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Abstract

Incorporating human visual properties into neural network models

by

Aditya Jonnalagadda

Many animals and humans process the visual field with varying spatial resolution

(foveated vision) and use peripheral processing to make intelligent eye movements and

point the fovea to acquire high-resolution information about objects of interest. A

foveated architecture results in computationally efficient rapid scene exploration and

can result in energy savings for computer vision. A foveated model can also serve as a

proxy to identify circumstances in which humans might make an error and as a tool to

understand human vision. Foveated architectures have been implemented into previous

computer vision models. However, they have not been explored with the latest com-

puter vision architecture transformer networks, which result in better robustness against

adversarial attacks and better representation of spatial relationships across the entire

image.

We propose foveated computational module for object classification (FoveaTer) and

object detection (FST) integrated into the vision transformer architecture. We evaluate

FoveaTer’s computational savings and gains in robustness to adversarial attacks relative

to a full-resolution model. We used the self-attention weights to optimize the guidance

of the model eye movements. We have also investigated using FoveaTer to predict the

various behavioral effects of humans. We performed a psychophysics experiment for

the scene categorization task and predicted the human categorization performance using

the FoveaTer model. Using two additional psychophysics experiments, a forced-fixation

mouse recognition experiment to detect mouse in the visual periphery and a visual search
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experiment to detect mouse using a limited number of fixations, We have also evaluated

how the FST model uses contextual information to guide eye movements like humans.

In addition, we trained anthropomorphic CNN models to detect simulated tumors in

simulated 3D Digital Breast Tomosynthesis phantoms and compare their performance

and errors against that of radiologists. We provide preliminary results on extending the

FST model for tumor search in virtual mammograms.

Thus, the contributions of the dissertation are to further the implementation of com-

putational cost savings for computer vision, to predict perceptual errors of humans, and

provide a computational tool to study human vision/cognitive science in the wild.
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Chapter 1

Introduction

1.1 Introduction

Eye movements are a fundamental aspect of human vision and cognition. Humans

make about three eye movements per second to explore the visual scene and follow

up with decisions and/or actions, including identifying a face, localizing, and grab-

bing an object. Computational models have been fundamental to elucidating the vi-

sual properties and computations guiding eye movements and understanding human

vision [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], cognition [12], and visual and cognitive dys-

functions [13, 14, 15, 16, 17, 18]. However, even with the 20 years of the development

of computational models of eye movements [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], we still do

not have adequate models of human eye movements that encapsulate all fundamental

aspects of human vision and cognition during natural tasks. We do not have models that

could generate human-like eye movements and perceptual decisions on a real-world image

(“never-seen” by the model). To develop such a model, we must incorporate the varying

fidelity of vision across the visual field (foveated visual system), the task the observer

is engaged in, the representations of the visually relevant information for the task, the
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contextual relationship among objects in scenes, and an eye movement algorithm that

determines task-relevant fixations that maximize task performance. Furthermore, the

model should apply to real-world images never seen by the model (image-computable)

and output both a fixation sequence and a task-relevant decision after each fixation.

Such a model does not currently exist. Simple models that process bottom-up saliency

or extensions of saliency [9, 11, 19, 20] do not take into account foveated vision [10, 11, 19,

20], the observer’s task, contextual information, do not make task-relevant decisions, and

have shown to be bad predictors of human fixations during tasks [1, 21, 22], actions [1, 2],

and even free viewing [22]. Theoretically, powerful Bayesian foveated ideal models that

predict eye movements that are optimally programmed to result in maximal perceptual

performance, such as search [6, 7, 23, 24, 25, 26, 27] or face identification [28], have been

instrumental in advancing the understanding of eye movements but are only computable

for synthetic stimuli. They are simply not applicable to real-world images for which the

image statistics are not known or not specified with simple probability density functions.

Other computational models of eye movements have incorporated foveation [4, 29] but

do not have the capabilities to be applied to “never-seen” real images, use heuristic eye

movement algorithms rather than learned task-relevant eye movements, and have no

understanding of object relationships and scene structure [4, 29].

Computer vision provides a powerful framework to develop the desired model, but

until recently, the two reigning computer object detector frameworks (convolutional neu-

ral networks [30, 31, 32], CNNs, and the pre-CNN Deformable Parts Models [33, 34])

could not learn contextual information such as the relationship among objects [32] which

is a crucial component of human scene processing and eye movements [10, 35, 36, 37, 38,

39, 40, 41]. There are also CNN-based models, the most well-known DeepGaze [42, 43],

that are trained directly on datasets of images and associated human fixations and can

generate fixation predictions for “never-seen” images. Such models might be good for
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modeling free viewing but do not incorporate the task, foveation, or perceptual task

performance. Perhaps the closest to what we envision was proposed by combining a

Recurrent Neural Network (RNN) and reinforcement learning algorithm to optimize eye

movements with digit recognition. However, the approach did not include a biologically

plausible foveation, was not applied to real-world images, nor was integrated into an

architecture that can learn scene context.

Finally, to our knowledge, none of the previous efforts has the capability to integrate

foveated architecture, then execute eye movements and make perceptual decisions on nat-

ural images. We present the foveated vision transformer model that takes into account

the foveated properties of human vision. The model understands scene structure/object

relationships, executes task-information gathering eye movements, and makes perceptual

decisions. The proposed framework could potentially allow making computational the-

oretical predictions of the functional impact of disruptions in eye movement strategies,

visual deficits in early vision and cognitive deficits.

1.2 Summary of Contributions

There dissertation presents five significant contributions. First, we propose a novel

Foveated Vision Transformer (FoveaTer), which performs the image classification task by

using pooling regions and performing sequential fixations, whose locations are generated

using the -model’s internal self-attention weights. Second, we show the improved adver-

sarial robustness of a foveated vision transformer compared to a baseline high-resolution

(non-foveated) architecture. Third, we perform three psychophysics experiments to ac-

quire human perceptual behavior for scene classification, mouse detection in the visual

periphery, and visual search for the mouse under limited eye movements. Fourt, we

propose Foveated Search Transformer (FST), an extension to the FoveaTer model for
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visual search. We use it to simulate human perceptual behavior observed in the three

psychophysics experiments and replicate the contextual effects related to the spatial lo-

cation and scale in human subjects. Fifth, we train a CNN-based model observer for

the virtual DBT phantoms for the case where the signal and background statistics are

unknown and show that the CNN-based model observer is a better anthropomorphic

linear model observers that are typically used in the medical imaging literature. Finally,

we show how the FST model can be extended to virtual mammograms in 1/f noise using

some preliminary results.

1.3 Dissertation Organization

In Chapter 2, We propose Foveated Transformer (FoveaTer) model, which uses pooling

regions and eye movements to perform object classification tasks using a Vision Trans-

former architecture. Using square pooling regions or biologically-inspired radial-polar

pooling regions, our proposed model pools the image features from the convolution back-

bone and uses the pooled features as an input to transformer layers. It decides on subse-

quent fixation locations based on the model’s attention to various locations from past and

present fixations. The model uses a confidence threshold to stop scene exploration. It

dynamically allocates more fixation/computational resources to more challenging images

before deciding the final image category. We then show an ensemble model combining

the FoveaTer and the baseline non-foveated models. In the ensemble model, we use the

non-foveated model when the FoveaTer model does not achieve the required confidence

after making a pre-defined number of fixations, improving the model’s accuracy. We

perform a human psychophysics scene categorization task and use the experimental data

to find a suitable radial-polar pooling region combination that predicts human results.

We also show that the Foveated model better explains the human decisions in a scene
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categorization task than the baseline non-foveated model. We show that integrating

the foveated architecture and allowing the model to perform sequential data processing

makes the model acquire better adversarial robustness against the Projected Gradient

Descent (PGD) attack.

In chapter 3, we extend the previously proposed classification model, FoveaTer, for

the task of visual search in order to explore the model’s ability to simulate human percep-

tual behavior. To this end, we perform two psychophysics experiments to measure human

subjects’ detection performance for a computer mouse object. In the first forced-fixation

experiment, we measured the decrease in human detection performance as a function of

eccentricity, i.e., we measured the recognition performance by displaying the mouse at

different distances from the fovea. In the second visual search experiment, the computer

mouse could be present or absent at different parts of a scene. The participants were

allowed to make eye movements, and the display was interrupted after one, two, or three

saccades. We created the dataset used in the second experiment that manipulated the

location of the mouse at expected & unexpected spatial locations and its size relative

to the surrounding object (i.e., the mouse at expected & unexpected scales relative to

the monitor and keyboard in the scene). For the psychophysics experiments, the hu-

man subjects’ task was to decide on the presence or absence of the computer mouse,

which is equivalent to an image-level classification decision. We modified the FoveaTer

model to have two outputs corresponding to the computer mouse’s presence or absence

and trained the model’s attention weights to adapt to the new task. We also used the

biologically inspired radial-polar pooling regions and a larger input to the model than

the FoveaTer model. We also reduced the downscaling image factor in the convolution

backbone, thereby preserving a larger spatial size at the input of the transformer layers.

We demonstrate the model’s ability to approximate human behavior in terms of eccen-

tricity performance, the effectiveness of the fixations made by the model as compared
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to guidance by existing saliency models, and the display of spatial and scale contextual

effects by the model similar to that of the humans.

In chapter 4, we switch from natural images to virtual phantoms of x-ray breast

images (mammograms). For detecting a lesion in one of a few locations, linear model

observers (e.g., Channelized Hotelling Observer) have been shown to predict human per-

formance. Here we compare the detection accuracy of the Channelized Hotelling Observer

(CHO) and a Convolution Neural Network (CNN) against the radiologists’ performance

for two types of signals embedded in 2D/3D breast tomosynthesis phantoms (DBT. In

this work, we first trained three model observers and compared their performance against

the radiologists’ performance for two types of signals of clinical relevance, small microcal-

cification (CALC) and larger masses (MASS). The CNN’s performance is comparable to

or better than that of radiologists, while the linear model observer is worse than radiolo-

gists. An analysis of the eye position of radiologists showed that they fixated more often

and longer times at the locations corresponding to CNN false positives than those of the

linear model observer. False positives related to the phantom’s anatomy from the linear

model observer are not good predictors of radiologist fixation locations. In conclusion,

we showed that CNN could be used as an anthropomorphic model observer for the search

task where the traditional model observers fail due to complex backgrounds.

In chapter 5, as part of future work, we show preliminary results of applying the

FST model on digital breast tomosynthesis phantoms (DBT) and virtual mammograms

generated using 1/f noise.
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Chapter 2

Foveated Transformer for Image

Classification (FoveaTer)

2.1 Introduction

Many mammals, including humans, have evolved a locus (the fovea) in the visual

sensory array with increased spatial fidelity and use head and eye movements [44, 45]

to orient such locus to regions and objects of interest. The system design allows visual-

sensing organisms to accomplish two objectives: fast target detection crucial for survival

and savings in computational cost. Computational savings are accomplished by limiting

the number of units with high computational costs (i.e., higher spatial resolution process-

ing) to the fovea’s small spatial region. Fast target detection is achieved by distributing

the remaining computational power across a much larger area in the periphery, with a

lower spatial resolution with increasing distance from the fovea. Critical to the design

is an efficient algorithm to guide through eye movements the high-resolution fovea to re-

gions of interest using the low-resolution periphery [46, 47, 48] and allow optimizing the

target detection and scene classification. Various computational models were proposed
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to model the search using foveated visual system [49, 50].

Computer vision has evolved from hand-crafted features to data-driven features in

modern CNNs. Due to their computational limitations, the objectives of the computer

vision systems align well with those of human visual system: to optimize visual detection

and recognition with an efficient computational and metabolic footprint. Approaches

toward saving computational power can be seen; for example, computer vision systems

evolved from using sliding windows to RCNN’s [51] use of selective search and Faster-

RCNN’s [52] use of Region Proposal Network (RPN).

A system that mimics human vision by processing the scene with a foveated system

and rational eye movements has also been proposed. This approach to exploring the

scene can be seen in models like RAM [53] for recognizing handwritten single-digits or

detecting objects [54] where they sequentially process the image and decide what to

process next by using the peripheral information. These foveated models approach that

of full-resolution models but using a fraction of the computations. Foveated systems have

also shown to result in more robustness [55, 56, 57, 58] against adversarial attacks.

There has been a recent innovation in computer vision using Transformers [59, 60]

for object classification tasks that depart from the traditional over-reliance on convo-

lutions. Even after replacing the convolutions with attention modules and multilayer

perceptrons, Vision Transformers [60, 59] achieve close to state-of-the-art performance

on the ImageNet dataset and provide better robustness against adversarial attacks [61].

Due to the flattened architecture of the transformers, it is easier for multi-resolution

features to share the same feature channels. Transformers [62] have the added benefit of

self-attention, which facilitates the interaction of various parts of the image irrespective

of distance. No papers have evaluated the additional potential gains of incorporating a

foveated architecture into Vision Transformers for the task of ImageNet classification.

Here, we evaluate the effect of a foveated architecture and sequential eye movements
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on a state-of-the-art transformer architecture. We compare the Foveated transformer

relative to the Baseline model in terms of classification accuracy and robustness to ad-

versarial attacks. We perform a psychophysics experiment for a scene classification task

and evaluate the Foveated model agreement with the human decision against that of the

Baseline model. We first perform an object classification task using multiple fixations,

moving foveal attention across different parts of the image, and using only a limited

portion of the image information at each fixation, thereby reducing the input to the

transformer by many folds. The model decides on subsequent fixation location using

the self-attention weights accumulated from the previous fixations until the current step.

Finally, the model makes the final classification decision.

2.2 Related work

Transformers have achieved great success in Natural Language Processing since their

introduction by [62] for machine translation. Recently, the application of Transformer

models in Computer Vision has seen tremendous success. Vision Transformer (ViT)

model introduced by [60] achieved remarkable performance on ImageNet [63] by using

additional data from JFT 300M [64] private dataset. Subsequently, the DeiT model [59]

introduced knowledge transfer concepts in transformers to leverage the learning from

existing models. Using augmentation and knowledge transfer, the DeiT model achieved

close to state-of-the-art performance using training data from the ImageNet dataset alone.

