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ARTICLE

Sensitive detection of tumor mutations from blood
and its application to immunotherapy prognosis
Shuo Li 1,2,3, Zorawar S. Noor4, Weihua Zeng1, Mary L. Stackpole 1,2,3, Xiaohui Ni 5, Yonggang Zhou1,

Zuyang Yuan1, Wing Hung Wong 6,7, Vatche G. Agopian 8, Steven M. Dubinett1,4,9,10, Frank Alber3,11,

Wenyuan Li 1,3✉, Edward B. Garon 4✉ & Xianghong Jasmine Zhou 1,3✉

Cell-free DNA (cfDNA) is attractive for many applications, including detecting cancer,

identifying the tissue of origin, and monitoring. A fundamental task underlying these appli-

cations is SNV calling from cfDNA, which is hindered by the very low tumor content. Thus

sensitive and accurate detection of low-frequency mutations (<5%) remains challenging for

existing SNV callers. Here we present cfSNV, a method incorporating multi-layer error

suppression and hierarchical mutation calling, to address this challenge. Furthermore, by

leveraging cfDNA’s comprehensive coverage of tumor clonal landscape, cfSNV can profile

mutations in subclones. In both simulated and real patient data, cfSNV outperforms existing

tools in sensitivity while maintaining high precision. cfSNV enhances the clinical utilities of

cfDNA by improving mutation detection performance in medium-depth sequencing data,

therefore making Whole-Exome Sequencing a viable option. As an example, we demonstrate

that the tumor mutation profile from cfDNA WES data can provide an effective biomarker to

predict immunotherapy outcomes.
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Cell-free DNA (cfDNA) in blood has received enormous
attention thanks to its clinical utility as a surrogate for
tumor biopsy, especially in cases where the latter is una-

vailable or insufficient1. A tissue biopsy is invasive by nature and
is only extracted from a single site. In contrast, cfDNA in blood
can be obtained noninvasively, and provides a comprehensive
landscape of the heterogeneous genetic alterations in tumors.
Hence, a wide range of cfDNA-based applications have been
developed to detect cancer2–5, identify the tissue of origin4–6,
select the best therapy7,8, and monitor treatment6,9–11. All these
applications depend upon an indispensable, yet underdeveloped
task: precise and sensitive calling of somatic single nucleotide
variants (SNV) from cfDNA sequencing data. This task is chal-
lenging to conventional SNV callers because somatic mutations in
cfDNA generally have low variant allele frequency (VAF). This
property follows from the major hallmarks of cfDNA: (1) cfDNA
is a mixture of DNA fragments from both normal and tumor
cells, and in most cancer patients the fraction of tumor-derived
cfDNA is extremely low (<1% for most early-stage cancer
patients1 and <10% even for some metastatic patients12).
Therefore, almost all somatic mutations in tumor-derived cfDNA
have much lower VAFs than in solid tumors. (2) cfDNA comes
from the entire volume of a tumor and from every tumor present
in a patient, so it provides complete information on clonal and
subclonal mutations, while subclonal mutations generally have
lower VAFs than clonal mutations.

To conquer these challenges in cfDNA data, some efforts have
been made to improve experimental technologies and the com-
putational error filtration to optimize the variant calling on tar-
geted deep-sequencing data13–15. Despite the encouraging
progress, existing methods are not sufficiently equipped to handle
this complicated scenario, especially in medium-coverage
sequencing data such as whole-exome sequencing (WES). Spe-
cifically, they are lacking in three aspects: (1) They do not
automatically account for the low fraction of tumor-derived
cfDNA or variability due to the tumor clonal hierarchy in the
context of mutation calling, though clonality has been considered
in other studies1. A few SNV callers (e.g., MuTect16) try to handle
the issue of tumor impurity, but even these cannot robustly and
sensitively detect mutations with VAF < 5%16. One mutation
caller17 integrated clonal information to improve somatic muta-
tion calling, but this method required extra user input of the
clonal hierarchy. (2) They rely on post-filtration steps that require
reliable estimation of site-level statistics (e.g., strand bias and
averaged base quality). However, robust estimates are challenging
to obtain for low-frequency cfDNA mutations, due to insufficient
variant supporting reads. (3) They do not exploit two key features
of cfDNA, namely short fragment size (~166 bp on average) and
non-random fragmentation18,19.

In this work, we present a cfDNA SNV caller named cfSNV. It
doesn’t require inputs from solid tumor samples, and it com-
prehensively addresses the cfDNA-specific challenges and
opportunities mentioned above. Taking advantage of modern
statistical models and machine learning approaches, cfSNV pro-
vides hierarchical mutation profiling and multi-layer error sup-
pression, including error suppression in read mates, site-level
error filtration and read-level error filtration. It achieves high
precision and sensitivity in cfDNA samples that have both low
tumor purity (tumor fraction <10%) and highly heterogeneous
clonal landscapes, even for medium-coverage sequencing data
such as WES, in a purely computational fashion without
attachment to specially designed experimental technologies (e.g.,
molecular barcoding). In both simulated and real patient data,
cfSNV outperforms existing tools in terms of sensitivity while
maintaining high precision. With the detection performance of
cfSNV, cfDNA WES data become applicable for SNV calling and

related applications. As an example application, we demonstrate
that applying cfSNV to cfDNA WES data yields an effective
biomarker (truncal-bTMB) for immunotherapy prognosis, by
simultaneously capturing both the tumor mutation burden and
clonal structure information.

Results
cfSNV: a computational framework for calling SNVs from
cfDNA. We developed the cfSNV framework (Fig. 1c) by intro-
ducing five techniques (Fig. 1b) into the standard SNV calling
workflow (Fig. 1a). Each of the five techniques either overcomes a
specific challenge of cfDNA or takes advantage of a specific fea-
ture of cfDNA. The challenges and features are (1) short frag-
ments, (2) mixed nature, (3) heterogeneous clonal composition,
(4) non-random fragmentation, and (5) interference from
sequencing errors in low-frequency mutations (VAF < 5%). We
discuss each of the challenges and features below.

cfDNA fragments usually have a short size, whose distribution
peaks at 166 bp. Therefore, paired-end sequencing (usually 100 bp
or 150 bp for a read) usually results in a large fraction of
overlapping read mates, which can be used to suppress
sequencing errors (Fig. 1b(1) and Fig. 1c(i)). This error-
correction step is performed before the standard data
preprocessing.

The cfDNA found in blood from cancer patients is a natural
mixture that consists of a small amount of tumor-derived cfDNA
among an overwhelming majority of cfDNA from normal cells.
By incorporating the germline data of white blood cells (WBCs)
from the same subject, we can fit a joint-genotype model that
precisely describes this mixture. Specifically, we model the triplet
gT ; gN ; gW
� �

of genotypes, among which gT and gN actually
describes the mixed nature of cfDNA by representing the
genotypes of Tumor-derived cfDNA, Normal cfDNA respectively,
while gW represents the genotype of the matched WBC DNA for
reference purposes. The modeling of cfDNA is performed by first
aggregating reads from potential mutation loci, which were
identified by directly comparing the plasma cfDNA and the WBC
genomic DNA data of the subject (see “Methods”). The
aggregated reads across multiple potential mutation loci allows
for a more robust estimate of the tumor-derived cfDNA fraction,
which then serves as a parameter in the joint-genotype model for
the probabilistic deconvolution of tumor-derived and normal
reads at a specific locus. Note that the fraction of tumor-derived
cfDNA is usually low, therefore it cannot be precisely estimated at
a single locus due to the limited number of tumor-derived reads
falling onto the locus.

The cfDNA from cancer patients can reflect heterogeneous
clonal compositions of the tumor. Unlike tissue biopsies, a blood
sample includes DNA fragments from all tumor sites, so it covers
the full range of clonal and subclonal mutations1,20. However,
heterogeneous cfDNA clonal compositions pose a great challenge
to existing methods. If a statistical model fits the data from clonal
mutations, it would inevitably sacrifice accuracy for subclonal
mutations using the same parameters, however, this technique is
in practice in all existing methods. To address this challenge, we
can take advantage of the fact that the mutations associated with a
given clone have similar VAF in cfDNA. The mutations are,
therefore, naturally clustered according to the clonal
hierarchy1,20. This fact permits us to develop a divide-and-
conquer algorithm (Fig. 1c(ii)) that first automatically groups the
mutations of the highest and similar frequencies into a cluster,
then estimates parameters that best fit the data of the cluster. We
then remove these detected mutations, and repeatedly perform
the same operation to identify the next most frequent mutation
cluster. In other words, this algorithm intelligently and iteratively
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searches for the best parameters of the cfDNA joint-genotype
statistical model (Fig. 1c(ii.a)) to detect and model the cluster of
mutations with the highest frequency in the cfDNA sample
(Fig. 1c(ii.b)), then removes its loci and data. The process repeats,
detecting the next most frequent mutation cluster at each
iteration (Fig. 1c(ii.d)), until no more mutations are detected
with confidence. Therefore, we can profile the cfDNA mutation
hierarchy in terms of mutation frequencies.

Unlike the sonicated genomic DNA, the cfDNA is non-
randomly fragmented. cfDNA fragments have preferred start and
end positions18, so true mutations could cluster at certain
positions on the supporting reads. Conventional tools which
assume randomly fragmented genomic DNA tend to classify
mutation candidates with clustered positions on reads as
misalignment artifacts, therefore eliminating them16. Conse-
quently, the true mutations in cfDNA samples could be removed
by this artifact filter using conventional tools. We remove this
artifact filter to keep true cfDNA mutations, while building a filter
to jointly analyze the positions of multiple nearby mutation

candidates and remove cfDNA misalignment artifacts (Fig. 1b(4)
and Fig. 1c(ii.c)).

