrt)

−1
}

where Σrt = PΣhP
T + N0

2
I is the covariance matrix of rt = Ph+ zt. For the case of one-bit

ADCs with ∆ =
√
2, Vt reduces to the form reported in [33, Eq. (10)].

The BMMSE channel estimator is given as [33,52]

ĥBMMSE = ΣhytΣ
−1
yt
yt = ΣhA

T
t Σ

−1
yt
yt (2.12)

where Σhyt is the cross-covariance matrix between h and yt, and Σyt is the covariance matrix

of yt. For the case of one-bit ADCs, Σyt is given as [33]

Σyt =
∆2

2π
arcsin

(
diag(Σrt)

− 1
2Σrt diag(Σrt)

− 1
2

)
. (2.13)

For the case of two-bit or higher resolution ADCs, Σyt is given as [52]

Σyt = VtΣrtV
T
t +Σdt , (2.14)

where Σdt ∈ R2NTt×2NTt is the covariance matrix of dt and can be approximated as Σdt ≈

ηb diag(Σrt). The distortion factor ηb depending on the number of quantization bits b is

given in Table 2.1 [76].
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The BWZF channel estimator was proposed in [52] as follows:

ĥBWZF =
(
AT

t diag(ωt)At

)−1
AT

t diag(ωt)yt (2.15)

where diag(ωt) is a diagonal matrix with ωt = [ωt,1, ωt,2, . . . , ωt,2NrxTt ] on the diagonal, and

ωt,i =
1

E[z2t,i] + E[d2t,i|yt,i]
, i = 1, . . . , 2NrxTt.

Here, yt,i, zt,i, and dt,i are the i-th elements of yt, zt, and dt, respectively. The key idea of

BWZF is that given an observed quantized signal vector yt, the elements of rt have different

variances. Exploiting this fact, the BWZF estimator sets the signals with lower variances to

have higher weights.

2.3.3 Bussgang Decomposition-based Linear Data Detectors

In this section, we present several Bussgang decomposition-based linear detectors for low-

resolution massive MIMO systems [52,64]. Since data detection by linear detectors does not

depend on the time slot index, we consider (2.7) in a single time slot and convert it into the

real domain as follows:

yd = Qb (Hdxd + zd) , (2.16)

where

yd =

ℜ{yC
d}

ℑ{yC
d}

 , xd =

ℜ{xC
d}

ℑ{xC
d}

 , zd =

ℜ{zCd}
ℑ{zCd}

 , and Hd =

ℜ{HC} −ℑ{HC}

ℑ{HC} ℜ{HC}

 .

Note that y ∈ R2Nrx , x ∈ R2Ntx , z ∈ R2Nrx , and H ∈ R2Nrx×2Ntx .
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Applying the Bussgang decomposition to (2.16), we obtain

yd = VdHdxd +Vdzd + dd

= Adxd + nd (2.17)

where Vd is a diagonal matrix and given as

Vd =
∆√
2π

diag(Σrd)
− 1

2 ×
2b−1∑
i=1

exp

{
− 1

2
∆2(i− 2b−1)2 diag(Σrd)

−1

}

and Σrd = HdΣxd
HT

d + 1
2
N0I. For the case of 1-bit ADCs, the covariance of nd is given in

closed form as [20]

Σnd
=
∆2

2π

[
arcsin

(
diag(Σrd)

− 1
2Σrd diag(Σr)

− 1
2

)
−

diag(Σrd)
− 1

2Σrd diag(Σrd)
− 1

2 +
N0

2
diag(Σrd)

−1
]
.

(2.18)

For few-bit ADCs, the covariance of nd can be approximated asΣnd
≈ N0

2
VdV

T
d+ηb diag(Σrd).

The effective noise nd is often modeled as N (0,Σnd
). Based on this linearized model, dif-

ferent linear detectors such as BZF and BMMSE were introduced in [64] as follows:

Wd,BZF =
(
Ad

HAd

)−1
Ad

H (2.19)

Wd,BMMSE = Ad
H
(
AdA

H
d +Σnd

)−1
. (2.20)

The authors in [52] also proposed a BWZF detector

Wd,BWZF =
(
AT

d diag(ωd)Ad

)−1
AT

d diag(ωd) (2.21)
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where diag(ωd) is a diagonal matrix with ωd = [ωd,1, ωd,2, . . . , ωd,2Nrx ] on the diagonal, and

ωd,i =
1

E[z2d,i] + E[d2d,i|yd,i]
, i = 1, . . . , 2Nrx.

2.4 Concluding Remarks

There have been numerous existing methods for channel estimation and data detection in

MIMO systems with low-resolution ADCs. However, these methods often suffer from draw-

backs such as high-computational complexity, system scalability, non-robustness, or limited

performance. For example, the ML, OSD, and GAMP-based methods have too high com-

putational complexities for practical implementation. Both ML and nML methods are non-

robust when the CSI is not known perfectly. Several blind detection methods do not require

CSI but have the scalability issue. The Bussgang decomposition-based linear receivers pre-

sented in the previous section are less computationally complicated, more robust and scalable

but they have limited performance.

The work in this dissertation exploits machine learning to address the above issues. This

is motivated by the fact that machine learning has been shown in practice to be a very

powerful tool for solving non-linear problems. Since the low-resolution ADCs are severely

non-linear, it is of significant importance and interest to take advantage of machine learning

for low-resolution MIMO signal processing problems.
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Chapter 3

Supervised and semi-supervised

learning for MIMO blind detection

with low-resolution ADCs

3.1 Introduction

This chapter focuses on the blind detection problem in MIMO systems with low-resolution

ADCs. Blind detection in this context means detection without information about the CSI.

The authors of [65,79] proposed three supervised learning methods, referred to as empirical-

Maximum-Likelihood Detection (eMLD), Minimum-Mean-Distance Detection (MMD), and

Minimum-Center-Distance Detection (MCD). These blind detection methods are simple and

The materials presented in Chapter 3 have been presented at the 2018 IEEE International Conference on
Communications (ICC) in Kansas City, MO, USA [77] and published in the IEEE Transactions on Wireless
Communications [78].
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easy to implement, but their efficiency is heavily dependent on the training sequence. When

the length of the training sequence is short, the learned results do not correctly describe the

input-output relations of the system. Based on this observation, we propose in this chapter

two efficient learning methods to resolve the problem of short training sequences. Since MCD

outperforms eMLD and MMD, and the complexity of MCD is also lower than that of eMLD

and MMD, we compare our proposed methods to MCD only. In this chapter, we provide a

complete analysis of the proposed methods and make the following contributions:

• We propose two learning methods that are capable of achieving more precise input-

output relations compared to [65,79] given the same training sequence, and hence will

improve the detection accuracy. The first method exploits the use of the CRC to acquire

more training data. In the second method, no CRC is required, but the to-be-decoded

data is self-classified into groups, which help improve the learned results. This method

is based on the K-means clustering technique. However, unlike the detection method

in [80], which is specifically designed to work with Space Shift Keying modulation

and only one transmit antenna is active in each time slot; our method is applicable for

more common modulation schemes, such as BPSK or QPSK, and all transmit antennas

are active in each time slot which enables spatial multiplexing gains. In addition, the

proposed method takes into account the symmetrical structure of the transmitted signal

space to help improve the learned results.

• The proposed learning methods are applicable for detection with 1-bit or few-bit ADCs.

We show via simulations that the proposed methods are more robust than MCD in

terms of the training sequence length. Particularly, for extremely short training se-

quences, the performance of MCD is degraded significantly while that of our proposed

methods is more stable. For example, in a system with 2 transmit antennas, 16 receive

antennas, and BPSK modulation, the gain in bit error rate (BER) produced by the

proposed methods can be up to 7-8 dB for BERs between 10−3 and 10−5. Even for mod-
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erately long training sequences, the gain of our proposed methods is still considerable,

between 3-dB and 4-dB.

• We provide performance analyses of the VER for the case of 1-bit ADCs at both

low and high signal-to-noise ratios (SNRs). Assuming perfectly learned input-output

relations, we first approximate the pairwise VER at low SNR by using the Bussgang

decomposition and use this approximation to derive an upper bound on the VER.

The asymptotic VER performance at infinite SNR for Rayleigh fading channels is then

analyzed. Simulation results confirm the accuracy of our analyses at both low and high

SNRs.

• Finally, based on the performance analysis, we propose a criterion for designing trans-

mitted signals when only a portion of all possible signals are used for transmission.

The rest of this chapter is organized as follows. The system model is first presented in

Section 3.2 and the blind detection problem is stated in Section 3.3. Then, a supervised

learning method and a semi-supervised learning method are proposed in Section 3.4. A

performance analysis for the case of 1-bit ADCs and a criterion for transmit signal design

are presented in Section 3.5. Simulations and results can be found in Section 3.6. We

conclude the chapter in Section 3.7.

3.2 System Model

The considered MIMO system, as illustrated in Figure 3.1, has Ntx transmit antennas and

Nrx receive antennas, where it is assumed that Nrx ≥ Ntx. Let x
C[n] = [xC1 [n], . . . , x

C
Ntx

[n]]T ∈

CNtx be the transmitted signal vector at time slot n, where xCi [n] is the symbol transmitted

at the ith transmit antenna. Each symbol xCi [n] is drawn from a constellation MC with a

constellation size of M = |MC| under the power constraint E[|xCi [n]|2] = 1. The channel is
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Figure 3.1: Block diagram of a MIMO communication system with low-resolution ADC at the receiver.

assumed to be block-fading, and each block-fading interval lasts for Tb time slots. Hence, the

channelHC ∈ CNrx×Ntx remains constant over Tb time slots. For the analysis and simulations,

we assume that the elements of HC are independent and identically distributed (i.i.d.) as

CN (0, 1), but the proposed algorithms are applicable to any channel model. The system

model in each block-fading interval is

rC[n] = HCxC[n] + zC[n], (3.1)

where rC[n] = [rC1 [n], . . . , r
C
Nrx

[n]]T ∈ CNrx is the analog received signal vector, and zC[n] =

[zC1 [n], . . . , z
C
Nrx

[n]]T ∈ CNrx is the noise vector. The noise elements are assumed to be i.i.d.

with zCi [n] ∼ CN (0, N0). CSI is unavailable at both the transmitter and receiver sides, i.e.,

HC is unknown. The SNR is defined as ϱ = Ntx/N0.

The real and imaginary parts of each received symbol are applied to two separate ADCs.

Hence, if yC[n] =
[
yC1 [n], . . . , y

C
Nrx

[n]
]T ∈ CNrx is the quantized version of the received signal

vector rC[n], then yC[n] = Qb(r
C[n]) in which ℜ{yCi [n]} = Qb(ℜ{rCi [n]}) and ℑ{yCi [n]} =

Qb(ℑ{rCi [n]}) for all i ∈ Nrx = {1, 2, . . . , Nrx}. The optimal step size for the quantizer Qb(·)

in the considered system is ∆opt =
√

(Ntx +N0)/2∆
standard
opt . The variance of the analog

received signals Nt + N0 is assumed to be known at the receiver. It should be noted that
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this mid-rise uniform quantizer satisfies Qb(−r) = −Qb(r),∀r.

Since the derivations this chapter are mainly in the complex domain, for notational simplicity,

we drop the superscript C in all notations in the rest of this chapter.

3.3 Blind Detection Problem

This section describes the blind detection problem for the block-fading channel. The first Tt

time slots of each block fading interval contain the training symbol sequence while the remain-

ing Td = Tb − Tt time slots comprise the data symbol sequence. Let X̌ = {x̌1, x̌2, . . . , x̌K}

denote the set of all possible transmitted symbol vectors with K = MNtx and let K =

{1, 2, . . . , K}. Hereafter, a possible transmitted symbol vector is called a label. We first re-

visit the MCD method presented in [79], which serves as a baseline for the study of this chap-

ter. The input-output relations to be learned in the MCD method are
{
E
[
y|x = x̌k

]
, k ∈ K

}
,

in which E
[
y|x = x̌k

]
represents the centroid of the received quantized signal given that the

label x̌k is transmitted. The MCD data detection is given by

f(y[n]) = argmin
k∈K

∥∥∥y[n]− E
[
y|x = x̌k

]∥∥∥
2
, (3.2)

where y[n] is the received data symbol vector at time slot n with n ∈ {Tt+1, . . . , Tb}. Thus,

the MCD approach identifies the index of the transmitted label as the one whose centroid is

closest to the received vector. Denote y̌k = E
[
y|x = x̌k

]
; each y̌k is called a representative

vector for the label x̌k. There are K representative vectors Y̌ = {y̌1, y̌2, . . . , y̌K}. Thus, the

MCD method has to learn Y̌ in order to perform the detection task. We now present two

MCD training methods from [65,79] that help the receiver empirically learn Y̌ .
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3.3.1 Full-space Training Method

Since the transmitted signal space X̌ contains K labels, a straightforward method to help

the receiver learn Y̌ is using a training sequence that contains all the labels, where each

label is repeated a number of times. Hence, the training symbol matrix can be represented

as Xt = [X̌1, X̌2, . . . , X̌K ], where X̌k = [x̌k, . . . , x̌k] ∈ CNtx×Lt consists of Lt labels x̌k, k ∈ K.

Using this training method, the representative vector y̌k can be learned empirically as

y̌k =
1

Lt

Lt∑
t=1

y[(k − 1)Lt + t], (3.3)

where Yt =
[
y[1], . . . ,y[Tt]

]
= Qb(HXt + Zt). The length of the training sequence is

Tt = KLt. This training method has been employed in [79].

3.3.2 Subspace Training Method

It is worth noting that the training sequence does not need to cover all the labels for the

receiver to learn Y̌ when M satisfies either of the following two conditions:

• Condition 1: −x ∈ M, ∀x ∈ M.

• Condition 2: αx ∈ M, ∀x ∈ M and ∀α ∈ {−1, j,−j}.

Although Condition 2 implies Condition 1 when α = −1, i.e., any M satisfying Condition 2

will also satisfy Condition 1, we maintain these as two separate conditions for convenience in

our later derivations. Examples ofM for Condition 1 are BPSK, 8-QAM and for Condition 2

are QPSK, 16-QAM.
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If Condition 1 is satisfied, −x̌k ∈ X̌ for all x̌k ∈ X̌ . The set of all labels can be written as

X̌ = {X̌ha,−X̌ha}, (3.4)

where X̌ha = {x̌1, . . . , x̌K/2}. Without loss of generality, it is assumed that x̌k+K/2 = −x̌k

with k ∈ {1, . . . , K/2}. If Condition 2 is satisfied, then αx̌k ∈ X̌ for all x̌k ∈ X̌ and

α ∈ {−1, j,−j}. The set of all labels can be written as

X̌ = {X̌fo,−X̌fo, jX̌fo,−jX̌fo}, (3.5)

where X̌fo = {x̌1, . . . , x̌K/4}. It is then assumed that x̌k+K/4 = −x̌k, x̌k+K/2 = jx̌k, and

x̌k+3K/4 = −jx̌k for k ∈ {1, . . . , K/4}. The subscripts ‘ha’ and ‘fo’ here stand for ‘half’ and

‘fourth’, indicating the first one-half and the first one-fourth of the set X̌ , respectively.

The work in [65] showed that if the transmitter employs QAM modulation and the quan-

tization function satisfies Qb(−r) = −Qb(r) for any r ∈ R, then the length of the training

sequence can be reduced to Tt = KLt/4. In Proposition 3.1 below, we generalize this result

for any modulation scheme.

Proposition 3.1. Given any constellation M, if the quantizer Qb(.) is symmetric, i.e.,

Qb(−r) = −Qb(r) ∀r ∈ R, the length of the training sequence Tt can be reduced to

Tt =


1
2
KLt if Condition 1 holds,

1
4
KLt if Condition 2 holds.

(3.6)
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Proof. For any two labels x̌k1 and x̌k2 = −x̌k1 , we have

p(y|x = x̌k2) = P
[
y = Qb(Hxk2 + z)

]
= P

[
y = Qb(−Hxk1 − z)

]
= P

[
− y = Qb(Hxk1 + z)

]
= p(−y|x = x̌k1). (3.7)

Therefore, y̌k2 = −y̌k1 since

y̌k2 = E
[
y|x = x̌k2

]
=
∑

yp(y|x = x̌k2) =
∑

yp(−y|x = x̌k1)

= −
∑

ẏp(ẏ|x = x̌k1) (3.8)

= −E
[
y|x = x̌k1

]
= −y̌k1 , (3.9)

where (3.8) is obtained by setting ẏ = −y and (3.9) holds because the sample spaces of

ẏ and y are the same. Hence, the representative vectors satisfy y̌k+K/2 = −y̌k with k ∈

{1, . . . , K/2} if Condition 1 holds. This means the training sequence only needs to cover

X̌ha to help the receiver learn all K representative vectors in Y̌ . Similarly, when Condition 2

holds, we can also show that y̌k+K/4 = −y̌k, y̌k+K/2 = jy̌k, and y̌k+3K/4 = −jy̌k with

k ∈ {1, . . . , K/4}, and so the training sequence only needs to contain X̌fo. It should be noted

that the proof for Condition 2 requires that Qb(jc) = jQb(c),∀c ∈ C, which is satisfied by

the quantizer being used.

3.4 Proposed Learning Methods

The MCD detection method is simple but it has a primary drawback – its detection accuracy

heavily depends on the length of the training sequence. If the training sequence cannot

provide accurate representative vectors in (3.3), then detection errors will appear in (3.2). In

fact, a short training sequence often results in poor estimation of the representative vectors.

In order to improve the detection accuracy without lengthening the training sequence, the
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Figure 3.2: Usage of CRC for multiple data segments in each block-fading interval.

idea is to use the training sequence as an initial guide for the learning process, and then find

more precise representative vectors by exploiting other information.

3.4.1 Proposed Supervised Learning Method

In practical communications systems, error control mechanisms such as the CRC can be

used to determine whether a segment of data is correctly decoded or not. This approach has

been exploited to mitigate the effect of imperfect CSI on the ML detection for low-resolution

ADCs [81, 82]. An error correcting code was also used to update the weights in a neural

network as the channel changes, assuming perfect ADCs [83].

In the proposed method, should the CRC be available, it can be exploited for blind detection

as follows: Data detection is first performed by the MCD using the training sequence, then

the correctly decoded data confirmed by the CRC is used to augment the training set. As

a result, the representative vectors obtained from the training sequence in (3.3) can be

refined and the incorrectly decoded data can be re-evaluated by the MCD data detection.

The process of CRC checking, updating the representative vectors, and data detection is

repeated until no further correctly decoded segment is found.

In the system considered, we assume the use of the CRC for multiple data segments as

illustrated in Figure 3.2. Suppose there are S segments in one block-fading interval, and

each segment contains a data segment and a CRC block. Let LCRC and Ldata denote the

length of the CRC and the length of each data segment in bits, respectively. Thus, we have

S × (Ldata + LCRC) = Td ×Ntx × log2(M). (3.10)
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Algorithm 1: Supervised Learning Decoding.

1 Set un = ⌊(n− 1)/Lt⌋+ 1 and cn = 1 for 1 ≤ n ≤ Tt;
2 Initialize un = 0 and cn = 0 for Tt < n ≤ Tb;
3 Set C = ∅, S = {1, 2, . . . , S}, iter = 0, and done = false;

4 Find Y̌ using (3.11) with the above inital setting;
5 while done = false do
6 foreach s ∈ S do
7 foreach y[n] ∈ Ys do
8 Set un = f(y[n]);
9 end

10 if CRC confirms the correct detection of Ys then
11 Set C = C ∪ {s};
12 foreach y[n] ∈ Ys do
13 Set cn = 1;
14 end

15 end

16 Update Y̌ using (3.11);

17 end
18 Set iter = iter + 1;
19 Set S = S\C, then set C = ∅;
20 if S = ∅ or iter = itermax or no change in u then
21 done = true;
22 end

23 end

We also assume that Ldata + LCRC is a multiple of Ntxlog2M . This means the number of

bits in a segment is a multiple of the number bits in a transmitted vector. The decoding

algorithm of this proposed method is presented in Algorithm 1. The detailed explanation of

Algorithm 1 is as follows.

Let u = [u1, . . . , uTb
] denote the vector of decoded indices where un ∈ K with n ∈ {1, . . . , Tb}

is the decoded index of received signal y[n]. Here, we can set un = ⌊(n − 1)/Lt⌋ + 1 for

1 ≤ n ≤ Tt (line 1) due to the training sequence and we can initialize un = 0 for Tt < n ≤ Tb

(line 2). Let c = [c1, . . . , cTb
] denote the vector of binary values where cn = 1 if the CRC

confirms a correct detection of y[n], otherwise cn = 0. Note that cn = 0 does not imply

an incorrect detection of y[n]. Instead, it implies that the CRC cannot confirm a correct

detection of y[n]. Since the first Tt time slots are for the training sequence, we can set cn = 1
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for 1 ≤ n ≤ Tt (line 1) and initialize cn = 0 for Tt < n ≤ Tb (line 2). Let s denote the index

of the segments, s ∈ {1, . . . , S}, and let Ys denote the sth received data segment. After the

detection of each segment, y̌k can be refined as (line 16):

y̌k =

∑Tb

n=1

(
I[un = k] + cnγ(n, k)

)
y[n]∑Tb

n=1

(
I[un = k] + cnI[γ(n, k) ̸= 0]

) (3.11)

where I is the indicator function, and γ(n, k) is a function of n and k defined as follows:

• Condition 1: γ(n, k) = −I[un = k̄] with

k̄ =


k + K

2
if k ≤ K

2
,

k − K
2

if k > K
2
.

