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Exceptional Point of Degeneracy in Linear-Beam
Tubes for High Power Backward-Wave Oscillators

Tarek Mealy, Ahmed F. Abdelshafy and Filippo Capolino
Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697 USA

tmealy@uci.edu, abdelsha@uci.edu and f.capolino@uci.edu

Abstract—An exceptional point of degeneracy (EPD) is induced
in a system made of an electron beam interacting with an
electromagnetic (EM) guided mode. This enables a degenerate
synchronous regime in backward wave oscillators (BWOs) where
the electron beams provides distributed gain to the EM mode with
distributed power extraction. Current particle-in-cell simulation
results demonstrate that BWOs operating at an EPD have a
starting-oscillation current that scales quadratically to a non-
vanishing value for long interaction lengths and therefore have
higher power conversion efficiency at arbitrarily higher level of
power generation compared to standard BWOs.

Index Terms—Exceptional point of degeneracy, Slow-wave
structures, Backward-wave oscillators, High power microwave.

I. INTRODUCTION

The characterizing feature of an exceptional point is the
singularity resulting from the degenracy of at least two eigen-
states. We stress the importance to refer to it as “degeneracy”
as implied in [1]. Here an exceptional point of degeneracy
(EPD) is demonstrated in a system made of an electron
beam interacting with an electromagnetic (EM) guided mode.
Despite most of the published work on EPDs are related
to parity time (PT) symmetry [2], [3], the occurrence of
EPDs does not necessarily require a system to exactly satisfy
the PT symmetry condition, however, it generally requires a
system to simultaneously have gain and loss [4]. The system
we consider in this paper involves two complete different
media that support waves: an electron beam (e-beam) for
charge waves and a waveguide for EM waves. Exchange of
energy occurs when an EM waves in a slow wave structure
(SWS) interacts with the e-beam. In this paper the degeneracy
condition is enabled by the distributed power extraction (DPE)
from the SWS waveguide as shown in Fig. 1. The energy
that is extracted from the e-beam and delivered to the guided
EM mode is considered as a distributed gain from the SWS
prescriptive, whereas the DPE represents extraction “losses”
and not mere dissipation [5], [6].

Backward-wave oscillators (BWOs) are high power sources
where the power is transferred from a very energetic e-beam
to a synchronized EM mode [7]. The extracted power in a
conventional BWO is usually taken at one end of the SWS
[8], [9] as shown in Fig. 1(a). One challenging issue in
BWOs is the limitation in power generation level. Indeed
conventional BWOs exhibit small starting beam current (to
induce sustained oscillations) and limited power efficiency
without reaching very high output power levels [10]. Several

Fig. 1. (a) Conventional BWO where the power is extracted from the
waveguide end; (b) EPD-BWO where the power is extracted in a distributed
fashion to satisfy the EPD condition. The power is extracted using distributed
wire loops (as an example) that are connected to coaxial waveguides.

techniques were proposed in literature to enhance the power
conversion efficiency of BWOs by optimizing the SWS and its
termination. For example, non-uniform SWSs were proposed
to enhance efficiency of BWOs in [11], in [12] a resonant
reflector was used to enhance efficiency to about 30%, and a
two-sectional SWS was also proposed to enhance the power
efficiency in [13]. Here we propose a regime of operation of
BWO based on an EPD that to occurs need a DPE as in Fig.
1(b). In this paper we show the physical mechanism of an
EPD arising from the interaction of an e-beam and and EM
wave in a SWS and we show how this finding can be used
as a regime of operation in what we call an EPD-BWO to
produce very high power with high efficiency.

II. THEORETICAL MODEL BASED ON AN EXTENSION OF
THE PIERCE MODEL

The interaction between the e-beam charge wave and the
EM wave in the SWS occurs when they are synchronized, i.e.,
when the EM wave phase velocity vph = ω/βp is matched to
the average velocity of the electrons u0, where βp is the phase
propagation constants of the “cold” EM wave, i.e., when it is
not interacting with the e-beam. The synchronization condition
provides an estimate of the oscillation frequency of BWO (
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ω ≈ u0βp ) and is considered as an initial criterion, because
the phase velocity of the “hot” modes, i.e., in the interactive
system, are different from vph and u0 due to the interaction
[14], [15].