When the tumor-derived cfDNA fraction is low, sequencing errors
interfere the detection of low-frequency mutations (VAF < 5%)
and thus impair the detection sensitivity. We get around this
problem of low signal-to-noise ratio for individual alleles by
developing a machine learning approach to accurately distinguish
true variants from sequencing errors for individual reads. The
algorithm exploits a variety of contextual information from the
region surrounding the target allele (Fig. 1b(5) and Fig. 1c(iii)) to
provide an accurate prediction.

The detailed workflow is illustrated in Supplementary Fig. 1
and described in “Methods”.

Validation of cfSNV on simulation data. To evaluate the per-
formance of cfSNV in calling low-frequency somatic mutations
(VAF < 5%), we tested the method on simulated data, which were
generated from the WES data of three healthy individuals. Spe-
cifically, we generated two WES datasets (denoted as X and Y)
from one cfDNA sample collected from a healthy individual and
one WES dataset (denoted as W) from the matched WBC sample
from the same individual. These WES datasets X, Y, and W are
used to simulate the data of two virtual cancer patients. Specifi-
cally, we first add predefined in silico somatic SNVs to the WES
datasets X and Y to generate the datasets Xmutated and Ymutated,
respectively. The first virtual cancer patient uses Xmutated and W
to simulate its cfDNA WES data and WBC sample, respectively,
and the second virtual cancer patient uses Ymutated and W to
simulate its cfDNA WES data and WBC sample, respectively
(details see “Methods” and Supplementary Fig. 2). In order to
simulate tumor heterogeneity, we used eight VAFs ranging from
0.5 to 15% for the predefined in silico somatic SNVs (see
“Methods”). These predefined in silico somatic SNVs were the
ground-truth somatic SNVs. We generated six virtual cancer
patients by generating six WES datasets from cfDNA samples and
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Fig. 1 cfSNV framework and its techniques. a The workflow of conventional SNV callers takes the genomic data of a tumor and its matched normal tissue
as inputs. b Five techniques introduced in cfSNV that modify the standard workflow. c Full workflow of cfSNV. cfSNV takes plasma DNA and germline DNA
sequencing data as inputs. No tumor samples are needed. It first merges overlapping read pairs in cfDNA sequencing data. Next, we apply standard data
preprocessing tools. An iterative procedure then detects mutation clusters and estimates their frequencies θ based on multiple, automatically selected
potential mutation loci. Each iteration determines joint genotypes across sequencing regions to predict somatic SNV candidates, and masks the mutation
candidates before proceeding. After all clusters and mutation candidates have been detected, a random forest classifier identifies raw read pairs with
sequencing errors. Finally, somatic SNVs are reported and detected only if enough variant supporting read pairs pass the random forest screening. The
background color of steps in c corresponds to the feature listed in b.

Table 1 Validation performance of cfSNV on simulation data.

Performance
metrics

cfSNV MuTect Strelka2

# predicted positives 7725 3915 4818
# true positives 7260 3432 4367
# false positives 465 483 451
Precision 93.98% 87.66% 90.60%
Sensitivity 73.24% 34.60% 44.10%
False positive
rate (1/Mb)

1.10 1.15 1.07

In the simulated dataset, 9912 mutations were inserted in silico as ground truth somatic
mutations.
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three WES datasets from WBC samples from three healthy
individuals and performing this simulation procedure. Mutations
called at positions other than the ground-truth somatic SNVs
were regarded as false positives; the detected ground-truth
somatic SNVs were regarded as true positives; the undetected
ground-truth somatic SNVs were regarded as false negatives. We
compared cfSNV with two established SNV callers, MuTect, and
Strelka2, which were designed for solid tumor tissue samples but
have been utilized in studies on cfDNA samples21,22. Since
BAMSurgeon treats read pairs as single reads, we disabled the
features for overlapping read mates in the read-level filtration
model. The results of the test show that cfSNV outperforms the
two competing methods for all ground-truth mutations (Table 1).
The performance was evaluated using sensitivity� true positive
true positiveþfalse negative

�
, precision

� true positive
true positiveþfalse positive

�
, and false

positive rate (false positive/Mb). Specifically, cfSNV achieves
higher sensitivity (73.2%) than MuTect (34.6%) and Strelka2
(44.1%), while maintaining high precision (94.0% vs. 87.7% and
90.6%, respectively) and low false positive rates (1.10 vs. 1.15, and

1.07, respectively). When looking at low-frequency mutations
(VAFs < 5%) specifically, the advantage of cfSNV over other
methods is more evident (Table 2 and Fig. 2a): cfSNV detected
3.58 and 2.44 times more mutations than MuTect or Strelka2. We
also generated simulation data at a higher sequencing depth
(around 2200×) using a pooled cfDNA sample (see “Methods”).
On this dataset, cfSNV showed an even higher increase in per-
formance compared to the two competing methods (see Sup-
plementary Table 1 and Supplementary Table 2).

Validation of cfSNV on patient data. Next, we tested the ability
of cfSNV to call somatic mutations on patient data. We collected
WES data of samples obtained from six metastatic prostate cancer
(castrate-resistant prostate cancer, CRPC) and twelve metastatic
breast cancer (MBC) patients21 (“Methods”). For each patient, we
used the WES data from a metastatic tumor biopsy sample, a
WBC sample, and two plasma cfDNA samples. The cfDNA
samples were drawn at two different time points after the patients
were diagnosed as metastatic, with time gaps in the range

Table 2 Sensitivity and precision of cfSNV for mutations with different VAFs on simulation data.

VAF for
simulated
mutations

# Ground-
truth
mutations

cfSNV MuTect Strelka2

Sensitivity (#
true positive)

Precision (#
false positive)

Sensitivity (#
true positive)

Precision (#
false positive)

Sensitivity (#
true positive)

Precision (#
false positive)

0.5% 1958 60.78% (1190) 99.17% (10) 16.65% (326) 89.81% (37) 23.9% (468) 97.30% (13)
1% 1970 61.52% (1212) 91.20% (117) 17.06% (336) 76.36% (104) 27.36% (539) 97.82% (12)
3% 1035 66.28% (686) 85.54% (116) 19.42% (201) 62.04% (123) 25.12% (260) 80.00% (65)
5% 978 73.31% (717) 89.85% (81) 29.75% (291) 79.73% (74) 41.62% (407) 87.90% (56)
8% 967 79.21% (766) 94.45% (45) 42.40% (410) 93.82% (27) 56.57% (547) 95.30% (27)
10% 1010 86.34% (872) 97.54% (22) 54.75% (553) 96.68% (19) 68.91% (696) 98.86% (8)
13% 1027 90.46% (929) 98.41% (15) 62.71% (644) 97.13% (19) 72.64% (746) 97.77% (17)
15% 967 91.83% (888) 93.77% (59) 69.39% (671) 89.35% (80) 72.8% (704) 73.56% (253)
Total 9912 73.24% (7260) 93.98% (465) 34.62% (3432) 87.66% (483) 44.06% (4367) 90.64% (451)
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Fig. 2 cfSNV outperforms competing methods in sensitivity and precision, especially for low-frequency mutations (VAF < 5%). a The sensitivity of
three variant calling methods on simulation data (n= 6) as a function of VAF for cfSNV, MuTect, and Strelka2. Mutations were grouped based on their
simulated VAF, and the sensitivity at each simulated VAF level was calculated separately. The specificity and the precision of all three methods remained at
comparable and high level (Table 1). All curves were fitted using logit functions. b The precision of three variant calling methods on patient data (n= 36) as
a function of VAF. Mutations detected from all samples were grouped based on their rounded VAF (two decimal places). The precision at each VAF level
was estimated by the confirmation rate. The sensitivity of patient data cannot be quantified because of the unknown ground truth, but cfSNV detected the
most true positive mutations. Note that MuTect has no result when VAF < 2% because its default configuration treats all mutation candidates with VAF <
2% as contamination errors, and all curves here were fitted using logit functions.
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14–138 days (Supplementary Table 3). We compare the different
SNV callers in terms of the confirmation rate, defined as the
fraction of mutations detected in one cfDNA sample that are also
confirmed to be present in either the matched tumor tissue or the
other cfDNA sample. Following a recent study21, we confirm the
presence of a mutation by the number of variant supporting reads
from the raw sequencing data (i.e., supported by ≥ 3 variant
reads, see “Methods”)21. The confirmed mutations in the mat-
ched tumor tissue are regarded as true positives. As a single
tumor biopsy sample cannot profile all tumor clones in a meta-
static cancer patient, we also regarded mutations present in both
plasma samples but absent in the tumor biopsy as true positives.
Thus, when we count confirmed mutations in either the tumor
biopsy or the other cfDNA sample, this confirmation rate is
basically the same as the precision on the patient data. We per-
formed the evaluation in the following two steps.

