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Abstract

Robust Hierarchical Control with Connected Layers

by

Katherine Schweidel

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Murat Arcak, Chair

Complex systems, such as autonomous vehicles and missile guidance systems, use hierar-
chical control schemes where each control layer employs a different system model. This
approach enhances computational efficiency because using a simpler model in the higher-
level control layer reduces computation times, enabling real-time control strategies. This
dissertation presents a framework in which a lower-fidelity planning model is employed for
online planning, and a tracking controller, synthesized offline, keeps the tracking error be-
tween the high-fidelity (“tracking”) model and the planning model within a bounded set. To
ensure safety, the error that arises from the different models in each control layer is rigorously
accounted for through augmentation of the planner safety constraints with the tracking error
bound.

Accommodating more sources of real-world uncertainty enhances the safety and usefulness
of the control scheme. We next describe a robust extension which utilizes integral quadratic
constraints to accommodate input uncertainties such as unknown delays or unmodeled ac-
tuator dynamics in the tracking model. Finally, through a case study of shared vehicle
control between a human driver and a supervisory autonomous system in longitudinal driv-
ing scenarios, we present a novel method called Driver-in-the-Loop Contingency MPC that
leverages simplified dynamics to compute invariant sets that guarantee safety with respect
to other vehicles. This contribution can be viewed as adding robustness to other agents in
the planning layer.
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Chapter 1

Introduction

1.1 Motivation

Complex systems, such as autonomous vehicles [1] and missile guidance systems [2], use
hierarchical control schemes where each control layer uses a different system model. This
approach can enhance computational efficiency because the higher-level control layer can use
a simpler design model, which can reduce computation times and enable control strategies
that may not have been possible with the more complex design model. Faster higher-level
control can also allow the system to respond to changing environments in real-time.

However, the resulting hierarchical control scheme may be unsafe if the error between
the models in different layers is not accounted for. A high-level motion plan generated using
a simplified model may avoid obstacles that the lower-level controller is unable to avoid,
resulting in a collision. Thus, it is important to rigorously handle the error that arises from
the different models in each control layer.

Accounting for this error can allow us to enjoy the benefits of the simpler higher-level
control while still maintaining safety guarantees. This is the main idea behind the planner-
tracker framework [3–10], which we will formally introduce in Chapter 2.

Furthermore, there are many sources of uncertainty in the real world, and the more
sources of uncertainty we can accommodate, the safer and more useful the framework is in
practice. The main contribution of this dissertation is adding robustness to the layers of
planner-tracker framework in order to accommodate various sources of uncertainty.

We focus on the different sources of uncertainty that arise in different layers. In Chapter 2,
we account for exogenous disturbances in the tracking layer. In Chapter 4, we account for
uncertainty arising from other agents in the planning layer. In Chapters 3 and 6, we account
for unmodeled dynamics in the tracking layer.

Motivating Examples

Missile guidance systems [2,11] use a hierarchical control structure, where different modeling
assumptions are present in each layer (see Figure 1.1a). When a missile is trying to intercept
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(a) Missile block diagram. (b) Autonomous vehicle block diagram.

Figure 1.1: Examples of hierarchical control schemes with different modeling assumptions in each
layer.

a threat, the guidance law gives an acceleration command. Proportional navigation is a com-
mon choice of guidance law, which is derived under the oversimplified modeling assumption
that the missile and the threat have constant velocities [12]. This acceleration command is
fed to the autopilot. The popular “three-loop autopilot” is designed using a linearization
of the system about the equilibrium point at a fixed angle of attack and speed, with gains
scheduled on these variables [11]. This autopilot computes a missile fin deflection that is
used to actuate the missile control surfaces.

Autonomous vehicles [1, 13–17] are another example of a layered control scheme with
different models used in each layer (see Figure 1.1b). The overall control scheme typically
has many layers, such as localization, perception, prediction, planning, and control. We are
interested in the planning and control layers. The planning layer receives predictions about
other road users and generates a high-level motion plan, typically using a kinematic model
of the vehicle, which describes the vehicle motion without taking forces into account. The
control layer attempts to track this motion plan using a dynamic model of the vehicle, which
includes tire forces. The control layer generates steering, throttle, and brake commands
which are sent to the vehicle.

These are examples where the differences in the models are typically not accounted
for and thus rigorous guarantees about safety and performance cannot be made. Next we
show, in a simplified setting, how accounting for the errors between models can guarantee
satisfaction of the true system constraints.
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1.2 Problem Overview

We now present a hierarchical control framework for systems like the ones above, where
different models are used in each control layer. We focus our attention on the case of a two-
layer control architecture, and we explicitly account for the differences between models to
guarantee performance and safety. Throughout this dissertation, we will consider a higher-
fidelity model with state x and a lower-fidelity model with state x̂. The lower-fidelity model
has dynamics

˙̂x = f̂(x̂, û), (1.1)

where û is the input to the lower-fidelity model. We assume there is a given planning
controller (e.g., MPC) that keeps the state and input within constraints x̂ ∈ X̂ and û ∈ Û .
We denote this controller as û = κ̂(x̂, x, X̂ , Û), which can depend on the state x of the higher-
fidelity model. Note that κ̂ can be the output of an online optimization problem (e.g., an
MPC problem) and does not in general have a closed-form solution. The higher-fidelity
model has dynamics

ẋ = f(x, u, d), (1.2)

where u is the control input and d ∈ D represents some kind of disturbance or unmod-
eled dynamics. The high-fidelity model has state constraint x ∈ X encoding, for example,
obstacles to avoid.

By analyzing the error between the low- and high-fidelity models, we can leverage the
inputs (x̂, û) from the planning layer to generate a control input u in the tracking layer that
will lead to satisfaction of the tracking constraint x ∈ X . Consider, in the simplest case, an
error between the two systems defined as

e := x− x̂. (1.3)

A more general error definition will be allowed in Chapter 2, allowing for different dimensions
of x and x̂. For now, we focus on this simple case to build intuition. This error variable has
dynamics

ė = f(e+ x̂, u, d)− f̂(x̂, û). (1.4)

The goal is to find a tracking control law u = κ(e, x̂, û) and an associated error bound set
O, as small as possible, such that e(t) ∈ O for all t ≥ 0. This set can be used to shrink
constraints such that, when e ∈ O, x̂ ∈ X̂ ensures that x ∈ X .

For example, consider the set O shown in Figure 1.2a. If we know that e(t) will remain
in O for all t ≥ 0, then x = e + x̂ will live in a tube about x̂ that is bloated by O as in
Figure 1.2b. Thus, if x̂ ∈ X̂ , e ∈ O, and X̂ ⊆ X ⊖ O, then x ∈ X . For example, if e is a
position error X represents obstacle-avoidance constraints, then it suffices to select X as an
obstacle-avoidance constraint with the same obstacles bloated by O.

This hierarchical control scheme is summarized in Figure 1.3, which shows the interactions
between the models, controllers, and constraints used in each layer.
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(a) Example of error bound set O.
(b) Trajectory for x̂ in an inertial frame, bloated by O. The tra-
jectory for x remains within this bloated tube.

Figure 1.2: The role of an error bound set O.

Figure 1.3: Planner-tracker block diagram.
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1.3 Background

There are many existing approaches for combining the planning and control of complex,
nonlinear and/or uncertain systems. Sequential convex programming (SCP) is a strategy for
solving a nonconvex trajectory generation problem for a nonlinear system by solving multiple
convex subproblems that approximate the original problem [18, 19]. SCP is a powerful
approach that has been successfully applied in many domains, including rocket landing and
robot motion planning. SCP can be combined with a feedback controller for tracking this
reference trajectory.

Another class of algorithms for trajectory generation and feedback control involves piecing
together multiple nominal trajectories, each with its own tracking controller and associated
region of validity. In the funnel libraries method [20], a library of nominal trajectories is
analyzed offline. For each nominal trajectory there is a tracking controller and a time-varying
funnel centered at the nominal trajectory that describes how far the closed loop system can
deviate from the nominal trajectory under uncertainty. Online, these trajectories and funnels
can be pieced together to create a safe trajectory that avoids obstacles in the presence of
uncertainty. The LQR Trees algorithm [3] works backwards from a goal set to compute
a region of attraction that probabilistically covers the entire controllable space. Both of
these works leverage SOS programming to certify that a given nominal trajectory/tracking
controller pair has the desired property.

Model predictive control (MPC) is a popular trajectory planning and control strategy
that solves a finite-time, receding horizon optimal control problem subject to state and input
constraints [21]. Tube MPC [22–30] is a robust control strategy where the error between
the true model and a nominal model, free of disturbances, is bounded within a tube, and
MPC is performed on the nominal model with state constraints shrunk by the size of the
tube. In rigid tube MPC, the tube has a fixed cross section, whereas in shrinking tube
MPC, the cross section of the tube grows over the prediction horizon. Typically, the true
and nominal models differ by only an additive disturbance. However, there are also works
considering multiplicative uncertainty [27, 28], parametric uncertainty [30], and unmodeled
dynamics [31, 32]. Furthermore, tube MPC methods typically apply to linear systems, but
there is a growing body of literature on nonlinear tube MPC [33–37].

Reduced order MPC [38, 39] obtains a low-dimensional approximation of a high-dimen-
sional model, often using a Galerkin or Petrov-Galerkin projection. An MPC controller is
formulated for the reduced order model, and the input to the higher order model is computed
using a feedback law involving the error between the reduced order state and the projection
of the higher order state. This feedback control law is designed so that the state-error and
input-error remain in bounded sets, which are used to shrink the state and input constraints
for the reduced order model.

Abstraction-based methods, originating from the field of formal methods for software
verification, approximate the “concrete” system of interest with a simpler “abstraction.” The
abstraction can have a discrete state-space (see [40] and references therein) or a continuous
state-space (see [41]). The simpler abstraction is easier to control, and an abstract controller
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is assumed available. The abstract controller is then “refined” so that it can be applied
to the concrete system. In [41], refining the abstract control involves passing it through an
interface control law that uses the concrete state and the abstract state/input to compute the
concrete control input. This interface control law guarantees that the distance between the
output trajectories of the concrete and abstract systems stays within a computable bound.

The planner-tracker framework [4–10,42] is another hierarchical control framework where
a lower-fidelity “planning” model is employed for online planning and a “tracking” controller,
synthesized offline, keeps the tracking error between the high-fidelity (“tracking”) model
and the planning model within a bounded set. System safety is then guaranteed if the
planner constraints, when augmented by the tracking error bound, lie within the safety
constraints. A simple illustration of this framework was described in Section 1.2, and a
thorough presentation will be given in Chapter 2.

Comparing the planner-tracker framework to the methods summarized above, SCP with
feedback control does not formally bound the error from the planned path. Unlike the
methods which compute a bound for a particular nominal trajectory and associated tracking
controller, the planner-tracker framework uses a single tracking controller with a single error
bound for all trajectories. The planner-tracker framework can handle both the uncertainty
present in tube MPC as well as the different system dimensions present in reduced order
MPC. In the planner-tracker framework, the choice of the planning model is flexible: it can
remove uncertainties, linearize nonlinearities, and reduce the system dimension. Further-
more, MPC is a suitable choice of planning controller, but it is not the only option. For
example, symbolic control was used in [42]. The planner-tracker framework has a structure
similar to abstraction-based control, but recent works [8] and [42] eliminate the restrictive
geometric conditions in [41], also implicit in [7], which require that the set where the tracking
error vanishes be invariant. Removing this requirement and allowing the tracking error to
depend on planner inputs greatly expand the applicability of the planner-tracker framework.

1.4 Dissertation Outline

The dissertation is organized as follows. Chapter 2 gives a tutorial of the planner-tracker
framework. We expand upon the brief overview given in Section 1.2, giving more detailed
descriptions of the planner, tracker, and error systems. We formulate a sum-of-squares (SOS)
program to search for a tracking controller and an error bound set. We extend the error
definition to depend on the planner input and formulate a new SOS program for this setting.
This additional flexibility in the error definition is useful when the inputs to a kinematic
planner model correspond to states in a dynamic tracker model. The goal of this Chapter is
to provide a tutorial review of this hierarchical framework and to illustrate it with examples,
including a design for vehicle obstacle avoidance.

Chapter 3 extends the planner-tracker framework to handle unmodeled dynamics at the
input to the tracker model. This allows for systems with unknown input delays, unmodeled
actuator dynamics, etc. The unmodeled dynamics are described by integral quadratic con-
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straints (IQCs). A sum-of-squares (SOS) program is formulated to search for the tracking
controller and error bound, and the method is demonstrated on a vehicle obstacle avoidance
example with an input delay.

Chapter 4 describes adding robustness to the planner in the case study of shared vehicle
control between a human driver and an autonomous system. The proposed control strategy,
termed Driver-in-the-Loop Contingency Model Predictive Control (MPC), is inspired by
the concept of contingency planning and is designed to intervene from the driver under
emergency conditions in a manner that is smooth and not overly conservative. Driver-in-the-
Loop Contingency MPC relies on the computation of invariant sets, which are used as MPC
terminal sets. The computation of these sets is made possible by the simple, kinematic model
used to describe the longitudinal vehicle motion, making this method a suitable choice for a
planning controller in the planner-tracker framework. The Driver-in-the-Loop Contingency
MPC method is demonstrated on two longitudinal traffic scenarios: (1) vehicle-following,
and (2) an intersection where the cross-traffic has the right of way. We use these examples
to demonstrate the safety of the controller as well as the inherent trade-off between smooth
intervention and minimal intervention.

Chapter 5 formulates a backstepping-based tracking controller for the planner-tracker
framework as an alternative to the SOS-based controllers used in Chapters 2 and 3. This
controller mitigates some shortcomings of the SOS approach: (1) the fact that SOS con-
trol laws are a generic polynomial which may not be interpretable, and (2) the numerical
challenges associated with SOS programming. However, this chapter requires a particular
structure in the planner and tracker models.

Chapter 6 provides further robustness analysis of a tracking controller in a hierarchical
control scheme such as the planner-tracker framework. This Chapter examines the setting
where a reference trajectory is provided for a nominal system with no disturbance or model-
ing uncertainty. However, the true system may differ from the nominal system by unmodeled
dynamics (described by an IQC) and an additive disturbance at the input. Robustness to
these two sources of uncertainty is handled by (1) sampling over the unmodeled dynamics,
and (2) for each sample, solving an optimal control problem over the set of possible distur-
bances to compute an error bound for the linearization of the system about the reference
trajectory. Furthermore, we directly compute the worst-case disturbance that achieves this
error bound. This Chapter provides an alternative method for computing an approximate er-
ror bound (due to sampling and linearizations) compared to the planner-tracker framework.
Finally, concluding remarks and directions for future work are provided in Chapter 7.

1.5 Contributions

This thesis makes four contributions relative to the current literature. First, we extend the
planner-tracker framework to accommodate unmodeled dynamics at the tracker input, char-
acterized by integral quadratic constraints. This is covered in Chapter 3 and manuscript [??].
Next, we propose a novel safe control framework for shared vehicle control between a human
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driver and a supervisory autonomous system based on the principle of contingency planning.
This is covered in Chapter 4 and publication [43]. Next, we develop a novel backstepping-
based control strategy for planner and tracker systems with a particular cascaded structure,
where an error between the two systems is defined and a control law is derived to keep that
error in a bounded set. This is covered in Chapter 5. Finally, we develop a novel method
for assessing the robustness of an uncertain nonlinear system on a finite time horizon where
we linearize about a nominal trajectory, sample over the model uncertainty, and then com-
pute the disturbance that maximizes an error variable. This is covered in Chapter 6 and
publication [44].

1.6 List of Publications

The chapters of this dissertation are based on other publications by the author. In particular:

• Chapter 2 is based on [10]:

– K. S. Schweidel, H. Yin, S. W. Smith, and M. Arcak, “Safe-by-design plan-
ner–tracker synthesis with a hierarchy of system models,” Annual Reviews in
Control, vol. 53, pp. 138–146, 2022.

• Chapter 3 is based on [45]:

– K. S. Schweidel, P.J. Seiler, and M. Arcak, “Safe-by-design planner-tracker syn-
thesis with unmodeled input dynamics,” To appear in IEEE Control Systems
Letters.

• Chapter 4 is based on [43]:

– K. S. Schweidel, S. M. Koehler, V. R. Desaraju and M. Barić, “Driver-in-the-
Loop Contingency MPC with Invariant Sets,” 2022 European Control Conference
(ECC), London, United Kingdom, 2022, pp. 808-813.

• Chapter 6 is based on [44]:

– K. S. Schweidel, J. R. Buch, P. J. Seiler and M. Arcak, “Computing Worst-
Case Disturbances for Finite-Horizon Linear Time-Varying Approximations of
Uncertain Systems,” IEEE Control Systems Letters, vol. 5, no. 5, pp. 1753-1758.
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Chapter 2

Planner-Tracker Framework

2.1 Abstract

We present a safe-by-design trajectory planning and tracking framework for nonlinear dy-
namical systems using a hierarchy of system models. The planning layer uses a low-fidelity
model to plan a feasible trajectory satisfying the planning constraints, and the tracking layer
utilizes the high-fidelity model to design a controller that restricts the error states between
the low- and high-fidelity models to a bounded set. The simplicity of the low-fidelity model
enables the planning to be performed online (e.g. using Model Predictive Control) and the
tracking controller and error bound are derived offline (e.g. using sum-of-squares program-
ming). This error bound is then used by the planner to ensure safety for the combined
planner-tracker system. To provide freedom in the choice of the low-fidelity model, we allow
the tracking error to depend on both the states and inputs of the planner. The goal of this
Chapter is to provide a tutorial review of this hierarchical framework and to illustrate it
with examples, including a design for vehicle obstacle avoidance.

2.2 Introduction

Modern engineering systems such as autonomous vehicles and unmanned aerial vehicles
(UAVs) must operate subject to complex safety and performance requirements in chang-
ing environments. Designing controllers that meet such requirements in real-time may be
computationally intractable, e.g., due to large system dimension or nonlinearities in a high-
fidelity dynamical model of the system. The planner-tracker framework [3–9] addresses this
challenge with a layered architecture where a lower-fidelity “planning” model is employed
for online planning and a “tracking” controller, synthesized offline, keeps the tracking error
between the high-fidelity (“tracking”) model and the planning model within a bounded set.
System safety is then guaranteed if the planner constraints, when augmented by the tracking
error bound, lie within the safety constraints.
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There is a choice to be made when defining the tracking error between the planner and
tracker systems. In [7, 8, 46], the tracking error depends on only the planner/tracker states.
In [42], which studies a ship control problem, the tracking error is generalized to also depend
on the planner input. This is achieved by accounting for the jumps in the error variable
that are induced by jumps in the zero-order hold input between time-steps. Including the
planner input in the error definition allows for a lower-order planning model whose states
mimic the tracker position states while the planner inputs correspond to the tracker velocity
states. References [8] and [42] further make a connection between the layered planner-
tracker architecture and the notion of abstractions introduced in [41]. In doing so, they
also eliminate the restrictive geometric conditions in [41], also implicit in [7], which require
that the set where the tracking error vanishes be invariant. Removing this requirement and
allowing the tracking error to depend on planner inputs greatly expand the applicability of
the planner-tracker framework.

In this chapter we introduce a broad framework which encompasses those earlier results
while further generalizing the error definition compared to [42]. In addition, the framework
described here is not restricted to a particular planner. Indeed, unlike the computationally
heavy symbolic design method used for planning in [42], the numerical example presented
here uses the popular choice of Model Predictive Control (MPC), which is appropriate for
real-time implementation.

Although MPC is often used for both planning and control, under mismatch of plan-
ning model and the plant, the MPC optimization problem must be robustified. Feasibility
and stability properties of robust MPC have been studied in [47, 48] and subsequent pub-
lications. For linear systems, Tube MPC [22–30] is a widely used approach that solves
a computationally efficient convex optimization problem for robust control synthesis. Al-
though Tube MPC design with feasibility and stability properties are proposed for nonlinear
systems in [33, 35–37, 49, 50], control synthesis can become either too conservative, or com-
putationally demanding.

Another related work is [20], in which multiple tracking controllers and error-bound
funnels are computed for a library of nominal trajectories. By contrast, the planner-tracker
framework presented here generates a single tracking controller and can accommodate any
trajectory from the planner, not just one that belongs to a pre-specified library.

The remainder of this Chapter is organized as follows. Section 2.3 introduces the high-
fidelity tracking model and the low-fidelity planning model and defines a simple tracking
error that depends only on the planner/tracker states. We build intuition with this simple
error model and present the method for constructing a tracking controller and an error
bound using sum-of-squares (SOS) programming. Section 2.4 generalizes the tracking error
definition to additionally depend on the planner input and extends the results in Section 2.3
to handle this generalized error. In Section 2.5, we demonstrate the method on a vehicle
obstacle avoidance example, and we provide concluding remarks in Section 2.6.
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(a) Online implementation. The planning con-
troller uses the state x̂ and the constraint sets
X̂ , Û , and ∆X̂ to generate a reference input
û. The tracking controller converts this into
a control u which is guaranteed to keep the
tracker state x within state constraints X . This
is accomplished by keeping the tracking error e
within a set O as described in Figure 2.1(b).

(b) Offline synthesis. The tracking and planning models
are combined to obtain a model for the error system. A
controller κ is derived to keep the error in the set O (e.g.,
using SOS). If the safety condition is met, the tracking
system is guaranteed to satisfy the state constraints X .
Otherwise, the sets X̂ and Û are shrunk and the process
is repeated.

