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A Descent Basis for the Garsia-Procesi Module

Abstract

We define a combinatorial construction that gives a natural subset of the Garsia-Stanton descent

monomials whose images under the canonical projection Rn Ñ Rλ form a vector space basis of the

Garsia-Procesi module Rλ. As a consequence, our indexing set yields a new formula for the modified

Hall-Littlewood polynomials. Our work was discovered whilst searching for a basis of the Garsia-

Haiman module, and we discuss partial results in this direction, as well as other connections with

the modified Macdonald polynomials rHλpX; q, tq.
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I thank Nicolle Gonzáles for organizing a seminar during my third year on q, t-Catalan numbers

and the Shuffle Theorem, as well as Foster Tom, Aram Dermenjian, Jianping Pan, and Pranav

Trimedi for presenting at said seminar. This seminar was pivotal in my development as a mathe-

matician.

I thank (in no particular order) Brendon Rhoades, Jim Haglund, Anton Mellit, Allen Knutson,

Julianna Tymoczko, Martha Precup, Paul Zinn-Justin, Sean Griffin, Ivan Losev, Ben Elias, An-
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CHAPTER 1

Introduction

A complete flag in Cn is an increasing sequence of subspaces

F‚ “ pt0u “ F0 Ă F1 Ă ... Ă Fn “ Cnq

such that dimCFi “ i. The collection of flags in Cn is known as the complete flag variety

FlnpCq, and is a projective variety with a cell decomposition tCω : ω P Snu indexed by the

symmetric group Sn. The cells Cω are known as Schubert cells, with dimensions corresponding to

a certain combinatorial statistic on Sn. The flag variety (in type A) may also be thought of as

Fln “ GLnpCq{B, where B is the subgroup of all upper triangular matrices.

The i-th tautological line bundle on Fln is the line bundle Li whose fibre over flag F‚ is the line

Fi{Fi´1. Denote by xi “ ´c1pLiq to be its first Chern class. Borel, in his thesis, gave a presentation

of H˚pFlnq in terms of the xi:

H˚pFlnq –
Crx1, ..., xns

In
“: Rn

where In is the coinvariant ideal, In “ xeipxq, 1 ď i ď ny, Rn is called the coinvariant algebra,

and eipxq is the elementary symmetric function in the variables x1, ..., xn. We may think of In as

the ideal of all nonconstant symmetric functions.

As a vector space, dimCRn “ n!, so one would expect the existence of a basis indexed by

permutations π P Sn. In fact, there are two bases which correspond to certain combinatorial

statistics on Sn, known as the Artin and Garsia-Stanton bases, which we will introduce later. The

Garsia-Stanton basis especially is useful for representation-theoretic computations, such as in the

descent representations of Adin-Brenti-Roichman in [ABR03].

A very important family of subvarieties of Fln are the Springer fibres, indexed by nilpotent

operators X : Cn Ñ Cn which appear in the context of the (Grothendieck-)Springer resolution of
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the nilpotent cone N . If Xλ is a nilpotent operator with Jordan type λ, then the fibre lying over

Xλ is called the Springer fibre Bλ. Springer showed in 1976 [Spr76] that the cohomology ring

H˚pBλq carries an Sn-action. Furthermore, in top degree, this representation is irreducible, and is

precisely the Specht module Sλ. In fact, all irreducible Sn-modules arise this way; this is known as

the Springer correspondence.

The inclusion map Bλ ãÑ Fln induces a map in cohomology Φ : H˚pFlnq Ñ H˚pBλq. Hotta and

Springer showed in [Hot77] that this map is surjective, and Sn-equivariant, so that one would hope

to extend Borel’s combinatorial realization of H˚pFlnq to the Springer fibre. This was achieved by

DeConcini and Procesi in [CP81], and the relations were later simplified by Tanisaki in [Tan82].

This presentation of H˚pBλq is known as the Garsia-Procesi module Rλ, as Garsia and Procesi

constructed a monomial basis for Rλ in [GP92]. This remarkable basis is a subset of the Artin

monomials which varies with λ, and so one may ask if such a procedure can be done with the

Garsia-Stanton basis. In this work, we answer the question in the affirmative, give the construction

the indexing sets Dλ, J
maj
λ , and prove the following theorem:

Theorem 1.0.1. There is a set of Garsia-Stanton descent monomials

txa : a P Dλu “ txmajtpπq : π P Jmaj
λ u

depending on λ that forms a C-basis for the Garsia-Procesi module for the transpose partition, Rλ1.

In a subsequent chapter, we give various generalizations (to be stated as conjectures) of our

new basis as well.

The Frobenius character of the Garsia-Procesi moduleRλ is given by themodified Hall-Littlewood

polynomial rHλpX; tq:

FrobtpRλq – rHλpX; tq

By theorem 1.0.1, we have that the Hilbert series of Rλ can also be written as

HilbtpRλ1q “
ÿ

πPJmaj
λ

tmajpπq
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In fact, this can be generalized to yield a new formula for the (modified) Hall-Littlewood

polynomial:

Theorem 1.0.2. We have the following equalities:

(1.1) rHλ1pX; tq “
ÿ

πPJmaj
λ

tmajpπqFiDespπq,npXq “
ÿ

µ$n

ˆ

ÿ

πPJmaj
λ XShpµq

tmajpπq

˙

mµpxq

where Shpµq are the permutations of Sn such that 1, ..., µ1 appear in order, µ1 ` 1, ..., µ2 appear

in order, and so on.

These results were actually discovered while working towards a larger goal - finding a C-basis

for the Garsia-Haiman module Vλ. We give a bit of background and context here.

Let R “ Crx1, ..., xn; y1, ..., yns. The Hilbert Scheme of n points in C2 is the collection of ideals

I in R such that the C-dimension of R{I is n:

Hn “ HilbnpC2q “

"

I Ă R : dimCpR{Iq “ n

*

The Hilbert Scheme Hn can be thought of as a resolution of singularities of the space of

unordered tuples of n-points in C2:

SnpC2q “

"

rrP1, ..., Pnss : Pi P C2

*

via the Hilbert-Chow morphism σ : Hn Ñ SnC2, which sends an ideal I to its vanishing locus

(with multiplicity), σpIq “ V pIq. There is a well-known open covering of Hn corresponding to

partitions λ of n. Given a partition λ, we may draw the Ferrers diagram in the first quadrant of the

xy-plane (in French notation), and consider the monomials with exponents determined by them,

denoted Mλ. For example, M2,2,1 “ t1, x, y, xy, xy2u. Then, we can define the open set Uλ to be

Uλ :“ tI P Hn : Mλ is a C-basis for R{Iu
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There is a natural (generically) n!-sheeted cover of SnC2 by considering ordered tuples of n-

points in C2, denoted by pC2qn, and we may consider the pullback of pC2qn Ñ SnC2 along the map

σ to obtain the isospectral Hilbert Scheme Xn:

Xn pC2qn

Hn SnC2

π

σ

which has the explicit presentation Xn “ tpI;P1, ..., Pnq : P1, ..., Pn P V pIqu Ă Hn ˆ pC2qn. For

the singular point rr0, ..., 0ss, and a partition λ, there is a particular ideal Iλ P Uλ consisting of

monomials that lie outside the Ferrers diagram for λ:

Iλ :“ C ¨ txayb : pa, bq R λu

For example, I2,2,1 “ ty3, xy2, x2u. This can be seen by looking at the diagram:

1 x x2

y xy x2y

y2 xy2 x2y2

y3 xy3 x2y3

The coordinate ring of the fibre over Iλ in Xn is a nonreduced local ring Vλ :“ Crx,ys{Jλ,

where Jλ is the annihilating ideal of a certain determinant ∆λ. Vλ is known as the Garsia-Haiman

module, and there is a dual version defined as the vector space span of ∆λ under the action of the

partial derivative operators Bx, By:

V 1
λ :“ CrBx, Bys ¨ ∆λ

Both Vλ and V 1
λ carry an Sn action, and are isomorphic as doubly graded Sn modules. Mark

Haiman established in [Hai01] that the C-dimension of Vλ is n! by a geometric argument, resolving
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the famous n!-conjecture. Since the proof of the n!-conjecture, however, the following question is

still open:

Problem 1. Find a vector space basis of Vλ or V 1
λ.

This problem is decidedly difficult. Bases have been constructed for hook shapes (by Adin,

Remmel, Roichman in [ARR07]), and for two-column shapes (by Assaf-Garsia in [AG09]). We

will give a conjectured basis for all shapes at top t-degree.

The original motivation for the problem was to first construct a basis at bottom x-degree q “ 0,

and then extend the basis to the entire Garsia-Haiman module. Theorem 1.0.1 is the result of the

first step, and conjecture 5.4.5 is a first step of this extension.

The modified Macdonald polynomials rHλpX; q, tq are a family of symmetric functions in Cpq, tq

that generalize various families of symmetric functions, most notably the modified Hall-Littlewood

polynomials:

rHλ1pX; qq “ rHλpX; q, 0q rHλpX; tq “ rHλpX; 0, tq

The Garsia-Haiman module was actually constructed in [GH93] as a representation-theoretic

model of rHλpX; q, tq, so that Frobq,tpV
1
λq “ rHλpX; q, tq. The resolution of the n!-conjecture proved

this statement, which implies the famous Macdonald positivity conjecture, that rKµλpq, tq P Npq, tq

in

rHλpX; q, tq “
ÿ

µ$n

rKµλpq, tqsµpxq

Problem 2. Find a combinatorial formula for rKµλpq, tq.

Partial results include the case of three columns by Blasiak [Bla14], hooks and two columns by

Assaf [Ass17], and the original Yamanouchi-word formula for two-column shapes in [HHL05b].

The existence of a basis for Vλ would be a significant step towards establishing a combinatorial

formula for rKµλpq, tq.

5



CHAPTER 2

Background

2.1. The Symmetric Group, Permutation Statistics, and the Coinvariant Algebra

Let n P N. The symmetric group Sn lies at the intersection of algebraic combinatorics, repre-

sentation theory, symmetric function theory, algebraic geometry, among other fields. It is given by

the following definition:

Sn “

C
σ2
i “ 1

σ1, ..., σn´1 σiσj “ σjσi if |i ´ j| ě 2

σiσi`1σi “ σi`1σiσi`1 for i “ 1, ..., n ´ 2

G

where the σi are referred to as Artin generators or simple transpositions, and the second two

relations are known as the braid relations. Letting rns “ t1, 2, ...nu, we can represent elements of

Sn as bijections π : rns Ñ rns. It will be very advantageous to represent π in one-line notation, by

writing π “ πp1q...πpnq “ π1...πn. We will use the notations interchangeably when it does not cause

confusion. Then, the Artin generator σi can be identified with the permutation 12...pi ` 1qi...n in

one-line notation.

Next, for k, n P N, let

rksq “ 1 ` q ` ... ` qk´1

rnsq! “ rnsqrn ´ 1sq...r2sqr1sq

denote the q-analogues of k and n!. If we specialize to q “ 1, we have that rks1 “ k, and

rns1! “ n!.

The combinatorial structure of Sn is a rich and fascinating subject, having preoccupied combi-

natorialists for decades. Among one of the most interesting subjects is that of permutation statistics
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associated to Sn (or more general objects), that is, a weight function stat : Sn Ñ Zě0. In our case,

we will be particularly interested in statistics such that

ÿ

πPSn

qstatpπq “ rnsq!

We give two such statistics below, both of which are well known.

2.1.1. Inversions and Lehmer Codes. Let π P Sn. Then, consider the set of inversions of

π, denoted

Invpπq “

"

pπi, πjq : i ă j, πi ą πj

*

in other words, the number of pairs pπi, πjq such that the larger entry appears to the left. In

this scenario, we say that πi attacks πj . Denote invpπq “ #Invpπq, and let bk “ #tpx, kq P Invpπqu

denote the number of elements that attacks k in π. Then, define the Lehmer code or the inversion

table of π to be given by the following tuple:

invtpπq “ pb1, ..., bnq

We denote the set tinvtpπq : π P Snu “ En. Now, let rks “ t0, 1, ..., ku. It is well known (for

example, see [Sta11]) that

"

invtpπq : π P Sn

*

“ rn ´ 1s ˆ ... ˆ r0s

Noting that invpπq “ b1 ` ... ` bn, we see that

ÿ

πPSn

qinvpπq “
ÿ

πPSn

qb1`...`bn “
ÿ

pb1,...,bnqPrn´1sˆ...ˆr0s

qb1`...`bn

“

ˆ

ÿ

b1Prn´1s

qb1
˙

...

ˆ

ÿ

bnPr0s

qbn
˙

“ rnsq...r1sq “ rnsq!

If we write π “ σi1 ...σik as a reduced word (so that k is minimized), then it will turn out that

k “ invpπq.
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Example 2.1.1. Let π “ 53421. Then, the inversions are

Invp53421q “ tp5, 3q, p5, 4q, p5, 2q, p5, 1q, p3, 2q, p3, 1q, p4, 2q, p4, 1q, p2, 1qu

so that invp53421q “ 9 and invtp53421q “ p4, 3, 1, 1, 0q.

2.1.2. Major Index and Descent Tables. We now define a second permutation statistic

called major index, named after Major Percy MacMahon.

Let π P Sn. A descent of a permutation is an index i such that πi ą πi`1. The set of descents

of π is denoted Despπq, and let majpπq “
ř

iPDespπq i denote the major index of π, which is the sum

of the indices of the descents.

Denote the runs of π to be the maximal consecutive increasing subsequences, and label the

runs from right to left, beginning with 0. Let ai denote the run label of i, and set

majtpπq “ pa1, ..., anq

We will refer to majtpπq as the descent composition or the major index table of π, and set

Dn “ tmajtpπq : π P Snu to be the collection of major index tables. It is straightforward to show

that majpπq “ a1 ` ... ` an.

We record an important fact here.

Lemma 2.1.2. Let a P Zn
ě0. Then, a P Dn if and only if a contains a 0, and the rightmost i

contains and i ´ 1 to the left for all i ą 0.

Proof. Suppose a P Dn, with majtpπq “ a. Then, the last entry πj “ i of the rth run (if r

is not the last run) is necessarily a descent. This implies that πj “ i ą i1 “ πj`1, so that i1 ă i

and ai1 “ r ´ 1 appears to the left of ai. There must be a 0 because if π is nonempty, the run

labels always begin with 0 from the rightmost run. To see the converse, the existence of a 0 asserts

the existence of the rightmost run, and the second condition asserts that the final entries of each

run are greater than the first entries of the run to the right of it. This guarantees that we have a

well-defined permutation. □

8



Example 2.1.3. Let π “ 81725346. Then, the runs are 8, 17, 25, 346 with labels 3, 2, 1, 0

respectively, and majtpπq “ 21001023.

We record another useful definition and lemma.

Definition 2.1.4. An inverse descent of a permutation π is an entry i such that π´1piq is a

descent of π´1. Equivalently, i P iDespπq if and only if i ` 1 appears to the left of i in one-line

notation.

Lemma 2.1.5. Let π P Sn, majtpπq “ pa1, . . . , anq. We have that i P iDespπq if and only if

ai ă ai`1.

Proof. That i P iDespπq is equivalent to the statement that i ` 1 occurs before i in one line

notation. This is true if and only if i ` 1 occurs in an earlier run, as a descent must occur between

them. But this is precisely the assertion ai ă ai`1. □

In 1913, MacMahon showed that

ÿ

πPSn

qmajpπq “ rnsq! “
ÿ

πPSn

qinvpπq

so that maj is equidistributed with inv for Sn.

Remark 2.1.6. For direct bijections f : Sn Ñ Sn that swaps inv and maj, there is the Foata

bijection described in [Sta99] or the Carlitz bijection described in [Gil16].

2.1.3. The Coinvariant Algebra, Artin and Garsia-Stanton Descent Monomials.

The coinvariant algebra is defined to be

Rn “
Crx1, ..., xns

xe1pxq, ..., enpxqy

is the quotient of the polynomial ring in n variables by the ideal of nonconstant symmetric

functions. Here, edpxq denotes the sum of all degree d squarefree monomials in the variables

x1, ..., xn.
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It is well known that Rn is a finite-dimensional vector space over C of dimension n!. There are

two well-known bases for Rn, which we now define. Given a composition α “ pα1, ..., αnq P Zn
ě0,

define xα P Crx1, ..., xns by xα “ xα1
1 ...xαn

n , and set revpαq “ pαn, ..., α1q.

‚ The Artin basis is defined to be the set An “ txrevpinvtpπqq : π P Snu

‚ The Garsia-Stanton basis ( [GS84]) is defined to be the set Dn “ txmajtpπq : π P Snu

which correspond to the permutation statistics inv and maj respectively.

Remark 2.1.7. The usual definition for the Garsia-Stanton monomial is

gπpxq “
ź

i:πiąπi`1

xπ1 ...xπi

It is straightforward to show that the two definitions agree.

The coinvariant algebra Rn is naturally graded by degree, so that we may write

Rn “

pn2q
à

i“0

Rpiq
n

where R
piq
n denotes the degree i part of Rn. Then, since Aπ (or Dn) is a basis of Rn, we must have

that

pn2q
ÿ

i“0

dimC
`

Rpiq
n

˘

qi “
ÿ

πPSn

qinvpπq “ rnsq!

Remark 2.1.8. Borel showed in 1951 that Rn – H˚pFlnq, the cohomology ring of the complete

flag variety Fln. Indeed, there is an affine paving (by Schubert cells) of Fln whose cells are indexed

by permutations, the dimension of which is precisely given by invpπq. It will turn out that inv is

more illuminating for geometric computations, but maj is more natural for representation-theoretic

concerns.

2.1.4. Words. Given an alphabet A (usually Zě0 or N), a word of length n is a string consist-

ing of entries from A. We will denote the set of words with entries in A by W pAq, and the subset

of words of length n by WnpAq. When the alphabet is clear, we will simply denote this by Wn. We
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will alternate between the notations w “ w1 . . . wn “ pw1, . . . , wnq depending on the context, when

it does not cause confusion.

If A “ ta1 ă a2 ă . . . u is totally ordered and countable, we may define the content of a word

to be

contentpwq “ pb1, b2, . . . q P

|A|
à

i“1

Zě0

where bi “ |tj : wj “ aiu| denote the number of times ai appears in w. We will assume all

alphabets to be totally ordered and countable.

If A “ N, then Sn can be identified with the collection of words of content p1, . . . , 1

n

, 0, . . . q.

If w “ w1 . . . wn P Wn we define the reverse of the word to be revpwq “ wn . . . w1. Very often,

words will index monomials in a polynomial ring, and so given a set of indeterminates txa : a P Au

indexed by an alphabet A, we will define

xw “ x|w| “ xw1 . . . xwn

Let A “ ta1 ă a2 ă . . . u, and w P WnpAq be a word with content pb1, b2, . . . q Then we may

define the standardization of the word to be the result of the following procedure:

(1) Let bj is the smallest nonzero entry of contentpwq, let wi1 , . . . , wibj
denote the entries with

wik “ j. Replace these entries with a1, . . . , abj respectively.

(2) Repeat for other nonzero bj ’s following alphabetical order.

