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Abstract

Neural language models are commonly used to study language
processing in human speakers, and several studies trained such
models on two languages to simulate bilingual speakers. Sur-
prisingly, no work systematically evaluates different neural
architectures on bilingual speakers’ data, despite the abundance
of such studies in the monolingual domain. In this work, we
take the first step in this direction. We train three neural archi-
tectures (SRN, LSTM, and Transformer) on Dutch and English
data and evaluate them on two data sets from experimental stud-
ies. Our goal is to investigate which architectures can reproduce
the cognate facilitation effect and grammaticality illusion ob-
served in bilingual speakers. While all three architectures can
correctly predict the cognate effect, only the SRN succeeds at
the grammaticality illusion. We additionally show how the ob-
served patterns change as a function of the models’ hidden layer
size, a hyperparameter that we argue may be more important in
bilingual models.

Keywords: language modeling, neural networks, bilingualism,
cognate facilitation, grammaticality illusion

Introduction

In recent years, neural language models (LMs) have been ex-

tensively used to study human sentence processing. Such mod-

els have been shown to significantly predict human reading

times (e.g., Frank et al., 2015; Goodkind & Bicknell, 2018) and

exhibit various processing effects observed in human speak-

ers, such as number agreement (Mueller et al., 2020) and

garden-path effects (Van Schijndel & Linzen, 2018; Futrell

et al., 2019). These models even make some syntactic errors

similar to those of human speakers (Linzen & Leonard, 2018).

The use of language models in psycholinguistics has become

so pervasive that online platforms for their automatic testing

have been designed (Gauthier et al., 2020), including tools that

introduce human-in-the-loop evaluation (Kiela et al., 2021).

In psycholinguistics, neural LMs are commonly trained on

data from a single language and evaluated on data from human

speakers, to test whether they make good models of (mono-

lingual) sentence processing. By contrast, little work exists

that considers models trained on two (or more) languages in

the context of bilingual speakers’ sentence processing. This

is surprising, both because the use of multilingual language

models is very common in NLP applications (Devlin et al.,

2019; Guo et al., 2020), and because it has long been argued

that the field of bilingualism and bilingual sentence processing

in particular could benefit from having more formal models

(Frank, 2021; Li, 2002).

Neural LMs trained on two languages have been used to

study various effects in the field of bilingualism, such as the

grammaticality illusion (Frank et al., 2016), gender pronoun

errors (Tsoukala et al., 2017), cognate facilitation (Winther et

al., 2021), code-switching (Tsoukala et al., 2021), crosslinguis-

tic structural priming (Khoe et al., 2021) and sentence-level

reading times (Frank, 2014). These studies focus on a single

effect of interest and look at the ability of a particular architec-

ture to correctly predict that effect, making it difficult to say

which architectures make better models of bilingual sentence

processing. Moreover, these studies tend to use models such

as simple recurrent networks or networks trained on miniature

languages, and not the modern architectures common in the

monolingual domain, such as LSTMs or Transformers (but see

Winther et al., 2021). There is thus a lack of work comparing

the architectures of bilingual neural LMs in terms of their

ability to predict a variety of effects in bilingual processing, as

has been done for monolingual models (e.g., Merkx & Frank,

2021; Wilcox et al., 2020).

In this study, we take the first steps in this direction. We

focus on three neural architectures that have been commonly

used in studies on monolingual sentence processing: Sim-

ple Recurrent Networks (SRNs; Elman, 1990), Long Short-

Term Memory networks (LSTMs; Hochreiter & Schmidhuber,

1997), and Transformers (Vaswani et al., 2017). We train these

models on two languages, Dutch and English, in parallel and

test them against the available human data on two effects from

the domain of bilingual sentence processing, the cognate facili-

tation effect and the grammaticality illusion, which we present

in more detail in the next section. Existing studies (Winther

et al., 2021; Frank et al., 2016) showed that these effects can

be predicted by neural LMs in principle, and here we extend

the existing results by testing each of the three architectures

on both effects. Our main goals are to test whether the results

reported in the two studies mentioned above can be replicated

across model architectures, and, by extension, whether one of

them makes a better model of bilingual sentence processing.

