
UC Berkeley
UC Berkeley Previously Published Works

Title
Systematic Testing of Convolutional Neural Networks for Autonomous Driving

Permalink
https://escholarship.org/uc/item/90b2b5bm

Authors
Dreossi, Tommaso
Ghosh, Shromona
Sangiovanni-Vincentelli, Alberto
et al.

Publication Date
2017-08-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/90b2b5bm
https://escholarship.org/uc/item/90b2b5bm#author
https://escholarship.org
http://www.cdlib.org/

Systematic Testing of Convolutional Neural Networks for Autonomous Driving

Tommaso Dreossi 1 Shromona Ghosh 1 Alberto Sangiovanni-Vincentelli 1 Sanjit A. Seshia 1

Abstract
We present a framework to systematically ana-
lyze convolutional neural networks (CNNs) used
in classification of cars in autonomous vehicles.
Our analysis procedure comprises an image gen-
erator that produces synthetic pictures by sam-
pling in a lower dimension image modification
subspace and a suite of visualization tools. The
image generator produces images which can be
used to test the CNN and hence expose its vulner-
abilities. The presented framework can be used
to extract insights of the CNN classifier, compare
across classification models, or generate training
and validation datasets.

1. Introduction
Convolutional neural networks (CNN) are powerful mod-
els that have recently achieved the state of the art in object
classification and detection tasks. It is no surprise that they
are used extensively in large scale Cyber-Physical Systems
(CPS). For CPS used in safety critical purposes, verifying
CNN models is of utmost importance (Dreossi et al., 2017).
An emerging domain where CNNs have found application
is autonomous driving where object detectors are used to
identify cars, pedestrians, or road signs (Dougherty, 1995;
Bojarski et al., 2016).

CNNs are usually composed of extensively parallel nonlin-
ear layers that allow the networks to learn highly nonlin-
ear functions. While CNNs are able to achieve high ac-
curacy for object detection, their analysis has proved to be
extremely difficult. Proving their correctness, i.e., to show
that a CNN always correctly detects a particular object,
has become practically impossible. One approach to ad-
dress this problem analyzes the robustness of CNNs with
respect to perturbations. Using optimization-based tech-
niques (Szegedy et al., 2013; Papernot et al., 2016) or gen-

*Equal contribution 1University of California, Berkeley, USA.
Correspondence to: Tommaso Dreossi <dreossi@berkeley.edu>,
Shromona Ghosh <shromona.ghosh@berkeley.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

erative NNs (Goodfellow et al., 2014), it is possible to find
minimal adversarial modifications that can cause a CNN to
misclassify an altered picture. Another approach inspired
by formal methods aims at formally proving the correctness
of neural networks by using, e.g., Linear Programming or
SMT solvers (Huang et al., 2016; Katz et al., 2017). Unfor-
tunately, these verification techniques usually impose re-
strictions on treated CNNs and suffer from scalability is-
sues.

In this work, we present a framework to systematically test
CNNs by generating synthetic datasets. In contrast to the
adversarial generation techniques, we aim at generating re-
alistic pictures rather than introducing perturbations into
preexisting ones. In this paper, we focus on self-driving
applications, precisely on CNNs used for detection of cars.
However, the presented techniques are general enough for
application to other domains.

Our framework consists of three main modules: an image
generator, a collection of sampling methods, and a suite
of visualization tools. The image generator renders realis-
tic images of road scenarios. The images are obtained by
arranging basic objects (e.g., road backgrounds, cars) and
by tuning image parameters (e.g., brightness, contrast, sat-
uration). By preserving the aspect ratios of the objects, we
generate more realistic images. All possible configurations
of the objects and image parameters define a modification
space whose elements map to a subset of the CNN fea-
ture space (in our case, road scenarios). The goal of the
sampling methods is to provide modification points to the
image generator that produces pictures used to extract in-
formation from the CNN. We provide different sampling
techniques, depending on the user needs. In particular,
we focus on samplings methods that cover the modifica-
tion space evenly and active optimization-based methods
to generate images that are misclassified by the analyzed
CNN. Finally, the visualization tools are used to display
the gathered information. Our tool can display the sam-
pled modifications against metrics of interest such as the
probability associated with the predicted bounding boxes
(the box containing the car) or the intersection over union
(IOU) used to measure the accuracy of the prediction box.

