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ABSTRACT 

 

Endocrine Modulation of large-scale brain networks — 

implications for women’s brain health 

 

by 

 

Laura A. Pritschet 

 
Since its inception, the field of neuroendocrinology has provided evidence for a tightly 

coupled relationship between the nervous and endocrine systems. In rodents and 

nonhuman primates, estrogen and progesterone’s impact on the brain is evident 

across a range of spatiotemporal scales. Yet, the influence of sex hormones on the 

structural and functional architecture of the human brain is largely unknown. The body 

of work presented in my dissertation aims to advance our understanding of the human 

brain through the lens of neuroendocrinology by examining how distinct hormonal 

transition periods shape brain morphology and function. In Study 1, I present findings 

from my keystone ‘28andMe’ precision imaging experiment, in which a participant 

underwent brain imaging and venipuncture every 24 hours over 30 consecutive days 

across a complete menstrual cycle and again, one year later, while on an oral 

hormonal contraceptive regimen. The results from this study reveal the rhythmic 

nature in which brain networks reorganize across the cycle, with transient increases 

in estradiol enhancing global efficiency of several large-scale networks. In Study 2, 

this approach was expanded by conducting the first precision imaging experiment on 

pregnancy, in which a primiparous woman underwent 26 MRI scans and venipuncture 
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beginning 3 weeks pre-conception through two years postpartum. Pronounced 

decreases in gray matter volume and cortical thickness paired with increases in white 

matter microstructure were evident across the brain, with few regions untouched by 

the transition to motherhood. Finally, in Study 3, I present findings from our Midlife 

Hormones and Cognition Study, where a highly characterized sample of 85 midlife 

women (ages 43–60) in various states of ovarian decline underwent MRI scanning 

and venipuncture to establish how endocrine aging influences whole-brain intrinsic 

network organization. Results suggest that the frequency of menopause-related 

vasomotor and neurological symptoms exacerbate network connectivity decline in 

postmenopausal women, especially among higher-order cognitive networks. 

Together, these studies provide novel insight into the spatiotemporal extent of human 

brain–hormone relationships over the lifespan, a severely understudied area in 

cognitive neuroscience with significant implications for women’s health.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xx 

TABLE OF CONTENTS 

 
Prelude ........................................................................................................................... 1 

Introduction..................................................................................................................... 5 

Functional organization of brain networks across the human menstrual 

cycle ............................................................................................................................. 17 

A. Introduction ......................................................................................................... 17 

B. Methods .............................................................................................................. 20 

C. Results ................................................................................................................ 31 

D. Discussion........................................................................................................... 44 

Neuroanatomical changes observed over the course of a human 

pregnancy ..................................................................................................................... 57 

A. Introduction ......................................................................................................... 57 

B. Methods .............................................................................................................. 59 

C. Results ................................................................................................................ 70 

D. Discussion........................................................................................................... 77 

The impact of endocrine aging on large-scale functional brain networks 

in healthy, midlife women ............................................................................................ 81 

A. Introduction ......................................................................................................... 81 

B. Methods .............................................................................................................. 85 

C. Results ................................................................................................................ 92 

D. Discussion........................................................................................................... 99 

Conclusions ................................................................................................................108 

References .................................................................................................................116 

Appendix A .................................................................................................................137 

Appendix B .................................................................................................................159 

Appendix C .................................................................................................................172 

 
 



 
 

1 

1 

Prelude 
 

Adapted from the following article: Taylor, C. M., Pritschet, L., & Jacobs, E. G. 
(2021). The scientific body of knowledge–Whose body does it serve? A spotlight on 
oral contraceptives and women’s health factors in neuroimaging. Frontiers in 
neuroendocrinology, 60, 100874. 
 

Ensuring women benefit equally in the biological sciences 

We are at an exciting scientific and technological inflection point in human history; 

we now have unprecedent insight into the human brain, with rapidly expanding 

knowledge of the metabolic, neurochemical, neurophysiological, and morphological 

basis of brain function. However, some of the most basic questions — with the 

farthest-reaching implications — remain underexplored and unanswered (Taylor, 

Pritschet, & Jacobs, 2021). Women undergo ~400 menstrual cycles throughout their 

reproductive lives, 100 million women worldwide use oral hormonal contraceptives, 

~140 million women undergo pregnancy annually, 10% of the female population 

suffer from endocrine disorders, and women spend 1/3rd of their lives in a post-

menopausal state. Each of these neuroendocrine events comes with significant 

shifts in the hormonal milieu, often tethered to brain-related changes in cognition, 

behavior, and health (Brinton et al., 2015; Schiller et al., 2016; Beltz and Mozer, 

2019). Since the mid-1990s, the number of studies leveraging brain imaging to 



 
 

2 

understand a wide range of phenomena has exploded into the tens of thousands. 

Yet, the topic of women’s brain health — despite implications for half the world’s 

population — has not kept pace in the slightest. Why is that? Where do we go from 

here? 

 

Historical overview 

Over the past half century, males have been treated as the representative sex 

as females were deemed “too variable” to be studied due to their reproductive cycle, 

failing to appreciate that sex hormones are critical neuromodulators deserving 

attention in both sexes. This decades long oversight, driven by an untested and now 

debunked presumption of greater variability (Prendergast et al., 2014), was a driving 

reason for why females were excluded from a large portion of preclinical studies in 

domains at the nexus of brain health, such as pharmacology and neuroscience 

(Beery et al., 2011). These survey projects from Annelise Beery and Brian 

Prendergast catalyzed one of the most powerful policy shifts in the health sciences. 

In 2016, Dr. Janine Clayton, Director of the NIH Office of Research on Women’s 

Health, pioneered the federal Sex as a Biological Variable (SABV) mandate 

requiring the inclusion of both sexes in taxpayer-funded preclinical research (Clayton 

and Collins, 2014). This in turn created a new standard of practice towards 

encouraging the discovery of similarities and differences between the sexes with 

hopes to shine a light on sex-specific health outcomes. The SABV mandate is 

already making tangible headway. A recent comparison of articles published in 2019 

versus 2009 among neuroscience and psychiatry journals revealed a 30% increase 

in the number of studies including both sexes in their designs (Rechlin et al., 2022).  
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However, in human neuroscience, the biases are different. Although we tend 

to recruit both sexes equally in our research designs, women are not benefitting 

equally from our scientific efforts. The advent of large neuroimaging databases has 

further advanced the field of cognitive neuroscience by providing datasets of 100s–

1000s of participants. Sex differences research has benefited from these datasets, 

with the statistical power to identify sex differences across the lifespan (Lotze et al., 

2019; Ritchie et al., 2018). While considering SABV has become increasingly 

common in human neuroimaging (Sacher et al., 2013), looking beyond sex 

differences to study women’s brain health remains uncommon (Taylor et al., 2019, 

2021). 

 

 

Identifying the blind spots in cognitive neuroscience 

 Over the last five years, I have led several survey projects to quantify the 

extent to which human brain imaging overlooks major aspects of the human 

condition specific to women (e.g., menstrual cycles, hormonal contraceptive use, 

pregnancy, menopause). First, a historical survey of neuroimaging papers published 

Figure 1.1. A spotlight on women’s health factors in brain imaging. Left | Major aspects of women’s 
lives have been overlooked in human neuroscience research over the past 25 years. Right | The 
majority of women’s brain health studies have focused on the brain’s response to the menstrual 
cycle and menopausal hormone replacement therapy.  
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from 1995–2021 revealed the persistence of this oversight across all journals. Of the 

>50,000 human neuroimaging articles published over the last 25 years, fewer than 

250 were focused on women’s health. The number of articles dedicated to 

understanding the neural impact of major neuroendocrine transition states barely 

registers on the graph — accounting for ~0.5% of total publications — even in 

comparison to a smaller sub-topic within human brain imaging (Fig 1.1).  

Zooming in, I followed this up with an in-depth exploration among all articles 

(~1,200) published in 2018 across six top brain imaging journals to investigate the 

extent to which any mention of women’s health factors was present throughout a 

given paper. I found that fewer than 3% of these articles considered anything 

pertaining to women’s health in their study design – half of which were used as 

justification to exclude women due to ‘added variability of the menstrual cycle’ (Fig 

1.2).  

Major hormonal transition periods 

are central to half the world’s population, 

yet we lack an understanding of the 

endocrine basis of human brain function. 

Moving forward, it is imperative that the 

human brain imaging community increase 

its commitment to advancing knowledge of 

the brain with a women’s health focus so 

that both sexes are benefitting equally from 

our scientific efforts.  