Sequential processing provides three main advantages in computer vision. [65] pro-

posed a model based on the Boltzmann machine that uses foveal glimpses and can make

eye movements. First, it can limit the amount of information processed at a given instant

to be constant, i.e., the ability to keep computations constant irrespective of the input

image size. Second, sequential models can help model human eye movement strategies
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and help transfer that information to build better computer vision systems. RAM [53] in-

troduced a sequential model capable of making a sequence of movements across the image

to integrate information before classification. In addition, the hard-attention mechanism,

implemented using reinforcement learning, was used to predict the sequence of fixation

locations. [66] extended these ideas to recognize multiple objects in the images on a

dataset constructed using MNIST. Third, sequential processing requires fewer parame-

ters than a model using full-resolution image input. Other models [67] have proposed

image captioning models based on both hard-attention and soft-attention. Additionally,

the spatial bias introduced into CNNs due to padding [68] can be overcome using sequen-

tial models [69]. On the flip side, sequential models might suffer longer processing times

due to sequential processing and slow convergence times for reasons similar to RNNs [70].

Computational models of categorization and eye movements have been proposed

for rapid categorization in terms of low-level properties such as spatial envelopes [71] and

texture summary statistics [72]. Saliency-based models [73, 74, 75] traditionally tried to

model eye movements by identifying bottom-up properties in the image that will capture

attention. [76] showed how saliency could be combined with contextual information to

guide eye movements. Low-resolution periphery and high-resolution central fields are

integrated with saliency to predict human-like eye movements [77]. Data-driven scan

path prediction models [43] train on image content and human fixations to predict the

fixations under a free viewing but do not consider decision accuracy in specific tasks

after multiple fixations. Goal-directed attention control [78] showed the dependency of

search patterns on target features and scene context. [54] implemented a biologically-

inspired foveated architecture [79] with a deformable parts model to build a foveated

object detector on PASCAL dataset [80], whose accuracy was close to a full-resolution

model but using a fraction of the computations. Spatial transformer networks [81], an

older technique different from the proposed Vision Transfomers, were used on CIFAR-10
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dataset [82], with foveation to improve object localization using foveated convolutions [83]

and achieve better eccentricity performance [84] on MNIST dataset [85].

FoveaTer combines biologically-inspired foveated architecture with a Vision Transformer

Network. Unlike the previous architectures [54, 86], we do not scale the image and thereby

retain the parallelism with biological mechanisms. We apply our model to real-world

images from the ImageNet dataset for image classification. In contrast, the previous

works were mainly limited to datasets with small image sizes or a smaller number of

output classes. They did not extend to large-scale real-world databases like ImageNet,

which has 1000 class labels. We also evaluate the functional roles of various components

through ablation studies, including the memory of foveal and peripheral information from

previous fixations, inhibition of return, and eye movement guidance algorithms.

A novel aspect of the proposed work is that the model also learns that all images are

not equally difficult to classify, adapting the exploration of eye movements to different

images and thus varying computational resources used to classify different images suc-

cessfully. The model implements this idea using a confidence threshold to restrict the

scene exploration to the necessary fixations to classify the image.

Also novel is an evaluation of the adversarial robustness of our model to understand

the contributions of the foveated architecture and that of sequential fixations towards

defense against adversarial attacks. We use the projected gradient descent method [87,

88], which iteratively computes the adversarial image. The architectural changes may not

be trivially transferable to a new architecture. End-to-End training and hyper-parameter

settings might be needed to adapt to the architectural differences.
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Figure 2.1: Model architecture: PR refers to the pooling regions. Foveation with
radial-polar pooling regions is more biologically plausible than the square pooling
regions but computationally slower and vice-versa.

2.3 Model

The model consists of three components, as shown in Figure 2.1 - convolution back-

bone, foveation module, and transformer layers. Interactions between different feature

locations are limited to local regions in the convolution backbone. The Foveation mod-

ule performs non-uniform pooling on the input features, reducing feature dimensionality.

The Foveation module can contain two types of pooling regions, square pooling regions

which provide computationally fast processing, or biologically plausible radial-polar pool-

ing regions, [79]. Under this non-uniform average-pooling model, locations closer to the

fixation location use smaller neighborhoods for pooling than locations far from the fix-

ation location. The last component consisting of the transformer layers contributes in

three ways - 1. They allow global interactions, which allows the possibility of using

context-based decision-making. 2. They eliminate the need to design convolution layers

on top of non-uniform sampled features from the Foveation module. 3. Self-attention

weights of the transformer layers can be helpful in fixation guidance.

For the square pooling regions, the input image is first passed through the convolution

backbone resulting in a feature vector of size [384, 14, 14]. After adding the sinusoidal po-

sition embedding and performing fixation-dependent average-pooling using the Foveation

module, the feature size reduces to [384, 22]. Pooled features of size [384, 22] are passed

through the transformer layers, followed by the classification layer resulting in a logits
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vector. We use the self-attention weights from the last transformer layer to predict the

subsequent fixation location. We make five fixations on each image during the model

training. This choice keeps the computational cost relatively the same as the Baseline

model. Model architecture is shown in Figure 2.3. An alternate model architecture is

shown in Appendix A.1.

The convolution backbone consists of six convolution layers and is structured similarly

to the initial layers of the ResNet-18 model. Square pooling regions can exploit the

fast average-pooling library functions, whereas the pooling in the radial-polar pooling

regions needs custom implementation. Four architectural changes make it possible for

the FoveaTer model to perform serial processing, achieve throughput improvements and

retain information across fixations. Firstly, the Foveation module is a plug-in module

that can be preceded or succeeded by the transformer layers. However, additional changes

would be required for the convolution layers to follow the foveation module. Secondly,

the periphery (i.e., the pooling regions other than Fovea) pools the feature vectors and,

as a result, reduces the number of features processed by the subsequent layers. Thirdly,

the attention-based fixation guidance mechanism (FGM) helps predict the subsequent

fixation location using the attention values of current and past fixations. Lastly, the

features from the past fixation’s foveal locations are retained and processed along with

the foveal and peripheral features of the current fixation. Thus, allowing the model to

access memory. As an example, fixations made by the model are shown in Figure 2.2.

Retention of foveal features: The number of feature vectors processed by the

Foveation module varies across fixations due to the retention of foveal features from past

fixations. For each fixation, if the number of peripheral and foveal features are A and B,

the number of features processed by the foveation module at Nth fixation equals A+NB.

Initial fixation for the Foveated model: The input feature map to the Foveation

module has a spatial size of 14 × 14 for the condition of square pooling regions. All
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Figure 2.2: Visualization of network fixations: Model was trained with initial
random fixation but tested with initial fixation at the top-left corner. Left: Due
to the foveated nature of the model, after the initial fixation model, it decided that
the image class is tick, and after making one more fixation, it came to the right
decision that it is ant. Right: For this image, the network needed three dynamic
fixations instead of two. It made the wrong decision with its initial fixation at the
top-left corner. After making two more fixations, it came to the right decision, and
was confident enough to terminate fixations.
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Figure 2.3: FoveaTer architecture: The foveation module performs fixation-de-
pendent pooling. Accumulator uses the attention weights from the last transformer
layer of past and present fixations to predict the next fixation location. Model blocks
within the yellow region are executed for each fixation.
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Figure 2.4: Square pooling: Input feature map is pooled to generate the pooled
feature vectors. The Fovea is shown in red containing 9 feature vectors. The first
level of pooling regions is of size 5 × 5 with stride 4 (green). The second pooling
region level is size 7× 7 with stride 7 (orange).
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locations except the last and first row/column are potential fixation locations, resulting

in 144 locations. We select a random location as the initial fixation point during training,

and the model guides subsequent fixations.

Loss function: We use Cross-entropy for computing the classification loss. Loss

from all fixations is incorporated to get the mini-batch loss, loss =
∑N

i=1 LCE(Oi, y)

Where i corresponds to the fixation index, N = 5 for the Foveated model & N = 1 for

the Baseline model, i.e., single-pass, y corresponds to the target label, Oi corresponds to

the network output for fixation i, and LCE correspond to cross-entropy loss.

2.3.1 Foveation module

The mean feature vector corresponding to each pooling region is computed using

P = (1/M)
∑M−1

j=0 Ej, Where Ej is a feature vector belonging to that pooling region, and

M is the number of feature vectors in that pooling region.

We use square pooling regions for computational speed-up. Each image in a mini-

batch has a corresponding fixation location. The fixation location represents the center

of the visual field, allowing us to align the input image/feature map with the visual field.

After aligning the input feature map with the visual field, features falling within a pooling

region are average-pooled, and the resultant pooled vector represents that pooling region.

We use pooling regions with receptive field sizes 1×1, 5×5, 7×7 blocks on a feature map

of size 14× 14 blocks, as shown in Figure 2.4. Each block corresponds to a [16, 16] pixel

region in the input image of width and height 224. Central 3 × 3 red block represents

the high-resolution Fovea, where there is no average pooling. The next ring of pooling

regions, where the pooling region is green, has a receptive field of 5×5 which translates to

an average pooling of 25 feature vectors to generate the representative feature vector for

that pooling region. Similarly, the rings of orange-colored pooling centers have receptive
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fields of 7× 7.

2.3.2 Accumulator

Accumulator uses the self-attention weights from the last transformer layer for fixa-

tion guidance. Using the attention weights of the current and past fixations along with

inhibition of return, the Accumulator (see below) predicts the subsequent fixation lo-

cation. A confidence map (CMN) is constructed based on the fixation point location

by putting these weights back on a 14 × 14 map at the corresponding pooling region’s

location, where 14 × 14 corresponds to the size of the input feature map. Inhibition of

return (IoR) [89] refers to a tendency in human observers not to attend to previously

attended or fixated regions. Old accumulated attention map (AMN−1) is weighted by 0.5

and added to the current confidence map to create the new accumulated attention map:

AMN = 0.5 ∗ AMN−1 + CMN . The inhibition of return (IORN) map is initialized with

zeros and is the same size as the feature map. Locations corresponding to the current

fovea location are changed to 16. After subtracting the IOR map from the accumulated

attention map, max location of the resultant map is used as the next fixation location

FixN+1 = argmax (AMN − IORN).

2.3.3 Dynamic-stop of Fixation Exploration:

Due to various factors such as occlusion, camera angle, and brightness, the difficulty

of making a classification decision varies across object classes and images. To achieve

higher computational efficiency in our Foveated model during inference, we stop exploring

the images with fixations when the predicted class with the highest probability reaches

a pre-defined threshold corresponding to that class. We compute the threshold from

the training dataset’s set of all the correct prediction probabilities. The model stops

18



Foveated Transformer for Image Classification (FoveaTer) Chapter 2

Table 2.1: Ablation Studies: Four network components are considered, and the
percentage accuracy drop after five fixations with respect to the Benchmark model
is reported in the last row. Checkmark (✓) indicates that the model includes the
component, while the dashed-line (—) indicates that the component has been removed.

Network component Benchmark Study 1 Study 2 Study 3 Study 4

Foveation ✓ ✓ ✓ ✓ ✓
Peripheral features ✓ — ✓ ✓ ✓
Foveal features ✓ ✓ — ✓ ✓

Retention of foveal features ✓ ✓ — — ✓
Inhibition of return ✓ ✓ ✓ ✓ —

Accuracy@1 76.29 62.85 72.60 75.29 75.23
Percentage drop 17.6 4.8 1.3 1.4

if the top prediction is above the 50th percentile of probabilities for that class and the

second-best prediction is below the 5th percentile for that respective class.

2.4 Ablation Studies

We study the contribution of different network components to model performance in

five ablation studies. The model was trained on ImageNet for 300 epochs and fine-tuned

for 30 epochs for each ablation study. The first two studies asses the importance of

peripheral and foveal features. Studies three and four assess the importance of memory

provided by past foveal features and IoR, respectively. Lastly, we look at the contributions

of the fixation guidance mechanism. Results are shown in Table 2.1 and Figure 2.5.

Study 1: Contribution of peripheral features: Peripheral features are essential

because they contribute to image classification and help decide the subsequent fixation

location. There is a sharp 17.6% drop in the network performance by removing the

peripheral features.

Study 2: Contribution of foveal features: Foveal features provide high-

resolution information. By removing access to foveal features of current and past fix-
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Figure 2.5: Study 5: Fixation guidance mechanisms: Self-attention guidance
outperforms the random fixations by 63%. Initial fixation at the top-left corner of the
image. Baseline algorithms use all image regions at high resolution to generate the
heatmap. DeepGaze initially outperforms the self-attention-based guidance, but no
difference is noticed after three fixations. The time taken to compute five fixations is
shown in brackets. Self-attention is the fastest as no external algorithm is needed to
compute additional heatmap.
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ations, the model loses access to all full-resolution information. There is a 4.8% drop in

the network performance by removing the foveal features.

Study 3: Retention of the foveal features: We incorporate memory by retain-

ing the past foveal features and processing them along with the foveal and peripheral

features of the current fixation. Even without this network component, the network has

some memory as the model makes fixations to more informative locations using guided

fixations. In this experiment, we remove the usage of foveal features from past fixations,

and as a result, the model performance drops by 1.3%.

Study 4: Contribution of Inhibition of Return: By limiting the model’s ability

to revisit the fixation locations of the past, we force the model to explore rather than

get stuck at one location. We only see a slight drop in performance of 1.4% without the

IoR, signifying that the model can operate well without IoR. The results suggest that

the model can learn not to revisit locations without explicitly implementing IoR.

Study 5: Effectiveness of Fixation guidance mechanism: Objects in the Im-

ageNet dataset often occupy a large part of the image. As a result, image classification

might be possible by fixating anywhere on a large percentage of the image. The impor-

tance of guided fixation is best illustrated when a few image regions are informative. To

identify that subset of images, we separate the testing images into two groups, one with

moderate difficulty and the other with too few or too many informative locations. To

identify these two groups of images, we run our model under a one-fixation condition

at each possible fixation location and calculate the percentage of locations (PoL) with

the correct classification in that image. We use this as the metric for image difficulty,

i.e., higher PoL signifies less difficulty and vice versa. As there are 144 locations, PoL

ranges from 0 to 144. We label all the images where the PoL is more than one-eighth

the maximum value, i.e., greater than 18, as too easy. Similarly, images with a PoL of

zero are labeled as too difficult. After removing the images labeled as too easy or too
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difficult, approximately 8% images fall in the middle, i.e., moderately difficult category.