2.2. Partitions, Tableaux, Robinson-Schensted-Knuth Correspondence

We now discuss the representation theory of Sn.

2.2.1. Partitions and Tableaux. A partition of n is a weakly decreasing sequence of numbers

λ “ pλ1, ..., λℓq with λ1 ě ... ě λℓ such that λ1 ` ... ` λℓ “ n. We often denote this by λ $ n. A

Young diagram of a partition λ is a finite collection of left-justified boxes (or cells) such that the

number of boxes in each row corresponds to the parts of λ.
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There are two conventions for Young diagrams, both of which we will use. In English notation,

the rows will weakly decrease in size moving downward, and weakly increasing for French notation.

For instance if λ “ p6, 5, 2, 2, 1q:

English: French:

We will often fill Young tableau with numbers; these will be referred to as Young tableaux. In

English notation (resp: French), Young tableau is semistandard if it weakly increases along rows,

and strictly increases downward (resp: upward) along columns, and standard if it strictly increases

along rows and columns. The content of a Young tableaux T is a composition α “ pα1, ..., αkq,

where αi is the number of i’s that appear in T . We denote the set of standard Young tableaux

of shape λ by SYTpλq, the set of semistandard Young tableaux of shape λ by SSYTpλq, and the

subset of SSYTpλq with content α by SSYTpλ, αq.

Let λ, µ be partitions, with the Young diagram of µ completely contained in the diagram of λ.

The skew shape λ{µ is the partition obtained by deleting the shape µ from λ. A ribbon is a skew

shape that does not contain a 2 ˆ 2 box.

Example 2.2.1. If λ “ p4, 3, 2q and µ “ p2, 1q, then in English notation,

λ{µ “

which is a ribbon, as it contains no 2 ˆ 2 box.

We will let λ1 denote the conjugate or the transpose of a partition, and

ηpλq “
ÿ

i

ˆ

λ1
i

2

˙

“
ÿ

i

pi ´ 1qλi

denote the usual Macdonald statistic.

There is an important partial order on partitions, known as dominance order.
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Definition 2.2.2. We say that µ Ĳ λ, or µ dominates λ if:

µ1 ď λ1

µ1 ` µ2 ď λ1 ` λ2

. . .

µ1 ` ¨ ¨ ¨ ` µmintℓpµ,λqu ď λ1 ` ¨ ¨ ¨ ` λmintℓpµ,λqu

It is well known that µ Ÿ λ implies that ηpµq ą ηpλq, and that µ Ĳ λ if and only if µ1 İ λ1.

More generally, composition of n is a tuple α “ pα1, ..., αkq P Zk
ą0 such that α1 ` ... ` αk “ n.

An α P Zk
ě0 is referred to as a weak composition. The underlying partition of a composition α is

the partition λ “ sortpαq obtained by sorting the parts of α in weakly decreasing order.

Very often, compositions will index exponents in a polynomial ring in the variables x1, ..., xn.

As shorthand, we will often write, for a weak composition α P Zn
ě0,

xα :“ xα1
1 ...xαn

n

2.2.2. The Robinson-Schensted-Knuth Correspondence, Knuth Equivalence. For

brevity, we refer the reader to [Sta99] for details, and give only an overview here.

The Robinson-Schensted-Knuth correspondence (often abbreviated by RSK) is a theorem at the

heart of representation theory, which is a bijection

Sn ÐÑ
ğ

λ$n

SYTpλq ˆ SYTpλq

which uniquely associates a permutation to a pair of standard Young tableaux of the same

shape. We will often write π ÞÑ pP,Qq, where P is the insertion tableau, and Q is the recording

tableau, and write P “ inspπq, Q “ recpπq. P is obtained by performing row insertion on the

permutation π, and Q records the position of each new entry.

Since row insertion is well defined for words in the alphabet N, letting Wn denote the words

with length n, we may perform RSK to obtain a correspondence

13



Wn ÐÑ
ğ

λ$n

SSYTpλ, dq ˆ SYTpλq

where now the insertion tableau need not be standard, as Wn may have repeated letters, and

SSYTpλ, nq denotes the semistandard Young tableau of shape λ whose entries are no greater than

n. We remark that there are more general versions or RSK, but the above two will suffice for our

purposes.

Let W pAq denote the set of words in an alphabet A. The elementary Knuth transformations

(or Knuth moves) on WA are given by:

xzy ÐÑ xzy, x ď y ă z

yxz ÐÑ yzx, x ă y ď z

We say that two words w,w1 are Knuth-equivalent if w can be obtained from w1 by performing a

series of Knuth moves. Define the plactic monoid on A to be the W pAq modulo Knuth equivalence,

denoted W pAq˚.

Proposition 2.2.3. [Ful96] Two words w,w1 are Knuth-equivalent if and only if inspwq “

inspw1q, that is, they have the same insertion tableau.

The elementary dual Knuth transformation τi exchanges i, i ` 1 if and only if i ´ 1 or i ` 2

occur between them. If w can be obtained from w1 by performing a series of elementary dual Knuth

transformations, we say that w,w1 are dual Knuth equivalent. For example, w “ 43251 ” 53241 “

w1 since 3 occurs between 4, 5, and τ3pwq “ w1. We have the following proposition:

Proposition 2.2.4. [Ful96] Two words w,w1 are dual Knuth equivalent if and only if recpwq “

recpw1q, that is, they have the same recording tableau.

This follows from 2.2.3 since dual Knuth equivalence of w,w1 is the same as Knuth equivalence

of their inverses (defined via generalized permutations, see [Ful96]). Then the proposition follows

from the fact that if w ÞÑ pP,Qq, then w´1 ÞÑ pQ,P q, which is well known.

14



2.3. Symmetric Functions and Frobenius Characteristic of Sn-modules

We now give a brief overview of symmetric functions.

2.3.1. Basic Notions. Let R be a ring (usually R “ C or R “ Q), and consider the formal

power series ring in infinitely many variables S “ Rrrx1, x2, ...ss. We often abbreviate fpx1, x2, ...q “

fpxq “ f . Let S8 denote the group of permutations of N. We can define an action of S8 on S

by setting π ¨ fpx1, x2, ...q “ fpxπp1q, xπp2q, ...q for π P S8. Then, we say that f P S is a symmetric

function if π ¨ f “ f for all π P S8.

It is easy to check that collection of symmetric functions ΛR Ă S is a ring, and naturally inherits

the grading of S. Denoting the homogeneous degree n symmetric functions by Λn
R, we may write

ΛR “

8
à

n“0

Λn
R

with Λ0
R “ R.

If R is a field, then ΛR has a natural structure of a R-vector space. We will always choose

R “ Q. We give a few well-known bases:

‚ The monomial symmetric functions

mλpxq “
ÿ

i1,i2,...,ildistinct

xλ1
i1
xλ2
i2
...xλl

il

‚ The elementary symmetric functions eλpxq “ eλ1eλ2 ...eλl
where

erpxq “
ÿ

i1ă...ăir

xi1 ...xir

‚ The power sum symmetric functions pλpxq “ pλ1pλ2 ...pλl
where

prpxq “
ÿ

i

xri

‚ The complete homogeneous symmetric funtions, hλ “ hλ1hλ2 ...hλl
where

hrpxq “
ÿ

i1ď...ďir

xi1 ...xir

15



‚ The Schur functions

sλpxq “
ÿ

TPSSYTpλq

x|T |

, where x|T | “ xT1
1 xT2

2 ... and Ti is the number of i’s in T .

The Hall inner product is defined to be orthonormal on the Schur basis, that is,

xsλpxq, sµpxqy “ δλµ

and extended linearly in both arguments.

2.3.2. Sn-modules and the Frobenius Characteristic Map Frob. It is well known that

the irreducible Sn representations are indexed by partitions λ $ n, and are referred to as Specht

modules. We will denote the unique irreducible corresponding to λ by Sλ.

Given an Sn-module V (over a field of characteristic 0) we may write

V “
à

λ$n

V ‘cλ
λ

where cλ is the multiplicity of Vλ. Then, the Frobenius characteristic of V is given by

FrobpV q “
ÿ

λ$n

cλsλpxq

If V is a graded Sn-module, say V “
Àk

i“1 V
piq, then we write

FrobqpV q “

k
ÿ

i“1

FrobpV piqqqi P ΛQpqq

and for doubly-graded Sn-modules, say V “
À

pi,jq V
pi,jq, we write

Frobq,tpV q “
ÿ

i,j

FrobpV pi,jqqqitj P ΛQpq,tq

The Hilbert series of a graded (or bigraded) Sn module is given by

HilbqpV q “ xhp1nq,FrobqpV qy “
ÿ

i

dimQpV piqqqi

16



Hilbq,tpV q “ xhp1nq,Frobq,tpV qy “
ÿ

i,j

dimQpV pi,jqqqitj

We can think of the Hilbert series as a generating function for the Q-dimensions in each graded

component of V .

2.3.3. Quasisymmetric Functions. A quasisymmetric function (as defined in [Sta99]) in

Qrrx1, x2, ...ss is a formal power series f “ fpxq such that for any pa1, ..., akq P Nk, we have

rxa1i1 . . . xakik sf “ rxa1j1 . . . x
ak
jk

sf

for all pairs of strictly increasing sequences i1 ă ... ă ik and j1 ă ... ă jk, and rxαsf denotes

the coefficient of xα in f .

We can similarly study the Q-vector space structure of Qn, the space of homogeneous degree n

quasisymmetric functions. As symmetric functions are indexed by partitions λ $ n, quasisymmetric

functions are often indexed by compositions α of n. Following Stanley’s notation, given α “

pα1, ..., αkq, let Sα “ tα1, α1 ` α2, ...α1 ` ... ` αk´1u.

Then, define the Gessel fundamental quasisymmetric functions Fα,npxq to be given by

FSα,npxq “ Fα,npxq :“
ÿ

i1ď...ďin
ijăij`1 if jPSα

xi1 ...xin

in other words, monomials whose indices must necessarily increase at the positions marked by

α. It is well known that the Fα’s form a Q-basis of Qn. Very often, Sα will be a descent set, or an

inverse descent set of a permutation.

2.4. Macdonald Polynomials and the Garsia-Haiman Module

2.4.1. Combinatorial Formula for the (modified) Macdonald Polynomials. Haglund

[HHL05b] made a breakthrough (or as Garsia put it, ”found water on Mars”) in 2005 when he

discovered a combinatorial formula for the modified Macdonald polynomials rHλpX; q, tq. We briefly

recall the definition below.
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Let λ $ n, and we will consider fillings σ : λ Ñ Zą0 of positive integers, where λ is drawn in

French notation. A descent is a pair of entries that are connected vertically, with the greater top

entry. If a ą b, then the square containing a in

a

b

is a descent. Denote the set of descents by Despσq. An attacking pair in λ is a pair of cells such

that:

‚ They are in the same row:
a b

‚ They are in consecutive rows, with the cell in the upper row strictly to the right:

. . . a

b

In both cases, if a ą b, then the pair is said to be an inversion of σ. We denote the inversions

of σ by Invpσq.

The arm of a cell u P λ is the number of cells strictly to the right in the same row of u, and

the leg is the number of cells strictly above in the same column. For example, we have armpuq “ 4

and legpuq “ 2 in

l

l

u a a a a

Then, Haglund’s statistics are given as follows:

majpσq “
ÿ

uPDespσq

plegpuq ` 1q

invpσq “ | Invpσq| ´
ÿ

uPDespσq

armpuq

Haglund’s major index can be thought of as major index of each column individually, viewed

as words. The inversion statistic can be thought of as counting the inversion pairs in the bottom

row, as well as triples of the form
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u w

v

which contribute 1 to invpσq if the entries increase in counterclockwise order, and contribute 0

if they increase in clockwise order.

Theorem 2.4.1. [HHL05b] We have

(2.1) rHλpX; q, tq “
ÿ

σ:λÑZ`

qinvpσqtmajpσqxσ

Consider the Schur expansion of rHλpX; q, tq:

rHλpX; q, tq “
ÿ

µ

rKµ,λpq, tqsµpxq

where rKµ,λpq, tq are the famous q, t-Kostka numbers. It is quite a remarkable fact that rKµ,λpq, tq P

Npq, tq, yet a combinatorial formula for all shapes remains a great mystery at the time of this writ-

ing.

The Macdonald polynomials are uniquely defined by a set of triangularity axioms, which we

record here for later use:

‚ (T1). rHλrXp1 ´ qq; q, ts “
ř

µİλ cµλpq, tqsµpxq

‚ (T2). rHλrXp1 ´ tq; q, ts “
ř

µİλ1 dµλpq, tqsµpxq

‚ (N). x rHλ, spnqy “ 1

2.4.2. The Garsia-Haiman Module. Let λ $ n be a partition, and consider the set of

integer points in the first quadrant of the xy-plane corresponding to the Young diagram of λ:

dpλq “ tpp, qq : p ă λq`1u

for example, for λ “ p2, 2, 1q, we have

p0,2q

p0,1qp1,1q

p0,0qp1,0q
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Let R “ Crx1, ..., xn; y1, ..., yns “ Crx,ys consider the R-valued matrix M “ px
pj
i y

qj
i q1ďi,jďn.

Denote its determinant by ∆M , and consider the C-vector space spanned by all partial derivatives

of ∆M :

V 1
λ :“ CrBx, Bys ¨ ∆M

We refer to V 1
λ as the Garsia-Haiman module, first defined in [GH93]. Let Sn act on V 1

λ diag-

onally, that is, π ¨ fpx1, ..., xn; y1, ..., ynq “ fpxπp1q...xπpnq; yπp1q, ..., yπpnqq. The Sn-module structure

of V 1
λ played an instrumental role in the resolution of the Macdonald positivity conjecture, which

states that rHλpX; q, tq is Schur positive. The final step is known as the n!-theorem proved by Mark

Haiman:

Theorem 2.4.2. [Hai01] The C-dimension of V 1
λ is n!.

Corollary 2.4.3. [GH93] We have that

rKµ,λpq, tq “
ÿ

r,s

xχµ,Frobq,tpV
1
λqpr,sqy

so that Frobq,tpV
1
λq “ rHλpX; q, tq, and so rHλpX; q, tq is Schur-positive.

2.5. Hall-Littlewood Polynomials and the Garsia-Procesi Module

2.5.1. (Modified) Hall-Littlewood Polynomials.

Definition 2.5.1. [LS78] Let π P Sn. Then, define the charge of π to be

cpπq :“ majprevpπ´1qq “
ÿ

iRDespσ´1q

pn ´ iq

Given a word w with in the alphabet N with content µ $ n with length ℓ, we can compute

charge of w by computing the standard subwords wp1q, ..., wpℓq, which are obtained by cyclically

moving left to right, extracting the first instance of 1, 2, ..., µi, then removing the subword wpiq. We

refer the reader to [LS78] for more details.

Then, noting that each wpiq P Sµi , the charge of a word is defined to be
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cpwq :“ cpwp1qq ` ... ` cpwpℓqq

and the charge of a tableau T P SSYTpλ, µq is defined to be the charge of its reading word.

For partitions λ, µ, the Kostka-Foulkes polynomials Kλ,µpqq are defined to be

(2.2) Kλ,µpqq :“
ÿ

TPSSYTpλ,µq

qcpT q

and the transformed Hall-Littlewood polynomials HλpX; qq can be defined by

(2.3) HλpX; qq :“
ÿ

µ

Kµ,λpqqsµpxq

Applying a slight substitution gives a more combinatorially natural version:

Definition 2.5.2. The modified Hall-Littlewood polynomial is given by:

rHλpX; qq :“ qηpλqHλpX; q´1q

The modified Hall-Littlewood polynomials rHλpX; qq can be recovered as the specialization of

2.1 to q “ 0, or by symmetry, the specialization of rHλ1pX; q, 0q to t “ 0.

In lieu of equation 2.2, we may apply the same substitution to obtain the modified Kostka-

Foulkes polynomials:

rKλ,µpqq “ qηpµqKλ,µpq´1q “
ÿ

TPSSYTpλ,µq

qccpT q

where ccpT q “
`

n
2

˘

´ cpT q is the cocharge of a tableau. We remark that there is an algorithmic

way to directly calculate cocharge, as given in [Gil15].

We give another important characterization of the Hall-Littlewood polynomials, obtained by

substituting q “ 0 in rHλpX; q, tq axioms above. These turn out to agree with Lusztig’s orthogonality

relations in [Lus03].
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Theorem 2.5.3. The modified Hall-Littlewood polynomials are uniquely characterized by the

following axioms:

‚ (H1). rHλpX; tq “
ř

µİλ cµλptqsµpxq

‚ (H2). rHλrXp1 ´ tq; ts “
ř

µİλ1 dµλptqsµpxq

‚ (N). x rHλ, sλy “ 1

2.5.2. The Garsia-Procesi Module. Let λ $ n, and denote the conjugate partition by

λ1 “ pλ1
1 ě ... ě λ1

n ě 0q, padded with 0’s to be of length n. Let pnmpλq “ λ1
n ` ... ` λ1

n´m`1 for

1 ď m ď n. Let Crx1, ..., xns be the polynomial ring in n-variables. Given S Ă rns, denote by edpSq

to be the sum of all degree d squarefree monomials with labels in S:

edpSq :“
ÿ

i1ă...ăid
ijPS

xi1 ...xid

The Tanisaki ideal Iλ is given by

Iλ :“

B

edpSq : S Ď rns, d ą |S| ´ pn|S|pλq

F

and the Garsia-Procesi module is defined to be

Rλ :“ Crx1, ..., xns{Iλ

There is an obvious action of Sn on Crx1, ..., xns, given by π ¨ fpx1, ..., xnq “ fpxπp1q, ..., xπpnqq.

Since the ideal Iλ is Sn-stable, there is a well defined action of Sn on Rλ. The following theorem

describes the Frobenius character:

Theorem 2.5.4. [Spr76] [Spr78] We have that

FrobqpRλq “ rHλpX; qq

Garsia and Procesi recursively constructed a monomial basis for Rλ in their 1992 paper [GP92].

We briefly recall the construction below.

22



Let λ $ n be a partition, and denote by λpiq “ |pλ1, ..., λi ´ 1, ..., λℓq| to be the partition

obtained by subtracting 1 from the i-th part, and rearranging the parts as necessary. Given a set

S of monomials in x1, ..., xn, denote

xαS :“ txα ¨ xβ : xβ P Su

Setting Bpµq “ t1u for µ “ p1q, and for λ $ n we can recursively define

Bpλq “

ℓ
ğ

i“1

xi´1
n Bpλpiqq

Theorem 2.5.5. [GP92] The monomials Bpλq form a C-basis for Rλ.

2.6. Dyck Paths, Parking Functions, and the Shuffle Theorem

We closely follow the conventions of Haglund in [Hag08].

2.6.1. Dyck Paths and Parking Functions. An pm,nq-Lattice path is a sequence of north

steps px, yq Ñ px, y ` 1q and east steps px, yq Ñ px ` 1, yq in the first quadrant of the x, y-plane,

beginning at p0, 0q and ending at pm,nq. Denote the set of such paths by Lm,n, and denote L`
m,n

to be the set of such paths that do not pass under the line y “ n
mx. A Dyck path is an element of

L`
n,n.