(3.12)

• Condition 2:

Let K1 =
{
1, . . . , K

4

}
, K2 =

{
K
4
+ 1, . . . , K

2

}
, K3 =

{
K
2
+ 1, . . . , 3K

4

}
, and K4 ={

3K
4
+ 1, . . . , K

}
;

if k ∈ K1, let k̄1 = k +
K

4
, k̄2 = k +

K

2
, k̄3 = k +

3K

4
,

if k ∈ K2, let k̄1 = k − K

4
, k̄2 = k +

K

2
, k̄3 = k +

K

4
,

if k ∈ K3, let k̄1 = k +
K

4
, k̄2 = k − K

4
, k̄3 = k − K

2
,

if k ∈ K4, let k̄1 = k − K

4
, k̄2 = k − 3K

4
, k̄3 = k − K

2
,

γ(n, k) = −I[un = k̄1]− jI[un = k̄2] + jI[un = k̄3]. (3.13)

Intuitively, the representative vector y̌k in (3.11) is updated by using received vectors whose

decoded indices are k and ones that are decoded correctly (confirmed by the CRC) with

decoded indices k̄ for Condition 1 or k̄1, k̄2, k̄3 for Condition 2.

The refined representative vectors are then used to perform data detection on the next
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segment (back to lines 7–9). In the first iteration, the next segment is Ys+1, which has not

been decoded before. In the subsequent iterations, the next segment is one that has not

been successfully decoded. Iterations here are accounted for by the while loop. The process

of CRC checking, updating the representative vectors and data detection is repeated until

all segments are decoded correctly or no change in u is found or a maximum number of

iterations is reached (line 20).

3.4.2 Proposed Semi-supervised Learning Method

In this part we propose a semi-supervised learning method. This proposed method is based

on the K-means clustering technique [84]. The idea is to use the training sequence as an

initial guidance to find coarse estimates of the representative vectors. Based on these coarse

estimates, the received data vectors are then self-classified iteratively.

The K-means clustering technique aims to partition data into a number of clusters. However,

in this communication context, the decoding task is not just to partition the received data

into clusters but also to assign labels to the clusters, which can be done by using the training

sequence. In addition, we take into account the constraints y̌k+K/2 = −y̌k, k = 1, . . . , K/2,

if Condition 1 holds; and the constraints y̌k+K/4 = −y̌k, y̌k+K/2 = jy̌k, y̌k+3K/4 = −jy̌k,

k = 1, . . . , K/4, if Condition 2 holds. These constraints can be adopted because clusters are

formed based on their centroids, which are also referred to as the representative vectors {y̌k}

in this work.

First, we introduce a set of binary variables βn,k ∈ {0, 1} to indicate which of the K labels

that the received vector y[n] belongs to. Specifically, if a received vector y[n] belongs to

label k, then βn,k = 1 and βn,l = 0 ∀l ̸= k. We have the following optimization problems:
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• Condition 1 :

minimize
{βn,k},{y̌k}

J =

Tb∑
n=1

K∑
k=1

βn,k∥y[n]− y̌k∥2

subject to y̌k+K
2
= −y̌k, k = 1, . . . , K/2.

(3.14)

The objective function in (3.14) is called the distortion measure [84]. This problem

can be rewritten as

minimize
{βn,k},{y̌k}

J1 (3.15)

where

J1 =

Tb∑
n=1

K
2∑

k=1

(
βn,k∥y[n]− y̌k∥2 + βn,k+K

2
∥y[n] + y̌k∥2

)
. (3.16)

Problem (3.15) can be solved iteratively in which each iteration finds {βn,k} based on

fixed {y̌k} and vice versa. If {y̌k} are fixed, J1 is a linear function of {βn,k}. It can be

seen that the solutions {βn,k} are independent of n, so they can be found separately.

With any n ∈ {Tt + 1, . . . , Tb}, the optimization problem for {βn,k} is

minimize
{βn,k}

K∑
k=1

βn,k∥y[n]− y̌k∥2, (3.17)

whose solution is found by setting βn,k = 1 for the k associated with the minimum

value of ∥y[n]− y̌k∥2. The solutions {βn,k} can be written as

βn,k =


1 if k = argmink′ ∥y[n]− y̌k′∥2,

0 otherwise.

(3.18)

It should be noted that βn,k = 1 whenever n ≤ Tt and k = ⌊(n − 1)/Lt⌋ + 1 because

the labels of the received training vectors are known at the receiver. When the {βn,k}

are fixed, J1 becomes a quadratic function of {y̌k}. Hence the solutions {y̌k} can be
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found by finding the derivative of J1 with respect to y̌k:

∂J1
∂y̌k

=

Tb∑
n=1

βn,k
(
− y[n]H + y̌H

k

)
+ βn,k+K

2

(
y[n]H + y̌H

k

)
, (3.19)

when being set to 0 yields

y̌k =

∑
n

(
βn,k − βn,k+K

2

)
y[n]∑

n

(
βn,k + βn,k+K

2

) , k = 1, . . . ,
K

2
. (3.20)

Equation (3.20) says that the representative vector y̌k, with k ≤ K/2, is calculated by

using the received vectors that not only belong to cluster k but also to cluster k+K/2.

• Condition 2 :

minimize
{βn,k},{y̌k}

J =

Tb∑
n=1

K∑
k=1

βn,k∥y[n]− y̌k∥2

subject to y̌k+K
4
= −y̌k, y̌k+K

2
= jy̌k, y̌k+ 3K

4
= −jy̌k

k = 1, . . . , K/4.

(3.21)

The optimization problem (3.21) can also be rewritten as

minimize
{βn,k},{y̌k}

J2 (3.22)

where

J2 =

Tb∑
n=1

K
4∑

k=1

(
βn,k∥y[n]− y̌k∥2 + βn,k+K

4
∥y[n] + y̌k∥2

+ βn,k+K
2
∥y[n]− jy̌k∥2 + βn,k+ 3K

4
∥y[n] + jy̌k∥2

) (3.23)

Applying the same technique as in Condition 1 to this problem, we can find βn,k from
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Algorithm 2: Semi-supervised Learning Decoding.

1 Initialize done = false, iter = 0;
2 Find Y using the training sequence;
3 while done = false do
4 iter = iter + 1;
5 Perform (3.18);
6 if Condition 1 holds then
7 Perform (3.20);
8 Set y̌k+K

2
= −y̌k, with k = 1, . . . ,K/2;

9 end
10 if Condition 2 holds then
11 Perform (3.24);
12 Set y̌k+K

4
= −y̌k, y̌k+K

2
= jy̌k, y̌k+ 3K

4
= −jy̌k, with k = 1, . . . ,K/4;

13 end
14 if convergent or iter = itermax then
15 done = true;
16 end

17 end

(3.18) and

y̌k =

∑
n

(
βn,k − βn,k+K

4
− jβn,k+K

2
+ jβn,k+ 3K

4

)
y[n]∑

n

(
βn,k + βn,k+K

4
+ βn,k+K

2
+ βn,k+ 3K

4

) , k = 1, . . . ,
K

4
. (3.24)

Equation (3.24) also points out that the representative vector y̌k, with k ≤ K/4, is

found by using the received vectors that not only belong to cluster k but also to clusters

k +K/4, k +K/2 and k + 3K/4.

The decoding algorithm for this semi-supervised learning method is presented in Algorithm 2.

Coarse estimation of the representative vectors is first obtained by using the training sequence

(line 2). Then clustering is applied on all of the received data vectors (line 5). Depending

on whether Condition 1 or Condition 2 is satisfied, the representative vectors are updated

(lines 7-8 or lines 11-12). The process of clustering the received data vectors and updating

the representative vectors is repeated until convergence or the number of iterations exceeds

a maximum value (line 15). Convergence is achieved if the solutions {βn,k} are the same for

two successive iterations. Convergence of Algorithm 2 is assured because after each iteration,
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the value of the objective function does not increase. However, the point of convergence is

not guaranteed to be a global optimum.

3.5 Performance Analysis with One-bit ADCs

This section presents a performance analysis of the proposed methods for the case of 1-bit

ADCs. The analysis is applicable for any blind detection scheme for MIMO receivers with

low-resolution ADCs and for Rayleigh fading channels, independent of the channel realiza-

tion. We assume that all symbol vectors in X̌ are a priori equally likely to be transmitted.

The objective is to characterize the VER. Since the performance of the proposed methods

for 1-bit ADCs is independent of the step size ∆, we choose ∆ = 2 so that the quantization

function becomes the sign(·) function, where sign(a) = +1 if a ≥ 0 and sign(a) = −1 if

a < 0. If a is a complex number, then sign(a) = sign(ℜ{a}) + j sign(ℑ{a}). The operator

sign(·) of a matrix or vector is applied separately to every element of that matrix or vector.

3.5.1 VER Analysis at Low SNRs

Here, an approximate pairwise VER at low SNRs for the Rayleigh fading channel is presented.

First, using the Bussgang decomposition, the system model y = Qb(r) can be rewritten as

y = Vr+ d [20] where d is the quantization distortion and

V =

√
2

π
diag(Σr)

− 1
2 . (3.25)

The term Σr = HHH + N0I is the covariance matrix of r. Let A = VH and e = Vz + d,

then the system model becomes

y = Ax+ e, (3.26)
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where A =
√

2/π diag(Σr)
− 1

2H and the effective noise e = [e1, e2, . . . , eNrx ]
T is modeled as

Gaussian [20] with zero mean and covariance matrix

Σe =
2

π

[
arcsin

(
diag(Σr)

− 1
2Σr diag(Σr)

− 1
2

)
−diag(Σr)

− 1
2Σr diag(Σr)

− 1
2 +N0 diag(Σr)

−1
]
.

(3.27)

Note that the operation arcsin(·) of a matrix is applied element-wise on that matrix. The

representative vector y̌k now becomes y̌k = Ax̌k.

In the low SNR regime, the approximation Σr ≈ Σz holds [20], where Σz = N0I is the

covariance matrix of z. This approximation leads to A ≈
√

2/(N0π)H and Σe ≈ I. Let

υ = [υ1, . . . , υNr ]
T = y̌k − y̌k′ , where υi =

√
2/(N0π)h

T
i (x̌k − x̌k′) with hi being the ith

column of H. Since H is comprised of i.i.d. Gaussian random variables CN (0, 1), υi is also

Gaussian of zero mean with variance

σ2
kk′ =

2

N0π
∥x̌k − x̌k′∥22. (3.28)

Denote Px̌k→x̌k′
as the pairwise vector error probability of confusing x̌k with x̌k′ when x̌k is

transmitted and when x̌k and x̌k′ are the only two hypotheses [2]. The following proposition

establishes the relationship between Px̌k→x̌k′
and σ2

kk′ .

Proposition 3.2. Px̌k→x̌k′
at low SNR can be approximated as

Px̌k→x̌k′
≈ 1− Φ

(√
Nrx/(1 + 2/σ2

kk′)
)
. (3.29)

Proof. Please refer to Appendix A.

The result in Proposition 3.2 clearly shows the dependency of the pairwise VER on the

Euclidean distance between the two symbol vectors x̌k and x̌k′ . We now proceed to obtain

an upper bound on the VER, denoted as P ver
ϱ , at low SNR assuming a priori equally likely
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x̌1, . . . , x̌K . The VER is defined as

P ver
ϱ =

K∑
k=1

P[x̂ ̸= x̌k,x = x̌k]

where x̂ is the detected symbol vector and P[x̂ ̸= x̌k,x = x̌k] is the probability that x̌k was

transmitted but the detected symbol vector is not x̌k.

Proposition 3.3. P ver
ϱ at low SNR is upper-bounded as

P ver
ϱ ≤ 1

K

K∑
k=1

K∑
k′ ̸=k

[
1− Φ

(√
Nrx/(1 + 2/σ2

kk′)
)]

. (3.30)

Proof. The bound on P ver
ϱ is obtained via the union bound

P ver
ϱ =

K∑
k=1

P[x̂ ̸= x̌k,x = x̌k] =
1

K

K∑
k=1

P[x̂ ̸= x̌k

∣∣ x = x̌k] ≤
1

K

K∑
k=1

K∑
k′ ̸=k

Px̌k→x̌k′

and the application of Proposition 3.2.

The probability P[x̂ ̸= x̌k |x = x̌k] is invariant to x̌k for the case of PSKmodulation. Without

loss of generality, we assume that x̌1 was transmitted, so that the VER simplifies to

P ver
ϱ ≤

K∑
k ̸=1

[
1− Φ

(√
Nrx/(1 + 2/σ2

1k)
)]

. (3.31)

We note that this result is valid for low SNRs. In the following analysis, we characterize the

VER at a very high SNR, i.e., ϱ→ ∞.
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3.5.2 VER Analysis as SNR → ∞

Here, the VER as ϱ→ ∞ is evaluated. Let gk = [gk,1, . . . , gk,Nrx ]
T = Hx̌k, then

P[ℜ{yi} = +1 | x = x̌k] = Φ(
√
2ϱ/Ntxℜ{gk,i}), (3.32)

P[ℑ{yi} = +1 | x = x̌k] = Φ(
√
2ϱ/Ntxℑ{gk,i}). (3.33)

The true representative vectors are

y̌k = E
[
y | x = x̌k

]
= 2Φ(

√
2ϱ/Ntxgk)− (1+ j1) (3.34)

which becomes sign(gk) as ϱ→ ∞. It is possible for a given realization of H that more than

one symbol vector will lead to the same representative vector: sign(gk) = sign(gk′) with

k ̸= k′, and in such cases a detection error will occur regardless of the detection scheme. In

the following, we analyze the probability that sign(gk) = sign(gk′). The analysis is applicable

for the cases of BPSK and QPSK modulation.

To facilitate the analysis, we convert the notation into the real domain as follows:

x̌R
k = [x̌Rk,1, x̌

R
k,2, . . . , x̌

R
k,2Ntx

]T = [ℜ{x̌k}T ,ℑ{x̌k}T ]T ,

gR
k = [gRk,1, g

R
k,2, . . . , g

R
k,2Nrx

]T = [ℜ{gk}T ,ℑ{gk}T ]T .

We first consider BPSK modulation, i.e., M = {±1}. In this case, ℑ{x̌k} = 0.

Theorem 3.1. Given d = ∥x̌R
k − x̌R

k′∥0 as the Hamming distance between the two labels, then

P
[
sign(gk) = sign(gk′)

]
=

[
2

π
arctan

√
Ntx − d

d

]2Nrx

. (3.35)

Proof. Please refer to Appendix B.
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As ϱ → ∞, the effect of additive white Gaussian noise (AWGN) can be ignored. Thus,

P
[
y̌k = y̌k′

]
= P

[
sign(gk) = sign(gk′)

]
. An upper bound on the VER is established in the

following proposition.

Proposition 3.4. With BPSK modulation, the asymptotic VER at high SNR is upper-

bounded as

P ver
ϱ→∞ ≤ 1

2

Ntx∑
d=1

(
Ntx

d

)[
2

π
arctan

√
Ntx − d

d

]2Nrx

. (3.36)

Proof. Please refer to Appendix C.

Proposition 3.5. With BPSK modulation and Ntx = 2, the upper bound in (3.36) is tight.

Proof. For BPSK modulation and Ntx = 2, let x̌R
1 = [1, 1, 0, 0], x̌R

2 = [1,−1, 0, 0], x̌R
3 =

[−1, 1, 0, 0], x̌R
4 = [−1,−1, 0, 0]. Herein, x̌R

1 = −x̌R
4 and x̌R

2 = −x̌R
3 , resulting in y̌1 = −y̌4

and y̌2 = −y̌3 as ϱ → ∞. Hence, events y̌1 = y̌2 and y̌1 = y̌3 are mutually exclusive while

event y̌1 = y̌4 does not exist. This proposition thus follows as a direct consequence of the

proof for Proposition 3.4 given in Appendix C.

For the case of QPSK modulation, the Hamming distance d = ∥x̌R
k − x̌R

k′∥0 between any

two labels can be as large as 2Ntx. Following the same derivation as in Theorem 3.1 and

Proposition 3.4, an upper-bound for the asymptotic VER at high SNR can be established

by the following proposition.

Proposition 3.6. With QPSK modulation, the asymptotic VER at high SNR is upper-

bounded as

P ver
ϱ→∞ ≤ 1

2

2Ntx∑
d=1

(
2Ntx

d

)[
2

π
arctan

√
2Ntx − d

d

]2Nrx

. (3.37)
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3.5.3 Transmit Signal Design

Thus far it has been assumed that the transmitter uses all K possible labels for transmission.

However, as K grows large, the training task for all the K labels becomes impractical,

since the block fading interval Tb is finite. In this section, we consider a system where the

transmitter employs only a subset of K̃ labels among the K possible labels for both the

training and data transmission phases. The rest of the K − K̃ labels are unused. While

using only K̃ labels reduces the transmission rate as compared to using all the K possible

labels, the VER can be improved. In many 5G networks, e.g., Machine-to-Machine (M2M)

communication systems, the priority is on the reliability, not the rate [6]. In addition, the

reduction in training time with small K̃ may help improve the system throughput.

The design problem is how to choose K̃ labels among the K labels. To address this problem,

we rely on Proposition 3.4 and Proposition 3.6. These propositions reveal that the VER at

infinite SNR is inversely proportional to the Hamming distances between the labels. Thus,

the following criterion for choosing the transmit signals is proposed:

X ⋆ = arg max
X⊂X̌R

min
1≤k1<k2≤K̃

∥xk1 − xk2∥0, (3.38)

where X = {x1, . . . ,xK̃} denote the set of K̃ different labels for transmission, and X̌ R =

{x̌R
1 , . . . , x̌

R
K}. This design criterion aims to maximize the minimum pairwise Hamming

distance among the K̃ labels. Note that the proposed criterion is also applicable for low SNRs

because as shown in Proposition 3.3, the VER is inversely proportional to the Euclidean

distance, which is analogous to the Hamming distance for BPSK and QPSK, albeit with

some scaling factor. It should be noted that the proposed criterion does not rely on a

specific channel realization, so the design task can be carried out off-line.

Problem (3.38) can be solved by exhaustive search when
(
K
K̃

)
is not too large. When the

exhaustive search is not possible, we propose a simple greedy algorithm, whose pseudo-
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Algorithm 3: Transmit Signal Design.

1 Randomly generate Nset initial sets {Xi, i = 1, . . . , Nset};
2 for i = 1 : Nset do
3 done = false;
4 while done = false do
5 Let flag = 1;

6 Set X ′ = X̌ \Xi = {x′
1, . . . ,x

′
K−K̃

};
7 for k1 = 1 : K̃ do

8 for k2 = 1 : K − K̃ do

9 Let X̂i =
(
Xi\{xk1}

)
∪
{
x′
k2

}
;

10 if dmin(X̂i) > dmin(Xi) then

11 Set Xi = X̂ and flag = 0;
12 Exit both for loops;

13 end

14 end

15 end
16 if flag = 1 then
17 Set done = true and X ⋆

i = Xi;
18 end

19 end

20 end
21 X ⋆ = arg maxX ⋆

i
dmin(X ⋆

i );

code can be found in Algorithm 3. Here, dmin(X ) denotes the minimum pairwise Hamming

distance among the labels in X and X ′ in line 6 denotes the set of labels, which is not used

for transmission. The principle of Algorithm 3 is as follows:

• Generate Nset initial sets {Xi}i=1,...,Nset , where each set Xi contains K̃ different labels

randomly chosen from X̌ R.

• For each initial set Xi, find x′ ∈ X ′ such that when an element of Xi is replaced by

x′, the value of the objective function in (3.38), i.e., the minimum Hamming distance,

is increased. This is repeated until no further increase in the objective function is

possible after evaluating all replacements.

• Each initial set Xi produces a corresponding solution X ⋆
i as in line 17. The solution

X ⋆ of (3.38) is obtained by selecting the X ⋆
i whose objective function value is largest
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(line 21).

Note that the larger Nset is, the more likely Algorithm 3 will find the optimal solution.

3.6 Simulations and Results

3.6.1 Numerical Evaluation of the Proposed Methods

Monte Carlo simulations are used to numerically evaluate the performance of the proposed

methods. The simulation settings are as follows. The number of transmit antennas Ntx

is set to be 2 unless otherwise stated. The data phase contains Td = 500 time slots. In

the supervised learning method, a 24-bit CRC as in the 3GPP Long Term Evolution (LTE)

standard [85] is adopted. The generator of the CRC in the simulation is z24+z23+z14+z12+

z8+1, and the length of each data segment is 16 bits. Thus, the length of each coded segment

is 40 bits. This is the minimum length in the 3GPP LTE standard. In all figures, ‘Sup.’

and ‘Semi-sup.’ stand for the supervised learning and semi-supervised learning methods,

respectively.

The effect of the training sequence length Lt on MCD and the two proposed methods is first

studied (Figure 3.3). BPSK modulation with Nrx = 16 and 1-bit ADCs are used. Figure 3.3a

shows the change of the BER as Lt varies. An interesting observation is that the performance

of the proposed methods is much less affected by Lt than the MCD method. Hence, the

length of the training sequence can be reduced without causing much degradation on the

performances of the proposed methods. This is illustrated more clearly in Figure 3.3b, where

we carry out the simulation for Lt = 1 and Lt = 3, still with BPSK modulation, 1-bit ADCs

and Nrx = 16. It can be seen from Figure 3.3b that, as Lt is reduced from 3 to 1, the BER

of MCD is significantly degraded while the BERs of the proposed methods experience only a
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Figure 3.3: Effect of Lt on MCD and the proposed methods with 1-bit ADCs, Nrx = 16 and BPSK modu-
lation.

small degradation at low SNRs and do not change at higher SNRs. This leads to a significant

improvement for the proposed methods as compared to MCD, for example, about a 7-dB

gain at a BER of 10−3 and 8-dB at a BER of 10−5 when Lt = 1. Even for moderately long

training sequences, e.g., Lt = 3, the gain of the proposed methods is still considerable, from

3-dB to 4-dB.