The contributions provided by our framework are twofold:

ar
X

iv
:1

70
8.

03
30

9v
2

 [
cs

.C
V

]
 1

1
A

ug
 2

01
7

Systematic Testing of Convolutional Neural Networks for Autonomous Driving

• Analysis of Neural Network Classifiers. The system-
atic analysis is useful to obtain insights of the consid-
ered CNN classifier, such as the identification of blind
spots or corner cases. Our targeted testing can also be
used to compare across CNN models;

• Dataset Generator. Our picture generator can gener-
ate large data sets for which the diversity of the pic-
tures can be controlled by the user. This overcomes a
lack of training data, one of the limiting problems in
training of CNNs. Also, a target synthesized dataset
can be used as a benchmark for a specific domain of
application.

We present a systematic methodology for finding failure
cases of CNN classifiers. This is a first attempt towards
verifying machine learnt components in complex systems.

The paper is organized as follows: Sec. 2 describes the
analysis framework and defines the picture generator, sam-
pling methods, and visualization tools; Sec. 3 to implemen-
tation details and experimental evaluations.

2. CNN Analyzer
2.1. Overview

We begin by introducing some basic notions and by giving
an overview of our CNN analysis framework.

Let f : X → Y be a CNN that assigns to every feature vec-
tor x ∈ X a label y ∈ Y , where X and Y are a feature and
a label space, respectively. In our case x can be a picture of
a car and y is the CNN prediction representing information
such as the detected object class, the prediction confidence,
or the object position.

Our analysis technique (Alg. 1) consists in a loop where at
each step an image modification configuration m is sam-
pled, an image x is generated using the modification m,
and a prediction y is returned by the analyzed CNN. Intu-
itively, m describes the configuration of the synthetic pic-
ture x to be generated. y is then the prediction of the CNN
on this generated image x. A modification m can specify,
for instance, the x and y coordinates of a car in a picture as
well as the brightness or contrast of the image to be gen-
erated. At each loop iteration, the information m,x,y are
stored in the data structure D that is later used to inspect
and visualize the CNN behavior. The loop is repeated until
a condition on D is met. Some examples of halting condi-
tions can be the discovery of a misclassified picture, a max-
imum number of generated images, or the achievement of
coverage threshold on the modification space.

The key steps of this algorithm are the picture generation
(i.e., how an image is rendered from a modification choice)
and how modifications are sampled (i.e., how to chose a

Algorithm 1 Analyze CNN
function CNNanalysis

repeat
m← sample(M)
x← generateImage(m)
y← f(x)
D.add(m,x,y)

until condition(D)
visualize(D)

end function

modification in such a way to achieve the analysis goal).
In the following, we define image modifications and show
how synthetic pictures are generated (Sec. 2.2). Next, we
introduce some sampling methods (Sec. 2.3), and finally
some visualization tools (Sec 2.4).

2.2. Image Generation

Let X̃ ⊆ X be a subset of the feature space of f : X → Y .
A generation function γ : M → X̃ is a function that maps
every modification m ∈M to a feature γ(m) ∈ X̃ .

Modification functions can be used to compactly represent
a subset of the feature space. For instance, modifications of
a given picture, such as displacement of a car and bright-
ness, can be seen as the dimensions of a 2-D modifica-
tion space. Low-dimensional modification spaces allow us
to analyze CNNs on compact domains as opposite to in-
tractable feature spaces. Let us clarify these concepts with
the following example where a set of pictures is abstracted
into a 3-D box.

Let X be the set of 1242× 375 RBG pictures (Kitti image
resolution (Geiger et al., 2013)). Since we are interested in
the automotive context, we consider the subset X̃ ⊂ X of
pictures of cars in different positions on a particular back-
ground with different color contrasts. In these settings, we
can define, for instance, the generation function γ that maps
M = [0, 1]3 to X̃ , where the dimensions ofM characterize
the x, y positions of the car and the image contrast, respec-
tively. For instance, γ(0, 0, 0) places the car on the left
close to the observer with high contrast, γ(1, 0, 0) shifts
the car to the right, or γ(1, 1, 1) sees the car on the right,
far from the observer, with low contrast.