Figure 2.5 shows the comparison of random and guided fixations on this subset of images,

and guided fixations have approximately 63% improvement over random fixations. We

also compare the fixation guidance using the Itti-Koch, Graph Based Visual Saliency [20]

and the DeepGaze-II model, where they take the image without foveation as input. Fix-

ations guided by self-attention outperform the fixations guided by the Itti-Koch model

and are as effective as those guided by the Deep-Gaze II for later fixations. Lower per-

formance than Deep-Gaze II in the first fixations is not surprising since Deep-Gaze II is

predicting the most likely regions to be fixated by humans (not the order).

Comparing the time taken for fixation prediction, our fixation guidance is the fastest

as we leverage the model’s internal attention weights rather than running a separate

model. Time taken for computing five fixations - Guided by self-attention (1.9ms) <

Itti-Koch (240ms) < Deep-Gaze (603ms) < GBVS (8427ms). Sample image fixations are

shown in Figure 2.6.

2.5 Accuracy and Robustness on ImageNet

In the following sub-sections, we compare the performance, computational complexity,

and adversarial robustness of the Foveated model against the Baseline. The Foveated

model is trained for five fixations, although it can work with any desired number of

fixations at test time. Baseline and Foveated models have the same 24M parameters.

We use the Patchconvnet [90] architecture. We initialize the convolution backbone

with the weights from ResNet-18 [91] model, and the transformer layers are initialized

with the weights of the DeiT-small [59] model and trained for 300 epochs with an initial

learning rate of 5e− 4 and a minimum learning rate of 1e− 5. We use AdamW [92, 93]

optimizer with a decay of 1e−8 and a cosine learning rate schedule. We use ImageNet [63]

22



Foveated Transformer for Image Classification (FoveaTer) Chapter 2

Figure 2.6: Fixation guidance mechanism: Fixation guidance by different mod-
els. Each row corresponds to a different image. Random: Fixations locations are
selected at random. Self-attention: Fixations guided by the self-attention of the
last transformer layers. Itt-Koch, GBVS, DeepGaze II: Fixations are guided by
the top-locations of the heatmaps generated by these baseline algorithms.
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Figure 2.7: PGD attack: The strength of the attack is represented in terms of
equivalent gray levels. Higher Epsilon results in a more potent attack and, as a result,
in lower accuracy of the model. The foveated model outperforms the full-resolution
baseline model.
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Figure 2.8: PGD attack: The foveated and full-resolution models have the same
Top-1 accuracy at approximately 0.6 gray levels. As the rate of decrease in Top-1 ac-
curacy of the full-resolution model is higher than that for the foveated model, foveated
model outperforms the full-resolution model in terms of adversarial robustness after
this threshold.
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Model Pooling type Fixations Type Throughput Acc@1

DeiT-Small 1699 79.83

Baseline
1229 81.90

Uniform pool 2506 70.90

Foveated Square

Rand-1 3820 69.80

CF-1 3820 72.80
CF-2 2307 74.70
CF-3 1506 75.40
CF-5 923 76.30

CF-3 Dynamic Stop 2169 75.30
CF-3 Ensemble 1236 81.30

Table 2.2: Throughput and Accuracy on ImageNet: We compare our models against
the baseline model using Top-1 accuracy and Image throughput. (Uniform pool -
uniform 5 × 5 pooling, CF - initial fixation at image center, Rand - random initial
fixation)

dataset for the results shown in the following sub-sections. We use RTX A6000 GPUs

for training and testing purposes. We report the number of inferences completed by

the GPU during a one-second time interval to compare the computational complexity of

different models during inference time.

2.5.1 Top-1 Accuracy:

For the Dynamic-stop, we first compute the throughputs of the Foveated model for

each of the one to five fixation conditions, followed by the number of images belonging

to each of those five fixation conditions. The throughput of the Dynamic-stop model

is computed as the weighted Harmonic mean of the throughputs of individual fixation

models. Ensemble refers to a model composed of both the Foveated and Baseline models.

When the Dynamic-stop is applied, and the model cannot make a decision even after the

maximum number of fixations, the Ensemble model transfers the responsibility of making

a decision to the Baseline model.
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We present the results on the ImageNet dataset in Table 2.2. The Deit-Small model

has a throughput of 1699 and Top-1 accuracy of 79.83. The Baseline, which has the same

architecture as the Foveated model except for the foveation module, has a throughput

of 1229 and an accuracy of 81.90. Since the first level of the pooling region is of size

5 × 5, we construct a pooled version of the baseline model using 5 × 5 average-pooling.

We compare this with the Foveated model with two fixations, with approximately the

same throughput. The Foveated model with two fixations outperforms the uniformly

pooled Baseline model, as shown in row 6. Dynamic-stop and Ensemble performances

are shown in the last two rows. The performance of the ensemble model reaches close to

the Baseline model in terms of throughput and accuracy.

2.5.2 Robustness against adversarial attacks

We consider the Projected Gradient Descent (PGD) attack to compare the robustness

of Foveated and Baseline models. PGD uses ten iterations with a step-size of ϵ/5 and

l-infinity norm. We use Cleverhans library [94] for implementing the adversarial attacks.

Figure 2.7 shows the model accuracy after attacking the input image with the adversarial

attack. The crossover point between the foveated and the full-resolution models is shown

in Figure 2.8. Epsilon (ϵ) represents the strength of the attack. Foveated model displays

strong defense as compared to the Baseline model. Foveated model consistently outper-

forms the Baseline model. A comparison with existing models, showing the robustness

of the foveated systems against adversarial attacks, is demonstrated in Appendix A.3.

2.5.3 Visualization

Network output is visualized for one, two, and three fixations are visualized in Fig-

ure 2.9, Figure 2.10 and Figure 2.11 respectively.
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Figure 2.9: Visualization: Sample images in which the network needs one fixation
with dynamic stop. The first three rows show examples of where the network made
the right decision, and the last row shows examples of incorrect predictions.
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Figure 2.10: Visualization: Sample images in which the network needs two fixations
with dynamic stop. The first three rows show examples of where the network made
the right decision, and the last row shows examples of incorrect predictions.
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Figure 2.11: Visualization: Sample images in which the network needs three fixa-
tions with dynamic stop. The first three rows show examples of where the network
made the right decision, and the last row shows examples of incorrect predictions.
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Figure 2.12: Scene Classification: Mean agreement values of the Baseline and
the Foveated models with human decisions (correct/incorrect). Error bars refer to
the standard error across 22 participants. Paired t-test p values indicate statistical
significant agreement differences across scales, **p < 0.01, *p < 0.05.

2.6 Biologically plausible FoveaTer

Radial-Polar pooling makes the model more biologically plausible. Through psy-

chophysics experiments of image discrimination and modeling, [79] showed that different

layers of the visual cortex correspond to different scales where the scale parameter de-

termines how many radial and polar pooling regions are present in that configuration.

We use this model to predict human decisions in a scene classification psychophysics task

while maintaining fixation and calibrate the scaling parameters of the pooling regions of

FoveaTer. Figure 2.12 shows examples of various configurations.

2.6.1 Calibration of radial-polar pooling regions

We used thirty scene categories from the places365 dataset [95] to create the exper-

iment dataset. Scene categories are listed in Appendix A.2. The task was to classify

each image into one of the 30 categories. Sixty images were presented, with each image
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subtending 22.7 x 22.7 degrees visual angle, and observers fixated at the bottom-center

or top-center within the images (2.2 degrees from the top or bottom edges of the im-

age, Figure 2.12). Real-time infra-red video eye tracking allowed for interruption of the

displayed image when observers made an eye movement.

We tweaked the last convolutional layer so that the convolution backbone of the model

outputs a 56×56×384 feature map instead of a 14×14×384 feature map, thus allowing

us to apply the pooling regions on a higher resolution feature map. We train multiple

models with different scale values for spatial pooling. For each scale, Foveated model

is trained for 60 epochs after initializing the weights with the square-pooled Foveated

model trained on ImageNet.

Error consistency metric [96] produces the normalized decision agreement between two

observers, where the normalization is a function of the accuracy of both observers. We

computed the mean agreement between the human decisions and the Foveated model for

a set of scales as shown in Figure 2.12. We also computed the mean agreement between

human decisions and the Baseline model (independent of scale). For scales corresponding

to V2 (scale-0.46) and V4 (scale-0.84) layers of the visual cortex, we observe a significant

difference between the mean agreement of humans with Foveated and Baseline models.

Although the accuracy of the Baseline model (0.93) is higher than the Foveated model

(0.86), human decisions with a mean accuracy of 0.83 are in better agreement with the

Foveated model. The fixation at the top-center or the bottom-center limited the image

information accessible to the human observers, which the Full-resolution fails to model.

Our findings suggest that human categorization of scenes within a single fixation can be

better predicted with FoveaTer with pooling regions that scale according to properties

of the visual cortex (V1 and V4).
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Figure 2.13: Scene classification example 1: Scene category of the image is beach.
Human subjects and the foveated model fixated at the bottom center of the image.
Left: Eighteen of the twenty-two subject judged the scene to be desert sand. Middle:
Foveated model classified the scene as desert-sand. Right: Full-resolution model,
which has access to all regions of the image without any degradation in detail, classified
the image correctly as beach.

2.6.2 Visualization

To understand why the Foveated model’s decisions are similar to the humans, two

examples are shown in Figure 2.13 and Figure 2.14. They provide the intuition on why

the foveated model makes decisions similar to humans.

2.6.3 Accuracy and robustness on ImageNet

We evaluated FoveaTer’s accuracy and robustness using pooling parameters (scaling

0.84, V4) that predicted human scene classification decisions and were computation-

ally efficient (relative to V1). Results are shown in Table 2.3. The throughput of the

Foveated model with radial-polar pooling regions is very low due to the lack of library

functions implementing the radial-polar pooling. As the specialized hardware perform-

ing neuro-foveal pooling becomes available in the future, throughput gaps will disappear,

and the Foveated model will become competitive with the Baseline models. Adversar-
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Figure 2.14: Scene classification example 2: Scene category of the image is canyon.
Human subjects and the foveated model fixated at the bottom center of the image.
Left: Eleven of the twenty-two subject judged the scene to be glacier. Middle:
Foveated model classified the scene as glacier. Right: Full-resolution model, which
has access to all regions of the image without any degradation in detail, classified the
image correctly as canyon.

ial robustness of Foveated model against PGD attack with radial-polar pooling regions

is illustrated in Figure 2.15. As with the square pooling regions, Foveated model with

radial-polar pooling regions is also more adversarial robust than the Baseline model.

2.7 Conclusion

We provided a comprehensive framework for using foveal processing and fixation ex-

ploration on a Vision Transformer architecture for image classification. The proposed

architecture introduces a way to limit computations required to process an image by

flexibly adjusting the required number of fixations, providing robustness to adversar-

ial attacks, and giving us a model that can allocate computational resources based on

the difficulty of an image. Our ablation studies highlight the importance of peripheral

processed features, how the self-attention guiding eye movements learn to inhibit revis-

its and results in accuracy similar to a model guided by predictions of human fixation
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Model Type Throughput Acc@1

Baseline 1229 81.90

Foveated
(square)

1506 75.40
Dynamic Stop 2169 75.30

Ensemble 1236 81.30

Foveated
(Radial-
Polar)

117 76.69
Dynamic Stop 198 76.65

Ensemble 186 81.52

Table 2.3: Throughput and Accuracy on ImageNet using radial-polar pooling
regions with Scale 0.84: All foveated models made three fixations. (CF - initial
fixation at image center)

Figure 2.15: PGD attack: PGD adversarial attack on Foveated model with ra-
dial-polar pooling regions. Foveated model outperforms the baseline full-resolution
model.
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(DeepGaze). We also implemented a more biologically plausible implementation with

radial polar pooling and showed that pooling parameters corresponding to visual cortical

areas V1 and V4 could explain human scene categorization decisions better than the

Baseline non-foveated model. In conclusion, we leveraged the most recent Vision Trans-

former architecture and combined it with ideas from foveated vision to come up with a

model which has multiple knobs in terms of the number of fixations to be executed and

limits on the computations performed so that the end-user will have the flexibility to

fine-tune depending on their needs.
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Chapter 3

Foveated Transformer for Object

Search (FST)

3.1 Introduction

A large literature of study shows that scene context and object relationships influence

human search decisions, eye movements, and neural activity. Humans direct their eyes

to expected locations where objects might be found. They often miss a search object

appearing at an unexpected location or unusual size relative to the surrounding objects.

Some models of eye movements or visual search capture these landmark human behav-

iors but often incorporate a weighting “prior” map. In most instances, these prior maps

are estimated separately from analyzing a large dataset of natural scenes. How to cre-

ate models that automatically learn these contextual relationships has been challenging.

Convolutional neural networks do not show the same degree of learning of contextual

relations as humans. A fundamental property of visual Transformer models, which were

first developed for natural language processing, is that they implement computations

across different regions of the image (a stage referred to as multi-head attention) and can
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thus learn relationships of visual features across large spatial extent. Unlike convolutional

neural networks, transformer models can learn scene context, and their object detector

probabilities are influenced by context. Visual Transformers typically directly operate

on images rather than feature maps, which is less biologically plausible. We adopted an

architecture that will process an input image with convolutional layers from ResNet-18

(Figure 3.10) that mimics early vision. We will use the Transformer model framework

DeiT which is pre-trained to classify images. There are pre-23M pre-trained parameters

on ImageNet. We only train the weights of the last CNN layer (59K) from scratch. After

inserting the foveation architecture, we fine-tune 7.7M Transformer parameters on the

MSCoco data set, which contains smaller objects more relevant to visual search.