The set L`
n,n is famously enumerated by the Catalan numbers, which have an explicit formula

satisfying Cn “ 1
n`1

`

2n
n

˘

. The Catalan numbers are ubiquitous in combinatorics, having bijections

to many different families of objects, including triangulations of polygons, binary trees, etc.

Given a Dyck path π P L`
n,n, define the area vector of π to be areatpπq “ pa1, ..., anq where ai

denotes the number of complete boxes between π and the main diagonal y “ x. We will define

areapπq “
řn

i“1 ai, the total number of complete boxes between π and the main diagonal. If a path

π touches the main diagonal in rows 1 “ c1, ..., ck “ n (from bottom to top), then we will define

the touchpπq “ pc2 ´ c1, c3 ´ c2, ..., n ´ ck´1q, which will be a composition of n. For example,
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π “

has areatpπq “ p0, 1, 2, 0, 1, 0, 1, 2, 2, 0, 1, 2q, areapπq “ 13, and touchpπq “ p3, 2, 4, 3q.

There is also a partial order on L`
n,n, defined as follows. We will say for π, π1 P L`

n,n that π ď π1

if areatpπq ď areatpπ1q component-wise.

A word parking function P “ pπ,wq consists of the pair of a Dyck path together with a word

w of length n whose entries are associated with the north steps of π such that for two consecutive

north steps with labels a, b, we have that a ă b. (The columns are decreasing) We will refer to the

label of the north step in the ith row as the occupant of i, denoted occpiq. We define the content

of P to be contentpP q “ contentpwq. If w P Sn, then we say P is a parking function.

The level sets of P are given by ZipP q “ toccpjq : aj “ iu to be the occupants of the rows

in which the number of squares between π and the diagonal is i. We define the area of a parking

function to be areapP q “ areapπq, where π is the underlying Dyck path, and we define a statistic

dinvpP q to be:

dinvpP q “

ˇ

ˇ

ˇ

ˇ

"

pi, jq : 1 ď i ă j ď n, ai “ aj , occpiq ă occpjq

*ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

"

pi, jq : 1 ď i ă j ď n, ai “ aj ` 1, occpiq ą occpjq

*ˇ

ˇ

ˇ

ˇ
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Example 2.6.1. The following example is from [Hag08]. Let

P “

2

5

7

1

4

6

3

8

so that π “ NNNEENNENEEENNEE, w “ p2, 5, 7, 1, 4, 6, 3, 8q, and the diagonal inversions are

tp1, 7q, p2, 7q, p2, 8q, p3, 4q, p4, 8q, p5, 6qu so that dinvpP q “ 6. We have that the level sets are Z0pP q “

t2, 3u, Z1pP q “ t1, 5, 8u, Z2pP q “ t4, 6, 7u.

We can associate a unique permutation ppP q to each parking function by simply concatenating

the sorted level sets in reverse order, so that ppP q “ 46715823. We will denote the set of all parking

functions P with ppP q “ τ by carspτq.

For each word parking function P , we can associate a column-strict tableau (not necessarily a

Young tableau, as it need not have partition shape) by taking the blocks of consecutive north steps

in P and allowing them to be the columns, aligned so that the entries in the ith row (from the

bottom) are precisely Zi´1pP q. For P in example 2.6.1, the associated tableau is

(2.4)
7 4 6

5 1 8

2 3

We will denote the set of all parking functions with a given path by Pn,π and set Pn “

Ů

πPL`
n,n

Pn,π. The word parking functions will similarly be denoted by WPn,π and WPn “

Ů

πPL`
n,n

WPn,π.

2.6.2. The Operator ▽, and the Shuffle Theorem. The remarkable Macdonald eigenop-

erator ▽ was defined in [BGHT99] to be

∇ rHλpX; q, tq “ tηpλqqηpλ1q
rHλpX; q, tq
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and has been the subject of many fascinating conjectures and theorems related to Macdonald

polynomials, the space of Diagonal Coinvariants, and recently in [CO18], connections to affine

Springer fibers.

A combinatorial for ∇en was conjectured by Haglund, Haiman, Loehr, Remmel, and Ulyanov

in [HHL`05a], and was later proved by Carlsson and Mellit in 2015, now known as the Shuffle

Theorem:

Theorem 2.6.2. [CM18]

∇en “
ÿ

PPWPn

qdinvpP qtareapP qxP

where xP “ xw if w is the reading word of P .

In fact, they had proven a more general statement, known as the compositional shuffle conjec-

ture. We recall one equivalent version of the statement here:

Theorem 2.6.3. [CM18] Let Bm denote the operators defined in [HMZ12], α “ pα1, . . . , αkq

a composition of length k, and define

BαrX; qs “ Bαk
Bαk´1

. . .Bα1p1q

Then, we have

(2.5) ∇pBαrX; qsq “
ÿ

πďπα

ÿ

PPWPn,π

tareapwqqdinvpwq`doffαpπqxP

where πα “ N . . .N
α1

E . . . E
α1

. . . N . . .N
αk

E . . . E
αk

. We also have that

BÐÝ
λ pX; qq “ ωHλpX; qq

the HλpX; qq is the transformed Hall-Littlewood polynomial.
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CHAPTER 3

New Formula for the Modified Hall-Littlewood Polynomials

In this chapter, we will give a proof of Theorem 1.0.2 to establish a formula for rHλpX; tq in

terms of our new set.

3.1. The Shuffle Map

We now give the combinatorial construction for the indexing set Jmaj
λ .

Let λ $ n be a partition (or generally, a weak composition α), and consider a tuple of descent

compositions a1, ..,aℓ, with ai P Dλi
. A shuffle a of the tuples a1, ...,aℓ is a descent composition of

length λ1 ` .. ` λℓ “ n such that a can be partitioned into the subwords a1, ...,aℓ. We will denote

the set of shuffles of a1, ...,aℓ by Shpa1, ...,aℓq.

Example 3.1.1. Let λ “ p3, 3, 1q, and let a1 “ 012, a2 “ 101, and a3 “ 0. Then, the following

are in Shp012, 101, 0q:

1001201 0121010

but 0210110 is not, since there is no 1 to the left of the 2.

We prove a quick lemma:

Lemma 3.1.2. Let λ be a partition of length ℓ, or more generally a weak composition, and let

a1, ...,al be some descent compositions ai P Dλi
. Then every shuffle of them is also a descent

composition,

Shpa1, ...,alq Ă Dn

Similarly, every shuffle of inversion tables is an inversion table.
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Proof. Let a P Shpa1, ...,aℓq. Then, for each j ą 0, the rightmost instance of j in a must have

come from some descent composition ai P Dλi
. This j must also be the rightmost instance of j in

ai. Since ai is a descent composition, then there a j ´ 1 to the left of it, and we are done. The

second statement is not hard to show. □

Definition 3.1.3. Let λ be a partition of n, or more generally a weak composition. We define

a subset Jmaj
λ Ă Sn by

(3.1) Jmaj
λ “

␣

majt´1paq : a P Dλ

(

, Dλ “
ď

a1,...,an

Sh pa1, ...,alq

ranging over all l-tuples pa1, ...,alq with ai P Dλi
, the set of usual descent compositions of size λi.

We similarly have J inv
λ and Aλ replacing majt by invt, and Dλi

by Aλi
.

We give another way of viewing this construction. Let OSPpλq denote the set of ordered set

partitions with block sizes given by λ. Given π P OSPpλq, write π “ B1|...|Bℓ, so that |Bi| “ λi.

By abuse of notation, we will refer to π as the permutation obtained by dropping the bars dividing

each set and reading in one-line notation. Denote a “ a1 ` ... ` aℓ to be the concatenation of the

compositions. Consider the map

Ψ : Dλ1 ˆ ... ˆ Dλℓ
ˆ OSPpλq Ñ Dn

Ψ : pa1, ...,aℓ, πq ÞÑ paπ´1piqq1ďiďn

Example 3.1.4. Let a1 “ 012, a2 “ 101, and a3 “ 0, and let π “ 245|167|3. Then,

Ψp012, 101, 0, 245|167|3q “ 1001201

Lemma 3.1.5. We have that impΨq “ Dλ.

Proof. Fix a1, ...,aℓ P D1ˆ...ˆDℓ. Then, note that we must have Ψpa1, ...,aℓ, πq P Shpa1, ...,aℓq

for all π P OSPpλq. This establishes the containment impΨq Ă Dλ. To see the reverse containment,

if a P Dλ, then a P Shpa1, ...,aℓq for some a1, ...,aℓ. Recording the positions of a1, ...,aℓ in a gives

an ordered set partition π P OSPpλq, so that Ψpa1, ...,aℓ, πq “ a. This implies Dλ Ă impΨq. □
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Intuitively, the ordered set partition π is recording the positions of the descent compositions

a1, ...,aℓ for an element a P Dλ. In particular, there are many different ways an element a P Dλ

can be obtained, for instance, for λ “ p2, 1q:

Ψp01, 0, 13|2q “ 001 – 001 “ Ψp01, 0, 23|1q

The fibres over each element a P Dλ are the subject of many conjectures related to the modified

Macdonald polynomials rHµpX; q, tq, which will be discussed along with partial results in a later

section 5.

We also briefly note that

|Dλ1 ˆ ... ˆ Dλℓ
ˆ OSPpλq| “ λ1! ˆ ... ˆ λℓ! ˆ

ˆ

n

λ1, ..., λℓ

˙

“ n!

which will be a useful fact later on.

3.2. Canonical Decompositions and Membership Algorithm

We now give a corresponding criteria for determining membership of Jmaj
λ . For any composition

a, define a sequence pã1, ã2, ...q by

ãi “

$

’

&

’

%

ai i ď n

ai´n ` 1 otherwise

For instance, if a “ p0, 1, 2, 0, 2, 1q, then

ã “ p0, 1, 2, 0, 2, 1|1, 2, 3, 1, 3, 2|2, 3, 4, 2, 4, 3|...q,

where we have used bars to separate groups of n “ 6. The following algorithm produces a set

partition π “ pA1| ¨ ¨ ¨ |Alq to each a P Dλ with the property that the restricted composition a|Ai is

a descent composition ai P Dλi
, realizing a as an element of Shpa1, ...,anq.

Algorithm 1. Fix λ $ n. Given a descent composition a P Dn (or more generally, any

composition Zn
ě0), perform the following:
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(1) For each part λi, extract a subsequence 0, 1, ..., λi´1 from ã (moving into successive blocks

if necessary), never repeating the same index modulo n.

(2) Once a sequence has been extracted, record the positions of the entries selected, and reduce

modulo n to obtain a residue in t1, ..., nu. Denote the positions by w̃i “ pãj1 , ..., ãjλi q, the

indices reduced modulo n by wi “ pak1 , ..., akλi q, and the underlying set for wi by Ai.

(3) The output of the algorithm will be the ordered set partition π “ A1|...|Aℓ, and the descent

compositions ai “ a|Ai , 1 ď i ď ℓ. We refer to the tuple pa1, ...,aℓ, πq as the canonical

decomposition of a as an element of Dλ.

Example 3.2.1. Let a “ p0, 1, 2, 0, 2, 1q, λ “ p6q. Then, the algorithm terminates, and will

select:

ã “ p0, 1, 2, 0, 2, 1|1, 2, 3, 1, 3, 2|2, 3, 4, 2, 4, 3|3, 4, 5, 3, 5, 4|4, 5, 6, 4, 6, 5|5, 6, 7, 5, 7, 6|...q,

The positions are w̃ “ p1, 2, 3, 11, 24, 34q; reducing modulo n we obtain w “ p1, 2, 3, 5, 6, 4q and

so A1 “ t1, 2, 3, 4, 5, 6u.

Example 3.2.2. Let λ “ p3, 3, 1q and a “ p0, 0, 1, 1, 2, 0, 0q. Then we have

ã “ p0, 0, 1, 1, 2, 0, 0|1, 1, 2, 2, 3, 1, 1|2, 2, 3, 3, 4, 2, 2| ¨ ¨ ¨ q

The first iteration finds the subsequence pã1, ã3, ã5q, so that A1 “ t1, 3, 5u:

ã “ p0, 0, 1, 1, 2, 0, 0|1, 1, 2, 2, 3, 1, 1|2, 2, 3, 3, 4, 2, 2| ¨ ¨ ¨ q

The second iteration will find 0, 1 in the first block of ã, but will not find an unmarked 2 until

the third block, giving the subsequence pã2, ã4, ã20q so that A2 “ t2, 4, 6u:

ã “ p�A0, 0, �A1, 1, �A2, 0, 0|�A1, 1, �A2, 2, �A3, 1, 1|�A2, 2, �A3, 3, �A4, 2, 2| ¨ ¨ ¨ q

where the strikethroughs denote entries selected in the first iteration.

Finally, the third run will select pã7q, so that A3 “ t7u:

ã “ p�A0, �A0, �A1, �A1, �A2, �A0, 0|�A1, �A1, �A2, �A2, �A3, �A1, 1|�A2, �A2, �A3, �A3, �A4, �A2, 2| ¨ ¨ ¨ q
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and we have a1 “ 012,a2 “ 010,a3 “ 0, and π “ 135|246|7.

Definition 3.2.3. Let a P Dλ. We denote the result of algorithm 1 by algλpaq :“ pa1, . . . ,aℓ, πq.

Before proving that Algorithm 1 determines membership of Dλ, we first prove a series of lem-

mata.

Lemma 3.2.4. If Algorithm 1 terminates, then the compositions ai “ ã|Ai obtained have the

property that ai P Dλi
.

Proof. We need only check that in ai, the final instance of k ě 1 has a k ´ 1 to the left of it.

We will show a stronger statement, that the first instance of k selected by Algorithm 1 must

necessarily have a k ´ 1 to the left of it. Denote the first instance of k selected by the algorithm

as k˚, let m be its index in a, and m̃ be its index in ã. Then, we must have m̃ “ m ` αn for some

α P Zě0.

We observe that if am “ k, then we must have ãm̃ “ k ` α, by the definition of ã. If α “ 0,

then we are done, as the algorithm will first select a k ´ 1 to the left in the first block.

Let w denote the (reduced modulo n) positions for λi, as above. To deal with the α ą 0 case,

first observe that the sequence paw1 , ...,awλi
q has the property that awk

`1 “ awk`1
if w̃k and w̃k`1

occur in the same block, and that awk
ą awk`1

if w̃k`1 occurs in a later block. We will consider

the position of ãw̃k`α
“ k ` α ´ 1, the element selected by the algorithm before ãm̃.

By the previous observation, ãw̃k`α
cannot occur in the pα´ 2qth block (if α ě 2), or any block

to the left because then awk`α
ě k ` 1, and by the observation above, since the we necessarily have

aw1 “ 0, there must then be a k selected before k˚, which is a contradiction. So ãw̃k`α
must occur

in the pα ´ 1qth block, or the αth block. But since ãw̃k`α
“ k ` α ´ 1, if it occurs in the former,

then awk`α
“ k, which contradicts the choice of k˚. So we must have that ãw̃k`α

occurs in the αth

block to the left of ãm̃, so that awk`α
“ k ´ 1, and occurs to the left of am.

□

Proposition 3.2.5. Given a composition a P Zn
ě0, we have that a P Dλ if and only if Algorithm

1 terminates.

We will give a proof of this proposition in a later section.
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Next, we give a more cumbersome yet useful equivalent formulation of algorithm 1.

Lemma 3.2.6. Let a P Dn. Algorithm 1 is equivalent to the following:

‚ De-affinized Presentation

(1) For each part λi of λ, pass through a left to right, searching for 0, 1, . . . , λi ´ 1.

(2) If the end of the permutation is reached, wrap around to the front, and decrease 1

from all subsequent entries to be absorbed.

‚ Increase and Absorb

(1) For each part λi of λ, pass through a left to right, searching for a minimal (leftmost)

increasing sequence 0, 1, . . . . Once the end of the permutation is reached, if the last

entry selected is k, then start from the left of the permutation once more, absorbing

k, k ` 1, . . . .

(2) Once no larger entry can be found, suppose k is the largest entry absorbed. Then,

absorb all k’s moving left to right, all k ´ 1’s left to right, and so on, until ai is of

length λi.

Proof. The de-affinized presentation is simply a reformulation of the algorithm in terms of a.

We will use this to show that the increase and absorb procedure is equivalent.

The first step is clearly the same, and so it suffices to show the second step is equivalent. Let

a P Dn, and ã be as above. Suppose the highest entry k has been absorbed, chosen as say j in ã in

the ith block. The remaining k’s of a, then, will be chosen as j`1, j`2, . . . in the i`1, i`2, . . . th

blocks respectively. If no such k’s exist, then the k ´ 1’s will appear in the i ` 2, i ` 3, . . . th blocks

as k`1, k`2, . . . respectively, and so on. If m is the first entry to be absorbed after k, then all m’s

will be chosen first, as the remaining entries of a must necessarily be smaller, and so are smaller as

well in any block of ã.

Suppose all of k’s have been absorbed, and the final entry of k is chosen as j in the ith block

of ã. Then, we repeat the argument above, and see that the next step must necessarily absorb all

k ´ 1’s moving left to right. This completes the proof. □
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Definition 3.2.7. Let a P Dλ, and let ai P Dλi
denote the composition extracted by algorithm

1 for the λi part. The essential sequence is the subsequence of ai corresponding to step 1 of the

Increase and Absorb formulation.

3.3. Parking Function Formula

First, we give useful identifications between permutations of Sn, ribbon tableau, and dinv-less

parking functions.

Let π P Sn, and the denote the set of all Young tableau whose underlying shape are ribbons

with n boxes by Rn. We will define a map γ : Sn Ñ Rn as follows:

(1) Place πn in a box by itself.

(2) For all 1 ď i ă n, if πi ă πi`1, then add πi in a new box directly to the right of the last

entry inserted.

(3) If πi ą πi`1, then add πi in a new box above the last entry inserted.

For example,

γ : 645312 ÞÑ

6

5 4

3

2 1

We will denote Rn :“ impγq Ă Rn. It is easy to see that γ is injective, and one should think of

γpπq as the ribbon whose rows correspond to the runs of π (in reverse order), and an entry a has

a box below it if and only if a is a descent in π. Alternatively, we may write:

Rn “ tT P Rn : T is row-decreasing and column-strictu

It is easy to show that row-decreasing column-strict ribbons correspond to permutations.

The second correspondence comes from the association between column-strict tableau and park-

ing functions, as in 2.6.1. We will define a map δ : Rn Ñ PFn as follows:

(1) Begin the area sequence with areatpπq “ p0q, and w “ a, where a is the bottom left corner

entry of the ribbon T .
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(2) Proceed from bottom left to top right in T . For each entry, append the height of the box

(the bottom row has height 0) in the area sequence, and append w with the entry in the

box.

Example 3.3.1. We have for the tableau above, the parking function

2

1

3

5

4

6

which indeed has area sequence areatpπq “ p0, 0, 1, 2, 2, 3q. Note that this process will always return

an appropriate area sequence, as the entries must be bounded by p0, 1, ..., n´1q and 0 ď ai´ai´1 ď 1

by construction.