Fig. 1 shows some images of X̃ disposed accordingly to
their location in the modification space M . When moving
on the x-axis of M , the car shifts horizontally; a change
on the y-axis affects the position of the car in depth; the
z-axis affects the contrast of the picture. This simple ex-
ample shows how the considered feature space can be ab-
stracted in a 3-D modification space in which every point
corresponds to a particular image.

Systematic Testing of Convolutional Neural Networks for Autonomous Driving

Figure 1. Modification space (surrounding box) and correspond-
ing synthetic images.

Figure 2. Car resizing and displacement using vanishing point and
lines.

In this examples, we chose the extreme positions of the
car (i.e., maximum and minimum x and y position of the
car) on the sidelines of the road and the image vanishing
point. Both the sidelines and the vanishing point can be
automatically detected (Aly, 2008; Kong et al., 2009). The
vanishing point is useful to determine the vanishing lines
necessary to resize and place the car when altering its posi-
tion in the y modification dimension. For instance, the car
is placed and shrunk towards the vanishing point as the y
coordinate of its modification element gets close to 1 (see
Fig. 2).

2.3. Sampling Methods

We now consider some methods to efficiently sample the
modification space. Good sampling techniques should pro-
vide a high coverage of the abstract space and identify sam-
ples whose concretizations lead to misclassifying images.

Low-discrepancy Sequences A low-discrepancy (or
quasi-random) sequence is a sequence of n-tuples that fills
an n-D space more uniformly than uncorrelated random
points. Low-discrepancy sequences are useful to cover
boxes by reducing gaps and clustering of points.

Let U = [0, 1]n be a n-D box, J ⊆ U be a sub-box, and
X ⊂ U be a set of m points. The discrepancy D(J,X)
of J is the difference between the proportion of points in J
compared to U and the volume of J compared to U :

D(J,X) = |#(J)/m− vol(J)| (1)

where #(J) is the number of points of X in J and vol(J)
is the volume of J . The star-discrepancy D∗(X) is the

worst case distribution of X:

D∗(X) = max
J

D(J,X) (2)

Low-discrepancy sequences generate sets of points that
minimize the star-discrepancy. Some examples of low-
discrepancy sequences are the Van der Corput, Halton (Hal-
ton, 1960), or Sobol (Sobol, 1976) sequences. In our exper-
iments, we used the Halton and lattice-based (Niederreiter,
1988) sequences. These sampling methods ensure an opti-
mal coverage of the abstract space and allows us to identify
clusters of misclassified pictures as well as isolated corner
cases otherwise difficult to spot with a uniform sampling
technique.

Active Learning At every step, given a sample, we gen-
erate images which are presented as input to the neural net-
work under test. This becomes an expensive process when
the number of samples necessary for the covering the in-
put space is large. We propose using active learning to
minimize the number of images generated and only sam-
ple points which have a high probability of being a counter
example.

We model the function from the sample space U = [0, 1]n

to the score (output) of the CNN as a Gaussian Process
(GP). GPs are a popular choice for nonparametric regres-
sion in machine learning, where the goal is to find an ap-
proximation of a nonlinear map p(u) : U → R from an
input sample u ∈ U to the score produced by the neural
network. The main assumption is that the values of p, as-
sociated with the different sample inputs, are random vari-
ables and have a joint Gaussian distribution. This distribu-
tion is specified by a mean function, which is assumed to
be zero without loss of generality, and a covariance func-
tion k(u, u), called kernel function.

The GP framework can be used to predict the score p(u)
at an arbitrary sample u ∈ U based on a set of t past
observations yt = [p̃(u1), . . . , p̃(ut)]

T at samples Ut =
{u1, . . . , ut} without generating the image for u. The ob-
servations of the function values p̃(ut) = p(ut) + wt are
corrupted by Gaussian noise wt ∼ N(0, σ2). Conditioned
on these observations, the mean and variance of the predic-
tion at u are given by:

µt(u) = kt(u)(Kt + Itσ2)−1yt

σ1
t (u) = k(u, u)− kt(u)(Kt + Itσ2)−1kTt (u)

(3)

where the vector kt(u) = [k(u, u1), . . . , k(u, ut)] contains
the covariances between the new input, u, and the past data
points in Ut, the covariance matrix, Kt ∈ Rt×t, has entries
[Kt](i, j) = k(ui, uj) for i, j ∈ {1, . . . , t}, and the identity
matrix is denoted by It ∈ Rt×t.