Another vital component of the FST model is the fixations programmed to gather

information to support the perceptual task, the foveated visual system, and the statis-

tical properties of the images. Computational models of human vision have approached

this problem using a simple Gaussian-filtered noise background for which the statisti-

cal properties (probability density functions) are known. In Najemnik & Geisler’s ideal

searcher (with assumptions of statistical independence), one can calculate the expected

performance of a future fixation by numerical evaluation. However, the ideal searcher ap-

proach does not apply to real-world images where simple probability density functions do

not specify the statistics. A second approach to finding performance-maximizing fixations

come from the machine learning literature by using reinforcement learning (RL) which

has been applied to find an optimal sequence of actions. We use Visual Transformers’ at-

tention maps (in the class token layer, Figure 3.10) to guide the fixations. The attention

map indicates the contribution of various feature regions (mapped to image coordinates)

towards the classification decision, updated after each fixation. An interpretation of this

strategy is making saccades to the most informative feature for the decision (closer to

the maximum posteriori probability strategy proposed for human eye movements with
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synthetic images with noise). The results show how the FST model with this attention-

map guided eye movements results in fixations guided by context directed to the right

of the keyboard (irrespective of starting fixation position or placement of monitor and

keyboard in the image!). We evaluated the impact of using different saliency algorithms

for the task of fixation guidance and their resultant impact on decision accuracy.

We evaluated how the proposed algorithm, fixation guidance using Transformer at-

tention maps, compares to various baseline algorithms inserted into the Transformer

model. The baseline algorithms include random fixations, bottom-up saliency fixations,

and Deep Gaze fixations. The baseline algorithms are tested with and without inhibition

of return to avoid revisits. We showed that our task-relevant fixations improve perceptual

performance more rapidly than the baseline algorithms. We also assessed whether the

FST model correctly predicts some of the primary influences of scene context on human

performance. Searched objects are more easily detected at expected vs. unexpected lo-

cations. Searched objects are harder to detect at unusual relative sizes than background

objects.

3.2 Psychophysics experiments

We performed two psychophysics experiments for the visual search of the computer

mouse. In the first experiment, in a forced-fixation experiment, the participants fixated

on a pre-defined location on the screen. The computer mouse is presented at different

distances (from the fixation location) in the visual periphery. This experiment helped us

capture the decay rate in human detection performance as a function of eccentricity for

the task of computer mouse detection. In the second experiment, the participants are

allowed to make the eye-movements. The computer mouse is presented at expected or

unexpected locations and at expected or unexpected scales. This experiment helped us
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capture the contextual effects of spacial location and scale. In the following sections, we

describe the experimental setups in detail.

3.2.1 Dataset for the experiments

We created the dataset for the experiment under a controlled lab environment. The

monitor and keyboard were present in all images, whereas the computer mouse was

present in some images and absent in others. The mouse was located either in the ex-

pected or unexpected spatial location, where the expected location (in-context) refers

to the location where it is usually expected based on the natural images, and the un-

expected location (out-of-context) refers to the rest of the image locations (Figure 3.1).

We also created images where the mouse is in unexpected scale, i.e., four times bigger

than the expected scale per its surrounding objects (Figure 3.2). A cell phone which

looks like the computer mouse in the visual periphery, has been used as a decoy. We

created two additional images using the decoy for each of the mouse in-context/out-

of-context location images - 1. By placing the decoy in the out-of-context/in-context

location while the mouse is in-context/out-of-context location and 2. By placing the de-

coy in the out-of-context/in-context location when the mouse is absent. The cell phone is

used as the decoy, i.e., an object that looks like the mouse when presented in the visual

periphery, and like for the case of the mouse, it is present either in the in-context or

out-of-context locations where those locations are defined for the mouse and not the cell

phone. The dataset contained eighteen scenes, i.e., images taken at different angles of

monitor-keyboard configurations. Each scene had three distractor conditions containing

four, eight, or fourteen distractors, i.e., the number of objects other than a monitor,

keyboard, and mouse on the desk (Figure 3.3). As a result, the dataset comprised 378

images, for which we have shown the category-wise break-up in Table 3.1, and sample
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Figure 3.1: Spatial location: Spacial location of the mouse according to the natural
image statistics: Left: Mouse is in the expected location, Right: Mouse is in an
unexpected location.

Figure 3.2: Scale: Scale of the mouse with respect to the surrounding objects ac-
cording to the natural image statistics: Left: Mouse is in the expected scale, Right:
Mouse is in an unexpected scale.

images for each category are shown in Figure 3.4.

3.2.2 Psychophysics 1: Mouse Eccentricity performance

This experiment aims to measure mouse detectability performance as a function of

eccentricity, i.e., human detection performance when the computer mouse is presented in

the visual periphery at different distances from the fovea/fixation location. We presented

the computer mouse at six different visual eccentricity locations. Seven participants who

were undergraduate students at the University of California, Santa Barbara, participated

in the experiment. We compensated the participants with course credit and provided no
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Figure 3.3: Distractors: Variation in the number of distractors: A scene containing,
Left: Four distractors, Middle: Eight distractors and Right: Fourteen distractors

Mouse Distractor Image Count
In-Context absent 54
In-Context Out-of-Context 54

Out-of-Context absent 54
Out-of-Context In-Context 54

absent absent 54
absent In-Context 54
absent Out-of-Context 54

Table 3.1: Dataset for Psychophysics experiments: The dataset was created
under a controlled lab environment. Cell-phone, which looks like the mouse in the
visual periphery, is chosen as the distractor. The dataset contained all combinations
for the presence or absence of the objects, the computer mouse, and the distractor.
The break-up of the number of images for each condition is shown.

monetary benefits.

Experiment Dataset

For the mouse-absent images, the fixation location is selected based on the mouse

location in the corresponding mouse-present image. The location is selected from in-

context mouse location 85% of the time. Since there are six eccentricity conditions, each

image can give rise to six experiment trials. Thereby, 2268 experiment trials are created

from the 378 images from the raw dataset. This dataset would have had mouse-present to

mouse-absent images in a ratio of 4:3 and contained an equal number of in-context and

out-of-context images. To maintain similarity to natural images where the in-context
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Figure 3.4: Dataset for Psychophysics experiments: Sample images for each of
the eight conditions described in the Table 3.1.
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mouse is much more highly probable than the out-of-context mouse location and to

maintain a balance between the mouse-present and mouse-absent images, we sampled the

2268 trials accordingly. The resultant dataset contained 1321 trials and an approximately

equal number of mouse present and absent images. Mouse is in the in-context location

in about 92% of the mouse present images. The break-up of the final experiment trials

is shown in Table 3.2. Each trial is shown twice, resulting in a total of 2642 trials.

Each participant’s performance is shown in Figure 3.5. Participants displayed better

performance with a smaller number of distractors in the image.

Mouse Image Count
In-Context 564

Out-of-Context 49
Absent 658

Table 3.2: Psychophysics 1: Distribution of images for the experiment trials. An
approximately equal number of mouse-present and mouse-absent images are used in
the dataset. The mouse is present in the in-context location in approximately 92% of
the mouse-present images.

3.2.3 Psychophysics 2: Visual search

The objective of the second psychophysics experiment is to capture the spatial and

scale contextual effects in human subjects. The participants can make eye movements

to search for the computer mouse. The computer mouse is presented at expected or

unexpected locations and expected or unexpected scales. This experiment helped us

capture the contextual effects of spacial location and scale. In the following sections, we

describe the experimental setups in detail.

Experiment Dataset

The experiment dataset consisted of 102 valid images and 102 filler images. Sample

images are shown in Figure 3.4.
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Figure 3.5: Psychophysics 1: Mouse eccentricity performance for each of the five
subjects. It is also separated by the number of distractors, shown with the dotted
lines in each plot.
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There are three distractor conditions - four distractors, eight distractors, and fourteen

distractors, each consisting of 34 images. There are three saccade conditions - one, two,

and three saccade conditions, i.e., the display is interrupted after the participant made

the pre-determined number of saccades for that image. Out of the 34 images for each

distractor condition, 12 images belong to the one saccade condition, 12 images belong to

the two saccade condition, and 10 images belong to the three saccade condition. Within

each distractor-saccade condition, the breakup of different image conditions is shown

in Table 3.3 for one/two saccade conditions and Table 3.4 for three saccade conditions.

We only presented big-sized mouse under the one and two-saccade conditions. This was

done not to let them familiarize themselves with the big-sized mouse in the three-saccade

condition.

Mouse Distractor Image Count
In-Context absent 2
In-Context Out-of-Context 1

Out-of-Context absent 1
Out-of-Context In-Context 1

Big mouse In-Context absent 1
absent absent 4
absent In-Context 1
absent Out-of-Context 1

Table 3.3: Psychophysics 2: Dataset: One/Two-saccade condition: Number
of images present in each mouse-distractor condition for the one and two-saccade
conditions. The number of mouse-present images is ensured to be equal to the number
of mouse-absent images.

Experiment details

The display monitor is of size 1024 × 1280 pixels. The image is of size 683 × 1024

pixels. The image is placed in the middle of the screen, i.e., 170 pixels from the top edge

of the monitor and 128 pixels from the left edge, as shown in Figure 3.6. The distance

of the human subjects to the image screen (d) is 95 centimeters. The monitor is of size
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Mouse Distractor Image Count
In-Context absent 2
In-Context Out-of-Context 1

Out-of-Context absent 1
Out-of-Context In-Context 1

absent absent 3
absent In-Context 1
absent Out-of-Context 1

Table 3.4: Psychophysics 2: Dataset: Three-saccade condition: Number of
images present for each mouse-distractor condition for the three-saccade condition.
Big-mouse is not present for the three-saccade condition, and the number of mouse-ab-
sent images is reduced by one.

30 centimeters in width and 38 centimeters in height. The visual angle subtended by the

monitor is computed using,

Angle = 2 ∗ arctan(z/2d) (3.1)

where z is the width or height of the monitor.

As a result, the monitor subtended an angle of 18 degrees in height and 22.6 degrees

in width. The monitor consists of 1024 pixels in height and 1280 pixels in width, so each

pixel subtends a visual angle of 0.0176 degrees. And the displayed images, which are

1024 pixels in width and 683 pixels in height, subtend a visual angle of 12 degrees in

height and 18 degrees in width.

The response screen consisted of a 1-10 scale where 1 corresponds to the mouse’s

absence, and 10 corresponds to the mouse’s present condition.

Participants

Sixty-three participants participated in the experiment. These are undergraduate

students at the University of California, Santa Barbara, compensated with course credit

and are not provided any monetary benefits. Out of which 58 participants successfully
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Figure 3.6: Psychophysics 2: Experiment screen for the visual search experiment.
The screen is of size 1024 x 1280 with black pixels, and the image of size 683 x 1024
is placed at the center of the screen, shown with gray pixels for illustration.

finished the experiment. Each participant saw 102 images resulting in 5916 trials. In

some trials, an additional fixation is observed in a small percentage of trials, i.e., the

subject makes an additional fixation before the screen switches from the experiment

screen to the response screen. As a result, 171 trials are removed from the 5916 trials,

i.e., 3% trials.

3.3 Foveated Search Transformer Model (FST)

Foveated Image classification model (FoveaTer) trained on the ImageNet is finetuned

for the Search task. Instead of deviating from the image classification and adopting a

segmentation-style network, we continue working with the image-level classification to

perform the visual search task. A transition to a segmentation-style network for object

search is a natural extension, and we intend to explore it in future work.
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Figure 3.7: FST model: Training dataset: Mouse-present images from the
MSCOCO dataset are padded and used for model training.

3.3.1 Dataset

MSCOCO dataset is used to finetune the network for object search. Since the psy-

chophysics counterpart is limited to the search of the computer mouse, we limit the model

to performing a visual search to just the computer mouse (referred to as mouse hereafter)

instead of extending it to all the eighty object categories present in the MSCOCO dataset.

Since the visual search is limited to the mouse, only images containing the mouse are

used for training. One pitfall of using an image-level classification instead of a pixel-

level classification is that the network might mistakenly learn to recognize the contextual

objects occurring along with the object of interest as the objects of interest. For exam-

ple, the keyboard and monitor occurring along with the mouse might be learned as the

objects of interest if the object-absent images do not have many images with the key-

board and monitor without the mouse. To counteract this effect, instead of using any

mouse-absent images as the negative images, we construct the mouse-absent images from
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Figure 3.8: FST model: Training dataset: Mouse instance from the mouse-present
is erased using the pixels from the top-left corner and are used as the mouse-absent
images for model training.

the mouse-present images by erasing the mouse using the pixels from the top-left corner

of the image. The images are padded with gray pixels along width or height to make

them square. Sample mouse-present and mouse-absent images are shown in Figure 3.7

and Figure 3.8, respectively. The training dataset consists of 1876 mouse present/absent

images, and the validation set consists of 88 mouse present/absent images.

3.3.2 Radial-Polar Pooling

The loss of spatial detail away from the point of fixation occurs at many steps in the

visual stream, starting with the photoreceptor density on the retina [97], the higher con-

vergence of bipolar cells [98] to ganglion cells in the retinal periphery, cortical magnifica-

tion in primary cortex V1 [99], V2, V4, and Superior Colliculus [100]. For computational

simplicity, we will implement a single-stage foveation that increasingly pools features
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Figure 3.9: Radial-Polar pooling regions: Visualization of Radial-Polar pooling
regions for different scales. The amount of peripheral pooling is proportional to the
value of scale.

spatially with increasing retinal eccentricity. The framework is based on Freeman and

Simoncelli [101] spatial pooling on all features extracted from the image. The amount

of peripheral pooling is controlled using a parameter called scale. Visualization of the

pooling regions for different scales is shown in Figure 3.9. Such a simplified model has

been shown to capture many aspects of peripheral processing, including some crowding

effects [101, 102, 103]. For the FST model, the foveated stage will be implemented at the

last convolutional level before the Transformer model.
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Figure 3.10: Network architecture: Foveated Search Transformer model. After
passing the input image through a convolution backbone, radial-polar pooling regions
operate on the output features of the convolution backbone, followed by the trans-
former layers. Attention weights of the last transformer layers are used for fixation
guidance.
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3.3.3 Network architecture

Network architecture closely resembles the FoveaTer architecture and is shown in

Figure 3.10. Input image to the model is resized to 512 × 512 pixels and is passed

through the convolution backbone consisting of the first two stages of the ResNet-18

model. Convolution backbone downscales the input image by a factor of 8 resulting in a

feature map of size 64× 64× 128, followed by a 1× 1 convolution resulting in a feature

map of size N×N×D, where N is 64 and D is 384. Radial-Polar pooling regions operate

on the output feature map of the convolution backbone and results in one feature vector

corresponding to each of the pooling regions, resulting in a feature map of size Np × D.