The results in Figure 3.3 can be explained as follows. The performance of MCD is susceptible

to Lt because its detection accuracy relies on the representative vectors estimated only from

the training sequence. Therefore, if Lt is small, the representative vectors are not estimated

correctly and so the performance can be degraded significantly. On the other hand, the

proposed methods are much less dependent on Lt because they use the training sequence

only as the initial guide for the detection task. Compared to the semi-supervised learning

method, the supervised learning method is slightly more dependent on Lt because it depends

on detection results from the training sequence.

Since the proposed methods work iteratively, numerous simulations are performed to evaluate

the improvement in BER over the iterations. Simulation results are shown in Figure 3.4. For
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Figure 3.4: Performance improvement for different iterations with 1-bit ADCs, BPSK modulation, Nrx = 16
and Lt = 3.

the supervised learning method, Figure 3.4a, it can be seen that the BER converges after

only 2 iterations. For the semi-supervised learning method, Figure 3.4b, there is considerable

improvement between the first and the second iterations, but then the third and the fourth

iterations give approximately the same performance. It is therefore preferred to limit the

maximum number of iterations to 3 in the semi-supervised learning method. It should be

noted that the BER on the first iteration of the semi-supervised learning method is actually

the BER of the MCD method because the first iteration only exploits the training sequence.

Figure 3.5 compares the aforementioned blind detection methods with several coherent detec-

tion methods. The simulation uses 1-bit ADCs, QPSK modulation, Nrx = 16 and Lt = 3. For

coherent detection, CSI is first estimated by the Bussgang Linear Minimum Mean Squared

Error (BLMMSE) method proposed in [33]. The length of the training sequence in the blind

detection methods is 12, so we also set the length of the pilot sequence for the channel esti-

mation to 12. The ZF detection method is presented in [33]. The ML method for 1-bit ADCs

is provided in [31]. A performance comparison in terms of BER is given in Figure 3.5a, which

shows that the proposed methods outperform the ZF and ML methods with estimated CSI.

It is also seen that the BER of the proposed methods is quite close the BER of ML detection
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Figure 3.5: Performance comparison between blind and coherent detection with 1-bit ADCs, QPSK modu-
lation, Nrx = 16 and Lt = 3.

with perfect CSI. Here, it is observed that a significant increase in the BER at high SNRs for

the ML method with estimated CSI. This observation was also reported in [79]. In compar-

ing the two proposed methods in Figure 3.5a and Figure 3.3, should the CRC be available,

it is more beneficial to use the supervised learning method for better BER performance.

Figure 3.5b provides a comparison in terms of spectral efficiency ηse, defined as the average

number of information bits received correctly per block-fading interval Tb. We determine ηse

for the case without CRC as

ηse =
Td
Tb

× (1− BER)×Ntx × log2M

and for the case with CRC as

ηse =
Ldata

Ldata + LCRC

× Td
Tb

× (1− BER)×Ntx × log2M.

Figure 3.5b indicates a proportional drop in the spectral efficiency due to the use of CRC.

Note that the supervised learning method can only be applied in systems where the CRC
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Figure 3.6: Performance of the proposed methods for different numbers of receive antennas Nrx and ADC
resolutions b with Lt = 3.

is available but the other methods can be used in any system regardless of the CRC. Thus,

should the CRC be eliminated for improved spectral efficiency, the semi-supervised method

provides better performance than MCD. It also performs slightly better than conventional

coherent detection with estimated CSI. The small performance gap observed in Figure 3.5b

is due to the small difference in BER performance in the SNR region between −12 to 12 dB,

as shown in Figure 3.5a. At high SNR, while the proposed method performs much better

than other methods in terms of BER, its effect on the throughput ηse is negligible since

1− BER ≈ 1.

To study the trade-off between Nrx and b, the proposed methods are evaluated in three

different scenarios: (i) Nrx = 4, b = 4; (ii) Nrx = 8, b = 2; and (iii) Nrx = 16, b = 1. This

is to ensure the same number of bits after the ADCs for baseband processing. The number

of label repetitions Lt is set to be 3. The simulation results are shown in Figure 3.6, with

BPSK in Figure 3.6a and QPSK in Figure 3.6b. For BPSK modulation, the best performance

is achieved by scenario (iii) for all methods. Hence, this suggests the use of more receive

antennas and fewer bits in the ADCs when BPSK modulation is employed. However, for

QPSK modulation, there is a trade-off between scenarios (ii) and (iii). For low SNRs, the

setting Nrx = 16 and b = 1 gives better performance, but for high SNRs, the best results
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Figure 3.7: Validation of the analytical pairwise VER in (3.29) and the analytical VER in (3.30) at low
SNRs with Ntx = 2, Nrx = 16, and BPSK modulation.

are with Nrx = 8 and b = 2. The results in Figure 3.6 also show that the proposed methods

outperform the MCD method in all three scenarios.

3.6.2 Validation of Performance Analysis

This section presents a validation on the performance analyses in Section 3.5. Figure 3.7

provides the analytical approximate pairwise VER in (3.29) and the VER in (3.30). the

setting of Ntx = 2, Nrx = 16, and BPSK modulation is used. The two labels used to

examine the pairwise VER are x̌k = [+1,+1]T and x̌k′ = [+1,−1]T . It can be seen that

our approximate pairwise VER is very close to the simulated pairwise VER at low SNRs,

typically with SNRs less than 0-dB. However, as the SNR increases, the approximate pairwise

VER tends to diverge from the true pairwise VER because the approximation Σr ≈ Σz is

inapplicable for high SNRs. The simulation results also show that the analytical VER is

quite close to the true VER at low SNRs.

Validation of the high SNR expressions for the analytical VER is given in Figure 3.8 with
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Figure 3.9: Validation of the transmit signal design with Ntx = 6, Nrx = 16, K̃ = 4, and BPSK modulation.
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Nrx = 8. The horizontal lines represent the analytical upper bounds on the VER at infinite

SNR. For the case of BPSK and Ntx = 2, it can be seen that the simulated VER approaches

the horizontal solid line as the SNR increases and then they match at very high SNRs. This

validates the result of Proposition 3.5 indicating that the bound is tight in the case of BPSK

and Ntx = 2. With BPSK and Ntx = 3, the horizontal dashed line is just slightly higher

than the floor of the simulated VER. For QPSK modulation, there is a small gap between

the horizontal lines and the floors of the simulated VER. These observations validate the

analytical upper-bound results in Proposition 3.4 and Proposition 3.6.

Figure 3.9 provides a validation for the proposed transmit signal design based on the mini-

mum Hamming distance in Section 3.5.3. With different selections of the label sets X , the

BER performance in Figure 3.9 improves as dmin(X ) increases, which validates the analysis.

In this particular simulation scenario (Ntx = 6, Nrx = 16, K̃ = 4, and BPSK modulation),

the minimum Hamming distance of an optimal set can be found to be 4. The proposed

Algorithm 3 then helps select an optimal set X ⋆ with dmin(X ⋆) = 4. Hence, the curves with

star markers in Figure 3.9 also represent the BER obtained by X ⋆.

As K̃ is increased, the data rate also increases, but the BER will degrade. Thus, there is a

specific value for K̃ that provides the best compromise for the spectral efficiency. Figure 3.10

illustrates the change of spectral efficiency with respect to K̃ at different SNR values. The

simulations are carried out with Ntx = 8, Nrx = 16, QPSK modulation, Lt = 3, and

K̃ ∈ {4, 8, 16, 32, 64, 128}. The maximum number of time slots for the block-fading interval

is Tb = 500. The availability of the CRC is assumed so that the supervised learning method

can be compared with other methods. The lengths of the data segment for K̃ ∈ {4, 8, 64, 128}

and K̃ ∈ {16, 32} are 18 bits and 16 bits, respectively. This is to ensure that the number of

bits in a segment is a multiple of the number bits in a transmitted vector. The length of the

data block Td is also set to be a multiple of (LCRC + Ldata)/ log2 K̃. The spectral efficiency
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Figure 3.10: Spectral efficiency versus K̃ with Ntx = 8, Nrx = 16, QPSK modulation, Lt = 3, and Tb = 500.

is then computed as

ηse =
Ldata

LCRC + Ldata

× Td
Td + Tt

× (1− BER)× log2 K̃.

For each value of K̃, Algorithm 3 is applied to find the solution X ∗ of (3.38). It is found

that the symbol vectors of X ∗ do not satisfy Condition 2, and so the full-space training

method is used. The simulation results in Figure 3.10 show that increasing K̃ does not

necessarily improve the spectral efficiency, due to the increased training overhead. There is

thus an optimal value of K̃ = 32 in this scenario. It is also seen that at low SNR the spectral

efficiencies of the proposed methods are higher than that of MCD.

3.7 Conclusion

In this chapter, blind detection in MIMO systems with low-resolution ADCs is studied.

Two new learning methods for enhancing the detection performance were proposed. While

the supervised learning method exploits the use of CRC in practical systems to gain more
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training data, the semi-supervised learning method is based on the perspective that the to-

be-decoded data can itself help the detection task thanks to grouping of received symbol

vectors for the same transmitted signal. Simulation results demonstrate the performance

improvement and robustness of our proposed methods over existing techniques. Numerical

results also show that the two proposed learning methods require only a few iterations to

converge. We have also carried out a performance analysis for the proposed methods by

evaluating the VER in different SNR regimes. In addition, a new criterion for the transmit

signal design problem has also been proposed.
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Chapter 4

SVM-based channel estimation and

data detection for massive MIMO

systems with one-bit ADCs

4.1 Introduction

In this chapter, we propose channel estimation and data detection methods for massive

MIMO systems with 1-bit ADCs. The proposed methods are efficient, robust, and applicable

to large-scale systems without the need for CRC or error correcting codes. This work is based

on SVM, a well-known supervised-learning technique in machine learning [84]. Since SVM

problems can be solved by very efficient algorithms [88–92], the proposed methods can be

The materials presented in Chapter 4 have been presented at the 2020 IEEE International Conference
on Communications (ICC) in Dublin, Ireland [86] and published in the IEEE Transactions on Signal Pro-
cessing [87]
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implemented in an efficient manner. There are several prior works on the application of

SVM to channel estimation and data detection problems, e.g., [93,94]. However, these works

consider either SISO or SIMO channels with full-resolution ADCs. In this chaper, we focus

on massive MIMO with one-bit ADCs where both i.i.d. and spatially correlated fading

channels are considered. The contributions of this chapter are summarized as follows:

• An SVM-based channel estimation method for uncorrelated channels is first proposed

by formulating the 1-bit ADC channel estimation problem as an SVM problem. Unlike

the soft-SVM method in [37], the proposed method exploits the original idea of SVM by

maximizing the margin achieved by the linear discriminator. For spatially correlated

channels, we develop a new channel estimation problem by revising the conventional

SVM objective function. Numerical results show that the high-SNR Normalized Mean-

Squared Error (NMSE) floor of the proposed channel estimation methods is lower

than that of the BMMSE method proposed in [33], which outperforms other existing

methods.

• We then propose a two-stage SVM-based data detection method, where the first stage

is also formulated as an SVM problem. A second stage is then employed to refine

the solution from the first stage. Simulation results show that the performance of

the proposed method is very close to that of the ML detection method if perfect CSI

is available. With imperfect CSI, the proposed data detection method is shown to be

robust and to also outperform existing methods. We then consider an SVM-based joint

Channel Estimation and Data Detection (CE-DD) method where the to-be-decoded

data vectors and pilot data vectors are both exploited to refine the estimated channel

and thus improve the data detection performance.

• Finally, an extension of the proposed methods to OFDM systems with frequency-

selective fading channels is derived. Numerical results show that the proposed SVM-

based methods significantly outperform existing ones. For example, the high-SNR

58



Base station

Channel

.

.

.

.

.

.

Rx 1

Rx 2

Rx N

Baseband 

Channel

Estimation

and Data

Detection
.
.
.

User 1

User 2

User U

RF 

chain

RF 

chain

RF 

chain

1-bit ADC

1-bit ADC

1-bit ADC

1-bit ADC

1-bit ADC

1-bit ADC

Figure 4.1: Block diagram of a massive MIMO system with U single-antenna users and an N -antenna base
station equipped with 2N 1-bit ADCs.

NMSE floor of the proposed SVM-based channel estimation method is about 3-dB

lower that of the BMMSE method.

The rest of this paper is organized as follows: The system model is first presented in Sec-

tion 4.2. SVM-based methods for flat-fading channels are then proposed in Section 4.3.

Section 4.4 includes an extension of the proposed methods to OFDM sysems with frequency-

selective fading channels. Numerical results are provided in Section 4.5 and finally Section 4.6

concludes the chapter.

4.2 System Model

The considered massive MIMO system is illustrated in Figure 4.1 with U single-antenna users

and anN -antenna base station, where it is assumed thatN ≥ U . Let xC = [xC1 , x
C
2 , . . . , x

C
U ]

T ∈

CU denote the transmitted signal vector, where xCu is the signal transmitted from the uth

user under the power constraint E[|xCu |2] = 1, u ∈ U = {1, 2, . . . , U}. Let HC ∈ CN×U

denote the channel, which for the moment is assumed to be block flat fading. Let rC =

[rC1 , r
C
2 , . . . , r

C
N ]

T ∈ CN be the unquantized received signal vector at the base station, which
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is given as

rC = HCxC + zC, (4.1)

where zC = [zC1 , z
C
2 , . . . , z

C
N ]

T ∈ CN is a noise vector whose elements are assumed to be

i.i.d. as zCi ∼ CN (0, N0), and N0 is the noise power. Each analog received signal rCi is then

quantized by a pair of 1-bit ADCs. Hence, we have the received signal

yC = sign(rC) = sign
(
ℜ{rC}

)
+ j sign

(
ℑ{rC}

)
(4.2)

where sign(·) represents the 1-bit ADC with sign(a) = +1 if a ≥ 0 and sign(a) = −1 if

a < 0. The operator sign(·) of a matrix or vector is applied separately to every element of

that matrix or vector. The SNR is defined as ρ = 1/N0.

4.3 Proposed SVM-based Channel Estimation and Data

Detection with One-bit ADCs

4.3.1 Introduction to Support Vector Machines

SVMs are a family of supervised learning models often used for classification problems where

decision boundaries are found to separate observations in different classes [84]. The original

idea of SVM was introduced by Vladimir N. Vapnik and Alexey Ya. Chervonenkis and first

published in 1964 within the framework of the “Generalised Portrait Method” for computer

learning and pattern recognition [95]. This original SVM algorithm was constructed for

classification problems that are linearly separable. In 1995, Corinna Cortes and Vapnik

proposed soft-margin SVMs – the commonly-used SVM version today that can deal with non-

linearly separable data sets [96]. A mathematical description of SVMs for binary classification

problems is given as follows:
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Consider a binary classification problem with a training data set of P data pairs D =

{(xq, yq)}q=1,...,P where xq is a training data point and yq ∈ {±1} is an associated class

label. Note that {xq} here are vectors of real elements. The data set D is said to be

linearly separable if and only if there exists a linear function f(x) = wTx + b such that

∀q ∈ {1, 2, . . . , P}, f(xq) > 0 if yq = +1 and f(xq) < 0 if yq = −1. Here, w and b are

referred to as the weight vector and the bias, respectively. In other words, the hyperplane

f(x) = wTx+ b = 0 divides the space into two regions where f(x) = 0 acts as the decision

boundary. The margin of the hyperplane f(x) = 0 with respect to D is defined as

mD(f) =
2

∥w∥
. (4.3)

The SVM technique seeks to find w and b such that the margin mD(f) is maximized. The

optimization problem can be expressed as [84]

minimize
{w,b}

1

2
∥w∥2

subject to yq(w
Txq + b) ≥ 1, q = 1, 2, . . . , P.

(4.4)

In case the training data set D is not linearly separable, a generalized soft-margin optimiza-

tion problem is considered as follows [96]:

minimize
{w,b,ξq}

1

2
∥w∥2 + C

P∑
q=1

ℓ(ξq)

subject to yq(w
Txq + b) ≥ 1− ξq,

ξq ≥ 0, q = 1, 2, . . . , P.

(4.5)

Here, {ξq} are slack variables and C > 0 is a parameter that “controls the trade-off between

the slack variable penalty and the margin” [84], and ℓ(ξq) is a function of ξq. In the SVM

literature, two common forms of ℓ(ξq) are ℓ(ξq) = ξq and ℓ(ξq) = ξ2q , which are often referred
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to as ℓ1-norm SVM and ℓ2-norm SVM, respectively.

An illustrative example for the SVM problem is given in Fig. 4.2. The larger the margin

is, the farther the data points are from the hyperplane and so the better the classification

is. This is the key point for the SVM approach, to find a hyperplane that maximizes the

margin, which is equivalent to minimizing the norm of the weight vector.

The optimization problems (4.4) and (4.5) can be solved by very efficient algorithms [88–91].

For example, if the weight vector is sparse, the complexity of the algorithm in [88] scales

linearly in both the number of features (size of the weight vector w) and the number of

training samples |D|. For arbitrary weight vectors, the complexity of the algorithms in [89–

91] scales linearly in the number of features and super-linearly in the number of training

samples. A good review of efficient methods for solving (4.4) and (4.5) can also be found

in [92].

In this chapter, we exploit the linear SVM framework described above to develop channel

estimation and data detection algorithms for one-bit massive MIMO systems. This idea is

motivated by the observation that a one-bit ADC assigns its received signal to one of the

two classes {+1,−1}, which means it is possible to consider the one-bit MIMO system under

the SVM framework.

4.3.2 Proposed SVM-based Channel Estimation

Uncorrelated Channels

First, uncorrelated channels are considered. The channel elements are assumed to be i.i.d.

as CN (0, 1). In order to estimate the channel, a pilot sequence XC
t ∈ CU×Tt of length Tt is
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Figure 4.2: An illustrative example of SVM. The hyperplane f2(x) = wT
2 x + b2 = 0 correctly classifies the

data points but its margin is not the largest possible. The hyperplane f1(x) = wT
1 x + b1 = 0 not only

correctly classifies the data points and its margin is also the maximum, thus f1 is the SVM solution.

used to generate the training data

YC
t = sign

(
HCXC

t + ZC
t

)
. (4.6)

For convenience in later derivations, we convert the notation in (4.6) to the real domain as

Yt = sign (HtXt + Zt) , (4.7)

where

Yt =
[
ℜ{YC

t },ℑ{YC
t }
]
= [yt,1,yt,2, . . . ,yt,N ]

T , (4.8)

Ht =
[
ℜ{HC},ℑ{HC}

]
= [ht,1,ht,2, . . . ,ht,N ]

T , (4.9)

Zt =
[
ℜ{ZC

t },ℑ{ZC
t }
]
= [zt,1, zt,2, . . . , zt,N ]

T , (4.10)
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and

Xt =

 ℜ{XC
t } ℑ{XC

t }

−ℑ{XC
t } ℜ{XC

t }

 = [xt,1,xt,2, . . . ,xt,2Tt ]. (4.11)

Note that yT
t,i ∈ {±1}1×2Tt , hT

t,i ∈ R1×2U , and zTt,i ∈ R1×2Tt with i ∈ {1, 2, . . . , N} represent

the ith rows of Yt, Ht, and Zt, respectively. However, xt,n ∈ R2U×1 with n ∈ {1, 2, . . . , 2Tt}

is the nth column of Xt.

It can be seen from (4.9) that estimating {ht,i}i=1,2,...,N is equivalent to estimating H̄. Here,

the channel estimation problem is formulated in terms of ht,i. Let

yt,i = [yt,i,1, yt,i,2, . . . , yt,i,2Tt ]
T and

zt,i = [zt,i,1, zt,i,2, . . . , zt,i,2Tt ]
T ,

then we have

yt,i,n = sign
(
hT
t,ixt,n + zt,i,n

)
. (4.12)

It is stressed that the estimation of ht,i in (5.6) can be interpreted as an SVM binary

classification problem. More specifically, {xt,n, yt,i,n}n=1,...,2Tt
plays the role of the training

data set D. The channel ht,i acts as the weight vector and zt,i,n can be viewed as the bias.

Hence, the SVM classification formulation can be exploited to estimate ht,i by solving the

following optimization problem:

minimize
{ht,i,ξn}

1

2
∥ht,i∥2 + C

2Tt∑
n=1

ℓ(ξn)

subject to yt,i,nh
T
t,ixt,n ≥ 1− ξn,

ξn ≥ 0, n = 1, 2, . . . , 2Tt.

(4.13)
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Here, the bias is discarded because the {zt,i,n} are random noise with zero mean. In addition,

at infinite SNR, (5.6) becomes yt,i,n = sign
(
hT
t,ixt,n

)
, which has no bias. It should be noted

that (4.13) only depends on a single index i, and so its solution is the estimate for the ith row

of the channel matrixHC, i.e., the channel vector from the U users to the ith receive antenna.

This means we have N separate optimization problems of the same form (4.13), which is an

advantage of the proposed SVM-based method since these N optimization problems can be

solved in parallel.

Let h̃t,i denote the solution of (4.13). This solution provides an estimate of the channel “di-

rection”, but the magnitude of h̃t,i is determined by the definition of the SVM margin, which

in turn defines the inequality constraints in (4.13). In fact, the instantaneous magnitude of

ht,i is not identifiable [48] since aht,i for any a > 0 will produce the same data set {yt,i,n}:

yt,i,n = sign
(
hT
t,ixt,n

)
= sign

(
ahT

t,ixt,n

)
, with a > 0.