Figure 2.1: Online implementation and offline synthesis of the planner-tracker control scheme.

Notation

Sn denotes the set of n-by-n symmetric matrices. Sn+ and Sn++ denote the sets of n-by-n
symmetric positive semi-definite and positive definite matrices, respectively. For ξ ∈ Rn, R[ξ]
represents the set of polynomials in ξ with real coefficients, and Rm[ξ] and Rm×p[ξ] denote all
vector and matrix valued polynomial functions. The subset Σ[ξ] := {p = p21 + p22 + ...+ p2M :
p1, ..., pM ∈ R[ξ]} of R[ξ] is the set of sum-of-squares polynomials in ξ. Unless defined
otherwise, notation xj denotes a variable x used in the j’th iteration of an iterative algorithm.
The symbol “≤” represents component-wise inequality.

2.3 Problem setup

In this section we describe the hierarchical approach to safe-by-design trajectory planning
and control that consists of two layers: a planning layer, which uses a low-fidelity “planning”
model, and a tracking layer, with a high-fidelity “tracking” model. The planning model
might be a model with a lower state dimension than the tracking model or a linearization
of the tracking model to reduce the computational burden of planning. By analyzing the
dynamics of the error between these two systems’ states, we will show how we can bound
this error by synthesizing an appropriate tracking controller. In this Chapter, the controller



CHAPTER 2. PLANNER-TRACKER FRAMEWORK 12

and corresponding error bound are designed via SOS programming.
The online implementation and offline synthesis of the planner-tracker control scheme

are summarized in Figure 2.1. We begin with a high-fidelity tracking model and a low-
fidelity planning model, each with state and input constraints. Defining an appropriate error
variable, e, between the two models, and using the error dynamics and the planner/tracker
constraints, we design a tracking controller and derive a tracking error bound. This bound
takes the form of a set O such that e(t) ∈ O. If the planner constraints, when augmented
by O, still satisfy the tracking constraints, then the tracking system is safe: it will satisfy all
constraints with the synthesized controller. Otherwise, the planner constraints are shrunk
and the process is repeated.

High-Fidelity Tracking Model

The high-fidelity model is of the form:

ẋ(t) = f(x(t), w(t)) + g(x(t), w(t)) · u(t), (2.1)

with state x(t) ∈ X ⊆ Rnx , disturbance w(t) ∈ W ⊆ Rnw , bounded control u(t) ∈ U ⊆ Rnu ,
f : Rnx ×Rnw → Rnx , and g : Rnx ×Rnw → Rnx ×Rnu . The sets X and U are the constraint
sets imposed on the states and control inputs in the high-fidelity model, respectively.

Low-Fidelity Planning Model

The low-fidelity model, which is a simplified version of (2.1), is of the form:

˙̂x(t) = f̂(x̂(t), û(t)), (2.2)

where x̂(t) ∈ X̂ ⊆ Rn̂x , û(t) ∈ Û ⊆ Rn̂u , and f̂ : Rn̂x×n̂u → Rn̂x . The sets X̂ and Û are
constraint sets enforced by the planning layer. The control input for the low-fidelity model,
computed via the planning algorithm of choice, is assumed to be a zero-order hold signal
with sampling time Ts > 0. This means:

û(t) = û(τk), ∀t ∈ [τk, τk+1), with τk = k · Ts, (2.3a)

û(τk+1) = û(τk) + ∆û(τk+1), (2.3b)

where ∆û(t) is the change in the control input between sampling periods (also referred to as
the “input jump”), restricted to a set ∆Û ⊆ Rn̂u .

Note that the planning model does not depend directly on the tracker state x, in contrast
to reduced order methods where planning is done on a lower dimensional state that is a
projection of the true higher dimensional state [38].

Remark 1. The planner-tracker synthesis framework is applicable to any planning algorithm
that is able to bound x̂(t), û(t), and ∆û(t). For example, this framework has been applied to
different planning algorithms, using Nonlinear MPC in [8, 46], signal temporal logic (STL)
in [51], and discrete abstraction in [42].
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Error Dynamics

The goal is to design a controller for the high-fidelity tracking model (2.1) to track a reference
trajectory planned using the low-fidelity planning model (2.2). In order to do so, we proceed
by deriving the evolution of the error between (2.1) and (2.2). Since n̂x ≤ nx in general, we
define a C1 map π : Rn̂x → Rnx , called the comparison map, and we define the tracking error
as:

e(t) = x(t)− π(x̂(t)). (2.4)

If the planning model is simply a linearization, we may select π to be the identity map,
but our primary interest is in the case where x̂ is of lower dimension and π lifts it to the
dimension of x. We will first describe the method with this simple error definition to build
intuition before generalizing the error definition in Section 2.4, where π is allowed to also
depend on û.

Differentiating (2.4) with respect to time (dropping time arguments to improve readabil-
ity), and eliminating the variable x, we obtain:

ė = ẋ− ∂π

∂x̂
· ˙̂x

= f(x,w) + g(x,w) · u− ∂π

∂x̂
· f̂(x̂, û)

∣∣∣∣
x=e+π(x̂)

,

= fe(e, x̂, û, w) + ge(e, x̂, w) · u, (2.5)

where we have defined:

fe(e, x̂, û, w) = f(π(x̂) + e, w)− ∂π

∂x̂
· f̂(x̂, û),

ge(e, x̂, w) = g(π(x̂) + e, w). (2.6)

In this section, we consider controllers of the form

u(t) = κ(e(t), x̂(t), û(t)), κ ∈ KU (2.7)

where the set KU := {κ : Rnx × Rn̂x × Rn̂u → U} defines a set of admissible error-state
feedback control laws. Plugging in this controller, the closed-loop dynamics become

ė = fe(e, x̂, û, w) + ge(e, x̂, w) · κ(e, x̂, û). (2.8)

Our goal is to design a control law κ and an associated error bound O that is ideally as small
as possible.

Definition 1 (Tracking Error Bound). Given the closed loop error dynamics (2.8), we say
that a set O is a tracking error bound (TEB) from an initial set I if

e(0) ∈ I, x̂(t) ∈ X̂ , û(t) ∈ Û , w(t) ∈ W ∀ t ≥ 0

⇒ e(t) ∈ O ∀ t ≥ 0. (2.9)
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The initial set I will be constructed together with the TEB O. In Theorem 1 in Sec-
tion 2.3, I and O will be identical, while in Theorem 2 in Section 2.4, I ⊆ O.

As we will see in the next subsection, we aim to minimize the volume of the set O when
designing the tracking controller κ; however, we do not emphasize asymptotic behavior of the
error e(t) since we do not need perfect tracking of the planning model. Indeed we allow the
dynamics (2.8) to depend on x̂ besides û and w, and we do not require the right-hand side to
vanish when e = 0. The benefit of this relaxed approach, as alluded to in the Introduction,
is to remove restrictive geometric constraints from the selection of the map π and controller
κ that would render the set e = x− π(x̂) = 0 invariant and attractive.

Computing the TEB and Tracking Controller

The TEB O and the tracking controller κ can be obtained with the help of the following
theorem, which gives conditions under which the error can be constrained to lie within a
certain sublevel set of a storage function V (e).

Theorem 1. Given the error dynamics (2.5) with fe : Rnx × Rn̂x × Rn̂u × Rnw → Rnx,
ge : Rnx ×Rn̂x ×Rnw → Rnx, and γ ∈ R, X̂ ⊆ Rn̂x, Û ⊆ Rn̂u, W ⊆ Rnw , if there exists a C1
function V : Rnx → R and κ : Rnx × Rn̂x × Rn̂u → Rnu such that

∂V (e)

∂e
· (fe(e, x̂, û, w) + ge(e, x̂, w) · κ(e, x̂, û)) < 0,

∀e, x̂, û, w, s.t. V (e) = γ, x̂ ∈ X̂ , û ∈ Û , w ∈ W , (2.10)

then the sublevel set Ω(V, γ) := {e ∈ Rnx : V (e) ≤ γ} is a TEB as in Definition 1 with
I = O = Ω(V, γ).

Proof. The theorem is proved by contradiction. Assume there exist a time t2 > 0 and
a trajectory e(·) such that e(0) ∈ Ω(V, γ) but e(t2) ̸∈ Ω(V, γ), i.e., V (e(t2)) > γ. Since
V (e(0)) ≤ γ, by continuity of V there exists t1 such that 0 ≤ t1 < t2, V (e(t1)) = γ, and
d
dt
V (e(t))|t=t1 ≥ 0. (If all crossings of V (e(t)) = γ satisfied d

dt
V (e(t)) < 0, then V would not

be continuous.) This contradicts (2.10).

It is straightforward to augment the statement above to ensure a bound on the input.
Adding the following constraint ensures u = κ(e, x̂, û) ∈ U :

Ω(V, γ) ⊆ {e ∈ Rnx : κ(e, x̂, û) ∈ U} ∀x̂ ∈ X̂ , û ∈ Û . (2.11)

Furthermore, if a user-specified initial error set E0 is known, then adding the set constraint

Ω(V, γ) = I ⊇ E0 (2.12)

will ensure that e(t) ∈ O for all t ≥ 0. As a practical consideration, we add such a constraint
when searching for V and κ.
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Finding generic functions V and κ that satisfy constraints (2.10), (2.11), and (2.12) is
a difficult problem. Below we show how SOS programming can be used to search for these
functions by restricting to polynomial candidates V ∈ R[e] and κ ∈ Rnu [(e, x̂, û)]. Besides
this restriction, we make the following assumption:

Assumption 1. The mappings fe ∈ Rnx [(e, x̂, û, w)] and ge ∈ Rnx×nu [(e, x̂, w)] in error
dynamics (2.5) are polynomials. Sets E0, X̂ , Û , and W are semi-algebraic sets, i.e., there
exists p0 ∈ R[e] such that E0 = {e ∈ Rnx : p0(e) ≤ 0}; with similar definitions for X̂ , Û ,
and W with polynomials px̂ ∈ R[x̂], pû ∈ R[û], and pw ∈ R[w]. The control constraint set U
is a hypercube U = {u ∈ Rnu : u ≤ u ≤ u}, where u, u ∈ Rnu.

By applying the generalized S-procedure [52] to the set containment constraints (2.10),
(2.11), and (2.12), and using the volume of Ω(V, γ) as the cost function to minimize, we
obtain the following SOS optimization problem for finding V and κ:

min
V,κ,γ,s,l

volume(Ω(V, γ))

s.t. s0 ∈ Σ[e], s1→3 ∈ Σ[(e, x̂, û, w)], l ∈ R[(e, x̂, û, w)]
s4→9,i ∈ Σ[(e, x̂, û)], i ∈ {1, ..., nu} (2.13a)

−(V (e)− γ) + s0 · p0 ∈ Σ[e], (2.13b)

− ∂V

∂e
· (fe + ge · κ)− ϵe⊤e+ l · (V − γ) + s1 · px̂

+ s2 · pû + s3 · pw ∈ Σ[(e, x̂, û, w)], (2.13c)

ui − κi + s4,i · (V − γ) + s5,i · px̂
+ s6,i · pû ∈ Σ[(e, x̂, û)], i ∈ {1, ..., nu}, (2.13d)

κi − ui + s7,i · (V − γ) + s8,i · px̂
+ s9,i · pû ∈ Σ[(e, x̂, û)], i ∈ {1, ..., nu}. (2.13e)

In the formulation above, SOS polynomials s1→3 and s4→9,i are multipliers used in the
generalized S-procedure, and ϵ > 0 is on the order of 10−6. Constraint (2.13a) ensures
that all the polynomial multipliers are SOS. Constraint (2.13b) is a relaxation of (2.12) (for
I = O = Ω(V, γ)), (2.13c) is a relaxation of (2.10), and together (2.13d) and (2.13e) are
a relaxation of (2.11) under the hypercube assumption for U . The optimization (2.13) is
non-convex as there are two groups of decision variables V and (κ, l, s4,i, s7,i) bilinear in
each other. To tackle this problem, similarly to [53, Algorithm 1], we decompose it into
two tractable subproblems to iteratively search between the two groups of decision variables,
as shown in Algorithm 1 in the Appendix. We note that V and γ always appear in the
optimization as V − γ, so from a theoretical perspective there is no need for two separate
optimization variables. However, the variable γ is practical algorithmically because in the
subproblem where V is fixed, we can minimize over γ via bisection to find the smallest level
set of V that forms a viable TEB.
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Remark 2. For simplicity, we define V to be a function of e. However, in principle, we
could have defined V (x, x̂), as is done in the incremental stability literature, e.g., [54].

Safety Check

After synthesizing V and κ, we check the following safety condition with O = Ω(V, γ):

π(X̂ )⊕O ⊆ X . (2.14)

If (2.14) is satisfied, then the tracker state x is guaranteed to satisfy state constraints X and
the design is considered successful. If (2.14) is not satisfied, we shrink the planner sets X̂
and Û and repeat the process as indicated in Figure 2.1.

The details of how to shrink the sets X̂ and Û are not the focus of this Chapter, but we
refer the reader to [46] for an in-depth treatment. In [46], the constraint sets are parameter-
ized by some parameter, and a bisection over this parameter is performed to find the most
permissive sets that still guarantee safety.

2.4 Generalized Tracking Error Definition

So far, we have used a map π that only depends on the planner state x̂. However, as
illustrated in the example below, this map may fail to provide reference signals for all the
tracker states. Therefore, in Section 2.4, we move to a more general error definition that
also depends on the planner input û.

Example 1. As a simple illustration of why it is useful to include the planner input û in
the error definition, consider the double integrator tracking model

x =

[
s
v

]
, ẋ =

[
v
u

]
, (2.15)

where s is the position, v is the velocity, and u is the acceleration input. Let the planning
model be a single integrator, where the only state is the planner position (x̂ = ŝ) and the
input is the planner velocity ( ˙̂x = v̂ =: û). Then, letting π(x̂, û) = [x̂; û], the error is

e = x− π(x̂, û) =
[
s− ŝ
v − v̂

]
, (2.16)

which is the deviation of the planner and tracker positions and velocities. Thus, by keeping
e small, we keep the planner and tracker positions and velocities close to one another, which
is desirable. On the other hand, if we had used the näıve map π(x̂) = [x̂; 0], the error would
be [(s− ŝ) v]⊤, and bounding the error would mean keeping v close to zero, which is overly
conservative and may not align with planning objectives.
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Modified Error Dynamics

As motivated above, we will use a more general C1 map π : Rn̂x × Rn̂u → Rnx to provide
better reference trajectories for the tracking model, as was done in [42] for the first time.
For further generality, in this Chapter we redefine the error state as

e = ϕ(x, x̂, û)(x− π(x̂, û)), (2.17)

where we add the C1 map ϕ : Rnx×Rn̂x×Rn̂u → Rnx×nx which provides additional flexibility,
as will be demonstrated in Section 2.5.

Assume that for each e, x̂, û, there exists a unique x satisfying (2.17), and denote this
inverse as

x = ν(e, x̂, û). (2.18)

The error dynamics resulting from (2.17) are

ė = fe(e, x̂, û, w) + ge(e, x̂, û, w)u− he(e, x̂, û) ˙̂u, (2.19)

where

fe(e, x̂, û, w) :=

{
∂ϕ

∂x
f(x,w) +

∂ϕ

∂x̂
f̂(x̂, û)

}
(x− π(x̂, û))

+ ϕ(x, x̂, û)

{
f(x,w)− ∂π

∂x̂
f̂(x̂, û)

} ∣∣∣∣
x=ν(e,x̂,û)

, (2.20)

ge(e, x̂, û, w) :=

{
∂ϕ

∂x
(x− π(x̂, û)) (2.21)

+ ϕ(x, x̂, û)

}
g(x,w)

∣∣∣∣
x=ν(e,x̂,û)

,

and he can be computed but is not written explicitly since it multiplies ˙̂u, which is zero
within sampling periods.

Note that the planner input is applied in a zero order hold fashion within each sampling
period as described in (2.3). As the tracking error dynamics (2.19) have a term containing ˙̂u
(unlike (2.5)), these dynamics change discontinuously at each sampling instant τk. Therefore,
we break up the error analysis into two parts. In Section 2.4, we bound the error within a
single sampling period [τk−1, τk). In Section 2.4, we bound the error jump across sampling
periods from τ−k to τ+k induced by the input jump ∆ûk. This two-part approach can be
visualized in Figure 2.2.

Analysis Within Sampling Periods

Since the signal û is piece-wise constant, within a single sampling period we have

˙̂u(t) = 0, ∀t ∈ [τk−1, τk). (2.22)
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Therefore, the error dynamics (2.19) during the time interval [τk−1, τk) are:

ė = fe(e, x̂, û, w) + ge(e, x̂, û, w)u. (2.23)

We want to enforce the boundedness of the error state during [0, Ts) by introducing a tracking
controller

u(t) = κ(t, e(t), x̂(t), û(t)), (2.24)

which is now defined by a time-varying, error-state feedback control law κ : R×Rnx×Rn̂x×
Rn̂u → Rnu . We use a time-varying controller κ and a time-varying storage function V in
this section for additional flexibility. In particular, we may find a storage functions whose
level sets shrink as time increases. The main idea is that if the level set at the end of the
sampling period is sufficiently smaller than the level set at the beginning of the sampling
period, then this size difference can accommodate the error jump across sampling periods as
in Figure 2.2.

Below we provide conditions on κ and V for bounding the error in a level set of V within
each sampling period, where now each level set of V is a funnel in (e, t) space.

Proposition 1. Given the error dynamics (2.23) with mappings fe : Rnx×Rn̂x×Rn̂u×Rnw →
Rnx, ge : Rnx ×Rn̂x ×Rn̂u ×Rnw → Rnx, and γ ∈ R, Ts > 0, X̂ ⊆ Rn̂x, Û ⊆ Rn̂u, W ⊆ Rnw ,
suppose there exists a C1 function V : R × Rnx → R, and κ : R × Rnx × Rn̂x × Rn̂u → Rnu,
such that

∂V (t, e)

∂e
· (fe(e, x̂, û, w) + ge(e, x̂, û, w) · κ(t, e, x̂, û))

+
∂V (t, e)

∂t
< 0, ∀t, e, x̂, û, w, s.t. t ∈ [0, Ts),

V (t, e) = γ, x̂ ∈ X̂ , û ∈ Û , w ∈ W . (2.25)

Define the funnel Ω(V, t, γ) := {e ∈ Rnx : V (t, e) ≤ γ}. If e(0) ∈ Ω(V, 0, γ), then e(t) ∈
Ω(V, t, γ) for all t ∈ [0, Ts).

Proof. The proof is a simple modification of the proof of Theorem 1, where now V̇ (t, e(t)) :=
∂V (t,e)
∂e

ė(t) + ∂V (t,e)
∂t

contains the additional ∂V/∂t term from (2.25).

Remark 3. Although Proposition 1 is stated for the first sampling period [0, Ts), it can
be used for any other sampling period [τk, τk+1) with τk = k · Ts. Let e(τk) ∈ Ω(V, 0, γ).
Then we have e(τk + t) ∈ Ω(V, t, γ), for all t ∈ [0, Ts), under the control signal u(τk + t) =
κ(t, e(τk + t), x̂(τk + t), û(τk + t))).

Analysis Across Sampling Periods

Next, we focus on the effect of the input jump ∆û at each sampling instant τk as in (2.3b).
From (2.17), ∆û induces a jump on the error. Let τ−k and τ+k denote sampling instant τk
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before and after the discrete jump, respectively, and for simplicity use the notation e+k :=
e(τ+k ). Then we have

e+k = ϕ(x+k , x̂
+
k , û

+
k )(x

+
k − π(x̂

+
k , û

+
k ))

= ϕ(x−k , x̂
−
k , û

−
k +∆û+k )(x

−
k − π(x̂

−
k , û

−
k +∆û+k ))

= ϕ(ν(e−k , x̂
−
k , û

−
k +∆û+k ), x̂

−
k , û

−
k +∆û+k )

· (ν(e−k , x̂
−
k , û

−
k +∆û+k )− π(x̂

−
k , û

−
k +∆û+k ))

=: h(e−k , x̂
−
k , û

−
k ,∆û

+
k ). (2.26)

We refer to h as the jump function, as it reflects how the error may jump from the end of
one sampling period to the beginning of the next, due to the jump in the input.

We introduce the additional condition below to characterize the error jump induced by
the control jump ∆û in terms of the funnel Ω(V, t, γ).

Proposition 2. Given γ ∈ R, Ts ∈ R, X̂ ⊆ Rn̂x, Û ⊆ Rn̂u, ∆Û ⊆ Rn̂u, h : Rn̂x × Rn̂x ×
Rn̂u × Rn̂u → Rnx, if there exists a function V : R× Rnx → R satisfying

V (0, h(e, x̂, û,∆û)) ≤ γ, (2.27)

∀x̂ ∈ X̂ , û ∈ Û ,∆û ∈ ∆Û and ∀e s.t. V (Ts, e) ≤ γ

then for all e−k ∈ Ω(V, Ts, γ), e
+
k ∈ Ω(V, 0, γ).

Proof. Suppose e−k ∈ Ω(V, Ts, γ), i.e., V (Ts, e
−
k ) ≤ γ. By Eq. 2.26, e+k = h(e−k , x̂

−
k , û

−
k ,∆û

+
k ).

Thus by Eq. 2.27, V (0, e+k ) ≤ γ, i.e., e+k ∈ Ω(V, 0, γ).