Given a GP, any Bayesian optimization algorithm is de-
signed to find the global optimum of an unknown func-

Systematic Testing of Convolutional Neural Networks for Autonomous Driving

(a) SqueezeDet. (b) Yolo.

Figure 3. CNN analysis showing car coordinates (x, y), IOU (z),
and confidence (color).

tion within few evaluations on the real system. Since we
search for counterexamples, i.e, samples where the score
returned by the neural network is low, we use GP-Lower
Confidence Bound (GP-LCB) as our objective function.
Since the optimal sample u∗t is not known a priori, the
optimal strategy has to balance learning about the loca-
tion of the most falsifying sample (exploration), and se-
lecting a sample that is known to lead to low scores (ex-
ploitation). We formulate the objective function as, ut =

argminu∈Uµt−1(u) − β1/2
t σt−1(u) where βt is a constant

which determines the confidence bound.

2.4. Visualization

We now show how the gathered information can be visual-
ized and interpreted.

In our data analysis, we consider two factors: the confi-
dence score and the Intersection Over Union (IOU) that is
a metric used to measure the accuracy of detections. IOU
is defined as the area of overlap over the area of the union
of the predicted and ground-truth bounding boxes. Our vi-
sualization tool associates the center of the car of the gen-
erated images to the confidence score and IOU returned by
the treated CNN. Fig. 3 depicts some examples where the x
and y are the center coordinates of the car, z is the IOU, and
the color represents the CNN confidence score. We also of-
fer the possibility to superimpose the experimental data on
the background used to render the pictures (see Fig. 4). In
this case, the IOU is represented by the dimension of the
marker. This representation helps us to identify particular
regions of interest on the road. In the next section, we will
see how these data can be interpreted.

3. Implementation and Evaluation
We implemented the presented framework in a tool
available at https://github.com/shromonag/
FalsifyNN. The tool comes with a library composed by
a dozen of road backgrounds and car models, and it in-
terfaces to the CNNs SqueezeDet (Wu et al., 2016), Kit-

(a) SqueezeDet.

(b) Yolo.

Figure 4. Superimposition of the analysis on road background.

tiBox (Teichmann et al., 2016), and Yolo (Redmon et al.,
2016). Both the image library and CNN interfaces can be
personalized by the user.

As an illustrative case study, we considered a countryside
background and a Honda Civic and we generated 1k syn-
thetic images using our rendering techniques (Sec. 2.2) and
the Halton sampling sequence (Sec. 2.3). We used the gen-
erated pictures to analyze SqueezeDet (Wu et al., 2016),
a CNN for object detection for autonomous driving, and
Yolo (Redmon et al., 2016), a multipurpose CNN for real-
time detection.

Fig. 3 displays the center of the car in the generated pictures
associated with the confidence score and IOU returned by
both SqueezeDet and Yolo. Fig. 4 superimposes the heat
maps of Fig. 3 on the used background.

There are several interesting insights that emerge from the
graphs obtained(for this combination of background and
car model). SqueezeDet has, in general, a high confidence
and IOU, but has a blind spot for cars in the middle of the
road on the right(see the cluster of blue points in Fig. 3(b)
and 4(a)). Yolo’s confidence and IOU decrease with the
car distance (see Fig. 3(b)). We were able to detect a blind
area in Yolo, corresponding to cars on the far left (see blue
points in Fig. 3(b)).

Note how our analysis can be used to visually compare the
two CNNs by graphically highlighting their differences in
terms of detections, confidence scores, and IOUs. A com-
prehensive analysis and comparison of these CNNs should
involve images generated by combinations of different cars
and backgrounds. However, this experiment already shows
the benefits in using the presented framework and high-
lights the quantity and quality of information that can be
extracted from a CNN even with a simple study.

https://github.com/shromonag/FalsifyNN
https://github.com/shromonag/FalsifyNN

Systematic Testing of Convolutional Neural Networks for Autonomous Driving

Acknowledgement
The authors acknowledge Forrest Iandola and Kurt Keutzer
for giving the presentation of this work at Reliable Machine
Learning in the Wild - ICML 2017 Workshop.