Since in the considered model we assume that the 2U elements of ht,i are each independent

with variance 1/2, the SVM solution is scaled so that the corresponding channel estimate

has a squared norm of U :

ĥt,i =

√
U h̃t,i

∥h̃t,i∥
. (4.14)

This rescaling choice is found to provide the best estimation accuracy.

Remark 1: The soft-SVM method in [37] does not maximize the margin, but instead cal-

culates ht,i such that the condition yt,i,nh
T
t,ixt,n > 0 is satisfied for as many n as possible.

However, due to the noise component zt,i,n, the condition yt,i,nh
T
t,ixt,n > 0 may not be satis-

fied even with the true channel vector ht,i. The proposed method exploits the original idea

of SVM by maximizing the margin achieved by the linear discriminator. The introduction

of the slack variables in the problem circumvents the strict constraint yt,i,nh
T
t,ixt,n > 0.
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Remark 2: Without slack variables, the problem in (4.13)

minimize
{ht,i}

1

2
∥ht,i∥2

subject to yt,i,nh
T
t,ixt,n ≥ 1, n = 1, 2, . . . , 2Tt,

(4.15)

is similar to the form in (4.4). For ht,i ∼ N (0, I) we have

p(ht,i) =
1√

(2π)2U
exp

{
−1

2
∥ht,i∥2

}
, (4.16)

and hence the optimization problem in (4.15) can be read as maximizing the pdf of ht,i

subject to the constraints yt,i,nh
T
t,ixt,n ≥ 1 for n = 1, 2, . . . , 2Tt. Thus, the SVM approach

can be interpreted as finding the channel ht,i that attains the highest likelihood under the

constraints realized by the measured data. This observation will be used next to modify the

SVM-based channel estimator when the channel is spatially correlated. Note that the work

in [37] only considers uncorrelated channels.

Spatially Correlated Channels

Let HC = [hC
1 , . . . ,h

C
U ], and so hC

u ∈ CN×1 is the uth column of HC. Here, it is assumed that

the elements of hC
u are correlated, or in other words that the channels associated with different

antennas are correlated. Let hC
u ∼ CN (0,CC

u) and hC = vec(HC), then hC ∼ CN (0,CC)

where CC = blkdiag(CC
1 ,C

C
2 , . . . ,C

C
U). The pdf of hC is

p(hC) =
1

πUN
√

det(CC)
exp

{
−(hC)H(CC)−1hC} (4.17)

=
1

πUN
√

det(CC)
exp

{
−

U∑
u=1

(hC
u)

H(CC
u)

−1hC
u

}
. (4.18)
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The exponent term in (4.17) becomes a sum in (4.18) because CC is a block diagonal matrix,

whose main-diagonal blocks are CC
1 ,C

C
2 , . . . ,C

C
U . Letting

hu =

ℜ{hC
u}

ℑ{hC
u}

 and Cu =

ℜ{CC
u} −ℑ{CC

u}

ℑ{CC
u} ℜ{CC

u}

 ,

the exponent term in (4.18) can be rewritten as
∑U

u=1 h
T
uC

−1
u hu.

To maximize the likelihood of hC subject to the constraints yt,i,nh
T
t,ixt,n ≥ 1 with i =

1, 2, . . . , N and n = 1, 2, . . . , 2Tt, we can follow the intuition in (4.15) to formulate the

following optimization problem:

minimize
{HC}

1

2

U∑
u=1

∥hT
uC

−1
u hu∥2

subject to yt,i,nh
T
t,ixt,n ≥ 1,

i = 1, 2, . . . , N and n = 1, 2, . . . , 2Tt.

(4.19)

In the above optimization problem, it is important to note that hu ∈ R2N×1 represents the

uth column of HC, but hT
t,i represents the i

th row of HC. This means the objective function

of (4.19) depends on the columns of HC, but the constraints depend on the rows of HC.

Therefore, we cannot decompose (4.19) into smaller independent problems. In other words,

the whole channel matrix HC has to be jointly estimated.

Note that the margin hT
uC

−1
u hu in (4.19) is measured using the Mahalanobis distance [97]

rather than the Euclidean metric used in the standard SVM approach. The optimization
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problem in (4.19) can also be generalized by including slack variables as

minimize
{HC,ξi,n}

1

2

U∑
u=1

∥hT
uC

−1
u hu∥2 + C

N∑
i=1

2Tt∑
n=1

ℓ(ξi,n)

subject to yt,i,nh
T
t,ixt,n ≥ 1− ξi,n with ξi,n ≥ 0,

i = 1, 2, . . . , N and n = 1, 2, . . . , 2Tt.

(4.20)

Although the form of the objective function in (4.20) is different from that in conventional

SVM problems, (4.20) can still be solved efficiently since it is a convex optimization problem.

Let H̃ be the solution of (4.20), then the channel estimate Ĥ is defined as

Ĥ =

√
UNH̃

∥H̃∥F
,

where ∥ · ∥F denotes the Frobenius norm. This normalization step is similar to that for the

case of uncorrelated channels, except a different coefficient
√
UN is used since we jointly

estimate the whole channel matrix and E[∥HC∥F] =
√
UN .

4.3.3 Proposed Two-Stage SVM-based Data Detection

This section proposes a two-stage SVM-based method for data detection with 1-bit ADCs.

The data detection is first formulated as an SVM problem. A second stage is then employed

to refine the solution from the first stage. Let XC
d = [xC

d,1,x
C
d,2, . . . ,x

C
d,Td

] ∈ CU×Td be the

transmitted data sequence of length Td. The received data signal is given as

YC
d = sign

(
HCXC

d + ZC
d

)
. (4.21)
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The above equation is also converted to the real domain as

Yd = sign (HdXd + Zd) (4.22)

where

Yd =

ℜ{YC
d }

ℑ{YC
d }

 = [yd,1,yd,2, . . . ,yd,Td
], (4.23)

Xd =

ℜ{XC
d}

ℑ{XC
d}

 = [xd,1,xd,2, . . . ,xd,Td
], (4.24)

Zd =

ℜ{ZC
d}

ℑ{ZC
d}

 = [zd,1, zd,2, . . . , zd,Td
], and (4.25)

Hd =

ℜ{HC} −ℑ{HC}

ℑ{HC} ℜ{HC}

 = [hd,1,hd,2, . . . ,hd,2N ]
T . (4.26)

Here, yd,m ∈ {±1}2N×1, xd,m ∈ R2U×1, and zd,m ∈ R2N×1 with m ∈ {1, 2, . . . , Td} are the mth

columns of Yd, Xd, and Zd, respectively. However, hT
d,i′ ∈ R1×2U with i′ ∈ {1, 2, . . . , 2N}

represents the i′th row of Hd.

It can be noted that the real and imaginary parts in (4.8)–(4.11) are stacked side-by-side,

but they are stacked on top of each other in (4.23)–(4.26). This is due to the exchange in the

role of the channel and the data matrices. In the formulation for channel estimation in (4.8)–

(4.11), each row of the channel matrix is treated as the weight vector and the columns of

the pilot data matrix are used as the training data points. On the other hand, the data

detection formulation in (4.23)–(4.26) treats each column of the to-be-decoded data matrix

as the weight vector and the rows of the channel matrix as the training data points.
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It should also be noted that the pilot sequence and the data sequence are assumed to expe-

rience the same block-fading channel. Although the two channel matrices Ht in (4.9) and

Hd in (4.26) are constructed differently, they still depend on the same channel HC. Let

yd,m = [yd,m,1, yd,m,2, . . . , yd,m,2N ]
T and

zd,m = [zd,m,1, zd,m,2, . . . , zd,m,2N ]
T ,

then we have

yd,m,i′ = sign
(
hT
d,i′xd,m + zd,m,i′

)
. (4.27)

It is observed that the estimation of xd,m can also be interpreted as an SVM binary clas-

sification problem. More specifically, we can treat xd,m as the weight vector and the set

{ĥd,i′ , yd,m,i′}i′=1,...,2N as the training set, where ĥd,i′ is the channel estimate of hd,i′ obtained

as explained above. The following optimization problem provides the first-stage in finding

xd,m:

minimize
{xd,m,ξi′}

1

2
∥xd,m∥2 + C

2N∑
i=1

ℓ(ξi′)

subject to yd,m,i′x
T
d,mĥd,i′ ≥ 1− ξi′ ,

ξi′ ≥ 0, i′ = 1, 2, . . . , 2N,

(4.28)

where the bias is discarded as in the channel estimation problem. Let x̃d,m denote the

solution of (4.28) and let x̀d,m be the normalized version of x̃d,m as

x̀d,m =

√
U x̃d,m

∥x̃d,m∥
. (4.29)

This normalization step is also used in [31] in order to make the power of the estimated

signal equal the power of the transmitted signal.

Let x̀d,m = [x̀d,m,1, . . . , x̀d,m,2U ]
T , and define the first-stage detected data vector x̌d,m =
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[x̌d,m,1, . . . , x̌d,m,U ]
T obtained using symbol-by-symbol detection as

x̌d,m,u = arg min
x∈MC

|(x̀d,m,u + jx̀d,m,u+U)− x| , (4.30)

where u ∈ U and MC represents the signal constellation (e.g., QPSK or 16-QAM). The

solution to (4.30) is referred to as the stage 1 solution. To further improve the detection

performance, a simple but efficient second detection stage is proposed as follows.

First, a candidate set Xu for each xCd,m,u is created using x̌d,m,u and x̀d,m,u + jx̀d,m,u+U as

Xu =

{
x́ ∈ MC

∣∣∣∣ |(x̀d,m,u + jx̀d,m,u+U)− x́|
|(x̀d,m,u + jx̀d,m,u+U)− x̌d,m,u|

< ν

}
(4.31)

where ν ≥ 1 is a parameter that controls the size of Xu. Then the candidate set Xd,m for

xd,m is obtained as

Xd,m =
{
[x́1, x́2, . . . , x́U ]

T | x́u ∈ Xu,∀u ∈ U
}
. (4.32)

The above candidate set formation was introduced in [31]. However, the detected data

vector in [31] is obtained by searching over Xd,m using the ML criterion, and the resulting

performance is susceptible to imperfect CSI at high SNRs. This susceptibility has been

reported via numerical results in [65], but no justification was given. An explanation for

this issue is provided in Appendix D. To deal with the issue, here a different criterion

referred to as minimum weighted Hamming distance [61] is adopted. Suppose that Xd,m =

{x́1, x́2, . . . , x́|Xd,m|} and let ẋl = [ℜ{x́l}T ,ℑ{x́l}T ]T with l ∈ {1, 2, . . . , |Xd,m|}. The second-

stage detected data vector x̂d,m is defined as x̂d,m = x́l̂ where

l̂ = arg min
l∈{1,...,|Xd,m|}

dw

(
yd,m, sign(Ĥdẋl)

)
. (4.33)
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Here, Ĥd is the channel estimate ofHd and dw(·, ·) is the weighted Hamming distance defined

in [61].

The minimum weighted Hamming distance criterion above was shown to be statistically effi-

cient [61]. However, the OSD method proposed in [61] requires a preprocessing stage whose

computational complexity is proportional to 2Ns|MC|U for each channel realization. Here

Ns = 2N/G where G ≥ 1 is an integer. The exponential computational complexity of OSD

is a significant drawback in large-scale system implementation. The proposed SVM-based

data detection method in this paper can address this complexity issue since the optimization

problem (4.28) can be solved by very efficient algorithms [88,92,98].

4.3.4 Proposed SVM-based Joint CE-DD

In 1-bit ADC systems, the channel estimation accuracy can be improved by increasing the

length of the pilot training sequence, but not necessarily by increasing the SNR [33]. For

this reason, an SVM-based joint CE-DD method is here proposed to effectively improve the

channel estimate without lengthening the pilot training sequence. The idea is to use the

detected data vectors from the two-stage SVM-based method together with the pilot data

vectors to obtain a refined channel estimate and then use this refined channel estimate to

improve the data detection performance.

Let X̂C
d be the detected version of XC

d using the proposed two-stage data detection method

and let

X̂d2 =

 ℜ{X̂C
d} ℑ{X̂C

d}

−ℑ{X̂C
d} ℜ{X̂C

d}

 = [x̂d2,1, . . . , x̂d2,2Td
], (4.34)

Yd2 =
[
ℜ{YC

d },ℑ{YC
d }
]
= [yd2,1, . . . ,yd2,N ]

T , (4.35)
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where yd2,i = [yd2,i,1, yd2,i,2, . . . , yd2,i,2Td
]T , i = 1, . . . , N . The channel estimate can be refined

by solving the following optimization problem:

minimize
{ht,i,ξt,n,ξd,m}

1

2
∥ht,i∥2 + C

(
2Tt∑
n=1

ℓ(ξt,n) +

2Td∑
m=1

ℓ(ξd,m)

)

subject to yt,i,nh
T
t,ixt,n ≥ 1− ξt,n,

yd2,i,mh
T
t,ix̂d2,m ≥ 1− ξd,m,

ξt,n ≥ 0, n = 1, 2, . . . , 2Tt,

ξd,m ≥ 0, m = 1, 2, . . . , 2Td.

(4.36)

In the optimization problem above, we use two sets of slack variables {ξt,n} and {ξd,m},

which correspond to the pilot sequence and the data sequence, respectively. This is just for

notational convenience, as the two sets of slack variables play the same role. The refined

channel estimate obtained by solving (4.36) can now be used for data detection again in (4.28)

and (4.33). Note that the channel estimate obtained by (4.13) can be used as the initial

solution to (4.36) so that the algorithm will more quickly converge to the optimal solution.

Similarly, X̂C
d can also be used as the initial solution when solving (4.28) with the refined

channel estimate. Numerical results in Section 4.5 show that this strategy will hit a certain

performance bound as Td increases.

4.4 Extension to OFDM systems with Frequency-Selective

Fading Channels

This section develops SVM-based channel estimation and SVM-based data detection for

OFDM systems with frequency-selective fading channels. Consider an uplink multiuser

OFDM system with Nc subcarriers. Denote xC,FD
u ∈ CNc×1 as the OFDM symbol from
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the uth user in the frequency domain. Throughout the paper, we use the superscripts “TD”

and “FD” to refer to Time Domain and Frequency Domain, respectively. A cyclic prefix

(CP) of length Ncp is added and the number of channel taps Ltap is assumed to satisfy

Ltap − 1 ≤ Ncp ≤ Nc. It is assumed that Ltap is known. After removing the CP, the

quantized received signal at the ith antenna in the time domain is given by

yC,TD
i = sign

(
U∑

u=1

GC,TD
i,u ΓHxC,FD

u + zC,TD
i

)
(4.37)

where Γ is the DFT matrix of size Nc×Nc; G
C,TD
i,u is a circulant matrix whose first column is

gC,TD
i,u = [(hC,TD

i,u )T , 0, . . . , 0]T ; and hC,TD
i,u is the channel vector of the uth user containing the

Ltap channel taps, which are assumed to be i.i.d. and distributed as CN (0, 1
Ltap

). We also

assume block-fading channels where the first OFDM symbol is used for channel estimation

and the other OFDM symbols in the block-fading interval are for data transmission. Thus,

the problem of channel estimation and data detection are studied separately.

4.4.1 Proposed SVM-based Channel Estimation in OFDM Sys-

tems with Frequency-Selective Fading Channels

Denote ϕC,TD
u = ΓHxC,FD

u and the training matrix ΦC,TD
u as a circulant matrix with first

column equal to ϕC,TD
u . The system model in (4.37) can be reorganized as follows:

yC,TD
i = sign

(
U∑

u=1

ΦC,TD
u gC,TD

i,u + zC,TD
i

)

= sign

(
U∑

u=1

ΦC,TD
u,Ltap

hC,TD
i,u + zC,TD

i

)

= sign
(
ΦC,TD

Ltap
hC,TD
i + zC,TD

i

)
(4.38)
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where ΦC,TD
u,Ltap

is the matrix corresponding to the first Ltap columns of ΦC,TD
u , ΦC,TD

Ltap
=

[ΦC,TD
1,Ltap

, . . . ,ΦC,TD
U,Ltap

], and hC,TD
i = [(hC,TD

i,1 )T , . . . , (hC,TD
i,U )T ]T .

We also convert (4.38) into the real domain as

yTD
i = sign

(
ΦTD

L hTD
i + zTD

i

)
(4.39)

where

yTD
i =

[
ℜ{yC,TD

i }T ,ℑ{yC,TD
i }T

]T
,

hTD
i =

[
ℜ{hC,TD

i }T ,ℑ{hC,TD
i }T

]T
,

zTD
i =

[
ℜ{zC,TD

i }T ,ℑ{zC,TD
i }T

]T
, and

ΦTD
Ltap

=

ℜ{Φ
C,TD
Ltap

} −ℑ{ΦC,TD
Ltap

}

ℑ{ΦC,TD
Ltap

} ℜ{ΦC,TD
Ltap

}

 .

Denote yTD
i = [yTD

i,1 , y
TD
i,2 , . . . , y

TD
i,2Nc

]T and ΦTD
Ltap

=
[
(ϕTD

1 )T , (ϕTD
2 )T , . . . , (ϕTD

2Nc
)T
]T
, leading

to the following SVM problem for estimating the OFDM channel using one-bit ADCs:

minimize
{hTD

i ,ξn}

1

2
∥hTD

i ∥2 + C
2Nc∑
n=1

ell(xin)

subject to yTD
i,n

(
hTD
i

)T
ϕTD

n ≥ 1− ξn,

ξn ≥ 0, n = 1, 2, . . . , 2Nc.

(4.40)

Denoting h̃TD
i as the solution of (4.40), then hTD

i can be estimated as

ĥTD
i =

√
U h̃TD

i

∥h̃TD
i ∥

. (4.41)
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Frequency-selective channel estimation methods using one-bit ADCs have been previously

proposed in [29, 33], and [49] based on the Bussgang decomposition, additive quantization

noise model, and deep learning, respectively. The deep learning method in [49] was shown to

outperform the methods of [29,49] at low SNRs, but its performance tends to degrade as the

SNR increases. In addition, the method in [49] requires a training sequence that contains

many OFDM symbols, which are required to be orthogonal between different users. In the

proposed method, only one OFDM symbol is used in the training phase and all users send

their training symbols concurrently.

4.4.2 Proposed SVM-based Data Detection in OFDM Systems

with Frequency-Selective Fading Channels

This section describes how SVM can also be used for data detection in OFDM systems with

frequency-selective fading channels. The received quantized vector in (4.37) can be rewritten

as

yC,TD
i = sign

(
GC,FD

i xC,FD + zC,TD
i

)
(4.42)

where GC,FD
i = [GC,TD

i,1 ΓH , . . . ,GC,TD
i,U ΓH ] ∈ CNc×NcU and xC,FD = [(xC,FD

1 )T , . . . , (xC,FD
U )T ]T

is the transmitted symbol vector from the U users over Nc subcarriers. By stacking all the

received signal vectors
{
yC,TD
i

}
i=1,...,N

in a column vector, we have the following equation:

yC,TD = sign
(
GC,FDxC,FD + zC,TD

)
(4.43)

where

yC,TD =
[
(yC,TD

1 )T , (yC,TD
2 )T , . . . , (yC,TD

N )T
]T

and

GC,FD =
[
(GC,FD

1 )T , (GC,FD
2 )T , . . . , (GC,FD

N )T
]T
.
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Let yTD, GFD, and xFD be the real-valued versions of yC,TD, GC,FD, and xC,FD, respectively.

Converting (4.43) to the real domain as in (4.23)–(4.26), we can formulate an SVM problem

by treating the rows of GFD as the feature vectors, the elements of yTD as the binary

indicators and xFD as the weight vector. The solution of the SVM problem then provides

the detected data.

4.5 Numerical Results

This section presents numerical results to show the superiority of the proposed methods

against existing ones. For the simulations we set C = 1 and parameter γ for the second

stage of the SVM-based detection method as γ = min
{

ρ
10

+ 1.5, 3
}

for QPSK and γ =

min
{

ρ
10

+ 1.3, 1.5
}
for 16-QAM where ρ is the SNR. These values of γ are chosen empirically

to make sure that |X | is not too large, but still large enough for X to have a high chance

of containing the true transmitted signal vector. The length of the block-fading interval is

assumed to be 500 (i.e., Tt + Td = 500) unless otherwise stated. Such an assumption is not

stringent for the frequency ranges (e.g., FR1 and FR2) used in 5G systems even with high

user mobility, since the high Doppler will be offset by increases in bandwidth and sampling

rate.

It should also be noted that the channels considered in all figures of this section are i.i.d

uncorrelated, except Fig. 4.6. For flat-fading channel estimation, the kth row of the training

matrix Xt is the (k + 1)th column of the discrete Fourier transform (DFT) matrix of size

Tt×Tt. For frequency-selective fading channel estimation, we use orthogonal pilot sequences

similar to those in [29, Eq. (23)]. Results in this section are obtained using the ℓ2-norm SVM

formulation as we have found that it provides better performance compared to the ℓ1-norm

formulation. For solving the proposed SVM-based channel estimation and data detection

problems, we use the Scikit-learn library [99].
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Figure 4.3: NMSE comparison between different channel estimators with U = 4, N = 32, and Tt = 20.