We note that for a general parking function P P PFn, if we convert to a column strict tableau,

then dinv pairs correspond to one of the following configurations:

pI.q a b

pII.q
b

a

with b ą a. We now show that δpRnq is precisely the set of dinv-less parking functions.

Lemma 3.3.2. Let PF0
n denote the set of parking functions P such that dinvpP q “ 0. Then,

PF0
n “ impδq.

Proof. Noting that the area vector uniquely determines a Dyck path, it is easy to show that

δ is injective, so that δ´1 is defined on impδq. Suppose P P impδq. Then, δ´1pP q P Rn, therefore is

a ribbon T corresponding to a permutation in Sn. Since T is decreasing, no type I dinv pairs may

occur. Since T only increases upward and to the right, no type II dinv pairs may occur.

Conversely, let P P PF0
n, so dinvpP q “ 0. Then, consider the corresponding column-strict

tableau T associated to P , as in 2.6.1. Then, consider the following two configurations of squares:
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pI.q
a b

c

pII.q
a

d c

In configuration I, we must have b ą c. If a ă b, then we would have a dinv pair, so we must have

a ą b ą c, which is also a dinv pair. For configuration II, we necessarily have a ą d. If d ă c

we would have a dinv pair, so we must have d ą c, so that a ą d ą c, which is also a dinv pair.

Therefore, configurations I and II cannot occur.

Since P is a parking function with underlying Dyck path π, in its area sequence, the final entry

of i must have an i ´ 1 before it, for i ě 1. This implies that T is one connected tableau, and if

configurations I, II cannot appear, T must have ribbon shape. That dinvpP q “ 0 forces T to be

row-decreasing, so that T P Rn, and δpT q “ P . □

We now give a parking function formula of Dλ.

Definition 3.3.3. Let α ( n be a composition of n. The α-bounce path, denoted πα is defined

as the following:

πα “ N . . .N
α1

E . . . E
α1

. . . N . . .N
αk

E . . . E
αk

where α “ pα1, . . . , αkq has length k.

Given a partition λ $ n, let
ÐÝ
λ “ pλℓ, ..., λ1q denote the composition obtained by reversing the

parts of λ. Then, define

PFλ “

"

P “ pπ,wq P PFn : π ď πÐÝ
λ

*

and define WPλ similarly.

Lemma 3.3.4. Let P “ pπ,wq be a parking function in PFλ. Consider the map ξ : PFλ Ñ Dn

by:

ξ : pπ,wq ÞÑ pareatpπqw´1piqq1ďiďn
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Then, impξq “ Dλ.

Proof. (impξq Ă Dλ) We will show the claim for λ “ pnq. Let P “ pπ,wq P PFn. To show

ξpP q “ pξpP q1, ..., , ξpP qnq P Dn, we will show the equivalent condition as in lemma 2.1.2.

First, notice the bottom row necessarily contributes a 0 to areatpπq, so that ξpP q always has a

0. Second, it is easy to show that for a Dyck path, writing areatpπq “ pa1, ..., anq, we must always

have aj`1 “ aj ` 1 or aj`1 ď aj . In other words, consecutive entries may not increase by more

than 1. This implies, for i ą 0, that the first instance of aj “ i must have aj´1 “ i ´ 1, and

occpjq ą occpj ´ 1q since the squares are vertically adjacent. Then, ξpP qoccpj´1q “ i ´ 1 lies to the

left of ξpP qoccpjq “ i, and the claim is proved.

Now let λ be arbitrary. Then, given P P PFλ, consider the ordered set partition

σ “ an, . . . , an´λ1`1| . . . |aλℓ
, . . . , a1 P OSPpλq

and let a1, . . . ,aℓ be the compositions obtained by first standardizing the occupants in the λ1, . . . , λℓ

blocks respectively, then applying ξ. By the above argument for λ “ pnq, all ai P Dλi
. Finally,

comparing the definitions of ξ and Ψ, we see that

ξpP q “ Ψpa1, . . . ,aℓ, σq

and the claim is proved.

(Dλ Ă impξq) We show the set Dλ1 ˆ ... ˆ Dλℓ
ˆ OSPpλq naturally arises as a subset of PFλ.

Given pa1, ...,aℓ, σq P Dλ1 ˆ ...ˆDλℓ
ˆOSPpλq, let τ1, ..., τℓ be permutations τi P Sλi

corresponding

to a1, ...,aℓ respectively. Then, consider the parking functions Pi :“ pδ ˝ γqpτiq, and let πi denote

the underlying paths. If σ “ A1|...|Aℓ, set wi “ τi ¨ pAiq, where (by abuse of notation) Ai is the

word consisting of its elements written in increasing order. Then, consider the parking function

P “ pπℓ ` ... ` π1, wℓ ` ... ` w1q

where ` denotes concatenation for Dyck paths, as well as words. Then, it is clear that ξpP q “

Ψpa1, ...,aℓ, σq P Dλ. Varying over all pairs pa1, ...,aℓ, σq, we see that Dλ Ă impξq.

□
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Definition 3.3.5. We will denote the map pa1, . . . ,aℓ, σq ÞÑ PFλ as above by

ϵ : Dλ1 ˆ ... ˆ Dλℓ
ˆ OSPpλq Ñ PFλ

3.4. New Hall-Littlewood Formula

In this section, we will prove Theorem 1.0.2, namely

rHλ1pX; tq “
ÿ

πPJmaj
λ

tmajpπqFiDespπq,npXq “
ÿ

µ$n

ˆ

ÿ

πPJmaj
λ XShpµq

tmajpπq

˙

mµpxq

3.4.1. Reformulation in Terms of Compositional Shuffle Theorem. Let α ( n be a

composition of n of length k, BαpX; qq “
`

Bαk
˝ ... ˝ Bα1

˘

p1q denote the result of applying the B

operators as in [HMZ12]. First, noting that BÐÝ
λ pX; qq P ΛCpqq Ă ΛCpq,tq, we may expand BÐÝ

λ pX; qq

in the rHµpX; q, tq-basis:

(3.2) BÐÝ
λ pX; qq “

ÿ

µ$n

Aµλpq, tq rHµpX; q, tq

By the Macdonald axiom (T1) from section 2.4.1, the plethystic substitution rHµrXp1´ qq; q, ts has

an expression of the form

rHµrXp1 ´ qq; q, ts “
ÿ

νİµ

cνµpq, tqsνpxq

Since BÐÝ
λ pX; qq “ ωHλpX; qq, we have similarly by 2.5.3:

BÐÝ
λ rXp1 ´ qq; qs “ ωHλrXp1 ´ qq; qs “ ω

ÿ

νĲλ

bνλpqqsνpxq “
ÿ

νİλ1

b1
νλpqqsνpxq

This implies that coefficients Aµλpq, tq “ 0 unless µ İ λ1. Since HλpX; qq “
ř

ν Kνλpqqsνpxq,

and Kνλ “ 0 if ν 1 § λ, applying ω, we see that BÐÝ
λ pX; qq “

ř

νĲλ1 Kν1λpqqsνpxq. Furthermore, we

have that Kλλpqq “ 1, so we may write

BÐÝ
λ pX; qq “ sλ1pxq `

ÿ

νŸλ1

Kν1λpqqsνpxq
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Setting q “ 0 in equation 3.2 and substituting the above, we see that

sλ1pxq `
ÿ

νŸλ1

Kν1λp0qsνpxq “
ÿ

µİλ1

Aµλp0, tq rHµpX; 0, tq “
ÿ

µİλ1

Aµλp0, tq

ˆ

ÿ

νİµ

rKνµptqsνpxq

˙

Comparing the coefficients of sλ1pxq, we have that

(3.3) 1 “ Aλ1λp0, tq rKλ1λ1ptq “ Aλ1λp0, tqtηpλ1q

Now applying ∇ to both sides of equation 3.2, we have that

∇BÐÝ
λ pX; qq “

ÿ

µİλ1

Aµλpq, tq∇ rHµpX; q, tq “
ÿ

µİλ1

Aµλpq, tqtηpµqqηpµ1q
rHµpX; q, tq

We have that µ Ź λ1 if and only if ηpµq ă ηpλ1q, so that the lowest coefficient of q in the right

hand side must be qηpλq. We may then write

(3.4)

∇BÐÝ
λ pX; qq “qηpλq

ˆ

Aλ1λp0, tqtηpλ1q
rHλ1pX; 0, tq ` qGpX; q, tq

`
ÿ

µŹλ1

Aµλpq, tqtηpµqqηpµ1q´ηpλq
rHµpX; q, tq

˙

where GpX; q, tq is some symmetric function depending on q, t.

Substituting equation 3.3 and comparing the coefficient of qηpλq, we conclude that

(3.5) rqηpλqs

˜

ÿ

PPWPλ

qdinvpP q`doffpπqtareapP qxP

¸

“ rqηpλqs∇BÐÝ
λ pX; qq “ rHλ1pX; tq

by the compositional Shuffle Theorem 2.6.3.

Remark 3.4.1. The motivation for reformulating the problem in terms of the compositional

Shuffle Conjecture arises from certain functions called χπpmq,ℓ from [CM21], where m P Dn, πpmq

is an associated Dyck path, and ℓ is the number of 0’s in m, which is at most the number of trailing

East steps. The connection is that

xχπpmq,ℓ, rHλpX; q, 0qy “ 0
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unless m P Dλ. The functions χπpmq,ℓ were proven to be the Frobenius character of the Tymoczko’s

dot action on H˚pHπ ´ Zq, where Hπ is a regular semisimple Hessenberg varietiy, and Z is its

intersection with the line arrangement consisting of the coordinate axes. The connection with ∇ is

due to equation (59) in [CM21]. We thank A. Mellit for valuable discussions and for suggesting

that we study the dinvpP q ` doffαpP q minimizers.

3.4.2. Proof of the Quasisymmetric Formula. We will now prove the first equality in

Theorem 1.0.2. Define

rCλ1pX; tq :“
ÿ

πPJmaj
λ

tmajpπqFiDespπq,npXq

We will show that this is the modified Hall-Littlewood polynomial, rCλ1pX; tq “ rHλpX; tq. We

give an outline of the proof here:

(1) We first establish ηpλq as a lower bound for the q-exponents of qddpP q for P P PFλ.

(2) Given a P Dλ, we may write Ψpa1, . . . ,aℓ, σq “ a, and consider P “ ϵpa1, . . . ,aℓ, σq. We

may run the algorithm and obtain pa1
1, . . . ,a

1
ℓ, σ

1q. Denote P ˚ “ ϵpa1
1, . . . ,a

1
ℓ, σ

1q. We then

give a criterion for all P ˚ obtained this way.

(3) If P P PFλ does not meet such criterion, then we may apply a move that necessarily

decreases dd.

(4) Once such moves are exhausted, then we must have ddpP q “ ηpλq.

(5) We show P ˚ is the unique parking function in PFλ with ddpP ˚q “ ηpλq.

This implies that there is a unique parking function with qddpP q “ ηpλq for each element of Dλ.

Then, we collect the word parking functions WPλ by which elements of PFλ they standardize to,

and the theorem immediately follows.

3.4.2.1. Lower Bound for q-Degree. It suffices to consider parking functions P P PFλ whose

corresponding tableau is a tuple of ribbons, as by lemma 3.3.2, these minimize dinv in each block.

(This is equivalent to the assertion that the area sequence weakly increases in each block of λ).

Denote this set by Bλ. Recall that dinv corresponds to one of the following arrangements of cells:

pI.q a b
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pII.q
b

a

with b ą a. Furthermore, doffpP q simply records for each element in the bottom row of a part how

many parts occur to the right. Since we count ddpP q by pairs of parts, we can assume that for a

given pair of parts λi, λj with i ą j, each element in the bottom row doffpP q of λi contributes 1 to

doffpP q.

Lemma 3.4.2. Given a pair of parts λi, λj, the contribution of those parts to ddpP q is at least

λi.

Proof. Let the tableau corresponding to λi, λj be any ribbons of size λi, λj respectively.

Given a column-strict tableau T , denote by htpT q to be the height of the diagram. Suppose

htpλjq ě htpλiq. This means for each square in λi, there is a square in λj in the same row. Then,

we have two cases:

‚ If a square is in the bottom row of λi, then it contributes 1 to doffpP q.

‚ If a square is not in the bottom row, then the following occurs:

a b

c

where necessarily b ą c, since P is a parking function, the corresponding tableau are

column decreasing. Then, if a ą b, we have that a ą c, so the square containing a will

contribute at least 1 to dinv. If a ă b, then a will contribute at least 1 to dinv as well.

On the other hand, htpλiq ą htpλjq, then for each square of λj , there is a square in the same

row in λi, but also a square in the row above. Then, for each square of λj , find the rightmost

square in λi of the same row. One of two things may occur:

‚ The rightmost square in the same row in λi is the corner of a ribbon:

a

. . . b c

‚ There is only one square in the same row:

a

b c
...
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If b ă c, then c contributes at least 1 inversion to dinvpP q. Otherwise, if b ą c, since the

tableau is column decreasing, we have that a ą b ą c, so that c contributes at least 1 to dinvpP q.

Then, every square of λj will contribute at least 1 to dinvpP q, so that the contribution is at least

λj ě λi. □

Remark 3.4.3. Actually we must have that if htpλiq ą htpλjq, then the contribution is greater

than λj since there is at least one box in λi in the first row which contributes at least 1 to doffpP q.

Proof. By the lemma, each pair pλi, λjq with i ą j contributes at least λi to ddpP q. Summing

over all pairs of parts, we have that:

(3.6) ddpP q ě
ÿ

1ďjăiďℓ

λi “

ℓ1
ÿ

i“1

pi ´ 1qλi “ ηpλq

□

3.4.2.2. Criteria for Result of Algorithm. We now establish a criteria for being the result of the

algorithm in terms of the ribbons.

Definition 3.4.4. A parking function is P good if each square in the λi ribbon contributes

exactly 1 to ddpP q.

By the remark, we have if i ą j, then the ribbon for htpλjq ď htpλiq.

Lemma 3.4.5. A parking function P P Pλ has ddpP q “ ηpλq if and only if it is good.

Proof. If P is good, then the inequality in 3.6 is an equality, and we are done. Now suppose

P is not good. Then, either there is a square that contributes nothing to ddpP q in λi, or a square

that contributes at least 2. We rule out the first case.

Suppose there is a square in λi that contributes nothing to ddpP q. Then, this square cannot be

in the bottom row, as it must contribute to doff in that case. Furthermore, by the argument in the

lemma, there cannot be a square in λj in the same row, or the same row below. This implies that

htpλiq ą htpλjq, which by the remark implies that the ddpP q contribution between the two pairs is

greater than λj ě λi. This means the inequality in equation 3.6 must be strict.
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If every square must contribute to ddpP q, and P is not good, then some square contributes at

least 2 to ddpP q, which implies that ddpP q ą ηpλq. □

3.4.2.3. Reduction Algorithm. We now prove a series of results for two parts, and then induc-

tively apply it for all shapes λ.

Lemma 3.4.6. Given a descent composition a, algorithm 1 terminates if and only if a P Dλ for

λ “ pλ1, λ2q a partition with two parts.

Proof. If the algorithm terminates, then it produces the desired descent compositions a1,a2,

as well as the desired ordered set partition. Conversely, suppose that a P Dλ. Then, let pa1,a2, σq

be such that Ψpa1,a2, σq “ a, and consider the pair of ribbons ϵpP q associated with this shuffle.

The algorithm will always select the first part successfully, as it will find the minimal increasing

sequence going up, then absorb remaining entries top-down. We need only show that what remains

can form a ribbon, that is, that what remains is a descent composition in Dpλ2q. The criteria from

lemma 2.1.2 is equivalent to:

‚ There is at least one unselected box in the bottom row

‚ The largest unselected element has a smaller unselected element in the row below it

For any row except the bottom row, note that the largest unselected element a must be the

corner of a ribbon as such (without loss of generality, we draw a in the left ribbon):

a . . .

. . . b

c . . .

. . . d

If the corners of both ribbons are selected for λ1, then there must be no unselected elements in

that row, as algorithm 1 will not choose the second corner until all possible entries are exhausted,

and so there is nothing to show. Therefore, we may assume such a corner a exists.

On the ascending pass, algorithm 1 will choose exactly one entry from the row below a. There-

fore, at worst exactly one of b or d will be chosen, but not both, as the algorithm must choose a

before a second element in the lower row can be absorbed. If the algorithm chose b for the first

part, then, since a ą c (even if c was selected), we also have a ą d. If d was chosen during the

ascending pass, then b is the desired entry, as a ą b a priori.
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This implies that if the λ2 ribbon has height ě 1, then there is a 0 as well. On the other hand,

if all unselected elements occur in the lowest row, it is clearly a descent composition, as it consists

of all 0’s. □

Lemma 3.4.7. For λ “ pλ1, λ2q, the result P ˚ of applying algorithm 1 to a parking function P

representing a descent composition a P Dλ is good.

Proof. Recall that algorithm 1 first extracts the minimal increasing sequence of maximal

length among the two blocks, and then absorbs remaining entries going from top to bottom. This

immediately implies, as λ1 ě λ2, that htpλ1q ě htpλ2q, which implies that each box in the λ2 ribbon

contributes at least 1 to ddpP ˚q.

Suppose now, that some box in the λ2 ribbon contributes at least 2 to ddpP ˚q. Then, we have

the four following cases:

‚
a b . . . c

with a ă c ă b, where the second inequality is because b, c are in the same ribbon.

This is a contradiction because a will always be chosen before c.

‚
a pdq . . . c

b

with a ą b, a ă c. This is a contradiction since the algorithm will choose a before c.

‚
a d

b c

with a ą b, a ą c. Then, this is a contradiction because a will be chosen before c.

‚
a b

in the bottom row with a ă b. (a will also contribute to doff in this case, so the

contribution is at least 2.) If b is the initial element chosen, this is a contradiction since

the first step of the algorithm selects the smallest entry in the bottom row. If b is not the

initial element, this is still a contradiction since it absorbs the remaining entries in the

bottom row in increasing order.

□

Definition 3.4.8. Let λ “ pλ1, ..., λℓq be a partition, and given a parking function P P Pλ,

denote P1, ..., Pℓ to be the corresponding ribbon tableau in each block of λ. Denote by algijpP q to
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be the result of applying the algorithm to only the parts Pi, Pj , and let P ˚ denote the result of

applying algorithm 1 to P .

Lemma 3.4.9. We have that

(3.7)

P ˚ “ palgpℓ´1qℓq
λℓ

˝ . . .

˝ palg2ℓ ˝ ¨ ¨ ¨ ˝ alg23qλ2

˝ palg1ℓ ˝... ˝ alg12qλ1pP q

In other words, we may apply the algorithm pairwise to parts a large number of times in a

triangular fashion and obtain the same result.

Remark 3.4.10. The algorithm given above is quite redundant, but it suffices for our purposes.

Proof. It suffices to show that the first part agrees with the algorithm result, as the claim will

then follow by induction as well as the above lemma. In other words, we will show

(3.8) P ˚
1 “

`

alg1ℓ ˝... ˝ alg12
˘λ1

pP q1

The first entry a0 selected by algorithm 1 is necessarily the smallest entry in the bottom row.

If alg1i is the first instance that encounters, then it must absorb it, and it can never be replaced

by later alg1j for j ą i.