The interaction between the e-beam and the EM wave
in vacuum tube devices was theoretically studied by Pierce
in [14]. Assuming a wave eigenfunctions of the interactive
system of infinite length in the form of φ(z, t) ∝ eiωt−ikz ,
Pierce showed that the solutions of the linearized differential
equations that govern the electron beam charges’ motion and
continuity in presence of the SWS EM field yield four eigen-
modes whose dispersion relation is given by the following
characteristic equation [14], [15]

D(ω, k) = k4 − 2β0k
3 +

(
β2
0 − β2

p +
I0Zcβpβ0

2V0

)
k2

+2β0β
2
pk − β2

0β
2
p = 0,

(1)
where β0 = ω/u0 is the unmodulated beam wavenumber, V0
and I0 are the e-beam equivalent dc voltage and dc current,
respectively, and Zc is characteristic impedance of the cold
EM mode. The Pierce model has been extended in Ref. [5],
[6] to the case of a SWS with DPE, where the propagation
constant and characteristic impedance of the cold EM mode
are complex: βp = βpr + iβpi and Zc = Zcr + iZci.

A second order EPD occurs in the interctive system when
two solutions of (1) are identical, k1 = k2 = ke, where ke
is the degenerate wavenumber, at a given angular frequency
ωe. This yields that two hot modes have exactly the same
phase velocity ω/Re(ke) which means that synchronization is
achieved in the interactive system and not in the cold system.
The conditions that lead to having two degenerate wavenum-
bers of hot modes are D(ωe, ke) = 0 and ∂kD(ωe, k)

∣∣
ke

= 0
[16], which yet is simplified by getting rid of ke to (a detailed
formulation of the derivation of the following EPD condition
is presented in Appendix A)(

βp
β0

)2

=

(
3

√
I0Zcβp
2V0β0

+ 1

)3

. (2)

Note that an EPD requires the coealscence of the two
eigenvectors associated to the two degenerate eigenvelaues
as well. This has been proven in Ref. [5] by analytically
determining the two eigenvectors and by showing their ana-
lytical convergence. Here we want to add another perspective
to ensure the system has an EPD, by showing that this
strong degenerate condition is related to the description of
the two degenerate eigenvelues’ perturbation in terms of the
Puiseux fractional power expansion [17] that, truncated to
its first term, implies (kn − ke) ≈ (−1)n α1

√
ω − ωe where

kn, with n = 1, 2, are the two perturbed wavenumbers in
the neighborhoos of (ωe, ke). The enabling factor for this
characterizing fractional power expansion is the fact that at
the point (ωe, ke) we have ∂ωD(ω, ke)

∣∣
ωe
6= 0 and therefore

(2) will yield a branch point (k − ke) ≈ α1
√
ω − ωe in the

dispersion diagram, where α1 =
√
−2∂ωD/∂2kD

∣∣
(ωe,ke)

as

shown in Ref. [17]. We have verified that this derivatives is
indeed non vanishing in the presented cases. The existance
of the Puiseux series results in having a Jordan block in the
system matrix which is one of the characterizing features of
EPDs, as it was shown in [5] in details, in terms of the two
coalescing eigenvectors.

The cold propagation constant imaginary part βpi accounts
for power attenuation along the SWS due to the leakage of
power out of the SWS as shown in Fig. 1(b). Under the
assumption that |βpi| � |βpr| the complex EPD condition
in (2) is simplified to

I0 = I0e ≈
128

81
√
3

V0
−Zcr

β3
pi

β3
0

∣∣∣∣
βpr=β0

. (3)

A detailed formulation of the derivation and the assumptions
used to derive (3) is presented in Appendix B. From a
theoretical perspective, the EPD condition is satisfied just by
tuning the e-beam dc current I0 to a specific value which we
call EPD current I0e [18]. The EPD condition in (3) shows that
the required e-beam dc current I0e increases cubically when
increasing the amount of distributed extracted power, which
is represented in terms of the imaginary part βpi of the cold
SWS’s EM mode. The fact that an EPD e-beam current I0e is
found for any amount of distributed power extraction, implies
a tight (degenerate) synchronization regime is guaranteed
for any high power generation. Therefore, in principle the
synchronism is maintained for any desired distributed power
output, according to the Pierce-based model. Note that this
trend is definitely not observed in standard BWOs where
interactive modes are non-degenerate and the load is at one
end of the SWS (i.e., βpi ≈ 0 in SWSs made of copper without
DPE).