Figure 4.3 presents a performance comparison of different channel estimation methods in

terms of NMSE, defined here as NMSE = E
[
∥ĤC −HC∥2F

]
/(UN), where ĤC is an estimate

of the channel HC. It can first be seen that the soft-SVM method performs worse than the

other methods. The error floor of the proposed SVM-based channel estimator is lower than

that of the BMMSE estimator in [33] and the error floor of the proposed SVM-based joint CE-

DD method is also lower than that of the semi-blind channel estimator in [42]. It should be

noted that the semi-blind channel estimator is an extension of the BMMSE estimator when

the training data set is augmented with some initially detected data vectors. The channel

estimators in [33] and [42] perform well at low SNRs. However, they are outperformed by

the proposed SVM-based channel estimators at higher SNRs because they use the Bussgang

decomposition to obtain a linearized system model that assumes Gaussian inputs to the one-

bit quantizers, an assumption that is accurate at low SNRs but less likely to be accurate as

the SNR increases. The computational complexity order of the channel estimators studied

in these examples is given in Table 4.1.

Figure 4.4 compares the NMSE of BMMSE with the NMSE of the proposed SVM-based

method for different values of Tt. It is observed that the high-SNR error floor of the BMMSE
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Table 4.1: Computational complexity comparison of various channel estimators where Niter is the number
of iterations and fsl(·) is a super-linear function.

Method Complexity

Soft-SVM [37] O(UNTtNiter)

BMMSE [33] O(UN2Tt)

SVM-based O
(
UNTtfsl(Tt)

)
Semi-blind [42] O(UN2TbNiter)

SVM-based

joint CE-DD
O
(
UNTbfsl(Tb)

)
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Figure 4.4: NMSE comparison between BMMSE and the proposed SVM-based channel estimator with U = 4,
N = 32, and Tt ∈ {20, 40, 100}.

method quickly reaches a bound as Tt increases. However, the performance of the proposed

SVM-based method improves as Tt increases. The error floor of BMMSE even with Tt = 100

is still higher than that of the proposed SVM-based method with a much shorter training

sequence (Tt = 20). The results in Figure 4.4 show that increasing Tt can help improve

the channel estimation accuracy. However, the spectral efficiency of the system is adversely

affected as a result. Thus, the proposed SVM-based joint CE-DD method can help improve

both the channel estimation performance and the spectral efficiency.

The effect of Td on the NMSE of the proposed SVM-based joint CE-DD method is studied
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Figure 4.5: Effect of Td on the NMSE of the proposed SVM-based joint CE-DD with U = 4, N = 32, and
Tt = 20 at ρ = 30 dB.
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Figure 4.6: NMSE comparison between the BMMSE channel estimator and the proposed SVM-based channel
estimator for spatially correlated channels with U = 4, N = 32, and Tt = 20.

in Figure 4.5. It can be seen that as Td increases, the channel estimation performance of the

SVM-based joint CE-DD method reaches a bound. It is also seen that with a data segment

of only about 150 time slots, the channel estimation accuracy can asymptotically reach the

bound, which is much better than the performance of using only the training sequence (the

red star symbol).

Figure 4.6 presents channel estimation results for spatially correlated channels. We use the

same typical urban channel model as in [33]. The power angle spectrum of the channel model

follows a Laplacian distribution with an angle spread of 10◦. The simulation results indicate

the performance advantage of the proposed SVM-based solution over the BMMSE method
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Figure 4.7: Performance comparison between the proposed two-stage SVM-based data detection method and
ML detection with perfect CSI, QPSK modulation, and U = 4. The average cardinalities of X for N = 16
and N = 32 are 2.9352 and 1.6140, respectively.
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Figure 4.8: Performance comparison between two proposed data detection methods and other existing
methods with estimated CSI, QPSK modulation, N = 32, U = 4, and Tt = 20.

at high SNR, and thus justify the SVM-based problem formulation in (4.20).

In Figure 4.7, the proposed two-stage SVM-based data detection method is compared with

the ML and nML detection methods for the case of perfect CSI. It is observed that the

performance of the proposed method is very close to that of the ML method after two
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stages. It should be noted that the ML method performs well but it is an exhaustive-search

method and so its computational complexity is prohibitively high for large-scale systems.

While the nML method is applicable for large-scale systems, it is not robust at high SNRs.

This non-robustness occurs regardless of the quality of the CSI, since nML depends on the

gradient of a fractional form whose numerator and denominator both rapidly approach zero.

It should also be noted that the average cardinalities of X for N = 16 and N = 32 are 2.9352

and 1.6140, respectively. This means the second stage of the proposed method is relatively

simple to implement since it only has to search over a few candidates.

For the case of imperfect CSI, a bit-error-rate (BER) comparison is provided in Figure 4.8,

where the estimated CSI is obtained by the SVM-based channel estimator. Here, the SVM-

based joint CE-DD method can be compared with other methods because it also starts with

CSI estimated by the SVM-based channel estimator. It is seen that both the ML and nML

detection methods are non-robust at high SNRs with imperfect CSI. The susceptibility of

ML was also reported in [65]. An explanation for the susceptibility of ML detection can be

found in Appendix D. It is also observed that the proposed SVM-based and OSD detection

methods give the same performance. However, the complexity order of the proposed SVM-

based method is much lower than that of the OSD method as can be seen in Table 4.2. Note

that the OSD method requires the choice of two parameters Ns and L. Here, we set Ns = 8

and L = 8 since this choice provides the best performance. The proposed SVM-based joint

CE-DD algorithm significantly outperforms other methods and its performance is quite close

to the performance of the ML method with perfect CSI. This performance enhancement is

due to the refined channel estimate obtained by solving (4.36).

Although the SVM-based and OSD methods give the same performance, the computational

complexity of the SVM-based approach is much lower than that of OSD. This is illustrated

in Figure 4.9. The average run time required to perform data detection over a block-fading

interval of 500 slots is calculated. Note that the OSD method contains two stages: a prepro-
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Table 4.2: Computational complexity comparison of data detection methods where GNs = 2N .

Method Preprocessing Detection Stage

BZF [64] O(U2N)
O(UNTd)

BMMSE [64] O(N3)

OSD [61] O(2NsUN |M|U ) O
(
UNGLTd

)
ML [31] O(UN |M|U ) O

(
N |M|UTd

)
nML [31] – O

(
UNNiterTd

)
SVM-based – O

(
UNfsl(N)Td

)
SVM-based

joint CE-DD
– O

(
UNfsl(Tb)Tb

)
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Figure 4.9: Run time comparison between OSD and the proposed SVM-based detection method with QPSK
modulation, N = 32, and U varies.

cessing stage and a detection stage. It is observed that the OSD method has a low-complexity

detection stage. Interestingly, Figure 4.9 indicates that the run time of proposed SVM-based

method is comparable to that of the OSD detection stage. However, the OSD method re-

quires a high-complexity preprocessing stage, which scales exponentially with the number of

users. This makes the total complexity of the OSD method much higher than that of the

SVM-based method, as observed in the figure.

Figure 4.10 and Figure 4.11 provide BER comparisons between the proposed SVM-based data

detection methods and other existing methods with QPSK and 16-QAM modulations using

the CSI estimated by the SVM-based channel estimator. Due to their high computational
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Figure 4.10: Performance comparison between two proposed data detection methods and other existing
methods with estimated CSI, QPSK modulation, N = 64, U = 8, and Tt = 40.
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Figure 4.11: Performance comparison between two proposed data detection methods and other existing
methods with estimated CSI, 16-QAM modulation, N = 128, U = 8, and Tt = 40.

complexity, we are not able to provide the BER of the ML and OSD detection methods.

Instead, the performance of the nML method and other linear receivers are provided as

alternatives. The proposed methods not only outperform the existing methods but are also

robust at high SNRs.

Finally, channel estimation and data detection results for OFDM systems with frequency-
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Figure 4.12: NMSE comparison between different channel estimators for an OFDM system in a frequency-
selective channel with U = 2, N = 16, and Ltap = 8.

-15 -10 -5 0 5 10 15 20 25 30

SNR in dB

10-5

10-4

10-3

10-2

10-1

100

B
E

R

Figure 4.13: BER comparison between different data detection methods for an OFDM system in a frequency-
selective channel with Nc = 256, QPSK modulation, U = 2, N = 16, and Ltap = 8.

selective fading channels are given in Figure 4.12 and Figure 4.13, respectively. It is observed

that the BMMSE channel estimator [33] slightly outperforms the AQNM-based channel es-

timator [29], but both of these methods have higher NMSE than the proposed SVM-based

channel estimator at high SNRs. More specifically, the high-SNR error floor of the SVM-

based method is about 3-dB lower that that of the BMMSE and the AQNM-based methods.
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In Figure 4.13, data detection results show that the SVM-based method considerably out-

performs the Regularized Zero-Forcing (RZF) of [29]. At high SNRs, the BER of the RZF

method even with perfect CSI is much higher than the BER of the SVM-based method with

estimated CSI.

4.6 Conclusion

In this chapter, we have shown how linear SVM can be exploited to provide efficient and

robust channel estimation and data detection. We proposed SVM-based channel estimation

methods for both uncorrelated and spatially correlated channels, a two-stage SVM-based

data detection method, and an SVM-based joint CE-DD method. Extension of the proposed

methods to OFDM systems with frequency-selective fading channels was also derived. The

key idea is to formulate the channel estimation and data detection problems as SVM problems

so that they can be efficiently solved. Simulation results revealed the superiority of the

proposed methods against existing ones and the gain is greatest for moderate to high SNR

regimes.
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Chapter 5

Deep Neural Networks for Channel

Estimation and Data Detection in

Low-Resolution MIMO Systems

5.1 Introduction

In the previous chapter, it has been shown that SVMs can be exploited to provide efficient and

robust channel estimation and data detection in one-bit massive MIMO systems. However,

the proposed SVM-based methods were specifically designed for systems with one-bit ADCs

only. In this chapter, we develop a deep learning framework for channel estimation and data

detection for massive MIMO systems with low-resolution ADCs. Using deep unfolding of the

The materials presented in Chapter 5 have been presented at the 2021 IEEE International Conference
on Communications (ICC) in Montreal, QC, Canada [100], published in the IEEE Transactions on Wireless
Communications [101], and submitted for journal publication (under 2nd round review) [102]
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first-order optimization iterations, we propose a channel estimator and two data detectors

that are applicable for both one-bit and few-bit ADCs. The proposed channel estimation

and data detection networks are model-driven and have special structures that can take

advantage of domain knowledge in low-resolution MIMO systems.

We first reformulate the ML channel estimation problem by exploiting an approximation

of the cdf of the normal random variable as a Sigmoid activation function. Unlike the

original problem, the reformulated channel estimation approach does not lead to occasionally

indeterminant gradients. Based on the reformulated problem and a deep unfolding technique,

we propose a Few-Bit massive MIMO Channel Estimation Network, referred to as FBM-

CENet. An interesting feature of the proposed FBM-CENet is that the pilot signal matrix is

directly integrated in the weight matrices of the estimation network. When the pilot matrix

is not given, it can be treated as additional trainable parameters and therefore training FBM-

CENet is equivalent to jointly optimizing both the channel estimator at the base station and

the pilot signal transmitted from the users. This is a significant advantage of the proposed

FBM-CENet structure since existing channel estimators are often designed only for a known

pilot matrix. The proposed DNN is based on a novel reformulation of the network layers,

and is shown via several simulation results to significantly outperform the conventional DNN

architecture in [53] as well as other existing channel estimation methods.

For data detection, we first propose a Bussgang decomposition-based few-bit massive MIMO

Data Detection Network, referred to as B-DetNet, that is based on a linearized system

model obtained through the Bussgang decomposition. Then we propose a Few-Bit massive

MIMO Data Detection Network, referred to as FBM-DetNet. The special structure of FBM-

DetNet is also obtained through a reformulated ML data detection problem that parallels

the reformulated channel estimation problem. We stress that the proposed B-DetNet and

FBM-DetNet are highly adaptive to the channel since their weight matrices and the bias

vectors are defined by the channel matrix and the received signal vector, respectively. The
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proposed detection networks have relatively few parameters and are thus easier to train.

Simulation results also show that they significantly outperform existing methods.

Next, we propose a nearest-neighbor (NN) search method to further improve the data detec-

tion performance. The idea of using two-stage detection methods has been studied previously

in [31]. However, the search metric used by the second stage of [31] is susceptible to CSI er-

rors. This issue was addressed in the previous chapter thanks to a more robust search metric.

Although the second data detection stage in the previous chapter is robust, its complexity

can be high like the method in [31] since the dimension of the search space over the entire

candidate set can be large. The contribution of the proposed NN search method is that it

generates searches over a limited number of candidates that are nearest to the solution of

stage 1 and thus helps contain the search complexity. The main challenge is to obtain the

set of nearest candidates efficiently and quickly. To overcome this challenge, we propose a

recursive strategy that can obtain this candidate set quickly so that the proposed NN search

method can be implemented in an efficient manner.

The rest of this paper is organized as follows: Section 5.2 presents the considered system

model. Then, the proposed FBM-CENet is introduced in Section 5.3. The two data detection

networks B-DetNet and FBM-DetNet are proposed in Section 5.4. Section 5.5 introduces

the NN search method. Computational complexity analysis and numerical results are given

in Section 5.6. Finally, Section 5.7 concludes the chapter.

5.2 System Model

We consider an uplink massive MIMO system with U single-antenna users and an N -antenna

base station (BS), where it is assumed that N ≥ U . Let xC = [xC1 , x
C
2 , . . . , x

C
U ]

T ∈ CU denote

the transmitted signal vector, where xCu is the signal transmitted from the uth user. The
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signal xCu is drawn from a constellation MC. Let HC ∈ CN×U denote the channel, which

is assumed to be block flat fading. Let rC = [rC1 , r
C
2 , . . . , r

C
N ]

T ∈ CN be the unquantized

received signal vector at the base station, which is given as

rC = HCxC + zC (5.1)

where zC = [zC1 , z
C
2 , . . . , z

C
N ]

T ∈ CN is a noise vector whose elements are assumed to be i.i.d.

as CN (0, N0) with noise power N0. Each received analog signal is then quantized by a pair

of b-bit ADCs to produce the quantized received signal:

yC = Qb

(
rC
)
= Qb

(
ℜ{rC}

)
+ jQb

(
ℑ{rC}

)
. (5.2)

5.3 Proposed FBM-CENet

In order to estimate the channel, a pilot sequenceXC
t ∈ CU×Tt of length Tt is used to generate

the training data

YC
t = Qb

(
HCXC

t + ZC
t

)
(5.3)

where YC
t ∈ CN×Tt and ZC

t ∈ CN×Tt . We vectorize the received signal in (5.3) to obtain

yC
t = Qb(P

ChC + zCt ), (5.4)

where yC
t = vec(YC

t ), P
C = (XC

t )
T ⊗ IN , h

C = vec(HC), and zCt = vec(ZC
t ). For convenience

in later derivations, we convert the notation in (5.4) into the real domain as

yt = Qb(Ph+ zt) (5.5)
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where

yt =

ℜ{yC
t }

ℑ{yC
t }

 , h =

ℜ{hC}

ℑ{hC}

 , and P =

ℜ{PC} −ℑ{PC}

ℑ{PC} ℜ{PC}

 .

5.3.1 Maximum-likelihood Channel Estimation Problem

Let P = [p1,p2, . . . ,p2NTt ]
T , yt = [yt,1, yt,2, . . . , yt,2NTt ]

T , and zt = [zt,1, . . . , zt,2NTt ]
T , then

we have

yt,i = Qb

(
pT
i h+ zt,i

)
, i = 1, 2, . . . , 2NTt. (5.6)

Let supt,i =
√
2ρ(qupt,i − pT

i h) and s
low
t,i =

√
2ρ(qlowt,i − pT

i h), where ρ = 1/N0 and

qupt,i =


yt,i +

∆
2

if yt,i < τ2b−1

∞ otherwise,

and qlowt,i =


yt,i − ∆

2
if yt,i > τ1

−∞ otherwise.

Hence, qupt,i and qlowt,i are the upper and lower quantization thresholds of the bin to which yt,i

belongs.

The ML channel estimator is given as follows:

ĥML = argmax
h

f(yt |h)

= argmax
h

2NTt∑
i=1

log
[
Φ
(
supt,i
)
− Φ

(
slowt,i

)]
. (5.7)

Let Pt(h) be the objective function of (5.7). Since Pt(h) is a concave function [103], the un-

constrained optimization problem (5.7) is convex, and therefore an iterative gradient ascent
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Figure 5.1: Overall structure of the proposed FBM-CENet, FBM-DetNet, and B-DetNet. For FBM-CENet,
v plays the role of h and Q = 2NU . For FBM-DetNet and B-DetNet, v plays the role of x and Q = 2U .

method can be used to solve it. However, the gradient of Pt(h), given by

∇Pt(h) =
2NTt∑
i=1

−
√
2ρpi

(
ϕ
(
supt,i
)
− ϕ

(
slowt,i

) )
Φ
(
supt,i
)
− Φ

(
slowt,i

) , (5.8)

is undefined at certain points, since the function Φ(·) very rapidly approaches zero or one.

Specifically, as the iterative gradient descent method sequentially updates the estimated

channel ĥ, there exist instances of ĥ that make both Φ
(
supt,i
)
and Φ

(
slowt,i

)
equal to zero

or one. Thus, the denominator in (5.8) can be zero for some ĥ causing the gradient to

become unbounded. In addition, a lack of a closed-form expression for Φ(·) complicates the

evaluation in (5.7).

These observations motivate us to reformulate the ML channel estimation problem (5.7)

to address the indeterminant gradient issue as well as the complicated evaluation of the

objective function in (5.7). We exploit a result in [104], which shows that the function Φ(t)

can be accurately approximated by the Sigmoid function σ(t) = 1/(1 + e−t) as follows:

Φ(t) ≈ σ(ct) =
1

1 + e−ct
(5.9)

where c = 1.702 is a constant. It was shown in [104] that |Φ(t) − σ(ct)| ≤ 0.0095, ∀t ∈ R.

92



Using this approximation, the objective function Pt(h) can be re-written as

Pt(h) ≈ P̃t(h) =
2NTt∑
i=1

log

[
1

1 + e−csupt,i
− 1

1 + e−cslowt,i

]
(5.10)

and the reformulated ML channel estimation problem is

ĥ = argmax
h

P̃t(h). (5.11)

The gradient of P̃t(h) is

∇P̃t(h) =
2NTt∑
i=1

c
√
2ρpi

(
1− 1

1 + ecs
up
t,i

− 1

1 + ecs
low
t,i

)
= c
√

2ρPT
[
1− σ

(
c
√

2ρ (Ph− qup
t )
)
− σ

(
c
√
2ρ
(
Ph− qlow

t

)) ]
(5.12)

in which qup
t = [qupt,1, . . . , q

up
t,2NTt

]T and qlow
t = [qlowt,1 , . . . , q

low
t,2NTt

]T . Here, it should be noted that,

for a matrix or vector argument, σ(·) is applied separately to every element. Unlike (5.12),

it can be seen that the gradient of P̃t(h) does not suffer from the divide-by-zero issue. Thus,

an iterative gradient descent method for solving (5.11) can be written as

h(ℓ) = h(ℓ−1) + α
(ℓ)
t ∇P̃t

(
h(ℓ−1)

)
(5.13)

where ℓ is the iteration index and α
(ℓ)
t is the step size.

5.3.2 Structure of the proposed FBM-CENet

We employ the deep unfolding technique [105] to unfold each iteration in (5.13) as a layer

of a deep neural network. The overall structure of the proposed FBM-CENet estimator is

illustrated in Fig. 5.1, where each of the L layers takes a vector of 2NU elements as the
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input and generates an output vector of the same size.

The specific structure for each layer ℓ of the proposed FBM-CENet is illustrated in Fig. 5.2b.

The proposed layer structure is unique due to the use of the approximation in (5.9) and the

structure of the reformulated gradient in (5.12). Specifically, each layer of the proposed

FBM-CENet consists of two weight matrices and two bias vectors where the pilot matrix

P plays the role of the weight matrices and the received signals qup
t and qlow

t play the

role of the bias vectors. By contrast, each layer ℓ of a conventional DNN-based channel

estimator as illustrated in Fig. 5.2a contains one weight matrix Wℓ and one bias vector bℓ.

Such a conventional DNN structure has been employed in several existing works, e.g., [53–

55]. An interesting feature of the proposed network is the Sigmoid activation function σ(·),

which is not arbitrary but results from the use of the approximation in (5.9). This is

unlike conventional DNN structures where the activation functions {fℓ(·)} are often chosen

heuristically by experiments.

It should be noted that the proposed FBM-CENet structure in Fig. 5.2b is free of the

constant c
√
2ρ since it is absorbed into the trainable parameters α

(ℓ)
t and βt. If the constant

is kept, each layer ℓ will contain only one trainable parameter, which is the step size α
(ℓ)
t .

Training α
(ℓ)
t can be interpreted as moving along the gradient directions and optimizing

the step size at each layer. We refer this network structure to as purely gradient-based

FBM-CENet (PG-FBM-CENet). Since different values of βt result in different directions in

the vicinity of the gradient, training FBM-CENet can be interpreted as jointly learning the

optimal directions and the associated optimal step sizes. This helps FBM-CENet improve

the performance compared to PG-FBM-CENet. The reason is that always moving along the

gradient direction may not be optimal. FBM-CENet learns an optimal path that makes the

network output (the channel estimate) closer to the true channel vector. We will numerically

show that FBM-CENet outperforms PG-FBM-CENet later.
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5.3.3 Trainable parameters

For a given pilot matrix P, the trainable parameters in the proposed FBM-CENet are the

step sizes {α(ℓ)
t } and the scaling parameter βt inside the Sigmoid function. Note that as

mentioned above, the coefficient c
√
2ρ is omitted in the proposed network since it is absorbed

in the trainable parameters {α(ℓ)
t } and βt.

It is important to note that the pilot matrix P directly plays the role of the weight matrices.