Let a0, . . . , aλ1´1 denote the entries, in order chosen by the algorithm, in P ˚
1 . Then, if a0, . . . , ai´1

is selected by the jth pass of palg1ℓ ˝... ˝ alg12q, at worst the next pass will necessarily select ai, as

if ai is in the mth column, then alg1m will select first a0, . . . , ai´1, then select ai by the definition

of algorithm 1. Then, by induction, ai will be selected by the i ` 1th pass, so that equation 3.8

follows. □

Lemma 3.4.11. Let P be a parking function representing a P Dλ. Then, P ˚ is good.
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Proof. Let X “ palg1ℓ ˝...˝alg12qλ1pP q. By lemma 3.4.7, the final pass of palg1ℓ ˝...˝alg12q will

yield X such that every pair pXj , X1q, j ‰ 1 is good. Then, we have that every entry in Xi, i ě 2

when compared to X1 contributes exactly 1 to ddpXq. By induction, the claim follows. □

Corollary 3.4.12. We have that ddpP ˚q “ ηpλq.

3.4.2.4. Uniqueness of P ˚.

Lemma 3.4.13. For each composition a P Dλ, there is exactly one parking function P P Pλ that

is good, and it is P ˚, the result of algorithm 1.

Proof. Suppose the contrary, that there is a parking function P P Pλ such that ddpP q is good,

but P ‰ P ˚. Let us consider the first entry of P that differs from P˚ (going in order of the parts,

in order selected by the algorithm)

‚ If we skip during the initial ascending step, we have:
c b

a

with a ă c ă b. Then, c contributes 2 to ddpP q.

‚ If we skip during the absorption step:
a . . . c . . . b

with a ă b ă c. Here c is the element selected during the initial run, and b was absorbed

later. Then, a contributes at least 2 to ddpP q.

‚ Finally,
a b . . . c

d
where d, c are part of the initial ascending sequence. We

must have a ă d, otherwise a would have been chosen during the initial ascending step.

Then, we skip a to choose b, we have a ă b, and a ă d ă c, so a contributes at least 2 to

ddpP q.

So that P ‰ P ˚ implies that P is not good. □

Corollary 3.4.14. For each a P Dλ, there is a unique parking function P ˚ with ddpP ˚q “ ηpλq.

Corollary 3.4.15 (Proposition 3.2.5). A composition a P Zn
ě0 has the property that a P Dλ if

and only if algorithm 1 terminates.

3.4.2.5. Quasisymmetric Expansion. We briefly recall the definition of the Gessel quasisymmet-

ric function.
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Definition 3.4.16. The fundamental Gessel quasisymmetric function Fα,npxq indexed by a

composition α of n is given by

Fα,npxq “
ÿ

i1ď...ďin
ijăij`1 if jPSα

xi1 ...xin

We will now expand the left hand side of equation 3.5 in terms of the Fα,npxq’s.

Definition 3.4.17. The standardization of a word parking function P P WPn with content

α “ pα1, ..., αkq is the parking function stdpP q P PFn given by traversing along the level sets ZipP q

from highest to lowest and replacing top right to bottom left, all instances of 1 with 1, 2, ..., α1, all

instances of 2 with α1 ` 1, ..., α1 ` α2 and so on. We say that P standardizes to stdpP q.

It is clear that areapP q “ areapstdpP qq, as the operation std does not alter the underlying Dyck

path. It turns out that std also preserves the statistic dd.

Lemma 3.4.18. For any P P PFn, we have that ddpP q “ ddpstdpP qq.

Proof. If a is the occupant in the i-th row, denote by stdpaq to be the element in the same

position after applying std. Consider the following two types of dinv pairs:

‚ pI.q a b

If a ě b, then a will always be replaced after b, so stdpaq ě stdpbq. If a ă b, then b will be

replaced after a, so stdpaq ă stdpbq.

‚ pII.q
b

a

If b ď a, then since a occurs in a lower level set, we always have that a is replaced after b,

so stdpbq ď stdpaq. If b ą a, then a is replaced before b, so stdpbq ą stdpaq.

In all cases, the contribution to dd is preserved, so this completes the proof. □

Definition 3.4.19. Let P P WPn. An inverse descent occupant of P is an occupant i such

that:

‚ No additional instance of i occurs in a lower level set

‚ No additional instance of i occurs in the same level set below and to the left
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‚ The smallest entry a such that a ą i occurs either in a higher level set, or in the same

level set above and to the right

The inverse descent associated to i is defined to be the number of occupants j of P such that j ď i

(including i itself). For a parking function, this number will end up being i itself. We will denote

the set of inverse descents of P by iDespP q.

Example 3.4.20.

std :

1

3

4

1

3

4

2

4

ÞÑ

2

5

7

1

4

6

3

8

and the inverse descents are marked in bold for each parking function.

By definition 3.4.17, it is easy to see that the operation std preserves the inverse descent set,

that is, iDespP q “ iDespstdpP qq. Then, by definition 3.4.16, we see that for a parking function

P P PFn,

ÿ

QPWPn

stdpQq“P

xQ “ FiDespP q,npxq

These observations allow us to collect the word parking functions by standardization to yield

the following:

(3.9) rqηpλqs

˜

ÿ

PPWPλ

qddpP qtareapP qxP

¸

“
ÿ

PPWPλ
P is good

tareapP qxP “
ÿ

PPPFλ
P is good

tareapP qFiDespP q,npxq
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By corollary 3.4.14, descent compositions a “ pa1, ..., anq P Dλ under the map ϵ ˝ algλ are in

bijection with good parking functions, denoted P ˚
a P PFλ. It is clear that

ř

i ai “ areapP ˚
a q by the

definitions of ϵ and algλ. If π “ majt´1paq, we now must show that iDespP ˚
a q “ iDespπq.

Lemma 3.4.21. Let a, π, P ˚
a be as above. Then, iDespP ˚

a q “ iDespπq.

Proof. By lemma 2.1.5, if i P iDespπq, then we have that ai ă ai`1. This precisely says that

i ` 1 occurs in a higher level set of P ˚
a , i.e. i P iDespP ˚

a q. □

We may finally prove the first half of Theorem 1.0.2.

Proof of first equality of Theorem 1.0.2. Putting the above observations together with

equations 3.5, 3.9, we have

rCλ1pX; tq “
ÿ

πPJmaj
λ

tmajpπqFiDespπq,npxq “
ÿ

PPPFλ
P is good

tareapP qFiDespP q,npxq

(3.10) “ rqηpλqs

˜

ÿ

PPWPλ

qddpP qtareapP qxP

¸

“ rHλ1pX; tq

□

3.4.3. Proof of Monomial Symmetric Function Expansion. We now finish the proof of

theorem 1.0.2 by proving the second equality.

Definition 3.4.22. A Jmaj
λ -word w with content α “ pα1, ..., αkq, where α is a composition of

n, is a word that standardizes to an element π P Jmaj
λ . We denote the set of Jmaj

λ -words by Wmaj
λ .

For a word w “ w1 . . . wn, we may similarly define major index by majpwq “
ř

wiąwi`1
i. By

comparing definitions, it is straightforward to show that majpwq “ majpstdpwqq, and so we may

define majtpwq :“ majtpstdpwqq. We will think of elements of Wmaj
λ as a two-row table consisting of

w “

»

–

majtpwq

b

fi

fl where b “ pb1, . . . , bnq is the content of w. We require b to be weakly increasing,

that is, b1 ď ¨ ¨ ¨ ď bn, and if majtpwq “ pa1, . . . , anq, that ai ă ai`1 ùñ bi ă bi`1. Given such a
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two-row table

»

–

majtpπq

b

fi

fl, we may recover w by sorting the columns so that the top row is weakly

decreasing to obtain:

upsort

ˆ

»

–

majtpwq

b

fi

fl

˙

“

»

–

k . . . k . . . 0 . . . 0

w

fi

fl “

»

–

c

w

fi

fl

with the condition that if c “ pc1, . . . , cnq, ci “ ci`1 ùñ wi ď wi`1.

Write w “

»

–

a1 . . . an

b1 . . . bn

fi

fl, so that majtpwq “ pa1, . . . , anq. We may standardize w by simply

replacing pb1, . . . , bnq with p1, . . . , nq, and so to obtain a well-defined standardization, we must have

that ai ă ai`1 ùñ bi ă bi`1. Similarly, any weakly increasing sequence b “ pb1, . . . , bnq with the

property that bi ă bi`1 for all iDespπq gives a well defined word w “

»

–

majtpπq

b

fi

fl and will have the

property that stdp

»

–

majtpπq

b

fi

flq “ π.

Definition 3.4.23. Let w P Wn, write majtpwq “ pa1, ..., anq. An inverse descent of w is i such

that ai ă ai`1. Denote the set of inverse descents of w by iDespwq.

Then we see that iDespwq tracks precisely when b must increase. We may now expand the

quasisymmetric formula in terms of Wmaj
λ .

Lemma 3.4.24. We have that

ÿ

πPJmaj
λ

tmajpπqFiDespπq,npxq “
ÿ

wPWmaj
λ

tmajpwqxw

Proof. It suffices that to show that for a given π P Jmaj
λ , that

tmajpπqFiDespπq,npxq “
ÿ

wPWmaj
λ

stdpwq“π

tmajpwqxw

Given a monomial xi1 . . . xin , we must have that ij ă ij`1 if j P iDespπq. This gives the

well-defined word
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w “

»

–

majtpπq

i1 . . . in

fi

fl

which standardizes to π.

Conversely, given any w P Wmaj
λ with stdpwq “ π, we may form the two-row table as above.

By the discussion before definition 3.4.23, we must have that j P iDespπq ùñ ij ă ij`1, so that

xi1 . . . xin occurs in FiDespπq,npxq.

Finally, majpwq “ majpstdpwqq “ majpπq, and the claim is proved. □

We now complete the proof of theorem 1.0.2.

Proof of second equality of theorem 1.0.2. We show the equality

ÿ

wPWmaj
λ

tmajpwqxw “
ÿ

µ$n

p
ÿ

ωPShµXJmaj
λ

tmajpωqqmµpxq

By equation 3.10 and lemma 3.4.24, it suffices, for every partition µ $ n, to show that the coefficient

of xµ1
1 ...xµn

n of both sides is equal by the symmetry in the x-variables of rHλ1pX; tq. Fix a partition

µ $ n. The coefficient in xµ1
1 ...xµn

n the left hand side is obtained by summing tmajpwq over all words

w with content µ.

Now observe that no two distinct words with content µ can standardize to the same element

of Jmaj
λ . Furthermore, notice that every word of content µ must standardize to a µ-shuffle, and

that every element of Shpµq X Jmaj
λ can be obtained by standardizing some word w of content µ.

Putting these observations together, along with lemma 3.4.24, we have that:

(3.11)
ÿ

wPWmaj
λ

contentpwq“µ

tmajpwq “
ÿ

ωPShµXJmaj
λ

tmajpωq

□

3.5. Schur Expansion

As it turns out, the set Wmaj
λ naturally gives rise to a Schur expansion of rHλ1pX; tq.
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3.5.1. Schur Expansion of rCλ1pX; tq. Let π P Sn. Recall that the elementary dual Knuth

transformation τi acts on π by exchanging i, i ` 1 if and only if i ´ 1 or i ` 2 occur between them.

We will show that the τi preserve the property of being in Jmaj
λ .

Lemma 3.5.1. Let π P Jmaj
λ . Then, for any 1 ď i ď n ´ 1, we have that τipπq P Jmaj

λ .

Proof. It suffices to only consider the cases in which τipσq ‰ σ. Suppose that in the two-row

table of σ, we have

»

–

... c a b d ...

... i ´ 1 i i ` 1 i ` 2 ...

fi

fl

For either of i ´ 1, i ` 2 to lie between a, b, then we must have that a ‰ b.

Case 1: a ă b. This means that if i´1 lies between them, we must have a ď c ă b, and if i`2

lies between them, that a ă d ď b. Note that since i, i ` 1 occur in different runs, then switching

their run labels has exactly the effect of switching their positions.

Let a “ majtpσq. Then, by algorithm 1, we obtain descent compositions a1, ...,aℓ, with ai P Dλi
.

If a, b belong to different descent compositions, then switching their positions yields another element

of Jmaj
λ . If a, b belong to the same part, say ai, and b ´ a ą 1, then a, b is not part of an essential

sequence of ai, and so switching them yields an a1
i P Dλi

, and so the full shuffle is in Jmaj
λ . This

leaves the following two cases:

»

–

... paqk pa ` 1qk pa ` 1qℓ ...

... i i ` 1 i ` 2 ...

fi

fl Ø

»

–

... pa ` 1qℓ paqk pa ` 1qk ...

... i i ` 1 i ` 2 ...

fi

fl

»

–

... paqℓ paqk pa ` 1qk ...

... i ´ 1 i i ` 1 ...

fi

fl Ø

»

–

... paqk pa ` 1qk paqℓ ...

... i ´ 1 i i ` 1 ...

fi

fl

where k, ℓ denote the parts of the corresponding ordered set partition (it is possible that ℓ “ k).

Then, it is easy to see these transformations preserve the property of being in Jmaj
λ .

Case 2: a ą b. Then, a, b can never belong to the same essential sequence, and so swapping

them preserves the property of being in Jmaj
λ . □
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Since dual Knuth transformations preserve the property of being in Jmaj
λ , we see that if a

word w P Wmaj
λ , then τipwq P Wmaj

λ for any i. This implies, by proposition 2.2.4 and the fact that

standardization preserves recording tableau, that any word w1 with the same recording tableau Q as

w will have the property w1 P Wmaj
λ . Denote the set of recording tableau of shape µ corresponding

to elements of Jmaj
λ by Emaj

µ,λ . We may then RSK and collect the left hand side of equation 3.11 by

recording tableau:

(3.12)
ÿ

wPWmaj
λ

tmajpwqxw “
ÿ

QPEmaj
µ,λ

tmajpQq

ˆ

ÿ

PPSSYTpµq

xP
˙

“
ÿ

QPEmaj
µ,λ

tmajpQqsµpxq

where w ÞÑ pP,Qq under the usual RSK bijection, and xP is the monomial corresponding to

the entries of P .

3.5.2. Characterization of Emaj
µ,λ and Connection to Cocharge. We now turn our atten-

tion to the set Emaj
µ,λ . We will first describe, for each standard Young tableau, an associated tableau

that tracks its major index. Denote the runs of a standard Young tableau to be the maximal

northeast consecutive increasing sequences.

Definition 3.5.2. Let T P SYTpµq be a standard Young Tableau of shape µ, and let d ` 1

denote the number of runs of T , and denote the runs by Rd, Rd´1, ..., R0, where 1 P Rd. Define

the major index diagram of T to be a filling of µ where each entry is replaced with its run label.

Denote this by majdpT q.

Example 3.5.3. Consider the following standard Young tableau, where runs are separated by

color:

T “
1 2 3 6 9 10 15

4 5 12 13 14

7 8

11

majdpT q “
3 3 3 2 1 1 0

2 2 0 0 0

1 1

0

Remark 3.5.4. The major index diagram also has another interpretation - one can think of it

as encoding the contribution of each element to the charge of the reading word of T .
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Lemma 3.5.5. Let T P SYTpµq. Then, we have that majdpT q is a semistandard Young tableau

in the alphabet Zě0 with the reverse ordering. Furthermore, for i ą 0, the northeast-most entry of

i will have at least one i´ 1 in a lower row, and majd is a bijection between SYTpµq and SSYT of

shape µ with this property, denoted Eµ.

Proof. Since T is a standard Young tableau, then the configuration
a b

implies a ă b. If

b “ a` 1, then ℓpaq “ ℓpbq, where ℓpxq is the row label of x P T . Otherwise, if b ą a` 1, then a` 1

must occur in a lower row, so that a is a descent, and that ℓpaq ą ℓpbq. In either case, we have

ℓpaq ě ℓpbq.

On the other hand, if a is directly above b, then b occurs in a later run than a, so that ℓpaq ą ℓpbq.

This completes the proof of the first statement.

The second statement is clear by noticing that the northeast-most entry a of i is simply the

last entry of the ith run, so that a is a descent of T . Then, we must have that a ` 1 occurs in a

lower row and ℓpa ` 1q “ i ´ 1.

Finally, we define majd´1 : Eµ Ñ SYTpµq as follows: If S P Eµ and the content of S is

dadpd ´ 1qad´1 ...1a1 , then, moving left to right, replace all instances of d with 1, ..., ad, all instances

of d ´ 1 with ad ` 1, ..., ad ` ad´1, and so on. Since the northeast-most entry of i has an i ´ 1 in a

row below it, it can never be the case that we have two entries of the form
a a`1

in majd´1pSq

with the corresponding entries in S as
i i´1

. Therefore the runs of majd´1pSq are precisely given

by S, so that pmajd ˝majd´1qpSq “ S.

□

Definition 3.5.6. We say that a major index diagram majdpT q is λ-splittable if it can be

decomposed into parts of sizes λ1,...,λℓ such that in each part, for i ą 0, the northeast-most

instance of i has an i ´ 1 to in a lower row.

Example 3.5.7. The tableau majdpT q in our running example is p6, 5, 2, 2, 1q-splittable:

majdpT q =
3 3 3 2 1 1 0

2 2 0 0 0

1 1

0

2 1

2 0

1

where the diagram on the right illustrates the condition for i “ 1, 2 in the orange part of size 5.
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Before giving a characterization of all λ-splittable major index diagrams, we first prove a lemma.

Lemma 3.5.8. Let T P SYTpµq. Then, we have that recprwpT q´1q “ T , and that majtprwpT q´1q “

rwpmajdpT qq.

Proof. It is well known that each Knuth equivalence class of Sn has exactly one permutation

that appears as the reading word of a standard Young tableau (for instance, appendix A in [Sta99])

so that if T P SYTpµq, then we have that prwpT qq “ pT,Qq, where Q P SYTpµq, so T “ insprwpT qq.

Since taking inverse swaps the insertion and recording tableau, we have that prwpT q´1q “ pQ,T q,

so that recprwpT q´1q “ T .

To see the second statement, notice that the runs of T become the maximal consecutive increas-

ing subsequences of rwpT q. Then, in rwpT q´1, the positions of the maximal consecutive increasing

subsequences of rwpT q become the runs of rwpT q´1 themselves. Since majtprwpT q´1q records the

run labels of each entry of rwpT q´1 (as a permutation), and each entry of T is replaced with its

run label in majdpT q, we have that majtprwpT q´1q “ rwpmajdpT qq. □

Proposition 3.5.9. We have that T P Emaj
µ,λ if and only if rwpmajdpT qq P Dλ if and only if

majdpT q is λ-splittable.

Proof. Suppose T P Emaj
µ,λ . Then, every permutation π P Sn with the property recpπq “ T

has the property π P Jmaj
λ . Then, by the previous lemma 3.5.8, we have that recprwpT q´1q “ T ,

so that rwpT q´1 P Jmaj
λ . Then, again by the lemma, rwpmajdpT qq “ majtprwpT q´1q P Dλ since

rwpT q´1 P Jmaj
λ . Conversely, if rwpmajdpT qq “ majtprwpT q´1q P Dλ, then rwpT q´1 P Jmaj

λ , so that

T “ recprwpT q´1q P Emaj
µ,λ . This proves the equivalence of the first two conditions.

