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A Descent Basis for the Garsia-Procesi Module

Abstract

We define a combinatorial construction that gives a natural subset of the Garsia-Stanton descent
monomials whose images under the canonical projection R,, — R) form a vector space basis of the
Garsia-Procesi module Ry. As a consequence, our indexing set yields a new formula for the modified
Hall-Littlewood polynomials. Our work was discovered whilst searching for a basis of the Garsia-
Haiman module, and we discuss partial results in this direction, as well as other connections with

the modified Macdonald polynomials H, (X;q,t).
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CHAPTER 1

Introduction

A complete flag in C™ is an increasing sequence of subspaces

Fo=({0}=FycF c...cF,=C")

such that dimcF; = i. The collection of flags in C™ is known as the complete flag variety
Fl,(C), and is a projective variety with a cell decomposition {C,, : w € S,} indexed by the
symmetric group S,,. The cells C,, are known as Schubert cells, with dimensions corresponding to
a certain combinatorial statistic on S,. The flag variety (in type A) may also be thought of as
Fl,, = GL,(C)/B, where B is the subgroup of all upper triangular matrices.

The ¢-th tautological line bundle on F,, is the line bundle £; whose fibre over flag F, is the line
F;/F;_. Denote by x; = —c1(L;) to be its first Chern class. Borel, in his thesis, gave a presentation

of H*(Fl,) in terms of the x;:

(C[a:l,...,a;n]

I =: R,

H*(Fl,) ~

where I,, is the coinvariant ideal, I, = {e;(x),1 < i < n), R, is called the coinvariant algebra,
and e;(x) is the elementary symmetric function in the variables 1, ..., z,. We may think of I,, as
the ideal of all nonconstant symmetric functions.

As a vector space, dimgR,, = n!, so one would expect the existence of a basis indexed by
permutations m € S,. In fact, there are two bases which correspond to certain combinatorial
statistics on Sy, known as the Artin and Garsia-Stanton bases, which we will introduce later. The
Garsia-Stanton basis especially is useful for representation-theoretic computations, such as in the
descent representations of Adin-Brenti-Roichman in [ABRO3].

A very important family of subvarieties of Fl, are the Springer fibres, indexed by nilpotent

operators X : C" — C™ which appear in the context of the (Grothendieck-)Springer resolution of



the nilpotent cone A. If X, is a nilpotent operator with Jordan type A, then the fibre lying over
X, is called the Springer fibre By. Springer showed in 1976 [Spr76| that the cohomology ring
H*(B)) carries an Sp-action. Furthermore, in top degree, this representation is irreducible, and is
precisely the Specht module Sy. In fact, all irreducible S,,-modules arise this way; this is known as
the Springer correspondence.

The inclusion map By < F,, induces a map in cohomology ® : H*(Fl,) — H*(B)). Hotta and
Springer showed in [Hot77] that this map is surjective, and S,-equivariant, so that one would hope
to extend Borel’s combinatorial realization of H*(Fl,) to the Springer fibre. This was achieved by
DeConcini and Procesi in [CP81], and the relations were later simplified by Tanisaki in [Tan82].
This presentation of H*(B,) is known as the Garsia-Procesi module Ry, as Garsia and Procesi
constructed a monomial basis for Ry in [GP92]. This remarkable basis is a subset of the Artin
monomials which varies with A\, and so one may ask if such a procedure can be done with the
Garsia-Stanton basis. In this work, we answer the question in the affirmative, give the construction

maj

the indexing sets Dy, J, ", and prove the following theorem:

THEOREM 1.0.1. There is a set of Garsia-Stanton descent monomials

{xa rae€ D)\} = {xma‘jt(ﬂ') TE J;\YIaJ}

depending on X\ that forms a C-basis for the Garsia-Procesi module for the transpose partition, Ry .

In a subsequent chapter, we give various generalizations (to be stated as conjectures) of our
new basis as well.

The Frobenius character of the Garsia-Procesi module Ry is given by the modified Hall-Littlewood
polynomial Hy(X;t):

Froby(R)) =~ Hy(X ;1)

By theorem 1.0.1, we have that the Hilbert series of Ry can also be written as

Hilby(Ry) = . ™2™

maj
meJy

2



In fact, this can be generalized to yield a new formula for the (modified) Hall-Littlewood

polynomial:

THEOREM 1.0.2. We have the following equalities:

(1.1) Hy(X;t) = > ™0 Ry 1 (X) = 2( > tm““))mu(x)

WEJ;\naj HEn TrGJ;naijh(p,)

where Sh(p) are the permutations of Sy, such that 1, ..., u1 appear in order, p1 + 1, ..., p2 appear

i order, and so on.

These results were actually discovered while working towards a larger goal - finding a C-basis
for the Garsia-Haiman module V). We give a bit of background and context here.

Let R = C[x1, ..., Zn; Y1, -, Yn]- The Hilbert Scheme of n points in C? is the collection of ideals
I in R such that the C-dimension of R/I is n:

H, = Hilb, (C?) = {1 c R :dim¢(R/I) = n}

The Hilbert Scheme H,, can be thought of as a resolution of singularities of the space of

unordered tuples of n-points in C2:

S"(C?) = {[[Pl,...,Pn]] P e CQ}

via the Hilbert-Chow morphism o : H, — S™C?, which sends an ideal I to its vanishing locus
(with multiplicity), o(I) = V(I). There is a well-known open covering of H,, corresponding to
partitions A of n. Given a partition A, we may draw the Ferrers diagram in the first quadrant of the
zy-plane (in French notation), and consider the monomials with exponents determined by them,

denoted M. For example, My91 = {1, 2,y, xy, xy?}. Then, we can define the open set Uy to be

Uy:={l € H,: M) is a C-basis for R/I}
3



There is a natural (generically) n!-sheeted cover of S"C? by considering ordered tuples of n-
points in C?, denoted by (C?)", and we may consider the pullback of (C?)” — S™"C? along the map

o to obtain the isospectral Hilbert Scheme X,,:

X, — (CHn
Foo
H, —2— S"C?
which has the explicit presentation X,, = {(I; P, ..., P,) : P, ..., P, e V(I)} c H, x (C*)". For
the singular point [[0, ...,0]], and a partition ), there is a particular ideal I* € Uy consisting of

monomials that lie outside the Ferrers diagram for A:

= C-{z%": (a,b) ¢ \}

7271

For example, 122! = {y3, 2y?, 2?}. This can be seen by looking at the diagram:

y3 xy?) $2y3
Y2 \ﬁ 22y?
Yy Yy x2y
1 z | x?

The coordinate ring of the fibre over I* in X, is a nonreduced local ring V) := C[x,y]/J),
where J) is the annihilating ideal of a certain determinant Ay. V) is known as the Garsia-Haiman
module, and there is a dual version defined as the vector space span of Ay under the action of the

partial derivative operators 0x, dy:

V){ = C[&x,ay] . A)\

Both V) and VJ carry an S, action, and are isomorphic as doubly graded .S,, modules. Mark

Haiman established in [Hai01] that the C-dimension of V) is n! by a geometric argument, resolving

4



the famous n!-conjecture. Since the proof of the n!-conjecture, however, the following question is

still open:
PROBLEM 1. Find a vector space basis of V) or V7.

This problem is decidedly difficult. Bases have been constructed for hook shapes (by Adin,
Remmel, Roichman in [ARRO7]), and for two-column shapes (by Assaf-Garsia in [AGO09]). We
will give a conjectured basis for all shapes at top t-degree.

The original motivation for the problem was to first construct a basis at bottom z-degree ¢ = 0,
and then extend the basis to the entire Garsia-Haiman module. Theorem 1.0.1 is the result of the
first step, and conjecture 5.4.5 is a first step of this extension.

The modified Macdonald polynomials fI,\(X; q,t) are a family of symmetric functions in C(q, t)
that generalize various families of symmetric functions, most notably the modified Hall-Littlewood

polynomials:

Hy(X;q) = Hy\(X;4,0) H\(X;t) = Hy\(X;0,t)

The Garsia-Haiman module was actually constructed in [GH93| as a representation-theoretic
model of I?[A(X; q,t), so that Frobg(V}) = ﬁ[,\(X; q,t). The resolution of the n!-conjecture proved
this statement, which implies the famous Macdonald positivity conjecture, that K wx(g,t) € N(g, 1)

in

ﬁ/\(X7Q7t) = 2 I?;L/\(qat)sli(X)
pEn

PROBLEM 2. Find a combinatorial formula for K un(q,t).

Partial results include the case of three columns by Blasiak [Bla14], hooks and two columns by
Assaf [Ass17], and the original Yamanouchi-word formula for two-column shapes in [HHLO5b].
The existence of a basis for V) would be a significant step towards establishing a combinatorial

formula for f(“,\(q, t).



CHAPTER 2

Background

2.1. The Symmetric Group, Permutation Statistics, and the Coinvariant Algebra

Let n € N. The symmetric group S, lies at the intersection of algebraic combinatorics, repre-
sentation theory, symmetric function theory, algebraic geometry, among other fields. It is given by

the following definition:

022 =1
Sp = < O1y ey Op—1 00 = 0;0; if |i —j| =2 >
004103 = 0;410;0i41 fori=1,...,m—2

where the o; are referred to as Artin generators or simple transpositions, and the second two
relations are known as the braid relations. Letting [n] = {1,2,...n}, we can represent elements of
Sy, as bijections 7 : [n] — [n]. It will be very advantageous to represent 7 in one-line notation, by
writing 7 = 7(1)...7(n) = m1...m,. We will use the notations interchangeably when it does not cause
confusion. Then, the Artin generator o; can be identified with the permutation 12...(7 + 1)i...n in
one-line notation.

Next, for k,n € N, let

[kKlg=1+q+..+¢!

[n]g! = [n]g[n — 1]g---[2]4[1]q

denote the g-analogues of k and n!. If we specialize to ¢ = 1, we have that [k]; = k, and
[n]1! =nl.
The combinatorial structure of 5, is a rich and fascinating subject, having preoccupied combi-

natorialists for decades. Among one of the most interesting subjects is that of permutation statistics



associated to S, (or more general objects), that is, a weight function stat : S,, — Z>¢. In our case,

we will be particularly interested in statistics such that

Z qstat(ﬂ) _ [n]q'

TESH

We give two such statistics below, both of which are well known.

2.1.1. Inversions and Lehmer Codes. Let w € S,,. Then, consider the set of inversions of

7, denoted

Inv(m) = {(m,ﬂj) Dl < jymp > Wj}
in other words, the number of pairs (m;, 7;) such that the larger entry appears to the left. In
this scenario, we say that m; attacks wj. Denote inv(m) = # Inv(7), and let by, = #{(x, k) € Inv(m)}
denote the number of elements that attacks k£ in w. Then, define the Lehmer code or the inversion

table of 7 to be given by the following tuple:

invt(m) = (b1, ..., bn)

We denote the set {invt(m) : 7 € S} = &,. Now, let [k] = {0,1,...,k}. It is well known (for
example, see [Stall]) that

{invt(w):weSn}z[n—l]x...x[]

Noting that inv(m) = by + ... + by, we see that

Z qinv(ﬂ') _ Z qb1+...+bn _ Z qb1+...+bn

mESn TESR (b15-.-,bn)€[n—1] x...x[0]

:< 3 qb1>...< 3 qb"> — [)g--[1]g = []y!

bie[n—1] brel0]

]

[
as a reduced word (so that k is minimized), then it will turn out that

If we write ™ = 0y,...04,

k = inv(r).



ExAMPLE 2.1.1. Let w = 53421. Then, the inversions are
Inv(53421) = {(5,3), (5,4), (5,2),(5,1),(3,2),(3,1),(4,2),(4,1),(2,1)}

so that inv(53421) = 9 and invt(53421) = (4,3,1,1,0).

2.1.2. Major Index and Descent Tables. We now define a second permutation statistic
called major index, named after Major Percy MacMahon.

Let m € S,,. A descent of a permutation is an index ¢ such that m; > ;1. The set of descents
of m is denoted Des(r), and let maj(m) = >J;cpes(r) ¢ denote the major index of m, which is the sum
of the indices of the descents.

Denote the runs of m to be the maximal consecutive increasing subsequences, and label the

runs from right to left, beginning with 0. Let a; denote the run label of i, and set

majt(m) = (a, ..., ap)

We will refer to majt(m) as the descent composition or the major index table of m, and set
D,, = {majt(n) : m € Sp} to be the collection of major index tables. It is straightforward to show
that maj(m) = a1 + ... + ap.

We record an important fact here.

LEMMA 2.1.2. Let a € Z%,. Then, a € D, if and only if a contains a 0, and the rightmost i

contains and i — 1 to the left for all ¢ > 0.

PROOF. Suppose a € Dy, with majt(n) = a. Then, the last entry m; = i of the rth run (if »
is not the last run) is necessarily a descent. This implies that 7; = i > ¢/ = 741, so that ¢/ < ¢
and ay = r — 1 appears to the left of a;. There must be a 0 because if 7 is nonempty, the run
labels always begin with 0 from the rightmost run. To see the converse, the existence of a 0 asserts
the existence of the rightmost run, and the second condition asserts that the final entries of each
run are greater than the first entries of the run to the right of it. This guarantees that we have a

well-defined permutation. U



ExAaMPLE 2.1.3. Let m = 81725346. Then, the runs are 8,17,25,346 with labels 3,2,1,0
respectively, and majt(7) = 21001023.

We record another useful definition and lemma.

DEFINITION 2.1.4. An inverse descent of a permutation 7 is an entry i such that 7=1(i) is a

1

descent of 7~*. Equivalently, i € iDes() if and only if 7 + 1 appears to the left of ¢ in one-line

notation.

LEMMA 2.1.5. Let w € S, majt(n) = (a1,...,a,). We have that i € iDes(w) if and only if

a; < Qj41-

PROOF. That i € iDes(m) is equivalent to the statement that i + 1 occurs before i in one line
notation. This is true if and only if ¢ + 1 occurs in an earlier run, as a descent must occur between

them. But this is precisely the assertion a; < a;41. ([l

In 1913, MacMahon showed that

Z qmaj(ﬂ') _ [n]q| _ Z qinv(7r)

TESH TESH

so that maj is equidistributed with inv for S,.

REMARK 2.1.6. For direct bijections f : S,, — S, that swaps inv and maj, there is the Foata

bijection described in [Sta99] or the Carlitz bijection described in [Gil16].

2.1.3. The Coinvariant Algebra, Artin and Garsia-Stanton Descent Monomials.

The coinvariant algebra is defined to be

_ Clz1, ..., xn]
" e (), ., en(%))

is the quotient of the polynomial ring in n variables by the ideal of nonconstant symmetric

R

functions. Here, e4(x) denotes the sum of all degree d squarefree monomials in the variables

T1yeeey Ly



It is well known that R, is a finite-dimensional vector space over C of dimension n!. There are
two well-known bases for R,,, which we now define. Given a composition a = (a1, ...,a,) € Z%,

define z% € C[z1, ..., x,] by z* = z{*...2%", and set rev(a) = (ap, ..., a1).

e The Artin basis is defined to be the set A, = {z"v(™™) . 7 e 5 }
e The Garsia-Stanton basis ( [GS84]) is defined to be the set D,, = {z™%™) . 7 ¢ 5}

which correspond to the permutation statistics inv and maj respectively.

REMARK 2.1.7. The usual definition for the Garsia-Stanton monomial is

7j:7ri>7ri+1

It is straightforward to show that the two definitions agree.

The coinvariant algebra R, is naturally graded by degree, so that we may write

(2
R, =@ RY

n
=0

where Rq(f) denotes the degree i part of R,. Then, since A, (or D,,) is a basis of R,,, we must have
that

(5) - ‘

Ydime(RP)q' = ) ™™ = [n],!

i=0 TESH

REMARK 2.1.8. Borel showed in 1951 that R,, =~ H*(Fl,), the cohomology ring of the complete
flag variety Fl,. Indeed, there is an affine paving (by Schubert cells) of Fl,, whose cells are indexed
by permutations, the dimension of which is precisely given by inv (7). It will turn out that inv is
more illuminating for geometric computations, but maj is more natural for representation-theoretic

concerns.

2.1.4. Words. Given an alphabet A (usually Zx( or N), a word of length n is a string consist-
ing of entries from A. We will denote the set of words with entries in A by W (.A), and the subset

of words of length n by W,,(A). When the alphabet is clear, we will simply denote this by W,,. We
10



will alternate between the notations w = wy ... wy, = (w1, ...,w,) depending on the context, when
it does not cause confusion.

If A={a1 <ay <...}is totally ordered and countable, we may define the content of a word

to be
| Al
content(w) = (bl, ba, ... ) € C—BZZO
i=1
where b; = |{j : w; = a;}| denote the number of times a; appears in w. We will assume all

alphabets to be totally ordered and countable.