In addition, we consider whether and how the models’ abil-

ity to predict human-like patterns depends on their hidden

layer size. While it is not uncommon to experiment with

various hidden layer sizes (e.g., Gulordava et al., 2018), we

believe that this parameter may be more important in the case

of models trained on two languages, because a model with a

large hidden layer may be able to separate the representations
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for the two languages, reducing the amount of cross-linguistic

influence (i.e., the extent to which the representations from

the two languages are shared in the model’s hidden layers).

We test whether this is the case by systematically running our

experiments with various hidden layer sizes for each model.

To preview our findings, all three architectures could cor-

rectly predict the cognate facilitation effect, while only the

bilingual SRN model was successful at reproducing the gram-

maticality illusion in both languages. The magnitude of the

two effects depended on the layer size to a greater extent in

some bilingual models than in the monolingual models, espe-

cially so for the cognate facilitation effect.

Background

Processing effects in bilingual speakers

We focus on two effects in bilingual sentence processing –

cognate facilitation and grammaticality illusion – because

the existing studies (Winther et al., 2021; Frank et al., 2016)

showed that neural LMs trained on two languages could cor-

rectly predict these effects in principle.

Cognate facilitation effect. Cognates are words that share

their form and meaning across two languages, such as the

word drama in Dutch and English. A common finding in the

literature on bilingualism is that they are processed faster than

non-cognates (Costa et al., 2000; Dijkstra et al., 1999). In

particular, Bultena et al. (2014) showed that Dutch–English

bilingual speakers were faster at reading sentences with cog-

nates than with non-cognates, as in (1), where drama is a

cognate word, but error (Dutch ‘fout’) is not. Note that the

words in each pair were matched on various characteristics

including corpus frequency, to avoid potential confounds.

(1) He does not like to talk about the drama/error out of

a sense of guilt.

Winther et al. (2021) investigated if neural LMs could repro-

duce this effect by training bilingual LSTMs on English and

Dutch data and testing them on Bultena et al.’s sentences. They

found evidence for the cognate effect under certain conditions

of input presentation, namely when the models were trained

so as to simulate unbalanced/sequential bilingual speakers,

through exposing the models first to Dutch and then to English

input data, with more Dutch exposure overall.

Grammaticality illusion. Speakers normally consider gram-

matical sentences to be more acceptable than ungrammatical

ones. However, English native speakers have been consis-

tently found to judge ungrammatical derivations of a certain

class of sentences as more acceptable than their grammatical

equivalents (Frazier, 1985; Christiansen & MacDonald, 2009).

This effect is observed in sentences containing double-nested

relative clauses, as in English (2) and Dutch (3).

(2) The carpenter who the craftsman who the peasant

carried hurt supervised the apprentice in the garden.

V1 V2 V3 D1

(3) De timmerman die eergisteren de vakman die zater-

dag de boer droeg bezeerde begeleidde de leerling in

de tuin. V1 V2 V3 D1

The addition of the first relative clause (in italics) and the

second relative clause (in bold) nested within the first clause

makes this sentence difficult to process, although still gram-

matical. As a result, English speakers tend to process more

easily an ungrammatical version in which the second verb V2,

hurt, is omitted. This effect, referred to as the grammaticality

illusion, has been shown using acceptability ratings (Chris-

tiansen & MacDonald, 2009) and reading times on the first

determinant after the third verb, D11 (Vasishth et al., 2010).

Frank et al. (2016) carried out a similar test in Dutch with

native Dutch speakers and found that they, unlike English

speakers, process the grammatical version more easily. Inter-

estingly, when the same Dutch speakers were tested in their

second language (L2) English, they behaved as native English

speakers and read the ungrammatical version more quickly.

In their study, Frank et al. also tested if a neural LM could

reproduce this grammaticality illusion effect across languages.