Pooled features are passed through the twelve transformer layers, at the end of which

the feature remains the same in size Np × D. The feature map of size Np × D is then

appended to the pre-trained class token feature vector of size 1×D and passed through a

transformer layer. Feature vector corresponding to the class token feature vector is used

for image classification, and the attention weights of all the Np feature vectors towards

the class token layer are used for the guidance of the model fixations.

3.3.4 Training

We initialize the model with weights trained for the ImageNet dataset. Since it was

trained on the ImageNet dataset with 1000 classes, the final classification of the model

has 1000 outputs. For the search task, there are only two possible outputs correspond

to the presence or absence of the computer mouse. As a result, we replaced the classi-

fication layer with a new fully connected layer with only two outputs and trained these

weights from scratch. We are modeling the search task as a classification task instead of

formulating a segmentation or object localization task.

The input to the ImageNet classification model is 224×224 resulting in a feature map
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spatial size of 28 × 28 at the output of the convolution backbone. For the FST model,

we use a bigger input of size 512× 512 resulting in a feature map of size 64× 64 at the

output of the convolution backbone. The training of the model is done in two stages.

It is trained on full images, where the training dataset is constructed using MSCOCO

and test dataset is made from a dataset created in the lab. To help the model learn

that the target object is the mouse, we create the mouse absent dataset from the mouse

present dataset by blocking the mouse location with pixels from the top-left corner. We

observed that if such steps are not taken, it can learn to detect the co-occurring objects

like monitor and keyboard instead of the mouse. A different solution would be to extend

the model to do mouse segmentation, but this was not done as the current work is limited

to classification.

The model trained for ImageNet classification is trained on color images. The Input

image to the search model is 512× 512 and is a colored image, whereas the participants

saw the image in grayscale.

3.4 Results

3.4.1 Eccentricity performance:

During the model’s training, the model made four fixations. For comparing the

model performance against human subjects in the mouse eccentricity experiment, the

model was fixed at the same location as the humans. Model performance is shown in

Figure 3.11, where the x-axis shows the eccentricity at which the mouse was presented

in the visual periphery, and the y-axis shows the human/model performance in terms

of Area under the ROC. The performance of the individual human subjects and their

average performance are shown in black. The model’s performance is shown in gray. A
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steep drop in the periphery is seen for the scale hyperparameter of 0.46, but it closely

follows the human performance for the scale of 0.21. So, the subsequent results are shown

for the scale of 0.21.

3.4.2 Fixation guidance mechanism

We evaluated how fixations generated by the model using the self-attention of the last

transformer layer compared to the model guided by the fixations generated by the base-

line algorithms. The baseline algorithms included random fixations, bottom-up saliency

fixations generated by Itti-Koch [19] and GBVS [20] algorithms, and the fixations gen-

erated by the deep-learning-based DeepGaze II [42] model. The Itti-Koch, GBVS, and

DeepGaze II models generate a map, and the top locations of the map are used as the

fixation locations. The performance of the baseline models can be improved by incorpo-

rating Inhibition of Return (IoR) into the generation of fixations. IOR is implemented

by prohibiting future fixations from being picked from 3 × 3 region of the feature map

surrounding the fixation location, equivalent to 24× 24 pixels. Results without IoR are

shown in Figure 3.12 and with IoR are shown in Figure 3.13. In addition to the per-

formance metric of Area under the ROC, the minimum distance to the target for each

algorithm is shown. Fixations guided by the self-attention map goes to the target faster

than the baseline algorithms (Itti-Koch, GBVS and DeepGaze II) for both the cases of

with and without IOR.

3.4.3 Contextual effects

In this section, we evaluate if the model exhibits the spatial and scale contextual

effects seen in human subjects. Spatial context [10, 104, 35, 105, 36, 39, 106] refers to

the spatial position of the computer mouse with respect to the spatial position of the

55



Foveated Transformer for Object Search (FST) Chapter 3

Figure 3.11: Eccentricity performance: Top: Results with radial-polar pooling re-
gions generated using the scale hyper-parameter of 0.21 (corresponding to V1). Right:
Results with radial-polar pooling regions generated using the scale hyper-parameter
of 0.46 (corresponding to V2).
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Figure 3.12: Fixation guidance mechanism without IOR: Baseline algorithms
are guided without IOR. The area under the ROC and the minimum distance to the
target are shown. All algorithms started at the same initial fixation.
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Figure 3.13: Fixation guidance mechanism with IOR: Baseline algorithms are
guided with IOR. The area under the ROC and the minimum distance to the target
are shown. All algorithms started at the same initial fixation.
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Figure 3.14: Spatial context: Performance comparison between human and model
after three saccades. Left: Human and model performance for the mouse in expected
and unexpected locations. Right: Distance of the closest fixation to the target loca-
tion.

co-occurring objects, monitor, and keyboard. It is hypothesized to be easily detectable

when present in the expected location, i.e., in reference to the past experience for humans

and the training dataset for the model, as opposed to the unexpected location. Scale

context [32] refers to the size of the mouse with respect to the scale of the co-occurring

objects, monitor, and keyboard. It is hypothesized to be easily detectable when the

scale of the computer mouse is of the expected scale, i.e., in reference to the scale of the

co-occurring objects.

Spatial context

An example with the mouse in different spatial locations is shown in Figure 3.1. Re-

sults from spatial context are shown in Figure 3.14. Humans and the model performed

better when the mouse appears at the expected location than the unexpected one. Hu-

mans and the model come closer to the target when the target is in the expected position

than when the target is in an unexpected location.
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Figure 3.15: Scale context: Performance comparison between human and model
after two saccades. Left: Human and model performance for the mouse at expected
and unexpected spatial scales. Right: Distance of the closest fixation to the target
location.

Scale context

An example with the mouse at different spatial scales is shown in Figure 3.2. Results

from spatial context are shown in Figure 3.15. Humans and the model performed better

when the mouse was shown at the expected scale than the unexpected one. Interestingly,

humans’ fovea came closer to the big mouse than the normal-sized mouse, whereas the

model went closer to the normal-sized mouse than the big mouse.

3.4.4 Similarity to human fixations

We measure the similarity of human fixations to fellow humans, the FST model, and

the baseline models using Kullback-Leibler (KL) divergence. The analysis is repeated

separately for the first, second, and third fixations. This also illustrates which model

best explains the human fixations. For this purpose, we use three baseline algorithms

we previously used to analyze the fixation guidance mechanism: Itti-Koch, GBVS, and

DeepGaze II. These methods generate the maps in a task-independent way, whereas
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humans and the model are performing task-dependent fixations. As before, the baseline

algorithms have access to the full image to predict the fixation location, whereas the

foveated visual field limits the peripheral view of the humans and the FST model.

We acquired the fixation paths of the human subjects, the FST model, and the

baseline algorithms. For each fixation condition (first, second, or third), the fixation map

is smoothed using convolution with a Gaussian filter, and the KL-Divergence is computed

for each image and each subject with respect to the fixations made by all the human

subjects on that image other than the current subject. Results for fixations first, second

and third fixations are shown in Figure 3.16, Figure 3.17 and Figure 3.18, respectively.

For the first fixation, the baseline GBVS algorithm explains the human fixations the

best. For second and third fixations, the FST model outperforms other baseline models

in explaining the human fixations the best. This can be potentially attributed to the

task-dependent nature of fixation guidance and the usage of the foveated visual system

by both humans and the FST model.

3.4.5 Similarity of fixations with distribution map of relative

location of objects in scenes (prior map)

To understand if the model learns the contextual knowledge, we first generate a map

of the mouse locations with respect to the monitor in the training dataset. We refer to

this map as the prior map. We compare the prior map to fixation distributions to assess

whether eye movements guided by the model and humans are going to those locations.

This can be captured using the KL-divergence between the prior map generated from

natural image statistics and the heatmap of the model/humans generated from using

different fixation guidance mechanisms.
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Figure 3.16: Similarity to human fixations for first fixation: Human-Human
have the least KL-Divergence followed by GBVS-Human. DeepGaze-Human has
the highest KL-Divergence. Human-Human < GBVS-Human < IttiKoch-Human <
FST-Human < DeepGaze-Human

Figure 3.17: Similarity to human fixations for second fixation: Human-Human
still have the least KL-Divergence now followed by the FST-Human. IttiKoch-Human
has the highest KL-Divergence. Human-Human < FST-Human < DeepGaze-Human
< GBVS-Human < IttiKoch-Human
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Figure 3.18: Similarity to human fixations for third fixation: Human-Human
still have the least KL-Divergence now followed by the FST-Human, where the dif-
ference between the both is no longer significant. Human-Human = FST-Human <
DeepGaze-Human < GBVS-Human < IttiKoch-Human

Generation of prior map

We use the MSCOCO training dataset to generate the prior map. First, we identify

all the instances of the mouse, tv, and laptop in a given image using the annotation data

available in the dataset. In the dataset, a normal desktop monitor has been annotated

as tv and for this reason, we collect the tv instances. Next, for each mouse instance,

we look for the closest tv or laptop instance and record the center coordinates of the

monitor and the mouse, along with the width and height of the monitor. After collecting

the information from all mouse instances of the training image dataset, we register the

information on a common map. Since the monitor instances are of different sizes, they

must first be normalized. We scale the monitor’s width and height to 100 pixels each,

resulting in width and height scaling values we use to normalize the distance between the

monitor and mouse in x and y coordinates. After normalization, all the mouse instances
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Figure 3.19: Mouse points registered to a normalized monitor from all the training
images. A normalized monitor is shown as the dotted cyan square.

are mapped onto the same map.

The registered mouse instances with respect to the monitor is shown in Figure 3.19.

We then convert the map of mouse instances to the monitor into a heatmap by smoothing

it with a Gaussian filter. This results in a heatmap shown in Figure 3.20.

Fixation heatmaps

To understand the spatial distribution of fixations and the human/model biases of

fixating at specific locations, we register the fixations made by humans and the model

guided by different fixation mechanisms (GBVS / DeepGaze II / Itti-Koch) with respect

to the monitor to create the normalized map. Because the monitor’s size varies across

images depending on the distance between the camera and the monitor and the magni-

fication, we normalize the size of the monitor across images so that the distance of the

64



Foveated Transformer for Object Search (FST) Chapter 3

Figure 3.20: Heatmap of mouse points to a normalized monitor from all the training
images. A normalized monitor is shown as the black square in the middle.

fixations to the monitor are measured in the same units. Next, we convolved the resul-

tant map with the Gaussian filter to generate a low-pass filtered heatmap. An example

is shown in Figure 3.21.

Finally, we use KL-Divergence to compare the fixation heatmaps against the prior

map to see if humans/models guided by different fixation mechanisms are biased towards

going to the hot spots of the prior map. A lower KL-Divergence value, implying a higher

similarity, shows that the human/model would tend to go to the expected mouse location.

We use only the Nth fixation to compute the heatmap corresponding to that fixation.

We repeat the analysis twice: First, considering all images for the similarity analysis i.e.,

mouse present/absent, and Secondly, considering only the mouse-absent images. The

2nd comparison is of more interest because fixations in mouse-present images are guided

both by context but also the presence of the target. The analysis of target absent images
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Figure 3.21: Visualization of heatmaps: Heatmap is generated using the Nth
fixation followed by normalization based on the monitor size. Top row: Original im-
age with annotated monitor. Second row: Heatmap generated from the Nth fixation
made by humans, FST model and the baseline algorithms. Third row: Heatmap nor-
malized to make the monitor into square shape. Fourth row: Normalized heatmap
copied onto a bigger map, where maps from all images are summed together.
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Figure 3.22: Similarity to prior map using both mouse-present and
mouse-absent images: KL-Divergence is used to measure the similarity of Hu-
man/model heatmaps and the prior map generated using natural image statistics. For
the first fixation, Model-Prior < Human-Prior < DeepGaze-Prior < GBVS-Prior <
IttiKoch-Prior. For the second and third fixations, Human-Prior < Model-Prior
< DeepGaze-Prior < GBVS-Prior < IttiKoch-Prior.

allows us to isolate influences of context on fixations.

Similarity analysis using mouse present and absent images

The results of doing this analysis on all the images are shown in Figure 3.22. Analysis

for Fixation 1, 2, and 3 are shown in Figure 3.23, Figure 3.24, and Figure 3.25 respectively.

Similarity analysis using mouse-absent images only

The results of doing this analysis only on the mouse absent images are shown in

Figure 3.26. Analysis for Fixation 1, 2, and 3 are shown in Figure 3.27, Figure 3.28 and
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Figure 3.23: All images - Fixation 1: Humans tend to go to the center of the
monitor. In contrast, the model goes directly to the expected location of the mouse,
resulting in lower KL divergence between the model and the prior map.

Figure 3.24: All images - Fixation 2: Using the second fixation, humans explore
the expected mouse location, thereby decreasing the KL divergence with the prior
map.
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Figure 3.25: All images - Fixation 3: Using the third fixation, humans explore the
unexpected location after exploring the expected location using their second fixation.

Figure 3.29 respectively.

Humans show a tendency to direct their fixation toward the monitor, whereas the

FST direct its first fixation directly to the mouse instead of stopping at the monitor.

Consistent with the more frequent location of a mouse occurring to the right of the

monitor, the FST model guided by self-attention displayed a similarly strong right bias

as humans whereas the model guided with the other algorithms (Itti-Koch, GBVS and

DeepGaze II) did not display such a strong right bias.

3.5 Conclusion

In this chapter, we extended the foveated image classifier trained on ImageNet for the

task of computer mouse search. We performed two psychophysics experiments: First,

to get the human detection performance of the computer mouse when it is presented
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Figure 3.26: Similarity to prior map using mouse-absent images: KL-Diver-
gence is used to measure the similarity of Human/model heatmaps and the prior map
generated using natural image statistics. For the first fixation, Model-Prior < Hu-
man-Prior < DeepGaze-Prior < GBVS-Prior < IttiKoch-Prior. For the second and
third fixations, Human-Prior < Model-Prior < DeepGaze-Prior < GBVS-Prior <
IttiKoch-Prior.
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Figure 3.27: Mouse-absent images - Fixation 1: Even when the mouse is absent,
humans tend to go to the center of the monitor. In contrast, the model goes directly
to the expected location of the mouse, resulting in lower KL divergence between the
model and the prior map.