If A =N, then S,, can be identified with the collection of words of content (1,...,1,0,...).

| I

n
If w=wi...w, €W, we define the reverse of the word to be rev(w) = w, ...w;. Very often,
words will index monomials in a polynomial ring, and so given a set of indeterminates {z, : a € A}

indexed by an alphabet A, we will define

Ty = 2! = Ty, .- Ty

n

Let A = {a; <az < ...}, and w € W,(A) be a word with content (b, b2,...) Then we may

define the standardization of the word to be the result of the following procedure:

et b; is the smallest nonzero entry of content(w), let w;,, ..., w;
lLtb]'th llest t f tent let w;,

,. denote the entries with
J

w;, = j. Replace these entries with ay, ..., ap, respectively.

(2) Repeat for other nonzero b;’s following alphabetical order.

2.2. Partitions, Tableaux, Robinson-Schensted-Knuth Correspondence

We now discuss the representation theory of S,.

2.2.1. Partitions and Tableaux. A partition of n is a weakly decreasing sequence of numbers
A= (A1, ..., Ap) with Ay > ... = A\; such that Ay + ... + Ay = n. We often denote this by A - n. A
Young diagram of a partition A is a finite collection of left-justified boxes (or cells) such that the

number of boxes in each row corresponds to the parts of .

11



There are two conventions for Young diagrams, both of which we will use. In English notation,
the rows will weakly decrease in size moving downward, and weakly increasing for French notation.

For instance if A = (6,5,2,2,1):

English: French:

We will often fill Young tableau with numbers; these will be referred to as Young tableauz. In
English notation (resp: French), Young tableau is semistandard if it weakly increases along rows,
and strictly increases downward (resp: upward) along columns, and standard if it strictly increases
along rows and columns. The content of a Young tableaux 7' is a composition o = (aq, ..., o),
where «; is the number of i’s that appear in T. We denote the set of standard Young tableaux
of shape A by SYT()), the set of semistandard Young tableaux of shape A by SSYT(A), and the
subset of SSYT () with content a by SSYT(A, cv).

Let A, u be partitions, with the Young diagram of u completely contained in the diagram of A.
The skew shape A/u is the partition obtained by deleting the shape p from A. A ribbon is a skew

shape that does not contain a 2 x 2 box.

EXAMPLE 2.2.1. If A = (4,3,2) and p = (2, 1), then in English notation,

M=

|

which is a ribbon, as it contains no 2 x 2 box.

We will let X' denote the conjugate or the transpose of a partition, and

=3 (3) = S

i i
denote the usual Macdonald statistic.
There is an important partial order on partitions, known as dominance order.

12



DEFINITION 2.2.2. We say that p <t A, or u dominates X if:

w1 < A\

w1+ pe <A+ Ao

p1 e ginfeua)y S A+ Aningeua))

It is well known that <o A implies that n(u) > n(\), and that g < X if and only if p/ = N.

More generally, composition of n is a tuple o = (o, ..., ) € ZI;O such that a3 + ... + a = n.
An a € Z’;O is referred to as a weak composition. The underlying partition of a composition « is
the partition A = sort(«) obtained by sorting the parts of « in weakly decreasing order.

Very often, compositions will index exponents in a polynomial ring in the variables z1, ..., zy.

As shorthand, we will often write, for a weak composition o € ZZ,

2.2.2. The Robinson-Schensted-Knuth Correspondence, Knuth Equivalence. For
brevity, we refer the reader to [Sta99] for details, and give only an overview here.
The Robinson-Schensted-Knuth correspondence (often abbreviated by RSK) is a theorem at the

heart of representation theory, which is a bijection

S« | | SYT()) x SYT())
A-n

which uniquely associates a permutation to a pair of standard Young tableaux of the same
shape. We will often write m — (P,Q), where P is the insertion tableau, and @ is the recording
tableau, and write P = ins(w),Q = rec(w). P is obtained by performing row insertion on the
permutation 7, and ) records the position of each new entry.

Since row insertion is well defined for words in the alphabet N, letting W, denote the words

with length n, we may perform RSK to obtain a correspondence

13



W, «— | | SSYT(X,d) x SYT())
AFn

where now the insertion tableau need not be standard, as W,, may have repeated letters, and
SSYT(A,n) denotes the semistandard Young tableau of shape A whose entries are no greater than
n. We remark that there are more general versions or RSK, but the above two will suffice for our
purposes.

Let W(A) denote the set of words in an alphabet A. The elementary Knuth transformations

(or Knuth moves) on W4 are given by:

TZY < TRY, r<y<z
YTZ < YZT, r<y<z

We say that two words w, w’ are Knuth-equivalent if w can be obtained from w’ by performing a
series of Knuth moves. Define the plactic monoid on A to be the W (A) modulo Knuth equivalence,

denoted W (A)*.

PROPOSITION 2.2.3. [Ful96] Two words w,w’ are Knuth-equivalent if and only if ins(w) =

ins(w'), that is, they have the same insertion tableau.

The elementary dual Knuth transformation 7; exchanges 7,7 + 1 if and only if ¢ — 1 or ¢ + 2
occur between them. If w can be obtained from w’ by performing a series of elementary dual Knuth
transformations, we say that w,w’ are dual Knuth equivalent. For example, w = 43251 = 53241 =

w’ since 3 occurs between 4,5, and 73(w) = w’. We have the following proposition:

PROPOSITION 2.2.4. [Ful96] Two words w,w’ are dual Knuth equivalent if and only if rec(w) =

rec(w'), that is, they have the same recording tableau.

This follows from 2.2.3 since dual Knuth equivalence of w,w’ is the same as Knuth equivalence
of their inverses (defined via generalized permutations, see [Ful96]). Then the proposition follows

from the fact that if w — (P, Q), then w™! — (Q, P), which is well known.
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2.3. Symmetric Functions and Frobenius Characteristic of S,,-modules

We now give a brief overview of symmetric functions.

2.3.1. Basic Notions. Let R be a ring (usually R = C or R = Q), and consider the formal
power series ring in infinitely many variables S = R[[x1, x2, ...]]. We often abbreviate f(z1, z2,...) =
f(x) = f. Let Sy denote the group of permutations of N. We can define an action of S, on S
by setting 7 - f(z1,72,...) = f(Zr(1), Tr(2);--) for m € S, Then, we say that f € S is a symmetric
function if m- f = f for all m € Sq.

It is easy to check that collection of symmetric functions Ag < S is a ring, and naturally inherits

the grading of S. Denoting the homogeneous degree n symmetric functions by A’, we may write

ee}
Ar =DA%
n=0
with A}, = R.
If R is a field, then Ar has a natural structure of a R-vector space. We will always choose

R = Q. We give a few well-known bases:

e The monomial symmetric functions

_ A1, A2 A
my(x) = Z A e
11,12,...,5;distinct

e The elementary symmetric functions ey(x) = ey, €x,...ex, where

1N<...<ip

e The power sum symmetric functions p\(X) = px,Pr,---Px, Where

pr(X) = 2 x:

e The complete homogeneous symmetric funtions, hy = hy, hy,...hy, where



e The Schur functions

ax) = >

TeSSYT(A)

, where z/TI = xiplgggQ... and T; is the number of i’s in 7.

The Hall inner product is defined to be orthonormal on the Schur basis, that is,

(A (%) 5u(x)) = I

and extended linearly in both arguments.

2.3.2. S,-modules and the Frobenius Characteristic Map Frob. It is well known that
the irreducible S,, representations are indexed by partitions A — n, and are referred to as Specht
modules. We will denote the unique irreducible corresponding to A by Sj.

Given an S,,-module V (over a field of characteristic 0) we may write

V=@ v
An

where ¢y, is the multiplicity of V. Then, the Frobenius characteristic of V' is given by

Frob(V) = Z exsa(x)

If V is a graded S,,-module, say V = (—szl V@ then we write

k
Froby(V) = > Frob(V#W)g' € A,

=1

and for doubly-graded S,-modules, say V = (—B(i’ J) V0@9) | we write

Frobg(V) = Z Frob(V/))g't/ e Ag(at)
.3

The Hilbert series of a graded (or bigraded) S,, module is given by

Hilby (V) = (h(iny, Frobg(V)) = > dimg(V¥)q’

16



Hilby ¢(V) = (i), Frobg(V)) = dimg (V) g't!
Z’?j
We can think of the Hilbert series as a generating function for the Q-dimensions in each graded

component of V.

2.3.3. Quasisymmetric Functions. A quasisymmetric function (as defined in [Sta99]) in

Q[[z1, 72, ...]] is a formal power series f = f(x) such that for any (ay, ..., az) € N¥, we have

[ i) f = [l

for all pairs of strictly increasing sequences i1 < ... < i and j; < ... < jk, and [z%]f denotes
the coefficient of 2 in f.

We can similarly study the Q-vector space structure of Q", the space of homogeneous degree n
quasisymmetric functions. As symmetric functions are indexed by partitions A - n, quasisymmetric
functions are often indexed by compositions a of n. Following Stanley’s notation, given o =
(a1, .y ), let Sy = {an, 1 + g,y .cop + oo + a1}

Then, define the Gessel fundamental quasisymmetric functions F, »(x) to be given by

Fs,n(x) = Fon(x) := Z Tiy Ly,
’L'j<ij+1 if jESa
in other words, monomials whose indices must necessarily increase at the positions marked by
a. It is well known that the F},’s form a Q-basis of Q™. Very often, S, will be a descent set, or an

inverse descent set of a permutation.

2.4. Macdonald Polynomials and the Garsia-Haiman Module

2.4.1. Combinatorial Formula for the (modified) Macdonald Polynomials. Haglund
[HHLO5b] made a breakthrough (or as Garsia put it, ”found water on Mars”) in 2005 when he
discovered a combinatorial formula for the modified Macdonald polynomials H A(X;q,t). We briefly

recall the definition below.

17



Let A + n, and we will consider fillings o : A — Z~q of positive integers, where A is drawn in
French notation. A descent is a pair of entries that are connected vertically, with the greater top

entry. If a > b, then the square containing a in

is a descent. Denote the set of descents by Des(c). An attacking pair in X is a pair of cells such

that:

e They are in the same row: IZl IZl

e They are in consecutive rows, with the cell in the upper row strictly to the right:

In both cases, if a > b, then the pair is said to be an inversion of o. We denote the inversions
of o by Inv(o).

The arm of a cell u € A is the number of cells strictly to the right in the same row of u, and
the leg is the number of cells strictly above in the same column. For example, we have arm(u) = 4

and leg(u) = 2 in

Then, Haglund’s statistics are given as follows:

maj(o) = Y (leg(u) + 1)

ueDes(o)

inv(o) = |Inv(o)| — Z arm(u)

u€Des(o)

Haglund’s major index can be thought of as major index of each column individually, viewed
as words. The inversion statistic can be thought of as counting the inversion pairs in the bottom

row, as well as triples of the form
18



which contribute 1 to inv(o) if the entries increase in counterclockwise order, and contribute 0

if they increase in clockwise order.
THEOREM 2.4.1. [HHLO5b] We have

(2.1) ﬁA (X; q, t) — Z qinv(cr)tmaj(cr)xa

ALy

Consider the Schur expansion of H A(X5q,t):

where I?u)\(q, t) are the famous g, t- Kostka numbers. It is quite a remarkable fact that I?u)\(q, t) e
N(g,t), yet a combinatorial formula for all shapes remains a great mystery at the time of this writ-
ing.

The Macdonald polynomials are uniquely defined by a set of triangularity axioms, which we

record here for later use:

~

o (T1). HAIX(1—q);q,t] = 20n cun(@: t)su(x)
b (T2)' ﬁ)x[X(l - t)§ (Lt] = Zw;)\' d,uA(q’t)Su(X)
o (N). (Hy, 50,y =1

2.4.2. The Garsia-Haiman Module. Let A\ - n be a partition, and consider the set of

integer points in the first quadrant of the xy-plane corresponding to the Young diagram of A:

d(X) ={(p,q) : p < Ag11}

for example, for A = (2,2,1), we have

)
NL.1)
N1.0)




Let R = C[x1, ..., %n; Y1, -, Yn] = C[x,y] consider the R-valued matrix M = (z}7y)1<; j<n-

Denote its determinant by Ajs, and consider the C-vector space spanned by all partial derivatives

of AM:

Vy = Clox,dy]| - Ay

We refer to V) as the Garsia-Haiman module, first defined in [GH93]. Let S,, act on V; diag-
onally, that is, 7+ f(Z1, ., Zn; Y1, s Yn) = f(@r(1)--Tr(n); Yn(1)s -+ Yn(n))- The Sp-module structure
of V{ played an instrumental role in the resolution of the Macdonald positivity conjecture, which
states that H A(X;q,t) is Schur positive. The final step is known as the n!-theorem proved by Mark

Haiman:
THEOREM 2.4.2. [Hai01] The C-dimension of Vy is n!.

COROLLARY 2.4.3. [GH93] We have that

Kua(g,t) = D {x*, Frobg (V) ")

7,8

so0 that Froby (V) = fNI,\(X; q,t), and so HB\(X; q,t) is Schur-positive.

2.5. Hall-Littlewood Polynomials and the Garsia-Procesi Module

2.5.1. (Modified) Hall-Littlewood Polynomials.

DEFINITION 2.5.1. [LS78] Let m € S,,. Then, define the charge of 7 to be

¢(m) := maj(rev(n 1)) = Z (n—1)

i¢Des(c—1)

Given a word w with in the alphabet N with content p — n with length ¢, we can compute
charge of w by computing the standard subwords w™V,...,w®, which are obtained by cyclically
moving left to right, extracting the first instance of 1,2, ..., u;, then removing the subword w®. We
refer the reader to [LS78] for more details.

Then, noting that each w® e Sy;, the charge of a word is defined to be
20



and the charge of a tableau T' € SSYT (A, i) is defined to be the charge of its reading word.

For partitions A, i, the Kostka-Foulkes polynomials K ,(q) are defined to be

(2‘2) KA,;L(Q) = Z qC(T)
TeSSYT(\ )

and the transformed Hall-Littlewood polynomials Hx(X;q) can be defined by

(2.3) H)\(X;q) = ZKu,A(Q)Su(X)
I

Applying a slight substitution gives a more combinatorially natural version:

DEFINITION 2.5.2. The modified Hall-Littlewood polynomial is given by:
Hy(X;q) = "W H\(X;q7")

The modified Hall-Littlewood polynomials H A(X;q) can be recovered as the specialization of
2.1 to ¢ = 0, or by symmetry, the specialization of ET)\/(X; q,0) tot = 0.
In lieu of equation 2.2, we may apply the same substitution to obtain the modified Kostka-

Foulkes polynomials:

K/\,N(Q) — qn(u)K/\yu(qfl) — Z QCC(T)
TeSSYT(A,p)

where cc(T) = () — ¢(T) is the cocharge of a tableau. We remark that there is an algorithmic
way to directly calculate cocharge, as given in [Gil15].
We give another important characterization of the Hall-Littlewood polynomials, obtained by

substituting ¢ = 0 in H A(X; q,t) axioms above. These turn out to agree with Lusztig’s orthogonality

relations in [Lus03].
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THEOREM 2.5.3. The modified Hall-Littlewood polynomials are uniquely characterized by the

following axioms:

o (H1). H\(X;t) = 3,0 () 5,(x)
o (H2). HA[X(1—t);t] = 3,0 du(t)s,u(x)
o (N). (Hy,s)) =1

2.5.2. The Garsia-Procesi Module. Let A — n, and denote the conjugate partition by
N =\ =..= ), =0), padded with 0’s to be of length n. Let pl(\) = X, + ... + A/ for

n—m-+1

1 <m < n. Let C[z1, ..., 5] be the polynomial ring in n-variables. Given S < [n], denote by e4(S)

to be the sum of all degree d squarefree monomials with labels in S:

The Tanisaki ideal Iy is given by

B (eal®) 5 < Il d > 18-y

and the Garsia-Procesi module is defined to be

Ry = (C[$1, ) mn]/I)\

There is an obvious action of S,, on C[x1, ..., ,], given by 7+ f(21, ..., ¥0) = f(Tr(1)s s Tr(n))-
Since the ideal Iy is Sy,-stable, there is a well defined action of S, on Ry. The following theorem

describes the Frobenius character:

THEOREM 2.5.4. [Spr76] [Spr78] We have that
Frobg(Ry) = Hx(X:q)

Garsia and Procesi recursively constructed a monomial basis for Ry in their 1992 paper [GP92].

We briefly recall the construction below.
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Let A — n be a partition, and denote by A = |(Ay,...,\; — 1,...,\¢)| to be the partition
obtained by subtracting 1 from the i-th part, and rearranging the parts as necessary. Given a set

S of monomials in x4, ..., x,, denote

298 = {2 - 27 : 2P € S}

Setting B(p) = {1} for p = (1), and for A - n we can recursively define

VA
B(A) = | |l 'B(AD)

=1

THEOREM 2.5.5. [GP92] The monomials B(X\) form a C-basis for R).