They trained a bilingual SRN model on Dutch and English

data and observed a human-like behavior when the model was

tested specifically at D1: it preferred ungrammatical English

sentences but grammatical Dutch sentences.

Neural LMs in monolingual sentence processing

In the monolingual context, a number of studies compare how

well different neural LMs predict human reading data such as

self-paced reading times and event-related potentials in the

brain. SRNs and GRUs (Gated Recurrent Units; Cho et al.,

2014) have been reported to be equally successful, provided

the language model accuracy is accounted for (Aurnhammer

& Frank, 2019). The same is likely to hold between SRNs

and LSTMs, since LSTMs and GRUs both include gates to

control the flow of information in a similar fashion. Further-

more, Transformers generally outperform recurrent architec-

tures (Merkx & Frank, 2021; Wilcox et al., 2020).

Another line of research evaluates neural LMs in more tar-

geted settings, to measure their grasp of various syntactic

phenomena (Linzen et al., 2016; Gulordava et al., 2018; Mar-

vin & Linzen, 2018; Wilcox et al., 2018; Warstadt et al., 2020).

The results indicate LSTMs to be superior to SRNs (Linzen

et al., 2016), and Transformers to be superior to recurrent

networks (Mueller et al., 2020).

Methods

Our general approach is to train language models on text

corpora from one or two languages (Dutch and/or English)

and evaluate their performance on two sets of sentences, in

order to test whether they exhibit the cognate facilitation effect

and the grammaticality illusion observed in human speakers.

1Here, we follow the numeric notation of Frank et al. (2016), even
though D1 is not the first determiner in the sentence.
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Table 1: Hyperparameters of our models.

Architecture

Parameter SRN LSTM Transformer

BPTT Steps 3 35 35

Hidden layers 1 2 8

Learning rate 2 20 2

Batch size 64 64 64

Dropout rate 0.2 0.2 0.2

Training epochs 10 10 10

No. heads N/A N/A 8

Models

We test three architectures: SRNs, LSTMs, and Transformers.

The former two are recurrent networks, and thus predict the

next word from a hidden state that is updated incrementally

for each new word. The memory gates in the LSTM allow it

to learn more long-term dependencies compared to the SRN.

The Transformer predicts the next word by attending to each

word in the context directly, and thus disposes with the recency

bias in recurrent networks. We chose these three architectures

because numerous studies have used them to study human

sentence processing (e.g., Linzen et al., 2016; Frank et al.,

2015; Wilcox et al., 2018; Hollenstein et al., 2021; Wilcox et

al., 2020). We adapt our SRN implementation from Frank et al.

(2016), and our LSTM implementation from Van Schijndel &

Linzen (2018).2 Our Transformer model is based on a standard

PyTorch implementation.

For each architecture, we use the hyperparameters reported

in the literature. The most important of these are summarized

in Table 1. Note that the number of layers differs across

the three models, because we decided to closely follow the

computational setup reported in earlier studies: the SRN only

uses 1 hidden layer, the LSTM uses 2 stacked layers, and the

Transformer uses 8 stacked Transformer blocks. Ideally, we

would also experiment with the number of layers and other

hyperparameters, but due to the lack of space we focus on

manipulating the embedding/hidden layer sizes. We train each

model with six different embedding sizes: 32, 64, 128, 256,

512 and 1024. In the SRN and LSTM, the hidden layer is set

equal to the embedding size. In the Transformer, the feed-

forward layer is set to twice the embedding size. All models

are trained for 10 epochs since our preliminary experiments

showed that the main qualitative patterns for the two target

effects are unlikely to change after more training. The learning

rate for each architecture is chosen using a grid search from

a set of values {20,2,0.2,0.02} to minimize perplexity on

the validation set. The models are trained using standard

stochastic gradient descent, gradients larger than 0.25 are

clipped, and the learning rate is divided by a factor of 4 if

there is no decrease in perplexity on the validation set for 3

consecutive epochs. Each model is trained with 3 different

random initializations, and the results are averaged.