First, we tested the confirmation rate of cfSNV across different
samples. We applied cfSNV to the 18 cfDNA samples of the
timepoint 1 (T1) to obtain a baseline mutation set for calculating
the confirmation rate. We validated the truncal and branch
mutations detected. A mutation is defined as truncal if its VAF is
above 60% of the average VAF of the five most frequent
mutations in the sample; otherwise, it is branch (“Methods”).
Averaged across all 18 subjects, 97.8% and 77.5% of truncal
mutations are confirmed in the cfDNA sample from the
timepoint 2 (T2) and the tumor biopsy of the same subject,
respectively. 93.3% and 62.4% of branch mutations are confirmed
in the T2 cfDNA sample and the tumor biopsy of the same
subject respectively (Supplementary Fig. 3). The confirmation
rates are similar if we instead use mutations detected in the 18 T2
cfDNA samples as a baseline (Supplementary Fig. 3, 96.6% and
78.8% for truncal mutations, 93.2% and 60.2% for branch
mutations in the T1 cfDNA sample and the tumor biopsy
respectively). We observed that the larger the time gap between
the two blood draws, the lower the confirmation rate of branch
mutations between the two cfDNA samples (Pearson’s correlation
between the time gap and the confirmation rate= –0.49 (95%
confidence interval (CI)= [−0.71, −0.19]), two-sided Pearson’s
correlation test p= 0.0024, t statistic=−3.28, degree of freedom
(df)= 34, see Supplementary Fig. 4 and Supplementary Table 3).
This trend was not observed for truncal mutations (Pearson’s
correlation between the time gap and the confirmation rate=
−0.06 (95% CI= [−0.38, 0.27]), two-sided Pearson’s correlation
test p= 0.721, t statistic=−0.36, df= 34, see Supplementary
Fig. 4 and Supplementary Table 3). This observed trend implied
that the mutation landscape of cfDNA changed with time,
especially for branch mutations.

Second, we compare cfSNV with competing methods (MuTect
and Strelka2) on the same samples in terms of the precision, i.e.,
the confirmation rate that counts the confirmed mutations in
either the tumor biopsy or the other plasma sample. Although
these metastatic plasma samples with high tumor fractions
(ranging from 13 to 79%) are not the best scenario to
demonstrate the power of cfSNV (as the majority of mutations
have VAF > 10%, see Supplementary Fig. 5), still cfSNV out-
performed both methods, achieving the highest precision in 33
out of 36 samples (Fig. 3a). For the remaining 3 samples, cfSNV’s
precision was only marginally lower than the highest precision
(by 0.2%, 1.1%, and 2.1%). Note that the high tumor fraction of
these samples indicated the overall high level of tumor-derived
cfDNA among all cfDNA, but branch mutations come from
minor tumor clones and can have low VAF. Below we specifically
evaluated the three methods on mutations with low VAF (<5%).
In fact, the lower the VAF of a mutation, the more power cfSNV
exhibits compared to other methods (Fig. 2b). At a VAF of 1%,
cfSNV yielded 82.4% higher precision and identified 23.7 times

more confirmed mutations than Strelka2 (Figs. 3b and 2b); no
results are available for MuTect here because its default
configuration treats all mutation candidates with VAFs <2% as
contamination errors. At a VAF of 3%, cfSNV yielded 1.8% and
53.0% higher precision and identified 9.0 and 5.3 times more
confirmed mutations than MuTect and Strelka2, respectively
(Figs. 3b and 2b). At a VAF of 5%, cfSNV yielded 7.8% and
38.7% higher precision and identified 1.7 and 3.6 times more
confirmed mutations than MuTect and Strelka2, respectively
(Figs. 3b and 2b). For the low-frequency mutations (VAF < 5%),
cfSNV showed stronger advantage toward MuTect and Strelka2
on the patient data than on the simulation data. The performance
was contributed by the higher sequencing depth at these
mutations in the patient data (mean depth 708x), and the
application of the features on overlapping read mates in the read-
level filtration model. Across all VAF ranges, on average cfSNV
yielded 4.6% and 13.3% higher precision (Fig. 3a) and detected
1.5 and 1.8 times more confirmed mutations (Fig. 3a) than
MuTect and Strelka2, respectively, demonstrating an overall
higher precision and sensitivity.

Note that all three methods have consistently higher
confirmation rates in the second plasma sample than the
matched tumor tissue sample, implying that plasma cfDNA
offers a more comprehensive coverage of tumor mutations than a
single tumor biopsy for metastatic cancer patients. Therefore,
whenever multifocal sampling of tumors from a metastatic cancer
patient is infeasible, cfDNA is a viable alternative to obtain
comprehensive mutation profiles.

Experimental analysis of five techniques. Here, we quantitatively
assess how each of the five techniques impacts the performance
of cfSNV.

Taking advantage of the overlapping read mates induced by the
short cfDNA fragments, we suppressed sequencing errors. The
paired-end sequencing of cfDNA results in significant overlaps in
the read mates. For example, in 95% of 59 cfDNA samples
collected from Adalsteinsson et al.21, >50% of read mates overlap
(2 × 100 bp paired-end sequencing, Supplementary Fig. 6a and
Supplementary Table 4); in all of the 30 cfDNA samples from a
cohort of NSCLC patients, >50% of read mates overlap (2 × 150
bp paired-end sequencing, Supplementary Fig. 6b). Our result
shows that using overlapping read pairs, combined with a
machine learning approach (Fig. 1b(5)), can facilitate the
detection of true mutations while rejecting sequencing errors.
Specifically, we compare the models with and without using the
overlapping read information, the area under curve (AUC) of
receiver operating characteristics (ROC) averaged across 36
independent test datasets (cfDNA samples from Adalsteinsson
et al.21) shows significant improvement (one-sided Wilcoxon
rank-sum test p-value= 5.187e− 06, W statistic= 256, Supple-
mentary Fig. 6c, d).

Considering the mixed nature of cfDNA, we enhanced
mutation detection by a joint-genotype model that allows for
cluster-oriented mutation calling. As aforementioned, a model
cannot use the same parameter to best fit both clonal and
subclonal mutations that have distinct VAFs. We, therefore,
introduce the divide-and-conquer strategy to first train the model
to detect only mutations of the cluster with the highest frequency,
then remove loci of these detected mutations, and repeat the same
procedure for the next most frequent mutation cluster. The key
component of this iterative process is our joint-genotype model
that supports the cluster-oriented mutation calling in a single
iteration. Specifically, the model has a parameter of describing
how frequent the mutation cluster is (denoted as θ) and this
parameter allows the model to best fit the data of only those
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mutations in this cluster, not all the mutations of the
heterogeneous landscape. Therefore, we assess the model by
answering two questions: (1) Can θ estimated by our method
reflect the VAFs of the mutations in the most frequent mutation
cluster? We designed three experiments to answer this question,
using simulated data with synthetic mutations, simulation data
obtained by mixing real sample data with a known dilution ratio,
and real cfDNA data. In the first experiment, we generated five
independent simulation datasets by randomly inserting three
groups of synthetic mutations into the WBC data from an MBC

patient: one mutation cluster with a VAF of 20%, one cluster with
a VAF of 8%, and one with a VAF of 2% (“Methods”). For all five
datasets, our method not only automatically identifies the most
frequent cluster and estimates its VAF, but also finds the other
two clusters in subsequent iterations (Supplementary Fig. 7a). In
the second experiment, we subsampled and mixed sequencing
reads from the WBC and the primary tumor samples, both taken
from the same cancer patient (“Methods”). The two samples were
mixed at eight varied concentrations (2% to 20%) and five
independent mixtures are generated at every concentration. The
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Fig. 3 Somatic SNV calling on cfDNA sequencing samples from cancer patients. a Total number of confirmed mutations and precision using cfSNV,
MuTect, and Strelka2. The precision is the number of confirmed mutations (in either the tumor biopsy or the plasma sample) divided by the total number
of detected mutations. In the sample name, T1 and T2 indicate the first time point and the second time point of blood plasma samples respectively. b The
total number of low-frequency variants and their confirmation status found by cfSNV, MuTect and Strelka2 from all plasma samples. Low-frequency
variants are divided into five groups according to their rounded VAF, and the number of confirmed and unconfirmed mutations for each variant group are
plotted in five subfigures for comparing between our method and two competing methods. The number at the top of each bar indicates the precision.
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tumor fraction, which is estimated by the frequency θ of the most
frequent mutation cluster in these mixed samples, correlates
strongly (Pearson’s correlation= 0.99 (95% CI= [0.95, 1.00]),
two-sided Pearson’s correlation test p-value= 1.627e−06 (t
statistic= 18.464, df= 6), n= 40) with the ground-truth mixing
dilution (Fig. 4a) across the study population. In the third
experiment, we used data from two independent sequencing
experiments (WES and whole-genome sequencing (WGS)) on the
same cfDNA sample in each of the 41 cancer patients (in total 59
plasma samples). Specifically, we compared the tumor fraction
estimated by cfSNV in WES to that estimated by ichorCNA21 in
WGS. This result, shown in Supplementary Fig. 7b, also confirms
that our method accurately estimates the frequency of the major
mutation clusters. (2) Does accurately estimating the mutation
cluster frequency θ enhance mutation detection? We generated
simulated sequencing data with a list of predefined θ values, from
0 to 100%, and found the optimal θ that fits the joint-genotype
model. Our performance metric is the model-to-data fitness ratio,
defined as the ratio between the likelihoods of correct and
incorrect joint genotypes (“Methods”). A higher ratio means that
the model is a better fit, so the mutation is more likely to be
identified. Our result shows that any given mutation is best fit by
the model when θ takes on a value close to the mutation’s
frequency (Supplementary Fig. 7c–f). In addition, when compar-
ing the fitness of the model with and without θ (i.e., comparing
the two likelihood ratios), we find that the smaller a mutation’s
VAF, the larger the difference (e.g., the model-to-data fitness ratio
is 40 times higher with θ present, for VAF < 5%). This relation-
ship indicates that an accurate θ estimate enhances the detection

power for low-frequency mutations (VAF < 5%, Fig. 4b). Further-
more, we used four cfDNA samples whose tumor fraction is
below 20% to further confirm this conclusion (Supplementary
Fig. 7g). More mutations were detected when the assigned θ
approached the true value of the mutation cluster frequency.