Remark 4. For the special case ϕ(x, x̂, û) = 1 and π(x̂, û) = θ(x̂)+Qû for some Q ∈ Rnx×n̂u,
the x̂ and û terms cancel, and so (2.27) simplifies to

V (0, e−Q∆û) ≤ γ, ∀∆û ∈ ∆Û , ∀e s.t. V (Ts, e) ≤ γ.

Combining Within- and Across-Sample Analysis

We next combine the conditions for within- and across-sample error boundedness from Propo-
sitions 1 and 2, respectively, to obtain the main result on the boundedness of the error at all
time, formulated below and illustrated in Figure 2.2.

Theorem 2. If there exist V and κ satisfying (2.25) and (2.27), define O ⊂ Rnx such that

∪t∈[0,Ts)Ω(V, t, γ) ⊆ O.

Then for all x̂(t) ∈ X̂ , û(t) ∈ Û , ∆û(t) ∈ ∆Û , and w(t) ∈ W, the error system (2.19) under
control law u(t) = κ(t̃, e(t), x̂(t), û(t))) with t̃ = (t mod Ts) ∈ [0, Ts) satisfies:

e(0) ∈ Ω(V, 0, γ) = I ⇒ e(t) ∈ O, ∀t ≥ 0,

that is to say, O is a TEB from I achieved by the tracking control law κ.
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Figure 2.2: Illustration of Theorem 2, with initial error set I = Ω(V, 0, γ), funnels Ω(V, t, γ) over
two sampling periods, bounded error jumps at sampling times, and TEB O.

Proof. From Remark 3 and for all τk = k · Ts, we have if e(τk) ∈ Ω(V, 0, γ), then e(τk + t̃) ∈
Ω(V, t̃, γ) and e(τ−k+1) ∈ Ω(V, Ts, γ). Then it follows from Proposition 2 that e(τ+k+1) ∈
Ω(V, 0, γ). As a result, for all e(0) ∈ Ω(V, 0, γ), we have e(k · Ts+ t̃) ∈ Ω(V, t̃, γ) ⊆ O, for all
k ≥ 0, and t̃ ∈ [0, Ts).

Example 2. We now revisit the planner/tracker dynamics from Example 1 and perform the
analysis above to bound the error within and across sampling periods. Instead of using SOS
to search for a storage function, we propose a fixed form of a controller, and we construct a
storage function that satisfies the conditions of Theorem 2 above.

Within sampling periods, ˙̂u = 0, so the open loop error dynamics are

ė =

[
ṡ− ˙̂s

v̇ − ˙̂v

]
=

[
v − v̂
u− 0

]
=

[
e2
u

]
. (2.28)

Selecting a state-feedback controller u(e) = −k1e1 − k2e2, the closed loop error dynamics are

ė =

[
0 1
−k1 −k2

]
e =: Ae. (2.29)

Because this is a LTI system, constructing a Lyapunov function is straightforward. If there
exists P = P⊤ > 0 such that PA + A⊤P < −αP for some α > 0, then it is simple to show
that V (t, e) = exp(αt) · e⊤Pe satisfies V̇ (t, e) < 0 for all e ̸= 0. Hence, for any γ > 0,
∪t∈[0,Ts)Ω(V, t, γ) forms a valid TEB from I = Ω(V, 0, γ) by Theorem 2. We can examine
the form of the level sets to see how they shrink with time

Ω(V, t, γ) =

{
e ∈ Rnx : e⊤Pe ≤ γ

exp(αt)

}
. (2.30)

As t increases, e is forced to lie in smaller and smaller ellipsoids. Then the jump condition
is (

e−
[
0
∆û

])⊤

P

(
e−

[
0
∆û

])
≤ γ (2.31)

for all ∆û ∈ ∆Û and e s.t. e⊤Pe ≤ γ

exp(αTs)
,
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meaning that if the error lies in the smallest ellipsoid at the end of the sampling period, then
for all values of ∆û the perturbed error will lie in the largest ellipsoid at the start of the next
sampling period, as illustrated in Figure 2.2.

The variable e can be eliminated by maximizing the left hand side of (2.31) over e and
observing that the optimizer e∗ is aligned with [0;∆û]. Then (2.31) can be simplified to

∆û⊤P22∆û ≤ γ
(
1− exp(−1

2
αTs)

)2 ∀ ∆û ∈ ∆Û (2.32)

where P22 ∈ Rn̂u×n̂u is the lower right block of P . Furthermore, if ∆Û is a polytope, condi-
tion (2.32) can simply be checked at the vertices of ∆Û due to the convexity of the expression
∆û⊤P22∆û.

Remark 5. As we saw in Example 2, it’s not always necessary to use a SOS tracking
controller. SOS is a versatile option since it can handle general polynomial systems, but for
a given system, a practitioner may wish to use a fixed controller or a fixed form of a controller
with some parameters to be determined. This fixed or parameter-dependent κ can be plugged
into the SOS optimization, rather than leaving κ as a totally free decision variable. Then the
SOS optimization can search for V , γ, and any parameters in κ assuming the optimization
remains convex in these parameters. Otherwise, an iterative search can be performed over
the parameters of κ.

SOS Optimization

Again, to use SOS optimization to search for V and κ, we restrict them to polynomials:
V ∈ R[(t, e)], and κ ∈ R[(t, e, x̂, û)]. We further assume that fe (2.20), ge (2.21), and the
jump function h (2.26) are polynomials. In addition to Assumption 1, we assume ∆Û =
{∆û ∈ Rn̂u : p∆(∆û) ≤ 0}, where p∆ ∈ R[∆û]. Similarly to (2.11), we enforce tracking input
constraints u ∈ U via the constraint

{e ∈ Rnx : V (t, e) ≤ γ} ⊆ {e ∈ Rnx : κ(t, e, x̂, û) ∈ U},
∀(t, x̂, û) ∈ [0, Ts)× X̂ × Û . (2.33)

By choosing the integral of the volume of Ω(V, t, γ) over the time interval [0, Ts] as the cost
function, and applying the generalized S-procedure to (2.12), (2.25), (2.27), and (2.33), we
obtain the following optimization problem:

min
V,κ,γ,s,l

∫ Ts

0

volume(Ω(V, t, γ))dt

s.t. s1→4 ∈ Σ[(t, e, x̂, û, w)], s5→6 ∈ Σ[(e,∆û)],

l ∈ R[(t, e, x̂, û, w)], s0 ∈ Σ[e],

s7→14,i ∈ Σ[(t, e, x̂, û)], i ∈ {1, ..., nu}, (2.34a)
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γ − V (0, e) + s0 · p0 ∈ Σ[e], (2.34b)

−
(
∂V

∂t
+
∂V

∂e
· (fe + geκ)

)
− ϵe⊤e+ l · (V − γ)

+ s1 · px̂ + s2 · pû + s3 · pw − s4 · t(Ts − t)
∈ Σ[(t, e, x̂, û, w)], (2.34c)

− (V (0, h(e, x̂, û,∆û))− γ) + s5 · (V (Ts, e)− γ)
+ s6 · p∆ ∈ Σ[(e,∆û)], (2.34d)

ui − κi + s7,i · (V − γ)− s8,i · t(Ts − t) + s9,i · px̂
+ s10,i · pû ∈ Σ[(t, e, x̂, û)], i ∈ {1, ..., nu}, (2.34e)

κi − ui + s11,i · (V − γ)− s12,i · t(Ts − t) + s13,i · px̂
+ s14,i · pû ∈ Σ[(t, e, x̂, û)], i ∈ {1, ..., nu}. (2.34f)

Note that the condition t ∈ [0, Ts] is reformulated in (2.34e)-(2.34f) via the inequality
−t(Ts − t) ≤ 0. The optimization is bilinear in two groups of decision variables V and
(κ, l, s5, s7,i, s11,i), and can also be solved using alternating direction method similar to Al-
gorithm 1 in the Appendix.

After the funnel Ω(V, t, γ) is found, the next step is to compute a TEB O by solving a
convex optimization:

min volume(O)
s.t. Ω(V, t, γ) ⊆ O, ∀t ∈ [0, Ts].

(2.35)

The set O is restricted to a semi-algebraic set in order to convert the set containment
constraint into a SOS constraint. Depending on the parameterization of O, different cost
functions can be chosen. For example, if O is an ellipsoid, O = {e ∈ Rnx : e⊤POe ≤ 1},
where PO ∈ Snx

++ is a decision variable, then − log det(PO) can be used as a cost function. If
O is a polytope, O = {e ∈ Rnx : AOe ≤ bO}, where AO ∈ RnO×nx is fixed, and bO ∈ RnO

is a decision variable, then
∑nO

i=1 bO,i can be used as a cost function, where bO,i is the i-th
element of bO.

Once a TEB O is computed from the SOS optimization (2.34)-(2.35), we can check the
following safety condition, which is a generalized version of (2.14):

ν(O, X̂ , Û) ⊆ X . (2.36)

If (2.36) is satisfied, then the tracker state x is guaranteed to satisfy state constraints X and
the design is considered successful. If (2.14) is not satisfied, we shrink the planner sets X̂
and Û and repeat the process.

2.5 Vehicle Obstacle Avoidance Example

We now apply the planner-tracker control scheme to a vehicle obstacle avoidance example.
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For the high-fidelity tracking model, we use the dynamic bicycle model from [55]:

ẋ1(t) = x5(t) cos(x3(t))− x6(t) sin(x3(t)),
ẋ2(t) = x5(t) sin(x3(t)) + x6(t) cos(x3(t)),

ẋ3(t) = x4(t),

ẋ4(t) =
2

Iz
(lfFc,f (t)− lrFc,r(t)),

ẋ5(t) = x4(t)x6(t) + u2(t),

ẋ6(t) = −x4(t)x5(t) +
2

m
(Fc,f (t) + Fc,r(t))

(2.37)

with

Fc,f = −Cα,fαf , Fc,r = −Cα,rαr (2.38)

αf =
x6 + lfx4

x5
− u1, αr =

x6 − lrx4
x5

(2.39)

where x1 to x6 represent x, y positions in an inertial frame, inertial heading, yaw rate, and
longitudinal and lateral speeds in the body frame. Variables u1, u2 represent front wheel
steering angle and longitudinal acceleration, m and Iz denote the vehicle’s mass and yaw
inertia, and lf and lr represent the distance from the center of mass of the vehicle to the
front and rear axles. Cα,i is the tire cornering stiffness, where i ∈ {f, r}. We use the
parameter values m = 1.67 × 103 kg, Iz = 2.1 × 103 kg·m2, lf = 0.99 m, lr = 1.7 m,
Cα,f = 6.1595× 104 N/rad, and Cα,r = 5.2095× 104 N/rad.

The planning model is a Dubin’s vehicle model:

˙̂x1(t) = û2(t) cos(x̂3(t)),

˙̂x2(t) = û2(t) sin(x̂3(t)),

˙̂x3(t) = û1(t),

where x̂1 to x̂3 represent x, y positions and heading angle, and û1 and û2 represent angular
velocity and velocity. If we use the map π(x̂) = [x̂; 03×1], where x̂ = [x̂1; x̂2; x̂3], then x4 and
x5 will become part of the resulting error state. As a result, the magnitude of the absolute
state x4 and x5 will be minimized in optimization (2.13), which is practically undesirable. To
eliminate this issue, we use a map π(x̂, û) = [x̂; û; 0], where û = [û1; û2], which also provides
reference signals for x4 and x5.

The error is defined as in (2.17), with π(x̂, û) = [x̂; û; 0] and ϕ(x̂) = diag(R−1(x̂3), I4),

where R(ψ) =
[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
. In this example, ϕ allows us to replace the trigonometric

functions in x̂3 in the error dynamics by trigonometric functions in e3 = (x3 − x̂3), which
can easily be approximated by polynomials in a certain range of e3. The sampling time used
in this example is Ts = 0.1 s. The input and input jump spaces for the planning model are
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(a) Planner and tracker system trajectories. (b) Error trajectory.

Figure 2.3: Simulation results for the vehicle obstacle avoidance example. In Figure 2.3a we plot
the trajectories of the planner and tracker systems through the environment, and in Figure 2.3b
we plot ∥e(t)∥ and its guaranteed upper bound. In Figure 2.3a, the initial position of the vehicle
is marked with a red diamond, the goal set is represented with a green box, and the shrunken goal
set is represented with a blue box. The four orange circles are the obstacles the vehicle must avoid.
For each obstacle, the expanded unsafe region is shown in yellow.

Û = [−π/8, π/8]× [2, 4], and ∆Û = [−π/50, π/50]× [−0.075, 0.075]. The tracking control is
unconstrained, i.e., U = R3.

In this example, the SOS optimizations are formulated using SOSOPT [56], and solved
by MOSEK. To compute the tracking controller, we parameterize the storage function V ,
control law κ, and multipliers s, l as degree-2 polynomials. We solve optimization (2.34)
with these decision variables and then solve optimization (2.35) with the error bound O
parameterized as a hypercube. The resulting error bound on (e1, e2, e3) is [−1.07, 1.07] ×
[−1.44, 1.44]× [−1.05, 1.05].

The resulting tracking controller is then tested in simulation with a corresponding plan-
ner; see Figure 2.3. The objective for the planner system is to generate a pathway through
the environment that avoids all obstacles and eventually reaches a goal set, which is accom-
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plished using a standard model-predictive controller (using the solver Ipopt [57]):

min
û(·)

J = ℓf (x̂(t+Np + 1)) +

t+Np∑
k=t

ℓ(x̂(k), û(k)) (2.40a)

s.t. x̂(k + 1) = x̂(k) + Ts · f̂approx(x̂(k), û(k)), (2.40b)

x̂(k) ∈ X̂ , (2.40c)

û(k) ∈ Û , (2.40d)

x̂(t) = x̂0, (2.40e)

∀k = t, . . . , t+Np,

û(k)− û(k − 1) ∈ ∆Û , (2.40f)

û(t)− û0 ∈ ∆Û , (2.40g)

∀k = t+ 1, . . . , t+Np,

where ℓ(·, ·) in (2.40a) is the state/input cost at each time step, ℓf (·) is the final state cost,
(2.40b) is the polynomial approximation of the discretized Dubin’s vehicle dynamics, (2.40c)
and (2.40d) ensure state and input constraints are obeyed, and (2.40e) is the initial state
constraint. Furthermore, û0 is the input that was applied at the previous time step, and
therefore (2.40f) and (2.40g) ensure the input jump constraints are respected. The objective
to reach the goal set is encoded using the functions ℓ and ℓf . The initial state of the vehicle
is x̂0 = [0; 15; 0] and the goal set is a square region centered at (48.5, 6.5) with a height
and width of 7m. This goal set is shrunk by the error bound to ensure that if the planner
state reaches the shrunk goal set, the tracker state will reach the true goal set. There
are four circular obstacles centered at (−5,−2.5), (12.5, 10), (30, 7.5), and (15,−15), each
with a radius of 3m. Since the maximum position tracking error the vehicle will experience
is
√
1.072 + 1.442 = 1.79m, for each obstacle, we constrain the vehicle to avoid a circular

region centered at the obstacle coordinates with an expanded radius of 4.79m. This ensures
the vehicle will not collide with any of the obstacles. Indeed, in simulation the vehicle
successfully navigates past each obstacle and eventually reaches the goal set, as shown in
Figure 2.3.

2.6 Conclusion

In this chapter, we address robust trajectory planning and control design for nonlinear
systems. A hierarchical trajectory planning and control framework is proposed, where a low-
fidelity model is used to plan trajectories satisfying planning constraints, and a high-fidelity
model is used for synthesizing tracking controllers guaranteeing the boundedness of the error
state between the low- and high-fidelity models. We consider error states that are functions
of both planner states and inputs, which offers more freedom in the choice of the low-fidelity
model. SOS optimizations are formulated for computing the tracking controllers and their
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associated tracking error bound simultaneously. Finally, we demonstrate the planner-tracker
control scheme on a vehicle obstacle avoidance example.

When implementing the planner-tracker framework in real-time, there are still challenges
for providing a full guarantee of safety. Two sources of error in the planner dynamics are
present in the example above: (1) the discretization error from the forward Euler discretiza-
tion, and (2) the polynomial approximation error from the trigonometric terms. If a bound
on these errors were known, it would be possible to incorporate them into the design process,
ensuring instead that the planner constraints, when augmented with the discretization error,
polynomial approximation error, and the tracking error still satisfy the tracker constraints.
We do not perform such an analysis in this chapter. One could also avoid discretization error
by using a MPC solver that is designed to perform numerical integration for continuous-time
dynamical systems, such as in the software package acados [58].

In this chapter, we also do not address the question of MPC terminal sets and costs
for stability and persistent feasibility guarantees for the MPC problem. These sets/costs
can be computed in simple cases but may increase the computational burden, both offline
and online. Real-time reliability of solvers for MPC, especially for nonlinear models, should
also be considered in practical applications. Finally, defining the error variable can require
clever selection of the function ϕ to make terms in the dynamics cancel, which isn’t always
intuitive.

Appendix

The algorithm to solve the bilinear optimization (2.13) is summarized below, the (κ, γ)-step
of which treats γ as a decision variable. By minimizing γ, the volume of Ω(V j−1, γ) can be
shrunk. In the V -step, (2.41) enforces Ω(V j, γj) ⊆ Ω(V j−1, γj).

The input to Algorithm 1 is a feasible initial guess V 0. One candidate might be a
quadratic Lyapunov function V̄ obtained by solving Lyapunov equations using the linearized
error dynamics with LQR controllers. However, V̄ might be too coarse to be feasible for the
constraints (2.13). Here, we introduced a slack variable λ > 0 to the constraint (2.13c) to
relax the constraint, and quantify how far V̄ is away from a feasible candidate:

− ∂V

∂e
· (fe + ge · κ) + λ− ϵe⊤e+ l · (V − γ) + s1 · px̂

+ s2 · pû + s3 · pw ∈ Σ[(e, x̂, û, w)]. (2.42)

By iteratively searching over two bilinear groups of decision variables, we minimize λ until
λ ≤ 0. Based on this idea, an algorithm to compute V 0 from V̄ is proposed as Algorithm 2.
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Algorithm 1 Alternating direction method

Require: function V 0 such that constraints (2.13) are feasible by proper choice of s, l, κ, γ.
Ensure: κ, γ, V .
1: for j = 1 : Niter do
2: (κ, γ)-step: decision variables (s, l, κ, γ).

Minimize γ subject to (2.13) using V = V j−1.
This yields (lj, sj4,i, s

j
7,i, κ

j) and the cost γj.
3: V -step: decision variables (s1→3, s5→6,i,

s8→9,i, V ); Maximize the feasibility subject to
(2.13) as well as s10 − ϵ ∈ Σ[e], and

−s10 · (V j−1 − γj) + (V − γj) ∈ Σ[e], (2.41)

using (γ = γj, s4,i = sj4,i, s7,i = sj7,i, κ = κj,
l = lj). This yields V j.

4: end for

Algorithm 2 Computation of V 0

Require: function V̄ , and γ̄ > 0.
Ensure: V 0.
1: V pre ← V̄
2: while λ > 0 do
3: κ-step: decision variables (s, l, κ).

Minimize λ subject to (2.13a–2.13b, 2.42, 2.13d–2.13e),
using V = V pre, γ = γ̄.
(lpre, spre4,i , s

pre
7,i , κ

pre)← (l, s4,i, s7,i, κ)
4: V -step: decision variables (s1→3, s5→6,i,

s8→9,i, V ); Minimize λ subject to (2.13a–2.13b, 2.42,
2.13d–2.13e) using (γ = γ̄, s4,i = spre4,i , s7,i = spre7,i , κ =
κpre, l = lpre).
V pre ← V

5: end while
6: V 0 ← V pre
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Chapter 3

Extension to Unmodeled Input
Dynamics

3.1 Abstract

The planner-tracker framework is a hierarchical control scheme wherein a motion plan is
generated using a simplified model, and a tracking controller synthesized offline keeps the
error between the true and simplified model trajectories small. This chapter extends the
planner-tracker framework to accommodate unmodeled input dynamics, described by inte-
gral quadratic constraints (IQCs). A sum-of-squares (SOS) program is formulated to search
for the tracking controller and error bound, and the method is demonstrated on a vehicle
obstacle avoidance example with input delay.

3.2 Introduction

Complex systems, such as autonomous vehicles [1] and missile guidance systems [2], use
hierarchical control schemes where each control layer uses a different system model. This
approach can enhance computational efficiency, as the higher-level control layer can use a
simpler model to reduce computation times and to enable control strategies that may not be
possible with the more complex model. Faster higher-level control can also allow the system
to respond to changing environments in real-time.

Such hierarchical schemes, however, may be unsafe if the error between the models in
different layers is not accounted for. A high-level motion plan generated using a simplified
model may avoid obstacles that the lower-level controller is unable to. Thus, for safety, each
control layer must accommodate the error arising from different models.

In the planner-tracker framework [3–10], a lower-fidelity “planning” model is employed
for online planning and a “tracking” controller, synthesized offline, keeps the tracking error
between the high-fidelity (“tracking”) model and the planning model within a bounded set.
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System safety is then guaranteed if the planner constraints, when augmented by the tracking
error bound, lie within the safety constraints.

Tube Model Predictive Control (MPC) is another approach for handling the error be-
tween an uncertain model and a nominal model used for planning [22–30]. Tube MPC is a
robust control strategy where the error between the true model and a nominal model, free of
disturbances, is bounded within a tube, and MPC is performed on the nominal model with
state constraints shrunk by the size of the tube. Typically, the true and nominal models
differ by only an additive disturbance in the true model. However, this may not capture the
total uncertainty in the true model. Besides disturbances, another source of uncertainty is
unmodeled dynamics.