Next, suppose rwpmajdpT qq P Dλ. Then, rwpmajdpT qq can be written as a shuffle of descent

compositions a1, ...,aℓ, whose positions are recorded by an ordered set partition π. Consider the

corresponding entries of each part of ai in majdpT q. The condition of ai being a descent composition

in Dλi
is that the rightmost entry of j must have a j ´ 1 to the left of it for j ą 0. Since the rows

of majdpT q are weakly decreasing, this is equivalent to the statement that the corresponding cells

of majdpT q have the property that the northeast-most j must have a j ´ 1 before in reading order,

which implies the j ´ 1 is in a lower row. Conversely, if majdpT q is λ-splittable, the decomposition
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gives a tuple of compositions a1, ...,aℓ, with ai P Dλi
by the previous sentence. This implies that

rwpmajdpT qq P Dλ. □

We are now faced with a very interesting problem. First, we recall a few definitions.

The cocharge of a permutation π P Sn is defined by the following process:

(1) Writing π in one-line notation, label 1 with 0.

(2) If i has been labeled with j, label i ` 1 with j if i ` 1 occurs to the right of i, and with

j ` 1 if it occurs to the left. Denote labels c1 . . . cn “: cwpπq, called the cocharge word of

π.

(3) We define the cocharge to be ccpπq “ c1 ` ¨ ¨ ¨ ` cn, the sum of the cocharge labels.

For example, if π “ 126497385, then cwpπq “ 002132021. Next, let w P Wn with content µ $ n.

Then, the standard subwords of w are given by:

(1) Moving right to left, find the first instance of 1, 2, . . . µ1
1, cyclically wrapping around if

necessary. Denote this subword by wp1q.

(2) Delete wp1q from w and repeat to obtain wp2q, and so on.

For the word w “ 433222311111, the subwords are given by the following indices:

413231232221331514131211

and subwords (in order)

4321, 321, 231, 1, 1

For T P SSYTpµ, λq, we may define ccpT q “ ccprwpT qq, the cocharge of the reading word for T .

Recall the following theorem of Lascoux and Schützenberger:

Theorem 3.5.10. [LS78] We have that

rHλpX; tq “
ÿ

µ

ˆ

ÿ

TPSSYTpµ,λq

tccpT q

˙

sµpxq

where ccpT q of a semistandard Young Tableaux is defined to be cocharge of its reading word.
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Equation 3.12 implies that there should be a weighted bijection Γ : Emaj
µ,λ Ñ SSYTpµ, λ1q that

takes majpT q to ccpΓpT qq. For certain shapes, such a bijection has been constructed, but in general

the answer remains elusive.

We may construct, for T P SSYTpµ, λ1q, an associated filling of the shape µ by recording each

elements contribution to cocharge. We will denote this by ccdpT q. For example:

ccd

˜

12 11 22 32 31 42 41

21

¸

“
0 0 0 0 1 0 1

1

where the subscripts in the first diagram denote the cocharge labels. If for all T P SSYTpµ, λ1q

we have that ccdpT q is also a semistandard Young tableau in the alphabet Zě0, then the bijection

Γ “ ccd´1 ˝ evacpµ, dq ˝ rev ˝majd suffices, where d is the maximal entry of majdpT q. However, as

evidenced above, ccdpT q in general is not a semistandard Young Tableau.

Problem 3. Construct a weight preserving bijection Γ : Emaj
µ,λ Ñ SSYTpµ, λ1q that carries maj

to cc for all shapes µ.
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CHAPTER 4

Descent Basis for the Garsia-Procesi Module

In this chapter we will give a proof of theorem 1.0.1, that for a partition λ $ n, the set

"

xa : a P Dλ

*

“

"

xmajtpπq : π P Jmaj
λ

*

is a vector space basis of Rλ1 .

4.1. Descent Order on Monomials

Let Rn “ Crx1, . . . , xns{In be the coinvariant algebra, where In is the coinvariant ideal. We

may consider the ideal generated by the leading terms of LMpInq with respect to the lexicographical

order. Then, we may define LMlexpRnq to be the set of monomials not in LMlexpInq, and it is clear

that LMpRnq forms a vector space basis of Rn. As it turns out:

Fact 1. We have that An “ LMpRnq, where An is the Artin basis of Rn.

Analogously, the Garsia-Stanton descent monomial basis are the leading terms with respect to

a different monomial order, called the descent order.

Definition 4.1.1. Let α “ pα1, . . . , αnq, β “ pβ1, . . . , βnq be in Zn
ě0. We say that xα ďdes x

β

if:

(1) sortpα,ąq ălex sortpβ,ąq or

(2) sortpα,ąq “ sortpβ,ąq and α ďlex β

Though des is not a monomial order in the Gröbner basis sense, the notion of leading terms

is still well defined. E. E. Allen gave an algorithm to reduce any monomial using In in this order,

see [All94].

We record a useful lemma here.
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Lemma 4.1.2. Let S Ă rns with T “ rnszS its complement, and for a composition α, denote

α|S “ pαi1 , . . . , αisq, where all ij P S, and s “ |S|. Then, we have that

(4.1) α|S ďdes β|S , α|T ďdes β|T ùñ α ďdes β

Proof. Suppose α|S ďdes β|S , α|T ďdes β|T . For a composition α, write sortpα,ąq “: sortpαq.

Then, we have that sortpα|Sq ď sortpβ|Sq and sortpα|T q ď sortpβ|T q. We may construct sortpαq

from sortpα|Sq, sortpα|T q by the following process:

(1) Begin with an empty string, sortpαq “ ∅

(2) At each step, compare the first entry of sortpα|Sq, sortpα|T q, and append the greater entry

to the end of sortpαq. Remove this entry from the composition it came from. If there is a

tie, choose from sortpα|Sq.

(3) Once both tuples are empty, then what remains is sortpαq.

(4) We can form a recording string w P 0|S|1|T |, which records the order in which the elements

were absorbed; a 0 will denote choosing from α|S , and 1 will denote choosing from α|T .

It is straightforward to show that this procedure produces sortpαq. Apply the above procedure

to sortpβ|Sq, sortpβ|T q. Denote the recording strings wα and wβ respectively. If wα ‰ wβ, then

the first step i at which there is a deviation, we necessarily have sortpαqi ă sortpβqi, so that

sortpαq ălex sortpβq. If wα “ wβ, then sortpαqi ď sortpβqi for all i, so that sortpαq ďlex sortpβq.

If sortpαq “ sortpβq, then we must have had that sortpα|Sq “ sortpβ|Sq and sortpα|T q “

sortpβ|T q. Then, we see that

α|S ďlex β|S , α|T ďlex β|T

The first entry in which α and β differ must also be the first entry in which they differ when

restricted to S or T . This implies that α ďlex β.

□

4.2. New Garsia-Procesi Basis

We give the reader a brief outline of the argument here. First, we will construct a series of

maps φλ,S : Rλ1 Ñ Rk bRµ1 , where λ1 “ k, µ “ pλ2, . . . , λℓq with the first part removed. Then, we
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will use these maps to inductively show for a P Dλ, any expression of the form

(4.2)
ÿ

βďdesα

cβx
β “ 0

must have cα “ 0. Then, we show the coefficients are triangular with respect to ďdes, so that

txa : a P Dλu must be linearly independent. Finally, Theorem 1.0.2 implies that |Dλ| “
`

n
λ1

˘

to

establish a dimension count.

4.2.1. The Maps φλ,S. Let S Ă rns, with |S| “ k. Then, we may consider the composition

of maps

φS : Crx1, . . . , xns Ñ Crx1, . . . , xks b Crx1, . . . , xn´ks Ñ Rk b Crx1, . . . , xn´ks

where if S “ ti1, . . . , iku, T “ rnszS “ tj1, . . . , jn´ku, we have that the first map evaluates xim ÞÑ

xm b 1, xjm ÞÑ 1 b xm, and the second map is the quotient map in the first factor.

Proposition 4.2.1. Let λ be a partition of length ℓ ą 0, and let µ “ pλ2, . . . , λℓq denote the

partition obtained by removing the first part. Then, for any subset S Ă rns of size λ1, the map φS

in 4.2 descends to a map

(4.3) φλ,S : Rλ1 Ñ Rk b Rµ1

Proof. We need to check that the generators of Iλ1 are sent to 0 under the map φλ,S . Recall

the definition of the Tanisaki ideal:

(4.4) Iλ1 :“

B

edpT q : T Ď rns, |T | ě d ą |T | ´ pn|T |pλ
1q

F

Let edpT q P Iλ1 , so that the above inequalities are satisfied. We may then write

(4.5) edpT q “

|SXT |
ÿ

i“maxp0,d´|T zS|q

eipS X T qed´ipT zSq
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so that

(4.6) φλ,SpedpT qq “

|SXT |
ÿ

i“maxp0,d´|T zS|q

eipS X T q b ed´ipT zSq

where by abuse of notation, equation 4.6 has the variables evaluated in each tensor component per

φS .

If S Ă T , then eipS X T q “ eipSq P Ik, the coinvariant ideal of the first factor, whenever i ą 0.

This leaves only the summand 1 b edpT zSq if i is allowed to be 0. In this case, we must have that

d ´ |T zS| ď 0, or that d ď |T zS|. We need to show that edpT zSq P Iµ1 .

If λ “ pλ1, . . . , λnq is the transpose of λ1 padded with 0’s to form a tuple of length n, then we

notice µ “ pλ2, . . . , λn´|S|`1q, so that µi “ λi`1 for 1 ď i ď n ´ |S|. Since edpT q P Iλ1 , we must

have that

(4.7) |T | ´ pλn ` ¨ ¨ ¨ ` λn´|T |`1q ă d ď |T zS|

Since λ1 “ |S|, we also note that we must have pnnpλ1q “ ¨ ¨ ¨ “ pnn´|S|
pλ1q “ 0. Substituting, we

obtain

(4.8) |T | ´ pλn´|S|´1 ` ¨ ¨ ¨ ` λn´|T |`1q ă d ď |T zS|

We may assume that |T | ą |S|, as otherwise there is nothing to show. The substitution µi “ λi`1

yields

(4.9)

|T zS| ´ p
n´|S|

|T zS|
pµ1q “ |T | ´ |S| ´ pµn´|S| ` ¨ ¨ ¨ ` µn´|S|´|T zS|`1q

“ |T | ´ |S| ´ pλn´|S|`1 ` ¨ ¨ ¨ ` λn´|T |`2q

ď |T | ´ pλn´|S|`1 ` ¨ ¨ ¨ ` λn´|T |`1q

ď |T | ´ pλn´|S|´1 ` ¨ ¨ ¨ ` λn´|T |`1q ă d

where in the third line we used that |S| “ λ1 ě λn´|T |`2 since λ is a partition. This implies that

edpT zSq P Iµ1 .
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Next, if S Ć T , so that |S XT | ă |S|. We must show that ed´ipT zSq P Iµ1 for all i. By equation

4.6, we have that i ď |S X T |, and so subtracting from equation 4.4, we obtain

(4.10) |T | ´ |S X T | ´ pλn ` ¨ ¨ ¨ ` λn´|T |`1q ă d ´ i

Then, we may expand as before:

(4.11)

|T zS| ´ pn|T zS|pµ
1q “ |T zS| ´ pµn´|S| ` ¨ ¨ ¨ ` µn´|S|´|T zS|`1q

“ |T zS| ´ pλn´|S|`1 ` ¨ ¨ ¨ ` λn´|T |`2´p|S|´|SXT |qq

“ |T zS| ´ pλn´|S|´1 ` ¨ ¨ ¨ ` λn´|T |`2´p|S|´|SXT |qq

ď |T | ´ |S X T | ´ pλn´|S|´1 ` ¨ ¨ ¨ ` λn´|T |`1q

ă d ´ i

where the third line uses λn´|S|`1 “ λn´|S| “ 0, and the inequality in the fourth follows from

|S| ´ |S X T | ą 0.

For the other inequality, there are two cases. If d ´ |T zS| ą 0, then

d ´ i ď d ´ pd ´ |T zS|q “ |T zS|

Otherwise, d ´ |T zS| ď 0, so d ď |T zS|. In all cases, we have that ed´ipT zSq P Iµ1 , and we are

done. □

4.3. Linear Independence

We prove the linear independence of txa : a P Dλu, establishing Theorem 1.0.1.

Proof of Theorem 1.0.1. Let a P Dλ, or that xa “ gπpxq, where π P Jmaj
λ . We show that

xa cannot be expressed as a linear combination in xb, where b ďdes a, and so linear independence

follows.

Suppose that

(4.12)
ÿ

bďdesa

cbx
b “ 0
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Then, we will show that ca “ 0. Since a P Jmaj
λ , we have that there exists ai P Dλi

and an ordered

set partition σ “ A1| . . . |Aℓ P OSPpλq such that Ψpa1, . . . ,aℓ, σq “ a. Algorithm 1 for instance,

produces such a decomposition. Set S “ A1, so that a|A1 “ a1, and suppose |A1| “ λ1 “ k. Then,

by Proposition 4.2.1, we may apply φλ,S to both sides to obtain

(4.13) 0 “ φλ,S

ˆ

ÿ

bďdesa

cbx
b

˙

“
ÿ

αPDk

xα b

ˆ

ÿ

b1

dα,b1xb
1

˙

where in the second equality we expand in the first tensor factor using the descent basis, and

push all coefficients to the second tensor factor. For every nonzero dα,b1 , there is some cb ‰ 0

contributing to equation 4.12 with the property that

(4.14) α ďdes b|S , b1 “ b|T , b ďdes a

where T “ rnszS denotes the complement of S. The first inequality follows since α P Dk are the

leading terms in the descent ordering with respect to Ik, see [All94].

Writing ϕλ,Spxaq “ xα
1

b xα
2

, with

(4.15) α1 “ a|S P Dλ1 , α2 P a|T P Dpµq

By equation 4.13, we must have that

(4.16)
ÿ

b1

dα1,b1xb
1

“ 0

in Rµ1 . Then, lemma 4.1.2 implies that dα1,b1 ‰ 0 only if b1 ďdes α
2, and that dα1,α2 “ ca. We may

then rewrite 4.16 as

(4.17)
ÿ

b1ďdesα2

dα1,b1xb
1

“ 0

and the claim follows by induction on the number of parts of λ, with the base case being the

coinvariant algebra Rλ1
ℓ1
. This implies txa : a P Dλu are linearly independent.

Finally, by theorem 1.0.2, we have that

ÿ

πPJmaj
λ

tmajpπq “

"

n

λ1

*

t
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so that evaluating at t “ 1 gives |Dλ| “
`

n
λ1

˘

“ dimCpRλ1q. The theorem is proved. □
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CHAPTER 5

Further Results and Conjectures

In this chapter, we hint at a possible extension of the new Garsia-Procesi basis towards the

Garsia-Haiman module. We show the following main results:

‚ The set Dλ1 ˆ ¨ ¨ ¨ ˆ Dλℓ
ˆ OSPpλq gives a t-weight-preserving bijection with the tableau

indexing rHλ1pX; q, tq

‚ The fibres of Ψ over p0, . . . , 0q recovers the classical Garsia-Procesi basis, Bpλ1q.

‚ The fibres of Ψ at top t degree recover the Haglund-Haiman-Loehr formula at top degree

Finally, we will present a conjecture for a monomial basis of Vλ1 at top t-degree, and discuss

ongoing work for an extension to the ∆-springer modules defined by S. Griffin in his thesis [Gri21].

5.1. Connection to Haglund-Haiman-Loehr Macdonald Formula

We now prove a sequence of results that give hope in extending the new Garsia-Procesi basis

to the entire Garsia-Haiman module Vλ1 . The first of these is that the q “ 1 specialization of

rHλ1pX; q, tq|m1n
agrees with the shuffle fibres.

Proposition 5.1.1. Let λ $ n, and denote the conjugate partition by λ1. Denote a standard

filling σ : λ1 Ñ Z` to denote a filling of the Ferrers diagram of λ1 (in French notation) with the

numbers t1, ..., nu. Then, we have the following equality:

(5.1)
ÿ

pa1,...,aℓ;πqPDλ1
ˆ...ˆDλℓ

ˆOSPpλq

t
ř

i ai “
ÿ

σ:λ1ÑZ`

σ standard

tmajpσq

In other words, the generating series of the set Dλ1 ˆ ... ˆ Dλℓ
ˆ OSPpλq coincides with the

m1npxq coefficient of rHλ1pX; 1, tq, the modified Macdonald polynomial evaluated at q “ 1.
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Proof. We give a proof by constructing an explicit weight-preserving bijection between the

two sets. First, denote the set of standard fillings of the shape λ1 by Ξstd
λ1 :“ tσ : λ1 Ñ Z` :

σ is standardu. We will define the map Ψmaj
λ : Ξstd

λ1 Ñ Dλ1 ˆ ... ˆ Dλℓ
ˆ OSPpλq as follows:

(1) Given the standard λ1-filling ξ, split ξ into columns. Denote the set of entries of the jth

column (reading left to right) by ξj , and denote the column itself by ξj .

(2) Standardize and compute majt of each column; denote majt of the jth column by aj .

(3) Let π be the ordered set partition given by ξ1|...|ξj .

(4) Define Ψmaj
λ pξq :“ Ψpa1, ...,aℓ, πq.

Since we have that |Ξstd
λ1 | “ n! “ |Dλ1 ˆ ... ˆ Dλℓ

ˆ OSPpλq|, we show that the map Ψmaj
λ is

surjective, and therefore a bijection. Indeed, given pa1, ...,aℓ, πq P Dλ1 ˆ ... ˆ Dλℓ
ˆ OSPpλq, we

consider the λ1-filling with columns given by ξj “ πj . Applying majt´1 to aj and unstandardizing

with the alphabet ξj will give the order of the entries in each column. Since π is an ordered set

partition, we are guaranteed that ξ is a standard filling.

Next, we show that Ψmaj
λ is weight preserving. It will suffice to prove the claim for a single

column, as the maj of ξ is given by summing maj of each column. Observe that for each descent

a P Despξjq, the quantity legpaq ` 1 marks the index of ξj read as a permutation top to bottom.

Standardizing does not change the major index, so we need only show majtpξjq “ aj . But this is

true by the definition of Ψmaj
λ and [cite background section on def of majt], so we are done.

□

Example 5.1.2. If λ “ p4, 3, 3, 1, 1q, so λ1 “ p5, 3, 3, 1q consider the following λ1-filling ξ:

10

7 8 9

5 6 11

1 2 3 4 12

Then ξ1 “ t1, 5, 7, 10u, ξ2 “ t2, 6, 8u, ξ3 “ t3, 9, 11u, ξ4 “ t4u, ξ5 “ t12u, so that

π “ t1, 5, 7, 10u|t2, 6, 8u|t3, 9, 11u|t4u|t12u
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Furthermore, the standardizations of the columns are 4321, 321, 231, 1, 1 in order from left to

right, so the major index tables are a1 “ 0123,a2 “ 012,a3 “ 011,a4 “ 0,a5 “ 0. We then apply

Ψ to obtain

Ψmaj
λ pξq “ p01, 02, 03, 04, 11, 12, 21, 22, 13, 31, 13, 05q

where the subscript denotes which column the entry came from.