Therefore, when the pilot matrix P is not given, it too can be treated as a trainable param-

eter. In this case, training the proposed FBM-CENet is equivalent to jointly optimizing both

the channel estimator at the base station and the pilot signal transmitted from the users. This

is a significant advantage of the proposed network structure since the conventional DNN-

based channel estimator is often trained or optimized for a given pilot matrix, and thus is

unable to convey information about the optimal pilot signal. The approach proposed in [53]

also jointly optimized the pilot signal and the channel estimator for massive MIMO systems

with low-resolution ADCs, but it employs the conventional DNN structure illustrated in

Fig. 5.2a. We will later show that the proposed FBM-CENet estimator significantly outper-

forms the method in [53].

5.3.4 Training strategy

Here we present the strategy for training the proposed FBM-CENet estimator. Let ĥ denote

the channel estimate, which is set to be the output of the last layer of FBM-CENet, i.e.,

ĥ = h(L). The cost function to be minimized is ∥ĥ − h∥2. We choose this cost function

instead of the objective function in (5.10) because the value of (5.10) is undefined when the

argument of the logarithm approaches zero. In our investigation, training using the cost

function (5.10) was not successful due to this issue. When the pilot matrix P is given, a

training sample for FBM-CENet consists of the given matrix P, a channel vector realization
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yt ×

W1

θ1 f1
(
θ1 − b1

)
×

W2

θ2 f2
(
θ2 − b2

)

. . .×

WL

θLfL
(
θL − bL

)
ĥ

(a) Conventional DNN channel estimation structure. Each
layer ℓ contains a trainable weight matrix Wℓ, a trainable
bias vector bℓ, and an activation function fℓ(·).

h(ℓ−1)
×

P

u
(ℓ)
t

σ
(
βt(u

(ℓ)
t − qup

t )
)

σ
(
βt(u

(ℓ)
t − qlow

t )
)1
+ −

−
×

PT

α
(ℓ)
t

h(ℓ−1)

+ h(ℓ)

(b) Specific structure of layer ℓ of the proposed FBM-CENet.

Figure 5.2: Conventional versus proposed DNN structure for channel estimation.

h and a Gaussian noise vector z, which can be randomly generated. When the pilot matrix

P is not given and is trainable, a training sample only consists of h and a Gaussian noise

vector z. Note that h is randomly generated according to a particular channel model.

It is important to note that the received signals qup
t and qlow

t depend on the pilot matrix

P. Therefore, when the pilot matrix P is trainable, gradient back-propagation during the

training process should also go through qup
t and qlow

t . However, the low-resolution ADCs

are discontinuous functions, which make gradient back-propagation through qup
t and qlow

t

infeasible. To overcome this issue, we employ a soft quantizer model based on the Rectified

Linear Unit (ReLU) function frelu(r) = max(0, r) for the training process as follows:

qup(r) = q(r) +
∆

2
+ c2

[
frelu(r −B∆+ c1)− frelu(r −B∆− c1)

]
(5.14)

qlow(r) = q(r)− ∆

2
− c2

[
frelu(−r −B∆+ c1)− frelu(−r −B∆− c1)

]
(5.15)

where B = 2b−1 − 1, c1 and c2 are positive constants, and

q(r) = −(2b − 1)
∆

2
+

∆

2c1

B∑
i=−B

[
frelu(r + i∆+ c1)− frelu(r + i∆− c1)

]
. (5.16)
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Figure 5.3: Two-bit relu-based soft quantizer with ∆ = 1.

The resulting ReLU-based function is continuous and therefore back-propagation is feasible.

The effect of c1 is illustrated in Fig. 5.3. It can be seen that smaller values of c1 make the

soft quantizer sharper, or in other words closer to the actual hard quantizer. The constant

c2 accounts for the two thresholds τ0 = −∞ and τ2b = ∞, and hence should be large. The

constants {c1, c2} should not be treated as trainable parameters because it is necessary for

the soft quantizer to be a reasonable approximation of the hard quantizer. Allowing these

constants to be trained may produce a large deviation between the soft and hard quantizers.

Note that the soft quantizer could also be modeled using the tanh function as follows:

qup(r) = q(r) +
∆

2
+ c4ftanh(c3(r −B∆)) (5.17)

qlow(r) = q(r)− ∆

2
− c4ftanh(c3(−r −B∆)) (5.18)

where ftanh(r) = (tanh(r) + 1)/2 and

q(r) =
∆

2

[
ftanh(c3r)− ftanh(−c3r)

]
+∆

B∑
i=1

ftanh(c3(r − i∆))− ftanh(c3(−r − i∆)). (5.19)

Larger values of c3 make the soft quantizer sharper. The constant c4 accounts for the two

97



thresholds τ0 and τ2b , and hence should also be large. Although we implement our networks

with the ReLU-based model, in the simulations we will show that both the tanh- and ReLU-

based soft quantizers yield essentially the same performance.

5.4 Data Detection in Few-Bit MIMO Systems

In this section, we propose two DNN-based detectors, referred to as B-DetNet and FBM-

DetNet, for low-resolution massive MIMO systems. For convenience in later derivations, we

convert (5.1) and (5.2) into the real domain as follows:

y = Qb (Hx+ z) , (5.20)

where

y =

ℜ{yC}

ℑ{yC}

 , x =

ℜ{xC}

ℑ{xC}

 , z =

ℜ{zC}
ℑ{zC}

 , and H =

ℜ{HC} −ℑ{HC}

ℑ{HC} ℜ{HC}

 .

Note that y ∈ R2N , x ∈ R2U , z ∈ R2N , and H ∈ R2N×2U . We also denote y = [y1, . . . , y2N ]
T

and H = [h1, . . . ,h2N ]
T .

5.4.1 Proposed B-DetNet

Applying the Bussgang decomposition to (5.20), we obtain

y = VHx+Vz+ d

= Ax+ n (5.21)
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(a) QPSK signaling. (b) 16QAM signaling.

Figure 5.4: Projector function ψt(·) with different values of t.
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Â

weight matrix
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Figure 5.5: Specific structure of layer ℓ of the proposed B-DetNet.

where V ∈ R2N×2N is a diagonal matrix and given as

V =
∆√
2π

diag(Σr)
− 1

2 ×
2b−1∑
i=1

exp

{
− 1

2
∆2(i− 2b−1)2 diag(Σr)

−1

}
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and Σr = HΣxH
T + N0

2
I ∈ R2N×2N . For the case of 1-bit ADCs, the covariance of n is given

in closed form as [20]

Σn =
∆2

2π

[
arcsin

(
diag(Σr)

− 1
2Σr diag(Σr)

− 1
2

)
−

diag(Σr)
− 1

2Σr diag(Σr)
− 1

2 +
N0

2
diag(Σr)

−1
]
.

(5.22)

For few-bit ADCs, the covariance of n can be approximated as Σn ≈ N0

2
VVT + ηb diag(Σr).

The effective noise n is often modeled as N (0,Σn). Based on this linearized model, different

linear detectors such as BZF, BMMSE, and BWZF were introduced in [52,64].

Here, we propose the data detection network B-DetNet based on the linearized system model

in (5.21). Since the effective noise n is assumed to be Gaussian, the Bussgang-based maxi-

mum likelihood detection problem is given as

x̂BML = arg min
xC∈(MC)U

(y −Ax)TΣ−1
n (y −Ax). (5.23)

Let PB(x) be the objective function of (5.23). Note that PB(x) is a quadratic function of x

and thus convex, but the optimization problem is not convex due to the discrete feasibility

constraint xC ∈ (MC)U . An optimal solution to (5.23) therefore requires an exhaustive

search, which is very expensive for large scale systems. Instead, an iterative projected

gradient descent method

x(ℓ) = ψtℓ

(
x(ℓ−1) − α(ℓ)∇PB(x

(ℓ−1))
)

(5.24)

can be applied to search for the optimal solution. Herein, the gradient of PB(x) evaluated

at x(ℓ−1) is given by

∇PB(x
(ℓ−1)) = −2ATΣ−1

n

(
y −Ax(ℓ−1)

)
(5.25)

and ψtℓ(·), characterized by the positive parameter tℓ, is a non-linear projector that forces
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the signal to the nearest constellation point. Based on the ReLU activation function q(r)

in (5.16), ψtℓ(·) can be written as

ψtℓ(x) = −(2b
′ − 1)

∆′

2
+

∆′

2tℓ

B′∑
i=−B′

[
frelu(r + i∆+ tℓ)− frelu(r + i∆− tℓ)

]
(5.26)

where B′ = 2b
′−1 − 1. For QPSK signalling, {b′,∆′} = {1, 2√

2
} and for 16-QAM signalling,

{b′,∆′} = {2, 2√
10
}. The effect of tℓ on ψt(·) is illustrated in Fig. 5.4. It can be seen that a

smaller tℓ also makes the projector sharper. Such a projection function was used in [106],

which studied deep learning-based detection for unquantized MIMO systems.

Our proposed B-DetNet approach is realized by unfolding the projected gradient descent

in (5.24). The overall structure of B-DetNet is illustrated in Fig. 5.1. Each layer takes

an input vector of size 2U and generates an output vector of the same size. The specific

structure of each B-DetNet layer is given in Fig. 5.5 where Â and ÂT Σ̂
−1

n play the role of

weight matrices. Note that Â and Σ̂
−1

n are obtained using a channel estimate Ĥ from, e.g.,

FBM-CENet. The received signal vector y is seen to be the bias vector. Hence, B-DetNet

is highly adaptive to the channel. The only trainable parameters in layer ℓ of B-DetNet are

the step size α(ℓ) and the scaling parameter tℓ in the projector function ψtℓ(·).

We note that similar structures for data detection in full-resolution systems have been de-

veloped in [106, 107]. However, the received signal in full-resolution systems is given as

y = Hx+ z, and therefore the gradient of interest becomes −2HT (y −Hx). For low-

resolution systems, we have a new effective channel A and a new noise covariance matrix

Σn, resulting in a new form of the gradient as in (5.25).
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5.4.2 Proposed FBM-DetNet

Maximum-likelihood data detection problem:

Let supi =
√
2ρ(qupi − hT

i x) and s
low
i =

√
2ρ(qlowi − hT

i x), where

qupi =


yi +

∆
2

if yi < τ2b−1

∞ otherwise,

and qlowi =


yi − ∆

2
if yi > τ1

−∞ otherwise.

Hence, qupi and qlowi are the upper and lower quantization thresholds of the bin to which

yi belongs. The ML detection problem based on the log-likelihood function for the model

in (5.20) is defined as follows [60]:

x̂ML = arg max
xC∈(MC)U

2N∑
i=1

log
[
Φ (supi )− Φ

(
slowi

)]
. (5.27)

Let P(x) denote the objective function of (5.27), which is a concave function of x. However,

the optimization problem (5.27) is not convex since the feasible set is discrete. Therefore,

an optimal solution for ML detection in (5.27) also requires an exhaustive search over xC ∈

(MC)U , which is prohibitively complex for large-scale systems. One can relax the constraint

on the feasible set from xC ∈ (MC)U to xC ∈ CU in order to obtain a convex optimization

problem and allow an iterative gradient descent method to be used. Unfortunately, such

an approach also suffers from the indeterminant gradient issue discussed earlier for the

channel estimation problem. In addition, there is no closed-form expression for Φ(·), which

complicates the evaluation in (5.27). As before, we exploit the approximation in (5.9) to

obtain an approximate version of the function P(x) as follows:

P(x) ≈ P̃(x) =
2N∑
i=1

log

[
1

1 + e−csupi
− 1

1 + e−cslowi

]
(5.28)

102



The reformulated ML detection problem is thus

x̂ML = arg max
xC∈(MC)U

P̃(x), (5.29)

and the gradient of P̃(x) is

∇P̃(x) =
2N∑
i=1

c
√

2ρhi

(
1− 1

1 + ecs
up
i

− 1

1 + ecs
low
i

)
(5.30)

= c
√

2ρHT
[
1− σ

(
c
√

2ρ (Hx− qup)
)
− σ

(
c
√
2ρ
(
Hx− qlow

)) ]
(5.31)

where qup = [qup1 , . . . , q
up
2N ]

T and qlow = [qlow1 , . . . , qlow2N ]T . Thus, an iterative projected gradient

decent method for solving (5.29) can be written as

x(ℓ) = ψtℓ

(
x(ℓ−1) + α(ℓ)∇P̃(x(ℓ−1))

)
(5.32)

where ℓ is the iteration index, α(ℓ) is a step size, and ψtℓ(·) is also a projector as defined

in (5.26).

Structure of the proposed FBM-DetNet

In order to optimize the step sizes {α(ℓ)} and scaling parameters {tℓ} of the projection

function, we also unfold each iteration in (5.32) as a separate DNN layer. The overall

structure of the proposed detector FBM-DetNet is also illustrated in Fig. 5.1, and is similar

to that of B-DetNet as each layer of both networks takes a vector of 2U elements as the

input and generates an output vector of the same size.

The specific structure for each layer ℓ of FBM-DetNet is illustrated in Fig. 5.6. Each layer of

FBM-DetNet has two weight matrices H and HT and two bias vectors qup and qlow defined

by the channel and the received signal, respectively. The activation function is the Sigmoid
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Figure 5.6: Specific structure of layer ℓ of FBM-DetNet. The weight matrices and the bias vectors are defined
by the channel and the received signal, respectively.

function σ(·) due to the use of the approximation in (5.9). Since H ∈ R2N×2U , the learning

process for each layer of FBM-DetNet can be interpreted as first up-converting the signal

x(ℓ−1) from dimension 2U to dimension 2N using the weight matrix H, then applying the

nonlinear activation function σ(·) before down-converting the signal back to dimension 2U

using the weight matrix HT . Finally, the function ψtℓ(·) is implemented to project x(ℓ−1)

onto the discrete set (MC)U .

The layers of FBM-DetNet are similar to those of FBM-CENet in Fig. 5.2b. However, while

the weight matrices of FBM-CENet are defined by the pilot matrix P which is trainable, the

weight matrices of FBM-DetNet are defined by the channel matrix H which is not. Thus,

FBM-DetNet is highly adaptive to the channel. The trainable parameters of FBM-DetNet

are the step sizes {α(ℓ)}, scaling parameters {tℓ} for the projector, and a scaling parameter

β for the Sigmoid function. Note that the coefficient c
√
2ρ is also omitted in FBM-DetNet

for the same reason as in FBM-CENet.
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5.4.3 Training strategy

A training sample for the two proposed data detection networks, B-DetNet and FBM-DetNet,

can be obtained by first randomly generating a channel matrix H according to a particular

channel model, then obtaining an estimate Ĥ of H by using, e.g., FBM-CENet. Next, the

transmit signal x can be randomly drawn from the signal constellation and a Gaussian noise

vector z can be chosen to obtain a representative received signal vector y = Qb(Hx+ z).

Similar to the channel estimation network, the cost function to be minimized is ∥x(L) −x∥2,

where x is the target (transmitted) signal. For training the proposed data detection networks,

we do not need to use the soft quantization model because the trainable parameters do not

appear in the received signals y or qup and qlow, and therefore the exact hard quantizer can

be used.

5.5 Nearest-Neighbor Search for Second-Stage Detec-

tion

In this section, an NN search method, operating as a second data detection stage, is proposed

to further improve the data detection performance. The idea of using two-stage data detec-

tion has already been used in [31]. However, the search space can be very large when the

number of users is large, and so not efficient in terms of computational complexity. Let x̃ de-

note an estimate of the transmitted signal, e.g., given in stage 1 by B-DetNet, FBM-DetNet,

or other detectors, the proposed NN search method first finds a limited set of symbol vectors

that are nearest to x̃ and then searches over that set for the most likely symbol vector as

the final detection solution. The contribution of the proposed NN search method is that it

generates searches over a limited number of symbol vectors that are nearest to the estimate

x̃, and thus significantly reduces the computational load.

105



0
1√
2

−1√
2

x̃i
ϑi

0 2√
10

−2√
10

1√
10

−1√
10

3√
10

−3√
10

x̃i

decision boundary points

ϑi

QPSK(a)

16-QAM(b)

Figure 5.7: An example for the relative difference between x̃i and the constellation points: (a) the estimate
x̃i is far from ϑi = 0 and close to the constellation point 1/

√
2, which means there is a high probability that

the transmitted signal xi is 1/
√
2; (b) the estimate x̃i is close to the boundary point ϑi = −2/

√
10, thus it

is difficult to say if −3/
√
10 or −1/

√
10 was transmitted.

We denote M as the constellation in the real domain; for example, M =
{
± 1√

2

}
for QPSK

and M =
{
± 1√

10
,± 3√

10

}
for 16-QAM. Let B be the set of decision boundary points; i.e.,

B = {0} for QPSK and B =
{
0,± 2√

10

}
for 16-QAM. Denote x̃ = [x̃1, . . . , x̃2U ]

T and ϑ =

[ϑ1, . . . , ϑ2U ]
T , where ϑi is the decision boundary point that is nearest to x̃i, as follows:

ϑi = arg min
ϑ∈B

|ϑ− x̃i|, i ∈ {1, 2, . . . , 2U}. (5.33)

An illustrative example for the relative difference between x̃i and the constellation points

is given in Fig. 5.7. This example illustrates the problem that occurs when x̃i is close to a

decision boundary point, where symbol-by-symbol detection may not be reliable. Here, we

use a threshold γ > 0 to classify whether symbol-by-symbol detection is used or not. More

specifically, if the distance from x̃i to its nearest decision boundary point ϑi is greater than

γ, i.e., |x̃i−ϑi| > γ, then we can use symbol-by-symbol detection for x̃i. When |x̃i−ϑi| ≤ γ,

symbol-by-symbol detection is not reliable, and so we list the two nearest constellation points

to x̃i as the candidates for the transmitted signal xi.

Let Ai denote the set of candidates for the transmitted signal xi. When |x̃i − ϑi| > γ, we
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apply symbol-by-symbol detection and so

Ai =

{
arg min

x∈M
|x− x̃i|

}
.

When |x̃i−ϑi| ≤ γ, we have Ai =
{
ϑi ± 1√

2

}
=
{
± 1√

2

}
for QPSK and Ai =

{
ϑi ± 1√

10

}
for

16-QAM. Hence, Ai contains only one or two elements. The following example illustrates

the formation of Ai.

Example 5.1. Suppose that x̃ = [0.1,−0.5,−0.3, 0.8]T and QPSK modulation is used with

γ = 1
2
√
2
≈ 0.35. Note here that ϑ1 = ϑ2 = ϑ3 = ϑ4 = 0. We have

• A1 = A3 =
{
± 1√

2

}
because |x̃1 − ϑ1| = 0.1 < γ and |x̃3 − ϑ3| = 0.3 < γ,

• A2 =
{−1√

2

}
because |x̃2−ϑ2| = 0.5 > γ and x̃2 is closer to

−1√
2
than 1√

2
, i.e.,

∣∣x̃2− −1√
2

∣∣ <∣∣x̃2 − 1√
2

∣∣,
• A4 =

{
1√
2

}
because |x̃4−ϑ4| = 0.8 > γ and x̃4 is closer to

1√
2
than −1√

2
, i.e.,

∣∣x̃4− 1√
2

∣∣ <∣∣x̃4 − −1√
2

∣∣.
Hence, in this example, A1 and A3 have two elements while A2 and A4 have only one

element.

The complete set of candidates for the transmitted signal vector is given by the Cartesian

product

A = A1 ×A2 × . . .×A2U ,

and so the size of A is |A| =
∏2U

i=1 |Ai| = 2A, where A is the number of sets Ai having two

elements. The search methods in [31] and in Chapter 4 always search over the entire set

A. However, it can be seen that the size of A grows exponentially with A. In addition, A

also grows as the number of users K increases. Thus, searching over the entire list A can be

prohibitively complex when the number of users is large.
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On the other hand, the proposed NN search method finds a set of M symbol vectors in

A that are nearest to x̃, then searches over that smaller set for the final solution. In this

way, the NN search method can limit the computational complexity. Note that a symbol

vector in this context is any element of A. Let XM = {x1,x2, . . . ,xM} denote the set

of the M nearest symbol vectors to x̃. The larger M is, the higher the probability that

the set XM contains the true symbol vector. However, a large value of M will result in

more computation for the search. Therefore, M should be chosen to achieve a good trade-off

between detection accuracy and computational complexity. The value ofM can be chosen by

empirical evaluations. The main challenge here is how to find the M nearest symbol vectors

to x̃ quickly and efficiently. To address this problem, we employ the following notation and

definitions.

For any two symbol vectors x ∈ A and x′ ∈ A, let d(x,x′) denote the number of position

indices at which the elements of x are different from the corresponding elements of x′. Since

each element of x and x′ belongs to a finite set of just one or two elements, d(x,x′) is actually

the Hamming distance between x and x′.

Definition 5.1 (Neighbor of a symbol vector). A symbol vector x is called a neighbor of

another symbol vector x′, or vice versa, when the Hamming distance between them is one,

i.e., d(x,x′) = 1.

Definition 5.2 (Neighbor of a set). Given a set of symbol vectors S and another symbol

vector x /∈ S, let

dmin(x,S) = min
x′∈S

d(x,x′). (5.34)

The symbol vector x is called a neighbor of S if and only if dmin(x,S) = 1, or in other words,

if and only if x is the neighbor of at least one member of S.

Let N (x) and N (S) denote the set of neighbors of symbol vector x and set S, respectively.