Considering the heterogeneous clonal landscape in tumor-
derived cfDNA, we enhanced the sensitivity of mutation detection
by an iterative process. With mutation detection enhanced by the
joint-genotype model in every iteration, we assessed the impact of
the iterative procedure on the mutation detection. We compared
two versions of cfSNV, with and without the iterative process, on
real data: four cfDNA samples whose tumor fraction is below
20%. With the iterative process, cfSNV detected 1.40–1.73 times
more confirmed mutations (true positives) than cfSNV without
the iterative process (Fig. 4c). Both versions had high precision:
namely, 95.4% and 94.9% for cfSNV with and without the
iterative process, respectively (Fig. 4c).

We designed post-filtration to accommodate the non-random
fragmentation of cfDNA and achieved high confirmation rate in
the rescued mutations. Compared with the conventional post-
filtration strategy, which models the distribution of variant-base
positions on reads, our filtration strategy rescues 1–15 mutations
(6.9 on average) per sample among the 36 plasma samples from
the 12 MBC and 6 CRPC patients in this study. In 69.4% (26) of
the samples, 100% of the rescued mutations are confirmed in
either the matched tumor biopsy or the other plasma sample
(Fig. 4d).

As the tumor fraction content is low in cfDNA, we utilized a
machine learning approach to to distinguish true mutations from
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Fig. 4 Experimental analysis of five techniques. a Performance of mutation cluster frequency estimation in terms of the correlation between the estimated
tumor fraction and the true dilution ratio. This experiment uses simulated data based on WES of a single patient, with dilution ratios ranging from 2 to 20%.
The points and the error bars are presented as mean ± s.d. of independently generated datasets (n= 5) at each dilution. The p-value was calculated from
two-sided Pearson’s correlation test: Pearson’s correlation= 0.99 (95% CI= [0.95, 1.00]), two-sided Pearson’s correlation test p-value= 1.627e−06 (t
statistic= 9.1154, df= 57), n= 40. b the fold change in the likelihood ratio between cfSNV models with and without a step to estimate the mutation cluster
frequency, based on simulated mutations at different VAFs. c Number of confirmed mutations and all mutations detected with and without the iterative
screening procedure. d Confirmation rate of rescued mutations after adjusting conventional site-level post-filtration. e, f Performance of read-level variant
classifier on independent testing data. e The averaged receiver operating characteristic curve (ROC) of applying the classifier to labeled data taken from 24
cfDNA sequencing samples of 12 metastatic breast cancer patients. f The averaged ROC of applying the classifier to labeled data taken from 12 cfDNA
sequencing samples of 6 metastatic prostate cancer patients.
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sequencing errors in cfDNA reads. The independent data used to
test the machine learning model are data from the 12 MBC and 6
CRPC patients. We hand-labeled read pairs containing high-
confidence mutations or sequencing errors and applied the
random forest classifier (“Methods”). Our method achieves an
average area under receiver operating characteristic curve (AUC-
ROC) of 0.95 over the MBC cfDNA samples (Fig. 4e and
Supplementary Fig. 8) and an average AUC-ROC of 0.94 over the
CRPC cfDNA samples (Fig. 4f and Supplementary Fig. 8). This
result shows that our machine learning model can distinguish
true mutations from sequencing errors with high accuracy at the
level of individual reads. It implies that our machine learning
model is non-specific to tumor types and can be generalized to
include samples from many kinds of tumors.

Application to predict the outcome of anti-PD-1 treatment.
Cancer immunotherapies, which activate a patient’s own
immune system to kill tumor cells, have remarkably improved
the clinical outcome of a subset of patients with non-small-cell
lung cancer (NSCLC)23. To better predict the therapy response
and identify patients with potential clinical benefit, tumor
mutational burden (TMB) based on solid tumor biopsies, which
measures the extent of nonsynonymous genetic changes of the
tumors, has been studied and utilized as a biomarker in various
cancer types23–25, including NSCLC. In addition to the work on
TMB, recent studies8,26 have shown that blood-based tumor
mutational burden (bTMB) is an attractive alternative to tissue-
based TMB due to three advantages: (1) noninvasiveness, (2)
more comprehensive mutation coverage (by cfDNA) than a
single-site tumor biopsy, and (3) the VAFs of mutations in
cfDNA reflect their clonality in tumors. It has also been shown
that in solid tumor samples, high truncal neoantigen load and
low intra-tumor heterogeneity more significantly associate with
longer progression-free survival (PFS) than total neoantigen load
alone27,28. Advantage (3) allows the inference of the clonality of
tumor-derived mutations from cfDNA, and thus improves the
prognosis. To fully exploit advantages (2) and (3), profiling of
cfDNA with a broad genomic coverage (e.g., whole exome) is
needed. However, due to the lack of efficient tools to accurately
call SNV from cfDNA using medium-coverage WES data (e.g.
200×), all current bTMB methods8,26 use small gene panels
(<600 genes) in order to perform deep sequencing (e.g., >5000×).
Small panels can only sparsely sample the total mutation land-
scape, so the resulting estimates of TMB or bTMB are influenced
by population and sampling variation29. In contrast, cfSNV
enables sensitive and precise mutation profiling in even medium-
depth sequencing data, thus allowing us to fully profile the
mutation landscape as well as benefit from all the other advan-
tages offered by cfDNA. Specifically, we exploit the clonality
information in cfDNA to develop a immunotherapy prognosis
metric, truncal-bTMB, which uses only truncal mutations called
by cfSNV from the WES profiling of cfDNA samples (“Meth-
ods”). We applied this metric to predict the outcomes of anti-
PD-1 treatment, and achieved better performance compared to
bTMB and TMB.

To comprehensively evaluate the predictive power of the
measures bTMB and truncal-bTMB (facilitated by cfSNV), we
studied a cohort of 30 NSCLC patients who received anti-PD-1
treatment (pembrolizumab). Blood samples were drawn from
these patients before their treatment. All cfDNA samples were
sequenced with WES. First, we compared bTMB based on
different mutation callers (MuTect, Strelka2, and cfSNV). We
split the 30 patients into two groups using the population
median23 of the respective truncal-bTMB metric (the distribution
shown in Supplementary Fig. 9), which we call the high-burden

(>median) and low-burden (≤median) groups, and evaluate how
Kaplan–Meier survival curves of the progression-free survival
time (PFS) differ between the two groups. The truncal-bTMB
calculated based on cfSNV mutation calls had the most significant
one-sided log-rank test p-value (Fig. 5a–c), 0.015 (cfSNV, Z
statistic=−2.07) vs. 0.225 (Strelka2, Z statistic=−0.76) and
0.322 (MuTect, Z statistic=−0.48), implying that the truncal-
bTMB derived from cfSNV has the highest power for predicting
patients with longer PFS. We further show that the truncal-bTMB
metric is a more powerful predictor than the bTMB metric, for
which the PFS association is less significant (Fig. 5d–f), one-sided
log-rank test p-value 0.097 (cfSNV, Z statistic=−1.29) vs. 0.369
(Strelka2, Z statistic=−0.33) and 0.446 (MuTect, Z statistic=
−0.14), although cfSNV mutation calls again yielded the best
predictor. Note that using any of the three callers, truncal-bTMB
always offers better predictive power than bTMB, indicating that
combining mutation clonality and intra-tumor heterogeneity
improves predictive power. Interestingly, comparing the three
variant calling methods, the disagreement of the high/low burden
group assignment concentrated on the samples with estimated
tumor fraction lower than 20%, indicating that those samples
contributed most to the better performance of cfSNV. This is
consistent with the aforementioned major strength of cfSNV in
sensitively and precisely calling mutations in samples with low
tumor fraction. Furthermore, we compared tumor-derived TMB
with bTMB and truncal-bTMB on a subset of 14 patients, for
whom the tumor biopsies were available. Again, cfSNV-derived
truncal-bTMB had the best performance in predicting outcomes
(Supplementary Fig. 10a–c) also in this cohort, where the one-
sided log-rank test p-values are 0.028 for truncal-bTMB, 0.280 for
TMB, and 0.067 for bTMB with cfSNV, respectively. In this
cohort, cfSNV-derived truncal-bTMB showed the best perfor-
mance in predicting the PFS outcome, as the truncal-bTMB
values gave the most significant p-value between the high-burden
group and the low burden group. From the survival analysis, the
high truncal-bTMB in the plasma cfDNA was associated with
the improved progression-free survival. Therefore, by exploiting
the unique advantages of cfDNA using cfSNV, our proposed
measure provides an effective prognosis indicator for anti-PD-1
immunotherapy on NSCLC patients.