2.6. Dyck Paths, Parking Functions, and the Shuffle Theorem

We closely follow the conventions of Haglund in [Hag08].

2.6.1. Dyck Paths and Parking Functions. An (m,n)-Lattice path is a sequence of north
steps (z,y) — (x,y + 1) and east steps (x,y) — (z + 1,y) in the first quadrant of the x,y-plane,
beginning at (0,0) and ending at (1m,7n). Denote the set of such paths by Ly, and denote L}, ,
to be the set of such paths that do not pass under the line y = x. A Dyck path is an element of
Ly,

The set L:{m is famously enumerated by the Catalan numbers, which have an explicit formula

n%rl (2:) The Catalan numbers are ubiquitous in combinatorics, having bijections

satisfying C,, =
to many different families of objects, including triangulations of polygons, binary trees, etc.

Given a Dyck path 7 € L} ., define the area vector of 7 to be areat(m) = (ay, ..., a,) where a;
denotes the number of complete boxes between 7 and the main diagonal y = x. We will define
area(m) = >, | a;, the total number of complete boxes between 7 and the main diagonal. If a path
7 touches the main diagonal in rows 1 = ¢1,...,¢; = n (from bottom to top), then we will define

the touch(w) = (¢2 — ¢1,¢3 — €2, ..., — ¢x—1), which will be a composition of n. For example,
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has areat(r) = (0,1,2,0,1,0,1,2,2,0,1,2), area(r) = 13, and touch(w) = (3,2,4, 3).

+

There is also a partial order on L, ,,,

defined as follows. We will say for 7,7’ € L}, that 7 < «’
if areat(m) < areat(n’) component-wise.

A word parking function P = (m,w) consists of the pair of a Dyck path together with a word
w of length n whose entries are associated with the north steps of m such that for two consecutive
north steps with labels a, b, we have that a < b. (The columns are decreasing) We will refer to the
label of the north step in the ith row as the occupant of i, denoted occ(i). We define the content
of P to be content(P) = content(w). If w € S,,, then we say P is a parking function.

The level sets of P are given by Z;(P) = {occ(j) : a; = i} to be the occupants of the rows
in which the number of squares between 7 and the diagonal is i. We define the area of a parking

function to be area(P) = area(w), where 7 is the underlying Dyck path, and we define a statistic

dinv(P) to be:

dinv(P) = H(z’,j) 11 <i < j<n,a; = aj,occ(i) < OCC(j)H

+H(i,j) :1<i<j<n,a =a;+10cc(i) > OCC(j)}’

24



EXAMPLE 2.6.1. The following example is from [Hag08]. Let

so that 7 = NNNEENNENEEENNEE, w = (2,5,7,1,4,6,3,8), and the diagonal inversions are
{(1,7),(2,7),(2,8),(3,4), (4,8), (5,6)} so that dinv(P) = 6. We have that the level sets are Zy(P) =
{27 3}7 Zl<P) = {17 578}7 ZQ(P) = {47 6, 7}

We can associate a unique permutation p(P) to each parking function by simply concatenating
the sorted level sets in reverse order, so that p(P) = 46715823. We will denote the set of all parking
functions P with p(P) = 7 by cars(7).

For each word parking function P, we can associate a column-strict tableau (not necessarily a
Young tableau, as it need not have partition shape) by taking the blocks of consecutive north steps
in P and allowing them to be the columns, aligned so that the entries in the ith row (from the

bottom) are precisely Z;_1(P). For P in example 2.6.1, the associated tableau is

b

We will denote the set of all parking functions with a given path by P, and set P, =

(2.4)

BEE

UweanPnJr' The word parking functions will similarly be denoted by WP, and WP, =
Urert,, WPn.-

2.6.2. The Operator VvV, and the Shuffle Theorem. The remarkable Macdonald eigenop-
erator V was defined in [BGHT99] to be

VH\(X;q,t) = ™™g H\ (X q,t)
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and has been the subject of many fascinating conjectures and theorems related to Macdonald
polynomials, the space of Diagonal Coinvariants, and recently in [CO18], connections to affine
Springer fibers.

A combinatorial for Ve, was conjectured by Haglund, Haiman, Loehr, Remmel, and Ulyanov
in [HHL'05a], and was later proved by Carlsson and Mellit in 2015, now known as the Shuffle

Theorem:

THEOREM 2.6.2. [CM18]

Ve, = 2 qdinv(P) 2earea(P) QZP
PeWP,

P:

where x x¥ if w is the reading word of P.

In fact, they had proven a more general statement, known as the compositional shuffle conjec-

ture. We recall one equivalent version of the statement here:

THEOREM 2.6.3. [CM18] Let B, denote the operators defined in [HMZ12], o = (o, ..., )

a composition of length k, and define

Bo[X;q] =Ba,Ba, , ---Ba, (1)

Then, we have
(2.5) V(Bu[X;q]) = Z Z tarea(w)qdinv(w)-',-doffa () P
T<Ta PEWPn

where 1o, = N...NE...E...N...N FE... E. We also have that

[o%1 ai g ag

B (X;q) = wHA(X;q)

the H)(X;q) is the transformed Hall-Littlewood polynomial.
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CHAPTER 3

New Formula for the Modified Hall-Littlewood Polynomials

In this chapter, we will give a proof of Theorem 1.0.2 to establish a formula for H A(X5t) in

terms of our new set.

3.1. The Shuffle Map

We now give the combinatorial construction for the indexing set J/I\naj.

Let A - n be a partition (or generally, a weak composition «/), and consider a tuple of descent
compositions aji, ..,ay, with a; € D),. A shuffle a of the tuples ay, ..., a, is a descent composition of
length A1 + .. + Ay = n such that a can be partitioned into the subwords ay, ..., a,. We will denote

the set of shuffles of ay,...,ay by Sh(ay, ..., ay).

ExXAMPLE 3.1.1. Let A = (3,3,1), and let a; = 012, ag = 101, and a3 = (. Then, the following
are in Sh(012,101,0):

1001201 012101

but 0210110 is not, since there is no 1 to the left of the 2.
We prove a quick lemma:

LEMMA 3.1.2. Let X\ be a partition of length £, or more generally a weak composition, and let
ay,...,a; be some descent compositions a; € Dy,. Then every shuffle of them is also a descent
composition,

Sh(ay,...,a;) € D,

Similarly, every shuffle of inversion tables is an inversion table.
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PROOF. Let a € Sh(ay,...,as). Then, for each j > 0, the rightmost instance of j in a must have
come from some descent composition a; € Dy,. This j must also be the rightmost instance of j in
a;. Since a; is a descent composition, then there a 7 — 1 to the left of it, and we are done. The

second statement is not hard to show. O

DEFINITION 3.1.3. Let A be a partition of n, or more generally a weak composition. We define

a subset J;naj c Sp by

(3.1) Ty = {majt~'(a) :ae Dy}, Dy= |J Sh(ay,...a)

ranging over all [-tuples (ay, ..., a;) with a; € D,,, the set of usual descent compositions of size ;.

inv

We similarly have J\" and Ay replacing majt by invt, and Dy, by Aj,.

We give another way of viewing this construction. Let OSP(\) denote the set of ordered set
partitions with block sizes given by A. Given m € OSP(N), write m = Bj|...|By, so that |B;| = \;.
By abuse of notation, we will refer to 7 as the permutation obtained by dropping the bars dividing
each set and reading in one-line notation. Denote a = a; + ... + ay to be the concatenation of the

compositions. Consider the map

U : Dy, X ...x Dy, x OSP(A\) — D,
v (al, ...,ag,ﬂ') — (ﬁﬂ-—l(i))lsz’Sn

EXAMPLE 3.1.4. Let a; = 012, a = 101, and a3 = 0, and let 7 = 245|167|3. Then,

W (012,101, 0,245[167|3) = 1001201

LEMMA 3.1.5. We have that im(V¥) = D,.

PrOOF. Fixay,...,ay € Dy x...xDy. Then, note that we must have ¥(ay,...,ap, 7) € Sh(ay, ..., ay)
for all m € OSP(A). This establishes the containment im(¥) < Dy. To see the reverse containment,
if a € Dy, then a € Sh(ay, ..., a,) for some ay, ..., a;. Recording the positions of aj, ...,a, in a gives

an ordered set partition m € OSP()), so that ¥(ay,...,as, 7) = a. This implies D) < im(¥). O
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Intuitively, the ordered set partition 7 is recording the positions of the descent compositions
ay,...,ay for an element a € D). In particular, there are many different ways an element a € D),

can be obtained, for instance, for A = (2,1):

w(01,0,13[2) = 001 = 001 = W(01,0,23[1)

The fibres over each element a € D, are the subject of many conjectures related to the modified
Macdonald polynomials H 1(X;q,t), which will be discussed along with partial results in a later
section 5.

We also briefly note that

Dy, X ... x Dy, x OSP(A)] = A1l x ... x Al x " —
Ay ooy Ao

which will be a useful fact later on.

3.2. Canonical Decompositions and Membership Algorithm

We now give a corresponding criteria for determining membership of J/r\na“'. For any composition

a, define a sequence (a1, as,...) by

a; 1<n

a; =
ai—n +1 otherwise

For instance, if a = (0,1,2,0,2,1), then
a=(0,1,2021[1,2,3,1,3,2(2,3,4,2,4,3]...),

where we have used bars to separate groups of n = 6. The following algorithm produces a set
partition m = (A;|---|4;) to each a € Dy with the property that the restricted composition a4, is

a descent composition a; € Dy, realizing a as an element of Sh(ay, ..., a,).

ALGORITHM 1. Fix A - n. Given a descent composition a € D,, (or more generally, any

composition Z%), perform the following:
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(1)

(2)

For each part \;, extract a subsequence 0, 1, ..., A\; — 1 from a (moving into successive blocks
if necessary), never repeating the same index modulo n.

Once a sequence has been extracted, record the positions of the entries selected, and reduce
modulo n to obtain a residue in {1, ...,n}. Denote the positions by w; = (a;,, ..., dei), the
indices reduced modulo n by w; = (ag,, ..., a;%), and the underlying set for w; by A;.
The output of the algorithm will be the ordered set partition 7 = A;]...| Ay, and the descent
compositions a; = al4,,1 < i < ¢. We refer to the tuple (ai, ..., ap, m) as the canonical

decomposition of a as an element of D).

ExAMPLE 3.2.1. Let a = (0,1,2,0,2,1), A = (6). Then, the algorithm terminates, and will

select:

a

= (0.1,2,0,2,1]1,2,3,1,3,22,3,4,2,4,3(3,4,5,3,5,4/4,5,6,4,6,5/5,6,7,5,7,6]...),

The positions are w = (1,2, 3,11, 24, 34); reducing modulo n we obtain w = (1,2,3,5,6,4) and

so A1 ={1,2,3,4,5,6}.

EXAMPLE 3.2.2. Let A = (3,3,1) and a = (0,0,1,1,2,0,0). Then we have

a=(0,0,1,1,2,0,0/1,1,2,2,3,1,1|2,2,3,3,4,2,2| - - - )

The first iteration finds the subsequence (a1, as, as), so that 4; = {1,3,5}:

a= (Q»Oala1,27030|1a1a252733131|2a2a373743272| )

The second iteration will find 0,1 in the first block of a, but will not find an unmarked 2 until

the third block, giving the subsequence (ag, a4, ago) so that As = {2,4,6}:

a= (ﬁ,Q,X,LZ,O,mX,1,2,27Xa1a1|2,2,>§73a%a272| )

where the strikethroughs denote entries selected in the first iteration.

Finally, the third run will select (a7), so that Az = {7}:

a= (ﬁvﬁaXaXaZa&? |XaXaza27X7X?1|zaza§{aXa;{aZa2| )
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and we have a; = 012,a, = 010,a3 = 0, and 7 = 135|246|7.
DEFINITION 3.2.3. Let a € D). We denote the result of algorithm 1 by alg,(a) := (ai,...,as ).

Before proving that Algorithm 1 determines membership of Dy, we first prove a series of lem-

mata.

LEMMA 3.2.4. If Algorithm 1 terminates, then the compositions a; = a|a, obtained have the

property that a; € Dy, .

PROOF. We need only check that in a;, the final instance of k > 1 has a k — 1 to the left of it.

We will show a stronger statement, that the first instance of k selected by Algorithm 1 must
necessarily have a k — 1 to the left of it. Denote the first instance of k selected by the algorithm
as k*, let m be its index in a, and m be its index in a. Then, we must have m = m + an for some
a € Zxg.

We observe that if a,, = k, then we must have a; = k + «, by the definition of a. If a = 0,
then we are done, as the algorithm will first select a kK — 1 to the left in the first block.

Let w denote the (reduced modulo n) positions for \A;, as above. To deal with the oo > 0 case,
first observe that the sequence (ay,, ..., awM_) has the property that a,, +1 = ay,_, if Wy and w14
occur in the same block, and that a,, > a,,, if W41 occurs in a later block. We will consider
the position of ag,, , = k + a — 1, the element selected by the algorithm before az.

By the previous observation, a;, , , cannot occur in the (o —2)th block (if v > 2), or any block
to the left because then a,, , , > k+ 1, and by the observation above, since the we necessarily have
a,, = 0, there must then be a k selected before k*, which is a contradiction. So ag, ,, must occur
in the (a — 1)th block, or the ath block. But since ag,, , = k + o — 1, if it occurs in the former,
then a,,, , = k, which contradicts the choice of k*. So we must have that ag, , occurs in the ath
block to the left of a, so that a,,, = k — 1, and occurs to the left of a,.

0

PROPOSITION 3.2.5. Given a composition a € ZZ,, we have that a € Dy if and only if Algorithm

1 terminates.

We will give a proof of this proposition in a later section.
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Next, we give a more cumbersome yet useful equivalent formulation of algorithm 1.

LEMMA 3.2.6. Let a € D,,. Algorithm 1 is equivalent to the following:

e De-affinized Presentation
(1) For each part A\; of A, pass through a left to right, searching for 0,1,..., ; — 1.
(2) If the end of the permutation is reached, wrap around to the front, and decrease 1
from all subsequent entries to be absorbed.
e Increase and Absorb
(1) For each part \; of \, pass through a left to right, searching for a minimal (leftmost)
increasing sequence 0,1,.... Once the end of the permutation is reached, if the last
entry selected is k, then start from the left of the permutation once more, absorbing
kk+1,....
(2) Once no larger entry can be found, suppose k is the largest entry absorbed. Then,
absorb all k’s moving left to right, all k — 1’s left to right, and so on, until a; is of
length ;.

PROOF. The de-affinized presentation is simply a reformulation of the algorithm in terms of a.
We will use this to show that the increase and absorb procedure is equivalent.

The first step is clearly the same, and so it suffices to show the second step is equivalent. Let
a € D,, and a be as above. Suppose the highest entry k& has been absorbed, chosen as say j in a in
the ¢th block. The remaining k’s of a, then, will be chosen as j+1,j+2,... inthei+1,i+2,...th
blocks respectively. If no such k’s exist, then the k — 1’s will appear in the ¢ + 2,7 + 3, ... th blocks
ask+1,k+2,... respectively, and so on. If m is the first entry to be absorbed after k, then all m’s
will be chosen first, as the remaining entries of a must necessarily be smaller, and so are smaller as
well in any block of a.

Suppose all of k’s have been absorbed, and the final entry of k is chosen as j in the ith block
of a. Then, we repeat the argument above, and see that the next step must necessarily absorb all

k — 1’s moving left to right. This completes the proof. U
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DEFINITION 3.2.7. Let a € D), and let a; € D), denote the composition extracted by algorithm
1 for the \; part. The essential sequence is the subsequence of a; corresponding to step 1 of the

Increase and Absorb formulation.

3.3. Parking Function Formula

First, we give useful identifications between permutations of 5,, ribbon tableau, and dinv-less
parking functions.
Let m € S,,, and the denote the set of all Young tableau whose underlying shape are ribbons

with n boxes by R,. We will define a map v : .S, — R,, as follows:

(1) Place 7, in a box by itself.
(2) For all 1 <i < n, if mj < mi41, then add 7; in a new box directly to the right of the last
entry inserted.

(3) If m; > m41, then add 7; in a new box above the last entry inserted.

For example,

v : 645312 —

|2

We will denote R, := im(y) < R,. It is easy to see that ~ is injective, and one should think of
~(m) as the ribbon whose rows correspond to the runs of 7 (in reverse order), and an entry a has

a box below it if and only if a is a descent in 7. Alternatively, we may write:

R, = {T € Ry, : T is row-decreasing and column-strict}

It is easy to show that row-decreasing column-strict ribbons correspond to permutations.
The second correspondence comes from the association between column-strict tableau and park-

ing functions, as in 2.6.1. We will define a map 0 : R, — PF,, as follows:

(1) Begin the area sequence with areat(m) = (0), and w = a, where a is the bottom left corner

entry of the ribbon 7.
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(2) Proceed from bottom left to top right in 7". For each entry, append the height of the box
(the bottom row has height 0) in the area sequence, and append w with the entry in the

box.