References
Aly, Mohamed. Real time detection of lane markers in ur-

ban streets. In Intelligent Vehicles Symposium, IV, pp.
7–12. IEEE, 2008.

Bojarski, Mariusz, Testa, Davide Del, Dworakowski,
Daniel, Firner, Bernhard, Flepp, Beat, Goyal, Prasoon,
Jackel, Lawrence D., Monfort, Mathew, Muller, Urs,
Zhang, Jiakai, Zhang, Xin, Zhao, Jake, and Zieba,
Karol. End to end learning for self-driving cars. CoRR,
abs/1604.07316, 2016. URL http://arxiv.org/
abs/1604.07316.

Dougherty, Mark. A review of neural networks applied to
transport. Transportation Research Part C: Emerging
Technologies, 3(4):247–260, 1995.

Dreossi, Tommaso, Donzé, Alexandre, and Seshia, San-
jit A. Compositional falsification of cyber-physical sys-
tems with machine learning components. In NASA For-
mal Methods Symposium, pp. 357–372. Springer, 2017.

Geiger, Andreas, Lenz, Philip, Stiller, Christoph, and Ur-
tasun, Raquel. Vision meets robotics: The kitti dataset.
International Journal of Robotics Research, IJRR, 2013.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu,
Bing, Warde-Farley, David, Ozair, Sherjil, Courville,
Aaron, and Bengio, Yoshua. Generative adversarial nets.
In Advances in neural information processing systems,
pp. 2672–2680, 2014.

Halton, John H. On the efficiency of certain quasi-random
sequences of points in evaluating multi-dimensional in-
tegrals. Numerische Mathematik, 2(1):84–90, 1960.

Huang, Xiaowei, Kwiatkowska, Marta, Wang, Sen, and
Wu, Min. Safety verification of deep neural networks.
arXiv preprint arXiv:1610.06940, 2016.

Katz, Guy, Barrett, Clark, Dill, David, Julian, Kyle, and
Kochenderfer, Mykel. Reluplex: An efficient smt solver
for verifying deep neural networks. arXiv preprint
arXiv:1702.01135, 2017.

Kong, Hui, Audibert, Jean-Yves, and Ponce, Jean. Vanish-
ing point detection for road detection. In Computer Vi-
sion and Pattern Recognition, CVPR, pp. 96–103. IEEE,
2009.

Niederreiter, Harald. Low-discrepancy and low- sequences.
Journal of number theory, 30(1):51–70, 1988.

Papernot, Nicolas, McDaniel, Patrick, Jha, Somesh,
Fredrikson, Matt, Celik, Z Berkay, and Swami, Anan-
thram. The limitations of deep learning in adversarial
settings. In Security and Privacy (EuroS&P), 2016 IEEE
European Symposium on, pp. 372–387. IEEE, 2016.

Redmon, Joseph, Divvala, Santosh, Girshick, Ross, and
Farhadi, Ali. You only look once: Unified, real-time
object detection. In Computer Vision and Pattern Recog-
nition, CVPR, pp. 779–788, 2016.

Sobol, Ilya M. Uniformly distributed sequences with an ad-
ditional uniform property. USSR Computational Mathe-
matics and Mathematical Physics, 16(5):236–242, 1976.

Szegedy, Christian, Zaremba, Wojciech, Sutskever, Ilya,
Bruna, Joan, Erhan, Dumitru, Goodfellow, Ian, and Fer-
gus, Rob. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

Teichmann, Marvin, Weber, Michael, Zöllner, J. Mar-
ius, Cipolla, Roberto, and Urtasun, Raquel. Multi-
net: Real-time joint semantic reasoning for autonomous
driving. Computing Research Repository, CoRR,
abs/1612.07695, 2016. URL http://arxiv.org/
abs/1612.07695.

Wu, Bichen, Iandola, Forrest, Jin, Peter H., and Keutzer,
Kurt. Squeezedet: Unified, small, low power fully con-
volutional neural networks for real-time object detection
for autonomous driving. 2016.

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1612.07695
http://arxiv.org/abs/1612.07695