Discussion
We presented a computational framework, cfSNV, that sensitively
detects low-frequency somatic SNVs (VAF < 5%) in cfDNA
sequencing data. cfSNV is equipped with a series of techniques to
address cfDNA-specific challenges (i.e., mixed tumor-derived/
normal cfDNA, low tumor-derived cfDNA fraction, and high
heterogeneity) and take advantage of cfDNA-specific features
(high rate of overlapping reads, complete coverage of the muta-
tion landscape, and non-random fragmentation). Specifically, (1)
we designed a joint-genotype statistical model, parametrized by
the mutation cluster frequency, to probabilistically deconvolute
the mixture of tumor-derived and normal reads in cfDNA data;
(2) we developed an iterative approach to detect clusters of
mutations with different VAFs; (3) we designed a data pre-
processing step that exploits the overlapping read mates caused
by short cfDNA fragments to improve data quality; (4) we
developed a procedure for filtering misalignment errors that
accounts for the non-random fragmentation pattern of cfDNA;
and (5) we developed a machine learning approach that incor-
porates the sequencing context to filter errors at the level of
individual reads.

Equipped with these techniques and special considerations for
cfDNA, we have shown cfSNV outperforms the existing methods
in terms of overall precision and sensitivity. The cancer patients
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of this study are metastatic, so their plasma cfDNA has high
fractions of tumor-derived cfDNA and carries many high-
frequency mutations that can be usually detected by all conven-
tional methods. For these high-frequency mutations, cfSNV can
still achieve the best performance. Especially, for those low-
frequency mutations, cfSNV achieves higher sensitivity than
competing methods, without sacrificing precision, not only in the
real patient data but also in the simulation data. These results
demonstrate that cfSNV could provide high-quality discovery of
both low- and high-frequency mutations even in medium-depth
sequencing data, such as WES data.

cfSNV is a general computational framework, applicable to
medium- or deep-coverage cfDNA sequencing data. While the
existing methods address the challenge of low tumor-content in
cfDNA by ultra-deep sequencing of a limited number of loci, the
power of cfSNV reduces the required sequencing depth, therefore
making cfDNA WES applicable for SNV calling and related
applications. Here we presented an application that offers an
effective immunotherapy response predictor (truncal-bTMB) by
exploiting the comprehensive coverage of the clonal mutation
landscape in cfDNA. Note that our method requires sequencing
of the matched WBC sample. This requirement, though incurring
additional costs, is essential for reducing the impact of clonal
hematopoiesis of indeterminate potential (CHIP), and therefore
has become common practice30,31. We believe that cfSNV will
facilitate cfDNA-based therapy prognosis and longitudinal
monitoring.

Methods
Data collection. We collected WES data of 42 metastatic cancer patients from two
sources: (1) the data of 41 patients were obtained from Adalsteinsson et al.21 under
dbGaP accession code phs001417.v1.p1. Each patient’s data includes a WBC
sample, a tumor biopsy sample, and one or two plasma cfDNA samples. Among
the 41 patients, 18 have two plasma cfDNA samples. One patient (MBC_315) had
her cfDNA sample sequenced with both WES and deep WGS. (2) The data of one
patient was obtained from Butler et al22. (European Nucleotide Archive accession
numbers ERS700858, ERS700859, ERS700860, and ERS700861). The data include a
WBC sample, a primary breast cancer biopsy sample, a metastatic liver biopsy
sample, and a plasma cfDNA sample. We also collected samples from 30 NSCLC
patients and 3 healthy individuals and generated our own WES data as
described below.

Human subjects. The plasma samples, tumor biopsy samples and WBC samples
from 30 NSCLC patients were previously collected at University of California, Los
Angeles for KEYNOTE-00132 and KEYNOTE-01033, under clinical trial registra-
tion ClinicalTrials.gov number NCT01295827 and NCT01905657. All patients
provided written consent before any study-related procedures were performed. The
WBC samples and the tumor biopsy samples were collected from each patient at
the start of the treatment. The plasma samples were collected from each patient at
0-week, 6-week, and 12-week, measured at the start of the treatment. The samples
were excluded if the duplication rate was >80% in the sequencing data. In total, 16
of 30 tumor biopsy samples were excluded. We also purchased plasma samples and
WBC samples of 3 healthy individuals from Biopartners, Inc. (Woodland Hills,
CA). The 3 healthy individuals have provided informed consent for research use.
The project was approved by the Institutional Review Board (IRB) of University of
California, Los Angeles (IRB# 12-001891, IRB# 11-003066, and IRB# 13-00394).

Genomic DNA WES library construction. For the 30 NSCLC patients, the WBC
samples and the tissue samples underwent multiplexed paired-end WES to a target
depth of 100–150× on HiSeq 2000/3000 (Illumina, San Diego, CA) performed by
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Fig. 5 Kaplan–Meier curves for progression-free survival (PFS) on the pre-treatment cfDNA sequencing data of 30 advanced NSCLC patients. a–c
Kaplan–Meier curves based on truncal-bTMB calculated using MuTect, Strelka2, and cfSNV. The high-burden and low-burden groups in each plot are
defined by the median value of the measure: MuTect (a, hazard ratio (HR)= 0.839, 95% CI [0.403, 1.747], Z statistic=−0.48), Strelka2 (b, HR= 0.745,
95% CI [0.352, 1.581], Z statistic=−0.76), or cfSNV (c, HR=0.438, 95% CI [0.205, 0.938], Z statistic=−2.07). d–f, Kaplan–Meier curves based on
bTMB calculated using MuTect, Strelka2, and cfSNV. The high-burden and low-burden groups in each plot are defined by the median value of the measure:
MuTect (d, HR= 0.948, 95% CI [0.451, 1.990], Z statistic=−0.14), Strelka2 (e, HR= 0.883, 95% CI [0.415, 1.880], Z statistic=−0.33), or cfSNV (f,
HR= 0.611, 95% CI [0.288, 1.295], Z statistic=−1.29). All p-values were calculated from one-sided log-rank test. There is no multiple testing adjustment.
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the UCLA Technology Center for Genomics & Bioinformatics. Macrodissection
was not performed. DNA isolation was performed with DNeasy Blood & Tissue Kit
(Qiagen, Germantown, MD); exome capture and library preparation were per-
formed with the KAPA HyperPrep Kit and Nimblegen SeqCap EZ Human Exome
Library v3.0 (Roche, Switzerland) according to the manufacturer’s protocol. For the
three healthy individuals, the WBC gDNA isolation was performed with DNeasy
Blood & Tissue Kit (Qiagen) and sonicated by Covaris system (Woburn, MA).
Ampure XP beads (Beckman-Coulter, Atlanta, GA) size selection was further
performed to enrich the fragments between 100 and 250 bp. The gDNA WES
library was constructed with the SureSelect XT HS kit from Agilent Technologies
(Santa Clara, CA) according to the manufacturer’s protocol. No molecular bar-
codes were used in the sequencing libraries. In brief, 100 ng of gDNA was used as
input material. After end repair/dA-tailing of cfDNA, the adaptor was ligated. The
ligation product was purified with Ampure XP beads and the adaptor-ligated
library was amplified with index primer in 7-cycle PCR. The amplified library was
purified again with Ampure XP beads, and the amount of amplified DNA was
measured using the Qubit 1xdsDNA HS assay kit (ThermoFisher, Waltham, MA).
1000 ng of DNA sample was hybridized to the capture library and pulled down by
streptavidin-coated beads (ThermoFisher). After washing the beads, the DNA
library captured on the beads was re-amplified with 10-cycles of PCR. The final
libraries were purified by Ampure XP beads. The library concentration was mea-
sured by Qubit. The library quality check was further performed with Agilent
Bioanalyzer before the final step of 2 × 150 bp paired-end sequencing by Genewiz
(South Plainfield, NJ).

Plasma cfDNA WES library construction. For each of the 30 NSCLC patients,
venipuncture was performed by trained phlebotomists such as nurses or medical
assistants. Blood tubes were centrifuged at 1800 × g for 20 min at room temperature
and plasma supernatant was isolated within 2 h of collection. The 30 NSCLC
patients and the three healthy individuals’ plasma samples were stored at −80 °C
until use. Then, cfDNA was extracted from their plasma samples using the
QIAamp circulating nucleic acid kit from QIAGEN (Germantown, MD). The
cfDNA WES library was constructed with the SureSelect XT HS kit from Agilent
Technologies (Santa Clara, CA) according to the manufacturer’s protocol. No
molecular barcodes were used in the sequencing libraries. In brief, 10–15 ng of
cfDNA was used as input material. After end repair/dA-tailing of cfDNA, the
adaptor was ligated. The ligation product was purified with Ampure XP beads
(Beckman-Coulter, Atlanta, GA) and the adaptor-ligated library was amplified with
index primer in 10-cycle PCR. The amplified library was purified again with
Ampure XP beads, and the amount of amplified DNA was measured using the
Qubit 1xdsDNA HS assay kit (ThermoFisher, Waltham, MA). 700–1000 ng of
DNA sample was hybridized to the capture library and pulled down by
streptavidin-coated beads. After washing the beads, the DNA library captured on
the beads was re-amplified with 10-cycles of PCR. The final libraries were purified
by Ampure XP beads. The library concentration was measured by Qubit, and the
quality was further examined with Agilent Bioanalyzer before the final step of
2x150bp paired-end sequencing by Genewiz (South Plainfield, NJ), at an average
coverage of 200x.

The workflow of cfSNV. cfSNV takes the plasma cfDNA and germline DNA
sequencing data of a patient as inputs and detects SNVs using the three-step
process described below (Supplementary Fig. 1). The outputs at the end of the
pipeline are the detected mutations and the tumor fraction.