The starting current for oscillation in a conventional BWO,
where the supported modes are non-degenerate, was theo-
retically studied in [9]. The starting oscillation condition is
determined by imposing infinite gain Av → ∞ , where the
gain Av is defined as the field amplitude ratio at the begin
and end of the SWS [9]. Accordingly , the starting current of
oscillation in a conventional BWO scales with the SWS length
` as Ist = ζ/`3 [9], [19] , where ζ is a constant.

When a BWO with DPE operates in close proximity of the
EPD, i.e., when the beam dc current I0 is close to the EPD
current I0e, there are two coalescing modes out of the three
interacting modes with positive Re(k) and they are denoted
by k1 = ke + α

√
I0 − I0e and k2 = ke − α

√
I0 − I0e [17],

where α =
√
−2∂ID/∂2kD

∣∣
(ωe,ke)

is constant, whereas, the
third mode is has k3 =

(
βpβ

2
0

)
/ (k1k2). The gain expression

for this case becomes [5]

A−1
ve e

iβ0` ≈ e−i(ke−β0)` (ke − β0)2

(ke − k3)
sin
(
α
√
I0 − I0e`

)
α
√
I0 − I0e

.

(4)
From (4) we found that the oscillation condition Av →∞ , is
verified when the beam dc current satisfies α

√
I0 − I0e = π/`.
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(a) (b)

Fig. 2. Longitudinal cross-sections of a SWS without (a) and with DPE (b).

(a)

(b)

Fig. 3. Output signals and their corresponding spectra for: (a) Conventional
BWO where the output power is only extracted from one port as shown in
Fig. 1(a). (b) EPD-BWO where power is extracted from multiple ports as
shown in Fig. 1(b).

Therfore the startig current of oscillation is determined in term
of the EPD current and the SWS length as [5]

Ist|EDP−BWO = I0e +
( π
α`

)2
. (5)

III. APPLICATION TO OVERMODED SWS

As a proof of concept, we demonstrate the EPD-BWO
regime by considering a conventional BWO operating at X-
band whose SWS is shown in Fig. 2(a). The DPE is introduced
by adding two wire loops in each unit cell, above and below as
shown in Fig. 2(b), that couple to the azimuthal magnetic field
and by Farady’s Law an electromotive force is generated that
excites each coaxial waveguide, similarly to the way power is
extracted from magnetrons (Ch. 10 in Ref. [7]). Simulations
based on the particle in cell solver (PIC), implemented in CST
Studio Suite, use a relativistic annular e-beam with dc voltage
V0 = 600 kV. The output signals and their corresponding
spectra for both BWOs, with and without DPE, are shown
in Fig. 3 where a self-standing oscillation frequency of 9.7
GHz is observed when the used beam dc current is I0 = 1740
A for both cases. Details about the structure geometry and
simulation settings are presented in Appendix C.

Fig. 4. Scaling of starting e-beam current for oscillation in conventional BWO
and EPD-BWO. Dashed lines represent fitting curves. The EPD-BWO shows
a starting current trend that does not vanish for long SWS.

To assess the occurrence of an EPD we verify the unique
scaling trend of the starting current in (5). Fig. III shows
the starting current scaling trends for both conventional BWO
and EPD-BWO based on PIC simulation results. The dashed
lines represent fitting curves and the case of EPD-BWO
shows very good fitting with 99% R-square. In comparison
to a conventional BWO, the EPD-BWO is characterized by a
starting current (threshold) that does not tend to zero as the
SWS length increases, and a scaling that is a quadratic function
of the inverse of the SWS length. The procedure to determine
the starting current of oscillation using PIC simulations is
presented in Appendix C.

We compare the RF conversion power efficiency (RF output
power over dc e-beam power) of the conventional BWO with
that of the EPD-BWO in Fig. III for e-beam dc currents
that exceed the starting current, assuming the SWS has 11
unit-cells. The figure shows that the EPD-BWO has higher
efficiency at higher level of output power compared to a
conventional BWO with same dimensions. The results show
that the EPD-BWO has a maximum efficiency of about 47%
at about 0.5 GW output power (the sum of the power from
each output in Fig. 1(b)). Instead, the conventional BWO has
a maximum efficiency of about 33% at an output power level
of about 0.27 GW. It is important to point out that the EPD-
BWO has a higher threshold beam current to start oscillations
compared to the conventional one which is in consistent with
the theoretical results in [5] and with the requirement of
generating higher power levels.