Figure 1.2. In 2018, only 2% of 
neuroimaging articles published in leading 
neuroscience journals mentioned women’s 
health factors. Of those, 20% merely did so 
to exclude women and justify conducting a 
male-only study. Less than 0.5% of articles 
directly studied sex hormones or a sex 
hormone–related topic. Figure adapted from 
Taylor, Pritschet, & Jacobs, 2021. 
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2 

Introduction 
 

Broad overview of sex hormone action in mammalian physiology  

The brain is a “complex temporally and spatially multiscale structure that 

gives rise to elaborate molecular, cellular, and neuronal phenomena that form the 

physical and biological basis of cognition” (Bassett & Gazzaniga, 2011). As such, 

neuroscientists have plumbed the depths of the mind and brain to extraordinary 

lengths in order to understand how 86 billion neurons work together to lay the 

foundation for the mind and drive human behavior. Yet, in doing this, we often forget 

that the brain is part of a larger, integrated biological system. Since its inception, the 

field of neuroendocrinology has provided evidence for a tightly coupled relationship 

between the nervous and endocrine systems (Galea et al., 2017; Frick, 2019), 

operating as a cohesive unit through reciprocal communication of the brain and 

periphery via neural and hormonal pathways. A central feature of the mammalian 

endocrine system is that hormone secretion varies over time (Fig. 2.1), and this 

rhythmicity is essential for sustaining many physiological processes. How does the 

brain respond to the continuous wax and wane of hormone secretion? And critically, 

what happens when these systems begin to decouple in midlife? In this dissertation, 

I present findings from three unique studies that work to answer these questions by 
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investigating endocrine modulation of large-scale brain networks across the 

menstrual cycle, over the course of pregnancy, and in response to ovarian depletion 

in menopause. The goal of this work is to demonstrate that probing the dynamic 

interplay between the nervous and endocrine systems has the potential to transform 

both our understanding of the brain and women’s health at large. 

 

Hormonal feedback systems 

A hormone is a chemical messenger synthesized in an endocrine gland, secreted 

into the circulatory system, and transported through the body via the bloodstream to 

act upon receptors and exert a specific physiological action on a target cell 

Figure 2.1. A broad schematic of sex steroid hormone fluctuations (red line) across the female 
lifespan characterized by endocrine stage and average age. Sex steroid hormones come online 
during puberty, with menarche marking the beginning of menstrual cycles that will occur every 
~25-35 days across reproductive years, barring exogenous hormone exposure or major 
endocrine disorders. Most women will experience pregnancy at least once in their lifetime, 
involving a hundred- to thousand-fold increase in sex hormones over the gestational window. 
Women then undergo a complex hormonal transition at midlife, marked by high fluctuations in 
steroid hormone production during the perimenopausal phase and culminating in ovarian 
senescence at the end of menopause — a decline of up to 90% for both estradiol and 
progesterone. Figure partially created with BioRender.com 
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(Wilkinson and Brown, 2015). Steroid hormones 

— corticosteroids and sex hormones — are 

synthesized from cholesterol in the adrenal cortex 

and gonads, respectively. In the following studies, 

I will focus exclusively on the actions of sex 

hormones in females (see Frick et al., 2018 for a 

review on both sexes). Androgens, estrogens, 

and progesterone work synergistically to 

coordinate the physiological changes that occur 

across hormonal transition periods, such as 

puberty, menstrual cycles, pregnancy, and 

menopause. Sex hormones exert influence on the 

brain via the hypothalamic-pituitary-gonadal axis 

(HPG) feedback system (Fig 2.2). Sex steroids 

are released from the gonads (female, ovaries; 

males, testes) to reduce gonadotropin-releasing 

hormone (GnRH) secretion from the 

hypothalamus and subsequent inhibition of 

gonadotropins (luteinizing hormone, LH; follicle-

stimulating hormone, FSH) from the pituitary. In 

both sexes this feedback system is predominantly 

negative to prevent overstimulation of the gonads. However, in females, these 

feedback signals become positive midway through the reproductive cycle when a 

Figure 2.2. Sex hormones exert 
influence on the brain via the 
hypothalamic-pituitary-gonadal axis 
(HPG) feedback system. 
Gonadotropin-releasing hormone 
(GnRH) is secreted from the 
hypothalamus. The anterior 
pituitary produces luteinizing 
hormone (LH) and follicle-
stimulating hormone (FSH), and the 
gonads produce sex steroid 
hormones. Adapted from 
“Hypothalamic-Pituitary-Adrenal 
Axis” by BioRender.com (2023). 
Retrieved from 
https://app.biorender.com/biorender
-templates 
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surge of estrogen leads to increased GnRH, LH, and FSH to prepare for ovulation. 

Once ovulation has occurred, the corpus luteum begins to release progesterone and 

negative feedback returns. If conception does not occur, the uterine lining is shed, 

menses occurs, and the cycle then repeats. The onset of this biological rhythm 

occurs in puberty with menarche and comes to an end with ovarian senescence in 

menopause. 

 

Mechanisms of hormone action 

Hormones are lipid soluble, allowing for diffusion through the cell membrane to bind 

to intracellular receptors in the cytoplasm or nucleus (Fig. 2.3). This hormone-

receptor complex then binds to a 

hormone response element (e.g., 

estrogen receptor element, ERE) to 

act as a transcription regulator by 

controlling the synthesis of mRNA 

molecules of specific genes to 

ultimately change that cell’s function 

(Frick and Kim, 2018). Sex hormones 

can also exert effects through rapid, 

non-classical mechanisms. Estrogen, 

for example, can interact with 

metabotropic glutamate and 

membrane-bound receptors to rapidly 

change gene expression, via 

Figure 2.3. Sex hormones act through both 
genomic and non-genomic mechanisms to 
change the function of a cell. Abbreviations: AC, 
adenyl cyclase; PKA, protein kinase A; pCREB, 
phosphorylated response element binding 
protein; mRNA, messenger RNA; CRE, cAMP-
responsive elements; cAMP, cyclic adenosine 
monophosphate Adapted from “Estrogen 
signaling in breast cancer” by BioRender.com 
(2023). Retrieved from: 
https://app.biorender.com/biorender-templates 
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“stimulation of cyclic adenosine monophosphate (cAMP) formation, protein kinase A 

(PKA) and the transcription factor phosphorylated response element binding protein 

(pCREB)” (derived from Wilkinson and Brown, 2015; see also Frick and Kim, 2018). 

Sex hormones act as regulators to ensure the brain is responding rapidly and 

appropriately across timescales of seconds to days, coordinating the signaling and 

transcriptional pathways regulating energy metabolism, neurogenesis, synaptic 

activity, and behavior (Galea et al., 2017; Frick and Kim, 2018). Advances in 

characterization techniques, such as fluorescence immunocytochemistry and in situ 

hybridization, has allowed for the tagging of cells with estrogen receptors (ER) 

alpha, beta, and the G-protein coupled GPER-1 receptor in the brain — 

predominantly in rodent and non-human primates. This has revealed an abundance 

of hormone receptor expression throughout the cerebrum and cerebellum, with 

enriched expression in extra-hypothalamic regions such as the hippocampus and 

prefrontal cortex (PFC) (Almey et al., 2015).  

In sum, estrogen and progesterone signaling are critical components of cell 

survival and plasticity, exerting excitatory and inhibitory effects that are evident 

across multiple spatial and temporal scales in the brain (Frick and Kim, 2018; Taxier 

et al., 2020). Naturally, one pressing question comes to mind: what does this mean 

for brain morphology and function? When we think about sex hormones, we typically 

associate them with classical reproductive behaviors: breastfeeding, infant cue 

responses, maternal bonding, aggression, affect, and sexual behavior. While this is 

true — sex hormones are a central facet of reproductive life — they exert effects in 

regions beyond the hypothalamus in areas that act as key hubs of information 



 
 

10 

processing for the whole brain. Below, I highlight major discoveries from the past 20 

years establishing sex hormones’ action in higher-order cognitive regions in the 

brain. 

 

Sex hormones regulate brain morphology across species 

Animal studies offer unambiguous evidence that sex steroid hormones shape 

the synaptic organization of the brain, particularly within the hippocampus and PFC ( 

Woolley and McEwen, 1993; Hara et al., 2015; Frick et al., 2015; Galea et al., 2017; 

Frick and Kim, 2018). At the epigenetic level, estradiol induces chromatin 

modifications that promote hippocampal plasticity (Fortress and Frick, 2014). At the 

synaptic level, estradiol and progesterone regulate spine proliferation in the 

hippocampus (Hara et al., 2015). Pioneering work from Catherine Woolley and 

Bruce McEwen (1992, 1993) showed that the density of dendritic spines on 

hippocampal CA1 pyramidal cells is dependent on circulating E and progesterone 

(P) levels, with dendritic spines varying by ~30% over the 4-5 day rodent estrous 

cycle. Hormone deprivation (via gonadectomy) in the rat (Gould et al., 1990; Woolley 

and McEwen, 1993) and African green monkey (Leranth et al., 2002) leads to a 

pronounced loss of spines on CA1 neurons, which is reversed by estrogen 

replacement. At the macroscopic level, total hippocampal volume is related to 

plasma estradiol levels in the meadow vole (Galea et al., 1999) and fluctuates 

across the estrous cycle in the mouse (Qiu et al., 2013). Also in mice, in-vivo 

magnetic resonance imaging (MRI) demonstrates estrous stage–related 

hippocampal volume changes are detectable within a 24-hour period (Qiu et al., 

2013). In humans, hippocampal volume has been shown to increase from the early- 
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to late-follicular phase of the menstrual cycle (Lisofsky et al., 2015; Protopopescu et 

al., 2008). Recent evidence from our team suggests that progesterone dynamically 

shapes medial temporal lobe morphology across a ~28-day menstrual cycle, with 

volumetric changes in CA2/3, parahippocampal cortex, entorhinal cortex and 

perirhinal cortex—effects that were blocked by progesterone suppression (Taylor et 

al., 2020). During pregnancy, the changes in sex hormone production throughout 

gestation modulate hippocampal plasticity in rodents (Kinsley and Lambert, 2008; 

Workman et al., 2012; Galea et al., 2014) and likely mediates the transient decline in 

hippocampal volume observed in humans post-pregnancy (Hoekzema et al., 2017). 