(i) Data preprocessing. A short cfDNA fragment (peak size 166 base pairs)
usually has overlapping read mates when using paired-end sequencing data which
can lead to double-counting overlapping regions and bias VAFs. Simply discarding
overlapping regions16,34,35 would waste a large amount of sequencing data.
Actually, these overlapping regions provide the opportunity to detect and suppress
sequencing errors as two copies of the original DNA template are available.
Therefore, in addition to the standard data preprocessing steps of alignment,
deduplication, local realignment, and base quality recalibration, we perform an
additional step: merging overlapping read mates. This step is performed before the
standard preprocessing pipeline (Supplementary Fig. 1) to address the two
challenges and utilize the overlapping regions. This step corrects the read counts in
overlapping regions, thereby removing the bias in VAFs caused by double-
counting, and also detects sequencing errors by comparing the context of the
forward read and the reverse read in the overlapping region. Specifically,
inconsistent bases in the overlapping region are corrected to be the base call with
higher quality, while consistent bases are confirmed and assigned a high base
quality. This step is implemented by FLASh36. Those read mates that are
overlapping are merged as single-end reads, while the rest of read pairs are treated
as paired-end reads. The parameters for FLASh were adjusted to accommodate the
typical fragment lengths of cfDNA and read lengths in sequencing data. We aligned
paired-end reads and single-end reads separately to the hg19 human reference
genome. We used bwa mem37 to align the reads, and samtools38 to sort them. Then
we used picard tools39 MarkDuplicates to remove duplicate reads resulting from
PCR amplification. After this step, we added read group information to the bam file
using picard tools AddOrReplaceReadGroups, and realigned reads around indels
using GATK34,35 with Java40. The target regions in realignment were identified
through GATK RealignerTargetCreator, then reads around target regions were

realigned using GATK IndelRealigner. Finally, base quality scores were recalibrated
using GATK BaseRecalibrator and PrintReads.

(ii) Iterative process of detecting mutation candidates. As illustrated in
Supplementary Fig. 1, this process repeats a sequence of four steps until no more
mutation candidates are detected with confidence. In each complete iterative
round, a mutation cluster is determined.

(Step 1) Estimating the mutation cluster frequency θ of the most frequent
mutation cluster. As the frequency of mutations in cfDNA are naturally clustered
to the clonal hierarchy1,20, we defined a mutation cluster as a group of mutations
with similar VAFs. The mutation cluster frequency θ is defined as the fraction of
cfDNA carrying the mutations in the cluster, out of all cfDNA mapped to the same
genomic positions. Due to the low amount of tumor-derived cfDNA in blood,
individual sites may be covered by a very small number of tumor-derived cfDNA
reads (or none), leading to highly uncertain estimates of the tumor-derived cfDNA
fraction. Therefore, we aggregate tumor-derived signal from multiple sites to obtain
a robust estimation. The first step is to identify sites across the genome that are
highly likely to be mutated (called potential mutation loci). Specifically, a locus is
selected as a potential mutation locus if it meets the following criteria: (a) both
matched germline DNA and cfDNA sequencing data have adequate coverage (30
for germline, 80 for cfDNA in this study); (b) bases at the locus in matched
germline DNA data contain only reference alleles; (c) the average sequencing error
probability is less than the variant’s observed frequency; (d) reads in both matched
germline DNA and cfDNA data have high mapping quality (≥20); (e) no strong
strand bias is observed; and (f) enough variant supporting reads are observed in the
cfDNA data (≥ 3). All potential mutation loci are ranked by read coverage, VAF,
and the counts of variant alleles in matched germline DNA data. Next, we
estimated θ by maximizing the likelihood of observing the data at all potential
mutation loci P Xjθð Þ, where X ¼ ðX1;X2; � � � ;Xr ; � � �Þ is the cfDNA sequencing
data and Xr represents all the information (such as sequence and base qualities)
contained in a single read r. For each locus, we assume that reads are independently
sampled from a cfDNA joint-genotype model that is denoted by the triplet G ¼
gT ; gN ; gW
� �

where the subscripts N , T and W refer to normal cfDNA, tumor-
derived cfDNA and WBC DNA respectively. Only the normal cfDNA genotype gN
and tumor-derived cfDNA genotype gT are utilized in this step, because the WBC
genotype gW is already controlled by potential mutation locus selection
(criterion b). All three genotypes are used in (Step 2) and (Step 3), described below.
Specifically, gW is essential in the later step of the process to remove germline
mutations and WBC-derived somatic mutations (clonal hematopoiesis). Based on
the independence assumption of reads, the likelihood of θ at a potential mutation
locus is calculated as the product of the probabilities of observing individual reads
covering the potential mutation locus, given the parameter θ. We express this
relationship as Eq. (1).

P Xjθð Þ ¼
Y

r2RH
P Xrjθ
� � ¼ Y

r2RH
∑Gr

P XrjGr ; θ
� �

P Gr

� �
ð1Þ

where RH is the pool of reads covering selected potential mutation loci and Gr is
the joint genotype at the potential mutation locus covered by a read r. Note that
sometimes a read r may cover multiple potential mutation loci, so Gr could be the
combination of all potential mutation loci covered by read r. Since an individual
read is sequenced from either tumor-derived cfDNA (with probability θ) or normal
cfDNA (with probability 1� θ), the likelihood of observing this read can be
calculated using a probabilistic mixture model that describes the presence of two
subpopulations:

P XrjGr ; θ
� � ¼ θP XrjgTr

� �
þ 1� θð ÞP XrjgNr

� �
ð2Þ

where gTr
and gNr

are the tumor-derived and normal cfDNA genotypes of the
potential mutation locus on read r. The information contained in an aligned read r
(Xr) consists of base calls, base qualities and mapping qualities at potential
mutation loci in the read. So we can expand PðXr jgTr

Þ as follows:

P XrjgTr

� �
¼ P BrjgTr

� �
ð3Þ

P XrjgNr

� �
¼ P BrjgNr

� �
ð4Þ

where Br represents the base call at the potential mutation locus on read r. The base
quality and the mapping quality are embedded in the probability of sequencing
error described below. The probability of error ϵ is calculated from the mapping

quality m and the base quality q, as 1� 1� 10�
m
10

� �
1� 10�

q
10

� �
. Assuming that all

sequencing error directions have the same probability, the probability of observing
a base call given genotype g can be calculated from the probability of error ϵ. So we
have

PðAjgÞ ¼
1� ϵ if g ¼ AA
1
2 ð1� ϵÞ þ 1

6 ϵ if g ¼ AB
1
3 ϵ if g ¼ BB

8><
>: ð5Þ

where A and B are the reference and non-reference alleles respectively. Based on
the above formulation, an estimation of the mutation cluster frequency θ can be
achieved by optimizing the likelihood P Xjθð Þ via the Expectation-Maximization
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(EM) algorithm or a simple grid search. The output tumor fraction is estimated
using the above likelihood model based on the highest VAF cluster of mutations,
which is generated from Jenks’ natural break optimization on the VAF of all
detected mutations. The probability calculation was performed under python
2.7.14 with preloaded packages numpy41, pandas42, scipy43, and decimal.

(Step 2) Predicting somatic mutation candidates using the joint genotype. After
obtaining θ, we can determine the variant status of a genomic position by finding
the joint genotype that optimizes the posterior probability of reads at that position.
As illustrated in Supplementary Fig. 1(ii), for a given locus, we collected all reads
that are aligned to the locus in both cfDNA data and the matched germline DNA
data, then computed the posterior probability of each joint genotype from the
observed reads. This probability can be modeled by a mixture model similar to that
in (Step 1). Subsequently, the joint genotype with the highest posterior probability
is adopted as the prediction result at the locus. Somatic mutation candidates are
then selected by following the inferred joint genotype. In this step, we used the
matched germline data XW from WBC and the cfDNA data XP from plasma
cfDNA, consisting of normal cfDNA and tumor-derived cfDNA. For a specific
locus, its joint genotype is determined as GMAP , the joint genotype that maximizes
the posterior probability given the observed data and θ:

GMAP ¼ argmaxP GjXW ;XP; θ
� �

: ð6Þ
Using Bayes’ theorem, we have

P GjXW ;XP ; θ
� � / P XW ;XPjG; θ

� �
P Gð Þ ð7Þ

The probability of observing the data is the product of the probability of observing
individual reads. So we have

P XW ;XPjG; θ
� � ¼ P XW jgW

� �
P XP jgN; gT; θ
� �

; ð8Þ

P XPjgN; gT; θ
� � ¼ Y

r
P XrjgN; gT; θ
� �

ð9Þ

P XW jgW
� � ¼ Y

r0
P Xr0 jgW
� �

; ð10Þ
where Xr (Xr0 ) stands for a single read r (r0). In the same way we calculate the
likelihood of a given θ, we decompose P Xr jgN ; gT ; θ

� �
and P Xr0 jgW

� �
, and get

P GjXW ;XP; θ
� � / P Gð Þ

Y
r

1� θð ÞP XrjgN
� �þ θP XrjgT

� �� �Y
r0
P Xr0 jgW
� �

ð11Þ
As the majority of normal cfDNA comes from WBCs, we set the prior distribution
of the joint genotype G as

PðGÞ ¼ PðgN; gT; gWÞ PðgN; gTÞ if gW ¼ gN;

0 otherwise:

�
ð12Þ

The joint distribution of the component ðgN ; gT Þ in joint genotype G has been
defined in JointSNVMix44. It can also be calculated from public databases. Based
on the above formulation, the joint genotype can be determined for every locus. By
comparing the three components of the joint genotype with the highest posterior
probability, we can determine whether the locus is a somatic mutation, a germline
mutation, or a loss of heterozygosity (LOH) site. The somatic mutation loci are
input as mutation candidates in the next filtration steps. The above model is a
probabilistic deconvolution of the normal and tumor signals in cfDNA. By
incorporating the matched germline data (WBC) and the mutation cluster
frequency θ, we separate the tumor-derived cfDNA from the total cfDNA at
individual somatic SNV candidates, and thus enhance mutation detection (as
shown in the “Results” section of Experimental analysis of five techniques).