ExaMpPLE 3.3.1. We have for the tableau above, the parking function

which indeed has area sequence areat(m) = (0,0, 1,2,2,3). Note that this process will always return
an appropriate area sequence, as the entries must be bounded by (0,1,...,n—1) and 0 < a;—a;—1 < 1

by construction.

We note that for a general parking function P € PF,,, if we convert to a column strict tableau,

then dinv pairs correspond to one of the following configurations:

D

(I1.) W ]

with b > a. We now show that §(fR,,) is precisely the set of dinv-less parking functions.

LEMMA 3.3.2. Let 77.7:2 denote the set of parking functions P such that dinv(P) = 0. Then,
PFO =im(6).

ProoF. Noting that the area vector uniquely determines a Dyck path, it is easy to show that
§ is injective, so that 6! is defined on im(§). Suppose P € im(d). Then, ! (P) € R, therefore is
a ribbon T' corresponding to a permutation in S,. Since T is decreasing, no type I dinv pairs may
occur. Since T only increases upward and to the right, no type II dinv pairs may occur.

Conversely, let P € PF2 so dinv(P) = 0. Then, consider the corresponding column-strict

tableau T associated to P, as in 2.6.1. Then, consider the following two configurations of squares:
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(1) 4] b

(I1.)

In configuration I, we must have b > ¢. If a < b, then we would have a dinv pair, so we must have
a > b > ¢, which is also a dinv pair. For configuration II, we necessarily have a > d. If d < ¢
we would have a dinv pair, so we must have d > ¢, so that a > d > ¢, which is also a dinv pair.
Therefore, configurations I and II cannot occur.

Since P is a parking function with underlying Dyck path 7, in its area sequence, the final entry
of ¢ must have an ¢ — 1 before it, for ¢ > 1. This implies that 7" is one connected tableau, and if
configurations I, I cannot appear, 7' must have ribbon shape. That dinv(P) = 0 forces T to be
row-decreasing, so that T € R,,, and 6(T") = P. O

We now give a parking function formula of Dj.

DEFINITION 3.3.3. Let a = n be a composition of n. The a-bounce path, denoted 7, is defined

as the following:

fa=N..NE...E..N..NE...E

[e%1 ai ag ag

where a = (a1, ..., ) has length k.

Given a partition A - n, let N = (M¢, ..., A1) denote the composition obtained by reversing the

parts of A. Then, define

PFy = {P: (w,w)ep}'n:wéﬂy}

and define WP, similarly.

LEMMA 3.34. Let P = (m,w) be a parking function in PFy. Consider the map & : PF\ — Dy,

by:

£ (m,w) — (areat(m),—1(;))1<i<n
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Then, im(&) = Dj.

ProoOF. (im(§) < Dy) We will show the claim for A = (n). Let P = (m,w) € PF,. To show
&(P)=(&(P)1,...,,£(P)p) € Dy, we will show the equivalent condition as in lemma 2.1.2.

First, notice the bottom row necessarily contributes a 0 to areat(w), so that {(P) always has a
0. Second, it is easy to show that for a Dyck path, writing areat(w) = (a1, ..., a), we must always
have aj41 = aj + 1 or aj41 < aj. In other words, consecutive entries may not increase by more
than 1. This implies, for ¢ > 0, that the first instance of a; = ¢ must have aj_1 = ¢ — 1, and
occ(j) > oce(j — 1) since the squares are vertically adjacent. Then, §(P)gec(j—1) =@ — 1 lies to the
left of §(P)occ(j) = i, and the claim is proved.

Now let A be arbitrary. Then, given P € PJF,, consider the ordered set partition

O =Gpyeney Q41| ---]Qx, .. a1 € OSP(N)

and let ay, ..., ay be the compositions obtained by first standardizing the occupants in the A1, ..., Ay
blocks respectively, then applying £. By the above argument for A\ = (n), all a; € D),. Finally,

comparing the definitions of £ and ¥, we see that

f(P) = \Il(al,...,ag,a)

and the claim is proved.

(Dy < im(§)) We show the set Dy, x ... x Dy, x OSP(A) naturally arises as a subset of PFj.
Given (ay,...,ap,0) € Dy, x...x Dy, x OSP(A), let 11, ..., 7y be permutations 7; € Sy, corresponding
to ay, ..., ap respectively. Then, consider the parking functions P; := (§ o v)(7;), and let m; denote
the underlying paths. If 0 = A4]...|4y, set w; = 7 - (A;), where (by abuse of notation) A; is the

word consisting of its elements written in increasing order. Then, consider the parking function

P=(m+..+7m,w+ ...+ wp)

where + denotes concatenation for Dyck paths, as well as words. Then, it is clear that {(P) =

U(ay,...,ay,0) € Dy. Varying over all pairs (ay, ..., as,0), we see that D < im(§).
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DEFINITION 3.3.5. We will denote the map (ai,...,as0) — PF) as above by
€: Dy, X ... x Dy, x OSP(A) — PFx

3.4. New Hall-Littlewood Formula

In this section, we will prove Theorem 1.0.2, namely

H)\’(X t Z tmaj 7r)FlDes(w)n(AX) = Z < Z tmaj(ﬂ>m#(x)

7T€JmaJ p=n TrGJ;naijh(u)

3.4.1. Reformulation in Terms of Compositional Shuffle Theorem. Let o = n be a
composition of n of length k, B, (X;q) = (IB%ak 0..0 Bal)(l) denote the result of applying the B
operators as in [HMZ12]. First, noting that B« (X;q) € Ac(g) © Ac(qy), we may expand B (X q)
in the fIH(X; q,t)-basis:

(3.2) = > Au(g, ) Hu(X;q,1)

pEn

By the Macdonald axiom (T1) from section 2.4.1, the plethystic substitution H u[X(1—4q);q,t] has

an expression of the form

HX(1=q)q,t] = Y. coula, t)su(x)

vEp

Since B« (X q) = wH)\(X;q), we have similarly by 2.5.3:

B [X(1—q)iq] = wHAX(1—q);q] =w > bua(@)su(x) = > b (q)su(x)

v\ v\
This implies that coefficients A,x(¢,t) = 0 unless © = N. Since H\(X;q) = >, Kua(q)su(x),
and K, = 0if v/ &= A, applying w, we see that B (X;q) = >, o\ Kua(¢q)s,(x). Furthermore, we

have that Kyx(¢q) = 1, so we may write

B(Xq-sx ZKI)‘ Sl,

v\
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Setting ¢ = 0 in equation 3.2 and substituting the above, we see that

sv(x) + D) Ky (0)sy(x) = > A (0,)H(X50,8) = Y A“A(O,t)< > f(w(t)sy(x)>
/ veEp

v<a)\ =\ BEA

Comparing the coefficients of sy (x), we have that
(3.3) 1= Ayy(0,8) Ky (t) = Ay (0, £)7)

Now applying V to both sides of equation 3.2, we have that

VBs(X;q) = Y, An(e ) VH(X;q,t) = Y. Au(g, )" g™ H, (X5 q,)
peE=N pe=N

We have that p = )\ if and only if n(u) < n(\'), so that the lowest coefficient of ¢ in the right

hand side must be ¢"™. We may then write

VB (X;q) =¢"™ (AM(O, )" Hy (X;0,1) + ¢G(X; g, )
(3.4) R
+ Z A,M(q,t)t”(“)q"(“/)_”(’\)Hu(X;q,t))
=
where G(X;q,t) is some symmetric function depending on g, t.

Substituting equation 3.3 and comparing the coefficient of ¢”V), we conclude that
(35) [qn()\)] ( Z qdinv(P)+doff(7r)tarea(P)xP> _ [qn()\)]VIB%(X (X, q) _ ﬁ/\/ (X, t)
PeWP,

by the compositional Shuffle Theorem 2.6.3.

REMARK 3.4.1. The motivation for reformulating the problem in terms of the compositional
Shuffle Conjecture arises from certain functions called Xr(,,),¢ from [CM21], where m € D, w(m)
is an associated Dyck path, and £ is the number of 0’s in m, which is at most the number of trailing

East steps. The connection is that

<X7r(m),€7 I?[)\(X, q, 0)> =0
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unless m € D). The functions X (,,),¢ were proven to be the Frobenius character of the Tymoczko’s
dot action on H*(H, — Z), where H, is a regular semisimple Hessenberg varietiy, and Z is its
intersection with the line arrangement consisting of the coordinate axes. The connection with V is
due to equation (59) in [CM21]. We thank A. Mellit for valuable discussions and for suggesting

that we study the dinv(P) + doff,(P) minimizers.

3.4.2. Proof of the Quasisymmetric Formula. We will now prove the first equality in

Theorem 1.0.2. Define

6’)( (X; t) = Z tmaj(ﬂ-) FiDes(ﬂ),n(X)

maj
meJy

We will show that this is the modified Hall-Littlewood polynomial, CN‘,\/(X 1) = H A(X5t). We

give an outline of the proof here:

(1) We first establish n(\) as a lower bound for the g-exponents of ¢44(¥) for P e PFy.

(2) Given a € D), we may write ¥(aj,...,ap,0) = a, and consider P = ¢(ay,...,as,0). We
may run the algorithm and obtain (af,...,a},¢’). Denote P* = ¢(aj,...,a), o’). We then
give a criterion for all P* obtained this way.

(3) If P € PF, does not meet such criterion, then we may apply a move that necessarily
decreases dd.

(4) Once such moves are exhausted, then we must have dd(P) = n(\).

(5) We show P* is the unique parking function in PF with dd(P*) = n()).

This implies that there is a unique parking function with qdd(P) = n(\) for each element of Dj.
Then, we collect the word parking functions WPy by which elements of PF they standardize to,
and the theorem immediately follows.

3.4.2.1. Lower Bound for q-Degree. It suffices to consider parking functions P € PJF) whose
corresponding tableau is a tuple of ribbons, as by lemma 3.3.2, these minimize dinv in each block.
(This is equivalent to the assertion that the area sequence weakly increases in each block of \).

Denote this set by 98,. Recall that dinv corresponds to one of the following arrangements of cells:

@) [a] ¢]
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(I1.) W ]

with b > a. Furthermore, doff(P) simply records for each element in the bottom row of a part how
many parts occur to the right. Since we count dd(P) by pairs of parts, we can assume that for a
given pair of parts \;, \; with ¢ > j, each element in the bottom row doff(P) of A; contributes 1 to

doff (P).

LEMMA 3.4.2. Given a pair of parts A\;, \;, the contribution of those parts to dd(P) is at least
A

ProoF. Let the tableau corresponding to A;, A; be any ribbons of size \;, \; respectively.
Given a column-strict tableau 7', denote by ht(7T") to be the height of the diagram. Suppose
ht(A;) = ht();). This means for each square in \;, there is a square in \; in the same row. Then,

we have two cases:

e If a square is in the bottom row of A;, then it contributes 1 to doff(P).

e If a square is not in the bottom row, then the following occurs:

4] o

where necessarily b > ¢, since P is a parking function, the corresponding tableau are
column decreasing. Then, if a > b, we have that a > ¢, so the square containing a will

contribute at least 1 to dinv. If a < b, then a will contribute at least 1 to dinv as well.

On the other hand, ht(\;) > ht();), then for each square of \;, there is a square in the same
row in );, but also a square in the row above. Then, for each square of \;, find the rightmost

square in A; of the same row. One of two things may occur:

e The rightmost square in the same row in )\; is the corner of a ribbon:

a

BE

e There is only one square in the same row:

a
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If b < ¢, then ¢ contributes at least 1 inversion to dinv(P). Otherwise, if b > ¢, since the
tableau is column decreasing, we have that a > b > ¢, so that ¢ contributes at least 1 to dinv(P).
Then, every square of A\; will contribute at least 1 to dinv(P), so that the contribution is at least

)\j =\ ]

REMARK 3.4.3. Actually we must have that if ht();) > ht();), then the contribution is greater

than \; since there is at least one box in A; in the first row which contributes at least 1 to doff(P).

PRrROOF. By the lemma, each pair (A;, A;) with ¢ > j contributes at least A; to dd(P). Summing

over all pairs of parts, we have that:

(’

(3.6) dd(P)= > A=) (i— DA =n()

1<j<i<t i=1

O

3.4.2.2. Criteria for Result of Algorithm. We now establish a criteria for being the result of the

algorithm in terms of the ribbons.

DEFINITION 3.4.4. A parking function is P good if each square in the \A; ribbon contributes

exactly 1 to dd(P).
By the remark, we have if ¢ > j, then the ribbon for ht(\;) < ht()\;).
LEMMA 3.4.5. A parking function P € Py has dd(P) = n(\) if and only if it is good.

Proor. If P is good, then the inequality in 3.6 is an equality, and we are done. Now suppose
P is not good. Then, either there is a square that contributes nothing to dd(P) in \;, or a square
that contributes at least 2. We rule out the first case.

Suppose there is a square in \; that contributes nothing to dd(P). Then, this square cannot be
in the bottom row, as it must contribute to doff in that case. Furthermore, by the argument in the
lemma, there cannot be a square in \; in the same row, or the same row below. This implies that
ht(A;) > ht(A;), which by the remark implies that the dd(P) contribution between the two pairs is

greater than A\; > A;. This means the inequality in equation 3.6 must be strict.
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If every square must contribute to dd(P), and P is not good, then some square contributes at

least 2 to dd(P), which implies that dd(P) > n(\). O

3.4.2.3. Reduction Algorithm. We now prove a series of results for two parts, and then induc-

tively apply it for all shapes A.

LEMMA 3.4.6. Given a descent composition a, algorithm 1 terminates if and only if a € Dy for

A = (A1, A2) a partition with two parts.

PRroOOF. If the algorithm terminates, then it produces the desired descent compositions aj, ao,
as well as the desired ordered set partition. Conversely, suppose that a € D). Then, let (a;,as,0)
be such that ¥(aj,as,0) = a, and consider the pair of ribbons ¢(P) associated with this shuffle.

The algorithm will always select the first part successfully, as it will find the minimal increasing
sequence going up, then absorb remaining entries top-down. We need only show that what remains
can form a ribbon, that is, that what remains is a descent composition in D(A2). The criteria from

lemma, 2.1.2 is equivalent to:

e There is at least one unselected box in the bottom row

o The largest unselected element has a smaller unselected element in the row below it

For any row except the bottom row, note that the largest unselected element a must be the

corner of a ribbon as such (without loss of generality, we draw a in the left ribbon):

T1 [F]]

B ‘ .| d

If the corners of both ribbons are selected for A1, then there must be no unselected elements in
that row, as algorithm 1 will not choose the second corner until all possible entries are exhausted,
and so there is nothing to show. Therefore, we may assume such a corner a exists.

On the ascending pass, algorithm 1 will choose exactly one entry from the row below a. There-
fore, at worst exactly one of b or d will be chosen, but not both, as the algorithm must choose a
before a second element in the lower row can be absorbed. If the algorithm chose b for the first
part, then, since a > ¢ (even if ¢ was selected), we also have a > d. If d was chosen during the

ascending pass, then b is the desired entry, as a > b a priori.
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This implies that if the Ay ribbon has height > 1, then there is a 0 as well. On the other hand,
if all unselected elements occur in the lowest row, it is clearly a descent composition, as it consists

of all 0’s. 0

LEMMA 3.4.7. For A = (A1, A2), the result P* of applying algorithm 1 to a parking function P

representing a descent composition a € Dy is good.

PRroOOF. Recall that algorithm 1 first extracts the minimal increasing sequence of maximal
length among the two blocks, and then absorbs remaining entries going from top to bottom. This
immediately implies, as A\; = Ag, that ht(A1) = ht(A2), which implies that each box in the A ribbon
contributes at least 1 to dd(P*).

Suppose now, that some box in the A9 ribbon contributes at least 2 to dd(P*). Then, we have

the four following cases:

.2 (o] ]e]

with a < ¢ < b, where the second inequality is because b, c are in the same ribbon.

This is a contradiction because a will always be chosen before c.

[ @]
b
with a > b,a < c. This is a contradiction since the algorithm will choose a before c.

4] d
‘ b|c
with @ > b,a > ¢. Then, this is a contradiction because a will be chosen before c.

L] t]

in the bottom row with a < b. (a will also contribute to doff in this case, so the

contribution is at least 2.) If b is the initial element chosen, this is a contradiction since
the first step of the algorithm selects the smallest entry in the bottom row. If b is not the
initial element, this is still a contradiction since it absorbs the remaining entries in the

bottom row in increasing order.

0

DEFINITION 3.4.8. Let A = (A1, ..., A\¢) be a partition, and given a parking function P € By,

denote P, ..., Py to be the corresponding ribbon tableau in each block of A. Denote by alg;; (P) to
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be the result of applying the algorithm to only the parts P;, Pj, and let P* denote the result of

applying algorithm 1 to P.