Finally, the abrupt hormonal changes associated with surgical menopause lead to 

structural changes in the medial temporal lobe, including thinning of the 

parahippocampus and entorhinal cortex (Zeydan et al., 2019), while estradiol 

administration in postmenopausal women increases hippocampal volume (Albert et 

al., 2017). Together, these findings provide converging cross-species evidence that 

sex hormones induce structural changes in the hippocampus across rapid and 

protracted timescales. 

Non-human primate studies have established similar relationships within the 

PFC (Hao et al., 2006; Morrison et al., 2006). In female rhesus macaques, ~50% of 

PFC pyramidal neurons express estrogen receptors (ER-β) and those with enriched 

expression show stronger working memory performance (Wang et al., 2010). At the 

synaptic level, cyclic estradiol administration in ovariectomized rhesus macaques 

leads to increased spine density in PFC neurons (Hao et al., 2006) and improved 

working memory performance relative to estradiol-depleted controls (Rapp et al., 
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2003). Sellers and colleagues (2015) found that the presence of ER-β in the 

synapses of primary cortical neurons was a requirement for rapid spinogenesis. 

Spines are the main site for excitatory glutamatergic input, especially among 

pyramidal neurons and decades of neuroendocrinology research has shown that 

spine distribution, number, and morphology fluctuate in a hormone-dependent 

manner. Taking this together, there is mounting evidence suggesting that sex 

hormones contribute to the remodeling of neuronal circuits, wielding the power to 

shape cognitive function (Frick and Kim, 2018). 

In the following chapters, I will touch upon recent neuroimaging studies 

offering additional evidence towards ovarian hormone modulation of human brain 

morphology and function. Briefly here, this literature builds upon pioneering work 

from (Berman et al., 1997) and (Shaywitz et al., 1999), who used pharmacological 

blockade and hormone replacement techniques to illustrate the influence of estradiol 

and progesterone on regional activity in memory circuitry — particularly dorsolateral 

PFC. An emerging theory, driven in part by pivotal work from Emily Jacobs, is that 

estradiol increases the efficiency of cortical circuits within the PFC. In young women 

performing a working memory task, PFC activity is exaggerated under low estradiol 

conditions and reduced under high estradiol conditions (Jacobs and D’Esposito, 

2011). The same pattern is observed decades later in life: as estradiol production 

declines over the menopausal transition, working memory–dependent PFC activity 

becomes exaggerated despite no deficit in performance (Jacobs et al., 2016; Jacobs 

and Goldstein, 2018). Thus, one principle of estradiol’s action may be that it helps 

generate efficiency in cortical circuits, particularly within PFC. An intriguing 
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possibility is that these effects are mediated through dopamine signaling and/or 

(Williams and Goldman-Rakic, 1995; Becker, 1990; Jacobs and D’Esposito, 2011; 

Almey et al., 2015;) a number of other estrogen-linked neuromodulatory pathways 

such as serotonin, norepinephrine, and acetylcholine (Amin et al., 2005; Epperson et 

al., 2012). Findings from cross-sectional and traditional longitudinal studies support 

a role for ovarian hormones in shaping the brain across the life course (McEwen, 

2018). However, new approaches with improved temporal resolution are needed to 

illuminate the time-sensitive coupling between hormone fluctuations and the brain. 

 

Novelty of this dissertation 

Scientists have routinely pushed the bounds of experimental creativity to 

tease apart the inherently complex nature of brain–hormone interactions. Traditional 

approaches to studying human brain–hormone interactions rely largely on cross-

sectional designs that, by nature, cannot capture fluctuations in sex hormone 

production. A growing trend in human neuroimaging is to flip the cross-sectional 

model, densely-sampling individuals over timescales of days, weeks, months, or 

years to provide greater insight into the dynamic properties of the human brain. 

Dense-sampling (i.e., precision imaging) extends longitudinal designs by collecting 

multiple phenotypic measurements at a higher frequency and/or duration in 

individuals over a larger number of sessions (> 10 time points). In Studies 1 and 2, I 

address a new set of methodological innovation for probing estrogen and 

progesterone action in the human brain — the application of dense-sampling to 

reveal endocrine modulation of the human brain.  
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In cognitive neuroscience, a classic approach for studying the brain involves 

collecting data from a number of individuals at a single time point and then group-

averaging, thus increasing the ability to generalize findings to a broader population. 

One strength of this cross-sectional approach is that it allows researchers to isolate 

how reproductive stage, over and above chronological age, shapes the brain 

(Jacobs and Goldstein, 2018). Longitudinal studies offer valuable clues about how 

the brain responds to periods of significant hormonal change, such as sampling 

women before and after major pregnancy (Hoekzema et al., 2017) or across discrete 

stages of the menopausal transition (Mosconi et al., 2018). Several studies have 

also applied this approach to the menstrual cycle, sampling women several (e.g., 2–

3) times in order to compare brain structure and function by cycle stage (Weis et al., 

2019; Pletzer et al., 2019). However, inconsistences emerge due to the inherent 

Figure 2.4.  Top | Traditional brain–hormone designs typically involve bringing women in to be 
tested 2–3 times at distinct stages of their cycle (vertical gray bars): menses, ovulatory window, 
and mid-luteal phases. These designs are good for examining brain differences with respect to 
absolute concentrations of sex hormones. However, they are unable to capture the brain’s 
response to dynamic hormonal fluctuations. Bottom | In our 28andMe study, a woman underwent 
MRI scanning every 24 hours over 30 consecutive days to capture a complete menstrual cycle.   
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limitation of applying a static sampling rate to the study of a dynamical system. Two 

to four time points remain insufficient to explore how the brain responds to transient 

changes in sex hormones, a critical feature of the endocrine system (Fig. 2.4) 

(Schmidt et al., 2017; Pritschet et al., 2020, 2021; Mueller et al., 2021). While human 

neuroimaging studies that densely sample the individual connectome have begun to 

transform our understanding of the dynamics of human brain organization (see 

Gratton and Braga, 2021 for special issue on ‘deep imaging’), they routinely omit sex 

steroid hormones as variables of interest. This approach is uniquely well-suited, 

however, to test hypotheses and build models of nervous and endocrine system 

interactions across the lifespan, capturing details of brain–hormone coupling that 

may be overlooked by traditional cross-sectional or sparse-sampling approaches 

(Pritschet et al., 2021). As such, our team recently completed a set of precision 

imaging studies that work to uncover dynamic endocrine modulation of the nervous 

system. In Study 1, I present findings from my keystone ‘28andMe’ project, in which 

a participant underwent brain imaging and venipuncture every 24 hours over 30 

consecutive days across a complete menstrual cycle and again, one year later, while 

on an oral hormonal contraceptive regimen. We then extended this approach to a 

different endocrine state, pregnancy, where the traditional method is to compare the 

brains of women pre versus post pregnancy, overlooking the neural changes that 

unfold during the gestational window. Our team conducted the first precision imaging 

study of pregnancy in which a healthy 38-year-old primiparous woman underwent 26 

MRI scans and venipuncture beginning 3 weeks pre-conception through two years 

postpartum (Study 2). These findings provide novel insight into the spatiotemporal 
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extent of brain-hormone relationships, allowing us to examine both short- and long-

term effects of sex hormones across the brain.  

Lastly, I probed the brain’s response to the decoupling of the nervous and 

endocrine systems during the midlife transition to menopause. Our current 

understanding of how female reproductive aging impacts the brain stems from 

studies identifying fairly coarse regional differences in brain activity or morphology 

as a function of women’s menopausal status. The application of network science 

techniques to the study of the brain has allowed neuroscientists to move beyond 

examining individual regions in isolation, granting us the ability to understand how 

functional networks distributed across broad swaths of cortex support cognition. In 

Study 3, I worked to fill a major gap in the literature by applying computational 

techniques to a large, highly characterized sample of midlife women (ages 43–60) to 

establish how endocrine aging influences the brain at the macroscopic scale of 

whole-brain intrinsic network organization.   

In summary, the body of work presented here aims to advance our 

understanding of the human brain through the lens of neuroendocrinology by 

examining how different hormonal transition periods shape brain morphology and 

function.   
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3 
Functional organization of brain networks 

across the human menstrual cycle 
 
Adapted from the following article: Pritschet, L.*, Santander, T.*, Taylor, C. M., 
Layher, E., Yu, S., Miller, M. B., Grafton, S.T., & Jacobs, E. G. (2020). Functional 
reorganization of brain networks across the human menstrual 
cycle. Neuroimage, 220, 117091. *Authors contributed equally to this work 
 
Authorship Contributions: The work presented in this study was highly 
collaborative. The overall study was conceived by L.P., C.M.T., and E.G.J.; L.P., 
T.S., E.L., C.M.T., S.Y., and E.G.J. performed the experiments; data analysis 
strategy was conceived by T.S. and L.P. and implemented by T.S.; L.P., T.S., and 
E.G.J. wrote the manuscript; E.L., C.M.T., S.Y., M.B.M., and S.T.G. edited the 
manuscript.  
 