Let XM = {x1,x2, . . . ,xM} with xm ∈ A and m ∈ {1, 2, . . . ,M} denote the set of the M
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nearest symbol vectors to x̃ satisfying

∥x1 − x̃∥2 < ∥x2 − x̃∥2 < . . . < ∥xM − x̃∥2 < ∥xout − x̃∥2 (5.35)

where xout is any symbol vector in A, but not in XM . Hence, xm is the mth nearest symbol

vector to x̃. Clearly, the nearest symbol vector x1 is obtained by applying symbol-by-symbol

detection to x̃. The problem now is how to efficiently find x2, . . . , xM . The following

proposition can be exploited to solve this problem.

Proposition 5.1. The mth nearest symbol vector xm must be a neighbor of the set Xm−1 =

{x1,x2, . . . ,xm−1}, i.e.,

xm ∈ N (Xm−1).

Proof. Please refer to Appendix E

Proposition 5.1 indicates that we can find the mth nearest symbol vector xm from the neigh-

bor set of Xm−1, i.e.,

xm = arg min
x∈N (Xm−1)

∥x− x̃∥2 (5.36)

where N (Xm−1) is the neighbor set of Xm−1 and is given as

N (Xm−1) =

(m−1⋃
p=1

N (xp)

)
\ Xm−1

=
m−1⋃
p=1

(
N (xp) \ Xm−1

)
. (5.37)

Hence, in order to find xm, we need to accomplish two tasks: (i) find m−1 subsets {N (xp)\

Xm−1}p=1,...,m−1 and (ii) search for xm within the subsets. The method of directly finding the

m − 1 subsets and then searching them for xm is not efficient. In the following, we present

a recursive strategy to obtain xm quickly and efficiently.

109



...
...

...

N (x1) \ Xm−2 N (x2) \ Xm−2 · · · N (xm−2) \ Xm−2 xm−1
by (5.36)

by (5.38) by (5.38) by (5.38)

N (x1) \ Xm−1 N (x2) \ Xm−1 · · · N (xm−2) \ Xm−1 N (xm−1) \ Xm−1
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Figure 5.8: Flowchart of the proposed nearest-neighbor search method. A recursive formation of sets is
exploited to reduce the computational complexity. A subset N (xp)\Xm−1 with p ∈ {1, . . . ,m−2} is obtained
by removing xm−1 from the subset N (xp) \ Xm−2 as given in (5.38). The last subset N (xm−1) \ Xm−1 is
obtained by using xm−1 and other nearest symbol vectors. The mth nearest symbol vector xm is then
obtained by searching over the m− 1 subsets.

Note that the inner term on the right-hand side of (5.37) can be written as follows:

N (xp) \ Xm−1 =
(
N (xp) \ Xm−2

)
\ {xm−1}. (5.38)

Therefore, we can exploit (5.38) to obtain the first m− 2 subsets {N (xp) \ Xm−1}p=1,...,m−2

by removing xm−1 from m − 2 other subsets {N (xp) \ Xm−2}p=1,...,m−2, which were already

obtained previously when we found xm−1. The last subset N (xm−1) \ Xm−1 is obtained by

using xm−1 and the other nearest symbol vectors. A flowchart illustrating this recursive

strategy is given in Fig. 5.8.

Remark 1: If the elements of N (xp)\Xm−2 are already sorted in ascending order of distance

to x̃, then xm−1 can be removed from N (xp) \ Xm−2 by simply checking the first element of

N (xp)\Xm−2. The reason for this is that xm−1 is the (m−1)th nearest symbol vector, which

means the distance from xm−1 to x̃ cannot be greater than the distance from any element

of N (xp) \ Xm−2 to x̃. In addition, the elements of N (xp) \ Xm−2 are distinct and already

sorted, and so if xm−1 exists in N (xp) \ Xm−2, it must be the first element of N (xp) \ Xm−2.

Remark 2: If the elements of each subset N (xp) \ Xm−1 are already sorted in ascending

order of distance to x̃, then the search over the m− 1 subsets for xm can be done by simply

110



Algorithm 4: Proposed Nearest-Neighbor Search.
Input: x̃, γ, M .
Output: x̂.

1 Find ϑ and A1,A2, . . . ,A2U based on ϑ;

2 Let |A| =
∏2U

i=1 |Ai|;
3 if |A| ≤M then
4 Let A = A1 ×A2 × . . .×A2U ;
5 x̂ = arg minx∈A P(x);

6 else
7 Find x1 via symbol-by-symbol detection;
8 Let C1 = sort (N (x1));
9 for m = 2 to M do

10 Let Sm = {C1[1], C2[1], . . . , Cm−1[1]};
11 xm = arg minx∈Sm

∥x− x̃∥2;
12 if m < M then
13 for p = 1 to m− 1 do
14 if Cp[1] = xm then
15 Remove Cp[1] from Cp;
16 end

17 end
18 Let Cm = sort (N (xm));
19 for p = 1 to m− 1 do
20 if Cm[1] = xp then
21 Remove Cm[1] from Cm;
22 end

23 end

24 end

25 end
26 x̂ = arg minx∈XM

P(x);

27 end
28 return x̂;

searching over a list of m−1 candidates, where each candidate is the first element of a subset

N (xp) \ Xm−1.

Based on the observations in Remarks 1 and 2, we propose the nearest-neighbor search

method described in Algorithm 4. The key idea is to use the recursive strategy depicted in

Fig. 5.8 and to implement the observations made in Remarks 1 and 2. Whenever forming a

set N (xm), we sort its elements in ascending order of distance to x̃ as described in lines 8

and 18 of Algorithm 4. In this way, we only need to sort M − 1 times, and the remainder of
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the proposed algorithm only involves comparisons based on checking the first elements of the

subsets. We denote C1, . . . , CM−1 as the subsets corresponding to x1, . . . ,xM−1, respectively,

and Cm[1] denotes the first element of the subset Cm. Lines 10 and 11 implement Remark 2 to

obtain xm. Remark 1 is implemented in lines 13-17. The last subset is obtained in lines 18-

23. Finally, line 26 gives the final solution by searching for the highest-likelihood symbol

vector among the M nearest symbol vectors.

5.6 Computational Complexity Analysis and Numeri-

cal Results

5.6.1 Computational Complexity Analysis

Here we present a Big-O computational complexity analysis for the considered channel esti-

mation and data detection methods. The presented complexities only account for the online

processing phase. Offline computations are excluded. Table 5.1 compares the complexity

of different channel estimation methods. It can be seen that the complexity of BMMSE

is the lowest and highest when the channels are i.i.d. and correlated, respectively. This

is because the BMMSE estimation matrix can be computed offline for i.i.d. channels, but

online for correlated channels. The complexity of BWZF is higher than that of the SVM

method and the proposed FBM-CENet because the BWZF estimation matrix must also be

computed online as it depends on the received signal. The complexity order of the proposed

FBM-CENet is higher than BMMSE with i.i.d. channels, but scales more slowly than the

SVM method since the SVM complexity is a super-linear function of Tt.

The complexity comparison of different data detection methods is given Table 5.2. Note that

while the detection methods SVM and FBM-DetNet do not require preprocessing, BMMSE,

112



Table 5.1: Computational complexity comparison of channel estimation methods.

Method Complexity

BMMSE
i.i.d. channels: O(UN2Tt)

correlated channels: O(UN3T 2
t )

BWZF O
(
U2N3Tt

)
Proposed
SVM-based

O
(
UNTtfsl(Tt)

)
Proposed
FBM-CENet

O
(
UN2LTt

)
Table 5.2: Computational complexity comparison of data detection methods.

Method Preprocessing Detection Stage

BMMSE O(N3) O(UNTd)

BWZF O
(
UN

)
O
(
U2NTd

)
Proposed
SVM-based

– O
(
UNfsl(N)Td

)
Proposed
B-DetNet

O(N3) O
(
UNLTd

)
Proposed
FBM-DetNet

– O
(
UNLTd

)

BWZF, and B-DetNet require a preprocessing step due to the linearization process of the

Bussgang decomposition. In the detection stage, BMMSE has the lowest complexity since it

requires only one matrix-vector multiplication for each time slot. The complexity of BWZF

is higher than BMMSE since the demultiplexing matrix of BWZF has to be re-computed in

each time slot. The detection complexities of the proposed B-DetNet and FBM-DetNet are

higher than the complexity of BMMSE, but lower than that of the SVM-based method.

The computational complexity of the proposed NN search method is O(MU max{M,N}Td)

in the worst case. This complexity is mainly due to the detection step for x̂ and the for

loops as described in Algorithm 4. The complexity of the full A-space search method is

O(|A|UNTd) where |A| can grow exponentially with U .
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(a) Uncorrelated NLoS channels.
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(b) Spatially correlated and mixed LoS-NLoS channels.

Figure 5.9: Channel estimation performance comparison for a given pilot matrix with U = 4, L = 8, and
N = 32.

5.6.2 Numerical Results

Simulation Setting

Here we present numerical results that illustrate the superior performance of the proposed

channel estimation and data detection networks. For training the networks, we use Ten-

sorFlow [108] and the Adam optimizer [109] with a learning rate that starts at 0.002 and

decays at a rate of 0.97 after every 100 training epochs. The size of each training batch is

set to 1000. The input of the first layer is set to a zero vector. When the pilot matrix P is

trainable, we use the soft quantization model in (5.14) and (5.15) for the training phase and

set c1 = 0.01 and c2 = c3 = c4 = 1000. For the channel estimation phase, we set the training

length to be five times the number of users, i.e., Tt = 5U .
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We consider the following channel model:

HC = HC,LoSΞLoS +HC,NLoSΞNLoS, (5.39)

where HC,LoSΞLoS and HC,NLoSΞNLoS account for the Line-of-Sight (LoS) and Non-Line-of-

Sight (NLoS) channels, respectively. The matrices ΞLoS and ΞNLoS are diagonal and defined

as ΞLoS = diag(ξLoS1 , . . . , ξLoSU ) and ΞNLoS = diag(ξNLoS1 , . . . , ξNLoSU ) where

ξLoSk =

√
κu

κu + 1
and ξNLoSu =

√
1

κu + 1
, (5.40)

and κu is the Rician factor of the channel from the u-th user to the BS. If κu = 0, there is no

LoS component between user-u and the BS. Let HC,LoS = [hC,LoS
1 , . . . ,hC,LoS

U ] and HC,NLoS =

[hC,NLoS
1 , . . . ,hC,NLoS

U ]. The LoS channel vector hC,LoS
u is given as [110]

hC,LoS
u =

√
γue

jφu [1, ej2πdA sin(θu), . . . , ej2πdA(N−1) sin(θu)]T (5.41)

where γu is the large-scale fading coefficient, φu ∈ [0, 2π] is a random phase shift, and dA is

the antenna spacing parameter (in fractions of a wavelength), and −π/3 ≤ θu ≤ π/3 is the

angle-of-arrival seen at the BS for user-u. The NLoS channel is given as hC,NLoS
u ∼ CN (0,CC

u)

where tr(CC
u)/N = γu. Note that the channels between a user and different receive antennas

can be correlated, but the channels between the users and the BS are uncorrelated. The

large-scale fading coefficient is modeled (in dB) as [111] γu = −30.18 − 26 log10(du) + Fu

where du is the distance between user-u and the BS, and Fu ∼ N (0, σ2
sh) is the shadow

fading coefficient with σsh = 4. The Rician factor is given as κu = 13 − 0.03du (dB) [111].

We assume perfect transmit power control at the users so that the received signal powers of

different users are the same.
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Figure 5.10: Channel estimation performance of GDM versus the proposed FBM-CENet with U = 4, L = 8,
and N = 32.

Channel Estimation Performance Evaluation and Comparison

We compare the channel estimation performance of different methods in terms of normalized

mean squared error (NMSE), defined here as NMSE = E[∥Ĥ −HC∥2F]/E[∥HC∥2F], where Ĥ

is an estimate of the channel HC. When the pilot matrix is pre-specified, it is assumed to

contain U columns of a Tt × Tt discrete Fourier transform (DFT) matrix. In particular, the

uth row of the pilot matrix XC
t is column (u+ 1) of the DFT matrix.

Fig. 5.9 presents a performance comparison of different channel estimation methods for

the given DFT-based pilot matrix and considering both uncorrelated NLoS and spatially

correlated mixed LoS-NLoS channels. Numerical results for the uncorrelated NLoS scenario

are given in Fig. 5.9a where we set κu = 0 for all u, and hC,NLoS
u ∼ CN (0, IN). It can

be seen from Fig. 5.9a that the proposed FBM-CENet significantly outperforms existing

methods. For the case of one-bit ADCs, it is observed that the proposed FBM-CENet

slightly outperforms the SVM-based method at medium-to-high SNRs. However, at low

SNRs, the performance gap between FBM-CENet and the SVM method is larger. For
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few-bit ADCs, it is clear that FBM-CENet significantly outperforms other existing channel

estimation methods. Note that the SVM-based method was specifically designed for one-

bit ADCs, and thus SVM results for other ADC resolutions are not available. The BWZF

method does not perform well for one-bit ADCs since it gives a higher weight to signals

with lower variance. However, for one-bit ADCs, there is only one bin on each side of the

quantization threshold, and thus the weighting has no impact in this case. On the other

hand, higher resolution ADCs result in more quantization bins and thus different weights

come into play, and thus we see that BWZF performs better with few-bit quantization.

Numerical results for spatially correlated mixed LoS-NLoS channels are provided in Fig. 5.9b.

For this scenario, we use the typical urban correlation model as in [33] and set 10 ≤ du ≤

1000. For the case of one-bit ADCs, the SVM-based method gives the best performance,

while the proposed FBM-CENet performs worse than the SVM-based and BMMSE methods,

but better than BWZF. The reason for this is because both BMMSE and SVM exploit

knowledge of the channel correlation matrix, which is not used by FBM-CENet. Only

received signals and pilot matrix are used by FBM-CENet. However, for few-bit ADCs,

the proposed FBM-CENet approach outperforms both BMMSE and BWZF at higher SNRs

even without using information about the channel statistics (recall that the SVM method

only applies in the one-bit case). BMMSE gives the best performance at low SNRs for an

additional reason beyond its use of the channel correlation information, namely that its use

of the Bussgang decomposition is more accurate when the received signal is Gaussian, which

becomes a better approximation as the power of the Gaussian noise increases. However,

BMMSE uses an approximation for the Bussgang decomposition with few-bit ADCs that

limits its performance at higher SNRs where FBM-CENet is superior. Note that BMMSE

and SVM were implemented assuming perfect knowledge of the channel correlation, which

may not be available in practice. FBM-CENet still provides very good performance without

any relying on any correlation information, but extending the network to be able to exploit

this information is an interesting area for future work.
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Figure 5.11: Channel estimation performance of GDM versus the proposed FBM-CENet with different values
of L, U = 4, N = 32, and SNR = 30 dB.

In the following comparisons and evaluations, from Fig. 5.10 to Fig. 5.13, we present results

for uncorrelated NLoS channels since we found that the results were similar for spatially

correlated mixed LoS-NLoS channels. Fig. 5.10 compares the proposed FBM-CENet with

PG-FBM-CENet as well as the conventional gradient descent method (GDM) in (5.13) using

a constant step size αt for all iterations. The step size αt used in GDM is normalized by

the SNR as we found this gives stable performance for different SNR regimes. Note that

FBM-CENet, PG-FBM-CENet, and GDM use the same number of layers (iterations) so

that they have the same complexity. Simulation results show that the proposed FBM-CENet

significantly outperforms PG-FBM-CENet and the conventional GDM. This results because,

while GDM uses a common step size in all iterations and PG-FBM-CENet only optimizes

the step sizes, the proposed FBM-CENet learns an optimal path by jointly optimizing the

optimal step sizes {α(ℓ)
t } as well as the optimal scaling parameter βt.

In practice, the step size αt can also be tuned by, for example, the backtracking line search

method. However, this method requires an inner search loop in each iteration and therefore

significantly increases the computational complexity compared to using fixed step sizes.

Note that GDM, PG-FBM-CENet, and FBM-CENet presented above use fixed step sizes.
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Figure 5.12: Channel estimation performance of the proposed FBM-CENet with various values of U and L,
N = 32, and SNR = 30 dB.

For PG-FBM-CENet and FBM-CENet, the step sizes are obtained by the training process.

Thus, GDM, PG-FBM-CENet, and FBM-CENet have significantly lower complexity. In

addition, the inner search loop in each iteration requires the calculation of the objective

function (5.10), which is undefined when the argument of the logarithm approaches zero.

In our investigation, this issue occurs frequently. Note however that although the value of

the objective function (5.10) can become undefined, its gradient (5.12) is robust against this

issue.

In Fig. 5.11, we evaluate GDM, PG-FBM-CENet, and FBM-CENet for different numbers of

layers L. It is observed that the proposed FBM-CENet performs better than both PG-FBM-

CENet and GDM for different values of L and also requires fewer layers for convergence.

We investigate the performance of FBM-CENet as U , L, and b vary in Fig. 5.12. We see

that for a given bit resolution b, the number of layers L need not be increased as the number

of users U increases. However, as the bit resolution increases, improved performance can be

achieved with an increased number of layers. Specifically, with one-bit ADCs, we can fix the

number of layers to 6 as U increases from 3 to 6. However, as the bit resolution increases to

2 and 3, it is best to increase the number of layers to 8 and 10, respectively.

In Fig. 5.13, we consider the case where the pilot matrix is trained concurrently with the
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(a) Proposed FBM-CENet with relu-based and tanh-
based soft quantizers.
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(b) Proposed FBM-CENet versus conventional DNN.

Figure 5.13: Channel estimation performance comparison with trainable pilot matrix, U = 4, L = 8, and
N = 32.

channel estimator. As mentioned earlier, when the pilot matrix is not given, we need to

use a soft quantizer, based on either the ReLU or tanh function. In Fig. 5.13a, it is seen

that the ReLU- and tanh-based soft quantizers give essientially identical performance. This

is due to the fact that the parameters of the soft quantizers should be chosen so that they

act similar to a hard quantizer. In Fig. 5.13b, the proposed FBM-CENet is compared with

the existing conventional DNN-based method in [53] which also jointly optimizes the pilot

matrix and the channel estimator. Note that we use the network structure and training

method proposed in [53] to obtain the performance of the conventional DNN-based method.

FBM-CENet significantly outperforms the channel estimator in [53] since the method of [53]

uses the conventional data-driven DNN structure in Fig. 5.2a. On the other hand, the struc-

ture of FBM-CENet takes advantage of domain knowledge in the ML estimation framework.

In Fig. 5.13b, we also include the channel estimation performance of FBM-CENet for a

given orthogonal DFT-based pilot matrix in order to show that jointly optimizing the pilot

matrix and the estimator can improve the estimation accuracy. This improvement is ob-
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(a) b = 1 bit, U = 4, and L = 8.
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(b) b = 2 bit, U = 8, and L = 16.
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(c) b = 3 bit, U = 16, and L = 24.

Figure 5.14: Performance comparison for data detection methods with QPSK signalling and N = 32.

tained since orthogonal pilot data is known to be sub-optimal in low-resolution quantized

systems [53]. When the pilot matrix is not given and treated as trainable, the training pro-

cess of FBM-CENet produces a non-orthogonal pilot matrix that yields better performance

than orthogonal pilots.

121



-10 -5 0 5 10 15 20 25 30

SNR (dB)

10
-2

10
-1

B
E

R

(a) b = 1 bit, U = 4, and L = 8.
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(b) b = 2 bit, U = 8, and L = 16.
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(c) b = 3 bit, U = 16, and L = 24.

Figure 5.15: Performance comparison for data detection methods with 16-QAM signalling and N = 64.

Data Detection Performance Evaluation and Comparison

In the following, we present performance comparisons for data detection. Unless otherwise

stated, uncorrelated NLoS channels are considered and the estimated CSI is obtained by

FBM-CENet with a trainable pilot matrix. Comparisons given in Fig. 5.14 and Fig. 5.15

are for QPSK and 16-QAM signaling, respectively. The results show that FBM-DetNet
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(b) 2-bit ADCs, U = 8, L = 16

Figure 5.16: Data detection performance comparison for various values of N at 10-dB SNR and 16-QAM
signalling.
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Figure 5.17: Data detection performance comparison with spatially correlated mixed LoS-NLoS channels,
b = 2, U = 4, N = 64, L = 8, 16-QAM signalling, and BMMSE-based estimated CSI.

significantly outperforms other data detection methods. FBM-DetNet outperforms B-DetNet

because FBM-DetNet is developed based on the original quantized system model whereas B-

DetNet relies on the linearized system model in (5.21) whose effective noise n is approximated

as Gaussian. Furthermore, the distortion covariance matrix Σn assumed by B-DetNet for the

case of few-bit ADCs is approximate since a closed-form expression for Σn is intractable. For

the case of 3-bit ADCs and 16-QAM signaling, B-DetNet performs worse than the BWZF
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method. As mentioned earlier, this is because BWZF performs better when there are more

quantization bins (i.e., few-bit quantization), and also because B-DetNet is developed by

unfolding the gradient descent of a linearized system, similar to the methodology applied in

FS-Net [106] and DetNet [112], whose performance tends to degrade with higher dimensional

constellations [113]. Note that FS-Net was developed for unquantized systems while B-

DetNet is for the low-resolution quantized case. A good review of DNN-based detectors for

unquantized systems can be found in [114].

In Fig. 5.16, we present a detection performance comparison for various values of N at 10-

dB SNR and with 16-QAM signalling. It can be seen that the performance improvement of

the proposed detection networks is maintained as the number of receive antennas increases.

Since our derivations and methods assume no constraint on N , the proposed networks can

work with an arbitrary number of receive antennas.

We provide a data detection performance comparison for spatially correlated mixed LoS-

NLoS channels in Fig. 5.17 where the estimated CSI is obtained by the BMMSE method.

It is still observed that the proposed FBM-DetNet gives the best performance. This shows

that the proposed detection networks can work well with the estimated CSI given by not

only FBM-CENet but also other channel estimation methods.