Figure 3.28: Mouse absent images - Fixation 2: Even when the mouse is absent,
humans explore the expected mouse location using the second fixation, thereby de-
creasing the KL divergence with the prior map.
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Figure 3.29: Mouse absent images - Fixation 3: Even when the mouse is absent,
humans explore the unexpected location using their third fixation after exploring the
expected location using their second fixation.

at different eccentricities in the visual periphery, and Second, to illustrate the context

effects seen for the task of Visual Search for humans. In section 3.4.1, we fixed the

scale hyperparameter of the radial-polar pooling regions to 0.21 to match the model

performance to human performance in the visual periphery. In section 3.4.2, we showed

the effectiveness, in terms of Area under the ROC and ability to go towards the target

location, of the fixation guidance using self-attention (guided model) by comparing it

against the fixation guidance using different algorithms such as Itti-Koch, GBVS and

DeepGaze II. In section 3.4.3, we then showed that the model exhibits similar spatial

and scale contextual effects shown in the human subjects. In section 3.4.4, we showed

the fixations made by the guided model are most similar to humans for second and third

fixations compared to the other comparison algorithms. In section 3.4.5, we showed that

fixation heatmaps of the guided model, even for the case of mouse-absent images, are

more similar to a map of frequent/expected locations for the computer muse than the
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baseline algorithms suggesting the contextual influence of the co-occurring objects on the

fixation guidance of the guided model.
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Chapter 4

Convolution Neural Network based

Model Observer for Virtual

Phantoms

The ideal observer model provides the upper bound performance when the statistics

of the signal and background are entirely known. For anatomical, phantom, simulated

backgrounds where the statistics are unknown, linear model observers, such as Channel-

ized Hotelling Observer, can predict human performance in detection tasks with a few

possible signal locations. Here we compare the detection accuracy of the Channelized

Hotelling Observer (CHO) [107, 108, 109, 110] and a Convolution Neural Network (CNN),

against the radiologists’ performance for two types of signals embedded in 2D/3D breast

tomosynthesis phantoms (DBT). We show that for a signal known exactly task, the CHO

model’s accuracy is comparable to the CNN’s. However, for the search task with 2D/3D

DBT phantoms where the signal can appear in any location, the Channelized Hotelling

models’ detection accuracy was significantly lower than that of radiologists. In contrast,

a CNN’s accuracy was comparable to or higher than the radiologists. An analysis of
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the eye position of radiologists showed that they fixated more often and longer times at

the locations corresponding to CNN false positives. Many of the CHO false positives

related to the phantom’s anatomy were not fixated by radiologists. In conclusion, we

show that CNN can be used as an anthropomorphic model observer for the search task

where the traditional model observers fail due to complex backgrounds. In this work, we

first train three model observers and compare their performance against the radiologists’

performance for two types of signals, a simulated calcification (CALC) and a simulated

mass (MASS). We also perform a false positive analysis where we compare the response

maps of the model observers against the time spent by the radiologists at their fixation

locations.

4.1 Introduction

For signals present at one or a few specified locations and anatomical backgrounds,

model observers have been extensively used for image quality assessment in the field of

medical imaging [107, 108, 111, 112]. When the signal and background statistics are com-

pletely known, an ideal observer (IO) implementation is feasible, and it provides the upper

limit on performance for any observer on a perceptual task and is used to benchmark

human performance [113, 114, 115, 116, 117]. When the exact statistics are unknown,

IO implementation is not feasible. We must rely on sub-optimal observers such as Chan-

nelized Hotelling Observer (CHO) [118], involving a feature extraction stage through a

set of linear channels. When the early visual processing in the human visual system

is approximated using these linear channels, CHO becomes a better anthropomorphic

model observer than an ideal observer [119].

In recent years, Convolution Neural Networks (CNN) have also been used as model

observers in medical imaging [120, 121]. For the simple task of signal-known-exactly
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and background-known-exactly, CNNs provided an excellent approximation to ideal ob-

server [122, 123]. For the task of Signal-Known-Exactly (SKE) and Background-Known-

Statistically (BKS), new training strategies for CNN-based anthropomorphic model ob-

servers had achieved good performance agreement with human observers [124]. Further-

more, for the SKE-BKS condition, CNNs were trained with adversarial robust training

with the aim to generate more human-interpretable features [125]. For a defect forced-

localization task, an exploration across different backgrounds, hyperparameters and loss

functions, mean-squared error provided the best results [126]. A segmentation-based

CNN architecture provides a basic output visualization without the necessity of ad-

vanced interpretability techniques [127, 128, 129]. nnU-Net [130] is U-Net-based [131]

segmentation architecture capable of automating data pre-processing, network architec-

ture, model training, and post-processing without manual intervention and provides a

general-purpose solution for 23 publicly available medical-image datasets.

For simple backgrounds and Location-Known-Exactly tasks, model observers such as

CHO and Filtered Channel Observer (FCO) [132] provide a good Ideal Observer approx-

imation. However, for the search task and complex backgrounds, the difficulty increases

along with uncertainty in the target’s location. Due to a lack of a good understanding

of the background, traditional observers (CHO and FCO) suffer in performance under

these circumstances. In such cases, Convolution Neural Networks (CNN) can provide

better alternatives [122, 123, 124, 125, 126, 130]. Due to the difference in architecture

and training methodologies, CNNs can be used to train the 3D templates directly for

the search task. As a result, they develop a thorough understanding of both signal and

background simultaneously, making CNN a good alternative for 3D search tasks where

IO implementation is infeasible.

This work explores the possibility of using segmentation-based nnu-Net [130] as an

anthropomorphic model observer on a dataset of Digital Breast Tomosynthesis (DBT)
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virtual phantoms [133], a dataset for which we have eye-tracking data from twelve ra-

diologists. Firstly, we explore the effects of switching from a Location-Known-Exactly

(LKE) task to a search task on model observers such as Channelized Hotelling Observer

(CHO), Filtered Channel Observer (FCO), and Convolutional Neural Network (CNN).

Secondly, we compare the performance of CHO, FCO, and CNN for 2D search against 3D

search. Thirdly, by making use of the fixation location data and the amount of time spent

by the radiologists at those locations, we compare the similarity of the response maps

of all three model observers to those of the time-spent maps from radiologists. Using a

general-purpose CNN network architecture, which was shown to perform well on different

medical images, we maintain the potential generalization ability to new datasets. More-

over, the very realistic DBT dataset makes the model capable of adapting to real-world

datasets.

4.2 Materials and Study

4.2.1 Dataset

DBT phantoms, the images used for the radiologist study and testing the model

observers in this paper, were generated by the OpenVCT virtual breast imaging tool from

the University of Pennsylvania [133, 134, 135]. This tool generates full phantom DBT

images, including different tissues (skin, Cooper’s ligaments, adipose, and glandular) in

a realistic manner. Generated phantoms are of size 2048 × 1792 × 64, where 64 is the

number of slices for each phantom. The dataset contains two types of signals: 1. a small

lesion similar to microcalcification and 2. a large lesion similar to a mass. We have a

dataset of about 500 phantoms with microcalcification, 500 phantoms with mass, and

500 signal-absent phantoms. For 2D experiments, we used a single slice of the phantom,
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Figure 4.1: Radiologist study: Twelve radiologists participated in the study. Each
of them was shown a total of 28 2D phantoms and 28 3D phantoms. Half of each set
had signal-present and another half with signal-absent. Signal-present was made up
of an equal number of CALC and MASS. After making a decision, they decided on a
4-point decision scale where four corresponds to strong confidence that the signal is
present. For 2D DBT, only eye movements were made, and for 3D, eye movements
and scrolling across slices were possible.

which contained the signal’s center as the signal-present phantom.

4.2.2 Radiologist study

Twelve radiologists participated in the study. They sat 75 cm away from a vertical

medical-grade monitor in a darkened room. Stimuli were displayed in a 5Mpx grayscale

DICOM calibrated monitor (2560×2048 pixels), keeping their aspect ratio. In the study,

each radiologist saw 28 signal-present (microcalcification or mass) and 28 signal-absent

trials, out of which half were 2D trials and the other half were 3D trials. The prevalence

between microcalcification and masses was 50%. Microcalcification and mass extended

visual angles of 0.06 and 0.5 degrees, respectively. All four conditions were randomly

intermixed. An eye tracker recorded the participant’s eye movements in real-time at a
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Figure 4.2: CNN model: Four different CNN models are trained for two modali-
ties (2D/3D) and two signal types (microcalcification/mass). During the test phase,
the segmentation-based CNN produces a probability map with a probability value as-
signed to each pixel, representing its probability of being the signal pixel. A per-pixel
threshold computed using the validation set is applied to the CNN output to convert
the probability map into a binary map. Connected components are computed using
8 and 26 connectivity for 2D and 3D, respectively, on the resultant binary map.

frequency of 500Hz (EyeLink Portable Duo, SR Research). We used Psychtoolbox to

develop this experiment [136].

4.3 Model observers

An Ideal Observer (IO) optimally uses visual information to compute posterior prob-

abilities and achieves upper-bound performance. It is impossible to design an IO for DBT

phantoms due to the absence of complete signal and background statistics information.

We trained three model observers: 1. Channelized Hoteling Observer (CHO), 2. Filtered

Channel Observer (FCO) and 3. Convolution Neural Network (CNN). We used a set of

approximately 1500 phantoms for training the model observers.
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Figure 4.3: 2D search with CHO and FCO: During the testing phase, the 2D
template is padded to the size of the 2D input. After taking the Fast Fourier Trans-
form (FFT) of both the input and template, the convolution of the two is performed
in the Fourier domain by performing their multiplication. The final response map
is generated by taking the inverse FFT of the convolution output in the frequency
domain.

4.3.1 Gabor channel computation

We used Gabor channels with No orientations, Np phases, and Nf spatial frequencies,

resulting in a set of No ×Np ×Nf Gabor channels, represented by CGabor.

i
′
= i cos (θk) + j sin (θk) (4.1)

where i, j are the x-y coordinates, θk is the kth orientation and i
′
is the transformed x

coordinate. And kth channel of the Gabor channel array, CGabor
k , is computed using,

CGabor
k (i, j) = Gaus(i, j) ∗ cos (2π ∗ fcl ∗ i

′
+ βp) (4.2)

where Gaus(i, j) is the Gaussian envelope, fcl is the lth central frequency and βp is the

pth phase.
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4.3.2 Channelized hotelling observer (CHO)

Using dot product, we compute the response of the training image crops to the Gabor

channels (from Equation 4.2),

V = (CGabor)TS (4.3)

where SP and SA are the arrays of signal-present and signal-absent training crops, respec-

tively, and S ∈ {SP , SA}; VP and VA are the arrays of signal-present and signal-absent

responses respectively and V ∈ {VP , VA}; T is the transpose operation.

Signal-present and Signal-absent covariance matrices, KP and KA, are computed

using the response arrays VP and VA The mean of signal-present and signal-absent co-

variance matrices results in the channel covariance matrix.

Kch = (KP +KA)/2 (4.4)

Weights of the linear CHO are computed,

WCHO = V TK−1
ch (4.5)

Response of test images (g) to the CHO is computed using convolution in the frequency

domain.

λ = FFT−1(FFT(WCHO)FFT(g)) (4.6)

Where FFT is the Fast Fourier transform, FFT−1 is the inverse Fast Fourier transform,

and the CHO template is padded with zeros before taking the FFT to match its size to

that of the test images.
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4.3.3 Filtered channel observer

Filtered Channel Observer (FCO) [132] is a linear model observer based on con-

volution channels capable of modeling irregularly-shaped signals with fewer directional

channels. Constructing the weights of FCO follows a similar procedure to that of CHO.

The implementation differs only in the construction of the channel templates.

Signal mean (signalmean) is the difference between the mean signal-present image and

the mean signal-absent image. Furthermore, using Fast Fourier Transform (FFT), Signal

mean (signalmean) is transformed into frequency domain (signalFFT ).

signalmean = (1/NP ) ∗
∑
NP

SP − (1/NA) ∗
∑
NA

SA (4.7)

signalFFT = FFT(signalmean) (4.8)

where SP and SA are signal-present and signal-absent training crops respectively, and

NP and NA represent the number of signal-present and signal-absent training images.

Gabor channel array (Equation 4.2) is transformed using the signal mean in the

frequency domain and is then converted back into the spacial domain using inverse Fast

Fourier Transform (FFT−1), followed by L-2 normalization.

C
′

k = (1/nxy) ∗ ABS(FFT(CGabor
k ))2 (4.9)

CFCO
k = FFT−1(C

′

k ∗ signalFFT ) (4.10)

CFCO
k = CFCO

k /sqrt(
∑
x

∑
y

(CFCO
k )2) (4.11)
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where C
′

k is the power spectral density of the kth channel CGabor
k , nxy is the spatial

size of the channel CGabor
k , CFCO

k is the kth channel of the FCO model.

After the computation of the FCO channels, the template is computed similarly to the

CHO template by replacing CGabor with CFCO in Equation 4.3 followed by computation

of template weights and the response map using Equations 4.4, 4.5 and 4.6.

4.3.4 Convolution neural network

U-Net [137] is a CNN architecture used for performing image segmentation. It consists

of two stages, encoder, and decoder. The encoder stage gradually reduces the spatial

dimensions while increasing the feature dimensionality. The decoder stage performs

the opposite operation, gradually increasing the spatial dimension while decreasing the

feature dimensionality, resulting in an output map of the same spatial size as the input

image. Thus the model can be trained to produce a segmentation map as the final output

map. NN-UNet [138] is a U-Net [137] based convolution neural network with automatic

hyper-parameter computations. It showed successful results in medical decathlon [139]

on a wide variety of input data. We choose to use this architecture due to its optimized

hyper-parameter computation and successful applicability to a wide variety of tasks. It

is a segmentation-based CNN that outputs a probability map signifying the likelihood of

each pixel being a lesion or background.

One drawback of this dataset is that each phantom does not have an exact mask

signifying the pixels belonging lesion. We only have access to the mean signal information

and the lesion coordinates for the signal-present phantoms. We used the mean signal and

lesion coordinates to create an approximate mask for each phantom. We were able to train

the neural networks using this procedure without needing costly manual annotations.