The more sources of uncertainty we can accommodate in the higher-fidelity model, the
more the models will reflect reality. In this chapter, we extend the planner-tracker framework
to handle unmodeled dynamics at the input of the tracker model. We characterize the
uncertainty using an Integral Quadratic Constraint (IQC), which is an essential tool for
ensuring robustness to unmodeled dynamics [59, 60]. In particular, we use α-IQCs, which
contain an exponential weighting factor compared to standard IQCs [31,32,61].

These α-IQCs can be used to describe many uncertainties including unknown delays
or unmodeled actuator dynamics. The Smith predictor [62] is a common compensator for
systems with large delays, but the approach presented here provides safety guarantees for
an unknown delay in a range.

The most closely related works are [31,32], which also use α-IQCs to incorporate unmod-
eled dynamics in shrinking tube MPC. However, attention is restricted to linear systems,
whereas this chapter is applicable to nonlinear systems.

In Section 3.3, we derive the error dynamics between the planner and the tracker model
with unmodeled input dynamics. In Section 3.4, we describe conditions that an error bound
set must satisfy, and in Section 3.5 we convert these conditions into an SOS program. We
solve this SOS program for a vehicle obstacle avoidance example in Section 3.6.

Notation: For ξ ∈ Rn, R[ξ] represents the set of polynomials in ξ with real coefficients,
and Rm[ξ] and Rm×p[ξ] denote all vector and matrix valued polynomial functions. The
subset Σ[ξ] := {p = p21 + p22 + ... + p2M : p1, ..., pM ∈ R[ξ]} of R[ξ] is the set of sum-of-
squares polynomials in ξ. We say a matrix-valued polynomial P ∈ Rm×m[ξ] is in Σm[ξ] if
y⊤Py ∈ Σ[ξ, y], which implies P is positive semidefinite for all ξ. For a function V : Rn → R
and a scalar γ ∈ R, we denote the γ-sublevel set of V as Ω(V, γ) := {x ∈ Rn : V (x) ≤ γ}.

3.3 Problem Formulation

Planner-Tracker Framework

We now describe the planner-tracker framework, extended to include unmodeled input dy-
namics (Figure 3.1). The low-fidelity model, called the planning model P , has the form:

˙̂x = f̂(x̂, û), (3.1)
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Figure 3.1: Planner-tracker scheme. The planning controller uses the state x̂ and constraints X̂
and Û to generate a reference input û. Using a filter state xF as an additional input, the tracking
controller converts this into a control u which is guaranteed to keep the tracker state x within state
constraints X . This is accomplished by keeping the tracking error e within a set O whose volume
is minimized.

where x̂ ∈ X̂ ⊆ Rn̂x and û ∈ Û ⊆ Rn̂u are the state and control input, respectively, of the
planner system.

A higher-fidelity model, referred to as the tracking model, is used to track the trajectory
generated for the planning model above. The tracking model is of the form:

ẋ = f(x,w) + g(x,w)(u+ l), (3.2)

l = ∆(u), (3.3)

where x ∈ Rnx is the tracker state, w ∈ W ⊆ Rnw is an external disturbance, and u ∈ U ⊆
Rnu is the control input which will depend on x̂ and û with the goal of keeping the error
between the planner and tracker systems small.

An uncertain block ∆ at the tracker input with output l ∈ Rnl is added to the tracker
input in (3.2). This block encompasses unmodeled dynamics, e.g., delays, where the resulting
signal l is a function of u and/or x. This is distinct from the exogeneous disturbance w which
does not depend on x or u and is restricted, a priori, toW . The presence of ∆ and l is what
distinguishes this chapter from previous works in the planner-tracker framework literature.

Integral Quadratic Constraint

We assume that ∆ satisfies an input-output relationship called an α Integral Quadratic
Constraint (α-IQC) for some constant scalar α ∈ R. To define this relationship, the input u
is passed through a linear time-invariant filter F with state xF ∈ RnF and output z ∈ Rnz :

ẋF = AFxF +BFu, (3.4)

z = CFxF +DFu. (3.5)
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Then ∆ is said to satisfy the α-IQC defined by filter F if∫ T

0

eαt(z(t)⊤z(t)− l(t)⊤l(t))dt ≥ 0 (3.6)

for all T ≥ 0 and for xF (0) = 0nF
. We write this compactly as ∆ ∈ IQC(F, α). The α-IQC

can be used to describe uncertainties such as unknown delays or unmodeled actuators. It
allows us to augment the system with F and analyze the augmented system with ∆ removed,
treating l as a free input.

There is a more general IQC framework where the filter has both u and l as inputs.
In this chapter, we restrict the filter input to be the tracker input u so that there is no
uncertainty affecting the filter state xF . This allows us to compute xF and use it as an input
to the tracking controller.

Error System

We define a tracking error e ∈ Rne between the states of the planner and tracker models:

e = ϕ(x, x̂). (3.7)

We assume ϕ is invertible in x for all x̂ ∈ X̂ , i.e., it admits an inverse, ψ, such that e =
ϕ(x, x̂) ⇒ x = ψ(e, x̂). We further assume the error dynamics can be written as

ė = fe(e, x̂, û, w) + ge(e, x̂, û, w)(u+ l), (3.8)

l = ∆(u), (3.9)

for some functions fe(e, x̂, û, w) and ge(e, x̂, û, w). Both of these requirements hold for the
simple definition ϕ(x, x̂) = x − x̂. They also hold for the example in Section 3.6, where
ϕ(x, x̂) = r(x̂)(x − x̂), and r(x̂) ∈ Rnx×nx is invertible for all x̂ ∈ X̂ . We denote this error
system as E in Figure 3.2.

Objective

We wish to derive a tracking controller u = κ(e, xF , x̂, û) and an associated error bound
O ⊆ Rne , as small as possible, for the following closed loop error dynamics:

ė = fe(e, x̂, û, w) + ge(e, x̂, û, w)(κ(e, xF , x̂, û) + l), (3.10)

l = ∆(κ(e, xF , x̂, û)). (3.11)

O is used for shrinking the planner state constraint X̂ such that, when e ∈ O, x̂ ∈ X̂
guarantees the tracker constraint x ∈ X . Minimizing the volume of O ensures the constraint
X̂ is minimally restrictive.
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Figure 3.2: Block diagram for the error system E. By analyzing the system augmented with the
filter F , we can ignore ∆ and treat l as a free input, where z and l satisfy the α-IQC (3.6).

3.4 Error Bound

Finding the error bound O involves two conditions. First, in Section 3.4, we present a
condition on the control law κ and an associated storage function V such that the γ-sublevel
set of V for some scalar γ, denoted Ω(V, γ), is positively invariant under the closed loop error
dynamics (3.10)-(3.11) for all ∆ ∈ IQC(F, α), x̂ ∈ X̂ , û ∈ Û , and w ∈ W . That is,

V (e(0), xF (0)) ≤ γ ⇒ V (e(t), xF (t)) ≤ γ ∀t ≥ 0. (3.12)

Next, in Section 3.4, we project Ω(V, γ) into the space of error variables. O is a bound on
this projection, obtained using a “shape function” with an adjustable parameter that we
use to minimize the volume. We accommodate an initial condition constraint and an input
constraint in Section 3.4.

Invariance Condition

The following condition ensures that the γ-sublevel set of a storage function V is a positively
invariant set for the closed loop error dynamics (3.10)-(3.11) with tracking control law κ. It
is motivated by a related result on robust control barrier functions [61, Lemma 1].

Theorem 6. Given the error dynamics (3.8)-(3.9), filter dynamics (3.4)-(3.5), and IQC ∆ ∈
IQC(F, α), if there exist C1 functions V : Rne×RnF → R and κ : Rne×RnF ×Rn̂×Rm̂ → R,
and a scalar γ > 0 such that

∇eV (e, xF )
⊤(fe(e, x̂, û, w) (3.13)

+ ge(e, x̂, û, w)(κ(e, xF , x̂, û)+l))

+∇xFV (e, xF )
⊤(AFxF +BF · κ(e, xF , x̂, û))

+ (CFxF+DFκ(e, xF , x̂, û))
⊤(CFxF+DFκ(e, xF , x̂, û))

− l⊤l < −α(V (e, xF )− γ)
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∀x̂ ∈ X̂ , û ∈ Û , w ∈ W , l ∈ Rnl , (e, xF ) s.t. V (e, xF ) ≤ γ,

then Ω(V, γ) is a positively invariant set for the closed loop error dynamics with controller
κ.

Proof. The dynamics of the augmented closed-loop system with state ξ := [e;xF ], inputs
(l, x̂, û, w), and output z are:

ξ̇ =

[
fe(e, x̂, û, w) + ge(e, x̂, û, w)(κ(e, xF , x̂, û) + l)

AFxF +BF · κ(e, xF , x̂, û)

]
=: F (ξ, l, x̂, û, w), (3.14)

z = CFxF +DFκ(e, xF , x̂, û) =: H(ξ, x̂, û). (3.15)

Note that condition (3.13) is equivalent to

∇V (ξ)⊤F +H⊤H − l⊤l < −α(V (ξ)− γ). (3.16)

For simplicity of notation, define F̄ (t) := F (ξ(t), l(t), x̂(t), û(t), w(t)), and similarly for H̄.
Define V̄ (t) := V (ξ(t))− γ so that V̄ (t) = 0 when V (ξ(t)) = γ.

Now the theorem is proved by contradiction. Assume there exist a time t3 > 0 and
signals ξ(·), x̂(·), û(·), l(·), and w(·) such that V̄ (0) ≤ 0 but V̄ (t3) > 0. Then, by continuity
of V̄ , there exists t1 ∈ [0, t3) such that V̄ (t1) = 0, V̄ (t) ≤ 0 for t ≤ t1, and V̄ (t) > 0 for
t ∈ (t1, t1+ϵ1] for some ϵ1 > 0. Then the inequality (3.13) holds for t ≤ t1. Furthermore, since
(3.13) is a strict inequality, by continuity of V̄ there exists ϵ2 > 0 such that for t ∈ [0, t1+ϵ2],
the relaxed, non-strict version of (3.13) holds:

∇V (ξ(t))⊤F̄ (t) + H̄(t)⊤H̄(t)− l(t)⊤l(t) ≤ −αV̄ (t). (3.17)

Defining t2 = t1 +min{ϵ1, ϵ2}, we see that (3.17) holds on [0, t2] and V̄ (t2) > 0. Next, note
that

d

dt
{eαtV̄ (t)} = eαt{αV̄ (t) +∇V (ξ(t))⊤F̄ (t)}

≤ −eαt(H̄(t)⊤H̄(t)− l(t)⊤l(t)). (3.18)

Integrating (3.18) from t = 0 to t = t2, we have

eαt2V̄ (t2)− V̄ (0) (3.19)

≤ −
∫ t2

0

eαt(H̄(t)⊤H̄(t)− l(t)⊤l(t))dt ≤ 0,

where the last inequality used (3.6). Rearranging, we have

V̄ (t2) ≤ e−αt2V̄ (0) ≤ 0, (3.20)

which is a contradiction. □
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Projection Condition

If we find V and κ satisfying (3.13), then Ω(V, γ) ⊆ Rne × RnF is a positively invariant set.
Next we obtain an error bound O ⊆ Rne by bounding the projection of Ω(V, γ) from the
(e, xF )-space into the e-space Rne . O will be used to shrink planning state constraints X̂
such that x̂ ∈ X̂ implies x ∈ X . Then safety of the tracker system is guaranteed as long as
the planner constraints are satisfied. We would like to obtain an error bound O that is as
small as possible so that the constraints on the planner are minimally restrictive.

We introduce a “shape function” P : Rne → R, whose sublevel sets are regular objects like
balls or hyper-rectangles that can be conveniently used to shrink state constraints. P need
not depend on all error variables (e.g., if the only constraint in X is for obstacle avoidance,
P may just depend on the position errors). Then we enforce the constraint

projRne (Ω(V, γ)) ⊆ Ω(P, c) =: O, (3.21)

i.e., the projection onto Rne of the γ-sublevel set of V is contained within the c-sublevel set
of P . By minimizing c, we can shrink the error bound O as much as possible.

Additional Conditions

There are two additional conditions that we may want the storage function V and the
tracking controller κ to satisfy. First, the initial error e(0) may be known to lie in a set
E0 ⊆ Rne . To ensure this set is included in the invariant set, we can enforce the constraint

E0 × {0nF
} ⊆ Ω(V, γ), (3.22)

where we used the fact that the filter initial condition is xF (0) = 0nF
. Secondly, we can

enforce input constraints U with the following constraint:

κ(e, xF , x̂, û) ∈ U ∀x̂ ∈ X̂ , û ∈ Û ,
∀(e, xF ) ∈ Rne × RnF s.t. V (e, xF ) ≤ γ. (3.23)

3.5 SOS Optimization

We now formulate an SOS optimization that searches for a tracking controller κ and a storage
function V satisfying (3.13) and (3.21)-(3.23) while minimizing the volume of the error bound
O.

Finding generic functions V and κ that satisfy (3.13) is a difficult problem. Below we
show how SOS programming can be used to search for these functions by restricting to
polynomial candidates V ∈ R[e, xF ] and κ ∈ Rnu [e, xF , x̂, û]. Besides this restriction, we
make the following assumption:
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Assumption 2. The mappings fe ∈ Rnx [(e, x̂, û, w)] and ge ∈ Rnx×nu [(e, x̂, w)] in error
dynamics (3.8) are polynomials. Sets E0, X̂ , Û , and W are semi-algebraic sets, i.e., there
exists p0 ∈ R[e] such that E0 = {e ∈ Rnx : p0(e) ≤ 0}; with similar definitions for X̂ , Û ,
and W with polynomials px̂ ∈ R[x̂], pû ∈ R[û], and pw ∈ R[w]. The control constraint set U
is a hypercube U = {u ∈ Rnu : u ≤ u ≤ u}, where u, u ∈ Rnu.

The invariance condition (3.13) involves the unbounded variable l and contains a term
that is quadratic in the decision variable κ. The following lemma gives a sufficient condition
for (3.13) that is suitable for use in an SOS program.

Lemma 1. A sufficient condition for (3.13) is

−Q(V, κ, γ, sV , sX , sU , sW ) ∈ Σ2nu+1[e, xF , x̂, û, w], (3.24)

where Q =

 Q11 ∇eV
⊤g (CFxF +DFκ)

⊤

g⊤∇eV −4I 0
CFxF +DFκ 0 −I

 , (3.25)

and Q11(V, κ, γ, sV , sX , sU , sW ) = ∇eV
⊤(fe + ge · κ)

+∇xFV
⊤(AFxF +BFκ) + (α− sV ) · (V − γ)
− sX · pX − sU · pU − sW · pW + ϵ. (3.26)

for some ϵ > 0.

Proof. We manipulate (3.13), reproduced below, into an equivalent condition that has no
quadratic terms in the decision variables:

∇eV
⊤(fe + ge · (k + l)) +∇xFV

⊤(AFxF +BFκ) (3.27)

+ (CFxF +DFκ)
⊤(CFxF +DFκ)− l⊤l < −α(V − γ)

∀x̂ ∈ X̂ , û ∈ Û , w ∈ W , l ∈ Rnl , (e, xF ) s.t. V (e, xF ) ≤ γ.

Maximizing over the unconstrained variable l gives a worst-case value of l∗ = 1
2
g⊤e ∇eV .

Plugging this in yields

∇eV
⊤(fe + ge · κ) +∇xFV

⊤(AFxF +BFκ) (3.28)

+ (CFxF +DFκ)
⊤(CFxF +DFκ)

+
1

4
∇eV

⊤geg
⊤
e ∇eV < −α(V − γ)

∀x̂ ∈ X̂ , û ∈ Û , w ∈ W , (e, xF ) s.t. V (e, xF ) ≤ γ.

While (3.28) only needs to hold for certain values of (e, x̂, û, w), the S-procedure [52] is a
method that gives a sufficient condition that holds for all (e, x̂, û, w), where constraints such
as x̂ ∈ X̂ are encoded via nonnegative multipliers. We now use the S-procedure [52] to
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ensure that (3.28) holds whenever V ≤ γ, x̂ ∈ X̂ , û ∈ Û , and w ∈ W , and add some ϵ > 0
to the left hand side so the inequality is non-strict:

∇eV
⊤(fe + ge · κ) +∇xFV

⊤(AFxF +BFκ) (3.29)

+ (CFxF +DFκ)
⊤(CFxF +DFκ)

+
1

4
∇eV

⊤geg
⊤
e ∇eV + (α− sV )(V − γ)

− sX · pX − sU · pU − sW · pW + ϵ ≤ 0,

where sV , sX , sU , and sW are nonnegative multipliers. Note that (3.29) has quadratic terms
in ∇eV and κ which are both decision variables, so (3.29) is not convex in either variable.
Thus, start by applying Schur complements to expand the term 1

4
∇eV

⊤geg
⊤
e ∇eV that is

quadratic in ∇eV . Then (3.29) is equivalent to[
Q11 + (CFxF +DFκ)

⊤(CFxF +DFκ) ∇eV
⊤g

g⊤∇eV −4I

]
≤ 0, (3.30)

where Q11 is defined in (3.26). Applying Schur complements a second time to expand the
term (CFxF +DFκ)

⊤(CFxF +DFκ) that is quadratic in κ, (3.30) is equivalent to

Q(V, κ, γ, sV , sX , sU , sW ) ≤ 0, (3.31)

with Q as in (3.25)-(3.26). Finally, (3.31) can be relaxed as the SOS condition (3.24).

Using Lemma 1 and applying the generalized S-procedure [52] to the set containment
constraints (3.21)-(3.23), we obtain the following SOS optimization problem for finding V ,
κ, and O:

min
V,κ,γ,s0,sF
siV ,s

i
X ,s

i
U ,sW

δ>0,c−1>0,γ>0

βδ − c−1 (3.32a)

s.t. sW , s0 ∈ Σ[e, xF , x̂, û] (3.32b)

siV , s
i
X , s

i
U ∈ Σ[e, xF , x̂, û], i ∈ {−nu, ..., nu} (3.32c)

δ(Z⊤Z)I −Q(V, κ, γ, s0V , s0X , s0U , sW ) (3.32d)

∈ Σ2nu+1[e, xF , x̂, û]

(V − γ)− (c−1P − 1) ∈ Σ[e, xF ] (3.32e)

s0 · p0 + sF · xF − (V − γ) ∈ Σ[e, xF ] (3.32f)

ui − κi + siV · (V − γ) + siX · px̂ (3.32g)

+ siU · pû ∈ Σ[(e, x̂, û)], i ∈ {1, ..., nu}
κi − ui + s−iV · (V − γ) + s−iX · px̂ (3.32h)

+ s−iU · pû ∈ Σ[(e, x̂, û)], i ∈ {1, ..., nu}
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The variables in (3.32b) and (3.32c) are SOS multipliers. Condition (3.32d) is the result
of applying the S-procedure to (3.13) (justified in Lemma 1), with an added slack variable
δ multiplying (Z⊤Z)I, where Z is the vector of monomials in Q. Condition (3.32e) is the
result of applying the S-procedure to (3.21). Condition (3.32f) is the result of applying
the S-procedure to (3.22), where the multiplier sF need not be SOS. Conditions (3.32g)
and (3.32h) are the result of applying the S-procedure to (3.23) at each vertex of U . The
cost function (3.32a) is a weighted difference of the slack variable δ from (3.32d) and the
parameter c−1 from (3.32e) with a weight β that the user can tune. This cost helps to achieve
the joint goals of having the invariance condition (3.13) hold up to numerical tolerances, and
making the error bound O as small as possible by maximizing c−1 (i.e., minimizing c). We
found that in practice, formulating the problem in terms of c−1 rather than c led to a smaller
error bound.

Even after removing quadratic terms in∇eV and κ in Lemma 1, the SOS program (3.32) is
nonconvex because it has terms that are bilinear in the decision variables, but it can be solved
by alternately solving convex subproblems with the decision variables (V, γ, δ, c, s0, sF , s

i
X ,

siU , sW ) and (κ, δ, c, s0, sF , s
i
V , s

i
X , s

i
U , sW ).

3.6 Numerical Example

Setup

We demonstrate the method on an obstacle avoidance example, where the planner uses a
Dubin’s vehicle model:

˙̂x =

û2 cos(x̂3)û2 sin(x̂3)
û1

 . (3.33)

The states are positions (x̂1, x̂2) and heading angle x̂3, and the inputs are angular rate û1
and longitudinal velocity û2.

In the tracker model, the input u1 is delayed by τ seconds, denoted Dτ (u1). Using an
uncertain block ∆, the tracker model can be put into the form of (3.2)-(3.3):

ẋ =

u2 cos(x3)u2 sin(x3)
Dτ (u1)

 =

u2 cos(x3)u2 sin(x3)
u1 + l

 , l = ∆(u1). (3.34)

Thus we have ∆(u) = Dτ (u1)− u1, so ∆ is the deviation due to the delay. The value of the
delay is unknown but is known to lie in the interval τ ∈ [0, τmax]. The α-IQC associated with
∆ is computed as in Section V of [61], using the MATLAB function fitmagfrd to obtain a
filter F whose Bode plot upper bounds the Bode plot of all possible values of ∆.
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For simplicity, there is no exogenous disturbance w in this example. We define the error
as

e = R(x̂3)
⊤(x− x̂), where R(θ) =

[
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

]
. (3.35)

Rotating the error into the frame of the planner model gives:

ė =

û1e2 + u2 cos(e3)− û2
−û1e1 + u2 sin(e3)

u1 + l − û1

 , l = ∆(u1), (3.36)

and the sin/cos terms can be approximated as polynomials using a second order Taylor series
expansion about e3 = 0.