2https://github.com/vansky/neural-complexity

Training regime

We train the models on English and/or Dutch text. For English,

we use the Wikipedia corpus from Gulordava et al. (2018),

and for Dutch, we use the Wikipedia corpus from Winther et

al. (2021). We follow the preprocessing steps in Winther et al.

and use their vocabulary size of 50k word types.3 The English

and Dutch corpora are matched in size, resulting in a corpus of

2M sentences for each language, which are split into training,

validation, and test sets in proportion 80:10:10. The test data

is only used for intrinsic model evaluation, which we do not

report here for the sake of space. The resulting corpora are

used to train the monolingual models.

For the bilingual models, we create a balanced bilingual

corpus that consists of Dutch and English sentences in a 50:50

ratio, mixed in a random fashion such that each new sentence

has a 50% chance of coming from each language. Furthermore,

since Winther et al. (2021) only found a significant cognate

effect in models trained on an unequal number of sentences

from each language, we also create an unbalanced bilingual

corpus that consists of Dutch and English sentences in a 75:25

ratio. The unbalanced corpus further differs from the balanced

corpus in that languages are presented consecutively, such that

in each epoch, the model is exposed to the Dutch sentences be-

fore the English sentences (following Winther et al.’s method

of simulating an unbalanced/sequential bilingual speaker with

higher exposure to Dutch).

Evaluation

To test whether our models can correctly predict human read-

ers’ data on the two target tasks, we follow the evaluation setup

from the corresponding studies (Frank et al., 2016; Winther et

al., 2021). Specifically, for each target item we compute the

surprisal values, which are then processed as described below.

Surprisal s of a word wi at position i is a standard measure

shown to be associated with the processing effort for that word

in a given context (e.g., Levy, 2008):

s(wi) =− logP(wi|w1...i−1) (1)

Cognate facilitation effect. Following Winther et al. (2021),

we use the 21 English pairs of stimuli selected from Bultena et

al. (2014). Each pair consists of two nearly identical sentences

that only differ in one word: cognate or non-cognate control,

where cognates are spelled identically in English and Dutch.

We compare surprisal values of the cognate and control words

embedded in the same sentence and compute the cognate effect

size, CE, as the difference between the two surprisal values:

CE = s(wcontrol
i )− s(w

cognate
i ) (2)

Because higher surprisal values correspond to less likely se-

quences, a positive CE value indicates a model’s preference for

a cognate (rather than non-cognate) word in a given context.

3An exception to this is made in the Dutch corpus, where we
extend the vocabulary by 27 words that occur in the test sentences
from Frank et al. (2016), to ensure the testing is not carried out on
words unknown to the model.
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Figure 1: Size of the cognate facilitation effect (CE) as a func-

tion of hidden layer size across three model types (English

monolingual model and two bilingual models) and three archi-

tectures. The results are averaged over test items and random

initializations. Error bands show the standard error of the

mean across the 21 test items.

Grammaticality illusion. We use the English and Dutch

sentences from Frank et al. (2016), but exclude 2 sentences per

language that contain out-of-vocabulary words, resulting in 14

test sentences per language. We consider the model’s surprisal

value of the determiner directly following the verbs (D1), and

compute the model’s grammaticality preference, GP, as the

difference in surprisal on D1 embedded in an ungrammatical

vs. grammatical version of the sentence:

GP = s(w
ungram.
i )− s(w

gram.
i ) (3)

A positive GP value in (3) means that the model prefers gram-

matical sentences, and a negative GP value indicates its pref-

erence for ungrammatical sentences.

Results

Here, we present the results on the two evaluation tasks: the

cognate facilitation effect and the grammaticality illusion. Due

to the lack of space, we do not present models’ intrinsic evalu-

ation in terms of their perplexity on validation/test data, but

lower perplexity was observed in models with larger hidden

layer sizes, and also in LSTMs and Transformers rather than

SRNs. More details can be found in Roslund (2021).

Cognate facilitation effect

The results for the cognate facilitation effect across all models

are presented in Figure 1.