 

A. Introduction 

The brain is an endocrine organ whose day-to-day function is intimately tied 

to the action of neuromodulatory hormones (Woolley and McEwen, 1993; Frick et 

al., 2015; Hara et al., 2015; Galea et al., 2017). Yet, the study of brain-hormone 

interactions in human neuroscience has often been woefully myopic in scope: the 

classical approach of interrogating the brain involves collecting data at a single time 

point from multiple subjects and averaging across individuals to provide evidence for 

a hormone-brain-behavior relationship. This cross-sectional approach obscures the 

rich, rhythmic nature of endogenous hormone production. A promising trend in 

network neuroscience is to flip the cross-sectional model by tracking small samples 



 
 

18 

of individuals over timescales of weeks, months, or years to provide insight into how 

biological, behavioral, and state-dependent factors influence intra- and inter-

individual variability in the brain’s intrinsic network organization (Poldrack et al., 

2015; Gordon et al., 2017; Gratton et al., 2018a). Neuroimaging studies that densely 

sample the individual connectome are beginning to transform our understanding of 

the dynamics of human brain organization. However, these studies commonly 

overlook sex steroid hormones as a source of variability—a surprising omission 

given that sex hormones are powerful neuromodulators that display stable circadian, 

infradian, and circannual rhythms in nearly all mammalian species. In the present 

study, we illustrate robust, time-dependent interactions between functional network 

dynamics and the sex steroid hormones 17β-estradiol and progesterone during a 

complete menstrual cycle. A within-subject replication study further confirms the 

robustness of these effects. These results offer compelling evidence that sex 

hormones modulate widespread patterns of connectivity in the human brain. 

Converging evidence from rodent  (Woolley et al., 1993; Frick et al., 2015; 

Frick et al., 2018), non-human primate (Hao et al., 2006; Wang et al., 2010), and 

human neuroimaging studies (Berman et al., 1997; Jacobs & D’Esposito, 2011; 

Petersen et al., 2014; Lisofky et al., 2015; Jacobs et al., 2016a,b)  has established 

the widespread influence of 17β-estradiol and progesterone on regions of the 

mammalian brain that support higher level cognitive functions. Estradiol and 

progesterone signaling are critical components of cell survival and plasticity, exerting 

excitatory and inhibitory effects that are evident across multiple spatial and temporal 

scales (Galea et al., 2017; Frick et al., 2018). The dense expression of estrogen and 
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progesterone receptors (ER; PR) in cortical and subcortical tissue underscores the 

widespread nature of hormone action. For example, in non-human primates, ~50% 

of pyramidal neurons in prefrontal cortex (PFC) express ER (Wang et al., 2010) and 

estradiol regulates dendritic spine proliferation in this region (Hara et al., 2015). 

Across the rodent estrous cycle (occurring every 4-5 days), fluctuations in estradiol 

enhance spinogenesis in hippocampal CA1 neurons, while progesterone inhibits this 

effect (Woolley and McEwen, 1993).  

During an average human menstrual cycle, occurring every 25-32 days, 

women experience a ~12-fold increase in estradiol and an ~800-fold increase in 

progesterone. Despite this striking change in endocrine status, we lack a complete 

understanding of how the large-scale functional architecture of the human brain 

responds to rhythmic changes in sex hormone production across the menstrual 

cycle. Much of our understanding of cycle-dependent changes in brain structure 

(Woolley et al.,1993; Sheppard et al., 2019) and function (Hampson et al., 2014; 

Warren and Juraska, 1997; Kim & Frick, 2017) comes from rodent studies, since the 

length of the human menstrual cycle (at least 5x longer than rodents’ estrous cycle) 

presents experimental hurdles that make longitudinal studies challenging. A 

common solution is to study women a few times throughout their cycle, targeting 

stages that roughly correspond to peak/trough hormone concentrations. Using this 

‘sparse-sampling’ approach, studies have examined resting-state connectivity in 

discrete stages of the cycle (Petersen et al., 2014; Hjelmervik et al., 2014; Lisofsky 

et al., 2015; De Bondt et al., 2015; Syan et al., 2017; Weis et al., 2019) however, 

some of these findings are undermined by inconsistencies in cycle staging methods, 
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lack of direct hormone assessments, or limitations in functional connectivity 

methods. 

In this dense-sampling, deep phenotyping study, we determined whether day-

to-day variation in sex hormone concentrations impacts connectivity states across 

major intrinsic brain networks. First, we assessed brain-hormone interactions over 

30-consecutive days representing a complete menstrual cycle (Study 1). To probe 

the reliability of these findings, procedures were then repeated over a second 30-day 

period, providing a within-subject controlled replication (Study 2). Results reveal that 

intrinsic functional connectivity is linearly dependent on hormonal dynamics across 

the menstrual cycle at multiple spatiotemporal scales. Estradiol and progesterone 

were associated with spatially-diffuse changes in connectivity, both at time-

synchronous and time-lagged levels of analysis, demonstrating that intrinsic 

fluctuations in sex hormones—particularly the ovulatory surge in estradiol—may 

contribute to dynamic variation in the functional network architecture of the human 

brain. We further highlight this sensitivity to estradiol in a controlled replication study. 

Together, these findings provide insight into how brain networks reorganize across 

the human menstrual cycle, suggesting that consideration of the hormonal milieu is 

critical for fully understanding the intrinsic dynamics of the human brain.  

B. Methods 

Participant 

The participant (author L.P.) was a right-handed Caucasian female, aged 23 

years for the duration of the study. The participant had no history of neuropsychiatric 
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diagnosis, endocrine disorders, or prior head trauma. She had a history of regular 

menstrual cycles (no missed periods, cycle occurring every 26-28 days) and had not 

taken hormone-based medication in the 12 months prior to the first study. The 

participant gave written informed consent and the study was approved by the 

University of California, Santa Barbara Human Subjects Committee.  

 

Study design 

The participant underwent testing for 30 consecutive days, with the first test 

session determined independently of cycle stage for maximal blindness to hormone 

status (Study 1). One year later, as part of a larger parent project, the participant 

repeated the 30-day protocol while on a hormone regimen (0.02mg ethinyl-estradiol, 

0.1mg levonorgestrel, Aubra, Afaxys Pharmaceuticals), which she began 10 months 

prior to the start of data collection (Study 2). The general procedures for both studies 

were identical (Fig. 3.1). The pharmacological regimen used in Study 2 chronically 

and selectively suppressed progesterone while leaving estradiol dynamics largely 

indistinguishable from Study 1. This provided a natural replication dataset in which to 

test the reliability of the estradiol associations observed in the first study. The 

participant began each test session with a daily questionnaire (see Behavioral 

Assessments), followed by an immersive reality spatial navigation task (not 

Figure 3.1. Timeline of data collection for the 30 experiment sessions. Endocrine and 
MRI assessments were collected at the same time each day to minimize time-of-day effects. 
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reported here). Time-locked collection of serum and whole blood started each day at 

10:00am in Study 1 and 11:00am in Study 2 (±30 min), when the participant gave a 

blood sample. Endocrine samples were collected, at minimum, after two hours of no 

food or drink consumption (excluding water). The participant refrained from 

consuming caffeinated beverages before each test session. The MRI session lasted 

one hour and consisted of structural and functional MRI sequences. 

 

Behavioral assessments 

To monitor state-dependent mood and lifestyle measures throughout the two 

studies, the following scales (adapted to reflect the past 24 hours) were 

administered each morning: Perceived Stress Scale (PSS; Cohen et al., 1983), 

Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989), State-Trait Anxiety 

Inventory for Adults (STAI; Spielberger and Vagg, 1984), and Profile of Mood States 

(POMS; Pollock et al., 1979). The participant had moderate levels of anxiety as 

determined by STAI reference ranges; however, all other measures fell within the 

‘normal’ standard range. Self-reported stress was marginally higher in Study 2 (Mdiff 

= 3.9, t(58) = 2.66, p = .046); no other differences in mood or lifestyle measures 

were observed between the two studies. Few significant relationships were observed 

between hormones and state-dependent measures following FDR-correction for 

multiple comparisons (q < .05)—and critically, none of these state-dependent factors 

were associated with estradiol (Fig. 3.2A).  Furthermore, performance on a daily 

selective attention task (Cohen et al., 2014) was stable across the experiment 
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(M=98%, SD=. 01) (Fig 3.2B). Taken together, there were no indications of 

significant shifts in behavior across the cycle.  