For the case of one-bit ADCs, the reformulated ML detection problem (5.29) reduces to the

following form:

x̂robust
ML = arg min

xC∈(MC)U

2N∑
i=1

log
(
1 + e−c

√
2ρyiĥ

T
i x
)
. (5.42)

The reformulated ML detection problem (5.42) does not share the non-robustness issue

of (5.27), since if
√
2ρyiĥ

T
i x

⋆ is largely negative (due to sign(ĥT
i x

⋆) ̸= yi and large ρ), we

have log(1+e−c
√
2ρyiĥ

T
i x⋆

) ≈ −c
√
2ρyiĥ

T
i x

⋆. This approximation holds because log(1+et) ≈ t

for large t. Note that the value of −c
√
2ρyiĥ

T
i x

⋆ is finite for large ρ, and thus so is the

objective function in (5.42) for all possible data vectors. Therefore, the reformulated ML
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Figure 5.18: Performance comparison between the conventional and the proposed ML detection problems
with U = 2, N = 16, and QPSK signaling. The BMMSE channel estimator is used with different training
lengths Tt.

detection problem is more robust and (5.42) is more likely to yield x⋆ as the optimal solution,

unlike problem (5.27). Note that we have log(1 + et) ≈ t for large t. However, a sequential

computation by first evaluating et then the log function may result in an infinite value since

et grows rapidly. Hence, one should use the approximation log(1 + et) ≈ t when t is large,

e.g., t > 100.

In Fig. 5.18, we verify the robustness of the reformulated ML detection problem (5.42) for

the case of 1-bit ADCs when implemented with estimated CSI. We carried out simulations

using the BMMSE channel estimator with different training lengths Tt. It can be seen from

Fig. 5.18 that when the CSI is perfectly known, both the conventional and the proposed

ML detection algorithms yield almost identical performance. However, when the CSI is

imperfectly known, the performance of conventional ML detection is significantly degraded

at high SNR, while the proposed robust ML detection algorithm remains stable.

For the NN search method, one-bit performance comparisons are given in Fig. 5.19 for the

case of QPSK with U = 4 and N = 32, and Fig. 5.20 for the case of 16-QAM with U = 8 and

N = 128. We set γ = 1
2
√
2
for QPSK and γ = 1

2
√
10

for 16-QAM. Here, we compare the BZF,
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(a) Proposed FBM-DetNet.
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(b) Proposed SVM-based.
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(c) BZF.

Figure 5.19: Second stage performance comparison between different receivers with b = 1, U = 4, N = 32,
QPSK signaling, and perfect CSI.

FBM-DetNet without the projector, and SVM-based receivers and omit BMMSE since the

performance of BZF and BMMSE are comparable, and the complexity of BZF is lower than

that of BMMSE. The case of M = 1 is equivalent to the use of symbol-by-symbol detection

in the first stage. In this case, OBMNet provides the best performance, i.e., it yields the

best initial detection results. When increasing M , the proposed NN search method in the

second stage significantly improves the performance compared to the first stage. In Fig. 5.19,

the BERs obtained with a small M , e.g., M = 2, are already close to the BER of the ML

detection approach. The results in Fig. 5.20 clearly show that the performance can be

improved by increasing M , but this requires more computation resources. Thus, one should
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(c) BZF.

Figure 5.20: Second stage performance comparison between different receivers with b = 1, U = 8, N = 128,
16-QAM signaling, and perfect CSI.

choose M to balance the detection accuracy and computational complexity. It should be

noted that |A| is always a power of two, but M can be any positive integer number.

5.7 Conclusion

In this chapter, we have developed a channel estimation network (FBM-CENet) and two

data detection networks (B-DetNet and FBM-DetNet) for massive MIMO systems with low-

resolution ADCs. The proposed networks are model-driven and have special structures that

can take advantage of domain-knowledge to efficiently address the severe non-linearity caused
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by the low-resolution ADCs. An interesting feature of the proposed FBM-CENet is that the

pilot matrix directly plays the role of the weight matrices in the network structure, which

makes it possible to jointly optimize the estimation network and the pilot signal by simply

treating the pilot matrix as trainable parameters. The proposed detection networks are

highly adaptive to the channel and easy to train since they have a small number of trainable

parameters. Simulation results show that the proposed networks significantly outperform

existing methods.

We have also proposed an NN search method to further improve the data detection perfor-

mance. The proposed NN search method generates searches over a limited number of most

likely candidates and thus helps contain the search complexity. A recursive strategy was

proposed to obtain the set of nearest candidates efficiently and quickly so that the proposed

NN search method can be implemented in an efficient manner.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

One practical solution for reducing hardware cost and power consumption in MIMO systems

is to use low-resolution ADCs, due to their simple structure and very low power consump-

tion. However, the severe nonlinearity of low-resolution ADCs causes significant distortions

in the received signals and makes signal processing tasks such as channel estimation and

data detection much more challenging compared to those in high-resolution systems. This

dissertation exploits machine learning to develop low-complexity yet efficient and robust al-

gorithms for channel estimation and data detection in MIMO systems with low-resolution

ADCs. It has been shown that machine learning techniques such as K-means clustering,

SVM, and DNN are powerful tools for addressing the channel estimation and data detection

problems in MIMO systems with low-resolution ADCs.

Blind detection in MIMO systems with low-resolution ADCs is studied in Chapter 3 where

two new learning methods for enhancing the performance were proposed. Numerical results

demonstrate the performance improvement and robustness of the proposed learning methods
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over existing techniques. It was also observed that the two proposed learning methods

require only a few iterations to converge. Chapter 3 also gives a performance analysis for

the proposed learning methods in case of one-bit ADCs. Based on the analytical results, a

new criterion for the transmit signal design problem has been proposed.

Chapter 4 showed that efficient and robust channel estimation and data detection in one-

bit massive MIMO systems can be obtained through the SVM framework. SVM-based

channel estimators for both uncorrelated and spatially correlated channels were developed.

This chapter aslo proposed a two-stage SVM-based data detection method and an SVM-

based joint CE-DD method. Finally, an extension of the proposed methods to OFDM

systems with frequency-selective fading channels was derived. Simulation results revealed

the superiority of the proposed SVM-based methods against existing ones and the gain is

greatest for moderate to high SNR regimes.

In Chapter 5, model-driven deep neural networks for channel estimation, pilot signal design,

and data detection were developed. The channel estimation network allows a joint optimiza-

tion of the channel estimator and the pilot signal design. The detection networks are highly

adaptive to the channel and easy to train since their structure contains a small number of

trainable parameters. The developed networks were shown to have low complexities and

outperform existing methods. Last but not least, Chapter 5 proposed an NN search method

to further improve the data detection performance.

6.2 Future Work

In this section, we present interesting topics for future work.

1. Variational Bayesian (VB) Approach for Low-Resolution MIMO Signal Processing:

VB inference is a powerful machine learning framework that provides approximation
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of intractable posterior distributions. The VB inference framework can be used in

lieu of traditional machine learning models when the channel is rapidly time-varying.

Preliminary results have shown that VB inference is a promising approach for low-

resolution MIMO signal processing [115].

2. MIMO Channel Estimation and Data Detection with Spatial Σ∆ Quantization: The

idea of spatial Σ∆ quantization is to apply feedback and oversampling to the spatial

domain [116–119], which provides noise shaping in space by placing antennas closer

than half of the wavelength. Spatial Σ∆ structures have been leveraged for inter-

ference cancellation and beamforming [116, 120]. Early results in spectral efficiency

analysis show that spatial Σ∆ quantization can significantly improve the system per-

formance [121,122]. However, limited results have been reported for the MIMO channel

estimation and data detection problems.

3. Fully Low-Resolution MIMO Signal Processing: Thus far, the dissertation has been

considering low resolution at the ADCs. Low resolution can also be considered in

baseband data processing. This will help significantly reduce circuit area, process-

ing delay, and processing power consumption, which are critical in high speed data

rate communication with low-cost devices. Preliminary results [123, 124] only con-

sider simple linear receivers such MMSE. Learning-based signal processing framework

using few-bit operations can offer signal performance advantage over existing linear

processing methods.
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Appendix A

Proof of Proposition 3.2

We first express Px̌k→x̌k′
as follows:

Px̌k→x̌k′
= P

[
∥y − y̌k∥22 ≥ ∥y − y̌k′∥22

∣∣ x = x̌k

]
= P

[
∥υ∥22 + 2ℜ{υHw} ≤ 0

]
= P

[ Nrx∑
i=1

(
|υi|2 + 2ℜ{υ∗iwi}

)
≤ 0
]
. (A.1)

By letting εi = |υi|2 + 2ℜ{υ∗iwi}, (A.1) becomes

Px̌k→x̌k′
= P

[ Nrx∑
i=1

εi ≤ 0
]
. (A.2)

In order to approximate the probability in (A.2), we need to compute the mean and variance

of εi. The mean of εi is

E[εi] = E
[
|υi|2 + 2ℜ{υ∗iwi}

]
= E

[
|υi|2

]
= σ2

kk′ . (A.3)
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The variance of εi is given as

σ2
εi
= Var

[
|υi|2

]
+Var

[
2ℜ{υ∗iwi}

]
+ 2Cov

(
|υi|2, 2ℜ{υ∗iwi}

)
. (A.4)

The first term in the right-hand side of (A.4) is

Var
[
|υi|2

]
= E

[
|υi|4

]
− E

[
|υi|2

]2
= σ4

kk′ . (A.5)

The second term in the right-hand side of (A.4) is

Var
[
2ℜ{υ∗iwi}

]
= Var

[
υ∗iwi

]
+Var

[
υiw

∗
i

]
+ 2Cov

(
υ∗iwi, υiw

∗
i

)
. (A.6)

Since Var
[
υ∗iwi

]
= Var

[
υiw

∗
i

]
= E

[
|υi|2

]
= σ2

kk′ , and Cov
(
υ∗iwi, υiw

∗
i

)
= 0, we have

Var
[
2ℜ{υ∗iwi}

]
= 2σ2

kk′ . (A.7)

The last term in the right-hand side of (A.4) is

Cov
(
|υi|2, 2ℜ{υ∗iwi}

)
= E

[
|υi|22ℜ{υ∗iwi}

]
+ E

[
|υi|2

]
E
[
2ℜ{υ∗iwi}

]
= 0, (A.8)

since E
[
|υi|22ℜ{υ∗iwi}

]
= E

[
|υi|2(υ∗iwi+υiw

∗
i )
]
= 0 and E

[
2ℜ{υ∗iwi}

]
= E

[
υ∗iwi

]
+ E

[
υiw

∗
i

]
= 0.

Substituting the results in (A.5), (A.7), and (A.8) into (A.4) yields the variance of εi as

σ2
εi
= σ4

kk′ + 2σ2
kk′ . (A.9)

The variables {εi}i=1,...,Nrx are i.i.d. because of the i.i.d. elements in HC. Hence, by the

central limit theorem, the variable
∑Nrx

i=1 εi in (A.2) can be approximated by a Gaussian

random variable with mean Nrxσ
2
kk′ and variance Nr(σ

4
kk′ + 2σ2

kk′). Finally, the probability
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in (A.2) can be approximated as

Px̌k→x̌k′
≈ Φ

(
−Nrxσ

2
kk′√

Nrx(σ4
kk′ + 2σ2

kk′)

)
= 1− Φ

(√
Nrx/(1 + 2/σ2

kk′)
)
. (A.10)
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Appendix B

Proof of Theorem 3.1

For two labels x̌R
k and x̌R

k′ , we can always find two disjoint index sets Ic and Id such that

x̌Rk,i = x̌Rk′,i ̸= 0, ∀i ∈ Ic, and x̌Rk,i = −x̌Rk′,i ∀i ∈ Id. We denote d = |Id| as the Hamming

distance between the two labels x̌R
1 and x̌R

k . Note that d ≤ Ntx and |Ic| = Ntx − d for BPSK

signaling. The two vectors gR
1 and gR

k can now be expressed as gR
k = gc+gd and gR

k′ = gc−gd,

where gc and gd are the summations of the Ntx − d and d columns of HC corresponding to

the indices given in Ic and Id, respectively. For Rayleigh fading with unit variance, gc is

N (0, Ntx−d
2

I2Nrx) and gd is N (0, d
2
I2Nrx). The probability that sign(gR1,i) = sign(gRk,i) is given

as

P
[
sign(gRk,i) = sign(gRk′,i)

]
=

2

π
arctan

√
Ntx − d

d
. (B.1)

This is obtained by applying a result in [31], which states that if a ∼ N (0, σ2
a) and b ∼

N (0, σ2
b ) then

P
[
sign(a+ b) = sign(a− b)

]
=

2

π
arctan

σa
σb
. (B.2)

Due to the independence between the events sign(gRk,i) = sign(gRk′,i), for i = 1, 2, . . . , 2Nrx,

the result in (3.35) thus follows.
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Appendix C

Proof of Proposition 3.4

Without loss of generality, we assume that x̌R
1 = [1T

Ntx
,0T

Ntx
]T was transmitted. Denote

Ek, 1 < k ≤ K, as the event y̌1 = y̌k. The detection error event E is then defined

as E =
⋃

k>1Ek. We want to find the VER given event E and subsequently prove that

P ver
ρ→∞ ≤ 1

2

∑K
k>1 P(Ek). We note that E2, . . . , EK are not necessarily mutually exclusive nor

independent. However, we can combine E2, . . . , EK into larger events G1, . . . , GL that are

mutually exclusive. Herein, the rule for forming Gℓ is as follows:

1. If Ek is mutually exclusive with all other events, then Ek ⊂ G1.

2. If a pair of events Ek and Em intersect, i.e., Ek ∩ Em ̸= ∅, but Ek ∪ Em is mutually

exclusive with all other events, then (Ek ∪ Em) ⊂ G2.

3. G3, . . . , GL are then formed in a similar fashion.

Certainly, if Ek ⊂ Gℓ, then Ek ∩ Gℓ′ = ∅, for ℓ′ ̸= ℓ. This combining strategy effectively

partitions E into mutually exclusive events G1, . . . , GL. The VER is calculated as:

1. If event Ek ⊂ G1 has occurred, the receiver would erroneously pick the detected vector
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x̂R
k ̸= x̌R

1 with a probability of 1/2, i.e., VER = 1/2.

2. For any two events Ek, Em ⊂ G2 and Ek ∩ Em ̸= ∅, we consider the following three

partitions of Ek ∪ Em:

• If Ek ∩ Ec
m has occurred, VER = 1/2.

• If Ec
k ∩ Em has occurred, VER = 1/2.

• If Ek ∩Em has occurred, the receiver would erroneously pick the detected vector

as either x̂R
k or x̂R

m with a probability of 2/3, i.e., VER = 2/3.

We then have

1

2
P[Ek ∩ Ec

m] +
1

2
P[Ec

k ∩ Em] +
2

3
P[Ek ∩ Em]

≤ 1

2
P[Ek ∩ Ec

m] +
1

2
P[Ec

k ∩ Em] + P[Ek ∩ Em] =
1

2
P[Ek] +

1

2
P[Em]. (C.1)

3. The same principle of partitioning can be applied for events in G3, . . . , GL to calculate

the VER.

Therefore, P ver
ρ→∞ is upper-bounded as

P ver
ρ→∞ ≤

∑
Ek⊂G1

1

2
P[Ek] +

∑
Ek⊂G2

1

2
P[Ek] + . . .

=
1

2

K∑
k>1

P[Ek]. (C.2)

The inequality presented in the proposition follows by combining the result in Theorem 3.1

and noting that there are
(
Ntx

d

)
labels with Hamming distance d from x̌R

1 . If the error event

E is comprised of only mutual events E2, . . . , EK , the inequality (C.2) becomes P ver
ρ→∞ =∑K

k=2
1
2
P[Ek]. Thus, the VER upper-bound becomes tight in this case.
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Appendix D

Explanation for the susceptibility of

ML detection at high SNRs with

imperfect CSI

The ML detection method of [31] is defined as

x̂ML
d,m = arg max

xC∈(MC)U

2N∏
i=1

Φ
(√

2ϱyd,m,iĥ
T
d,ix
)

︸ ︷︷ ︸
P(x)

, (D.1)

where x = [ℜ{xC}T ,ℑ{xC}T ]T and P(x) is the likelihood function. It is clear that as ϱ→ ∞,

we have 
Φ
(√

2ϱyd,m,iĥ
T
d,ix
)
→ 0 if yd,m,iĥ

T
d,ix < 0,

Φ
(√

2ϱyd,m,iĥ
T
d,ix
)
→ 1 if yd,m,iĥ

T
d,ix > 0.

This means, as ϱ→ ∞, P(x) = 0 if there exists at least one index i such that yd,m,iĥ
T
d,ix < 0

and P(x) = 1 if yd,m,iĥ
T
d,ix > 0 for all i.
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Now, suppose that a vector x⋆C was transmitted and let x⋆ = [ℜ{x⋆C}T ,ℑ{x⋆C}T ]T . If the

CSI is perfectly known, i.e., ĥd,i = hd,i, we have yd,m,iĥ
T
d,ix

⋆ > 0 for all i because yd,m,i =

sign(hT
d,ix

⋆) = sign(ĥT
d,ix

⋆) as ϱ→ ∞. In other words, P(x⋆) = 1 if the CSI is perfectly known

at infinite SNR. However, if the CSI is not known perfectly, i.e., ĥd,i ̸= hd,i, there is a non-

zero probability that yd,m,i = sign(hT
d,ix

⋆) ̸= sign(ĥT
d,ix

⋆), which means yd,m,i sign(ĥ
T
d,ix

⋆) < 0.

This causes P(x⋆) = 0. For any x ̸= x⋆, it is possible that yd,m,i = sign(hT
d,ix

⋆) ̸= sign(ĥT
d,ix),

which also leads to P(x) = 0. Hence, detection errors occur. The above explanation is argued

at infinite SNR, but it is also valid for high SNRs because Φ(t) approaches 0 very fast.

To remove the product in (D.1), one may argue to transform the function L(x) into a sum

of log functions as follows:

x̂ML
d,m = arg max

xC∈(MC)U

2N∑
i=1

log Φ
(√

2ϱyd,m,iĥ
T
d,ix
)

︸ ︷︷ ︸
P(x)

. (D.2)

However, the function P(x) in (D.2) still depends on Φ(·) and can involve log(0). The

proposed SVM-based data detection method is robust against imperfect CSI since it does

not depend on the Φ(·) function and information about the SNR is not required either.

We note that the OSD method in [61] is also robust against imperfect CSI thanks to the

use of the approximation 1−Φ(t) ≈ 1
2
e−0.374t2−0.777t for non-negative t. This approximation

helps remove the effect of log Φ(·) in (D.2) since log ea = a. However, the OSD method has

higher computational complexity than the proposed SVM-based methods.
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Appendix E

Proof of Proposition 5.1

Since xm is the mth nearest symbol vector, we have the following condition:

∥x1 − x̃∥2 < . . . < ∥xm−1 − x̃∥2 < ∥xm − x̃∥2 < ∥x− x̃∥2 (E.1)

for any x /∈ Xm.

We prove the proposition by contradiction. Suppose that xm is not a neighbor of Xm−1,

i.e., xm /∈ N (Xm−1) or dmin(xm,Xm−1) > 1. For the sake of simplicity, we consider the

case where dmin(xm,Xm−1) = 2. Proof for the other cases where dmin(xm,Xm−1) > 2 can be

accomplished similarly.

Let xp ∈ Xm−1 with p ∈ {1, 2, . . . ,m − 1} be a symbol vector such that d(xp,xm) = 2.

Without loss of generality, we can always assume that the two position indices at which the
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differences occur are 1 and 2, i.e.,


xm,1 ̸= xp,1

xm,2 ̸= xp,2

xm,i = xp,i ∀i ∈ {3, . . . , 2K}.

(E.2)

Now, we consider two other symbol vectors x′ = [x′1, . . . , x
′
2K ]

T and x′′ = [x′′1, . . . , x
′′
2K ]

T such

that 
x′1 = xm,1 ̸= xp,1 = x′′1

x′2 = xp,2 ̸= xm,2 = x′′2

x′i = x′′i = xp,i = xm,i ∀i ∈ {3, . . . , 2K}.

(E.3)

Hence, x′ and x′′ are the two symbol vectors satisfying d(x′,xm) = d(x′′,xm) = 1. In other

words, both x′ and x′′ are neighbors of xm.

If x′ ∈ Xm−1 and/or x′′ ∈ Xm−1, then dmin(xm,Xm−1) = 1 because xm is a neighbor of both

x′ and x′′, which is contradicted by the assumption that dmin(xm,Xm−1) = 2. Thus, xm is a

neighbor of Xm−1, i.e, xm ∈ N (Xm−1).

If x′ /∈ Xm−1 and x′′ /∈ Xm−1, we have

|xm,1 − x̃1|2 = |x′1 − x̃1|2 > |xp,1 − x̃1|2. (E.4)

Adding both sides of (E.4) with |xm,2 − x̃2|2 yields

|xm,1 − x̃1|2 + |xm,2 − x̃2|2 > |xp,1 − x̃1|2 + |xm,2 − x̃2|2,

which can be rewritten as

|xm,1 − x̃1|2 + |xm,2 − x̃2|2 > |x′′1 − x̃1|2 + |x′′2 − x̃2|2 (E.5)
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because xp,1 = x′′1 and xm,2 = x′′2. The inequality in (E.5) indicates that ∥xm − x̃∥2 >

∥x′′ − x̃∥2, which means x′′ is closer to x̃ than xm, or in other words, xm is not the mth

nearest symbol vector of x̃. This is contradicted by (E.1).
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