(Step 3) Site-level filtration. To reduce false positives from mutation candidates,
we investigated a set of site-level statistics in raw data and FLASh-processed data
(i.e., both single-end reads from merged overlapping read pairs and paired-end
read pairs without overlapping regions). The site-level statistics used here include
averaged base quality, averaged mapping quality, strand bias, depth of coverage,
and nearby sequencing context (e.g., repeats and indels). Detailed descriptions and
default thresholds for these site-level filters are listed in Supplementary Table 5.
One essential filter to determine the mutation candidates in this iterative round is
the binomial VAF test. It removes the mutation candidates whose VAF is not likely
to be observed based on the current mutation cluster frequency. With the joint-
genotype model and the binomial VAF test, the VAF of the mutation candidates in
this iteration is around the estimated mutation cluster frequency, and thus these
mutation candidates can form a cluster. Based on the results from all filters, each
mutation candidate is sorted into one of three categories: pass, hold, or reject.
Candidates in the pass category pass all filters, so they are very likely to be
mutations. Candidates in the hold category fail some non-essential filters, so we
cannot determine whether they are mutations at this step. Candidates in the reject
category fail at least one essential filter (e.g. averaged base quality), so they are
regarded as false positives and removed from further analysis. The requirements
for a variant to be classified as either pass or hold, are listed in Supplementary
Table 5.

Iterating (Steps 1–3) to refine the mutation cluster frequency estimate. After
(Step 3), we select potential mutation loci from the mutation candidates in the pass
category to refine the θ estimation in (Step 1). By repeating (Steps 1–3) for the
same mutation cluster, we obtain a stable frequency estimate and a group of
mutation candidates for this cluster. Convergence is reached when the difference

between two consecutive θ estimations is less than 0.01. In our experiments with
the 12 plasma samples from the 6 CRPC patients, convergence is usually reached
after only two rounds (Supplementary Fig. 11). Thus, with just one iteration of
(Steps 1–3), we already accurately capture the most frequent mutation cluster. In
fact, our software offers both options: a quick version that performs only one round
of estimation and candidate detection for each cluster, and a slow version that
iterates until convergence for each mutation cluster.

(Step 4) Output and removal candidates from data. After obtaining somatic
mutation candidates from the most frequent mutation cluster, we output the
mutation candidates in the pass and hold categories from (Step 3), determining the
mutation cluster in this round. Then we remove the loci and data of these sites
from the cfDNA data. After removal, we continue iterating from (Step 1) to
identify the next most frequent mutation cluster.

Termination criterion. Mutation clusters are detected one at a time, in the
decreasing order of their frequency in cfDNA. The process terminates until no
mutation candidates are found in (Step 4) (i.e., the pass and hold categories are
empty).

(iii) Error filtration at the read level. Site-level statistics provide some
information on the difference between sequencing errors and true mutations, but
are not adequate for error filtration in cfDNA. Due to the low tumor fraction and
high heterogeneity of cfDNA, site-level frequency estimates are uncertain and
unreliable for mutations with only a few supporting reads. To reduce the number
of false positives among mutation candidates, we developed a machine learning
filter to eliminate reads with sequencing errors at candidate sites and remove SNV
candidates whose count of confirmed supporting reads fails to pass a threshold (see
details in Supplementary Table 6). Specifically, for each mutation candidate, we
classify each of its supporting reads with a random forest model in order to
distinguish sequencing errors from true variants. This model combines a variety of
features (Supplementary Table 7) and automatically discovers statistical
relationships among the features that reflect sequencing errors. It is worth noting
that read pair statistics (e.g., fragment length and features of the read mate) are
always among the most informative features of the random forest model. Since this
error filtration method is applied at the read level, it improves the precision of
detecting low-frequency somatic mutations. Although this read-level filter can be
performed at any step of the method (e.g., after alignment or during the iterations),
we prefer to perform it at the end of the cfSNV workflow in order to save
computing time and resources. Generally, the later this step is performed, the fewer
sequencing reads need to be inspected for errors, and thus less time is needed for
cfSNV. Practically, based on our hands-on experience of the real data, the time
needed to inspect read-level errors in the beginning of the process is reduced 50
fold if it is performed at the end of the process: that is, for each read that needs to
be inspected at the end of the process, at least 50 reads would have needed to be
inspected at the beginning.

To train the random forest model, we used four WES sequencing datasets from
the same cancer patient (MBC_315): two cfDNA sequencing datasets, a WBC
sequencing dataset, and a tumor biopsy sequencing dataset. As the two cfDNA
sequencing datasets were obtained from the same cfDNA sample, we can treat
them as technical replicates and label their read pairs by their concordance. The
training data are the supporting cfDNA read pairs at known mutation/error sites
and are labeled as containing mutations or errors. Mutation sites are defined as the
collection of common germline mutations detected using Strelka2 germline45 from
all four datasets. In addition, common somatic mutations were detected using
Strelka2 somatic and MuTect16 from two cfDNA-WBC pairs (cfDNA data vs.
WBC data) and one tumor-WBC pair (tumor data vs. WBC data). Error sites are
defined as sufficiently covered sites (> 80x) with only one high-quality non-
reference read (base quality ≥20 and mapping quality ≥40) in all four datasets. All
labeled read pairs were extracted from raw cfDNA data using picard tools
FilterSamReads (Supplementary Table 8). Different features were extracted from
the overlapping read pairs and the non-overlapping read pairs (Supplementary
Table 7). Genome sequences around the mutation candidates were extracted from
hg19 using bedtools46. All categorical features were expanded using one-hot
encoding method. We used the parameters of the random forest model as follows:
(1) the number of decision trees is 100, (2) the maximum tree depth is 10, (3)
imbalanced classes were handled by setting the class weights with option balanced,
and (4) other parameters were left at their default values. Two random forest
classifiers (for overlapping read pairs and non-overlapping read pairs) were trained
on read pairs extracted from the WES data (SRR6708941) using
RandomForestClassifier from the python library scikit-learn47. Read pairs from
SRR6708920 were only used for validating the model. The trained classifiers are
saved in the cfSNV code package (see "Code Availability").

Truncal-bTMB measure. Somatic SNVs are annotated using snpEff48. Non-
synonymous mutations and high-impact mutations are treated the same in snpEff
results. Mutations from Strelka2 were filtered if their VAF in the matched normal is
greater than 1%. As the mutation’s VAF in cfDNA reflects the clonality of a
mutation, we treat a mutation as a truncal mutation if its VAF is greater than a
threshold; otherwise it is a branch mutation. The threshold is defined as 60% of the
average VAF of the 5 most frequent mutations. The truncal-bTMB measure can
then be calculated as the sum of the normalized VAFs of all truncal
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nonsynonymous mutations.

truncal-bTMB ¼ ∑ðVAF of truncal mutationsÞ
∑ðhighest 5 VAFÞ=5 ð13Þ

Additional validation data for random forest classifier. To further test the
random forest classifiers, we generated data from other patients with metastatic
breast or prostate cancer (Supplementary Table 9). For each patient, we obtained
WES data of a WBC sample, a tumor biopsy sample, and plasma samples from two
different time points. To generate the testing data and label the individual reads, we
used the same procedure as described in the “Methods” section of Error filtration at
the read level for producing the training data.

Simulation with BAMSurgeon to evaluate precision and sensitivity. To eval-
uate the performance of cfSNV, we collect cfDNA samples and WBC samples from
three healthy individuals. We generated two WES technical-replicate datasets
(denoted as X and Y) from the cfDNA sample and one WES dataset (denoted as
W) from the genomic DNA of the matched WBC sample of each individual (see
Supplementary Fig. 2). We then simulated the WES data of six virtual cancer
patients from the data of these three healthy individuals. Specifically, given the two
cfDNA WES datasets from one healthy person (X and Y), we inserted mutations at
different VAFs (generated by BAMSurgeon49) into X (or Y) to simulate the data of
a virtual cancer patient’s cfDNA sample (denoted as Xmutated (or Ymutated)), while
we treated W as the data of the simulated WBC sample of the same virtual cancer
patient (see Supplementary Fig. 2). Therefore, this strategy used two cfDNA
datasets and one WBC dataset from one healthy person to simulate the data of two
virtual cancer patients. Specifically, for simulating each cfDNA sample (i.e., Xmutated

and Ymutated), the BAMSurgeon program inserted 3000 in sillico somatic SNVs
with different VAFs: 300 at 15%, 300 at 13%, 300 at 10%, 300 at 8%, 300 at 5%,300
at 3%, 600 at 1%, and 600 at 0.5%. A total of 9912 mutations were successfully
inserted into the WES data of six cfDNA replicates from three healthy individuals.
These successfully inserted mutations were regarded as the ground-truth somatic
SNVs. There were some mutations that failed to be inserted into the sequencing
data, because their VAFs were incompatible with the sequencing depth in the
original data. For example, a mutation with VAF 1% cannot exist in the data with a
sequencing depth of 50 reads. Since BAMSurgeon treats read pairs as single reads,
we disabled the features from overlapping read mates in the read-level filtration
model. In other words, all read pairs were treated as non-overlapping read pairs in
the read-level filtration step. We evaluated the performance of cfSNV, MuTect
(disabling the contamination filters and tumor_lod= 5.25) and Strelka2 (default
parameters, with enabled and disabled filters) on this simulation dataset by com-
paring the SNVs identified from each algorithm with the ground-truth somatic
SNVs (i.e., the inserted in sillico somatic SNVs). For a fair comparison, we tried all
combinations of the main parameter settings for cfSNV, MuTect, and Strelka2,
such that they all had similar specificities, i.e., false positive rates ranging from 1.07
to 1.15/Mb, and then we compared sensitivity at this specificity.