 

Endocrine procedures 

A licensed phlebotomist inserted a saline-lock intravenous line into the 

dominant or non-dominant hand or forearm daily to evaluate hypothalamic-pituitary-

gonadal axis hormones, including serum levels of gonadal hormones (17β-estradiol, 

progesterone and testosterone) and the pituitary gonadotropins luteinizing hormone 

(LH) and follicle stimulating hormone (FSH). One 10cc mL blood sample was 

collected in a vacutainer SST (BD Diagnostic Systems) each session. The sample 

Figure 3.2. Behavioral variation across the first 30-day experiment. A) Correlation plot showing 
relationships between mood, lifestyle measures, and sex steroid hormone concentrations. Cooler 
cells indicate negative correlations, warm cells indicate positive correlations, and white cells indicate 
no relationship. Asterisks indicate significant correlations after FDR-correction (q<.05). B) Mood and 
lifestyle measure vary across the cycle; cognitive performance (selective attention task) does not. 
‘Day 1’ indicates first day of menstruation, not first day of experiment. Abbreviations: LH, Luteinizing 
hormone; FSH, Follicle-stimulating hormone. 
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clotted at room temperature for 45 min until centrifugation (2000 × g for 10 minutes) 

and were then aliquoted into three 1 mL microtubes. Serum samples were stored at  

-20°C until assayed. Serum concentrations were determined via liquid 

chromatography-mass spectrometry (for all steroid hormones) and immunoassay 

(for all gonadotropins) at the Brigham and Women’s Hospital Research Assay Core. 

Assay sensitivities, dynamic range, and intra-assay coefficients of variation 

(respectively) were as follows: estradiol, 1 pg/mL, 1-500 pg/mL, < 5% relative 

standard deviation (RSD); progesterone, 0.05 ng/mL, 0.05-10 ng/mL, 9.33% RSD; 

testosterone, 1.0 ng/dL, 1-2000 ng/dL, <4% RSD. FSH and LH levels were 

determined via chemiluminescent assay (Beckman Coulter). The assay sensitivity, 

dynamic range, and the intra-assay coefficient of variation were as follows: FSH, 0.2 

mIU/mL, 0.2-200 mIU/mL, 3.1-4.3%; LH, 0.2 mIU/mL, 0.2-250 mIU/mL, 4.3-6.4%. 

Importantly, we note that LC-MS assessments of exogenous hormone 

concentrations (attributable to the hormone regimen itself) showed that serum 

concentrations of ethinyl estradiol were very low (M = 0.01 ng/mL; range 0.001–

0.016 ng/mL) and below 1.5 ng/mL for levonorgestrel (M = 0.91 ng/mL; range = 

0.03–1.43 ng/mL): this ensures that the brain-hormone associations reported in 

Study 2 are still due to endogenous estradiol action. 

 

MRI acquisition 

The participant underwent a daily magnetic resonance imaging scan on a 

Siemens 3T Prisma scanner equipped with a 64-channel phased-array head coil. 

First, high-resolution anatomical scans were acquired using a T1-weighted 
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magnetization prepared rapid gradient echo (MPRAGE) sequence (TR = 2500 ms, 

TE = 2.31 ms, TI = 934 ms, flip angle = 7º, 0.8 mm thickness) followed by a gradient 

echo fieldmap (TR = 758 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, flip angle = 60º). Next, 

the participant completed a 10-minute resting-state fMRI scan using a T2
*- weighted 

multiband echo-planar imaging (EPI) sequence sensitive to the blood oxygenation 

level-dependent (BOLD) contrast (72 oblique slices, TR = 720 ms, TE = 37 ms, 

voxel size = 2 mm3, flip angle = 56º, multiband factor = 8). In an effort to minimize 

motion, the head was secured with a custom, 3D-printed foam head case 

(https://caseforge.co/) (days 8-30 of Study 1 and days 1-30 of Study 2). Overall 

motion (mean framewise displacement) was negligible (Appendix A Fig. 1), with 

fewer than 130 microns of motion on average each day. Importantly, mean 

framewise displacement was not correlated with estradiol concentrations (Study 1: 

Spearman r = -0.06, p = .758; Study 2: Spearman r = -0.33, p = .071). Note that 

physiological recordings were not collected during scanning. 

 

fMRI preprocessing 

Initial preprocessing was performed using the Statistical Parametric Mapping 

12 software (SPM12, Wellcome Trust Centre for Neuroimaging, London) in Matlab. 

Functional data were realigned and unwarped to correct for head motion and 

geometric deformations due to motion and magnetic field inhomogeneities; the mean 

motion-corrected image was then coregistered to the high-resolution anatomical 

image. All scans were then registered to a subject-specific anatomical template 

created using Advanced Normalization Tools’ (ANTs) multivariate template 

https://caseforge.co/
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construction (Appendix A Fig. 2). A 4 mm full-width at half-maximum (FWHM) 

isotropic Gaussian kernel was subsequently applied to smooth the functional data. 

Further preparation for resting-state functional connectivity was implemented using 

in-house Matlab scripts. Global signal scaling (median = 1,000) was applied to 

account for fluctuations in signal intensity across space and time, and voxelwise 

timeseries were linearly detrended. Residual BOLD signal from each voxel was 

extracted after removing the effects of head motion and five physiological noise 

components (CSF + white matter signal). Motion was modeled based on the Friston-

24 approach, using a Volterra expansion of translational/rotational motion 

parameters, accounting for autoregressive and nonlinear effects of head motion on 

the BOLD signal (Friston et al., 1996). Our use of coherence allows for the 

estimation of frequency-specific covariances in spectral components below the 

range contaminated by physiological noise. Nevertheless, to ensure the robustness 

of our results, we re-analyzed the data with global signal regression included. This 

had little bearing on the overall findings. For completeness, results from the GSR-

based processing pipeline are provided in Appendix A.  

 

Functional connectivity estimation 

Functional network nodes were defined based on a 400-region cortical 

parcellation (Schaefer et al., 2018) and 15 regions from the Harvard-Oxford 

subcortical atlas (http://www.fmrib.ox.ac.uk/fsl/). For each day, a summary 

timecourse was extracted per node by taking the first eigenvariate across functional 

volumes (Friston et al., 2006). These regional timeseries were then decomposed 

http://www.fmrib.ox.ac.uk/fsl/
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into several frequency bands using a maximal overlap discrete wavelet transform. 

Low-frequency fluctuations in wavelets 3-6 (~0.01-0.17 Hz) were selected for 

subsequent connectivity analyses (Patel and Bullmore, 2016). We estimated the 

spectral association between regional timeseries using magnitude-squared 

coherence: this yielded a 415 × 415 functional association matrix each day, whose 

elements indicated the strength of functional connectivity between all pairs of nodes 

(FDR-thresholded at q < .05). Coherence offers several advantages over alternative 

methods for assessing connectivity: 1) estimation of frequency-specific covariances, 

2) simple interpretability (values are normalized to the [0,1] interval), and 3) 

robustness to temporal variability in hemodynamics between brain regions, which 

can otherwise introduce time-lag confounds to connectivity estimates via Pearson 

correlation. 

 

Statistical analysis 

First, we assessed time-synchronous variation in functional connectivity 

associated with estradiol and progesterone through a standardized regression 

analysis. Data were Z-transformed and edgewise coherence was regressed against 

hormonal timeseries to capture day-by-day variation in connectivity relative to 

hormonal fluctuations. For each model, we computed robust empirical null 

distributions of test statistics via 10,000 iterations of nonparametric permutation 

testing: under the null hypothesis of no temporal association between connectivity 

and hormones, the coherence data at each edge were randomly permuted, models 

were fit, and two-tailed p-values were obtained as the proportion of models in which 
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the absolute value of the permuted test statistics equaled or exceeded the absolute 

value of the ‘true’ test statistics. We report edges surviving a threshold of p < .001. 

We did not apply additional corrections in an effort to maximize power in our small 

sample size; Study 2 instead offers an independent validation of the observed 

whole-brain effects. 

Next, we sought to capture linear dependencies between hormones and 

network connectivity directed in time using vector autoregressive (VAR) models. 

Here we chose to focus exclusively on estradiol for two reasons: 1) the highly-

bimodal time-course of progesterone over a natural cycle confers a considerably 

longer autocorrelative structure, requiring many more free parameters (i.e. higher-

order models, ultimately affording fewer degrees of freedom); and 2) progesterone 

lacks an appreciable pattern of periodicity in its autocovariance with network 

timeseries, suggesting less relevance for time-lagged analysis over a single cycle. In 

contrast, estradiol has a much smoother time-course that is well-suited for temporal 

evolution models such as VAR. 