SOS Tracking Controller

We solve the SOS program (3.32) with α = 5, τmax = 0.05s, P (e) = e21 + e22, Û = {û ∈ R2 :
∥u∥22 ≤ 1}, and U = R2. As can be seen in the SOS cost function (3.32a), larger β encourages
a small value of δ and smaller β encourages a smaller value of c. After searching over several
values, β = 1e3 was selected because it gave the smallest error bound while still yielding a
δ value on the order of 1e−4 which was approximate magnitude of the numerical tolerance
from the SOS solver. Since the dynamics (3.36) don’t depend on X̂ , we don’t need to select
X̂ before solving the SOS program. We use the SOSTOOLS toolbox [63] in MATLAB with
solver MOSEK [64], and after 15 iterations (28 minutes):

γ = 1, δ = 7× 10−4, c = 10.63 (3.37)

V = 0.30e21 + 0.75e1xF + 0.13e22 + 0.23e23 + 0.70x2F
k1 = 0.61e1e2 − 0.07e2û2 − 0.28e2xF − 5.76e3 + 0.82û1

k2 = −0.001e2û1 − 0.67e1 + 0.11û2 + 2.01xF .

Terms with coefficient magnitudes less than 1e-4 have been omitted. The value c = 10.63
indicates an error bound radius of

√
c = 3.26. Hence, the planner state constraints will be

shrunk by the set O = {e ∈ R3 : e21 + e22 ≤ 3.262}.

MPC Planning Controller

MPC is used as the planning controller to generate a motion plan for the vehicle that will
avoid circular obstacles (bloated by the error bound) and reach a target region (shrunk by
the error bound). At each time step, the following optimization is solved. We apply the



CHAPTER 3. EXTENSION TO UNMODELED INPUT DYNAMICS 39

input ût at the current time step and we resolve the optimization at the next step.

min
ut,...,
ut+T−1

t+T−1∑
k=t

(û⊤k Rûk + (x̂k − x̂des)⊤Q(x̂k − x̂des)) (3.38a)

+ (x̂t+T − x̂des)⊤QT (x̂t+T − x̂des)

s.t. ∀k ∈ {t, . . . , t+ T − 1} :
x̂k+1 = x̂k + dt · f̂(xk, uk), (3.38b)

x̂k ∈ X̂ = X ⊖O, (3.38c)

ûk ∈ Û , (3.38d)

x̂t+T ∈ X̂ = X ⊖O, (3.38e)

x̂t = x̂(dt · t) (3.38f)

The cost (3.38a) penalizes the control input and the distance from the desired final point x̂des
at the center of the target set. Constraint (3.38b) is the forward Euler discretized planner
dynamics, and (3.38c) and (3.38e) are planner state constraints, which are tracker obstacle
avoidance constraints shrunk by the error bound O. Constraint (3.38d) restricts the input,
and (3.38f) ensures that the optimization starts from the current planner state. We solve the
optimization using the toolbox YALMIP [65] in MATLAB and the solver Ipopt [57], with
parameters T = 20, dt = 0.1s, R = 1

2
I2, Q = 10I3, Q = 100I3, and x̂des = [46m; 14m].

X = {x ∈ R3 : (x1:2 − xobs,j)
2 ≥ r2obs,j, j = 1, 2}, xobs,1 = [15m; 5m], xobs,2 = [30m; 15m],

robs,1 = robs,2 = 2.74m.

Results

Combining the planning and tracking controllers, we simulate the combined system using
the scenario shown in Figure 3.3. The planner trajectory in red avoids the bloated obstacles
and reaches the shrunk target region. The tracker trajectory in blue tracks the planner
trajectory closely; it does intersect with the bloated obstacles, but not with the true obstacles,
preserving safety. It also reaches the target region.

Figure 3.4 shows the evolution of the error in (e1, e2) space and confirms that the error
never leaves the bound O. Note that while Ω(V, γ) is invariant and its projection lies in O,
O itself is not necessarily invariant.

3.7 Conclusion

This chapter used α-IQCs to extend the planner-tracker framework to accommodate un-
modeled dynamics at the input of the tracker model. An SOS program was formulated to
search for a tracking controller κ and an error bound O. The method was demonstrated on a
vehicle obstacle avoidance example with an MPC planner and an input delay in the tracker
model.
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Figure 3.3: Planner-tracker simulation. The planner trajectory in red avoids the bloated obstacle
(dashed red circles) and reaches the shrunk target region (dashed red square). The tracker trajec-
tory in blue tracks the planner and avoids the true obstacles (dashed blue circles) and reaches the
true target region (dashed blue square).
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Figure 3.4: Position error (e1, e2) and the error bound O.
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Chapter 4

Case Study: Driver-in-the-Loop
Contingency MPC

4.1 Abstract

We present a framework for shared vehicle control between a human driver and an au-
tonomous system. The proposed control strategy, termed Driver-in-the-Loop Contingency
Model Predictive Control (MPC), is inspired by the concept of contingency planning and
is designed to intervene from the driver under emergency conditions in a manner that is
smooth and not overly conservative. Driver-in-the-Loop Contingency MPC relies on the
computation of invariant sets, which are used as MPC terminal sets. The proposed method
is demonstrated on two longitudinal traffic scenarios: (1) vehicle-following, and (2) an inter-
section where the cross-traffic has the right of way. We use these examples to demonstrate
the safety of the controller as well as the inherent trade-off between smooth intervention and
minimal intervention.

4.2 Introduction

Shared vehicle control between an autonomous system and a human driver has the potential
to improve traffic safety if widely implemented and adopted by drivers. Advanced Driver
Assistance Systems (ADAS) are already prevalent, with features like blind spot monitoring,
lane-keeping, and automatic braking, and these features have decreased the number of driver-
caused accidents [66]. However, these systems are often disabled by drivers because even a
low false positive rate is strongly undesirable [67].

In this chapter, we consider a shared control framework [68] where the autonomy has
ultimate control of the vehicle, as in [69–71]. The driver applies a control input, i.e., a
steering, braking, or throttle command, and the autonomy can decide whether to apply the
driver’s exact command, or to intervene from the driver and apply a different command. To
improve the driver experience, whenever the autonomy must intervene, it should do so in



CHAPTER 4. CASE STUDY: DRIVER-IN-THE-LOOP CONTINGENCY MPC 42

the least conservative manner possible in order to maintain the driver’s sense of control over
the vehicle motion.

To reduce conservatism, we employ the framework of contingency planning [72], a plan-
ning strategy which preserves the existence of a safe trajectory at all times. The aim in
applying contingency planning to shared vehicle control is to delay any intervention from
the driver as much as possible. To the best of our knowledge, the idea of contingency planning
for driver assistance systems has not been previously explored.

We demonstrate the method on the two longitudinal scenarios shown in Figure 4.1: (a)
vehicle-following, and (b) an intersection where the cross-traffic has the right of way. These
longitudinal scenarios are highly relevant and provide a useful case study for implementing
contingency planning in shared vehicle control. Other safety-critical longitudinal scenarios,
where a similar approach could be implemented, include approaching an occluded area,
driving in areas with human road users, etc.

In particular, we extend a contingency planning strategy called Contingency MPC (CMPC)
[73] to the setting of shared vehicle control, and we refer to this extension as Driver-in-the-
Loop CMPC. We use a new MPC cost function to reflect the priority of maximizing driver
control, and we use an MPC terminal set constraint to guarantee persistent feasibility with
respect to all constraints, including safety constraints that describe the interaction between
the ego and ado1 vehicles. We explore a trade-off that arises between minimal intervention
and smooth intervention from the driver.

In Section 4.3, we introduce set-theoretic concepts utilized in defining and computing
the CMPC terminal set. In Section 4.4, we formulate the MPC optimization problem,
discuss extensions from CMPC, and highlight resulting properties of the controller. We apply
Driver-in-the-Loop CMPC to the vehicle-following scenario in Section 4.5 and the intersection
scenario in Section 4.6, and we demonstrate the trade-off between smooth intervention and
minimal intervention. Finally, we provide concluding remarks and directions for future work
in Section 4.7.

4.3 Preliminaries

Contingency MPC

Contingency planning, introduced in [72], is a trajectory planning strategy wherein the
feasibility of a safe maneuver is preserved at all times. Safety is defined with respect to
a particular contingency event (e.g., a vehicle ahead of the ego vehicle suddenly applying
maximum braking), and if that event occurs, the safety maneuver can be executed.

CMPC is a particular form of contingency planning that uses an MPC problem to preserve
the existence of the safe trajectory [73]. In a standard MPC problem, a sequence of optimal
inputs is calculated over a prediction horizon, the first input is applied, and the procedure
is repeated at the next time step in a receding horizon fashion [74]. In CMPC, however, two

1Vehicles other than the ego vehicle are referred to as ado vehicles.
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(a) Vehicle-following scenario. (b) Intersection scenario.

Figure 4.1: Two longitudinal traffic scenarios where the ego vehicle (blue) must maintain safety
with respect to the ado vehicle (red).

sequences of optimal inputs and states are computed: a nominal branch, and a contingency
branch. The contingency branch includes constraints assuming the contingency event takes
place. The two branches are constrained to have a common first input, which is applied in
a receding horizon fashion as in standard MPC.

Invariant Set Computations

Driver-in-the-Loop CMPC includes a terminal set constraint in order to guarantee persistent
feasibility, meaning that if the MPC problem is feasible at one time step, it is guaranteed to be
feasible at the next time step [74]. Constructing terminal sets for the scenarios in this Chapter
involves two operations: backward reachable sets and maximum control invariant sets. In
each definition, consider a system xk+1 = f(xk, uk) with state constraints xk ∈ X ⊆ Rn and
input constraints uk ∈ U ⊆ Rm.

(1) Backward Reachable Set (BRS). The K-step BRS from S, denoted B(S, K), is
the set of states that can be driven to S in K steps while obeying state and input constraints.
It can be computed by recursively applying the one-step backward reachable set operator,
defined as:

Pre(S) = {x ∈ X : ∃u ∈ U s.t. f(x, u) ∈ S}. (4.1)

Initializing the recursion with B(S, 0) = S, we have

B(S, k) = Pre(B(S, k − 1)), k = 1, . . . , K. (4.2)

Note that this set depends implicitly on f , X , and U .
(2) Maximum Control Invariant Set (MCIS). A nonempty set C ⊆ X is a control

invariant set if it satisfies the relation C ⊆ Pre(C). Then the MCIS, denoted Cmax(X ), is the
largest control invariant set within X (in the sense of set inclusion) [75]. In other words,
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Cmax(X ) is the largest subset of X that the system can be controlled to remain within for
all time.

4.4 Problem Formulation

Considered Scenarios

In this Chapter we consider longitudinal scenarios, where the behavior of each vehicle is
sufficiently captured by a double integrator model with speed and acceleration constraints.
Let the superscript i ∈ {e, a} denote the ego and ado vehicle, respectively. Let xi = [si; vi]
denote the vehicle state, where si is the longitudinal displacement along the vehicle path
and vi is the velocity, and let ui be the acceleration input. Then the vehicle dynamics and
constraints are

ṡi = vi, v̇i = ui, 0 ≤ vi ≤ vimax, a
i
min ≤ ui ≤ aimax. (4.3)

The model is discretized using a zero order hold scheme, and the state and input constraints
are represented as polytopes X i and U i, respectively. These linear time-invariant (LTI) dy-
namics and polytope constraints will be useful in computing the terminal set in the following
MPC problem.

Note that this method is applicable to scenarios including systems other than double
integrators, but the offline and/or online computations may prove difficult in some cases;
future research is needed to investigate other safety critical scenarios and carefully consider
the design in those cases.

Driver-in-the-Loop CMPC Optimization

For simplicity, we drop the superscript i ∈ {e, a} for the ego/ado vehicles since all states and
inputs in this optimization refer to the ego vehicle. Instead, we use the superscript j ∈ {n, c}
to refer to the nominal and contingency branches. Subscript k ∈ {0, . . . , N} denotes the time
step. At each time step, the following optimization is solved online, i.e., during controller
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operation:

min
un0 ,...,u

n
N−1

uc0,...,u
c
N−1

(1− Pc)
N−1∑
k=0

(
unk − u

d,n
k

)2

+ Pc
N−1∑
k=0

(
uck − u

d,c
k

)2

(4.4a)

s.t. xnk+1 = Axnk +Bunk , ∀ k (4.4b)

xck+1 = Axck +Buck, ∀ k (4.4c)

hnk(x
n
k , u

n
k) ≤ 0, ∀ k (4.4d)

hck(x
c
k, u

c
k) ≤ 0, ∀ k (4.4e)

xcN ∈ Z (4.4f)

un0 = uc0 (4.4g)

xn0 = xc0 = x(t) (4.4h)

Here, ud,jk is the driver’s current (k = 0) or predicted (k > 0) input. We assume a model
is given for calculating the driver’s predicted inputs, which may differ along the nominal
and contingency branches. This model may come from an inference module higher in the
autonomy stack. Constraints (4.4b)-(4.4c) are the discretized dynamics for the nominal
and contingency branches. N is the prediction horizon, which can be selected based on
the amount of time into the future for which a driver input prediction is available. The
functions hjk represents joint state and input constraints. The state constraints X e and
input constraints U e are embedded into these functions, along with constraints regarding the
interaction between the ego and ado vehicles. Pc reflects the contingency likelihood, which
is assumed to be available a priori, e.g., by an inference module higher in the autonomy
stack. Z is the terminal set, and details on its computation for each scenario are included
in Sections 4.5 and 4.6. The constraints (4.4d)-(4.4f) are linear for the scenarios in this
Chapter, which means the optimization is a quadratic program and can be efficiently solved.

Remark 7. In this formulation the constraint un0 = uc0 requires the nominal and contingency
branches to share only one common input, as in [73]. In general, however, there could be a
longer shared segment between the two branches, i.e., uni = uci , i = 1, . . . , Nbranch.

Extensions from CMPC

We propose two key extensions from CMPC [73]:
(1) CMPC, as originally formulated, is amenable to a fully autonomous vehicle rather

than a vehicle with a driver. In general, the CMPC cost function can include terms for
comfort, fuel-efficiency, path-following, time-optimality, etc. In the presence of a driver,
however, the priority is matching the driver’s input whenever it is safe to do so. For this
reason, we modify the cost function (4.4a) to be a weighted sum of deviations from the
driver’s current and predicted inputs along each branch.

(2) Persistent feasibility of an MPC problem can be guaranteed by using a suitably
designed terminal set constraint [74]. Persistent feasibility is not addressed in [73], and in
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general terminal sets are difficult to compute. However, for the longitudinal scenarios consid-
ered in this Chapter, the dynamics and constraints are linear, which means the terminal sets
are polyhedra for which efficient algorithms and software exist, such as the Multi-Parametric
Toolbox (MPT) [76] used in this work. Thus, we extend the standard CMPC formulation
to include a terminal set constraint (4.4f).

Formulation Properties

The proposed MPC (4.4) has two key properties, which will be demonstrated numerically in
Sections 4.5 and 4.6.

Property 1. The controller only intervenes if a current or anticipated driver input is
unsafe. Otherwise, it is possible to match the driver’s current measured input (un0 = uc0 = ud0)
and predicted future inputs (unk = ud,nk and uck = ud,ck , k = 1, . . . , N − 1) without violating
safety constraints. This is optimal since the cost achieves its minimum value of zero.

Property 2. A natural trade-off between delayed intervention and more prompt but
gradual intervention can be achieved by varying the parameters Pc and N . For larger Pc,
a higher weight is placed on the contingency branch cost. Qualitatively, this means the
controller has a higher incentive to take preventative action sooner (e.g., via uc0) to prevent
abrupt interventions further along the contingency branch.

Similarly, if the driver’s predicted inputs are unsafe, increasing N further incentivizes
the controller to intervene sooner in order to avoid late-horizon high-cost deviations from
the driver’s input. This may result in smaller variations between subsequent controller
actions, i.e., smoother intervention, as will be demonstrated in Section 4.6. This smoother
intervention for high N can be contrasted to the case where N = 1 and the controller
intervenes if and only if the current input is unsafe.

4.5 Vehicle-Following Scenario

Consider the scenario shown in Figure 4.1(a), where the ego vehicle is driving on a straight
road, following an ado vehicle. The objective of the ego vehicle is to follow the driver’s
commands while remaining safely behind the ado vehicle at all times, even if the ado vehicle
applies maximum braking. That is, the contingency event in this scenario is that the ado
vehicle applies maximum braking.

For this scenario, we enforce state constraints at each step of the prediction horizon to
ensure that the ego vehicle remains at least some buffer distance d behind the ado vehicle, i.e.,
sek ≤ sak − d. For the nominal constraints (4.4d), the ado position sak is propagated assuming
the ado vehicle maintains its current speed. For the contingency constraints (4.4e), sak is
propagated assuming the ado vehicle applies maximum braking.
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Figure 4.2: Terminal set for the vehicle-following scenario. Here, d = 5m, N = 14, T = 0.1s, and
xa = [10m; 10m/s]. From this we can calculate x̄a = [19.1m; 3m/s] and F = 20.

Terminal Set

We follow the procedure in [77], summarized below, to construct the terminal set for this
scenario. Note that these set computations depend implicitly on the system dynamics, which
in this case are the joint dynamics of the ego and ado vehicles, where the ado input is fixed.

(1) Compute the MCIS for the stopped ado vehicle, i.e., the set of states such that the
ego vehicle can stop behind the stopped ado vehicle’s position:

S = Cmax ({[xe;xa] : se ≤ sa − d, va = 0}) |ua=0. (4.5)

(2) Compute the (F − N)-step BRS from this set (assuming the ado vehicle applies
maximum braking), where F is the minimum number of time steps in which the ado vehicle
can come to a stop:

Q =

{
B(S, F −N)|ua=uamin

, F > N

S, else
. (4.6)

(3) Slice Q at x̄a, where x̄a is the ado state at the end of the horizon under maximum
braking: Z = {xe : [xe; x̄a] ∈ Q}.

Note that steps (1) and (2) are done offline, while step (3) is done online. The set com-
putations are done using MPT [76] in MATLAB. Because the system is LTI with polytopic
constraints, this primarily involves computing projections and intersections of polytopes.
An example terminal set is displayed in Figure 4.2. The persistent feasibility of the set Z
constructed in this manner is proved in [77].

Results

We implement the proposed controller (4.4) for this vehicle-following scenario. We generate
{ud,nk }

N−1
k=0 and {ud,ck }

N−1
k=0 using a single-lane vehicle-following model called the Intelligent
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Var. Value Var. Value Var. Value
N 14 aemin = aamin -5 m/s2 d 5 m
M 35 aemax = aamax 1 m/s2 xe0 [0 m; 10 m/s]
T 0.1 s vemax = vamax 30 m/s xa0 [10 m; 10 m/s]

Table 4.1: Problem parameters for the vehicle-following scenario.

Driver Model [78]. We simulate the controller using the parameters shown in Table 4.1.
The MPC was run for M time steps. These computations were done using JuMP [79] (an
optimization modeling package implemented in the Julia language) with the optimization
solver Ipopt [57].

We simulate this controller for a range of Pc values for two different ado trajectories,
and we plot the resulting controller intervention (controller input minus driver input). In
Figure 4.3 (top), the ado vehicle initiates a braking maneuver with acceleration aamin at t = 1s
(i.e., the contingency event happens), and in Figure 4.3 (bottom) the ado vehicle maintains
a constant speed (i.e., the contingency event does not happen).

Figure 4.3 illustrates Property 2 from Section 4.4: the trade-off between smooth controller
intervention when the contingency event occurs and minimal controller intervention when
the contingency event does not occur. In Figure 4.3 (top), when Pc = 0, there are no
terms in the cost function to make the controller take preventative action and smooth the
intervention. Hence, for this value of Pc, the controller waits the longest amount of time
before intervening, but when it does intervene, it does so the most abruptly. Increasing Pc
causes the controller to intervene sooner and more smoothly.

Smooth intervention (high Pc) is desirable, but it comes at the cost of interventions when
the contingency event does not occur, as in Figure 4.3 (bottom). (Here, the interventions are
fairly minimal and may even be undetectable by the driver.) Hence, there exists a trade-off
between intervening smoothly and delaying the intervention as much as possible. This trade-
off can be achieved by tuning the parameter Pc based on the likelihood of the contingency
event and the preferences of an individual driver.

4.6 Intersection Scenario

Now we consider the scenario shown in Figure 4.1(b), in which the ego and ado vehicles
both approach an intersection, and the ado vehicle has the right of way. The two vehicles
should never simultaneously occupy the intersection. Thus, the ego vehicle has to decide
if it should stop before the intersection and wait for the ado vehicle to pass, or if it can
safely move through the intersection before the ado vehicle enters the intersection. Again,
the contingency event is the ado vehicle’s worst-case behavior, which in this case is applying
maximum acceleration.