One would hope that this map gives a bijection between invpσq “ 0 fillings and Jmaj
λ , but the

situation is not so straightforward. Consider the following two inversionless tableau:

σ1 “
4 1

3 5

2 6

σ2 “
4 2

3 5

1 6

We have that Ψmaj
λ pσ1q “ Ψmaj

λ pσ2q “ 001200.

5.2. Affine Permutation Formula

The auxiliary sequence w̃ used in 3.2 in defining Algorithm 1 can be extended to all of the

shuffle fibres Dλ1 ˆ ...ˆDλℓ
ˆOSPpλq. This set of affine permutations will be the subject of many

conjectures to follow.

For a descent composition a P Dn, denote by ω “ pω1, ..., ωnq the position of the numbers chosen,

ω to be the positions mod n (residues in t1, ..., nu) and let b “ pb1, ..., bnq to denote the quotients

(without remainder) of ωi ´ 1 by n. For instance, for a “ p0, 1, 2, 0, 2, 1q, ω “ p1, 2, 3, 11, 24, 34q,

ω “ p1, 2, 3, 5, 6, 4q and b “ p0, 0, 0, 1, 3, 5q.

Given pa1, ...,aℓ, B1|...|Bℓq P Dλ1 ˆ ...ˆDλℓ
ˆOSPpλq, we can run for each ai the algorithm to

obtain ωpiq and bpiq. Define pωi to be

(5.2) ppωiqj “ pBiqpωpiqqj
` n ¨ pbpiqqj

and set ω “ pω1 ` ...` pωℓ, the concatenation. Denote the set of ω obtained this way rDλ, and let

this process be denoted by a map aff : Dλ1 ˆ ... ˆ Dλℓ
ˆ OSPpλq Ñ rDλ. Note ω P W` since each
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residue mod n is used exactly once, and the blocks are sorted, so that we obtain a minimal W`{Sλ

representative.

For each of the ai, we can concatenate the corresponding bpiq tuples to obtain bω “ bp1q ` ... `

bpℓq “ pb1, ..., bnq. We will refer to bω as the quotient tuple of ω, as it tracks the block numbers of ã.

Conversely, given ω P rDλ, we can reverse this process by first splitting ω into blocks according

to λ, which we will denote with bars:

ω “ pω1, ..., ωλ1 |ωλ1`1, ..., ωλ2 |...|ωn´λℓ`1, ..., ωnq “ p rA1|...| rAℓq

with rAi “ pωλ1`...`λi´1`1, ..., ωλ1`...`λi
q. Then, we can recover the associated descent compo-

sition a by setting a “ pj ´ pbpiqqjq
p rAiqj

, where p rAiqj denotes reducing the entry p rAiqj modulo n.

Note since each residue modulo n occurs exactly once in ω, p rAiqj will never be equal for different

choices of i, j. We will sometimes refer to a as majtpωq, and majpωq is defined to be the sum of the

entries of majtpωq.

Example 5.2.1. Consider ω “ p4, 5, 7, 15; 2, 3, 20q P rDp4,3q. Then, bω “ p0, 0, 0, 2; 0, 0, 2q, and

bp1q “ p0, 0, 0, 2q, bp2q “ p0, 0, 2q, so that pj ´ b
p1q

j qj “ p0, 1, 2, 1q, and pj ´ b
p2q

j qj “ p0, 1, 0q. Finally

rA1 “ p4, 5, 7, 1q, and rA2 “ p2, 3, 6q, so that we obtained the associated descent composition a “

1010102.

Noting that if bpiq “ p0, ..., 0q, then all entries corresponding to rAi in ra must occur in the first

block. On the other hand, the quantity j ´ pbpiqqj is a value in a, which is a descent composition,

and so must be nonnegative. This gives the inequalities 0 ď pb
piq
j q ď j.

If one is only interested in the major index of ω, there is a simpler formula. First, let

Bλ “ p0, . . . , λ1 ´ 1; . . . ; 0, . . . , λℓ ´ 1q

which is a tuple of length n. We can check

majpωq “

n
ÿ

i“1

pBλqi ´ bi
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5.3. Partial Results on a Potential Macdonald q-Statistic

In light of Proposition 5.1.1, it is reasonable to expect that there should exist a q-statistic on

the set Dλ1 ˆ ... ˆ Dλℓ ˆ OSPpλq such that

ÿ

pa1,...,aℓ;πqPDλ1
ˆ...ˆDλℓ

ˆOSPpλq

qstatpaqt
ř

i ai “ rHλ1pX; q, tq|m1n

or in terms of rDλ,

ÿ

ωP rDλ

qstatpωqtmajpωq “ rHλ1pX; q, tq|m1n

We present some partial progress towards the construction of statpuq in terms of rDλ.

5.3.1. Lowest t-degree and Classical Garsia-Procesi Basis. For maj-less ω P rDλ, we

show a certain statistic invn that recovers the m1n coefficient of Hall-Littlewood polynomial at

t “ 0. We will prove this by showing that this statistic generates the Garsia-Procesi basis given

in [GP92], thus giving a graded bijection. This will be done by first associating a parking function

to ω, and then showing that such a parking function satisfies the recursion given in [GP92].

Fix a partition λ $ n. Consider the set

rD0
λ “

"

ω P rDλ : bω “ p0, ..., λ1 ´ 1; ...; 0, ..., λℓ ´ 1q

*

“

"

ω P rDλ :
ÿ

i

ai “ 0

*

where a “ pa1, ..., anq is the element of Dλ corresponding to ω. We now give the construction

of invn.

Definition 5.3.1. Write ω “ pω1, ..., ωnq (this is sometimes referred to as window notation).

An inversion of ω is a pair pi, jq such that i ă j and ωi ą ωj . An n-restricted inversion is an

inversion of ω such that ωi ´ ωj ă n. We denote the set of n-restricted inversions by Invnpωq, and

set invnpωq “ |Invnpωq|.

The statistic invn is studied in depth in [GMV14], and suggests connections with torus-fixed

points of certain affine Springer fibres.
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Proposition 5.3.2. Let λ $ n be a partition (or more generally, a composition) and let ωi

denote the residue of ωi modulo n in the set t1, ..., nu and set χpωi, ωjq “ maxpωi, ωjq. Let ck “

|tpi, jq P Invnpωq : χpωi, ωjq “ ku|, and set Ąinvtpωq “ pc1, ..., cnq. Then, the set of monomials

Cpλq “

"

x
Ąinvtpωq : ω P rD0

λ

*

is precisely the set Bpλ1q given in section 1 of ?? that forms a basis of the Garsia-Procesi module

Rλ1.

Corollary 5.3.3. We have that

ÿ

ωP rD0
λ

qinvnpωqtmajpωq “
ÿ

ωP rD0
λ

qinvnpωq “ rHλ1pX; q, 0q|m1n

.

An example will make things clear.

Example 5.3.4. Let ω “ p1, 7|3, 9|5q P rD0
p2,2,1q

. Here n “ 5, and the 5-restricted inversions

are Invnpωq “ tp2, 3, p2, 5q, p4, 5qu, corresponding to the entries p7, 3q, p7, 5q, p9, 5q respectively. We

have that χp7, 3q “ 3, χp7, 5q “ 5, and χp9, 5q “ 5. Then, c3 “ 1, c5 “ 2, and c1 “ c2 “ c4 “ 0, so

Ąinvtpωq “ p0, 0, 1, 0, 2q, and x
Ąinvtpωq “ x3x

2
5.

The remainder of this section will be dedicated to giving a proof of 5.3.2.

First, we will give a parking function description of rD0
λ, as well as a corresponding statistic,

denoted codinvλ. Notice that we can identify, via the map Ψ, the set rD0
λ with OSPpλq, as rD0

λ

corresponds precisely to Shp0λ1 , ...,0λℓ
q, with 0k “ p0, ..., 0q, where there are k 0’s.

Any Dyck path can be represented with 1’s denoting North steps, and 0’s denoting East steps.

Then, consider the path

wλ “ p1λ1 , 0λ1 , ..., 1λℓ , 0λℓq

Let PFλ (or PFα for a general composition α) denote the set of parking functions whose

underlying Dyck path has shape wλ.
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Definition 5.3.5. Let pa1, ..., anq denote the area sequence of P P PFλ, read bottom to top.

Then, we define CodinvλpP q to be

CodinvλpP q “

"

pi, jq : i ă j, ai “ aj , occpiq ą occpjq

*

\

"

pi, jq : i ă j, ai “ aj ` 1, occpiq ă occpjq

*

and codinvλpP q “ |CodinvλpP q|.

Note that this definition is exactly the same as the usual definition of dinv for parking functions,

with the inequalities reversed. We now give a corresponding notion of inversion tableau.

Example 5.3.6. Consider the following element P P PF p3,2,1q:

2

4

5

1

3

6

Then, Codinvp3,2,1qpP q “ tp1, 4q, p2, 5qu \ tp2, 6q, p5, 6qu, so that codinvp3,2,1qpP q “ 4.

Definition 5.3.7. Let P P PFλ. Then, for pi, jq P CodinvλpP q, let χpi, jq “ maxpoccpiq, occpjqq.

Let ck “ |tpi, jq P CodinvλpP q : χpi, jq “ ku|, and let dinvtpP q “ pc1, ..., cnq.

We now describe a simple bijection between PFλ and rD0
λ. Given ω “ pω1, ..., ωnq P rD0

λ, denote

by ω “ pω1, ..., ωnq to be the reduction of the entries ωi modulo n, taking a residue in t1, ..., nu.

Within each block of λ in ω, we are guaranteed by 5.2 that the entries are increasing. The map is

then given by

Φ : rD0
λ Ñ PFλ

ω ÞÑ pwλ, rω1, ..., ωnsq
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Lemma 5.3.8. The map Φ is a bijection, and we have that dinvtpΦpωqq “ Ąinvtpωq. Consequently,

the following equalities hold:

"

x
Ąinvtpωq : ω P rD0

λ

*

“

"

xdinvtpP q : P P PFλ

*

ÿ

ωP rD0
λ

qinvnpωq “
ÿ

PPPFλ

qcodinvλpP q

Proof. Every parking function P P PFλ with the underlying path wλ can be identified by

taking its reading word. The shape of wλ guarantees we have the following inequalities:

occp1q ă ... ă occpλ1q

occpλ1 ` 1q ă ... ă occpλ1 ` λ2q

...

occpλ1 ` ... ` λℓ´1 ` 1q ă ... ă occpnq

Then, we can canonically identify rwpP q with an ordered set partition π P OSPpλq by taking

the ith block to be λ1 ` ... ` λi´1 ` 1, ..., λ1 ` ... ` λi.

Each ω P rD0
λ is canonically identified with an ordered set partition ω, as above. Then, by the

definition of Φ, it is clear that Φ simply maps ω to the parking function with reading word ω.

We need now only show that Ąinvtpωq “ codinvλpΦpωqq. Let pi, jq P Invnpωq. Then, by 5.3.1,

this is true if and only if ωj ă ωi ă ωj ` n. This implies that we must have bi “ bj , or bi “ bj ` 1.

In the case of bi “ bj , it must be the case that ωj ă ωi, and in the case of bi “ bj ` 1, we must

have ωj ą ωi. The final observation is that

pb1, ..., bnq “ p0, 1, ..., λ1 ´ 1; 0, 1, ..., λ2 ´ 1; ...; 0, 1, ..., λℓ ´ 1q “ pa1, ..., anq

so that the quotient labels pb1, ..., bnq of ω give precisely the area sequence pa1, ..., anq of

Φpωq. The inequalities above precisely mean pi, jq P CodinvλpΦpωqq. Similarly, given pi, jq P

CodinvλpΦpωqq, we may reverse the above process to obtain pi, jq P Invnpωq. Finally, noting that
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occpiq in Φpωq is the same as ωi, comparing the definitions of dinvtpΦpωqq and Ąinvtpωq, we see the

tuples must be equal and the lemma is proved. □

Example 5.3.9. Let λ “ p2, 2, 1q, ω “ p1, 7|3, 9|5q P rD0
p2,2,1q

. We have that ω “ p1, 2|3, 4|5q, so

that Φpωq “ pwp2,2,1q, r1, 2, 3, 4, 5sq. Then, pictorally:

Φpωq “

1

2

3

4

5

Then, we have that CodinvλpP q “ tp2, 3q, p2, 5q, p4, 5qu, so that dinvtpP q “ p0, 0, 1, 0, 2q, which

coincides with example 5.3.4 above.

Let α be a composition of n. We briefly give a useful identification (inspired by Haglund) of

PFα with tableau that have column heights given by α. Let CSα denote the set of column-strict

decreasing fillings of the Ferrers shape with column sizes given by α. For instance,

T “

12

8 10 5

7 11 9 3

4 6 1 2

is an element of CSp3,2,4,3q. We can then identify PFα with CSα by letting the columns of

T P CSα be precisely vertical strips of a corresponding P P PFα, and denote this map by Θ :

PFα Ñ CSα. For instance, for the T above, the corresponding parking function is
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P “

4

7

8

6

11

1

9

10

12

2

3

5

It is straightforward to show then, that an element pi, jq P CodinvλpP q corresponds to one of

the following pairs:

pI.q a b

pII.q
b

a

where a ą b in ΘpP q. We will refer to these as type I and type II inversions respectively. The

missing squares need not be present, but the gray square must be present.

Lemma 5.3.10. Let α be any composition of n such that |α| “ λ. Then, we have the following

set equality:

"

xdinvtpP q : P P PFλ

*

“

"

xdinvtpP q : P P PFα

*

Proof. Let α “ pα1, ..., αℓq, and let α1 “ pα1, ..., αi`1, αi, ..., αℓq for some fixed 1 ď i ď ℓ ´ 1.

It then suffices to show that

"

xdinvtpP q : P P PFα1

*

“

"

xdinvtpP q : P P PFα

*

We will do this by constructing a bijection between PFα1 and PFα that preserves dinvt.

If αi “ αi`1, then we can have the bijection be the identity map, and there is nothing to show.

Otherwise, without loss of generality, suppose that αi ą αi`1. We will give the bijection in terms

of the column strict fillings CSα and CSα1 . Define the map swapi : CSα Ñ CSα1 as follows:
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(1) Only the ith and pi ` 1qth columns will be affected; the rest will be fixed. As such, we

suppress the other columns in our description of swapi.

(2) Since αi ą αi`1, move all boxes with y-coordinate y ą αi`1 to the pi ` 1qth column:

...

...
...

ÝÑ ...

...
...

(3) If the right column is no longer decreasing, find the first instance a such that the entry b

above a has b ă a. Then perform the swap:

b

c a
ÝÑ

b

a c

we must necessarily have b ą c, as before step (2), b and c were part of a decreasing

column.

(4) Repeat step (3) going downward until both columns are decreasing.

Note that it will always be possible to make both columns decreasing, since at worst, the two

columns entirely swap. Furthermore, since the heights of all of the entries do not change, the

inversion pairs involving the other columns of ΘpP q are not affected by swapi.

Example 5.3.11.

swapi :

6

4

3 5

1 2

ÝÑ

6

4

3 5

1 2

ÝÑ

6

4

5 3

1 2

The inverse map swap´1
i is defined identically, and it is straightforward to show they are inverses.

Now we must show that dinvtpP q “ dinvtppΘ´1 ˝ swapi ˝ΘqpP qq. This will follow from showing

that swapi preserves the number of inversion pairs, as well as the larger value of each inversion

pair.
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(1) (Type II inversion) We need only be concerned if a swap happens with one of the entries.

Suppose a ă b is a type II inversion and a swap occurs:

a

c b
ÝÑ

a

c b
ÝÑ

a

b c

where the second swap must occur because we have a ă b. We must have a ą c since

we began with a column decreasing tableau, so that b ą a ą c. Then, b ą c is a type I

inversion in swapipΘpP qq.

(2) (Type I inversion) Suppose b ą a is a type I inversion. Then, the only interesting case is

if a swap occurs in the above row:

c d

b a
ÝÑ

d c

b a

since c ą b, we have c ą b ą a, so that the swapping process must terminate. Therefore,

the type I inversions are preserved.

In either case, the larger entry of the inversion pairs are unchanged, so we must have that dinvtpP q “

dinvtppΘ´1 ˝ swapi ˝ΘqpP qq.

We must show the same statement for swap´1
i .

(1) (Type I inversion) Suppose b ą a is a type I inversion. If the entry above a, denoted c has

c ą b, then no swap occurs in the lower row. Otherwise,

d c

b a
ÝÑ

c d

b a
ÝÑ

c d

a b

and the inversion b ą a is exchanged for c ă b. Here, the square d may be missing.

(2) (Type II inversion) Suppose a ă b is a type II inversion. Then, the only interesting case

is if c, d swap below:

c d

a e

f b

ÝÑ
d c

a e

f b

If c ą e, then the swaps must terminate because we must have d ą e ą b ą a. Furthermore,

a, e do not form an inversion pair because a ă e. On the other hand, if c ă e the following
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swaps must occur:

d c

a e

f b

ÝÑ
d c

e a

f b

ÝÑ
d c

e a

b f

since b ą a ą f , we have that b, f form an inversion pair. Furthermore, in this scenario,

the condition c ă e means c, e was a type II inversion, which is replaced with the type I

inversion e ą a.

In all cases, the larger entry of the inversion pairs are unchanged, so we must have that

dinvtpP q “ dinvtppΘ´1 ˝ swap´1
i ˝ΘqpP qq. This completes the proof of the lemma.

□

Before we give the proof of Proposition 5.3.2, we briefly recall the recursion given in [GP92].

Let λ $ n be a partition, and let λpiq “ |pλ1, ..., λi ´ 1, ..., λℓq|. In other words, we subtract 1 from

the ith part, and rearrange if necessary to obtain a partition shape.

Theorem 5.3.12. [GP92] Fix λ $ n, and let ℓpλq “ λ1
1 denote the height of the partition.

The monomials Bpλq forming a basis for the Garsia-Procesi module satisfy the following recursion:

(5.3) Bpλq “

ℓpλq
ğ

i“1

xi´1
n Bpλpiqq

with the initial condition Bp1q “ t1u. If S is a set of monomials, the notation xβS denotes the

set obtained by multiplying every monomial of S by xβ.

For instance, as in [GP92], Bp211q “ t1, x2, x3, x2x3, x
2
3, x2x

2
3, x4, x4x2, x4x3, x

2
4, x

2
4x2, x

2
4x3u.

Proof of Proposition 5.3.2. We will show that the sets Cpλq defined in 5.3.2 satisfy the

recursion 5.3. By lemma 5.3.8, this is equivalent to working with the dinvt monomials for PFλ.

Define a map drop : PFλ Ñ PFn´1 as follows:

(1) Let P P PFλ be a parking function, and rwpP q be its reading word.

(2) Suppose n occurs in the block of wλ corresponding to λi. Delete n from the reading word,

i.e. consider rwpP q´ “ r..., n̂, ...s, and consider the composition α “ pλ1, ..., λi ´ 1, ..., λℓq.