IV. CONCLUSION

In summary, the physical mechanism of an EPD in a
hybrid system where a linear electron beam interacts with an
electromagnetic mode has been demonstrated. The manifes-
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Fig. 5. Comparison between the efficiency of a conventional BWO and an
EPD-BWO. The EPD-BWO shows improved efficiency at higher level of
power generation compared to the conventional BWO.

tation of such EPD is useful to conceive a new degenerate
synchronous regime for BWOs that have a starting-oscillation
current law that decreases quadratically to a given fixed value
for long waveguide interaction lengths; as a consequence PIC
simulations show higher efficiency and much higher output
power than a standard BWO. The unique quadratic thresh-
old scaling law demonstrates the EPD-based synchronization
phenomenon compared to that in a standard BWO that has a
starting-oscillation current law that vanishes cubically for long
waveguide interaction lengths.
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APPENDIX A
SECOND ORDER EPD IN A SYSTEM MADE OF AN

ELECTROMAGNETIC WAVE INTERACTING WITH AN
ELECTRON BEAM’S CHARGE WAVE

The interaction between an electron (e)-beam and an elec-
tromagnetic (EM) wave in a linear vacuum tube was theoreti-
cally studied by Pierce in [14]. Assuming wave eigenfunctions
of the interactive system of infinite length in the form of
φ(z, t) ∝ eiωt−ikz , Pierce showed that the solutions of
the linearized differential equations that govern the electron
beam charges’ motion and continuity in presence of the slow
wave structure (SWS) EM field yield four eigenmodes whose
wavenumber dispersion is given by the characteristic equation
[14], [15]

D(ω, k) = k4 − 2β0k
3 +

(
β2
0 − β2

p +
I0Zcβpβ0

2V0

)
k2

+2β0β
2
pk − β2

0β
2
p = 0,

(A.1)
Here β0 = ω/u0 is the unmodulated e-beam wavenumber, u0
is the average velocity of the electrons, V0 and I0 are the e-
beam equivalent dc voltage and dc current, respectively, and
βp and Zc are the wavenumber and characteristic impedance,
respectively, of the EM mode in the “cold” (i.e., without inter-
acting with the e-beam) SWS. The dispersion equation in (A.1)
has four root solutions. The four complex wavenumbers are
the eigenvalues of the interactive (also called “hot”) system. A
necessary condition to have a second order exceptional point of
degeneracy (EPD) is to have two repeated eigenvalues, which
means that at the EPD frequency ω = ωe the characteristic
equation should have two repeated roots as

D(ωe, k) ∝ (k − ke)2 (A.2)

where ke is the degenerate wavenumber. The relation in (A.2)
is satisfied when [16]

D(ωe, ke) = 0,

∂kD(ωe, k)
∣∣∣
k=ke

= 0.
(A.3)

Using the expression for D(ω, k) in (A.1), the two necessary
EPD conditions in (A.3) are explicitly written as

k4e − 2β0k
3
e +

(
β2
0 − β2

p +
I0Zcβpβ0

2V0

)
k2e

+2β0β
2
pke − β2

0β
2
p = 0,

(A.4)

4k3e − 6β0k
2
e + 2

(
β2
0 − β2

p +
I0Zcβpβ0

2V0

)
ke + 2β0β

2
p = 0.

(A.5)
Note that the frequency dependency is in the terms β0 =

ω/u0, βp and Zc. The frequency dependency in the cold
SWS terms βp and Zc depends on the waveguide geometry
and they can be approximated using simple distributed cir-
cuit models in the neighborhood of the operative frequency.
Using a simple transmission line circuit model that supports
backward propagation, the distributed per-unit-length series
impedance Z and shunt admittance Y are βp =

√
−ZY

and Zc =
√
Z/Y , respectively, as also discussed in Ref.

[5]. The two square roots values of each physical parameter
represent waves that propagate in opposite directions in the
cold SWS, i.e., both βp and −βp are valid solutions because
of reciprocity, where the root βp =

√
−ZY is taken as the

principle square root (resulting in a positive real part) while
the root of Zc =

√
Z/Y is taken as the secondary square root

(resulting in a negative real part) as discussed in [5], [20].
We simplify the above two equations by first getting Zcβp

from (A.5) as

Zcβp =
2V0 (ke − β0)

(
β2
p + ke (β0 − 2ke)

)
I0β0ke

, (A.6)
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which is then used in (A.4) to get β2
p as

β2
p =

k3e
β0
. (A.7)

We then simplify (A.6) by inserting (A.7) in its right hand
side to get

Zcβp =
2V0 (ke − β0)3

I0β2
0

. (A.8)

The conditions in (A.7) and (A.8) are constraints on the
cold SWS’s circuit parameters βp and Zc to enable the an
EPD, and are important to select what kind of SWS shall be
chosen to ensure an EPD occurs at a given (ωe, ke).