Each vehicle is modeled as a double integrator where se and sa represent the positions of
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Figure 4.3: Controller intervention for a range of Pc values when the contingency event does happen
(top) or does not happen (bottom).

the ego and ado vehicles along their straight-line paths and se = sa = 0 is the point where
the paths cross in the center of the intersection as shown in Figure 4.1(b). Let l be half the
width of the intersection. The interaction set to be avoided becomes

I = {xe, xa : |se| ≤ l and |sa| ≤ l}. (4.7)

Terminal Sets

In order to avoid the interaction set I, it is sufficient to guarantee that the ego vehicle can
either wait for the ado vehicle to pass through the intersection first, or can successfully go
through the intersection and exit it before the ado vehicle enters. We construct two invariant
sets, Zwait and Zgo, to achieve each of these goals and impose a joint terminal set constraint

xeN ∈ Zwait ∪ Zgo. (4.8)

First we construct Zwait, the invariant set that guarantees the ego vehicle will be able to
wait and let the ado vehicle pass. We note that this is simply the set of ego vehicle states
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Figure 4.4: Terminal sets Zwait and Zgo(F ), where F = 27 and N = 5.

such that the ego vehicle can stop by the beginning of the intersection (se = −l). This set
can be computed (offline) as

Zwait = Cmax({xe : se ≤ −l}). (4.9)

Zgo, on the other hand, is the set of ego states such that the ego vehicle can exit the
intersection before the ado vehicle enters it. Computation of this set is again straightforward.
First, we compute F , the minimum number of time steps in which the ado vehicle can possibly
enter the intersection (subject to speed and acceleration constraints). If F > N , i.e. the ado
vehicle cannot enter the intersection during the current prediction horizon, then Zgo is the
(F −N)-step backward reachable set from {xe : se ≥ l}, the set of ego states that are past
the intersection.

If F ≤ N , however, the ado vehicle is able to enter the intersection during the current
prediction horizon, and hence Zgo = ∅. In this case, we simply encode the pointwise
constraint seF ≥ l in (4.4e). We can express Zgo(F ) as

Zgo(F ) =

{
B ({xe : se ≥ l}, F −N) , F > N

∅, otherwise
. (4.10)

Zgo(F ) is computed offline for a range of F -values. Online, F is computed for the current
ado vehicle state and Zgo(F ) is retrieved. Once the ado vehicle has exited the intersection,
we remove the terminal constraint altogether, since the risk of contingency has passed. For
a sample value of F , we plot Zwait and Zgo(F ) in Figure 4.4.

Remark 8. The terminal constraint (4.8) is in general non-convex. Practically, we can
address this problem by solving two optimizations, one wait optimization with the constraint
xeN ∈ Zwait and one go optimization with the constraint xeN ∈ Zgo, and then taking the
solution to the optimization problem that yields the lower cost. It would also be possible
to bias toward either waiting or going by weighting the cost functions of the wait and go
optimizations differently.
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Var. Value Var. Value Var. Value
Pc 0.5 aemin = aamin -5 m/s2 l 5 m
M 40 aemax = aamax 3 m/s2 xe0 [-40 m; 15 m/s]
T 0.1 s vemax = vamax 30 m/s xa0 [-40 m; 20 m/s]

Table 4.2: Problem parameters for the intersection scenario.

Results

For sample ego and ado initial conditions, we simulate the controller to verify that safety is
preserved. First, we use initial conditions such that only the terminal constraint xeN ∈ Zgo

can be satisfied. Figure 4.5 shows the ego states (both the closed loop states and the open
loop N -step MPC prediction) as well as the safe sets Zwait and Zgo for a collection of snapshot
times.

As the ado vehicle moves, the set Zgo shrinks. Once the ado vehicle is able to reach
the intersection within the current prediction horizon (k = 17, 23), Zgo becomes empty. By
that time, however, the ego vehicle is guaranteed to be able to exit the intersection within
the same number of time steps. As seen in Figure 4.5 (bottom), the ado vehicle enters
the intersection at time step k = 17, by which point the ego vehicle has already left the
intersection.

We show a similar set of results in Figure 4.6, this time for ego and ado initial conditions
such that only waiting is feasible. The terminal set constraint Zwait is satisfied for the first
three snapshots, while the ado vehicle is still approaching or in the intersection. In the
fourth snapshot, however, the ado vehicle has exited the intersection, so the set constraints
no longer hold and the ego vehicle is free to enter the intersection.

Lastly, we illustrate Property 1 from Section 4.4: that the controller will intervene only
when the driver’s measured or predicted inputs are unsafe. For fixed ego/ado initial con-
ditions (where only waiting is feasible) and for a fixed set of ado inputs, we consider two
different driver input policies:

(1) Driver applies maximum braking (safe), and
(2) Driver tries to maintain a constant speed (unsafe).
In Figure 4.7, we plot the driver’s input and the controller’s input for several values of the

parameter N , the MPC horizon. The controller only intervenes when the predicted driver
input is unsafe, and when the controller does intervene, it does so more smoothly for larger
values of N . The parameters used for this simulation are displayed in Table 4.2.

4.7 Conclusion

In this Chapter, we applied contingency planning to shared vehicle control, a setting where
it is important to make the driver feel in control of the vehicle whenever possible. We
proposed a method called Driver-in-the-Loop CMPC, which we applied to two longitudinal



CHAPTER 4. CASE STUDY: DRIVER-IN-THE-LOOP CONTINGENCY MPC 52

Figure 4.5: Ego vehicle crosses the intersection before the ado vehicle, showing a collection of
snapshot times: k ∈ {1, 5, 10, 17, 23}. The earlier time steps are indicated via more transparent
markers. Top: ego states (both the closed loop states and the open loop N -step MPC prediction)
and safe sets Zwait and Zgo. Bottom: ego and ado positions with lane boundaries and intersection.
The length of the arrows are proportional to the magnitude of each vehicle’s velocity.
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Figure 4.6: Ego vehicle waits for the ado vehicle to cross the intersection, showing snapshot times:
k ∈ {1, 10, 20, 30, 40}. The earlier time steps are indicated via more transparent markers. Top:
ego states (both the closed loop states and the open loop N -step MPC prediction) and safe sets
Zwait and Zgo. Bottom: ego and ado positions with lane boundaries and intersection. The length
of the arrows are proportional to the magnitude of each vehicle’s velocity.
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Figure 4.7: Driver’s input and controller’s input for safe and unsafe predicted driver polices, over
a range of N values.

traffic scenarios. This involved the construction of terminal sets to guarantee persistent
feasibility. We demonstrated that the proposed control scheme preserves safety, and we
showed the trade-off between minimal intervention and smooth intervention that can be
achieved by tuning parameters in the formulation. Future work will involve comparing the
method with other shared control strategies and testing Driver-in-the-Loop CMPC on real
vehicles to evaluate the method in practice.
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Chapter 5

Backstepping Approach for Tracking

5.1 Motivation

In Chapters 2 and 3, we formulated SOS programs to solve for the storage function V and the
tracking controller κ. These SOS programs allow us to encode initial condition constraints,
input constraints, etc., and we can alternately solve two convex subproblems over different
sets of decision variables. However, drawbacks of the SOS approach for tracking control
include:

1. The controller κ will not, in general, have a clear interpretation. It will be a generic
polynomial function of a user-specified order whose coefficients may not have a clear
meaning.

2. SOS programming is prone to numerical sensitivities. The LMIs present in an SOS
program often contain implicit equality constraints which can allow a solver to conclude
that a feasible problem is infeasible. Adding slack variables, like δ in (3.32d), help to
mitigate this challenge.

It is desirable to develop a tracking control strategy that does not have the numerical
challenges of SOS programming and that has an interpretable form. In this Chapter, we
derive a tracking controller using a backstepping-based approach [80].

5.2 Problem Formulation

In this Chapter, we impose more structure on the planning and tracking models, where the
state variable is made of of multiple stages, and the each stage is the input to the next stage.
In particular, the tracking model is of the form

ẋk = fk(x1:k) + gk(x1:k)xk+1, k = 1, ..., n− 1 (5.1)

ẋn = fn(x) + gn(x)u+ w. (5.2)
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The tracking state is x ∈ Rnm where x = [x1, . . . , xn] and each xi ∈ Rm. For k < n, let
x1:k denote [x1, . . . , xk] ∈ Rmk. The tracking input is u ∈ U ⊆ Rnu and the disturbance is
w ∈ W ⊆ Rm. The planning model is of the form

˙̂xk = f̂k(x̂1:k) + ĝk(x̂1:k)x̂k+1, k = 1, ..., n− 1 (5.3)

˙̂xn = f̂n(x̂) + ĝn(x̂)û (5.4)

The planning state is x̂ ∈ Rnm where x̂ = [x̂1, . . . , x̂n] and each x̂i ∈ Rm. For k < n, let x̂1:k
denote [x̂1, . . . , x̂k] ∈ Rmk. The planning input is û ∈ Û ⊆ Rn̂u .

Our goal is to define an error variable and a control law that keeps that error variable
in a bounded set O. Unlike in Chapters 2 and 3 where the error was user-defined, here the
error is defined in stages as part of the backstepping procedure.

5.3 Backstepping Procedure

Step 1: Define e1 = x1 − x̂1. Then

ė1 = f1(x1) + g1(x1)x2 − f̂1(x̂1)− ĝ1(x̂1)x̂2. (5.5)

Select κ1(x1, x̂1) such that

e⊤1 κ1(x1, x̂1) ≥ c1∥e1∥2 (5.6)

for some c1 > 0. Let α1 be such that substituting x2 = α1 gives ė1 = −κ1(x1, x̂1), i.e.,

α1(x1, x̂1:2) = g1(x1)
−1(−κ1(x1, x̂1)− f1(x1) + f̂1(x̂1)− ĝ1(x̂1)x̂2). (5.7)

Accounting for the difference between x2 and α1, we have

ė1 = −κ1(x1, x̂1) + g1(x1)(x2 − α1(x1, x̂1:2)). (5.8)

Step 2: Define e2 = x2 − α1(x1, x̂1:2), yielding

ė1 = −κ1(x1, x̂1) + g1(x1)e2, (5.9)

ė2 = f2(x1, x2) + g2(x1, x2)x3 − α̇1(x1:2, x̂1:3), (5.10)

where α̇1 is the algebraic expression for the time derivative of α1. Select κ2(x1:2, x̂1:2) such
that

κ2(x1:2, x̂1:2) ≥ c2∥e2∥2 (5.11)

for some c2 > 0. Let α2 be such that substituting x3 = α2 gives ė2 = −g1(x1)⊤e1 −
κ2(x1:2, x̂1:2), i.e.,

α2(x1:2, x̂1:3) = g2(x1:2)
−1(−g1(x1)⊤e1 − κ2(x1:2, x̂1:2)− f2(x1:2) + α̇1(x1:2, x̂1:3)) (5.12)
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Then we have

ė2 = −g1(x1)⊤e1 − κ2(x1:2, x̂1:2) + g2(x1:2)(x3 − α2(x1:2, x̂1:3)). (5.13)

Step k: Suppose

ėk−1 = −gk−2(x1:k−2)
⊤ek−2 − κk−1(x1:k−1, x̂1:k−1) + gk−1(x1:k−1)(xk − αk−1(x1:k−1, x̂1:k)).

(5.14)

Define ek = xk − αk−1(x1:k−1, x̂1:k) so that

ėk−1 = −gk−2(x1:k−2)
⊤ek−2 − κk−1(x1:k−1, x̂1:k−1) + gk−1(x1:k−1)ek, (5.15)

ėk = fk(x1:k) + gk(x1:k)xk+1 − α̇k−1(x1:k, x̂1:k+1). (5.16)

Select κk(x1:k, x̂1:k) such that

e⊤k κk(x1:k, x̂1:k) ≥ ck∥ek∥2 (5.17)

for some ck > 0. Let αk be such that substituting xk = αk−1 gives ėk = −gk−1(x1:k−1)
⊤ek−1−

κk(x1:k, x̂1:k), i.e.,

αk(x1:k, x̂1:k+1) = gk(x1:k)
−1(−gk−1(x1:k−1)

⊤ek−1 − κk(x1:k, x̂1:k)− fk(x1:k) (5.18)

+ α̇k−1(x1:k, x̂1:k+1))

⇒ ėk = −gk−1(x1:k−1)
⊤ek−1 − κk(x1:k, x̂1:k) + gk(x1:k)(xk+1 − αk(x1:k, x̂1:k+1)). (5.19)

Step n: By induction, we have

ėn−1 = −gn−2(x1:n−2)
⊤en−2 − κn−1(x1:n−1, x̂1:n−1) + gn−1(x1:n−1)(xn − αn−1(x1:n−1, x̂)).

(5.20)

Defining en = xn − αn−1(x1:n−1, x̂), we have

ėn−1 = −gn−2(x1:n−2)
⊤en−2 − κn−1(x1:n−1, x̂1:n−1) + gn−1(x1:n−1)en (5.21)

ėn = fn(x) + gn(x)u+ w − α̇n−1(x, x̂, û). (5.22)

Select κn(x, x̂) such that

e⊤nκn(x, x̂) ≥ cn∥en∥2 (5.23)

for some cn > 0. Select u = αn(x, x̂, û) such that

ėn = −gn−1(x1:n−1)
⊤en−1 − κn(x, x̂) + w (5.24)

⇒ u = αn(x, x̂, û) = gn(x)
−1(−gn−1(x1:n−1)

⊤en−1 − κn(x, x̂)− fn(x) + α̇n−1(x, x̂, û))
(5.25)
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Finally, the closed loop dynamics are

ė =


−c1I g1 0 · · ·
−g⊤1 −c2I g2 0 · · ·

· · · 0 −g⊤k−1 −ck−1I gk
· · · 0 −g⊤k−1 −ckI

 e+

0
0
...
0
I

w. (5.26)

Lyapunov function: Define the Lyapunov function

V (e) =
1

2
e⊤1 e1 +

1

2
e⊤2 e2 + · · ·+

1

2
e⊤n en. (5.27)

Then cross-terms cancel and we have

V̇ (e, w) = e⊤1 ė1 + e⊤2 ė2 + · · ·+ e⊤n ėn

= e⊤1 (−κ1(x1, x̂1) + g1(x1)e2)

+ e⊤2 (−g1(x1)⊤e1 − κ2(x1:2, x̂1:2)g2(x1:2)e3)
+ · · ·+ e⊤n (−gn−1(x1:n−1)

⊤en−1 − κn(x, x̂) + w)

= e⊤nw −
n∑
k=1

e⊤k κk(x1:k, x̂1:k) (5.28)

≤ e⊤nw −
n∑
k=1

ck∥ek∥2 =: V̇max(e, w) (5.29)

Level set: We want to find the smallest level set of V that is invariant.

γ∗ := min γ (5.30)

s.t. (V (e) = γ, w ∈ W) ⇒ V̇ (e, w) < 0

≤ min γ (5.31)

s.t. (V (e) = γ, w ∈ W) ⇒ V̇max(e, w) < 0

= min γ (5.32)

s.t. (V (e) ≥ γ, w ∈ W) ⇒ V̇max(e, w) < 0

We can prove the final equality by contrapositive, and we can solve optimization (5.32) using
the S-lemma [52]. Observe that we can write V̇max(e, w) = −e⊤Ce+ e⊤nw.

Example 3. Suppose W is an ellipsoid, i.e., W = {w ∈ Rm : w⊤Rw ≤ 1} for some positive
semidefinite R. Then adding a small constant ϵ > 0 to make the inequalities non-strict and
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applying the S-lemma to (5.32) yields

min γ (5.33)

s.t.
(
1
2
e⊤e ≥ γ, w⊤Rw ≤ 1

)
⇒ −e⊤Ce+ e⊤nw + ϵ ≤ 0

≤ min
α,β,γ

γ (5.34)

s.t. α ≥ 0, β ≥ 0

α
(
1
2
e⊤e− γ

)
+ β(1− w⊤Rw)− e⊤Ce+ e⊤nw + ϵ ≤ 0

= min
α,β,γ

γ (5.35)

s.t. α ≥ 0, β ≥ 0
α
2
I − C

[
0
1
2
I

]
0[

0
1
2
I

]
−βR 0

0 0 β − αγ + ϵ

 ≤ 0

For a fixed γ, this optimization is a semidefinite program (SDP) in α and β. Hence, we can
bisect over γ to find the smallest value such that the SDP is feasible.

5.4 LgV Backstepping Procedure

Observe that in the closed loop dynamics (5.39), ėk depends on ek−1. It can be useful to
eliminate such cross-terms to obtain cascaded error dynamics: the evolution of ek depends
only on ej for j > k. In practice, this can make the controller easier to tune. We now present
an “LgV” backstepping procedure that eliminates such cross-terms. This concept comes
from [81], where the name “LgV” refers to Lie derivative terms in V̇ that are strategically
dominated in this approach.

Step 1 proceeds identically as in Section 5.3, where ē1 = e1 and ᾱ1 = α1. In Step 2, we
again let ē2 = ē1 − ᾱ1, and we now define

ᾱ2(x1:2, x̂1:3) = g2(x1:2)
−1(−κ2(x1:2, x̂1:2)− f2(x1:2) + α̇1(x1:2, x̂1:3))

which yields

˙̄e2 = −κ2(x1:2, x̂1:2) + g2(x1:2)(x3 − ᾱ2). (5.36)

Note that this is missing the term −g1(x1)⊤e1 compared to (5.13). In this section, we will
obtain cascaded error dynamics where ˙̄ek does not depend on ēj for j < k. We continue in
this manner so that

˙̄ek = −κk(x1:k, x̂1:k) + gk(x1:k)ēk+1, (5.37)
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without the −gk−1(x1:k−1)
⊤ek−1 cross-term present in (5.19). Furthermore, we now make

the assumption that e⊤k κk(x1:k, x̂1:k) ≥ ck(x1:k)∥ek∥2, where ck can depend on x1:k unlike in
Section 5.3. Finally, we have

ū = gn(x)
−1(−κn(x, x̂)− fn(x) + ˙̄αn−1(x, x̂, û)), (5.38)

which yields ėn = −κn(x, x̂) + w. Finally, the closed loop error dynamics become

ė =


−c1I g1 0 · · ·
0 −c2I g2 0 · · ·

· · · 0 −ck−1I gk
· · · 0 −ckI

 e+

0
0
...
0
I

w. (5.39)

In Section 5.3, we included the −gk(x1:k)⊤ek in each equation of the error dynamics so
that with a Lyapunov function of V = 1

2
e⊤e, these terms would directly cancel the opposite

cross-terms that arose from the gkek+1 terms in the dynamics of ek. In the LgV backstepping
method, instead of directly cancelling these cross-terms, they are dominated by other terms
using Young’s inequality, xy ≤ lx2 + 1

4l
y2 for l > 0. Let V (ē) = 1

2
ē⊤ē. Then

V̇ (ē, w) =
n∑
k=1

ē⊤k ˙̄ek

= ē⊤n (−κn(x, x̂) + w) +
n−1∑
k=1

ē⊤k (−κk(x1:k, x̂1:k) + gk(x1:k)ēk+1)

≤ −cnē⊤n ēn + ē⊤nw +
n−1∑
k=1

(−ckē⊤k ēk + lkē
⊤
k ēk +

1

4lk
ē⊤k+1gk(x1:k)

⊤gk(x1:k)ēk+1)

= −c1ē⊤1 ē1 + ē⊤nw +
n∑
k=2

ē⊤k (−(ck − lk)I + 1
4lk−1

gk−1(x1:k−1)
⊤gk−1(x1:k−1))ēk,

where ln = 0. In order to ensure that V̇ (ē, w) < 0 for all ē ̸= 0, let

− (ck(x1:k)− lk)I + 1
4lk−1

gk−1(x1:k−1)
⊤gk−1(x1:k−1) ≺ −c̄k∥ē∥2 (5.40)

for some c̄k > 0, which is possible for sufficiently large ck(x1:k). Then we have

V̇ (ē, w) ≤ ē⊤nw −
n∑
k=1

c̄k∥ēk∥2 (5.41)

which is of the same form as (5.29), and so we can find an invariant sublevel set of V in the
same manner as in Section 5.3.
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Using these backstepping approaches, with or without the −gk(x1:k)⊤ek term in the error
dynamics, we can avoid using SOS programming to search for a storage function. One
drawback of the backstepping method, however, is that it becomes difficult to bound the
tracking input u ∈ U without simply bounding each term and using the triangle inequality,
which may lead to a quite conservative bound.

5.5 Example

We now demonstrate the backstepping method from Section 5.3 on an autonomous ship
example, adapted from [42]. For the tracker model, we use the following ship model from [82]:

η̇ = R(ψ)ν, (5.42)

Mν̇ = −C(ν)ν −Dν + τ + w, (5.43)

where η := [N ;E;ψ] is the North position, East position, and heading angle, respectively.
The velocity vector ν = [u; v; r] consists of the surge and sway velocities as well as the yaw
rate, and τ is the control input. There are state constraints [η; ν] ∈ X ⊆ R6 that will be

described for the particular scenario of interest. R(ψ) =
[
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

]
is a rotation matrix,

and w ∈ W = [−w̄, w̄] is a bounded disturbance due to wind, where w̄ = [0.014 0.014 0.05]⊤.

The inertia matrix is M =
[
87.4 0 0
0 98.3 2.48
0 2.48 22.2

]
, the damping matrix is D =

[
6.58 0 0
0 37.7 2.66
0 2.66 19.3

]
, and the

Coriolis matrix is C(ν) = u
[
0 0 0
0 0 98.3
0 0 2.48

]
. The planner model neglects the wind disturbance:

˙̂η = R(ψ̂)ν̂, (5.44)

M ˙̂ν = −C(ν̂)ν̂ −Dν̂ + τ̂ . (5.45)

There are planner input constraints τ̂ ∈ Û and state constraints [η̂; ν̂] ∈ X̂ . X̂ will be
restricted as in Chapters 2 and 3 to ensure that the tracker constraints [η; ν] ∈ X are satisfied.
Now we can follow the backstepping procedure from Section 5.3 to design a controller for
this planner-tracker system.