(3) Define droppP q “ pwα, rwpP q´q.

76



For instance:

drop :

2

4

5

1

6

3

ÞÑ

2

4

5

1

3

If α is a composition, define Dλpαq “ tω P PFλ : droppωq P PFαu. It is clear that the only

α for which Dλpαq is nonempty are of the form αpiq “ pλ1, ..., λi ´ 1, ..., λℓq for some 1 ď i ď

ℓ. Furthermore, if pj, j1q P Codinvλpωq, and n R toccpiq, occpjqu, then one can check there is a

corresponding pk, k1q P codinvαpiqpdroppωqq. In other words, the diagonal inversions that do not

interact with n are not affected by drop, which implies that dinvtpdroppωqq “ pc1, ..., cn´1, pcnq,

where dinvtpωq “ pc1, ..., cnq.

Fix i, and let αpiq “ pλ1, ..., λi ´ 1, ..., λℓq. It is straightforward to define an inverse map

lifti : PFαpiq Ñ PFλ that is the inverse of drop on Dλpαq. This implies the map drop restricted

to each nonempty Dλpαpiqq is surjective onto PFαpiq , and so there is a canonical identification of

Dλpαpiqq and PFαpiq . This also implies the sets Dλpαpiqq partition PFλ:

PFλ “

ℓ
ğ

i“1

Dλpαpiqq

For each ω P PFλ, we consider the contribution of n to codinvλpωq. Suppose n occurs in the

part of wλ corresponding to λi. Then, n participates in a diagonal inversion pj, j1q P Codinvλpωq if

and only if one of the two following scenarios occur:
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n
...

. .
.

a
...

...
a

...

. .
.

n
...

where a ă n. In the left diagram, the two parts λi, λj have the same size, whereas in the right

diagram, the part λj containing a has λj ą λi. Then, we see that the number of diagonal inversions

involving n must be

(5.4) cn “

ˇ

ˇ

ˇ

ˇ

"

λj : λj ą λi

*ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

"

λj : λj “ λi, j ą i

*ˇ

ˇ

ˇ

ˇ

for λ “ pλ1, ..., λℓq, and the two summands are cardinalities of multisets. In other words, cn

is the number of parts of λ greater than λi, as well as the number of parts equal to λi that occur

after it. Furthermore, since n is the greatest entry in ω, we must have that χpj, j1q “ n for any

pj, j1q P Codinvλpωq involving n, so we are justified in calling the above quantity cn.

For a fixed αpiq, all of the parking functions ω P Dλpαpiqq must have n in the same position.

This implies they all have the same value of cn (the last digit of dinvtpωq), namely 5.4. We may

then write

"

xdinvtpωq : ω P Dλpαpiqq

*

“ xcnn

"

xpc1,...,cn´1q : ω P Dλpαpiqq

*

“ xcnn

"

xdinvtpdroppωqq : ω P Dλpαpiqq

*

“ xcnn

"

xdinvtpωq : ω P PFαpiq

*

“ xcnn Cpαpiqq

Now writing λ “ kakpk ´ 1qak´1 ...1a1 , where the aj denotes the multiplicity of j, consider the

permutation

σ “ pak, ..., 1, ak ` ak´1, ak ` ak´1 ´ 1, ..., ak ` 1, ..., ak ` ... ` a1, ..., ℓpλq ´ a1q
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Note we always have λσpjq “ λj , except the order of identical parts is reversed. Then, we see that

σpiq ´ 1 “ cn, so that

xcnn Cpαpiqq “ xσpiq´1
n Cpαpiqq

Finally, noting that σ is an involution, and using Cpαpiqq “ Cpλpiqq by 5.3.10, we have that

Cpλq “

ℓpλq
ğ

i“1

"

xdinvtpωq : ω P Dλpαpiqq

*

“

ℓpλq
ğ

i“1

xσpiq´1
n Cpαpiqq “

ℓpλq
ğ

i“1

xi´1
n Cpαpσpiqqq

“

ℓpλq
ğ

i“1

xi´1
n Cpαpiqq “

ℓpλq
ğ

i“1

xi´1
n Cpλpiqq

where we replace i by σ´1piq “ σpiq in the third equality. This completes the proof; we have

Cpλq “ Bpλq for all λ.

□

Remark 5.3.13. Since the set rD0
λ can easily be identified with OSPpλq, this gives a simple

bijective proof that the Garsia-Procesi basis Bpλq has size given by

|Bpλq| “

ˆ

n

λ

˙

Furthermore, since the exponents of Bpλq are precisely the λ-sub-Yamanouchi words, denoted

Cλ as in [Gil15], proposition 5.3.2 gives a simple bijective proof of its size as well.

5.3.2. Top t-degree and a Skip Statistic. Given λ $ n, we now introduce a q-statistic on

rDλ that recovers the m1n coefficient for top t degree of the Macdonald polynomial rHλ1pX; q, tq.

Formally, let

ηpλq “

ℓpλq
ÿ

i“1

pi ´ 1qλi “

ℓ1
ÿ

i“1

ˆ

λ1
i

2

˙

We will show that there is a statistic skip on ω P rDλ such that

79



(5.5)
ÿ

ωP rDλ
majpωq“ηpλq

qskippωqtmajpωq “
ÿ

σ:λ1Ñt1,...,nu

majpσq“ηpλq

qinvpσqtmajpσq

Write λ “ pλ1, ..., λℓq. First, we study the set rDηpλq

λ :“ tω P rDλ : majpωq “ ηpλqu. Note that

an element of maximal maj occurs when we shuffle the descent compositions of the long words for

λ1, ..., λℓ:

rDηpλq

λ “ affptp0, 1, ..., λ1 ´ 1qu ˆ ... ˆ tp0, 1, ..., λℓ ´ 1qu ˆ OSPpλqq

As such, when 1 is run on each p0, 1, ..., λi ´ 1q, all of the entries occur in the first block, so all

of the quotient labels pb1, ..., bnq must be 0, so we may write

rDηpλq

λ “

"

ω P rDλ : pb1, ..., bnq “ 0

*

and that the reading word of ω is actually equal to the corresponding π P OSPpλq. We will

define the statistic in terms of corresponding ordered set partition:

Definition 5.3.14. Identify ω P rDηpλq

λ with an ordered set partition π “ A1|...|Aℓ, and write

Ai “ pa0i , ..., a
λi´1
i q with a0i ă ... ă aλi´1

i . Then, a skip inversion is a pair of the form:

(1) pa0i , a
0
j q : i ą j, a0i ą a0j

(2) pak`1
j , ak`1

i q, i ą j, aki ă ak`1
j ă ak`1

i , k ě 0

We denote the set of skip inversions of ω by Skippωq, and define skippωq “ |Skippωq|.

Remark 5.3.15. The statistic skip can be thought of as counting the number of entries skipped

when running 1 on ω P rDηpλq

λ . We note that this is eerily reminiscent of the statistic betrayal

introduced in [KM17]. This connection should lead to interesting future work.

Example 5.3.16. Consider ω “ p6, 7, 8|2, 4, 9|1, 3, 5q P rDp9q

p3,3,3q
. This corresponds to the ordered

set partition 678|249|135, as well as the labeled descent composition

p03, 02, 13, 12, 23, 01, 11, 21, 22q

80



When the first (red) part is selected, two 0’s are passed by to select the third and final 0. The

first 1 after the 0 is selected, and the first 2 after the 1 is. So the first part contributes only 2 to

skippωq.

p0, 0, 1, 1, 2, 01, 11, 21, 2q

When the second (blue) part is selected, the first 0 is skipped again, one unmarked 1 is skipped,

and one unmarked 2 is skipped.

p0, 02, 1, 12, 2, 01, 11, 21, 22q

so the second part contributes 3 to skippωq. The final part contributes nothing, so skippωq “ 5.

Proposition 5.3.17. The map Ψ from the proof of 5.1.1 composed with aff from 5.2 from gives

a q, t-weight preserving bijection between the sets

rDηpλq

λ ÐÑ

"

σ : λ1 Ñ t1, ..., nu

ˇ

ˇ

ˇ

ˇ

majpσq “ ηpλq

*

As a corollary, equation 5.5 holds.

Proof. By proposition 5.1.1, since majpωq “ ηpλq “ majpσq for all elements ω, σ in their

respective sets, the map Ψ ˝ aff gives a set bijection between them. We need only show that

skippωq “ majppΨ ˝ affqpωqq.

It then suffices to show that |Skippωq| “ | InvppΨ ˝ affqpωqq|. We will do this by constructing

a bijection between the two sets. Let ω “ pA1|...|Aℓq as above, with Ai “ pa0i , ..., a
λi´1
i q and

a0i ă ... ă aλi´1
i . Then, we see that the image of ω under Ψ ˝ aff must be λ1-fillings whose columns

are precisely Ai in decreasing order. Then, the entry aji must occur in the ith column, in the j`1th

row (counting from the bottom). We consider the two types of skip inversions:

(1) For an inversion of the form pa0i , a
0
j q, i ą j, a0i ą a0j , then in pΨ ˝ affqpωq, they will take

the positions

a0i a0j

in the bottom row, so that pa0i , a
0
j q is an inversion in pΨ ˝ affqpωq.
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(2) For an inversion of the form pak`1
j , ak`1

i q, i ą j, aki ă ak`1
j ă ak`1

i , k ě 0, we have

ak`1
i ak`1

j

aki

But the inequalities aki ă ak`1
j ă ak`1

i mean precisely that the entries increase in counter-

clockwise order, forming an inversion triple in pΨ ˝ affqpωq.

We see then that the notions of skip inversions and inversion triples are equivalent, so we have

| Skippωq| “ | InvppΨ ˝ affqpωqq|, which completes the proof. □

5.4. Towards a Basis for the Garsia-Haiman Module Vλ

The original motivation for the project was to extend the methods of Carlsson and Oblomkov

in [CO18]. Since Vλ Ă DRn, then it seemed feasible that the same ideas that yielded the schedules

formula-type basis of DRn would be successful for Vλ. This proved unsuccessful, and we discuss a

few complications below.

5.4.1. Double Filtration and Hook Shapes. Let R “ Crx1, . . . , xn; y1, . . . , yns, and con-

sider the following ordering on a pair of compositions:

We say that pα, βq ďdes,grrevlex pα1, β1q if:

‚ β ădes β
1 or

‚ β “ β1 and α ďgrrevlex α1

In other words, given monomials xαyβ and xα
1

yβ
1

, we first compare the y-monomials in descent

order, then the x-monomials in grrevlex. This appears to work nicely for hook shapes, as per the

following conjecture:

Conjecture 5.4.1. Let λ “ pk, 1n´kq a hook shape, and V 1
λ1 “ CrBx, Bys ¨ ∆λ1 denote the

Garsia-Haiman module. Then, there is a basis of polynomials whose leading terms with respect to

the pdes, grrevlexq order are precisely the n ´ k ´ 1th-Haglund monomials, to be defined below.

Equivalently, expressed in terms of the coinvariant version:
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Conjecture 5.4.2. Let λ “ pk, 1n´kq a hook shape, and Vλ1 denote the Garsia-Haiman module.

Then, the leading terms with respect to the pdes, grrevlexq order are the n ´ k ´ 1th-Haglund

monomials.

Furthermore, the following appears to be true, and has been checked by computer for n ď 7:

Conjecture 5.4.3. Let λ be any partition. Then the leading terms with respect to the (des,

grrevlex) order are of the form xαyβ, with β P Dλ.

5.4.2. Conjectural Garsia-Haiman Basis for Top t-degree. We present a set of mono-

mials, denoted Htop
λ , that conjecturally form a basis for

V top
λ1 :“

ηpλ1q
à

h“0

V
ph,ηpλqq

λ1

the top t-degree component of the Garsia-Haiman module Vλ1 . The construction will be given

in terms of the extended affine permutations ω P rDηpλq

λ and the skipt statistic.

Definition 5.4.4. For λ $ n a partition, let ω P rDηpλq

λ . Then, define for 1 ď i ď n, the quantity

ci :“ |tpi,mq P Skippωqu|. One can think of ci as denoting the number of times the ith entry of

majtpωq is skipped during the selection process 1, as in 5.3.16 Define

skiptpωq :“ pc1, ..., cnq

Conjecture 5.4.5. The set

Htop
λ :“

"

xskiptpωqymajtpωq : ω P rDηpλq

λ

*

forms a monomial basis for the top t-degree component V top
λ1 of the Garsia-Haiman module.

Example 5.4.6. Consider ω “ p6, 7, 8|2, 4, 9|1, 3, 5q P rDp9q

p3,3,3q
as in example 5.3.16. Then, we

calculate skiptpωq “ p2, 1, 1, 0, 1, 0, 0, 0, 0q, majtpωq “ p0, 0, 1, 1, 2, 0, 1, 2, 2q. The corresponding

monomial is px21x2x3x5qpy3y4y
2
5y7y

2
8y

2
9q.

For hook shapes λ “ pk, 1n´kq, we show that this construction coincides with the top degree of

the n ´ k ´ 1th-Haglund basis described in [ARR07]. We briefly recall the definition here:
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Definition 5.4.7. For 1 ď k ď n, a permutation π P Sn with descent set Despπq, define

inv
pkq

i pπq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

|tj : i ă j ď k, πpiq ą πpjqu|, if 1 ď i ă k

0, if i “ k

|tj : k ď j ă i, πpjq ą πpiqu|, if k ă i ď n

,

/

/

/

/

/

.

/

/

/

/

/

-

d
pkq

i pπq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

|Despπq X ti, ..., k ´ 1u|, if 1 ď i ă k

0, if i “ k

|Despπq X tk, ..., i ´ 1u|, if k ă i ď n

,

/

/

/

/

/

.

/

/

/

/

/

-

and the kth Haglund monomial to be

cpkq
π :“

n
ź

i“k`1

x
inv

pkq

i pπq

πpiq ¨

k´1
ź

i“1

y
d

pkq

i pπq

πpiq

Note since our definition of Garsia-Haiman modules Vλ has x,y swapped, we must switch the

variables accordingly here.

Theorem 5.4.8. [ARR07] The set of kth Haglund monomials

"

cpkq
π : π P Sn

*

forms a monomial basis for the Garsia-Haiman module Vpn´k`1,1k´1q.

We show that for top y-degree, the set rDηpλq

λ generalizes the above basis.

Proposition 5.4.9. Let λ “ pn ´ k ` 1, 1k´1q. Then, Htop
pk,1n´kq

specializes to the kth Haglund

basis at top y-degree.

Proof. By [ARR07], it is shown that the kth Haglund monomial for π corresponds to the

Haglund statistics inv,maj of the corresponding pn ´ k ` 1, 1k´1q-filling σ with reading word π.

Since we are only concerned with degpyq “
`

k
2

˘

, we must have that π1 ą π2 ą ... ą πk. Then, the

y-monomial for c
pkq
π is yπk´1

y2πk´2
...yk´1

π1
.

The x-monomials for the kth Haglund monomial simply record the number of attacking pairs

pi, jq with i ą j in the bottom row of σ. More precisely, for j in the bottom row of σ, it can be
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checked that inv
pkq

j pπq “ |tpi, jq : i ą j in the bottom row of σu|. Then, as in 5.3.17, attacking

pairs correspond precisely to skip inversions. Comparing the definitions of inv
pkq

j pπq and skipt, we

see the claim is true. □

Example 5.4.10. Let n “ 8, k “ 4. Then, λ “ p5, 1, 1, 1q. Consider the permutation π “

86417352. Then, we have pinv
p4q

1 pπq, ..., inv
p4q

8 pπqq “ p3, 2, 1, 0, 0, 1, 1, 3q, and pd
p4q

1 pπq, ..., d
p4q

8 pπqq “

p3, 2, 1, 0, 0, 1, 1, 2q. Then, c
p4q
π “ px32x3x5qpy4y

2
6y

3
8q. The corresponding λ-filling is

8

6

4

1 7 3 5 2

where x32 corresponds to the inversion pairs p7, 2q, p3, 2q, p5, 2q, x3 correponds to p7, 3q, and x5

corresponds to p7, 5q. The corresponding element in rDtop
p4,1,1,1,1q

is ω “ p1, 4, 6, 8|7|3|5|2q, with

labeled descent composition

p01, 05, 03, 11, 04, 21, 02, 31q

5.5. Further Results

5.5.1. Dominance Containment of Dλ. The sets Dλ satisfy a very interesting containment

property.

Proposition 5.5.1. Let µ, λ be partitions, and µ Ĳ λ. Then, Dµ Ď Dλ.

Proof. It suffices to prove for covering relations in the dominance order poset, that is,

λ “ pµ1, . . . , µi ` 1, . . . , µj ´ 1, . . . , µℓpµqq

Let a “ pa1, . . . , anq P Dµ. Then, algµ terminates, so that we may write

algµpaq “ pa1, . . . ,aℓpµq, πq
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with π “ A1| . . . |Aℓpµq P OSPpµq. Then, ϵpalgµpaqq is good, and so we must have that the highest

entry in ai is greater than or equal to that of aj . Let k be the leftmost instance of the largest

element in aj , and suppose m is the corresponding index in a, am “ k. Then, consider

π1 “ A1| . . . |Ai Y tmu| . . . |Ajztmu| . . . |Aℓpµq

and modify ai,aj accordingly to obtain a`
i ,a

´
j . Then, we must have a`

i P Dλi`1,a
´
j P Dλj´1, as

the essential sequences were not affected by this swap. This implies that

a “ Ψpa1, . . . ,a
`
i , . . . ,a

´
j , . . . ,aℓpµq, π

1q

so a P Dλ. □

5.5.2. Generalization to ∆-Springer Modules Rn,λ,s. In Sean Griffin’s remarkable thesis,

the generalized coinvariant algebra Rn,k and the Garsia-Procesi module Rλ are generalized into the

∆-Springer modules, whose definition we recall here.

Let k ď n, λ a partition of k, and an integer s ě ℓpλq.

Definition 5.5.2. [Gri21] Define the ideal In,λ,s and Rn,λ,s as follows:

(5.6)
In,λ,s :“ xxsi : 1 ď i ď ny ` Iλ

Rn,λ,s :“ Qrx1, . . . , xns{In,λ,s

where Iλ is the usual Tanisaki ideal, as defined previously.

Griffin provided a monomial basis in terms of certain n, λ, s-staircases, which turn out to spe-

cialize to the usual Garsia-Procesi basis of Rλ.

In ongoing work, we study a descent-type basis that simultaneously generalizes the descent-basis

of Haglund-Rhoades-Shimozono defined in [HRS19] and our new Garsia-Procesi Basis:

Conjecture 5.5.3. Let λ “ pλ1, . . . , λℓq be a partition of k ď n, and s ě λ1. Define

λ` “ pλ1, . . . , λℓ, 1, . . . , 1

n´k

q
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Write Ψ for the shuffle map as before,

Ψ : Dλ1 ˆ ¨ ¨ ¨ ˆ Dλℓ
ˆ rss

n´k
ˆ OSPpλ`q Ñ Dn

and define Dn,λ,s :“ impΨq. Then, the set of monomials txb : b P Dn,λ,su is a vector-space basis of

Rn,λ1,s.
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