The above equations can also be used to determine the EPD
wavenumber of the hot SWS, i.e., the wavenumber of the
degenerate mode in the interactive e-beam-EM system; from
(A.7) one obtains

ke =
3

√
β2
pβ0. (A.9)

Then, using this ke expression in (A.8), we obtain(
βp
β0

)2

=

(
3

√
I0Zcβp
2V0β0

+ 1

)3

. (A.10)

The above condition represents a constraint involving the
operational frequency ω, electron beam dc voltageV0 and
current I0, and cold SWS circuit wavenumber βp and charac-
teristic impedance Zc to have an EPD.

When distributed power extraction (DPE) occurs in the
SWS, the propagation constant and characteristic impedance
of the “cold” EM mode (i.e., without coupling to the electron
beam) are complex: βp = βpr + iβpi and Zc = Zcr + iZci.
The cold propagation constant imaginary part βpi accounts
for power attenuation along the SWS due to the leakage
of power out of the SWS. Note that βprβpi > 0 for a
“backward” EM wave that is traveling in the cold SWS (we
are using the exp(iωt) time dependency which implies that
the EM modes propagates as exp(−iβpz)). Since the phase
propagation constant βpr is positive, because it has to matche
the electron beam effective wavenumber β0 = ω/u0, one has
βpi > 0. Furthermore, for a backward wave with βpr > 0,
one has Zcr < 0 since power travels along the −z direction
in the cold SWS. Therefore in the above formulas we have that
Zcβp = (Zcrβpr − Zciβpi)+ i (Zciβpr + Zcrβpi) is complex.

APPENDIX B
ELECTRON BEAM DC CURRENT THAT SATISFIES THE EPD

CONDITION

The electron beam current that satisfies the EPD condition
is determined by rearranging (A.10) as

I0 = I0e ≡
2V0β0
Zcβp

((
βp
β0

)2/3

− 1

)3

. (B.1)

To satisfy the above condition, since the e-beam dc current
I0 is real valued, the imaginary part of the right hand side
should vanish, i.e.,

(a)

(b)

Fig. 6. Longitudinal cross-sections of (a) the conventional BWO considered
in this paper where the output power is extracted from the waveguide right
end; (b) the EPD-BWO where the power is extracted in a distributed fashion
to satisfy the EPD condition. The power is extracted using distributed wire
loops (as an example) that are connected to coaxial waveguides on the top and
bottom sides of the waveguide. This is just an example of DPE to provide the
proof of concept of an EPD in a BWO; many other geometries are possible
and the physical mechanism would be analogous to the one demosntrated in
this paper.

arg

2V0β0
Zcβp

((
βp
β0

)2/3

− 1

)3
 = 2nπ, n = {0,±1, ..}.

(B.2)
The propagation constant and characteristic impedance of

the backward EM mode are complex, and the imaginary
part βpi > 0 of the cold propagation constant accounts
for distributed power extraction. Under the assumption that
0 < βpi � βpr and |Zci| � |Zcr| and considering a backward
propagating mode so that Re (Zcβp) < 0, it can be easily
shown that |Re (Zcβp)| > |Im (Zcβp)|.

By assuming that the EPD point at (ω, k) = (ωe, ke) is close
to the synchronization point of the non interactive diagrams
(that is (ω, βp) ≈ (ω, β0)) , i.e., we impose that at ω = ωeone
has βp = β0(1 + δ), where δ = δr + iδi, and δi > 0 (because
of losses and (DPE) in the cold SWS supporting the backward
mode). Because we assume that both |δr| � 1 and δi � 1,
the argument of the complex value in (B.2) is dominated by
the latter term, i.e.,

arg

2V0β0
Zcβp

((
βp
β0

)2/3

− 1

)3


≈ π + 3arg

((
βp
β0

)2/3

− 1

)
.

(B.3)
The cubic root in (B.3) has three solutions:

(
βp
β0

)2/3

≈
(
1 +

2

3
δ

)
ei2mπ/3, m = {0, 1, 2}. (B.4)

Considering the cubic root solution with m = 0, the
argument in (B.3) is simplified to
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arg

2V0β0
Zcβp

((
βp
β0

)2/3

− 1

)3


≈ π + 3arg

(
2

3
δ

)
= π + 3 tan−1

(
δi
δr

)
.