Step 1: Define η − η̂. Then we have

ė1 = R(ψ)ν −R(ψ̂)ν̂. (5.46)

Let α1 be such that substituting ν = α1 gives ė1 = −K1e1, i.e.,

α1 = R(ψ)⊤(R(ψ̂)ν̂ −K1e1). (5.47)

Accounting for the difference between x2 and α1, we have

ė1 = −K1e1 +R(ψ)(ν − α1). (5.48)
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Step 2: Defining e2 := ν − α1, we have

ė1 = −K1e1 +R(ψ)e2. (5.49)

Differentiating to obtain the dynamics for e2 yields

Mė2 =Mν̇ −Mα̇1

= −C(ν)ν −Dν + τ + w −Mα̇1. (5.50)

We can select τ = −R(ψ)⊤e1 −K2e2 + C(ν)ν +Dν +Mα̇1 so that

Mė2 = −R(ψ)⊤e1 −K2e2 + w. (5.51)

To compute α̇1, observe that d
dt
R(ψ(t)) = r(t)R(ψ(t))S, where S =

[
0 −1 0
1 0 0
0 0 0

]
is skew-

symmetric. Then

α̇1 = −rSR(ψ)⊤(R(ψ̂)ν̂ −K1e1) +R(ψ)⊤(r̂R(ψ̂)Sν̂ +R(ψ̂)(M−1(−C(ν̂)ν̂ −Dν̂ + τ̂)))

+R(ψ)⊤K1(−K1e1 +R(ψ)e2). (5.52)

Define the Lyapunov function V (e) = 1
2
e⊤1 e1 +

1
2
e⊤2Me2. Differentiating, we have

V̇ (e, w) = e⊤1 ė1 + e⊤2Mė2 = e⊤1 (−K1e1 +R(ψ)e2) + e⊤2 (−R(ψ)⊤e1 −K2e2 +R(ψ)⊤w)

= −e⊤1K1e1 − e⊤2K2e2 + e⊤2 w (5.53)

Error Bound

Selecting K1 = K2 = 2I3, we wish to find the smallest sublevel set of V , denoted Ω(V, γ) for
some γ, that is invariant for the closed loop error dynamics. We formulate an optimization
problem to find the smallest value of γ that satisfies the invariance condition Theorem 1
from Chapter 2: V̇ (e, w) < 0 whenever V (e) = γ, and w ∈ W :

min
γ

γ

s.t. V (e) = γ ⇒ V̇ (e, w) < 0 ∀ w ∈ W (5.54)

The disturbance setW = [−w̄, w̄] is a hyperrectangle in R3 with 6 vertices. Let these vertices
be denoted wj, j = 1, . . . , 6. Because V̇ (e, w) is linear in w, V̇ (e, w) ≤ 0 will hold for all
w ∈ W if and only if it holds at the vertices, i.e., V̇ (e, wj) ≤ 0, j = 1, . . . , 6. Hence, the
following optimization is equivalent:

min
γ

γ

s.t. V (e) = γ ⇒ V̇ (e, wj) < 0, j = 1, . . . , 6 (5.55)
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We can apply the S-procedure to relax each of the 6 constraints above by introducing mul-
tipliers sj(e). Note that because these multipliers correspond to the equality constraint
V (e) = γ, they need not be SOS. Furthermore, we add a small postive constant ϵ > 0 to
account for the strict inequality in (5.55). Then the following SOS program is a relaxation
of the original optimization.

min
γ,sj

γ

s.t. − V̇ (e, wj) + sj(e)(V (e)− γ) + ϵ ∈ Σ[e], j = 1, . . . , 6 (5.56)

Optimization (5.56) is bilinear in decision variables sj and γ and can be solved by bisecting
over γ to find the smallest value such that the optimization is feasible. We solve the opti-
mization in this manner using SOSOPT [56] in MATLAB, which yields γ = 0.0188. Then
we can use invariant set O = Ω(V, γ) as the error bound.

Scenario

In this example, the goal of the ship is to steer around two obstacles and reach a target
region which represents docking of the ship, as shown in Figure 5.1. The ship 2.578m long
and 0.22m wide and is covered by 6 intersecting circles, and these bounding circles should
never intersect with the obstacles (solid blue circles).

The state constraint X is simply a rectangular constraint (dashed blue rectangle) in the
position space that excludes the obstacles (solid blue circles). The error bound set O is used
to make the obstacles and target region more conservative, so that x̂ ∈ X̂ and e ∈ O imply
x ∈ X as in Chapters 2 and 3.

MPC Planner

We use an MPC planner with a prediction horizon of M steps. The cost function is

J =
M−1∑
k=0

(
τ̂⊤k Rτ̂k −WN̂ exp{N̂k}

)
+Wtermmax{N̂target − N̂M , |ψM − π

2
|}. (5.57)

The stage cost penalizes a large control input and a small North position, since the goal is
for the ship to reach the target region at the maximum North position. The terminal cost
penalizes whichever term is larger between (1) the distance from the terminal North position
to the target North position, and (2) the difference between the terminal heading angle and
the desired value of π

2
. During the simulation, the first terminal cost term starts larger at

the beginning, encouraging the ship to travel North. Towards the end of the simulation, the
second terminal cost term becomes larger, encouraging the ship to turn and orient itself with
the desired heading of π

2
.

The MPC constraints include an initial condition constraint, discretized planner dynam-
ics (using the midpoint method), scenario boundary constraints (dashed black rectangle in
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Figure 5.1: Simulation setup. The ship, which is covered by 6 intersecting circles, aims to avoid
two obstacles and reach a target region. The true obstacles and target region are shown in blue
dashed and solid lines, respectively. The planner aims to avoid the bloated obstacles (solid red
circles) and reach the restricted target region (dashed red rectangle). The black dashed rectangle
represents the scenario boundary.

Figure 5.1), and obstacle avoidance constraints. There is a circular obstacle avoidance con-
straint for each pair between the 2 obstacles and 6 bounding circles that cover the ship, i.e.,
12 obstacle avoidance constraints in total.

Results

Using this MPC planner and the tracking controller described above, we simulate the ship
performing this maneuver in MATLAB. Snapshots from the simulation are shown in Fig-
ure 5.2. The planner ship is covered by 6 intersecting red circles; the tracker ship is covered
by 6 intersecting blue circles. The planner and tracker ship centers are shown by a small red
star and a small blue circle, respectively. The planner ship successfully avoids the bloated
obstacles and reaches the shrunk target region, and the tracker ship successfully avoids the
true obstacle and reaches the true goal region.
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Figure 5.2: Simulation snapshots of ship avoiding obstacles and reaching the target region. The
planner ship is covered by 6 intersecting red circles; the tracker ship is covered by 6 intersecting
blue circles. The planner and tracker ship centers are shown by a small red star and a small blue
circle, respectively.
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Chapter 6

Further Robustness Analysis in
Tracking

6.1 Abstract

A method is presented for computing the worst-case disturbance of a given norm for a
finite-horizon linear time-varying system with a nonzero initial condition. This method is
motivated by the linearized robustness analysis of a nonlinear system about a finite-horizon
nominal trajectory. The system is linearized about this trajectory and interconnected with
sampled model uncertainties. An additional input term to improve the fidelity of the linear
interconnection is introduced and is absorbed into an augmented system with a nonzero
initial condition. The method, which analyzes the robustness of the resulting interconnection
to disturbance, is demonstrated on the numerical example of a two-link robot arm.

6.2 Introduction

Many engineering problems involve nonlinear systems following finite-horizon trajectories,
such as space launch systems, robotic manipulators, etc. It is critical to understand the
robustness of these systems to disturbances and model uncertainties. The dynamics are often
linearized about a nominal trajectory to obtain a finite-horizon linear time-varying (LTV)
system. Robustness can then be studied by sampling from a family of model uncertainties;
however, each sampled model uncertainty changes the nominal trajectory.

To account for the shift in the nominal trajectory, we include an additional input term in
the interconnection of the linearized system with the sampled model uncertainty. We then
absorb the additional input term into an augmented system with a nonzero initial condition.
The analysis tasks are to bound the final output along the trajectory in the presence of
external disturbances and to compute the worst-case disturbance that achieves this bound.

The main technical contribution of this Chapter is a numerically efficient method for
computing the worst-case disturbance of a given norm for a finite-horizon LTV system with
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Figure 6.1: Interconnection of P and ∆.

a nonzero initial condition (Section 6.4). The performance measure of interest is a bound on
the output at the final time. This bound serves as a measure of robustness and allows us to
overapproximate reachable sets for the LTV system. The disturbance can be used to simulate
the original nonlinear system to assess the accuracy of the linearized approximation; it can
also be compared to available disturbance profiles to gauge the likelihood of a worst-case
scenario.

This method is related to the paper [83] that constructs worst-case disturbances for a
more general cost function but subject to zero initial condition. Another related work, [84],
analyzes the robustness of uncertain nonlinear systems using a power iteration but does
not provide any convergence guarantees. An algorithm is presented in [85] to compute an
upper bound on the worst-case gain of an uncertain LTV system using integral quadratic
constraints. Computation of a lower bound involves randomly sampling uncertainties and
constructing corresponding worst-case disturbances using tools from [86]. Both [85] and [86]
assume zero initial conditions. Other studies on bounding trajectories of LTV systems in-
clude [87], which studies disturbances but not model uncertainty.

In Section 6.5, we study a two-link robot arm example from [85]. The model is linearized
about a nominal trajectory, and we analyze the robustness of the resulting LTV system
by determining the effect of disturbance on interconnections of the system with sampled
model uncertainties. We demonstrate that the modified interconnection with a sampled
model uncertainty matches the nonlinear system far more closely than a naive linearized
interconnection.
Notation: Rn×m denotes the set of n-by-m real matrices, and Sn denotes the set of n-by-n
real, symmetric matrices. For u, y ∈ Rn, the Euclidean inner product ⟨u, y⟩2 := uTy defines
the norm ∥u∥2 :=

√
⟨u, u⟩2. Ln2 [0, T ] denotes the Hilbert space of Lebesgue integrable signals

f : [0, T ]→ Rn with inner product ⟨f, g⟩2,[0,T ] :=
∫ T
0
f(t)Tg(t) dt. The inner product defines

a norm ∥f∥2,[0,T ] :=
√
⟨f, f⟩2,[0,T ]. If ∥f∥2,[0,T ] <∞ then f ∈ Ln2 [0, T ].



CHAPTER 6. FURTHER ROBUSTNESS ANALYSIS IN TRACKING 68

6.3 Problem Formulation

Consider an uncertain time-varying system defined on the horizon [0, T ] as in Figure 6.1.
The nominal part P is nonlinear and/or time-varying; the uncertainty ∆ is an LTV system
that is unknown but assumed to be in a known set ∆. We denote the mapping from u to
y in Figure 6.1 as FU(P,∆). It is assumed that this interconnection is well-posed [88]. The
response due to a nominal input ū and ∆ = 0 corresponds to (w̄ = 0, v̄, ȳ). The output y
will deviate from the nominal trajectory ȳ due to the uncertainty ∆ and/or deviations of
the input u from its nominal value ū. The goal is to estimate the maximum deviation (in
the Euclidean norm) of the output at the final time, i.e.

max
∆∈∆

∥u−ū∥2,[0,T ]≤α

∥y(T )− ȳ(T )∥2 (6.1)

s.t. y = FU(P,∆)u, ȳ = FU(P, 0) ū

Let P̄ denote the LTV system obtained by linearizing P along the nominal trajectory (w̄ =
0, ū, v̄, ȳ). Define the deviations as δw := w − w̄, δu := u − ū, δv := v − v̄, δy := y − ȳ, to
approximate the uncertain system in Figure 6.1 as:[

δv
δy

]
= P̄

[
δw
δu

]
(6.2)

δw = ∆(v̄ + δv)

The linearization step is accurate if both δu and δw are “small”, i.e., higher order terms
are small compared to linear terms in the Taylor series expansion. The assumption that δw
is small implies that the uncertainty has small deviation from the nominal value ∆ = 0.
The relation w = ∆(v) has been replaced by δw = ∆(v̄ + δv), which is exact because ∆
is LTV and w̄ = 0. It is important to note the additional forcing term v̄, which accounts
for a change in the nominal trajectory due to the uncertainty. The linearizations in typical
robustness analysis approaches (such as [85]) do not include this additional term and thus
are less accurate in general. We will show numerically in Section 6.5 that this additional
forcing term yields a better approximation for the original uncertain nonlinear dynamics (as
compared to simply setting v̄ = 0). This linearization step yields the (approximate) uncertain
LTV system shown in Figure 6.2. We denote the mapping from δu to δy as FU(P̄ ,∆, v̄).

The uncertainty poses a difficulty in solving Eq. 6.1, which we address through sampling.
Specifically, we replace the maximization over all ∆ ∈ ∆ with a maximization over a finite
collection of samples {∆i}Ni=1. (If∆ is parameterizable, e.g., has a bounded number of states,
and if {∆i}Ni=1 are i.i.d. samples from a probability distribution over ∆, then Theorem 8.1
of [89] can be used to compute N to make probabilistic guarantees on the robustness level.)

This leads to the following (approximate) worst-case analysis problem:

max
∆i∈{∆i}Ni=1
∥δu∥2,[0,T ]≤α

∥δyi(T )∥2 (6.3)

s.t. δyi = FU(P̄ ,∆i, v̄) δu
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Figure 6.2: Linearized interconnection with affine term v̄.

Eq. 6.3 involves a maximization over the disturbance and N uncertainty samples. A key
subproblem is to select a single uncertainty ∆ ∈ {∆i}Ni=1 and maximize over the disturbance
δu. For this sample ∆, the interconnection in Figure 6.2 can be represented as an LTV
system with inputs (δu, v̄) and output δy, where v̄ is known and fixed. This can be re-
written as the LTV system G in Figure 6.2, where δu is the only input, by absorbing v̄ into
the state matrices and introducing a nonzero initial condition (see Appendix 6.6).

For simplicity, we denote the perturbation to the input as d := δu and the resulting
change in output as e := δy. This yields the following LTV system G defined on the finite
horizon [0, T ]:

ẋ(t) = A(t)x(t) +B(t) d(t) (6.4)

e(t) = C(t)x(t),

where x(0) = x0, x(t) ∈ Rnx , d(t) ∈ Rnd , and e(t) ∈ Rne . It is assumed that the intercon-
nection in Figure 6.2 has zero feedthrough from δu to δy. This occurs if and only if P̄ has
zero feedthrough from δu to δy and one of the following: zero feedthrough from δu to δv or
from δw to δy. The main technical task is to solve:

Rα = max
∥d∥2,[0,T ]≤α

∥e(T )∥22 (6.5)

s.t. Eq. (6.4) with x(0) = x0.

In addition, we would like to compute a worst-case disturbance d∗ that achieves the maximal
cost. Note that in the case where x(0) = 0, the map from d to e(T ) is linear, and so without
loss of generality, we can solve Eq. 6.5 with α = 1. However, when x(0) ̸= 0, the shape of
the worst-case disturbance depends on the value of α.

6.4 Worst-Case Disturbance

This section presents a series of technical lemmas that lead to a solution to Eq. 6.5, which
is the main technical result of this Chapter. Let Φ(t, τ) denote the state transition matrix
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of the unforced system ẋ(t) = A(t)x(t). For all t, τ ∈ [0, T ], Φ(t, τ) satisfies the following
differential equation:

d

dt
Φ(t, τ) = A(t) Φ(t, τ), Φ(τ, τ) = I

The output of G at the final time can be expressed as:

e(T ) = L(d) + c, (6.6)

where c = C(T )Φ(T, 0)x0 ∈ Rne and the linear map L : Lnd
2 [0, T ]→ Rne is defined by

L(d) = C(T )

∫ T

0

Φ(T, τ)B(τ)d(τ)dτ

Thus, Eq. 6.5 can be rewritten as:

Rα = max
d∈Lnd

2 [0,T ]
∥L(d) + c∥22 (6.7)

s.t. ∥d∥2,[0,T ] ≤ α

The following lemma, proven in Appendix 6.6, shows that the inequality constraint in
Eq. 6.7 can be replaced with an equality constraint without loss of generality.

Lemma 2. Assume there exists d such L(d) ̸= 0. If d∗ is optimal for Eq. 6.7, then
∥d∗∥2,[0,T ] = α.

Thus, Eq. 6.7 can be rewritten as:

Rα = max
d∈Lnd

2 [0,T ]
∥L(d) + c∥22 (6.8)

s.t. ∥d∥2,[0,T ] = α

The next lemma, proven in Appendix 6.6, provides a sufficient condition for solving
Eq. 6.8 using a Lagrange multiplier µ. This transforms the constrained optimization problem
into an unconstrained one.

Lemma 3. Consider the following optimization with µ ∈ R:

max
d∈Lnd

2 [0,T ]
∥L(d) + c∥22 − µ∥d∥22,[0,T ] (6.9)

If d∗µ is optimal for Eq. 6.9 with ∥d∗µ∥2,[0,T ] = α, then d∗µ is also optimal for Eq. 6.8.

Now, the problem is to find µ ∈ R and a maximizer d∗µ of Eq. 6.9 such that ∥d∗µ∥2,[0,T ] = α.
The remainder of this section builds towards proving that such a µ always exists. This
requires the assumption that G is output-controllable at the final time T . To make this
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precise, let X : [0, T ] → Snx denote the state controllability Gramian [90, 91] satisfying the
following matrix Lyapunov differential equation:

Ẋ(t) = A(t)X(t) +X(t)A(t)T +B(t)B(t)T , X(0) = 0

The output controllability Gramian is defined as:

W (τ) := C(τ)X(τ)C(τ)T , ∀τ ∈ [0, T ] (6.10)

Output controllability of G at time T means W (T ) ≻ 0. Since W (T ) ∈ Sne , we can perform
an eigenvalue decomposition as W (T ) = QΛQT , with Q unitary. Assume the eigenvalues
of W (T ) are sorted in descending order, and let r be the multiplicity of the maximum
eigenvalue. That is, Λ = diag(λ1, . . . , λne) with λ1 = · · · = λr > λr+1 ≥ · · · ≥ λne > 0.

The GramianW (T ) is related to the adjoint L∼ : Rne → Lnd
2 [0, T ], which has the following

state-space realization:

ṗ(t) = −A(t)T p(t), p(T ) = C(T )T ξ (6.11)

L∼(ξ)(t) = B(t)T p(t),

where p(t) ∈ Rnx is the adjoint state. The operator L ◦ L∼ : Rne → Rne is equivalent to
matrix multiplication by W (T ) (Theorem 3 of [83]).

Note that the optimization problem in Eq. 6.9 is over the infinite-dimensional space
Lnd

2 [0, T ]. In the case where µ > 0, the following lemma makes use of the eigenvalue decom-
position ofW (T ), as well as the adjoint map L∼, to reformulate Eq. 6.9 as a finite-dimensional
maximization over Rne . It is also shown that the optimal disturbance d∗µ is in the range of
L∼. The proof is provided in Appendix 6.6.

Lemma 4. Consider the following finite-dimensional optimization problem for µ > 0:

max
z∈Rne

−zT
(
µΛ− Λ2

)
z + 2(ΛQT c)T z (6.12)

If z∗µ is optimal for Eq. 6.12, then d∗µ = L∼(Qz∗µ) is optimal for Eq. 6.9.

Now it suffices to find µ > 0 and z∗µ optimal for Eq. 6.12 such that d∗µ = L∼(Qz∗µ) has
norm α. The following lemma makes use of the simple structure of Eq. 6.12 to find such a
value of µ > 0 for every α > 0.

Lemma 5. Let G be output-controllable. For all α > 0, there exists µ ≥ λ1 and z∗µ optimal
for Eq. 6.12 such that d∗µ = L∼(Qz∗µ) satisfies ∥d∗µ∥2,[0,T ] = α.

Proof. First, suppose µ > λ1. Then (µΛ − Λ2) ≻ 0, so the maximization in Eq. 6.12 has a
unique maximizer

z∗µ = (µI − Λ)−1c̃, (6.13)
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where c̃ := QT c. Then d∗µ = L∼(Qz∗µ) satisfies

∥d∗µ∥22,[0,T ] = ⟨L(L∼(Qz∗µ)), Qz
∗
µ⟩2

Using the relationship between L ◦ L∼ and W (T ), as well as the eigenvalue decomposition
for W (T ), we have:

∥d∗µ∥22,[0,T ] = z∗µ
TQTW (T )Qz∗µ = z∗µ

TΛz∗µ (6.14)

Next, substitute for z∗µ. This yields:

∥d∗µ∥22,[0,T ] = c̃T diag

(
λ1

(µ− λ1)2
, . . . ,

λne

(µ− λne)
2

)
c̃

=
ne∑
i=1

c̃2i
λi

(µ− λi)2
=: f(µ) (6.15)

We would like to solve the expression f(µ) = α2 for µ. We consider two cases: (A) c̃i ̸= 0
for some i = 1, . . . , r, and (B) c̃1 = · · · = c̃r = 0.

Define α2
max := limµ↓λ1 f(µ). In Case A, one of the first r terms of f grows unbounded, so

α2
max =∞. In Case B, the first r terms of f are zero and so α2

max =
ne∑

i=r+1

c̃2i
λi

(λ1 − λi)2
<∞.