LEMMA 3.4.9. We have that

P* = (alg(p_1y,)™

o...

o (algggo---0 alg23)A2
o (algys0...0 alglg))‘l (P)

In other words, we may apply the algorithm pairwise to parts a large number of times in a

triangular fashion and obtain the same result.
REMARK 3.4.10. The algorithm given above is quite redundant, but it suffices for our purposes.

ProoF. It suffices to show that the first part agrees with the algorithm result, as the claim will

then follow by induction as well as the above lemma. In other words, we will show

A
(3.8) P = (algjgo...0algyy )™ (Ph

The first entry ag selected by algorithm 1 is necessarily the smallest entry in the bottom row.
If alg,; is the first instance that encounters, then it must absorb it, and it can never be replaced
by later alg,; for j > 1.

Let ag, ..., ax,—1 denote the entries, in order chosen by the algorithm, in P;*. Then, if ag, ..., a;—1
is selected by the jth pass of (alg;,o... 0 alg;y), at worst the next pass will necessarily select a;, as
if a; is in the mth column, then alg;,, will select first ag,...,a;—1, then select a; by the definition
of algorithm 1. Then, by induction, a; will be selected by the i + 1th pass, so that equation 3.8
follows. g

LEMMA 3.4.11. Let P be a parking function representing a € Dy. Then, P* is good.
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PROOF. Let X = (algyyo...0alg ) (P). By lemma 3.4.7, the final pass of (alg,, o...calgs) will
yield X such that every pair (X;, X1),j # 1 is good. Then, we have that every entry in Xj,i > 2

when compared to X; contributes exactly 1 to dd(X). By induction, the claim follows. ]
COROLLARY 3.4.12. We have that dd(P*) = n(X).

3.4.2.4. Uniqueness of P*.

LEMMA 3.4.13. For each composition a € Dy, there is exactly one parking function P € By that

is good, and it is P*, the result of algorithm 1.

PROOF. Suppose the contrary, that there is a parking function P € ) such that dd(P) is good,
but P # P*. Let us consider the first entry of P that differs from Px (going in order of the parts,

in order selected by the algorithm)

e If we skip during the initial ascending step, we have:

with a < ¢ < b. Then, ¢ contributes 2 to dd(P).

e If we skip during the absorption step: E ¢ | i | b ‘

with @ < b < ¢. Here c is the element selected during the initial run, and b was absorbed

later. Then, a contributes at least 2 to dd(P).

e Finally, E bl | ¢ ‘Where d, c are part of the initial ascending sequence. We
d

must have a < d, otherwise a would have been chosen during the initial ascending step.

Then, we skip a to choose b, we have a < b, and a < d < ¢, so a contributes at least 2 to
dd(P).

So that P # P* implies that P is not good. d
COROLLARY 3.4.14. For each a € Dy, there is a unique parking function P* with dd(P*) = n(X).

COROLLARY 3.4.15 (Proposition 3.2.5). A composition a € Z%, has the property that a € Dy if

and only if algorithm 1 terminates.

3.4.2.5. Quasisymmetric Fxpansion. We briefly recall the definition of the Gessel quasisymmet-

ric function.
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DEFINITION 3.4.16. The fundamental Gessel quasisymmetric function Fy ,(x) indexed by a

composition « of n is given by

Fa,n(x) = Z lexzn

ij <ij+1 if jESa

We will now expand the left hand side of equation 3.5 in terms of the F ,(x)’s.

DEFINITION 3.4.17. The standardization of a word parking function P € WP,, with content
a = (a1, ..., ap) is the parking function std(P) € PF,, given by traversing along the level sets Z;(P)
from highest to lowest and replacing top right to bottom left, all instances of 1 with 1,2, ..., a1, all

instances of 2 with ay + 1, ..., a1 + a2 and so on. We say that P standardizes to std(P).

It is clear that area(P) = area(std(P)), as the operation std does not alter the underlying Dyck

path. It turns out that std also preserves the statistic dd.
LEMMA 3.4.18. For any P € PF,, we have that dd(P) = dd(std(P)).

PROOF. If a is the occupant in the i-th row, denote by std(a) to be the element in the same
position after applying std. Consider the following two types of dinv pairs:
o @[
If a > b, then a will always be replaced after b, so std(a) = std(b). If a < b, then b will be

replaced after a, so std(a) < std(b).

. () ﬁ a

If b < a, then since a occurs in a lower level set, we always have that a is replaced after b,

so std(b) < std(a). If b > a, then a is replaced before b, so std(b) > std(a).

In all cases, the contribution to dd is preserved, so this completes the proof. O

DEFINITION 3.4.19. Let P € WP,,. An inverse descent occupant of P is an occupant i such

that:

e No additional instance of 7 occurs in a lower level set

e No additional instance of 7 occurs in the same level set below and to the left
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e The smallest entry a such that a > 7 occurs either in a higher level set, or in the same

level set above and to the right

The inverse descent associated to 7 is defined to be the number of occupants j of P such that j <1
(including ¢ itself). For a parking function, this number will end up being i itself. We will denote

the set of inverse descents of P by iDes(P).

ExaMPLE 3.4.20.

4 8
2 3
4 6
std : 3 — 4
1 1
4 7
3 5
1 2

and the inverse descents are marked in bold for each parking function.

By definition 3.4.17, it is easy to see that the operation std preserves the inverse descent set,
that is, iDes(P) = iDes(std(P)). Then, by definition 3.4.16, we see that for a parking function
Pe PF,,

Z xQ = EDes(P),n(x)

QeW P,
std(Q)=P

These observations allow us to collect the word parking functions by standardization to yield

the following:

(39) [qn()\)] ( Z qdd(P)tarea(P)xP> _ Z tarea(P)xP _ Z tarea(P)EDes(P),n (X)

PeWPy PeW Py, PePF
P is good P is good
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By corollary 3.4.14, descent compositions a = (ay,...,a,) € Dy under the map € o alg, are in
bijection with good parking functions, denoted Py € PFy. It is clear that )}, a; = area(Py) by the

definitions of € and alg,. If 7 = majt~!(a), we now must show that iDes(P;) = iDes(r).
LEMMA 3.4.21. Let a,m, P} be as above. Then, iDes(P;) = iDes(7).

PROOF. By lemma 2.1.5, if i € iDes(7), then we have that a; < a;4+1. This precisely says that

i+ 1 occurs in a higher level set of P}, i.e. i € iDes(Fy). O
We may finally prove the first half of Theorem 1.0.2.

PROOF OF FIRST EQUALITY OF THEOREM 1.0.2. Putting the above observations together with

equations 3.5, 3.9, we have

CN’)\’(X; t) = 2 tmaj(ﬂ)EDes(ﬁ),n(X) = Z tarea(P)EDes(P),n(X)

maj PePFy
ey P is good

(310) _ [qn()\)]< Z qdd(P)tarea(P)xP> _ ﬁ)\/(X;t)

PeWPy

0

3.4.3. Proof of Monomial Symmetric Function Expansion. We now finish the proof of

theorem 1.0.2 by proving the second equality.

DEFINITION 3.4.22. A J/r\naj—word w with content o = (v, ..., ax), where « is a composition of

n, is a word that standardizes to an element 7 € J;naj. We denote the set of J/r\naj—words by W/{n A,

For a word w = wy ... w,, we may similarly define major index by maj(w) = Y, By

Wi >Wi+1 Z
comparing definitions, it is straightforward to show that maj(w) = maj(std(w)), and so we may

define majt(w) := majt(std(w)). We will think of elements of W;\naj as a two-row table consisting of

majt(w) . . . .
w = where b = (by,...,b,) is the content of w. We require b to be weakly increasing,
b
that is, by < -+ < by, and if majt(w) = (ay,...,ay), that a; < a;4+1 = b; < bj+1. Given such a
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majt(m ) )
two-row table () , we may recover w by sorting the columns so that the top row is weakly
b

decreasing to obtain:

majt(w) k...k...0...0 c
upsort = =
b w w
with the condition that if ¢ = (c1,...,¢,), ¢ = ¢iv1 = w; < Wit1.
. ay ... Qp . . .
Write w = , so that majt(w) = (a1,...,a,). We may standardize w by simply
by ... bn
replacing (b1, ...,b,) with (1,...,n), and so to obtain a well-defined standardization, we must have
that a; < aj+1 = b; < bjy1. Similarly, any weakly increasing sequence b = (b1, ..., b,) with the
e maje(r)|
property that b; < b; 1 for all iDes(7) gives a well defined word w = and will have the
b
majt(m)
property that std( ) = .
b

DEFINITION 3.4.23. Let w € W), write majt(w) = (a1, ..., an). An inverse descent of w is i such

that a; < a;4+1. Denote the set of inverse descents of w by iDes(w).

Then we see that iDes(w) tracks precisely when b must increase. We may now expand the

quasisymmetric formula in terms of W"*.

LEMMA 3.4.24. We have that

Z tmaj(w)FiDes(ﬁ),n(X): Z gmaj(w) jw

maj maj
meJy weW,

PRrROOF. It suffices that to show that for a given 7 € J/I\naj, that

tmaj(W)F}Des(ﬂ),n(X) = Z tmaj(w)l,w

wEW;\naj
std(w)=n

Given a monomial z;, ...x;,, we must have that i; < i;4q if j € iDes(m). This gives the
well-defined word
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which standardizes to 7.
Conversely, given any w € W;\n 4 with std(w) = 7, we may form the two-row table as above.
By the discussion before definition 3.4.23, we must have that j € iDes(7) = i; < ij41, so that

Tjqy -+ - Ty

n

oceurs in Fipeg(r),n(X)-

Finally, maj(w) = maj(std(w)) = maj(r), and the claim is proved. O
We now complete the proof of theorem 1.0.2.

PROOF OF SECOND EQUALITY OF THEOREM 1.0.2. We show the equality

Z tmaj(w)l‘w _ Z ( 2 tm&j(w))mu(x)

weW HET GeShpn J™

By equation 3.10 and lemma 3.4.24, it suffices, for every partition p - n, to show that the coefficient
of z{*...xh" of both sides is equal by the symmetry in the x-variables of H v (X;t). Fix a partition
p b n. The coefficient in z{"...2R" the left hand side is obtained by summing tmai(@) over all words
w with content p.
Now observe that no two distinct words with content p can standardize to the same element
of J;\naj. Furthermore, notice that every word of content p must standardize to a p-shuffle, and
maj

that every element of Sh(x) N J,™ can be obtained by standardizing some word w of content .

Putting these observations together, along with lemma 3.4.24, we have that:

(311) Z tmaj(w) - Z tmaj(w)

weW/'\1mj wEShume\naj
content(w)=p

3.5. Schur Expansion

As it turns out, the set W} al naturally gives rise to a Schur expansion of H v(X5t).
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3.5.1. Schur Expansion of G’A/(X;t). Let m € S,,. Recall that the elementary dual Knuth
transformation T; acts on ™ by exchanging ¢,7 + 1 if and only if ¢ — 1 or ¢ + 2 occur between them.

We will show that the 7; preserve the property of being in J;naj.

LEMMA 3.5.1. Let me Jf\naj. Then, for any 1 <i < n—1, we have that 7;,(7) € J/I\naj.

PRrOOF. It suffices to only consider the cases in which 7;(0) # 0. Suppose that in the two-row

table of o, we have

c a b d
t—1 ¢ i+1 i+2

For either of i — 1,7 + 2 to lie between a, b, then we must have that a # b.

Case 1: a < b. This means that if i — 1 lies between them, we must have a < ¢ < b, and if ¢ + 2
lies between them, that a < d < b. Note that since i,7 + 1 occur in different runs, then switching
their run labels has exactly the effect of switching their positions.

Let a = majt(o). Then, by algorithm 1, we obtain descent compositions aj, ..., ay, with a; € Dj,.
If a, b belong to different descent compositions, then switching their positions yields another element
of J;naj. If a, b belong to the same part, say a;, and b — a > 1, then a, b is not part of an essential
sequence of a;, and so switching them yields an a] € Dj,, and so the full shuffle is in Jf\naj. This

leaves the following two cases:

(a)k (CL + 1)k (a + 1)g S I S (CL + 1)g (a)k (CL + 1)k
i+l a2 | e i i1 it2
(@ (@ (a+1)p .| B [ (@r @+ (a)

1 —1 7 1+ 1 ] oot —1 /) 1+ 1

where k, ¢ denote the parts of the corresponding ordered set partition (it is possible that ¢ = k).
Then, it is easy to see these transformations preserve the property of being in J;\naj.
Case 2: a > b. Then, a,b can never belong to the same essential sequence, and so swapping

them preserves the property of being in J;naj. U
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Since dual Knuth transformations preserve the property of being in J;\naj, we see that if a
word w € Wy* 4 then 7;(w) € wy * for any 4. This implies, by proposition 2.2.4 and the fact that
standardization preserves recording tableau, that any word w’ with the same recording tableau Q as
w will have the property w’ e W, _ Denote the set of recording tableau of shape p corresponding
to elements of Jf\naj by Ezlij We may then RSK and collect the left hand side of equation 3.11 by

recording tableau:

(3.12) Z gmai(w) g — Z tmaj(Q)< Z SCP>= Z (@, (x)
)

weW ™ QeEY PeSSYT(u QeEY

where w — (P, Q) under the usual RSK bijection, and 2P is the monomial corresponding to

the entries of P.

3.5.2. Characterization of E:lf“' and Connection to Cocharge. We now turn our atten-
tion to the set E;nij We will first describe, for each standard Young tableau, an associated tableau
that tracks its major index. Denote the runs of a standard Young tableau to be the maximal

northeast consecutive increasing sequences.

DEFINITION 3.5.2. Let T' € SYT(u) be a standard Young Tableau of shape p, and let d + 1
denote the number of runs of T, and denote the runs by Ry, Rq_1, ..., Ry, where 1 € Ry. Define
the major index diagram of T to be a filling of y where each entry is replaced with its run label.

Denote this by majd(T).

ExaAMPLE 3.5.3. Consider the following standard Young tableau, where runs are separated by

color:

REMARK 3.5.4. The major index diagram also has another interpretation - one can think of it

as encoding the contribution of each element to the charge of the reading word of T'.
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LEMMA 3.5.5. Let T € SYT(u). Then, we have that majd(T) is a semistandard Young tableau
in the alphabet Z=q with the reverse ordering. Furthermore, for i > 0, the northeast-most entry of
i will have at least one i — 1 in a lower row, and majd is a bijection between SYT(u) and SSYT of

shape p with this property, denoted E*.

PROOF. Since T is a standard Young tableau, then the configuration implies a < b. If
b= a+1, then ¢(a) = ¢(b), where £(x) is the row label of z € T. Otherwise, if b > a + 1, then a + 1
must occur in a lower row, so that a is a descent, and that ¢(a) > ¢(b). In either case, we have
l(a) = L(b).

On the other hand, if a is directly above b, then b occurs in a later run than a, so that ¢(a) > £(b).
This completes the proof of the first statement.

The second statement is clear by noticing that the northeast-most entry a of i is simply the
last entry of the 4th run, so that a is a descent of T. Then, we must have that a + 1 occurs in a
lower row and f(a+ 1) =i — 1.

Finally, we define majd~! : E* — SYT(u) as follows: If S € E* and the content of S is
d®(d —1)%-1...1% then, moving left to right, replace all instances of d with 1, ..., aq4, all instances
of d—1 with ag + 1, ...,aq + a4_1, and so on. Since the northeast-most entry of 1 hasan¢—11in a
row below it, it can never be the case that we have two entries of the form in majd~1(S)
with the corresponding entries in S as . Therefore the runs of majd~!(S) are precisely given
by S, so that (majd omajd=!)(S) = S.

O

DEFINITION 3.5.6. We say that a major index diagram majd(T") is A-splittable if it can be
decomposed into parts of sizes Aq,...,A; such that in each part, for ¢ > 0, the northeast-most

instance of 7 has an 7 — 1 to in a lower row.

ExXAMPLE 3.5.7. The tableau majd(7') in our running example is (6,5, 2,2, 1)-splittable:

majd(7) =

where the diagram on the right illustrates the condition for ¢ = 1,2 in the orange part of size 5.
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Before giving a characterization of all A-splittable major index diagrams, we first prove a lemma.

LEMMA 3.5.8. LetT € SYT(u1). Then, we have that rec(rw(T)~1) = T, and that majt(rw(T)~!) =
rw(majd(7T)).

ProoF. It is well known that each Knuth equivalence class of \S,, has exactly one permutation
that appears as the reading word of a standard Young tableau (for instance, appendix A in [Sta99])
so that if '€ SYT(u), then we have that (rw (7)) = (T, Q), where Q € SYT (1), so T' = ins(rw(T)).
Since taking inverse swaps the insertion and recording tableau, we have that (rw(7)™1) = (Q,T),
so that rec(rw(T)~1) = T.