(B.5)

By enforcing angle condition in (B.2) to (B.5) we obtain

π + 3 tan−1

(
δi
δr

)
= 2nπ, n = 0,±1, ... (B.6)

A relation between δr and δi is determined by solving (B.6)
which finally yields three possible solutions

δi =


0√
3δr

−
√
3δr

. (B.7)

We neglect the solution δi = 0 in (B.7) because the regime
we are considering has DPE which implies that δi > 0. Using
the solution δi = ±

√
3δr in (B.1) will finally find the EPD

current to be

I0e ≈
2V0
Zcr

(
2

3

(
δr ± i

√
3δr

))3

=
128

81
√
3

V0δ
3
i

(−Zcr)
(B.8)

Therefore, the EPD condition is met by just tuning the e-
beam dc current I0 to a specific value which we call EPD
e-beam current I0e:

I0 = I0e ≈
128

81
√
3

V0
(−Zcr)

β3
pi

β3
0

∣∣∣∣
βpr=β0

. (B.9)

The other two solutions of the cubic root in (B.4) with m =
1 and m = 2 are discarded because they provide solutions for
a purely real right hand side of Eq. (B.1) for |δi| > 1 and
|δr| > 1, that contradict the initial assumption of |δr| � 1
and δi � 1. In summary, the EPD occurs when the e-beam
current I0 takes the value in (B.9).

APPENDIX C
FULL-WAVE SIMULATIONS’ DETAILS

We demonstrate the EPD-BWO regime by taking a conven-
tional BWO design operating at X-band shown in Fig. A(a).
The proposed EPD-BWO is shown is Fig. A(b) where DPE is
introduced using distributed wire loops that are connected to
coaxial waveguides. The original SWS geometry shown in Fig.
7(a), is a circular copper waveguide with azimuthal symmetry
and with inner and outer radii of Ri = 11.5 mm and Ro = 16.5
mm, respectively, and period d = 15 mm. The surface
corrugation of SWS in one period is described by a flat surface
R(z) = Ro for 0 ≤ z < w, where w = 5 mm, and a sinusoidal
corrugated surfaces for the rest of the period described as
R(z) = (Ro+Ri)/2+((Ro−Ri)/2) cos(2π(z−w)/(d−w))
for w ≤ z < d. The whole body of the BWO is made of copper
with vacuum inside.

(a) (b)

(c)

Fig. 7. Details of the longitudinal cross-sections of a SWS without (a) and
with DPE (b). (c) Dispersion of EM guided modes in the “cold” SWSs in (a)
and (b), without (blue curve) and with (red curve) distributed power extraction
(DPE), respectively. The dispersion shows the real and imaginary parts of the
complex wavenumber. The non-zero imaginary part of wavenumber (red line)
shows that the SWS in (b) exhibits distributed power extraction. The black line
is the “beam line” described by β0 = ω/u0 , and the intersection point with
the curve of βpr = Re(βpr) represents the approximative syncronization
point.

(a) (b)

Fig. 8. Field distribution for the TM-like mode supported by the SWS in
Fig. 7(a): (a) electric field on the longitudinal cross-section, and (b) magnetic
field on the transverse cross-section. Fields are found with the mode solver
of CST Studio Suite.