Furthermore, for both cases, f : (λ1,∞) → R is a continuous, decreasing function with
limµ→∞ f(µ) = 0. Thus, f is onto the open interval (0, α2

max).
Suppose α < αmax. Then there exists µ > λ1 satisfying f(µ) = α2. Then, by construction,

the disturbance d∗µ = L∼(Qz∗µ) satisfies ∥d∗µ∥2,[0,T ] = α, where z∗µ is given by Eq. 6.13. This
completes the proof for the case α < αmax.

Now suppose α ≥ αmax. Then there is no µ > λ1 such that f(µ) = α2. However, for

µ = λ1, Eq. 6.12 has an infinite set of maximizers of the form {z∗ =
[
zTN z∗R

T
]T | zN ∈ Rr}

(see Appendix 6.6). By varying zN , we can choose

z∗ ∈ arg max
z∈Rne

−zT
(
λ1Λ− Λ2

)
z + 2(ΛQT c)T z

such that d∗ = L(Qz∗) has any norm in [αmax,∞), including α. The remaining details for
the case α ≥ αmax, as well as the costs resulting from these disturbances, are included in
Appendix 6.6.

Now we are ready to state the main result, which follows from the lemmas presented in
this section.

Theorem 9. Assume G is output-controllable. Then there exists µ ≥ λ1 and z∗µ optimal for
Eq. 6.12 such that d∗µ = L∼(Qz∗µ) is a worst-case disturbance that achieves the maximal cost
Rα in Eq. 6.7.
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Proof. Since G is output-controllable, by Lemma 5 there exists µ ≥ λ1 and z∗µ optimal
for Eq. 6.12 such that d∗µ = L∼(Qz∗µ) satisfies ∥d∗µ∥2,[0,T ] = α. Then, by Lemma 4, since
µ ≥ λ1 > 0 (by output controllability), d∗µ is optimal for Eq. 6.9. Since d∗µ is optimal for
Eq. 6.9 and ∥d∗µ∥2,[0,T ] = α, we have that d∗µ is optimal for Eq. 6.8 by Lemma 3. Finally,
Equations 6.7 and 6.8 have the same maximizers by Lemma 2 (there exists d such that
L(d) ̸= 0 by output controllability), so d∗µ is optimal for Eq. 6.7. Thus, the cost achieved by

d∗µ (called R̂α in Appendix 6.6) is the optimal cost Rα.

We summarize the method for the case α < αmax. Otherwise, slight modifications are
required (see Appendix 6.6). First, solve the matrix Lyapunov differential equation and
compute W (T ) as in Eq. 6.10. Compute c = C(T )x(T ) after simulating ẋ(t) = A(t)x(t) on
[0, T ] from x(0) = 0. Perform the eigenvalue decomposition W (T ) = QΛQT and compute
c̃ = QT c. Solve f(µ) = α2 for µ (which is possible since α < αmax). Then, by simulating the
adjoint system in Eq. 6.11, we can compute the worst-case disturbance as d∗µ = L∼(Qz∗µ),
where z∗µ = (µI − Λ)−1c̃. The resulting performance level is Rα = µ2

∑ne

i=1 c̃
2
i /(µ− λi)2.

6.5 Example: Two-Link Robot Arm

We demonstrate the proposed method for linearized robustness analysis on an uncertain,
nonlinear system. The model is composed of a known nonlinear part P and an unknown
part ∆ ∈∆, interconnected as in Figure 6.1. Here, P comes from a two-link robot arm from
Ch. 4, Sec. 2.3 of [92] following a nominal trajectory from [93]. P is a 4-state system with
3 inputs and 3 outputs. ∆ is the set of SISO LTI systems with an H∞ norm bound of 0.8.

We generate {∆i}100i=1 ⊆∆ by randomly sampling 100 LTI systems with 1-6 states, scaled
to have an H∞ norm of 0.8. Then our goal is to solve Eq. 6.3 for α = 0.5, i.e., to bound
the output of the LTV approximation in Figure 6.2 for all uncertainties ∆ ∈ {∆i}100i=1 and all
disturbances ∥d∥2,[0,T ] ≤ 0.5.

First, we linearize P about the nominal trajectory to obtain P̄ . Then, for each ∆i ∈
{∆i}100i=1, we form the interconnection in Figure 6.2, and we follow the procedure in Ap-
pendix 6.6 to obtain an augmented system Gi, which has a nonzero initial condition by
construction. Then, for i = 1, . . . , 100, we use the construction in Lemma 5 to compute
the performance level Ri

α and a worst-case disturbance for Gi (denoted d∗i ). Maximizing
the performance over the sample space as in Eq. 6.5 leads to the worst-case performance of
1.50 × 10−3. Next, we analyze the system in Figure 6.2, but with v̄ set to zero. Let G0,i

denote the system obtained when v̄ = 0 in system Gi. Again, we use the construction in
Lemma 5 to compute the performance level R0,i

α and a worst-case disturbance d∗0,i for G0,i.
The worst-case performance for the system with v̄ = 0 is 8.31 × 10−4. Thus, setting v̄ = 0
causes a significant discrepancy in the worst-case performance.

In addition to comparing the worst-case performance for the two systems, we also com-
pare Ri

α and R0,i
α across the uncertainty samples. Figure 6.3 shows these values, sorted in
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Figure 6.3: Performance Rα for each uncertainty, with and without v̄.

FU(P,∆k) Gk G0,k

d∗k 1.30× 10−3 1.30× 10−3 8.03× 10−4

d∗0,k 5.51× 10−4 5.50× 10−4 8.31× 10−4

Table 6.1: ∥e(T )∥22 in response to d∗k and d∗0,k

increasing order of Ri
α. We see that Ri

α ≥ R0,i
α ∀i, and for most i there is a significant

discrepancy between the two.
Now we show numerically that including the term v̄ leads to a linearized system that

agrees more closely with the nonlinear system. We pick a particular sampled model uncer-
tainty, ∆k, to study the effect of v̄. We generate a random disturbance ∥drand∥2,[0,T ] = α and
simulate it in (i) the nonlinear system FU(P,∆k), (ii) the linearized system Gk, and (iii) the
linearized system G0,k, with v̄ = 0. The output e of all three systems to drand is plotted in
Figure 6.4. The response of FU(P,∆k) agrees much more closely with Gk than with G0,k.

Finally, we compare the performance of all three systems when simulated with both
worst-case disturbances d∗k and d∗0,k. The resulting values of ∥e(T )∥22 for all three systems
are shown in Table 6.1. Again, the response of the nonlinear system FU(P,∆k) agrees well
with the linear system Gk, but deviates significantly from G0,k. Furthermore, we see that
the worst-case disturbance d∗k makes ∥e(T )∥22 much larger for the nonlinear system than does
d∗0,k.

For this example, we showed that v̄ significantly affects the behavior of the linearized
system, and we showed that the nonlinear system matches much more closely with the linear
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Figure 6.4: Response to random disturbance.

system that includes v̄. Note that the effect of v̄ is more pronounced for smaller values of α,
where the effect of the uncertainty is large compared to the effect of the disturbance.

6.6 Conclusion

This Chapter presented a method for approximately analyzing the robustness of a nonlinear
system to disturbances and model uncertainties. We linearized about a nominal trajectory to
obtain a finite-horizon LTV system, which we interconnected with sampled model uncertain-
ties. Each interconnection contained an affine input term to account for the shift in nominal
trajectory, which we handled by creating an augmented system with a nonzero initial condi-
tion. We analytically computed a worst-case disturbance (and resulting performance level),
and we demonstrated the method on a two-link robot arm example.

Augmented System

The interconnection in Figure 6.2 is an LTV system with inputs δu and v̄ and output δy,
with zero feedthrough δu to δy. Again, we refer to (δu, δy) as (d, e). Let x̄ denote the
state of the interconnection, i.e., x̄ contains the states of both P̄ and ∆. Because of the
zero feedthrough assumption, we can write the dynamics of the interconnection on [0, T ] in



CHAPTER 6. FURTHER ROBUSTNESS ANALYSIS IN TRACKING 76

general as:

˙̄x(t) = Ā(t)x̄(t) +B1(t)d(t) +B2(t)v̄(t) (6.16)

e(t) = C̄(t)x̄(t) +D2(t)v̄(t)

x̄(0) = x̄0

Unlike the input d, the affine term v̄ is fixed and known. We can rewrite the dynamics with
d as the only input by augmenting the system with one additional state.[

˙̄x(t)
0

]
︸ ︷︷ ︸
ẋ(t)

=

[
Ā(t) B2(t)v̄(t)
0 0

]
︸ ︷︷ ︸

A(t)

[
x̄(t)
1

]
︸ ︷︷ ︸
x(t)

+

[
B1(t)
0

]
︸ ︷︷ ︸

B(t)

d(t) (6.17)

e(t) =
[
C̄(t) D2(t)v̄(t)

]︸ ︷︷ ︸
C(t)

[
x̄(t)
1

]

These are precisely the dynamics in Eq. 6.4. Because the augmented state is x(t) =[
x̄(t)T 1

]T
, the initial condition is x(0) =

[
x̄(0)T 1

]T
, which is necessarily nonzero.

Proof of Lemma 1

Suppose d∗ is optimal for Eq. 6.7.
Claim 1 : ⟨L(d∗), c⟩2 ≥ 0. Proof : Suppose ⟨L(d∗), c⟩2 < 0 and aim for contradiction. Let
J(d) = ∥L(d) + c∥22 denote the cost function, and let d̃ = −d∗.

J(d̃) = ∥L(d̃) + c∥22 = ∥ − L(d∗) + c∥22
= ∥L(d∗)∥22 + ∥c∥22 − 2⟨L(d∗), c⟩2
> ∥L(d∗)∥22 + ∥c∥22 + 2⟨L(d∗), c⟩2 = J(d∗)

Thus, d∗ does not maximize J(d), which is a contradiction.
Claim 2 : ∥L(d∗)∥2 ̸= 0. Proof : Suppose ∥L(d∗)∥2 = 0 and aim for contradiction. There
exists d̃ such that L(d̃) ̸= 0 and ∥d̃∥2,[0,T ] ≤ α. Then, either d̃ or −d̃ will outperform d∗:

max{J(d̃), J(−d̃)} = max
{
∥L(d̃) + c∥22, ∥ − L(d̃) + c∥22

}
= ∥L(d̃)∥22 + ∥c∥22 + 2|⟨L(d̃), c⟩2| > ∥c∥22 = J(d∗)

Thus, d∗ does not maximize J(d), which is a contradiction.

Proof of Lemma 1 : Suppose ∥d∗∥2,[0,T ] < α and aim for contradiction. Since ∥d∗∥2,[0,T ] < α,

there exists ϵ > 0 such that d̃ = (1 + ϵ)d∗ satisfies ∥d̃∥2,[0,T ] ≤ α. Then

J(d̃) = ∥L(d̃) + c∥22 = ∥(1 + ϵ)L(d∗) + c∥22
= (1 + ϵ)2∥L(d∗)∥22 + ∥c∥22 + 2(1 + ϵ)⟨L(d∗), c⟩2
> ∥L(d∗)∥22 + ∥c∥22 + 2⟨L(d∗), c⟩2 = J(d∗)
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Claims 1 and 2 were used in the strict inequality step. Thus, d∗ does not maximize J(d),
which is a contradiction. ■

Proof of Lemma 2

Let µ ∈ R. Suppose d∗µ is optimal for Eq. 6.9 and ∥d∗µ∥2,[0,T ] = α. Then d∗µ is also optimal
for the following optimization problem:

max
d∈Lnd

2 [0,T ]
∥L(d) + c∥22 − µ∥d∥22,[0,T ]

s.t. ∥d∥2,[0,T ] = α

In the presence of the equality constraint, the term −µ∥d∥22 does not affect the set of maxi-
mizers of the optimization, so it can be removed from the cost function and d∗µ will remain
optimal. Hence, d∗µ is optimal for Eq. 6.8. ■

Proof of Lemma 3

Let µ > 0, and suppose z∗µ is optimal for Eq. 6.12. We want to show that d∗µ = L∼(Qz∗µ) is
optimal for Eq. 6.9.

First, we need to establish some facts about the range and null space (denoted R and
N , respectively) of L and L∼.

1. N (L) is closed because L is bounded and linear (Theorem 1.18 of [94]). Therefore,
Lnd

2 [0, T ] = N (L)⊥ ⊕N (L) (Section 5.1 of [95]).

2. By output-controllability, R(L) = Rne , which is closed. Thus, N (L)⊥ = R(L∼) (Ch. 4,
Theorem 5.13 of [95]).

Thus, any d ∈ Lnd
2 [0, T ] can be uniquely decomposed as d = d1 + d2, where d1 ∈ R(L∼),

d2 ∈ N (L). Since µ > 0, if d2 ̸= 0, we have

∥L(d) + c∥22 − µ∥d∥22,[0,T ] < ∥L(d1) + c∥22 − µ∥d1∥22,[0,T ],

Thus, d∗ ∈ R(L∼), i.e., d∗ = L∼(w∗) for some w∗ ∈ Rne . Since Q is invertible, we can also
write d∗ = L∼(Qz∗) for some z∗ ∈ Rne . Then can rewrite Eq. 6.9 as

max
z∈Rne

∥L(L∼(Qz)) + c∥22 − µ∥L∼(Qz)∥22,[0,T ]

= max
z∈Rne

∥QΛz +Qc̃∥22 − µzTΛz

= max
z∈Rne

∥Λz + c̃∥22 − µzTΛz

= max
z∈Rne

−zT (µΛ− Λ2)z + 2(Λc̃)T z + c̃T c̃ (6.18)

Because z∗µ is optimal for Eq. 6.12, it is also optimal for Eq. 6.18 since the two optimizations
differ by a constant. Thus d∗ = L∼(Qz∗µ) is optimal for Eq. 6.9. ■



CHAPTER 6. FURTHER ROBUSTNESS ANALYSIS IN TRACKING 78

Proof of Lemma 4

The case α < αmax is handled in the body of the Chapter. Now suppose α > αmax (which
can only occur if c̃1 = · · · = c̃r = 0). In this case, we need an alternative method for
constructing the worst-case disturbance of norm α. It is useful to partition the variables as
z = [zTN , z

T
R]
T , c̃ = [0, c̃TR]

T , Λ = diag(λ1Ir,ΛR), Q = [QN , QR], where zN ∈ Rr. Note that
λ1Λ − Λ2 = blkdiag (0,ΛR(λ1I − ΛR)) and Λc̃ = ΛRc̃R. Then, at µ = λ1, we can rewrite
Eq. 6.12:

max
z∈Rne

−zT (λ1Λ− Λ2)z + 2(Λc̃)T z

= max
zR∈Rne−r

−zTRΛR(λ1I − ΛR) + 2(ΛRc̃R)
T zR

Thus, the value of zN does not affect the cost function, while the unique maximizing
value for zR is

z∗R = (λ1I − ΛR)
−1 c̃R

Therefore, for all zN ∈ Rr, z∗λ1 = [zTN , z
∗
R
T ]T is optimal for Eq. 6.12 with µ = λ1. Now it

suffices to select zN such that d∗λ1 = L∼(Qz∗λ1) has norm α. Use Eq. 6.14 to write

α2 = ∥d∗λ1∥
2
2,[0,T ] = z∗λ1

TΛz∗λ1 =

[
zN
z∗R

]T [
λ1Ir 0
0 ΛR

] [
zN
z∗R

]
= λ1∥zN∥22 + c̃TR (λ1I − ΛR)

−1 ΛR (λ1I − ΛR)
−1 c̃R

= λ1∥zN∥22 +
ne∑

i=r+1

c̃2i
λi

(λ1 − λi)2
= λ1∥zN∥22 + α2

max

Therefore, if we set ∥zN∥22 = (α2 − α2
max) /λ1, then d

∗
λ1

= L∼(Qz∗λ1) has norm α.

For all α > 0, we have now derived the form of d∗µ (which has norm α). Let R̂α denote

the cost function of Eq. 6.7 evaluated on this disturbance. To calculate R̂α, first observe:

R̂α = ∥L(d∗µ) + c∥22 = ∥L(L∼(Qz∗µ)) + c∥22
= ∥QΛz∗µ + c∥22 = ∥Λz∗µ + c̃∥22

If α < αmax, then plugging in z∗µ yields:

R̂α = ∥Λ(µI − Λ)−1c̃+ c̃∥22

= ∥µ(µI − Λ)−1c̃∥22 = µ2

ne∑
i=1

c̃2i
(µ− λi)2
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If α ≥ αmax, then plugging in z∗µ yields:

R̂α =

∥∥∥∥∥
[
λ1I 0
0 ΛR

] [
zN
z∗R

]
+

[
λ10
c̃RΛR

] ∥∥∥∥∥
2

2

= λ21∥zN∥22 + ∥ΛRz∗R + c̃R∥22

= λ1(α
2 − α2

max) + λ21

ne∑
i=r+1

c̃2i
(λ1 − λi)2

■



80

Chapter 7

Conclusion

A hierarchical control architecture that uses different models in each layer can be a powerful
control strategy when the error between the layers is accounted for. In this dissertation, we
described the planner-tracker framework, a hierarchical control framework where a lower-
fidelity “planning” model is employed for online planning and a “tracking” controller, syn-
thesized offline, keeps the tracking error between the high-fidelity (“tracking”) model and
the planning model within a bounded set. The planner-tracker framework unites ideas from
tube MPC, formal methods, and other areas to create a modular control architecture that
can accommodate many modifications. Robustness can be added throughout the hierarchy
to reflect the many sources of uncertainty in real systems, enhancing the safety and useful-
ness of the framework. In Chapter 2, we highlighted the practical advantages and technical
approach for allowing an error definition that depends on the planner input û. In Chapter 3,
we added robustness to unmodeled dynamics, an extension that was application-agnostic. In
Chapter 4, we focused on the application of shared vehicle control between a human driver
and a supervisory autonomous system designed to intervene in an emergency. In this setting,
we added robustness to other vehicles in longitudinal scenarios by designing scenario-specific
MPC terminal sets that guarantee persistent feasibility with respect to a particular contin-
gency event, such as the vehicle ahead of the ego vehicle braking abruptly. In Chapter 5,
we formulated a backstepping-based tracking controller as an alternative to the SOS-based
controllers used in Chapters 2 and 3. In Chapter 6, we described an additional method for
assessing the robustness of a system around a given nominal trajectory.

Further modifications and extensions to the planner-tracker framework can be made. The
following are areas for future work:

• One straightforward extension of the framework in Chapter 2 would be to allow the
MPC planner state at each sampling time x̂(kT ) to be a decision variable. Instead
of setting x̂(kT ) to be the planner state from the end of the previous time-step, the
planner state can be any value such that the error lies in the invariant set, i.e, e(kT ) =
ψ(x(kT ), x̂(kT ), û(kT )) ∈ Ω(V, γ). This additional flexibility allows the planner to
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lower its cost and more efficiently achieve its goals. With this modification, the planner-
tracker framework with an MPC planner can be viewed as a tube MPC method.

• In Chapter 3, the error definition only depends on the tracker state x and the planner
state x̂, not the planner input û. Extension of the error to be dependent on û would
introduce discontinuous error dynamics whenever û is discontinuous. In Chapter 2, we
handled this discontinuity by imposing an invariance condition for each sampling period
[kT, (k + 1)T ) (and a separate invariance condition between sample times), treating
each e(kT ) as a new initial condition. However, with this interval-by-interval approach,
the IQC used in Chapter 3 would require the filter initial condition to be xF (kT ) = 0,
which will not generally be true at each sampling time. A separate generalization of
the error could be to allow its definition to depend on the filter state xF . This would
not induce the error discontinuity described above.

• In the presence of unmodeled dynamics as in Chapter 3, additional flexibility may
be incorporated by including the planner initial condition x̂(kT ) as another decision
variable subject to the constraint e(kT ) = ψ(x(kT ), x̂(kT )) ∈ Ω(V, γ). This would
decrease the planner cost and allow the system to more efficiently achieve its goals.
However, this would create discontinuities in the planner and error dynamics between
sampling periods, again leading to the possibility of nonzero xF (kT ) for each sample
period, so the IQC would not necessarily hold. It would be interesting to treat the
error system as a hybrid system to try to obtain an invariant set for the error even
subject to these discontinuities.

• The the error bound O discussed in Chapters 2 and 3 could be augmented to ad-
ditionally account for discretization error (e.g., in an MPC planner) and polynomial
approximation error (e.g., if dynamics have trigonometric terms that are approximated
as polynomials).

• In Chapter 3, we allowed unmodeled dynamics at the input of the tracker model,
characterized using IQCs. The only input to the filter F was the (known) tracking
input u, so the filter state xF was computed and used for control. Incorporating l (the
unknown output of the uncertain block ∆) as an additional filter input would allow
for the IQCs to capture more general unmodeled dynamics, rather than just those at
the input. This additional (unknown) filter input would prevent measurement of the
filter state, xF , motivating the development of a control strategy that applies to all xF
within some bound and does not require exact knowledge of xF .
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[35] J. Köhler, M. A. Müller, and F. Allgöwer, “A novel constraint tightening approach for
nonlinear robust model predictive control,” in 2018 Annual American Control Confer-
ence (ACC). IEEE, 2018, pp. 728–734.
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[37] M. Cannon, J. Buerger, B. Kouvaritakis, and S. Rakovic, “Robust tubes in nonlinear
model predictive control,” IEEE Transactions on Automatic Control, vol. 56, no. 8, pp.
1942–1947, 2011.

[38] M. Löhning, M. Reble, J. Hasenauer, S. Yu, and F. Allgöwer, “Model predictive control
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