To see the second statement, notice that the runs of T' become the maximal consecutive increas-
ing subsequences of rw(T). Then, in rw(7T")~!, the positions of the maximal consecutive increasing
subsequences of Tw(7T') become the runs of rw(7")~! themselves. Since majt(rw(7)~!) records the
run labels of each entry of rw(7T)~! (as a permutation), and each entry of T is replaced with its

run label in majd(7T’), we have that majt(rw(7T)~!) = rw(majd(T)). O

PROPOSITION 3.5.9. We have that T € EZL;] if and only if rw(majd(T)) € Dy if and only if
majd(T") is \-splittable.

PROOF. Suppose T € E™

N Then, every permutation 7 € S,, with the property rec(m) = T

has the property 7 € J)r\naj. Then, by the previous lemma 3.5.8, we have that rec(rw(7T)~!) = T,
so that rw(T)~! € J;naj. Then, again by the lemma, rw(majd(T)) = majt(rw(T)~!) € D) since
rw(T) e Jf\naj. Conversely, if rw(majd(T)) = majt(rw(T)~1) € Dy, then rw(T) ! € J/I\naj, so that
T = rec(rw(T)™!) e ELH?\J This proves the equivalence of the first two conditions.

Next, suppose rw(majd(7T')) € Dy. Then, rw(majd(T)) can be written as a shuffle of descent
compositions ay, ..., ap, whose positions are recorded by an ordered set partition 7. Consider the
corresponding entries of each part of a; in majd(7"). The condition of a; being a descent composition
in D), is that the rightmost entry of j must have a j — 1 to the left of it for j > 0. Since the rows
of majd(T') are weakly decreasing, this is equivalent to the statement that the corresponding cells

of majd(7T") have the property that the northeast-most j must have a j — 1 before in reading order,

which implies the j — 1 is in a lower row. Conversely, if majd(7T') is A-splittable, the decomposition
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gives a tuple of compositions ay, ..., ay, with a; € D), by the previous sentence. This implies that

rw(majd(7T)) € Di. O

We are now faced with a very interesting problem. First, we recall a few definitions.

The cocharge of a permutation 7 € S, is defined by the following process:

(1) Writing 7 in one-line notation, label 1 with 0.
(2) If i has been labeled with j, label ¢ + 1 with j if ¢ + 1 occurs to the right of i, and with

j + 1 if it occurs to the left. Denote labels ¢; ... ¢, =: cw(n), called the cocharge word of

.

(3) We define the cocharge to be cc(m) = ¢1 + - - - + ¢y, the sum of the cocharge labels.

For example, if 7 = 126497385, then cw(7) = 002132021. Next, let w € W,, with content p - n.

Then, the standard subwords of w are given by:

(1) Moving right to left, find the first instance of 1,2,...u}, cyclically wrapping around if
necessary. Denote this subword by w(V).

(2) Delete w) from w and repeat to obtain w®), and so on.

For the word w = 433222311111, the subwords are given by the following indices:

413231232221331514131214
and subwords (in order)

4321,321,231,1,1

For T' € SSYT (1, \), we may define cc(T') = cc(rw(T)), the cocharge of the reading word for T'.

Recall the following theorem of Lascoux and Schiitzenberger:

THEOREM 3.5.10. [LS78] We have that
CESIES O G M P
B NTESSYT(u,N)

where cc(T) of a semistandard Young Tableauz is defined to be cocharge of its reading word.
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Equation 3.12 implies that there should be a weighted bijection I' : Ezlij — SSYT(u, \') that

takes maj(7") to cc(I'(T')). For certain shapes, such a bijection has been constructed, but in general

the answer remains elusive.

We may construct, for T € SSYT(u, \'), an associated filling of the shape u by recording each

elements contribution to cocharge. We will denote this by ccd(7"). For example:

0

0fofof1fo]1]

ced 12
21

11|22|32|31|42|41‘) _

1

where the subscripts in the first diagram denote the cocharge labels. If for all '€ SSYT (u, ')

we have that ccd(T) is also a semistandard Young tableau in the alphabet Z=(, then the bijection

I' = ccd ! o evac(p, d) o rev o majd suffices, where d is the maximal entry of majd(T'). However, as

evidenced above, ccd(T") in general is not a semistandard Young Tableau.

PrROBLEM 3. Construct a weight preserving bijection I : E;Eij — SSYT(p, \') that carries maj

to cc for all shapes pu.
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CHAPTER 4

Descent Basis for the Garsia-Procesi Module

In this chapter we will give a proof of theorem 1.0.1, that for a partition A - n, the set

{Jra rae ’DA} = {xmajt(ﬂ) e J/I\naj}

is a vector space basis of Ry.

4.1. Descent Order on Monomials

Let R, = Clz1,...,2z,]/I, be the coinvariant algebra, where I,, is the coinvariant ideal. We
may consider the ideal generated by the leading terms of LM(1,,) with respect to the lexicographical
order. Then, we may define LMo (R,) to be the set of monomials not in LMjex(I,), and it is clear

that LM(R,,) forms a vector space basis of R,,. As it turns out:
Fact 1. We have that A,, = LM(R,,), where A, is the Artin basis of R,,.

Analogously, the Garsia-Stanton descent monomial basis are the leading terms with respect to

a different monomial order, called the descent order.

DEFINITION 4.1.1. Let @ = (1, ...,an), 8 = (B1,...,By) be in ZZ,. We say that 2° <qes 2
if:
(1) sort(a, >) <jex sort(8,>) or

(2) sort(a,>) = sort(3,>) and a <jex 5

Though des is not a monomial order in the Grébner basis sense, the notion of leading terms
is still well defined. E. E. Allen gave an algorithm to reduce any monomial using I,, in this order,
see [All194].

We record a useful lemma here.
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LEMMA 4.1.2. Let S < [n] with T = [n]\S its complement, and for a composition o, denote

als = (&, ..., q4,), where allij € S, and s = |S|. Then, we have that

(4‘1) a‘S <des /B‘Sa O4|T <des /B‘T = Q@ <(es /B

PROOF. Suppose a|s <des B|s, @7 <des B|7. For a composition «, write sort(c, >) =: sort(a).
Then, we have that sort(a|s) < sort(f|s) and sort(a|r) < sort(S|r). We may construct sort(a)

from sort(a|g),sort(alr) by the following process:

(1) Begin with an empty string, sort(a) = @&

(2) At each step, compare the first entry of sort(al|g), sort(a|r), and append the greater entry
to the end of sort(a). Remove this entry from the composition it came from. If there is a
tie, choose from sort(a|g).

(3) Once both tuples are empty, then what remains is sort(a).

(4) We can form a recording string w € 015111 which records the order in which the elements

were absorbed; a 0 will denote choosing from «|g, and 1 will denote choosing from «|7.

It is straightforward to show that this procedure produces sort(a). Apply the above procedure
to sort(f|s),sort(8|r). Denote the recording strings w, and wg respectively. If w, # wg, then
the first step i at which there is a deviation, we necessarily have sort(«a); < sort(f);, so that
sort(a) <iex sort(f). If we = wg, then sort(a); < sort(3); for all i, so that sort(a) <iex sort(/3).

If sort(a) = sort(S), then we must have had that sort(a|s) = sort(8|s) and sort(alr) =
sort(B|r). Then, we see that

als <iex Bls, a7 <jex Bl

The first entry in which o and g differ must also be the first entry in which they differ when

restricted to S or T'. This implies that o <j.x 5.

4.2. New Garsia-Procesi Basis

We give the reader a brief outline of the argument here. First, we will construct a series of

maps oy s : Ry — Ry ® Ry, where Ay = k, 1 = (A2,..., Ay) with the first part removed. Then, we
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will use these maps to inductively show for a € D), any expression of the form
(4.2) Z cgz? =0
B<des
must have ¢, = 0. Then, we show the coefficients are triangular with respect to <qes, S0 that

{z® : a € D)} must be linearly independent. Finally, Theorem 1.0.2 implies that |D,| = (;L,) to

establish a dimension count.

4.2.1. The Maps ¢, . Let S < [n], with |S| = k. Then, we may consider the composition

of maps
g : (C[:L‘l,. . .,.%'n] — (C[:L‘l,. . .,.%'k] ®(C[.%'1,.. . ,.Tn_k] — Rk®(C[l'1,.. . ,xn_k]

where if S = {i1,...,it}, T = [n]\S = {j1,---,Jn—k}, we have that the first map evaluates xz;, —

Tm ® 1,25, — 1® 2, and the second map is the quotient map in the first factor.

PROPOSITION 4.2.1. Let A be a partition of length £ > 0, and let u = (Mg, ..., \¢) denote the
partition obtained by removing the first part. Then, for any subset S < [n] of size A1, the map pg

m 4.2 descends to a map

(4.3) (p)hg : R)\/ d Rk ®RH'

ProoF. We need to check that the generators of Iy; are sent to 0 under the map ¢, 5. Recall

the definition of the Tanisaki ideal:

(4.4) Iy = <ed(T) T [n),|T|>d>|T| —pnT(X)>

Let e4(T) € Iy, so that the above inequalities are satisfied. We may then write

ST
(4.5) eq(T) = > ei(S A T)eq_i(T\S)
i=max(0,d—|T\S|)
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so that

|SNT|

(4.6) prs(ea(T)) = Z ei(SnT)®eq—i(T\S5)
t=max(0,d—|T\S|)

where by abuse of notation, equation 4.6 has the variables evaluated in each tensor component per
@S-

If Sc T, then e;(SnT) = e;i(S) € I, the coinvariant ideal of the first factor, whenever i > 0.
This leaves only the summand 1 ® eq(7\S) if ¢ is allowed to be 0. In this case, we must have that
d—|T\S| <0, or that d < |T'\S|. We need to show that eq(T\S) € I,/.

If A = (\q,...,\,) is the transpose of X padded with 0’s to form a tuple of length n, then we

notice p = (A2,..., Ap_|s|+1), 0 that p; = X\jy1 for 1 < i < n — |S]. Since e4(T) € Iy, we must
have that

(4.7) T = (An+ -+ Apyrp1) < d < [T\S]

Since A\; = |S|, we also note that we must have pl'(\) = --- = pz_w()\’) = 0. Substituting, we
obtain

(4.8) T = Aojsj—1 + -+ Apoyryen) <d < |T\S]

We may assume that |T'| > |S|, as otherwise there is nothing to show. The substitution pu; = X1

yields
TS| = Pl s (1) = 17| = IS] = (ttnis) + =+ + Moy s ri5141)
=T = |S] = (An—isj41 + -+ + Aoy +2)
< T = Mg + -+ Ao yr+1)
ST = Anjsp—1 + 0+ A1) < d

where in the third line we used that [S| = A1 = A,_712 since A is a partition. This implies that

ed(T\S) € IM"
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Next, if S ¢ T, so that |SnT| < |S|. We must show that eq_;(T\S) € I,y for all i. By equation

4.6, we have that i < |S n T'|, and so subtracting from equation 4.4, we obtain

(4.10) ‘T|—|SﬂT’—(/\n+"'+)\n,‘T|+1) <d-—1

Then, we may expand as before:

IT\S| = pip sy (1) = [T\S| = (bnis) + -+ + b |s)-\S]+1)

= |T\S| = (An—isj41 + *++ + Ao 1)+2—(1S|=|SATY))

(4.11) = |T\S| = (Mn—isj=1 + = + A7 |42—(1S|=|S~T)))
<|T| =[S T| = (Aojsj=1 + - + Aoy +1)
<d-—1

where the third line uses A,_|gj41 = Ap—|s| = 0, and the inequality in the fourth follows from
S| —=|SnT|>0.

For the other inequality, there are two cases. If d — |T\S| > 0, then
d—i<d—(d—|T\S|) =|T\S|

Otherwise, d — |[T\S| < 0, so d < |T\S|. In all cases, we have that e;_;(T\S) € I, and we are
done. O

4.3. Linear Independence

We prove the linear independence of {z? : a € D)}, establishing Theorem 1.0.1.

PROOF OF THEOREM 1.0.1. Let a € Dy, or that ® = g,(x), where 7 € J/r\naj. We show that
22 cannot be expressed as a linear combination in 2P, where b <ges @, and so linear independence
follows.

Suppose that

(4.12) D epa® =0

bgdcsa
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Then, we will show that ¢, = 0. Since a € J/I\naj, we have that there exists a; € D), and an ordered
set partition o = A;|...|A; € OSP(A) such that ¥(ay,...,ap,0) = a. Algorithm 1 for instance,
produces such a decomposition. Set S = Ay, so that a4, = ai, and suppose |A1| = A\; = k. Then,
by Proposition 4.2.1, we may apply ¢ s to both sides to obtain
(4.13) 0= 90,\,5< Z cba:b> = Z % ® <Zda7brxb/>

b<deea €Dy, b’
where in the second equality we expand in the first tensor factor using the descent basis, and
push all coefficients to the second tensor factor. For every nonzero d,ps, there is some c, # 0

contributing to equation 4.12 with the property that
(414) « gdGS b‘57 b/ = b‘Ta b gdes a

where T' = [n]\S denotes the complement of S. The first inequality follows since o € Dy, are the
leading terms in the descent ordering with respect to I, see [Al194].

Writing ¢y g(2?) = 2 @z, with
(4.15) o =a|lgeD,, o ealreD(u)
By equation 4.13, we must have that
(4.16) D ldo pa® =0
"

in R,y. Then, lemma 4.1.2 implies that dy p # 0 only if b’ <qes o, and that dy or = ca. We may
then rewrite 4.16 as
(4.17) > dapa® =0
b’<ges
and the claim follows by induction on the number of parts of A, with the base case being the
coinvariant algebra RM{/' This implies {z? : a € D)} are linearly independent.
Finally, by theorem 1.0.2, we have that

5 {3,

maj
meJy
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so that evaluating at t = 1 gives |Dy| = (},) = dim¢(Ry ). The theorem is proved.
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CHAPTER 5

Further Results and Conjectures

In this chapter, we hint at a possible extension of the new Garsia-Procesi basis towards the

Garsia-Haiman module. We show the following main results:

o The set Dy, x --- x Dy, x OSP(A) gives a t-weight-preserving bijection with the tableau
indexing ]?IX (X;q,1)
e The fibres of ¥ over (0,...,0) recovers the classical Garsia-Procesi basis, B(\').

e The fibres of ¥ at top t degree recover the Haglund-Haiman-Loehr formula at top degree

Finally, we will present a conjecture for a monomial basis of V), at top t-degree, and discuss

ongoing work for an extension to the A-springer modules defined by S. Griffin in his thesis [Gri21].

5.1. Connection to Haglund-Haiman-Loehr Macdonald Formula

We now prove a sequence of results that give hope in extending the new Garsia-Procesi basis
to the entire Garsia-Haiman module V). The first of these is that the ¢ = 1 specialization of

Hy(X:q, t)|m,n agrees with the shuffle fibres.

PROPOSITION 5.1.1. Let X\ - n, and denote the conjugate partition by N. Denote a standard
filling o : N — Z4 to denote a filling of the Ferrers diagram of X' (in French notation) with the

numbers {1,...,n}. Then, we have the following equality:

(5.1) Z 1200 — Z 4maj(o)

(a1,...,ag;m)€Dy; X...x Dy, x OSP(N) o N—>Zy
o standard

In other words, the generating series of the set Dy, x ... x Dy, x OSP(A) coincides with the

myn (x) coefficient of Hy (X;1,t), the modified Macdonald polynomial evaluated at ¢ = 1.
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PROOF. We give a proof by constructing an explicit weight-preserving bijection between the
two sets. First, denote the set of standard fillings of the shape X by Z5i¢ := {0 : N — Z, :

o is standard}. We will define the map \I/;naj 1259 - Dy, x ... x Dy, x OSP(A) as follows:

(1) Given the standard N-filling &, split £ into columns. Denote the set of entries of the jth
column (reading left to right) by &;, and denote the column itself by Ej.

(2) Standardize and compute majt of each column; denote majt of the jth column by a;.

(3) Let 7 be the ordered set partition given by &i]...|¢;.

(4) Define W™ (¢) := U(ay, ..., ap, 7).

Since we have that |E5\4| = n! = |Dy, x ... x D), x OSP(A)|, we show that the map \Ilflaj is

surjective, and therefore a bijection. Indeed, given (ai,...,as,m) € Dy, x ... x Dy, x OSP(N), we
consider the X-filling with columns given by &; = ;. Applying majt~! to a; and unstandardizing
with the alphabet &; will give the order of the entries in each column. Since 7 is an ordered set
partition, we are guaranteed that £ is a standard filling.

Next, we show that \Ililaj is weight preserving. It will suffice to prove the claim for a single
column, as the maj of £ is given by summing maj of each column. Observe that for each descent
a € Des(gj), the quantity leg(a) + 1 marks the index of Zj read as a permutation top to bottom.
Standardizing does not change the major index, so we need only show majt({;) = a;. But this is

true by the definition of ‘Ifr)\naj and [cite background section on def of majt], so we are done.