In short, VAR solves a simultaneous system of equations that fits current 

states of the brain and estradiol from the previous states of each (see Eq. (1)). For 

consistency, we considered only second-order VAR models, given a fairly reliable 

first zero-crossing of brain/hormone autocovariance functions at lag two (this was 

based on common criteria noted in other instances of time-delayed models; Boker et 

al., 2014). Fit parameters for each VAR therefore reflect the following general form:  

 

𝐵𝑟𝑎𝑖𝑛𝑡 = 𝑏1,0 + 𝑏1,1𝐵𝑟𝑎𝑖𝑛𝑡−1 + 𝑏1,2𝐸𝑠𝑡𝑟𝑎𝑑𝑖𝑜𝑙𝑡−1 + 𝑏1,3𝐵𝑟𝑎𝑖𝑛𝑡−2 + 𝑏1,4𝐸𝑠𝑡𝑟𝑎𝑑𝑖𝑜𝑙𝑡−2 + 𝜖1,𝑡 

𝐸𝑠𝑡𝑟𝑎𝑑𝑖𝑜𝑙𝑡 = 𝑏2,0 + 𝑏2,1𝐵𝑟𝑎𝑖𝑛𝑡−1 + 𝑏2,2𝐸𝑠𝑡𝑟𝑎𝑑𝑖𝑜𝑙𝑡−1 + 𝑏2,3𝐵𝑟𝑎𝑖𝑛𝑡−2 + 𝑏2,4𝐸𝑠𝑡𝑟𝑎𝑑𝑖𝑜𝑙𝑡−2 + 𝜖2,𝑡     (1) 
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where error terms, ϵi,t, are assumed to be uncorrelated and normally-distributed. 

Given that the design matrix is identical for each outcome measure, they can be 

combined in matrix form, and a least-squares solution to the system of equations 

can be obtained via maximum likelihood. 

With respect to brain states, we modeled both edgewise coherence and 

factors related to macroscale network topologies. Specifically, we computed 

measures of between-network integration (the participation coefficient; i.e. the 

average extent to which network nodes are communicating with other networks over 

time) and within-network integration (global efficiency, quantifying the ostensible 

ease of information transfer across nodes inside a given network). These were 

derived using the relevant functions for weighted graphs in the Brain Connectivity 

toolbox (Rubinov and Sporns, 2010). Estimation of participation coefficients took the 

full (415 x 415) FDR-thresholded coherence matrices along with a vector of network 

IDs, quantifying the extent to which each node was connected to other nodes 

outside of its own network; summary, mean participation coefficients were then 

obtained for each network across its constituent nodes. For global efficiencies, the 

415 x 415 matrices were subdivided into smaller network-specific matrices as 

defined by our parcellation, yielding estimates of integration only among within-

network nodes. Ultimately, regardless of brain measure, each VAR was estimated 

similarly to the time-synchronous analyses described above: data were Z-scored, 

models were fit, and model-level stats (test-statistics, R2, and RMSE) were 

empirically-thresholded against 10,000 iterations of nonparametric permutation 

testing. Here, however, both brain and hormonal data were permuted under the null 
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hypothesis of temporal stochasticity (i.e. no autoregressive trends and no time-

lagged dependencies between variables). As before, we did not apply additional 

corrections and offer Study 2 as an independent validation set. 

 Finally, for each set of edgewise models (time-synchronous and time-lagged), 

we attempted to disentangle both the general direction of hormone-related 

associations and whether certain networks were more or less sensitive to hormonal 

fluctuations. Toward that end, we took the thresholded statistical parametric maps 

for each model (where edges are test statistics quantifying the magnitude of 

association between coherence and hormonal timeseries) and estimated nodal 

association strengths per graph theory’s treatment of signed, weighted networks. 

That is, positive and negative association strengths were computed independently 

for each of the 415 nodes by summing the suprathreshold positive/negative edges 

linked to them. We then simply assessed mean association strengths ( 95% 

confidence intervals) in each direction across the various networks in our 

parcellation.  

Here, networks were defined by grouping the subnetworks of the 17-network 

Schaefer parcellation, such that (for example), the A, B, and C components of the 

Default Mode Network were treated as one network. We chose this due to the 

presence of a unique Temporal Parietal Network in the 17-network partition, which is 

otherwise subsumed by several other networks (Default Mode, Salience/Ventral 

Attention, and SomatoMotor) in the 7-network partition. The subcortical nodes of the 

Harvard-Oxford atlas were also treated as their own network, yielding a total of nine 
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networks. These definitions were thus used for computation of participation 

coefficients and global efficiencies in network-level VAR models. 

C. Results 

Endocrine Assessments 

Analysis of daily sex hormone (by liquid-chromatography mass-spectrometry; LC-

MS) and gonadotropin (by chemiluminescent immunoassay) concentrations from 

Study 1 confirmed the expected rhythmic changes of a typical menstrual cycle, with 

a total cycle length of 27 days. Serum levels of estradiol and progesterone were 

lowest during menses (day 1-4) and peaked in late follicular (estradiol) and late 

luteal (progesterone) phases (Fig. 3.3; Table 3.1). Progesterone concentrations 

surpassed 5 ng/mL in the luteal phase, signaling an ovulatory cycle (Ecochard et al., 

2015). In Study 2, the participant was placed on a pharmacological regimen (0.02 

Figure 3.3. Participant’s hormone concentrations plotted by day of cycle (Study 1). 17β-estradiol, 
progesterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) concentrations fell 
within standard ranges. 
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mg ethinyl-estradiol, 0.1 mg levonorgestrel) that chronically and selectively 

suppressed circulating progesterone, while leaving endogenous estradiol 

concentrations largely untouched. Estradiol dynamics in Study 2 (M = 66.2 pg/mL, 

range: 5–246 pg/mL) were highly similar to Study 1 (M = 82.8 pg/mL, range: 22–264 

pg/mL; t(58)= -1.01, p = .32), offering us a second dataset in which to test the 

reliability of estradiol’s influence on intrinsic brain networks. 

 

Time-synchronous associations between sex hormones and whole-brain functional 

connectivity 

Inspection of day-to-day similarity in whole-brain patterns of coherence (via 

pairwise Pearson correlation) revealed moderate-to-high levels of reliability between 

different stages of the cycle. Notably, however, one session in Study 1 (day 26) was 

markedly dissimilar to the other sessions. Removal of this day from the analysis 

below did not impact the results (Appendix A Fig. 4).  
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To further explore cycle-dependent variability, we tested the hypothesis that 

whole-brain functional connectivity at rest is associated with intrinsic fluctuations in 

estradiol and progesterone in a time-synchronous (i.e. day-by-day) fashion. Based 

on the enriched expression of ER in frontal cortex (Wang et al., 2010), we predicted 

Figure 3.4. Whole-brain functional connectivity at rest is associated with intrinsic fluctuations in 
estradiol and progesterone (Study 1) (A) Time-synchronous (i.e. day-by-day) associations between 
estradiol and coherence. Hotter colors indicate increased coherence with higher concentrations of 
estradiol; cool colors indicate the reverse. Results are empirically-thresholded via 10,000 iterations 
of nonparametric permutation testing (p < .001). Nodes without significant edges are omitted for 
clarity. (B) Time-synchronous associations between progesterone and coherence. (C) Cortical 
parcellations were defined by the 400-node Schaefer atlas (shown here). An additional 15 
subcortical nodes were defined from the Harvard-Oxford atlas. (D) Mean nodal association 
strengths by network and hormone. Error bars give 95% confidence intervals. ‘Positive’ refers to the 
average magnitude of positive associations (e.g. stronger coherence with higher estradiol); 
‘Negative’ refers to the average magnitude of inverse associations (e.g. weaker coherence with 
higher estradiol). Abbreviations: DMN, Default Mode Network; DorsAttn, Dorsal Attention Network; 
SalVentAttn, Salience/Ventral Attention Network; SomMot, SomatoMotor Network; TempPar, 
Temporal Parietal Network. 
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that the Default Mode, Frontoparietal Control, and Dorsal Attention Networks would 

be most sensitive to hormone fluctuations across the cycle.  

In Study 1, we observed robust increases in coherence as a function of 

increasing estradiol across the brain (Fig. 3.4A). When summarizing the average 

magnitude of association per network (as defined by our parcellation; Fig. 3.4C), 

components of the Temporal Parietal Network had the strongest positive 

associations with estradiol on average, as well as the most variance (Fig. 3.4D). 

With the exception of Subcortical nodes, all networks demonstrated some level of 

significantly positive association strength on average (95% CIs not intersecting 

zero). We observed a paucity of edges showing inverse associations (connectivity 

decreasing while estradiol increased), with no networks demonstrating significantly 

negative association strengths on average (Fig. 3.4D). These findings suggest that 

edgewise functional connectivity is primarily characterized by increased coupling as 

estradiol rises over the course of the cycle.  

 Progesterone, by contrast, yielded a widespread pattern of inverse 

association across the brain, such that connectivity decreased as progesterone rose 

(Fig. 3.4B). Most networks (with the exception of the Salience / Ventral Attention 

and SomatoMotor Networks) still yielded some degree of significantly positive 

association over time; however, the general strength of negative associations was 

larger in magnitude and significantly nonzero across all networks (Fig. 3.4D). 

Together, the direction of these observed relationships offers a macroscale 

analogue to cellular-level animal models of estradiol and progesterone function, 

consistent with proliferative (increased connectivity) and reductive (decreased 
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connectivity) effects, respectively. Re-analysis with global signal regression included 

during preprocessing yielded a similar pattern of results (Appendix A Fig. 5), 

suggesting that the relationships observed in Study 1 are not due to arbitrary 

changes in global signal over time (e.g., due to physiological variability over the 

cycle). 