Monolingual models. As a sanity check, we first look at

the monolingual models, which are not expected to show the

cognate effect. Indeed, we observe that the effect stays close

to zero for all models and all hidden layer sizes (top panel).

To test this result statistically, we fit a mixed-effects regres-

sion model predicting the CE from the model architecture,

log-transformed hidden layer size, and their interaction, with

random intercepts and random slopes for individual predictors

over items and random initializations. This analysis confirms

that there is no statistically significant cognate effect for any

model: intercept (i.e., SRN as the reference level) is 0.59,

p = .399; β (LSTM) = −0.07, p = .805; β (Transformer)

=−0.25, p = .462. This is in line with the result of Winther

et al. (2021) for their monolingual models. Also, on average

there are no differences across the three model architectures.

Balanced bilingual models. A visual examination of the re-

sults (middle panel) suggests that the patterns are similar to

those observed in the monolingual models. Our statistical anal-

ysis of the data with an analogous mixed-effects regression

confirms this observation: on average, there is no statistically

significant cognate effect: intercept (SRN as the reference

level) is 0.87, p = .274; β (LSTM) = −0.13, p = .621; β
(Transformer) =−0.16, p = .553. Again, there are no signifi-

cant differences across the three architectures.

Unbalanced bilingual models. The patterns for the unbal-

anced models (bottom panel) are different. In particular, there

is a positive cognate effect, and its size depends on the archi-

tecture and the hidden layer size. A mixed-effects regression

suggests that all three architectures consistently show a statisti-

cally significant cognate facilitation effect, although the effect

size on average is significantly smaller in the Transformer than

in the LSTM and SRN: intercept (here, Transformer as the

reference level) is 1.34, p = .046; β (SRN) = 2.07, p < .001;

β (LSTM) = 1.66, p < .001.

Hidden layer size. Unlike in balanced bilingual and monolin-

gual models, the cognate effect size in the unbalanced models

changes as a function of the hidden layer size, and the di-

rection of this change depends on the architecture. In the

Transformer the effect stays stable across the hidden layer

sizes (the main effect of layer size in the mixed-effects regres-

sion is β =−0.05, p = .583), in the SRN it increases with the

hidden layer size (the interaction term ‘SRN × layer size’ is

β = 0.53, p < .001), and in the LSTM it decreases (the interac-

tion term ‘LSTM × layer size’ is β =−0.41, p = .005). This

partially supports our intuition about the role of the hidden

layer size in bilingual models: recall that we hypothesized that

bilingual models can be more susceptible to changes in their

hidden layer sizes due to the interplay of the representations

from the two languages. While the cognate effect is observed

consistently in the unbalanced models, its magnitude changes

depending on the hidden layer size in the SRN and LSTM

(but not in the Transformer), and the direction of that change
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Figure 2: Grammatical preference (GP) as a function of hidden

layer size across three model types (one monolingual model

and two bilingual models) and three architectures. The results

are averaged over test items and random initializations. Error

bands show the standard error of the mean across the 14 test

items.

differs across the two models.

To summarize our results, all three models show the cognate

facilitation effect in the unbalanced, but not in the balanced

models, which replicates the existing findings for the LSTM

(Winther et al., 2021) and also extends these findings to the

two other architectures, SRN and Transformer. Although the

effect is consistently present in all the three models, its size

varies depending on the architecture and the hidden layer size.

Grammaticality Illusion

The grammaticality preference values of each model are pre-

sented in Figure 2.