Although a custom CNN designed for this task might have resulted in better performance,
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it might not be easily generalizable/applicable for phantoms designed slightly differently.

For this reason, we expect the results to be more generalizable by using a standard

architecture that works for different types of medical images.

In the encoder, downsampling is performed using strided convolutions; in the decoder,

upsampling is performed using transposed convolutions. Each resolution stage in the

encoder/decoder consists of two computational blocks, and each computational block

consists of convolution followed by instance normalization [140] and leaky-ReLU [141].

For the 2D image modality, 2D architecture is used where the number of channels in

the input image is just one slice. For 3D modality, there are two options, 1. 3D full-

resolution U-Net, which operates on full-resolution input, 2. 3D U-Net cascade where

first coarse segmentation is performed on low-resolution data, which is refined by a 3D

U-Net operating on full-resolution data. 3D U-Net cascade is better suited for integrating

context. We use 3D full-resolution U-Net.

After separating the training dataset into five folds, five CNN models are trained

by choosing four folds for training and the fifth for validation. We train each of the

five models for 1000 epochs. Stochastic Gradient Descent optimizer with a learning

rate of 0.01 and nestrov momentum of 0.09 are used. The learning rate is controlled

using a ’polyLR’ learning schedule, where a polynomial function is used to decay the

learning rate of each parameter group. After training, the five models are combined to

form the ensemble model, which is then used for testing. All four CNN models (2D

microcalcification, 2D mass, 3D microcalcification, and 3D mass) are trained using a

similar procedure.
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4.4 Implementation details

4.4.1 Gabor channels

We created Gabor channels with 8 orientations, 2 phases, and 5 spatial frequencies.

The eight orientations are equally spaced apart between 0 to π ie., No = 0, π/8, ..., 7π/8.

The two phases are orthogonal to each one another, i.e., Np = 0, π/2. Five spatial

frequencies are used for channel generation, i.e., Nf = 4, 8, 16, 32, 64 pixels per cycle.

Assuming a monitor distance of 85 cms, equivalent spatial frequency in cycles per degree

equals 16, 8, 4, 2, 1, respectively. Image crops used for training are of size 101 pixels ×101

pixels. Using these orientations, phases, and spatial frequencies, a Gabor channel array

of size 101× 101× 80 with 80 channels is created.

4.4.2 Model observers CHO and FCO

Training the 2D template

Both 2D and 3D templates are of size 101 pixels in width and 101 pixels in height. In

terms of depth, the 2D template consists of a single slice, and the 3D template consists of

17 slices, i.e., eight slices on either side of the central slice. The training dataset consists

of 576 DBT phantoms, each of size 2048 × 1792 × 64, for each microcalcification, mass,

and signal-absent category. For the 2D case, for each signal-present phantom, a crop

of size 101 × 101 is obtained from the signal location on the central slice resulting in

an array of size 101 × 101 × 576. For the signal-absent images, ten random crops are

obtained from each phantom resulting in an array of size 101× 101× 5760. The eighty-

channel Gabor array is of size 101× 101× 80. Channel response is computed using the

Gabor array for both signal-present and signal-absent arrays resulting in response arrays

of sizes 80× 576 and 80× 5760, respectively. The mean signal of size 80× 1 is obtained
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by computing the means of both these arrays and taking their difference. We compute

the covariance matrices for signal-present and signal-absent separately, each of which is

of size 80× 80, and then obtain the mean covariance matrix by taking the mean of both

signal-present and signal-absent covariance matrices. Finally, the template weights are

computed according to equation 3 using the mean signal and the pseudo inverse of the

mean covariance matrix.

For training the 3D templates, we train the individual 2D templates for all the 17

slices as per the procedure described above. Giving uniform weights to all the templates

and combining them would be sub-optimal, and we choose to train the weights according

to which the template responses need to be combined.

Training of 3D template with optimized slice weights

We follow a similar procedure to how we trained the 2D template except that here the

different 2D templates are similar to the channels present during the generation of the 2D

template, i.e., the mean signal is of size 101× 101× 17 and the mean covariance matrix

is of size 17 × 17. As a result, for each of the 3D templates, we have 17 2D templates,

each of size 101× 101 and 17 scalar weights, to combine them optimally. Appendix A.5

shows the visualization of the weights for the four possible cases.

Testing

For both CHO and FCO, Figure 4.3 illustrates the testing procedure for 2D and 3D

inputs. We compute the convolution between the template and the input in the frequency

domain by computing the Fast Fourier Transform (FFT) of the input phantom and the

padded template and multiplying them in the frequency domain. We obtain the final

response by performing the inverse FFT of the product of the signal and template in

the frequency domain. False positives that occur in the skin tissue and the edge of the
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phantom degrade the search performance of CHO and FCO. In order to boost the CHO

and FCO performance, we mask these locations by multiplying the response map with a

binary map. We use the largest value in the resultant map to represent the phantom.

4.4.3 Convolution neural network

Pre-processing

To aid the training of the segmentation-based CNN, we constructed binary masks

representing the signal locations using foreground pixels and the noise locations with

background pixels. The dataset only provides the coordinates of the signal location but

does not provide the binary masks needed for the training. Using the template of the

mean signal, we constructed these masks. Constructing more accurate masks using costly

manual human annotations might be possible. Approximate binary masks result in more

challenging CNN training with the trade-off of cheap binary mask generation.

Training

We trained four CNN models for the two signal types (microcalcification and mass)

and the two modalities (2D and 3D). For the 2D case, 1500 single slice samples of size

2048× 793× 1 are used for training, where the training samples are generated using the

central slice (Cslice), slice before the central slice (Cslice−1) and slice after the central slice

(Cslice+1) of the 500 3D signal-present training phantoms. For the 3D case, 500 samples

of size 380×380×64 are used for training, where the 380×380 crops are generated from

the full spatial size of 2048 × 793 and a single sample is obtained from each of the 500

training phantoms. The cropping is done to save training time. Uncropped full phantoms

were presented as input to the model during testing. This change works because it is a

segmentation-based CNN. Each CNN model is an ensemble of five individually trained
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CNN models, where each individual CNN is trained by splitting the training dataset into

five folds. Each of the individual CNN uses four folds for training and the remaining for

validation. We train each of the individual CNN models for 1000 epochs. Each epoch took

approximately 240 seconds and 800 seconds for the 2D and 3D, respectively, on a single 12

GB Nvidia GPU. Therefore, training the 2D models approximately takes 240×1000×5×2

seconds, which translates to about 28 days on a single GPU, accounting for 1000 epochs

for each model, 5 folds for each model and 2 models one for microcalcification and mass.

Training the 3D models takes approximately 93 days on a single GPU. We used four

GPUs to decrease the total training time. We did not make any changes to parameters

like the number of epochs to reduce training time in order to maintain the generalization

ability.

Post-processing

The presence or absence of the signal cannot be directly determined using the prob-

ability map output of the CNN. We use a two-step process of per-pixel thresholding

and connected components to make it interpretable. Under per-pixel thresholding, a

threshold optimized using the validation set is used to classify each pixel as a foreground

(signal) pixel or a background (noise) pixel by comparing the probability value at that

pixel against the pre-computed threshold. We compute the connected components using

8 and 26 connectivity, understanding that the presence of the signal will lead to a cluster

of foreground pixels. We compute the volume of the largest connected component and

use it as the response of the entire phantom, a value that will be higher if the actual

signal is present.
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Testing

During the testing phase, the input is passed through the ensemble CNN followed by

per-pixel thresholding and the computation of the connected components. The per-pixel

threshold is computed using a validation set of 50 signal-present and 50 signal-absent

phantoms, and it is individually computed for each of the four models, two signal types,

and two modalities. Since the CNN output is a probability map, the value of each

output pixel varies between 0 and 1. In an ideal scenario, each foreground (signal) pixel

will have a value of 1, and each background (noise) pixel will have a value of 0. By

reducing the per-pixel threshold in steps of 0.05, the threshold at which the AUC for

the validation set is maximized is used as the per-pixel threshold for the test set. The

results of the validation set are shown in Appendix A.4. By using 8-connectivity for

2D and 26-connectivity for 3D, we compute all the connected components in the CNN

output map. The maximum number of pixels in a single connected component represents

this input. No further thresholding of the connected component volume is needed, as

Area-under-the-curve (AUC) is used as the figure-of-merit.

4.5 Results

4.5.1 Search Vs LKE

In the search task, the signal is located at a random location in the image. Model

observers convolve the image with the signal templates by performing multiplication in

the frequency domain, and the phantom response to the template is obtained based on

the maximum response location in the convolution output. Search is similar to the task

performed by radiologists. Location-known-exactly (LKE) is a more artificial task where

the signal-present images are image crops that contain the signal at their center. We
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Figure 4.4: Difficulty of search task: For both types of signals, the performance of
all three model observers is compared for search against LKE. While CNN’s perfor-
mance suffers very little drop from LKE to Search, there is a big drop for both CHO
and FCO.

make this comparison to illustrate the increased difficulty of the search task that the

radiologists perform against a simple LKE task.

2D case: Top row of Figure 4.4 shows the performance comparison between the
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2D LKE and 2D search task. For both types of signal (microcalcification and mass), the

performance of the LKE task is close to saturation and outperforms the search task. AUC

of the CNN for each type of the signal remains approximately the same across search, and

LKE tasks, i.e., a slight drop from LKE to search is observed ∆AUCLKE vs. Search = 0.001

for microcalcification and ∆AUCLKE vs. Search = 0.006 for mass. It might suggest that it

learned to discard the backgrounds well, and limiting the signal location uncertainty as

part of the LKE task does not add any performance benefit. For the CHO and FCOmodel

observers, the search resulted in much lower performance for both signal types than LKE.

For microcalcification (∆AUCLKE vs. Search = 0.26 for CHO and ∆AUCLKE vs. Search =

0.276 for FCO) and mass (∆AUCLKE vs. Search = 0.195 for CHO and ∆AUCLKE vs. Search =

0.124 for FCO).

3D case: Bottom row of Figure 4.4 shows the performance comparison between the

3D LKE and 3D search task. For both types of signal (microcalcification and mass), the

performance of the LKE task is close to saturation and outperforms the search task. AUC

of the CNN for each type of the signal remains the same across search and LKE tasks

for microcalcification (AUC = 1), and a slight drop from LKE to search is observed for

mass (∆AUCLKE vs. Search = 0.041). It might suggest that even for the 3D case, the CNN

learned to discard the backgrounds well, and limiting the signal location uncertainty as

part of the LKE task does not add any performance benefit. For the CHO and FCOmodel

observers, the search resulted in much lower performance for both signal types than LKE.

For microcalcification (∆AUCLKE vs. Search = 0.16 for CHO and ∆AUCLKE vs. Search = 0.26

for FCO) and mass (∆AUCLKE vs. Search = 0.11 for CHO and ∆AUCLKE vs. Search = 0.25

for FCO).
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Figure 4.5: CNN outperforms in 2D and 3D search: For the microcalcification
(CALC) signal, radiologists underperformed in 3D search whereas model observers
improved their performance from 2D to 3D. For the mass signal (MASS), where the
CNN performance still increased from 2D to 3D, CHO and FCO underperformed in
3D, where a better integration across slices is needed.

4.5.2 2D Vs 3D search

A comparison between 2D and 3D searches for radiologists and model observers is

shown in Figure 4.5. Radiologists: Radiologists suffer from under-exploration in the

3D search as compared to the 2D search, whereas model observers do not suffer from such

a bottleneck. Each radiologist only saw a subset of the phantoms. AUC is computed for

each radiologist, and the error bar signifies the performance difference across radiologists.

Since the signal template for mass is better visible and spans across multiple slices for

the case of 3D, there is a counter-action between better visibility and under-exploration.

For the case of microcalcification, radiologists did better for 2D compared to the 3D

search (∆AUC2D vs. 3D = 0.15), which can be attributed to the under-exploration. For

the case of MASS, the performance only slightly drops from 2D to 3D (∆AUC2D vs. 3D =

0.03). CNN: In a contrasting manner, the performance of CNN increases from 2D to
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3D, which can be attributed to a better 3D signal template (∆AUC2D vs. 3D = 0.041

for microcalcification and ∆AUC2D vs. 3D = 0.005 for mass). CHO and FCO: Going

from 2D to 3D search, the performance of the CHO and FCO increased for CALC and

decreased for MASS, which might signify that 3D mass is more confusable with the

background for model observers CHO and FCO. For the 2D search, for microcalcification,

CHO slightly outperforms FCO (∆AUCCHO vs. FCO = 0.016), whereas for mass FCO is

performs much better (∆AUCCHO vs. FCO = −0.07) compared to the CHO model. For the

3D search, FCO outperforms CHO for both types of signals (∆AUCCHO vs. FCO = −0.05

for microcalcification and ∆AUCCHO vs. FCO = −0.01 for mass).

4.5.3 False +ve analysis

Multiple radiologists searched for microcalcification and mass in each of the 28 signal-

absent phantoms. The total number of radiologists varied between 4-8 for each phantom.

During their search, eye-tracker recorded the eye-movements of the radiologists as they

searched the slice and scrolled through the stack of slices. We used a Gaussian filter of

size 45 × 45 × 3 to smoothen the response maps from model observers and time-spent

maps from radiologists. Along with the fixation location, we also have access to the

information time spent at each fixation location from the eye-tracker. As a result, we

can see if the most time-spent locations are related to the hot response locations from the

model observer response maps. In order to evaluate the relationship only in the regions

where the phantom is present, a binary mask removes all fixations falling outside the

actual phantom region. We do this false positive analysis on the signal-absent phantoms

as they indicate the locations confused by the observers to be a signal when there is no

signal.
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Time spent by radiologists in hot response regions

This analysis selects the top 1% locations from the model observer response map.

We then get the corresponding time spent by the radiologists for those locations. To

normalize across phantoms, we report the percentage of time spent at these locations

to the total time spent on this phantom instead of reporting the raw time spent. As a

result, the effect of the number of radiologists that saw this phantom is also normalized.