 Given the predominantly positive associations between connectivity and 

estradiol, we further assessed the dependence of these effects on the estradiol 

surge that occurs during ovulation. Removal of the ovulation window erased 

significant associations across the brain almost entirely (Appendix A Fig. 6A), 

indicating that the hallmark rise of estradiol during ovulation may be a key modulator 

of functional coupling over a reproductive cycle. We then tested the reliability of 

these associations when estradiol fluctuations were unopposed by progesterone 

(Study 2): this revealed similarly ubiquitous increases in connectivity coincident with 

estradiol fluctuations (Appendix A Fig. 7). As before, removal of the three highest 

estradiol days during the mid-cycle peak (akin to the ovulatory window from Study 1) 

greatly reduced whole-brain associations (Appendix A Fig. 6B). Thus, whole-brain 

functional connectivity appears highly sensitive to estradiol regardless of 

reproductive status. 

 

Time-lagged associations between estradiol and whole-brain functional connectivity 

 We then employed time-lagged methods from dynamical systems analysis to 

further elucidate the degree to which intrinsic functional connectivity is sensitive to 

fluctuations in estradiol: specifically, vector autoregression (VAR), which supports 
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more directed temporal inference than standard regression models. As described 

previously, we report results from second-order VAR models: thus, in order to 

assess connectivity or hormonal states on a given day of the experiment, we 

consider their values on both the previous day (hereafter referred to as ‘lag 1’) and 

two days prior (hereafter referred to as ‘lag 2’). Ultimately, if brain variance over time 

is attributable to previous states of estradiol, this suggests that temporal dynamics in 

connectivity may be driven (in part) by fluctuations in this hormone.  

Figure 3.5. Whole-brain functional connectivity is linearly dependent on previous states of estradiol 
(Study 1). (A) Time-lagged associations between coherence and estradiol at lag 1 (left) and lag 2 
(right), derived from edgewise vector autoregression models. Hotter colors indicate a predicted 
increase in coherence given previous concentrations of estradiol; cool colors indicate the reverse. 
Results are empirically-thresholded via 10,000 iterations of nonparametric permutation testing (p 
< .001). Nodes without significant edges are omitted for clarity. (B) Mean nodal association 
strengths by network and time lag. Error bars give 95% confidence intervals. ‘Positive’ refers to the 
average magnitude of positive associations (stronger coherence when prior states of estradiol were 
high); ‘Negative’ refers to the average magnitude of inverse associations (weaker coherence when 
prior states of estradiol were high). 
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When assessing edgewise connectivity states, a powerful disparity emerged 

between the brain’s autoregressive effects and the effects of estradiol in Study 1. 

We observed vast, whole-brain associations with prior hormonal states, both at lag 1 

and lag 2 (Fig. 3.5A). Perhaps most immediately striking, the sign of these brain-

hormone associations inverts between lags, such that it is predominantly positive at 

lag 1 and predominantly negative at lag 2—this holds for all networks when 

considering their nodal association strengths (Fig. 3.5B). We interpret this as a 

potential regulatory dance between brain states and hormones over the course of 

the cycle, with estradiol perhaps playing a role in maintaining both steady states 

(when estradiol is low) and transiently-high dynamics (when estradiol rises). No such 

pattern emerged in the brain’s autoregressive effects, with sparse, low-magnitude, 

and predominantly negative associations at lag 1 and lag 2 (Appendix A Fig. 8). 

The observed associations between estradiol and edgewise connectivity were 

partially unidirectional. Previous states of coherence were associated with estradiol 

across a number of edges, intersecting all brain networks. This emerged at both lag 

1 and lag 2; however, unlike the lagged effects of estradiol on coherence, 

association strengths were predominantly negative and low-magnitude (on average) 

at both lags (Appendix A Fig. 9). Moreover—and importantly—none of the edges 

that informed the temporal evolution of estradiol were also significantly preceded by 

estradiol at either lag (i.e., there was no evidence of mutual modulation at any 

network edge). 

 We again tested the reliability of these effects in the replication sample. The 

autoregressive trends in edgewise coherence remained sparse and low-magnitude 
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on average; however, unlike the original sample, nearly all networks demonstrated 

significantly positive associations at lag 1, and lag 2 was dominated by negative 

associations (Appendix A Fig. 10). Previous states of coherence also informed 

changes in estradiol over time, but this, too, differed from the original sample at the 

network level. While coherence at lag 1 was generally associated with decreases in 

estradiol across most networks, several networks (including the Control, Default 

Mode, and Dorsal Attention Networks) were associated with increases on average at 

lag 2 (Appendix A Fig. 11). Finally, and importantly, we observed highly robust 

associations between lagged states of estradiol and coherence, with widespread 

positive associations at lag 1 and predominantly negative associations at lag 2 

(Appendix A Fig. 12). Curiously, in contrast to the naturally-cycling data, ‘non-

cognitive’ networks such as the SomatoMotor and Visual Networks demonstrated by 

far the strongest-magnitude associations on average—particularly at lag 1. It is 

possible that estradiol’s effects are magnified when unopposed by the inhibitory 

nature of progesterone, a topic to be addressed in future investigations. 

 

Time-lagged associations between estradiol and functional network 

topologies 

 Given the findings above, we applied the same time-lagged framework to 

topological states of brain networks in order to better capture the directionality and 

extent of brain-hormone interactions at the mesoscopic level. These states were 

quantified using common graph theory metrics: namely, the participation coefficient 

(an estimate of between-network integration) and global efficiency (an estimate of 
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within-network integration). We focus on significant network-level effects below, but 

a full documentation of our findings is available in the Appendix A.  

 

Estradiol and between-network participation 

As expected, estradiol demonstrated significant autoregressive trends across 

all models in Study 1. However, between-network integration was only tenuously 

associated with previous states of estradiol: in several intrinsic networks, overall 

model fit (variance accounted for, R2, and root mean-squared error, RMSE) was at 

best marginal compared to empirical null distributions of these statistics, and we 

therefore urge caution in interpreting these results. For example, in the Dorsal 

Attention Network (DAN; Fig. 3.6A-B; Table 3.2), estradiol was significantly 

associated with between-network participation both at lag 1 (b = -0.56, SE = 0.25, t = 

-2.27, p = .035) and at lag 2 (b = 0.53, SE = 0.24, t = 2.16, p = .042). Overall fit for 

Figure 3.6. Dorsal Attention Network topology is driven by previous states of estradiol (Study 
1). Observed data (solid lines) vs. VAR model fits (dotted lines) for between network participation 
(B, middle) and within-network efficiency (C, right) in the Dorsal Attention Network (A, left). 
Timeseries for each network statistic are depicted above in (B,C) and estradiol for each VAR is 
plotted below. Data are in standardized units and begin at experiment day three, given the 
second-order VAR (lag of two days). 
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DAN participation, however, rested at the classical frequentist threshold for 

significance relative to empirical nulls (R2 = 0.32, p = .049; RMSE = 0.79, p = .050). 

We observed a similar pattern of results for the Default Mode Network (DMN) and 

Limbic Network, where lagged states of estradiol were significantly associated with 

cross-network participation, but model fit as a whole was low (see Appendix A 

Table 1).  

 

Importantly, we failed to replicate these effects in Study 2 under hormonal 

suppression (Appendix A Table 2). The autoregressive trends in estradiol were 

generally blunted, with lag 2 now offering no predictive value. Previous states of 

DAN participation also informed the temporal evolution of estradiol (whereas there 

was no reciprocity in lagged effects in Study 1); however, this only emerged at lag 1 

(b = -0.09, SE = 0.04, t = -2.08, p = .044). The Limbic and Subcortical Networks 

additionally demonstrated significant autoregressive trends at lag 1, but neither 

showed significant associations with estradiol. In sum, the marginal model fits, along 
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with failures to replicate in Study 2, requires further investigation in future work 

before robust conclusions can be drawn for between-network participation. 

 

Estradiol and global efficiency 

 In contrast to between-network integration, estradiol was more strongly 

associated with within-network integration, both in terms of lagged parameter 

estimates and overall fit. Here, the Default Mode Network provided the best-fitting 

model in Study 1 (R2 = 0.50, p = .003; RMSE = 0.70, p = .022; Fig. 3.7A-B). As 

before, estradiol demonstrated significant autoregressive effects at lag 1 (b = 1.15, 

SE = 0.19, t = 6.15, p < .0001) and lag 2 (b = -0.48, SE = 0.19, t = -2.50, p = .012). 

When assessing dynamics in DMN efficiency, previous states of estradiol remained 

significant both at lag 1 (b = 0.98, SE = 0.23, t = 3.37, p = .0003) and at lag 2 (b = -

0.93, SE = 0.23, t = -4.00, p = .002). Critically, these effects were purely directional: 

prior states of Default Mode efficiency were not associated with estradiol, nor did 

Figure 3.7. Default Mode 
Network topology is driven 
by previous states of 
estradiol (Study 
1). Observed data (solid 
lines) vs. VAR model fits 
(dotted lines) for within-
network efficiency (B, 
right) in the Default Mode 
Network (A, left). The 
efficiency timeseries is 
depicted above in (B) and 
estradiol is plotted below. 
Data are in standardized 
units and begin at 
experiment day three, 
given the second-order 
VAR (lag of two days). 
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they have significant autoregressive effects, suggesting that variance in topological 

network states (perhaps within-network integration, in particular) is primarily 

accounted for by estradiol—not the other way around (Table 3.3). 