Monolingual models. We first examine the results for the

monolingual models (top panels). Recall that we expect a

positive grammaticality preference in Dutch, and a negative

preference in English. For the Dutch models (top left panel)

we see a positive preference for the Transformer and SRN, but

not for the LSTM. Again, we fit a linear mixed-effects regres-

sion to the Dutch GP values of the monolingual model, with

fixed effects of architecture (SRN vs. LSTM vs. Transformer),

log-transformed hidden layer size, and their interaction, with

random intercepts and slopes for the individual predictors over

items and random initializations. This statistical analysis indi-

cates no GP effect for the LSTM, but a positive GP for the SRN

and the Transformer, and this effect is larger in the Transformer

compared to the SRN: β (SRN) = 0.40, p = .010; β (LSTM)

=−0.10, p = .604; β (Transformer) = 1.24; p < .001. While

for the LSTM the preference on average is not different from

zero, it varies in a non-linear way depending on the hidden

layer size, as we can see in the top left panel of Figure 2. For

English monolingual models, a visual examination suggests

that all architectures struggle with reproducing the expected

negative GP (top right panel). Indeed, a mixed-effects regres-

sion analogous to the one described above suggests that on

average, none of the three architectures show a statistically

significant negative GP, and the Transformer even predicts a

preference in the ‘wrong’, i.e., positive, direction: β (SRN)

is −0.18, p = .147; β (LSTM) = 0.23, p = .088; β (Trans-

former) = 0.30; p = .004. Additional analyses of individual

hidden layer sizes show that only the SRN and the LSTM

with hidden layer size 64 can predict a statistically significant

negative GP. However, considering the large number of hidden

layer sizes that we tested, it is unclear whether this result is a

statistical error.

Balanced bilingual models. Just as for the cognate effect in

the previous section, the patterns of the balanced models are

overall similar to those of the monolingual models (compare

the middle panels in Figure 2 to the top panels). Again, for

Dutch, the Transformer and SRN, but not the LSTM, correctly

predict a statistically significant positive GP across the hidden

layer sizes: β (SRN) is 0.31, p = .021; β (LSTM) = 0.37,

p = .114; β (Transformer) = 1.06; p < .001. For English,

surprisingly, a mixed-effects regression suggests that, unlike

in monolingual models, the bilingual balanced SRN shows a

statistically significant negative GP across the hidden layer

sizes, while the Transformer with larger hidden layer sizes and

the LSTM show preference in the ‘wrong’, positive, direction:

β (SRN) is −0.32, p = .026; β (LSTM) = 0.38, p = .011; β
(Transformer) = 0.22, p = .110; β (Transformer × layer size)

= 0.13, p = .001.

Unbalanced bilingual models. The overall qualitative pat-

terns for the unbalanced models are also similar to those in the

balanced models (compare the middle vs. the lower panels in

Figure 2). Again, the Transformer and the SRN (but not the

LSTM) show a statistically significant positive GP in Dutch:

β (SRN) is 0.44, p = .007; β (LSTM) = 0.30, p = .101; β
(Transformer) = 1.11, p < .001. Also, only the SRN shows

a negative GP in English: β (SRN) is −0.41, p = .009; β
(LSTM) = 0.25, p = .092; β (Transformer) = 0.13, p = .369.

Hidden layer size. We test whether the preferences of the

bilingual models depend on the hidden layer size to a larger

extent than in the monolingual models. Since the patterns in

this case are less obvious than for the cognate effect in the

previous section, we fit two mixed-effects regressions (one

per language) to all models, i.e., monolingual and bilingual.
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These models predict GP from main effects of model type

and architecture, their two-way interaction, their three-way

interaction with the hidden layer size, and random intercepts

and slopes over items and random initializations. We find that

in English, the unbalanced (but not balanced) bilingual SRN

models (but not LSTM and Transformer) are more susceptible

to the changes in the hidden layer size than their monolingual

counterparts. Specifically, in the monolingual SRN models

the GP stays stable across all hidden layer sizes: β (layer size

× SRN) = 0.02, p = .591. In unbalanced bilingual SRNs it

decreases significantly in larger hidden layer sizes (compare

the slopes of the red line in the top right vs. bottom right

panel): β (layer size × SRN × unbalanced) = −0.16, p <

.001. In balanced bilingual SRNs this decrease is relatively

small: β (layer size × SRN × unbalanced) = −0.05, p =
.309. In Dutch, we find no statistically significant patterns

in this regard: bilingual models are susceptible to changes

in the hidden layer size approximately to the same degree as

monolingual models.