EXAMPLE 5.1.2. If A = (4,3,3,1,1), so X' = (5, 3,3, 1) consider the following X-filling &:

11
3 4|12\

Then gl = {175777 10}752 = {27678}753 = {3797 11}7{4 = {4}755 = {12}7 so that

m={1,5,7,10}{2,6,8}|{3,9, 11}|{4}|{12}
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Furthermore, the standardizations of the columns are 4321,321,231,1,1 in order from left to
right, so the major index tables are a; = 0123,a3 = 012,a3 = 011,a4 = 0,a5 = 0. We then apply

¥ to obtain
WM (€) = (01,09, 03,04, 11, 19, 21, 22, 13,31, 13, 05)
where the subscript denotes which column the entry came from.

One would hope that this map gives a bijection between inv(c) = 0 fillings and J)r\naj, but the

situation is not so straightforward. Consider the following two inversionless tableau:

1
o1 = o9 =

We have that W™ (0;) = U™ (o) = 001200.

5.2. Affine Permutation Formula

The auxiliary sequence w used in 3.2 in defining Algorithm 1 can be extended to all of the
shuffle fibres Dy, x ... x Dy, x OSP(A). This set of affine permutations will be the subject of many
conjectures to follow.

For a descent composition a € D,,, denote by w = (wq, ..., wy,) the position of the numbers chosen,
@ to be the positions mod n (residues in {1,...,n}) and let b = (by,...,b,) to denote the quotients
(without remainder) of w; — 1 by n. For instance, for a = (0,1,2,0,2,1), w = (1,2,3,11, 24, 34),
w=(1,2,3,5,6,4) and b = (0,0,0,1,3,5).

Given (ai, ...,ay, Bi|...|By) € Dy, x ... x Dy, x OSP(X), we can run for each a; the algorithm to

obtain @@ and b(®. Define &; to be

(5.2) @); = (Bi) gy, +n- (b1);

and set w = &1 + ... + @y, the concatenation. Denote the set of w obtained this way 25)\, and let

this process be denoted by a map aff : Dy, x ... x Dy, x OSP(\) — 25>\. Note w € W, since each
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residue mod n is used exactly once, and the blocks are sorted, so that we obtain a minimal W, /Sy
representative.
For each of the a;, we can concatenate the corresponding b® tuples to obtain b, = b + ... +
b0 = (b1, ..., bn). We will refer to b,, as the quotient tuple of w, as it tracks the block numbers of a.
Conversely, given w € 25,\, we can reverse this process by first splitting w into blocks according

to A, which we will denote with bars:

W= (W1, ey WrL WA 415 oo WAg oo [ Wn—xp 15 ooy i) = (A1]...|Ar)

with A; = (Way+..+X\i_14+1s--sWr;+..+),;)- Then, we can recover the associated descent compo-

sition a by setting a = (j — (b(i))j)m’ where (/le)] denotes reducing the entry (/le)J modulo n.
)

Note since each residue modulo n occurs exactly once in w, (A4;); will never be equal for different

~

choices of i, j. We will sometimes refer to a as majt(w), and maj(w) is defined to be the sum of the

entries of majt(w).

EXAMPLE 5.2.1. Consider w = (4,5,7,15;2,3,20) € 75(473). Then, b, = (0,0,0,2;0,0,2), and
b = (0,0,0,2), b® = (0,0,2), so that (j —b\"); = (0,1,2,1), and (j — b\?); = (0,1,0). Finally

/Tl = (4,5,7,1), and ATQ = (2,3,6), so that we obtained the associated descent composition a =
1010102.

Noting that if b = (0,...,0), then all entries corresponding to ﬁz in a must occur in the first
block. On the other hand, the quantity j — (b®) ;j is a value in a, which is a descent composition,
and so must be nonnegative. This gives the inequalities 0 < (béi)) <j.

If one is only interested in the major index of w, there is a simpler formula. First, let

By=(0,....,.0 —1;...;0,..., A — 1)

which is a tuple of length n. We can check

maj(w) = >(Bx); — bi
i=1
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5.3. Partial Results on a Potential Macdonald g-Statistic

In light of Proposition 5.1.1, it is reasonable to expect that there should exist a g-statistic on

the set Dy, x ... x DAy x OSP(A) such that

> ¢ @25 = H (X5 q,t)
(a1,-..,a0;m)€Dx; X...x Dy, x OSP(A)

or in terms of Dy,

Z gtat@)maj(w) — }N[A’(X§Qat)|m1n

UJEDA

We present some partial progress towards the construction of stat(u) in terms of 5)\.

5.3.1. Lowest {-degree and Classical Garsia-Procesi Basis. For maj-less w € 15)\, we
show a certain statistic inv,, that recovers the mi» coefficient of Hall-Littlewood polynomial at
t = 0. We will prove this by showing that this statistic generates the Garsia-Procesi basis given
in [GP92], thus giving a graded bijection. This will be done by first associating a parking function
to w, and then showing that such a parking function satisfies the recursion given in [GP92].

Fix a partition A - n. Consider the set

DY = {weﬁ)\:bw: (0,...,/\1—1;...;0,...,)\g—1)} = {wef?)\:Zai:O}
%

where a = (ay, ..., a,) is the element of D) corresponding to w. We now give the construction

of invy,.

DEFINITION 5.3.1. Write w = (w1, ..., wy,) (this is sometimes referred to as window notation).
An inversion of w is a pair (i,j) such that i < j and w; > w;. An n-restricted inversion is an
inversion of w such that w; —w; < n. We denote the set of n-restricted inversions by Inv, (w), and

set invy, (w) = [Inv, (w)].

The statistic inv,, is studied in depth in [GMV14], and suggests connections with torus-fixed

points of certain affine Springer fibres.
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PROPOSITION 5.3.2. Let A - n be a partition (or more generally, a composition) and let w;
denote the residue of w; modulo n in the set {1,...,n} and set x(w;,w;) = max(w;,w;). Let ¢ =

{(i,4) € Invp(w) : x(wi,wj) = k}|, and set invt(w) = (c1,...,cn). Then, the set of monomials

C(A) = {x%t(w) twE ﬁg}

is precisely the set B(N') given in section 1 of 7?7 that forms a basis of the Garsia-Procesi module

Ry.
COROLLARY 5.3.3. We have that

Z qinvn(w)tmaj(w) _ Z qinvn(w) - ﬁ)\/(X;q,O)|m1n

O O
weD} weDy

An example will make things clear.

EXAMPLE 5.34. Let w = (1,7]3,9|5) € 15?22 1) Here n =5, and the 5-restricted inversions
are Inv, (w) = {(2,3,(2,5), (4,5)}, corresponding to the entries (7, 3), (7,5), (9, 5) respectively. We
have that x(7,3) = 3, x(7,5) = 5, and x(9,5) = 5. Then, ¢3 = 1,¢5 =2, and ¢; = c2 = ¢4 = 0, so

invt(w) = (0,0,1,0,2), and 2VH) = 7422,

The remainder of this section will be dedicated to giving a proof of 5.3.2.

First, we will give a parking function description of 59\, as well as a corresponding statistic,
denoted codinvy. Notice that we can identify, via the map ¥, the set 759 with OSP(N), as 759
corresponds precisely to Sh(0y,,...,0y,), with 05 = (0, ...,0), where there are k 0’s.

Any Dyck path can be represented with 1’s denoting North steps, and 0’s denoting East steps.

Then, consider the path

wy = (17,0, ..., 17, 0™M)

Let PF) (or PF, for a general composition «) denote the set of parking functions whose

underlying Dyck path has shape w.
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DEFINITION 5.3.5. Let (a1, ...,ay) denote the area sequence of P € PF), read bottom to top.

Then, we define Codinvy (P) to be

Codinvy(P) = {(i,j) 1 < j,a; = aj,occ(i) > occ(j)}u

{(z‘,j) 11 < j,a; = aj + 1,0cc(i) < occ(j)}

and codinvy(P) = |Codinvy (P)].

Note that this definition is exactly the same as the usual definition of dinv for parking functions,

with the inequalities reversed. We now give a corresponding notion of inversion tableau.

EXAMPLE 5.3.6. Consider the following element P € PF (34 1):

6

4
2

Then, Codinv(s 9 1)(P) = {(1,4),(2,5)} u {(2,6),(5,6)}, so that codinv(s s 1)(P) = 4.

DEFINITION 5.3.7. Let P € PF . Then, for (i, j) € Codinvy(P), let x(i,j) = max(occ(i), occ(j)).
Let ¢, = |{(7,7) € Codinv(P) : x(4,7) = k}|, and let dinvt(P) = (c1, ..., cx).

We now describe a simple bijection between PJF ) and ﬁg Given w = (w1, ...,wn) € 259\, denote
by W = (w1, ...,wy) to be the reduction of the entries w; modulo n, taking a residue in {1,...,n}.
Within each block of A in W, we are guaranteed by 5.2 that the entries are increasing. The map is

then given by

®: DY - PFy
W = (’U))\, [Ulv 7@])
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LEMMA 5.3.8. The map ® is a bijection, and we have that dinvt(®(w)) = invi(w). Consequently,

the following equalities hold:

{xﬁt(“’) Twe 59\} = {xdim(P) :Pe PfA}

Z qim}n (W) _ Z qcodim;)\ (P)

weﬁ?\ PePFy

PRrROOF. Every parking function P € PF) with the underlying path wy can be identified by

taking its reading word. The shape of w) guarantees we have the following inequalities:

occ(l) < ... < oce(Aq)

occ(A1 + 1) < ... < ocec(A + A2)

occ(A + ...+ A1+ 1) < ... < oce(n)

Then, we can canonically identify rw(P) with an ordered set partition 7 € OSP()\) by taking
the ith block to be Ay + ... + Ai_1 + 1, .., 1 + ... + )\

Each w e ﬁ?\ is canonically identified with an ordered set partition @, as above. Then, by the
definition of ®, it is clear that ® simply maps w to the parking function with reading word @.

We need now only show that invt(w) = codinvy(®(w)). Let (i,7) € Inv,(w). Then, by 5.3.1,
this is true if and only if w; < w; < w; +n. This implies that we must have b; = b;, or b; = b; + 1.
In the case of b; = bj, it must be the case that w; < w;, and in the case of b; = b; 4+ 1, we must

have w; > w;. The final observation is that

(bl, ,bn) = (0, 1, ceey Al - 1;0, 1, ...,)\2 - 1; ...;O, 1, ...,)\g - 1) = (al, ...,an)

so that the quotient labels (b1, ...,b,) of w give precisely the area sequence (ai,...,a,) of
®(w). The inequalities above precisely mean (i,j) € Codinvy(®(w)). Similarly, given (i,j) €

Codinv)(®(w)), we may reverse the above process to obtain (7,j) € Inv,(w). Finally, noting that
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occ(i) in ®(w) is the same as @y, comparing the definitions of dinvt(®(w)) and invt(w), we see the

tuples must be equal and the lemma is proved. ]

EXAMPLE 5.3.9. Let A = (2,2,1), w = (1,7]3,9]5) € DY

(2.2,1)- We have that & = (1,2|3,4]5), so

that ®(w) = (w2,1),[1,2,3,4,5]). Then, pictorally:

Then, we have that Codinvy(P) = {(2,3),(2,5), (4,5)}, so that dinvt(P) = (0,0, 1,0, 2), which

coincides with example 5.3.4 above.

Let a be a composition of n. We briefly give a useful identification (inspired by Haglund) of
PF, with tableau that have column heights given by a. Let CS, denote the set of column-strict

decreasing fillings of the Ferrers shape with column sizes given by a. For instance,

[12]
s8] [10]5
711193
4]6]1]2

is an element of CS3543). We can then identify PF, with CS, by letting the columns of
T € CS, be precisely vertical strips of a corresponding P € PF,, and denote this map by © :

PFo — CS,. For instance, for the T' above, the corresponding parking function is
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3
2
12
10
P 9
1
11
6
8
7
4

It is straightforward to show then, that an element (i,j) € Codinvy(P) corresponds to one of

the following pairs:

D

(I1.) W ]

where a > b in ©(P). We will refer to these as type I and type II inversions respectively. The

missing squares need not be present, but the gray square must be present.

LEMMA 5.3.10. Let a be any composition of n such that |o| = X\. Then, we have the following

set equality:

{xdinvt(P) . Pec 'Pf)\} _ {xdith(P) :Pe P.Fa}

PROOF. Let a = (aq,...,ap), and let o/ = (a1, ..., @41, 4, ..., ) for some fixed 1 < i < —1.

It then suffices to show that

{l,dinvt(P) . Pec 7)]:&/} _ {$dith(P) :Pe Pfa}

We will do this by constructing a bijection between PF, and PF, that preserves dinvt.
If a; = ay; 11, then we can have the bijection be the identity map, and there is nothing to show.
Otherwise, without loss of generality, suppose that a; > ;1. We will give the bijection in terms

of the column strict fillings CS,, and CS,s. Define the map swap, : CS, — CS,/ as follows:
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(1) Only the ith and (i + 1)th columns will be affected; the rest will be fixed. As such, we
suppress the other columns in our description of swap;.

(2) Since a; > @;41, move all boxes with y-coordinate y > a1 to the (i + 1)th column:

(3) If the right column is no longer decreasing, find the first instance a such that the entry b

above a has b < a. Then perform the swap:

b b

—

c|a ‘ a | c

we must necessarily have b > ¢, as before step (2), b and ¢ were part of a decreasing
column.

(4) Repeat step (3) going downward until both columns are decreasing.

Note that it will always be possible to make both columns decreasing, since at worst, the two
columns entirely swap. Furthermore, since the heights of all of the entries do not change, the

inversion pairs involving the other columns of ©(P) are not affected by swap;.

ExaMPLE 5.3.11.

swap; :

N | Ot .-Jk|®‘
ol oo

The inverse map swap, s defined identically, and it is straightforward to show they are inverses.
Now we must show that dinvt(P) = dinvt((©~! oswap, 0©)(P)). This will follow from showing
that swap, preserves the number of inversion pairs, as well as the larger value of each inversion

pair.
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(1)

(Type II inversion) We need only be concerned if a swap happens with one of the entries.

Suppose a < b is a type II inversion and a swap occurs:

a a a

cb\ \cb blec

where the second swap must occur because we have a < b. We must have a > ¢ since
we began with a column decreasing tableau, so that b > a > ¢. Then, b > c is a type I
inversion in swap;(©(P)).

(Type I inversion) Suppose b > a is a type I inversion. Then, the only interesting case is

if a swap occurs in the above row:

cld d|c
b|a b|a

since ¢ > b, we have ¢ > b > a, so that the swapping process must terminate. Therefore,

the type I inversions are preserved.

In either case, the larger entry of the inversion pairs are unchanged, so we must have that dinvt(P) =

dinvt((©~! o swap,; 0©)(P)).

We must show the same statement for swapi_l.

(1)

(Type I inversion) Suppose b > a is a type I inversion. If the entry above a, denoted ¢ has

¢ > b, then no swap occurs in the lower row. Otherwise,

d| c cl|d c|d
b|a b|a al|b

and the inversion b > a is exchanged for ¢ < b. Here, the square d may be missing.
(Type II inversion) Suppose a < b is a type II inversion. Then, the only interesting case

is if ¢, d swap below:

cld|__ |d]c
ale ale
f|b f|b

If ¢ > e, then the swaps must terminate because we must have d > e > b > a. Furthermore,

a, e do not form an inversion pair because a < e. On the other hand, if ¢ < e the following
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swaps must occur:

die|__|dlc|__|d]c
ajle ela e
flb flbo b|f

since b > a > f, we have that b, f form an inversion pair. Furthermore, in this scenario,
the condition ¢ < e means c,e was a type II inversion, which is replaced with the type I
inversion e > a.

In all cases, the larger entry of the inversion pairs are unchanged, so we must have that

dinvt(P) = dinvt((©~! o swap; ' 0©)(P)). This completes the proof of the lemma.
U

Before we give the proof of Proposition 5.3.2, we briefly recall the recursion given in [GP92].
Let A - n be a partition, and let A = |(Ay, ..., A\; — 1, ..., \¢)|. In other words, we subtract 1 from

the ith part, and rearrange if necessary to obtain a partition shape.

THEOREM 5.3.12. [GP92] Fiz A\ -+ n, and let {(\) = X| denote the height of the partition.

The monomials B(X) forming a basis for the Garsia-Procesi module satisfy the following recursion:

o(N)
(5.3) BA) = | |2 B(AD)

i=1
with the initial condition B(1) = {1}. If S is a set of monomials, the notation x°S denotes the

set obtained by multiplying every monomial of S by zP.