We also evaluated the performance of cfSNV on a higher coverage simulated
dataset (see Supplementary Table 1). For this dataset, the input to BAMSurgeon
was a pool of cfDNA data from eight cancer patients (MBC_333, MBC_336,
MBC_292, CRPC_531, MBC_284, CRPC_525, MBC_303, and MBC_335)21.
Before mixing the eight cfDNA samples, to avoid the potential interference of the
germline and somatic mutations in the individual cfDNA samples, we removed the
reads covering these positions. The germline mutations were identified using a
standard pipeline (GATK HaplotypeCaller) from individual samples; the somatic
mutations were identified using cfSNV, MuTect, and Strelka2 from the individual
cfDNA samples and their matched WBC samples. Three methods were used in the
somatic mutation removal to avoid potential bias introduced in this step.
Sequencing reads in the individual data were removed if they fell in a 200 bp region
centered at any germline/somatic mutations (upstream 100 bp and downstream
100 bp). Then the eight individual cfDNA samples were merged. The mean target
coverage of the pooled sample reached 2200×. The BAMSurgeon program
attempted to insert 1000 somatic SNVs with different VAFs: 100 at 8%, 100 at 5%,
100 at 3%, 100 at 1%, 100 at 0.8%,100 at 0.5%, 200 at 0.3%, and 200 at 0.1%. A total
of 581 mutations were successfully inserted. The inserted mutations were regarded
as the ground-truth somatic SNVs.

Mutation concordance between tumor biopsy and plasma samples. To validate
our method on real data, we examined mutation concordance between a tumor
biopsy sample and the plasma samples. This analysis involves twelve patients with
metastatic breast cancer and six patients with metastatic prostate cancer21. Each
patient had a tumor biopsy sample, a WBC sample, and plasma samples from two
different time points, all processed with WES. Mutations called from one plasma
sample were checked in the raw sequencing data of the matched tumor biopsy
sample and the other plasma sample. A somatic SNV is confirmed if there are at
least three reads supporting the variant allele in the matched tumor biopsy sample
or at least three reads supporting it in the other plasma sample. A somatic SNV is
not confirmed when the mutation has power at least 0.9 and fewer than 3 alter-
native reads21.

Comparison with MuTect and Strelka2 on real cfDNA data. We compared our
method to two state-of-the-art methods, Mutect and Strelka2. The same validation
analysis was conducted for both methods on the same samples. Both tools were run
with their default parameters unless otherwise noted in the text. The same con-
firmation process described in the “Methods” section of Mutation concordance
between tumor biopsy and plasma samples was conducted for somatic SNVs
detected by MuTect and Strelka2.

Calculation of TMB and bTMB. For tissue biopsy samples, we called their somatic
SNVs using Strelka2. The mutations were annotated using snpEff. TMB was cal-
culated as the number of nonsynonymous SNVs. For plasma samples, we called
somatic mutations using MuTect, Strelka2 or cfSNV, and annotated them using
snpEff. Mutations from Strelka2 were filtered if their VAF in the matched normal is
greater than 1%. We calculated traditional bTMB as the count of all nonsynon-
ymous mutations with VAF ≥ 0.15.

Simulation with BAMSurgeon to evaluate the accuracy of the intelligent
search for the most frequent mutation cluster. We used BAMSurgeon to gen-
erate simulation data. The input to BAMSurgeon was the WBC sequencing data
from MBC_299. The program attempted to insert 300 mutations at three different
VAF levels: 50 mutations at 20%, 150 mutations at 8%, and 100 mutations at 2%.
Five simulated samples with the same settings were generated.

Generating spike-in simulation data to validate the mutation cluster fre-
quency estimates. To evaluate the accuracy of our mutation cluster frequency
estimation, we generated spike-in simulation data by mixing the primary tumor
sequencing data (ERS700859) and the WBC sequencing data (ERS700858) of a
metastatic breast cancer patient, at varying concentrations of cfDNA reads (from 2
to 20% in eight steps). Five independent mixtures are generated at every con-
centration. Each spike-in sample contains a total number of randomly sampled
reads equivalent to 170x coverage of the targeted regions. The coverage of the
targeted regions is limited by the number of sequencing reads in the original data.

Impact of the mutation cluster frequency on the model-to-data fitness at a
single simulated mutation. The model-to-data fitness is evaluated using the
likelihood ratio Lθ , the ratio between the maximum likelihood of a somatic-
mutation joint genotype (i.e., homozygous and heterozygous genotypes) and the
maximum likelihood of a non-somatic-mutation joint genotype (other joint gen-
otypes) given θ. Since we screened mutation candidates based on the joint genotype
estimated at each position, this likelihood ratio reflects the ability of cfSNV to
detect a somatic mutation candidate. We explored the theoretical properties of this
likelihood ratio using simulated mutations, which consist of randomly generated
base quality values, mapping quality values and a corresponding list of base calls
reflecting the VAF. To compare the fitness of the model with and without θ, we
calculated the value of Lθ=L1.

Impact of the mutation cluster frequency on real patient data. To test the
impact of estimated mutation cluster frequency on real patient data, we selected
four samples whose frequent mutation clusters have low frequency <20% estimated
from cfSNV and ichorCNA. We performed cfSNV on the four samples using both
a predetermined value of θ (0.2, 0.5, 0.8, and 1.0) and the estimated θ of the most
frequent mutation cluster in the sample. When we set θ as 1.0, the candidate
screening model is the same as the regular joint genotype model for solid tumor
samples, which is equivalent to a model that does not incorporate the estimated
mutation cluster frequency. In this simulation, we also disabled the iterative pro-
cedure to converge on the best value of θ, so the candidate screening only took
place at the given θ.

Rescuing mutations from conventional post-filtration. The clustered read
position, defined as a position where the alternative alleles are clustered at a
constant distance from the start and end of the read alignment16, is regarded as a
hallmark of misalignment artifacts. Because of the existence of the preferred start
and end positions, the start and end sites of reads at some mutations tend to cluster
together, and thus the position of the alternative alleles on these reads tend to
cluster together. Therefore, cfDNA preferred start and end positions may make the
true somatic mutations look like misalignment false positives with clustered read
position. To rescue these mutations, we removed the conventional clustered read
position filter entirely. Instead, to remove misalignment artifacts, we implemented
a filter that simultaneously checks the co-occurrence of candidates and mismatch
positions on the reads with alternative alleles (variant supporting reads), instead of
purely relying on the clustered read position of a single mutation. If multiple
candidates and mismatch positions exclusively co-occur on the variant supporting
reads, we regard them as artifacts from misalignment (Supplementary Table 5). A
mutation is called rescued if it is detected by cfSNV but would be filtered by
conventional methods due to the clustered read position. For each rescued
mutation, the same confirmation process described in the “Methods” section of
Mutation concordance between tumor biopsy and plasma samples was conducted.
The fraction of confirmed rescued mutations among all rescued mutations was
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calculated for every sample. Indeed, we were able to confirm that for some rescued
mutations, the variant bases are more clustered in cfDNA reads than in solid tumor
samples (Supplementary Fig. 12), validating our rationale.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequencing data that support the findings of this study have been deposited into
European Genome-Phenome Archive under accession code EGAS00001004373 (https://
ega-archive.org/datasets/EGAD00001006096). The data is available under restricted
access, which can be obtained by contacting the corresponding author. The public data
used in this study are following: the public WES data from the 12 MBC patients and the 6
CRPC patients21 are available in dbGaP under the accession code phs001417.v1.p1; the
public WES data from the breast cancer patient with liver metastasis22 are available in
European Nucleotide Archive under the accession numbers ERS700858, ERS700859,
ERS700860, and ERS700861. The remaining data are available within the Article,
Supplementary Information, or Source data. Data under phs001417.v1.p1 are used for
the validation of cfSNV and are associated with Figs. 2–4, Supplementary Figs. 3–8, 11,
12, and Supplementary Table 1–4, 8, 9. Data under ERS700858, ERS700859, ERS700860,
and ERS700861 are used for the validation of cfSNV and are associated with Fig. 4. Data
under EGAS00001004373 are used for the application on NSCLC patients and the
validation of cfSNV, and are associated with Figs. 2, 5, Supplementary Figs. 6, 9, 10, and
Supplementary Table 4. Source data are provided with this paper. For information on the
use for a commercial purpose or by a commercial or for-profit entity, please contact Prof.
Xianghong Jasmine Zhou (https://zhoulab.dgsom.ucla.edu/) to obtain a materials transfer
agreement.

Code availability
cfSNV can be obtained https://github.com/jasminezhoulab/cfSNV. It can be freely used
for educational and research purposes by non-profit institutions and U.S. government
agencies only under the BSD license. For information on the use for a commercial
purpose or by a commercial or for-profit entity, please contact Prof. Xianghong Jasmine
Zhou (https://zhoulab.dgsom.ucla.edu/).
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