To summarize our results, the SRN is the only architecture

that can correctly reproduce the human grammaticality illusion

in both languages. Surprisingly, for English data the mono-

lingual models show a less robust positive preference than

the bilingual models. The LSTM exhibits a variable behav-

ior across different hidden layer sizes, while the Transformer

consistently prefers grammatical sentences in both languages.

Finally, the preferences of the unbalanced bilingual (but not

monolingual and balanced bilingual) SRNs in English depend

on the hidden layer size, although this pattern does not hold

for the other two architectures or for the Dutch data.

Discussion

In this study, we evaluated three commonly used neural lan-

guage model architectures – SRN, LSTM, and Transformer –

trained on two languages, Dutch and English, in terms of their

ability to predict two processing effects commonly observed in

bilingual speakers, namely cognate facilitation and grammati-

cality illusion. While systematic comparisons of monolingual

neural LMs do exist (e.g., Merkx & Frank, 2021; Wilcox et

al., 2020), to our knowledge this is the first study of this kind

for models trained on two languages.

We found that all three architectures were able to correctly

predict the human-like behavior for the processing of cognate

vs. non-cognate words in English sentences, known as the

cognate facilitation effect. The effect was only observed in

the ‘unbalanced’ models trained on larger amounts of Dutch

than English. This result replicates the findings of Winther et

al. (2021), who demonstrated the effect in an LSTM model,

and extends their findings to two other architectures, SRN and

Transformer, providing further support to frequency-based

explanations of the cognate facilitation effect (e.g., Strijkers

et al., 2010). We also found that the size of the cognate effect

was substantially smaller in the Transformer compared to the

other architectures.

For the grammaticality illusion, the models exhibit more

variable patterns. For Dutch sentences, where human speakers

tend to read grammatical sentences more quickly, two out of

the three architectures (SRN and Transformer) make the cor-

rect predictions. For English sentences, where human speakers

tend to read ungrammatical sentences more quickly, only the

SRN is able to show this effect. Moreover, the effect is highly

unstable in the monolingual SRN model, as it is only present

for one of the layer sizes. Interestingly, the bilingual SRN

models (both ‘balanced’ and ‘unbalanced’) consistently pre-

dict the effect. This result is in line with the findings of Frank

et al. (2016) for their bilingual SRN model. However, the

lack of the stable predictions in our monolingual SRN model

across the layer sizes and the lack of the effect in the other

two architectures requires further investigation. We can specu-

late that this pattern of results is because faster processing of

the ungrammatical sentences (i.e., grammaticality illusion) re-

quires human speakers to track the nested clauses incorrectly,

while the LSTM and Transformer are good at capturing long-

term dependencies (e.g., Gulordava et al., 2018; Mueller et al.,

2020), thus failing to reproduce the grammaticality illusion

in English. This line of reasoning also provides further sup-

port to Frank et al.’s (2016) explanation of the grammaticality

illusion: since the SRN relies more on local linguistic infor-

mation compared to the other two architectures, its success

corroborates the language statistics hypothesis, which explains

speakers’ behavior in a given language by the likelihood of

three verbs occurring in a sequence in that language.

Across the two evaluation tasks, the SRN was the only

architecture that could predict both effects. This suggests

that, even though models with more parameters and more

complex architectures, such as LSTM and Transformer, are

superior in many syntactic tasks, they may be less successful

in replicating some psycholinguistic effects, in particular those

related to bilingual speakers’ sentence processing. This is in

line with Merkx & Frank’s (2021) argument that more complex

architectures do not necessarily result in better models of

human sentence processing.

Finally, our hypothesis that neural language models trained

on two languages are more sensitive to changes in hidden layer

size than monolingual models has been partially supported.

The size of the cognate effect in the bilingual SRN and the

LSTM, as well as the grammaticality preference in English for

the bilingual SRN, were affected by the layer size to a greater

extent than in their monolinguals counterparts. One practical

consequence of this finding is that the hyperparameters of

bilingual models should be selected empirically rather than

being directly adopted from analogous monolingual models.
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