For instance, as in [GP92], B(211) = {1, 2, 73, Tox3, ¥3, ToT3, T4, T4T2, T4T3, T3, T3T2, 573}

PROOF OF PROPOSITION 5.3.2. We will show that the sets €(\) defined in 5.3.2 satisfy the
recursion 5.3. By lemma 5.3.8, this is equivalent to working with the dinvt monomials for PFj.
Define a map drop : PFy — PF,_1 as follows:

(1) Let P € PF) be a parking function, and rw(P) be its reading word.
(2) Suppose n occurs in the block of wy corresponding to ;. Delete n from the reading word,
i.e. consider rw(P)~ = [..., 7, ...], and consider the composition a = (A1, ..., A; — 1, ..., Ap).

(3) Define drop(P) = (wq,rw(P)7).
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For instance:

3
0 1
1
drop : = |5
: 4
4 2
2

If o is a composition, define Dy(a) = {w € PF) : drop(w) € PF,}. It is clear that the only
a for which Dy («) is nonempty are of the form al = (A, Ai — 1,0, 0) for some 1 < i <
¢. Furthermore, if (j,75') € Codinvy(w), and n ¢ {occ(i),occ(j)}, then one can check there is a
corresponding (k, k") € codinv,u (drop(w)). In other words, the diagonal inversions that do not
interact with n are not affected by drop, which implies that dinvt(drop(w)) = (e1,...,n—1,¢n),
where dinvt(w) = (c1, ..., ¢n).

Fix 4, and let o® = (A;,...,\; — 1,...,\,). It is straightforward to define an inverse map
lift; : PF, ) — PF) that is the inverse of drop on Dy(«). This implies the map drop restricted
to each nonempty Dx(a(i)) is surjective onto PF i), and so there is a canonical identification of

Dy (D) and PF ). This also implies the sets Dy(a(?) partition PFy:

14
PFr=| | Da(e?)

=1

For each w € PF), we consider the contribution of n to codinvy(w). Suppose n occurs in the
part of wy corresponding to A;. Then, n participates in a diagonal inversion (7, ;') € Codinvy(w) if

and only if one of the two following scenarios occur:
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where a < n. In the left diagram, the two parts A;, A\; have the same size, whereas in the right
diagram, the part \; containing a has A\; > A;. Then, we see that the number of diagonal inversions

involving n must be

(5.4) Cn—'{)\j:)\j>)\i}‘+‘{)\j:)\j—)\i,j>i}‘

for A = (A1, ..., \¢), and the two summands are cardinalities of multisets. In other words, ¢,
is the number of parts of A greater than A;, as well as the number of parts equal to \; that occur
after it. Furthermore, since n is the greatest entry in w, we must have that x(j,j’) = n for any
(4,7") € Codinvy(w) involving n, so we are justified in calling the above quantity c¢,.

For a fixed a(®, all of the parking functions w € DA(a(i)) must have n in the same position.
This implies they all have the same value of ¢, (the last digit of dinvt(w)), namely 5.4. We may

then write

{xdinvt(w) ‘we D}\(a(z))} _ x%n{l,(Ch...,Cnl) “weE D}\(a(z))}

— x%n{xdinvt(drop(w)) cwe D}\(a(z))} _ :L“%" {xdinvt(w) cwe Pfa(i)} _ $$Ln e:(a(z))

Now writing A = k% (k — 1)%-1...1%| where the a; denotes the multiplicity of j, consider the

permutation
o= (ag,....l,ax + ag_1,ap + ap—1 — 1,..;ap + 1, ...oak + ... + ay, ..., £(A) — aq)
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Note we always have A, (j) = Aj, except the order of identical parts is reversed. Then, we see that

o(i) — 1 = ¢y, so that

Finally, noting that o is an involution, and using €(a?) = €(A(®) by 5.3.10, we have that

o) o) o)
e = | | {xdmvw we DA<a<i>>} = a5 @) = | | i@ ®)
=1 =1 i=1
o) o)
= | | aitea®) = | |2k te(x®)
=1 i=1

where we replace i by o~ !(i) = o(i) in the third equality. This completes the proof; we have

C(A) =B(A) for all \.

REMARK 5.3.13. Since the set 59\ can easily be identified with OSP()\), this gives a simple

bijective proof that the Garsia-Procesi basis B(\) has size given by

30yl (})

Furthermore, since the exponents of B(\) are precisely the A-sub-Yamanouchi words, denoted

C) as in [Gill5], proposition 5.3.2 gives a simple bijective proof of its size as well.

5.3.2. Top t-degree and a Skip Statistic. Given A - n, we now introduce a ¢-statistic on
ﬁA that recovers the min coefficient for top t degree of the Macdonald polynomial H v(X;q,t).

Formally, let

NIV STy (5)

i=1 i=1
We will show that there is a statistic skip on w € 5>\ such that
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(55) Z qskip(w)tmaj(w) — Z qinv(a)tmaj (o)

weDy, o:N—{1,..,n}
maj(w)=n(X) maj(o)=n(})
Write A = (A1, ..., \¢). First, we study the set ﬁz()‘) := {w € Dy : maj(w) = n(\)}. Note that
an element of maximal maj occurs when we shuffle the descent compositions of the long words for

ALy ey A

DIY = aff({(0,1, .., A1 — 1)} x oo x {(0,1, .., A — 1)} x OSP(N))

As such, when 1 is run on each (0,1, ..., A\; — 1), all of the entries occur in the first block, so all

of the quotient labels (b, ...,b,) must be 0, so we may write

1’52()\) _ {w I= 5)\ : (bla ,bn) = O}

and that the reading word of w is actually equal to the corresponding 7 € OSP(A). We will

define the statistic in terms of corresponding ordered set partition:

N

DEFINITION 5.3.14. Identify w € 5Z with an ordered set partition m = A;]...| Ay, and write

A; = (ao . a>"'—1) with a? <. < af‘

_1 . . . . .
iy @ i=". Then, a skip inversion is a pair of the form:

(1) (a,a}) =i > j,a > aj

k1l kt+1y ;o i ok _ o k+l _ ket
(2) (aj"",ai"),i> g af <aj" <ai" k=0

We denote the set of skip inversions of w by Skip(w), and define skip(w) = | Skip(w)|.

REMARK 5.3.15. The statistic skip can be thought of as counting the number of entries skipped

o)

when running 1 on w € 752 We note that this is eerily reminiscent of the statistic betrayal

introduced in [KM17]. This connection should lead to interesting future work.

EXAMPLE 5.3.16. Consider w = (6,7,8|2,4,9|1,3,5) € DY

(3,3,3)" This corresponds to the ordered

set partition 678|249|135, as well as the labeled descent composition

( 7027 3127 a01711:21a22)
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When the first (red) part is selected, two 0’s are passed by to select the third and final 0. The

first 1 after the 0 is selected, and the first 2 after the 1 is. So the first part contributes only 2 to

skip(w).

(95971717270171172172)

When the second (blue) part is selected, the first 0 is skipped again, one unmarked 1 is skipped,

and one unmarked 2 is skipped.

(0,02,1,15,2,01,14,21,29)

so the second part contributes 3 to skip(w). The final part contributes nothing, so skip(w) = 5.

PROPOSITION 5.3.17. The map ¥ from the proof of 5.1.1 composed with aff from 5.2 from gives

a q,t-weight preserving bijection between the sets

5;7\()‘) — {J N = {1,...,n}

o) = 100

As a corollary, equation 5.5 holds.

PRrOOF. By proposition 5.1.1, since maj(w) = n(A) = maj(o) for all elements w,o in their
respective sets, the map W o aff gives a set bijection between them. We need only show that
skip(w) = maj((¥ o aff)(w)).

It then suffices to show that |Skip(w)| = |Inv((¥ o aff)(w))|. We will do this by constructing

a bijection between the two sets. Let w = (Aj|...]4y) as above, with A; = (a?,...,a;\"_l) and
A

al < ... < a; =1 Then, we see that the image of w under ¥ o aff must be N-fillings whose columns

are precisely A; in decreasing order. Then, the entry a{ must occur in the ith column, in the j+ 1th

row (counting from the bottom). We consider the two types of skip inversions:

(1) For an inversion of the form (a?,ag), i>j,a) > a?, then in (V¥ o aff)(w), they will take

the positions

in the bottom row, so that (a?, a?) is an inversion in (¥ o aff)(w).
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(2) For an inversion of the form (a?“, af“),i > j,ak < af“ < af“, k = 0, we have
k+1 k+1
a; a;
af

k k+1

But the inequalities a; < a;’ " <

af“ mean precisely that the entries increase in counter-

clockwise order, forming an inversion triple in (¥ o aff)(w).

We see then that the notions of skip inversions and inversion triples are equivalent, so we have

| Skip(w)| = | Inv(( o aff)(w))|, which completes the proof. O

5.4. Towards a Basis for the Garsia-Haiman Module V)

The original motivation for the project was to extend the methods of Carlsson and Oblomkov
in [CO18]. Since V), € DR, then it seemed feasible that the same ideas that yielded the schedules
formula-type basis of DR,, would be successful for V). This proved unsuccessful, and we discuss a

few complications below.

5.4.1. Double Filtration and Hook Shapes. Let R = C[z1,...,2n;Y1,-..,Yn], and con-
sider the following ordering on a pair of compositions:
We say that (o, 8) <des,grreviex (&', ') if:
o 3 <qes B or
e B=p"and @ <greviex @
In other words, given monomials 2%y® and 2*y?', we first compare the y-monomials in descent

order, then the xz-monomials in grrevlex. This appears to work nicely for hook shapes, as per the

following conjecture:

CONJECTURE 5.4.1. Let A = (k,1"7%) a hook shape, and V}, = C[dx,dy] - Ay denote the
Garsia-Haiman module. Then, there is a basis of polynomials whose leading terms with respect to

the (des, grrevlex) order are precisely the n — k — 1th-Haglund monomials, to be defined below.

Equivalently, expressed in terms of the coinvariant version:
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CONJECTURE 5.4.2. Let A = (k, 1”_k) a hook shape, and V) denote the Garsia-Haiman module.
Then, the leading terms with respect to the (des, grrevlex) order are the n — k — 1th-Haglund

monomials.
Furthermore, the following appears to be true, and has been checked by computer for n < 7:

CONJECTURE 5.4.3. Let A be any partition. Then the leading terms with respect to the (des,

grrevlex) order are of the form z®y”, with 3 € D,.

5.4.2. Conjectural Garsia-Haiman Basis for Top t-degree. We present a set of mono-

mials, denoted ﬁE\OP, that conjecturally form a basis for

to ) (h,n(N)
V)\/ p = hG_) V/\/ ’
=0

the top t-degree component of the Garsia-Haiman module V),. The construction will be given

)

in terms of the extended affine permutations w € 75;7\ and the skipt statistic.

DEFINITION 5.4.4. For A - n a partition, let w € 520‘). Then, define for 1 < 7 < n, the quantity
¢i = |{(i,m) € Skip(w)}|. One can think of ¢; as denoting the number of times the ith entry of

majt(w) is skipped during the selection process 1, as in 5.3.16 Define

skipt(w) := (c1, ..., Cn)

CONJECTURE 5.4.5. The set
ﬁ‘;\op — {xskipt(w)ymajt(w) cwe ﬁz()\)}
forms a monomial basis for the top t-degree component VP of the Garsia-Haiman module.

EXAMPLE 5.4.6. Consider w = (6,7,8/2,4,9/1,3,5) € 653)33

calculate skipt(w) = (2,1,1,0,1,0,0,0,0), majt(w) = (0,0,1,1,2,0,1,2,2). The corresponding

) as in example 5.3.16. Then, we

monomial is (w%:ﬂgazgm)(y3y4y§y7y§y§).

For hook shapes A = (k, 1”_k), we show that this construction coincides with the top degree of

the n — k — 1th- Haglund basis described in [ARROT7]. We briefly recall the definition here:
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DEFINITION 5.4.7. For 1 < k < n, a permutation 7 € S,, with descent set Des(7), define

Hjii<ji<kn(@)>n()}, ifl<i<k
inv{® () := {0, ifi=k

Hi:k<j<im(y)>n()}, ifk<i<n

| Des(m) N {i, ...k — 1}, if1<i<k
d () := 0, ifi=k
| Des(m) n{k,...,i—1}|, ifk<i<n

and the kth Haglund monomial to be

n k—1 d%)

l?’L’U( ) s
cgrk) — H (m) Eyﬂz@)

i=k+1

Note since our definition of Garsia-Haiman modules V) has x,y swapped, we must switch the

variables accordingly here.

THEOREM 5.4.8. [ARRO7] The set of kth Haglund monomials

{cgrk) CTE Sn}

forms a monomial basis for the Garsia-Haiman module Vi, _j 1 151y
We show that for top y-degree, the set ﬁz()‘) generalizes the above basis.

PROPOSITION 5.4.9. Let A\ = (n — k + 1,1%71). Then, 53 k1n—k) specializes to the kth Haglund

basis at top y-degree.

Proor. By [ARRO7], it is shown that the kth Haglund monomial for 7 corresponds to the
Haglund statistics inv, maj of the corresponding (n — k + 1,1¥~1)-filling ¢ with reading word 7.
Since we are only concerned with deg(y) = (g), we must have that m > my > ... > m;. Then, the
y-monomial for cgrk) is yﬁkilyik_Q...yﬁl’l.

The z-monomials for the kth Haglund monomial simply record the number of attacking pairs

(7,7) with ¢ > j in the bottom row of o. More precisely, for j in the bottom row of o, it can be
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checked that invg.k) (m) = |{(¢,7) : ¢ > j in the bottom row of ¢}|. Then, as in 5.3.17, attacking
(k)(

pairs correspond precisely to skip inversions. Comparing the definitions of inv J m) and skipt, we

see the claim is true. O

EXAMPLE 5.4.10. Let n = 8,k = 4. Then, A = (5,1,1,1). Consider the permutation 7 =
86417352. Then, we have (mV (1), v (7)) = (3,2,1,0,0,1,1,3), and (d\ (x), ..., d" (7)) =
(3,2,1,0,0,1,1,2). Then, c7r = (z3x375)(yay2yd). The corresponding A-filling is

~[ =] =] ]

7[s]5]2]

where x3 corresponds to the inversion pairs (7,2),(3,2),(5,2), x3 correponds to (7,3), and zj

corresponds to (7,5). The corresponding element in D(41 Ly 18w = (1,4,6,8]7|3|5|2), with

labeled descent composition

(01, 05,03, 11,04, 21,02, 31)

5.5. Further Results

5.5.1. Dominance Containment of D). The sets D, satisfy a very interesting containment

property.
PROPOSITION 5.5.1. Let u, A be partitions, and < X\. Then, D, < D,.

PRrooOF. It suffices to prove for covering relations in the dominance order poset, that is,

)‘:(/’Lla-"nui"i'l?'-'aﬂj_1a'-'7uf(u))

Let a = (a1,...,an) € Dy. Then, alg,, terminates, so that we may write

alg#(a) = (a1,...,ayp), )
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with m = Aq|...|Ayy) € OSP(u). Then, e(alg,(a)) is good, and so we must have that the highest
entry in a; is greater than or equal to that of a;. Let & be the leftmost instance of the largest

element in a;, and suppose m is the corresponding index in a, a,, = k. Then, consider

7= Al A o mY] AN Al

+

and modify a;,a; accordingly to obtain a; ,a; . Then, we must have aj € Dy,+1,a; € Dy;—1, as

J

the essential sequences were not affected by this swap. This implies that

+ - /
a:\I’(al,...,ai,...,aj,...,ag(“),w)

so a€ Dy. ]

5.5.2. Generalization to A-Springer Modules R, ;. In Sean Griffin’s remarkable thesis,
the generalized coinvariant algebra R, j and the Garsia-Procesi module Ry are generalized into the
A-Springer modules, whose definition we recall here.

Let k < n, X\ a partition of k, and an integer s = ().

DEFINITION 5.5.2. [Gri21] Define the ideal I, ) s and R, ) s as follows:

In,)\,s = <$f 1< <n>+l)\
(5.6)
Rn,)\,s = Q[q"lv v 7xn]/1n,/\,s

where I is the usual Tanisaki ideal, as defined previously.

Griffin provided a monomial basis in terms of certain n, A, s-staircases, which turn out to spe-
cialize to the usual Garsia-Procesi basis of R).
In ongoing work, we study a descent-type basis that simultaneously generalizes the descent-basis

of Haglund-Rhoades-Shimozono defined in [HRS19| and our new Garsia-Procesi Basis:

CONJECTURE 5.5.3. Let A = (\1,...,A¢) be a partition of k < n, and s > \;. Define

A= (e L)
—_
n—k
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Write ¥ for the shuffle map as before,
U:Dy, x - x Dy, x[5] © x OSP(\) - D,

and define Dy, ) 5 := im(¥). Then, the set of monomials {a:b :be D, s} is a vector-space basis of

Rn,)\’,s-
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