Figure 4.6 shows how much percentage of time radiologists spent in the regions with

the highest model observer response. Although radiologists look for either microcalcifi-

cation or mass in the signal-absent images, the model observers are trained individually

for each signal. So, we repeat the analysis for both types of models, and the corre-

sponding results are shown in the two columns. The top row shows the time spent by

the radiologists corresponding to the top 1% locations of the model observer response

map. For the model observers trained for detecting microcalcification, radiologists fix-

ated longer in the top locations corresponding to the CNN response map than CHO (p

= 5.67e-03) and FCO (p = 3.15e-03), but it is not significant. For the model observers

trained for detecting mass, radiologists fixated longer at the top locations corresponding

to the CNN, and the difference is significant. The difference between CHO and FCO is

also significant (P=0.85). For the bottom row, the same analysis is repeated for many

different percentages along with 1%. The percentage of time spent reaches 100% as a

large percentage of the area is considered. Overall, top locations from CNN coincided

with the location where more time was spent by radiologists showing potential similarity

between CNN’s false positive locations and false positives of the human template.

Therefore, CNN is a significantly better predictor of where humans will spend longer.

It is an advantage that can be explored in the future as it adds a new dimension to the

usual performance benefit seen in CNNs.
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Figure 4.6: Time-spent by radiologists at top model observer response
locations: Top row: Percentage of time spent by the radiologists corresponding to
top 1% locations of the model observer response map. Bottom row: Percentage of
time spent corresponding to the top locations in the model observer response map.
Time-Spent corresponding to top 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,
45%, 50%, locations of the model observer response map
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Figure 4.7: Similarity with average radiologist response: The combined time
spent map and the response maps of the model observers are shown for one slice of a
signal-absent phantom (normalized for visualization).

4.6 Discussion

We perform a two-fold analysis to show that a CNN can effectively replace standard

model observers like CHO and FCO as an anthropomorphic observer for search tasks.

First, we show that it can do better than humans for both signals and modalities.

CHO and FCO do better than radiologists for only one case, i.e., a microcalcification

3D. Human’s low performance is explained because of under-exploration, and the lack of

such an effect in model observers can explain the good performance from CHO and FCO.

Although not reaching human performance, CHO and FCO do well enough for mass 2D

but not for the mass in 3D. The 3D mass is more confusable with the background. Also

important to note that the effect of under-exploration in humans is less pronounced than

in 3D microcalcification, as the mass signal is better visible in the periphery and thus

observers can underexplore and still detect the mass. The CHO and FCO also did not

replicate human performance for the microcalcification 2D, where the smaller, harder-

to-detect microcalcification could contribute to this result. FCO outperforms CHO for
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three out of four cases, i.e., except for 2D microcalcification. This is likely related to the

fact that the FCO capture the overall shape of the signal better than the sparse channels

of the CHO

On the second part, we investigate the predictive power of a CNN-based model ob-

server in predicting the amount of time spent by radiologists. False positive locations

for humans are the location that looks similar to the signal. Since these false positive

locations look similar to the signal, they tend to spend longer at these locations before

moving to a new location. From the model observer’s perspective, if a signal-absent loca-

tion looks similar to the signal, it produces a stronger response. Therefore, if a location

looks similar to the target, humans fixate longer at those locations, and model observers

produce a stronger response. This is the rationale behind comparing the time spent on

maps of radiologists against the response maps of the model observers. This analysis was

done in two ways, 1. By picking the top response locations and seeing how much time was

spent at those locations. By picking the top 1% locations, we showed that radiologists

spent significantly longer at the top locations from CNN. 2. Correlation coefficient can

be computed between the two maps to see how similar they are. Using this method, we

showed that the correlation is higher for CNN and significantly better than for the FCO.

We noticed a correlation between Individual radiologists and the average radiologist map

(from the rest of the radiologists who saw this phantom), resulting in a lower correlation

potentially explained by the radiologists’ under-exploration. We repeated this process

both with the microcalcification and mass signals’ response maps. The significant re-

sults are only present for the mass response maps suggesting that locations looking like

mass-signal are more confusing for radiologists, who tend to spend more time at these

locations.
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4.7 Conclusion

With the advancements in simulation techniques, we can now generate realistic phan-

toms that are ideal to develop and optimize medical imaging technology without the

high costs of clinical trials.. Data-driven methodologies like convolution neural networks,

whose modeling does not require signal and background statistics are a viable alternative

to the traditional ideal observer. By using general-purpose architectures that can handle

different types of data and segmentation-based networks, we can also make this viable

IO alternative for signal localization. We also showed the segmentation-based CNN’s

predictive ability to predict where radiologists will fixate the most.

In the current work, we showed that a segmentation-based CNN could function as an

anthropomorphic observer for the search task of DBT phantoms. As part of future work,

current work can have three significant directions. First, foveation can be integrated

into CNN to show that it will make it an even better anthropomorphic observer. Second,

Model generalization can be explored by repeating the current analysis on many datasets.

Third, changes to the architecture and training process can be explored to reduce training

time without losing generality. With these research directions, it is possible to create

faster-trainable easily-generalizable anthropomorphic CNN models.
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Future work

To apply the foveated search transformer model for the task of tumor search, we finetuned

the FoveaTer model trained on the ImageNet dataset. We showed promising preliminary

results on two-dimensional virtual mammograms.

5.1 Training details

We used the radial-polar pooling regions with a scale of 0.21. During training, three

fixations are made by the model, with the initial fixation at a random location in the

image. Input to the model is of size 512× 512 resulting in a feature map of size 64× 64

at the output of the convolution backbone. Two signal types are used: microcalcifica-

tion and mass, which correspond to smaller and bigger lesions, respectively. Since the

input data type is different from the natural images, we finetuned all the parameters in-

stead of only the attention-related parameters as we did for the case of computer mouse

search. We analyzed two types of virtual mammograms, 1. Simulated using filtered noise

backgrounds, and 2. Digital Breast Tomosynthesis phantoms (DBTs).

DBT Dataset: DBTs are generated using the OpenVCT virtual breast imaging tool
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Figure 5.1: Tumor search in DBT: Search performance of the model on microcal-
cification and mass signal types.

from the University of Pennsylvania. For DBTs, we had 950, 100, and 100 phantoms for

training, validation, and testing, respectively. All datasets have a 1:1 signal present to

absent ratio. Each phantom is a 3D image of size 2048× 1792× 64, where 2048 and 1792

are the height and width, respectively, and 64 is the number of slices in each phantom.

We selected the central slice of the signal location for the signal-present phantoms, and

for the signal-absent phantoms, we selected a random slice. We selected one-quarter of

the slice height to give as input to the model.

5.2 Results

During the model training, the model fixated at a random initial fixation. Overall

results are shown in Figure 5.1.
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Figure 5.2: Visualization of DBT tumor search for microcalcification

The sample image for microcalcification and mass search is shown in Figure 5.2 and

Figure 5.3, respectively.

5.3 Future direction

We intend to update the task of the foveated search model from image-level classifi-

cation to segmentation. We believe this will help us in the training of the model and also

extend the search task to multiple objects. We want to explore the possibility of predict-

ing human perceptual behavior using the search transformer model. This can potentially

be done in stages: First, we can replicate the eccentricity performance of the radiologists

by learning the scale hyperparameter of the radial-polar pooling region (similar to how

we did for the mouse search task). Then we can try to model the visual search patterns of
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Figure 5.3: Visualization of DBT tumor search for mass

the radiologists, which can help model radiologist behavior in real clinical images, which

is impossible with linear model observers.
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Appendix

A.1 Alternate model

We present a less biologically plausible Foveated model in this section. With this

architecture, the ensemble model can outperform the Baseline model.

DeiT-Small [59]: The DeiT-Small architecture begins with a convolution embed-

ding layer that transforms the [3, 224, 224] input image into a [384, 14, 14] representation

whose spacial size is 14× 14, followed by a series of twelve transformer blocks, each sized

for a 384-dimensional embedding.

Foveated model: Model architecture is shown in Figure A.1. The Foveation module

can be plugged-in at any stage of the transformer architecture. The first m transformer

layers process full-resolution features, and the last (N-m) transformer layers process the

pooled features from the foveation module. The input image is first passed through

the embedding layer resulting in a feature vector of size [384, 14, 14]. After adding the

position embedding and flattening the spatial size of the embedding layer output, the

resultant full-resolution feature vector of size [384, 196] is passed through the m trans-

former blocks along with a learnable vector of size 384 values, called a class token. As the
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Figure A.1: FoveaTer architecture: Solid black arrows denote the flow of image-re-
lated features. N is the total number of transformer layers. The foveation module
performs fixation-dependent pooling. Accumulator uses the attention weights from
the last transformer layer of past and present fixations to predict the next fixation
location. Model blocks within the yellow region are executed for each fixation.
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Condition Model Fixations Type Throughput Acc@1

Baseline DeiT-Small Baseline 323 79.83

Pooled
DeiT-Small Pool 592 73.64

Model CF-1 564 75.2

Upper
bound

Oracle CF-3 DS 507 80.36
Oracle CF-3 Ens 388 84.27

Optimal
CF-3 DS 489 78.31
CF-3 Ens 348 79.99

Table A.1: Throughput and Accuracy on ImageNet: We compare our models against
the baseline model using Top-1 accuracy and Image throughput. (DS - Dynamic stop,
Ens - Ensemble, Pool - uniform 5× 5 pooling, CF - central fixation)

same size is maintained at the input and output of the transformer layer, a feature vector

of size [384, 196] is obtained at the input of the Foveation module. Then, we perform

fixation-dependent average-pooling using the Foveation module, resulting in features of

size [384, 22]. Under this non-uniform average-pooling model, locations closer to the fix-

ation location use smaller neighborhoods for pooling than locations far from the fixation

location. Pooled features of size [384, 22] along with the class token are passed through

the remaining (N-m) transformer layers. We use the self-attention weights corresponding

to the class token from the last transformer layer to predict the next fixation location.

Finally, the classification layer transforms the class token into a logits vector. During

training, the total number of fixations is limited to five fixations.

We use a 6-6 configuration, i.e., six transformer layers before the Foveation module

and six transformer layers after it. We present the results on the ImageNet dataset

in Table A.1. The original full-resolution model is referred to as ’Baseline’, which has

a throughput of 323 and Top-1 accuracy of 79.83. Since the first level of the pooling

region is of size 5 × 5, we construct a pooled version of the baseline model using 5 × 5

average-pooling. We compare this with the foveated model with one fixation at the image

center, with approximately the same throughput. The foveated model with single fixation
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outperforms the pooled baseline model, as shown in row 3. ’Oracle’ refers to the model

with perfect Dynamic-stop, i.e., it knows the ground truth and stops the model when

the prediction matches the ground truth. Since ’Oracle’ has the perfect stopping rule, it

provides the upper bound on the performance of the Dynamic-stop model. Dynamic-stop

and Ensemble performance is computed. Finally, the Foveated model’s ensemble model

outperforms the Baseline model in terms of throughput and accuracy.
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A.2 Scene categories used for Psychophysics exper-

iment

Classes present in the scene classification task,

1. airport terminal

2. amphitheater

3. assembly line

4. bamboo forest

5. banquet hall

6. basement

7. beach

8. boxing ring

9. bus interior

10. canal natural

11. canyon

12. classroom

13. cliff

14. corn field

15. department store
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16. desert sand

17. dining room

18. forest path

19. glacier

20. greenhouse indoor

21. gymnasium indoor

22. jail cell

23. museum indoor

24. phone booth

25. railroad track

26. sauna

27. subway station platform

28. water park

29. wind farm

30. zen garden
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A.3 Comparison of FoveaTer with existing models

Luo (2016) Reddy (2020) Ours
Dataset ImageNet CIFAR10, ImageNet,

ImageNet Places365 subset
Baseline CNN (AlexNet, CNN Vision Transformer

Architecture VGG, GNT) (ResNet) (deit)
Image scaling Yes No No
Adversarial BFGS, FGSM, PGD
attacks sign method PGD

Resource usage 1x Retinal - Nx 0.8x
(N fix) Cortical - 1x for 3 fix

Foveation Input image Input image can plug-in
Location anywhere

Table A.2: Comparison with existing models

Comparison with existing models, which show the robustness of the foveated systems

against adversarial attacks, is demonstrated in Table A.2. Our model is based on Vision

transformer architecture compared to the other models on CNN architectures. Our model

can also be extended to have a convolution backbone, as shown in the supplementary

material. We do not perform any image scaling. Our resource usage is 0.8× that of the

full resolution model. We allow the possibility of applying foveation to an intermediate

feature map rather than restricting it to be applied only to the input image.
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Per-Pixel threshold CALC 2D MASS 2D CALC 3D MASS 3D
1 0.5 0.985 1 0.90

0.95 0.5 0.9992 1 0.941
0.9 0.5 0.9988 0.997 0.917
0.85 0.5 0.9992 0.9948 0.8892
0.8 0.5 0.9992 0.9948 0.8576
0.75 0.5 0.9968 0.992
0.7 0.5 0.994 0.9848
0.65 0.5 0.9942 0.975
0.6 0.9864 0.9944
0.55 0.9944 0.9926
0.5 0.9956 0.9908
0.45 0.996 0.978
0.4 0.9882 0.9654

Table A.3: AUC of the validation set

A.4 Computation of Per-Pixel threshold

Four per-pixel thresholds are computed corresponding to the 2D microcalcification,

3D microcalcification, 2D mass and 3D mass models. After reducing the per-pixel thresh-

old in steps of 0.05, the threshold that maximizes the AUC of the validation set is selected

as the per-pixel threshold for the validation set. Table A.3 shows the AUC value of the

validation set for various per-pixel thresholds, where highest AUC for each model is shown

in bold. Once the AUC drops significantly, we no longer need to sweep the threshold for

that model.
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A.5 Slice weights for the 3D template of CHO and

FCO models

The CALC weights of both model observers have a peak in the middle, consistent

with the CALC signal decaying faster. However, the MASS, which does not decay as

fast, has larger weights even towards the edges of the 3D template. The weights are

visualized in Figure A.2.
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Figure A.2: Slice weights used to train the 3D template of CHO and FCO. Learned
weights differ from the uniform weighting of 2D templates corresponding to all slices.
The CALC weights of both model observers have a peak in the middle, consistent
with the CALC signal decaying faster. However, the MASS, which does not decay as
fast, has larger weights even towards the edges of the 3D template.
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