A. Cold simulations - EM modes in the cold SWS

The DPE is introduced by adding two wire loops in each
unit cell, above and below as shown in Fig. 7(b), that couple
to the azimuthal magnetic field (shown in Fig. 8(b)), and
by Farady’s Law an electromotive force is generated that
excites each coaxial waveguide, similarly to the way power is
extracted from magnetrons (Ch. 10 in Ref. [7]). The coaxial
cables have outer and inner radii equal to 2.57 mm and
0.5 mm, respectively, leading to a 98 ohm characteristic
impedance. Figure 7(c) shows a comparison between the
dispersion relation of the EMmodes in the two “cold” SWSs:
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one used in the conventional BWO in Fig. 7(a), and the
other one used in the BWO with DPE in Fig. 7(b). The
dispersion curves show only the EM mode that is TM-like, i.e.,
the one with an axial (longitudinal) electric field component,
with electric and magnetic field distributions shown in 8. The
dispersion curves in Fig 7(c) show that the EM mode in the
cold SWS with DPE is a backward wave that has a propagation
constant with non-zero imaginary part βpi at the frequency
where the interaction with the e-beam occurs, i.e., at the point
where the EM wave phase velocity ω/βpr is synchronized to
the velocity of electrons u0 = 0.88c, where c is the speed
of light in vacuum. This means that the cold SWS in Fig.
7(b) is suitable for our design of a BWO with an EPD [5],
[6]. An example of the dispersion of the complex-wavenumber
modes in the interactive (“hot”) EM e-beam system with DPE
has been shown in [5], [6] using the Pierce-based model
revealing the occurrence of an EPD. The complex wavenumber
dispersion relation in presence of DPE, shown in Fig 7(c), is
obtained by using two multi-mode ports at the begin and end
of a SWS unit-cell where each port has 30 modes (almost all
evanescent) that sufficiently represent the first TM-like Floquet
mode in the periodic SWS, while all the coaxial waveguides
are matched to their characteristic impedance to absorb all
the outgoing power. This is done using the Finite Element
Frequency Domain solver implemented in CST Studio Suite
by DS SIMULIA that calculates the scattering parameters of
the unit cell, that have then been converted to a transfer matrix
to get the SWS complex Floquet-Bloch modes following the
same method in [21].

B. Hot simulations - oscillation frequency and fields

Simulations based on the particle-in-cell (PIC) solver, im-
plemented in CST Studio Suite, based on a relativistic annular
e-beam with dc voltage of V0 = 600 kV, inner and outer radii
of Rib = 9 mm and Rob = 10.3 mm, respectively, and with
dc axial magnetic field of 2.6 T to confine the electron beam.
The cathode is modeled using the dc emission model with
528 uniform emission points. The full-wave simulation uses
around 1.3M Hexahedral mesh cells to model the SWS.

We study the starting e-beam current for oscillation in both
types of BWO (the conventional one, and the EPD-BWO in
Fig. A by sweeping the e-beam current I0 and monitoring the
RF power and its spectrum of the waveguide output signal at
the right end of the cylindrical waveguide. Using a SWS with
11 unit-cells we show in Fig. 9 the output power at the main
port at the right end of the SWS when the e-beam current is
just below and just above the threshold current. A self-standing
oscillation frequency of 9.7 GHz is observed when the e-beam
dc current I0 for the conventional BWO is at or larger than
than 250A, while for the EPD-BWO, self-standing oscillations
is observed for an e-beam current I0 equal or greater than
1230A. Such oscillations are not observed for smaller e-beam
current, as for example 225A for the conventional BWO and
1170A for the EPD-BWO. Therefore we conclude that the the
starting current of oscillation is approximately 250A for the

(a)

(b)

Fig. 9. Output signal at the right-end waveguide port and its corresponding
spectrum when the SWS has 11 unit-cells, at (blue) and below (black) the
e-beam starting current for: (a) Conventional BWO and (b) EPD-BWO. The
frequency spectrum shows that there is not self-standing oscillation at 9.7 GHz
when the e-beam dc current is below the oscillation threshold, i.e., when the
current is below 250A for theconventional BWO, and below 1230A for the
EPD-BWO, but there is at these two e-beam current values, hence they are the
starting currents for the two types of BWOs. It is important to stress that the
figure shows only the ouput power at the right-end port of the EPD-BWO, and
indeed the output value of the EPD-BWO is comparable to the one coming
out of the conventional BWO. The total amount of power coming out of the
EPD-BWO is much higher than the one of the conventional BWO when we
consider all the other distributed ports, as shown in Fig. 5 of the main body
of the paper.

(a)

(b)

Fig. 10. Electric field distribution in the SWS for: (a) conventional BWO
and (b) EPD-BWO. The figure in (b) shows power extraction in distributed
fashion from the coaxial waveguides.

conventional BWO, and 1230A for the EPD-BWO, when the
SWS length is 11 periods.

Figure 10 shows the electric field distribution for the
conventional BWO and the EPD-BWO when the e-beam dc
current I0 is 1750 A, in both cases, for a SWS of 11 unit cells.
The figure shows that ffor the conventional BWO the power
is extracted only from the main port at the right end, whereas
for EPD-BWO most of the power is extracted in a distributed
fashion from the top and bottom coaxial waveguides, resulting
in much high power and high efficiency as demonstrated in
the main body of this paper.
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