 

We observed a similar pattern of results in the Dorsal Attention Network (R2 = 

0.37, p = .022; RMSE = 0.77, p = .023; Fig. 3.6C, Table 3.3). Estradiol again 

demonstrated significant autoregressive trends at lag 1 (b = 1.17, SE = 0.19, t = 

6.30, p < .0001) and lag 2 (b = -0.48, SE = 0.19, t = -2.49, p = .011), as well as 

significant lagged associations with DAN efficiency both at lag 1 (b = 0.84, SE = 

0.25, t = 3.35, p = .002) and at lag 2 (b = -0.67, SE = 0.26, t = -2.57, p = .017). As 
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before, Dorsal Attention efficiency had no significant effects on estradiol, nor were 

there significant autoregressive effects of the network on itself. 

 

  The Control and Temporal Parietal networks also yielded partial support for time-

dependent modulation of efficiency by estradiol (Control R2 = 0.34, p = .039; 

Temporal Parietal R2 = 0.36, p = .026). The time-lagged effects of estradiol followed 

the trends observed above; however, the overall model fit (with respect to prediction 

error) was not significantly better than their empirical nulls (Control RMSE = 0.83, p 

= .133; Temporal Parietal RMSE = 0.79, p = .057). Estradiol did not explain a 

significant proportion of variance in efficiency for any other networks in Study 1 

(Appendix A Table 3).   

 In contrast to between-network participation, within-network efficiency yielded 

stronger evidence for replication in Study 2. The DMN again demonstrated the 

strongest model fit (R2 = 0.38, p = .019; RMSE = 0.74, p = .011), with estradiol 

informing fluctuations in DMN efficiency both at lag 1 (b = 2.48, SE = 0.75, t = 3.29, 

p = .003) and lag 2 (b = -2.69, SE = 0.91, t = -2.94, p = .009). We also observed a 

significant autoregressive effect of DMN efficiency at lag 2 (b = -0.45, SE = 0.19, t = 

-2.41, p = .027), but not at lag 1. In the DAN, significant model fit was achieved with 

respect to prediction error (RMSE = 0.79, p = .045), but variance accounted for was 

marginal relative to empirical nulls (R2 = 0.32, p = .052). Accordingly, estradiol was 

significantly associated with DAN efficiency at lag 1 (b = 1.88, SE = 0.79, t = 2.37, p 

= .026) but not at lag 2. Finally, previous states of estradiol (both lags 1 and 2) 

significantly informed efficiency in the Control, Salience / Ventral Attention, 
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SomatoMotor, and Subcortical Networks; however, aside from the SomatoMotor 

Network (R2 = 0.34, p = .039; RMSE = 0.76, p = .018), overall fit in these models 

was nonsignificant (Appendix A Table 4). Thus, while we observed trends largely 

consistent with Study 1 (with respect to DMN and DAN efficiency), there may be 

additional network-level effects in a neuroendocrine system unopposed by 

progesterone, warranting future investigation. 

D. Discussion 

In this dense-sampling, deep-phenotyping project, a naturally-cycling female 

underwent resting state fMRI and venipuncture for 30 consecutive days, capturing 

the dynamic endocrine changes that unfold over the course of a complete menstrual 

cycle. Time-synchronous analyses illustrate estradiol’s widespread associations with 

cortical network dynamics, spanning all but one of the networks in our parcellation. 

Time-lagged vector autoregressive models tested the temporal directionality of these 

effects, suggesting that intrinsic network dynamics may be partially driven by recent 

states of estradiol, particularly with respect to within-network connectivity: global 

efficiency in the Default Mode and Dorsal Attention Networks exhibited the strongest 

associations with fluctuations in estradiol, replicated between Studies 1 and 2. In 

contrast to estradiol’s proliferative effects, progesterone was primarily associated 

with reduced coherence across the whole brain. Findings from a replication dataset 

further establish estradiol’s impact on large-scale cortical dynamics. Critically, 

removal of high estradiol days in both studies reduced associations across the brain, 

suggesting that the hallmark rise and fall of estradiol surrounding the ovulatory 
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window may be a key modulator of functional coupling during the reproductive cycle 

(Appendix A Fig. 6). Together, these results reveal the rhythmic nature in which 

brain networks reorganize across the human menstrual cycle. 

The network neuroscience community has begun to probe functional 

networks over the timescale of weeks, months, and years to understand the extent 

to which brain networks vary between individuals or within an individual over time 

(Poldrack et al., 2015; Finn et al., 2015; Gordon et al., 2017; Betzel et al., 2017; 

Horien et al., 2019; Seitzman et al. 2019). These studies indicate that functional 

networks are dominated by common organizational principles and stable individual 

features, especially in frontoparietal control regions (Finn et al., 2015; Gordon et al., 

2017; Gratton et al., 2018a; Horien et al., 2019). An overlooked feature of these 

regions is that they are populated with estrogen and progesterone receptors and are 

exquisitely sensitive to major changes in sex hormone concentrations (Berman et 

al., 1997; Jacobs and D’Esposito, 2011; Hampson and Morley, 2013; Shanmugan 

and Epperson, 2014; Jacobs et al., 2016a,b). Our findings demonstrate significant 

effects of estradiol on functional network nodes belonging to the DMN, DAN, and 

FCN that overlap with ER-rich regions of the brain, including medial/dorsal PFC 

(Wang et al., 2010; Yeo et al., 2011). This study merges the network neuroscience 

and endocrinology disciplines by demonstrating that higher-order processing 

systems are modulated by day-to-day changes in sex hormones over the timescale 

of one month.  

 

Sex hormones regulate brain organization across species 
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Animal studies offer unambiguous evidence that sex steroid hormones shape 

the synaptic organization of the brain, particularly in regions that support higher 

order cognitive functions (Woolley and McEwen, 1993; Frick et al., 2015; Hara et al., 

2015; Galea et al., 2017; Frick et al., 2018). In rodents, estradiol increases fast-

spiking interneuron excitability in deep cortical layers (Clemens et al., 2019). In 

nonhuman primates, whose reproductive cycle length is similar to humans, estradiol 

increases the number of synapses in PFC (Hara et al., 2015). Recently, this body of 

work has begun to uncover the functional significance of sinusoidal changes in 

estradiol. For example, estradiol’s ability to promote PFC spinogenesis in 

ovariectomized animals occurs only if the hormone add-back regimen mirrors the 

cyclic pattern of estradiol release typical of the macaque menstrual cycle (Hao et al., 

2006; Ohm et al., 2012). Pairing estradiol with cyclic administration of progesterone 

blunts this increase in spine density (Ohm et al., 2012). In the hippocampus, 

progesterone has a similar inhibitory effect on dendritic spines, blocking the 

proliferative effects of estradiol 6 hours after administration (Woolley and McEwen, 

1993). Together, the preclinical literature suggests that progesterone antagonizes 

the largely proliferative effects of estradiol (for review, see Brinton et al., 2008). We 

observed a similar relationship, albeit at a different spatiotemporal resolution, with 

estradiol demonstrating positive associations with coherence across numerous 

cortical networks and progesterone having an opposite, negative association on 

average. In sum, animal studies have identified estradiol’s influence on regional 

brain organization at the microscopic scale. Here, we show that estradiol and 

progesterone may have analogous effects evident at the mesoscopic scale of whole-
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brain connectivity, measured by spectral coherence and macroscopic features of 

network topology. 

Resting state network characteristics differ by cycle stage 

Group-based and sparser-sampling neuroimaging studies provide further 

support that cycle stage and sex hormones impact resting state networks (Petersen 

et al., 2014; Lisofsky et al., 2015; De Bondt et al., 2015; Syan et al., 2017; Weis et 

al., 2019). For instance, Petersen and colleagues (2014) demonstrated that women 

sampled in the follicular stage had greater connectivity within default mode and 

execute control networks compared to those sampled in the luteal stage. Lisofsky 

and colleagues (2015) studied women four times across their menstrual cycles, 

observing significant increases in connectivity between the hippocampus and 

superior parietal lobule during the late follicular phase. However, recent work by 

Weis and colleagues (2019) provides compelling yet contrasting evidence for sex 

hormones’ relationship with resting-state functional connectivity: studying women 

three times across the cycle, their group observed heightened connectivity between 

a region of the left frontal cortex and the DMN during menstruation when estradiol 

levels are lowest. Inconsistencies between studies could be due to a number of 

factors such as differences in cycle staging methods, divergent functional 

connectivity estimation methods, or unaccounted for intra/inter-individual variability 

(Beltz and Moser, 2019). Our results suggest that failure to properly capture the 

complete ovulatory window, when estradiol levels rapidly rise, could lead to skewed 

estimates of stability within functional brain networks across the menstrual cycle 

(Hjelmervik et al., 2014). As such, dense-sampling studies provide a novel solution 



 
 

48 

to capturing pivotal moments experienced across a complete human menstrual 

cycle. Arélin and colleagues (2015) sampled an individual every 2-3 days across 

four cycles and found that progesterone was associated with increased connectivity 

between the hippocampus, dorsolateral PFC and sensorimotor cortex, providing 

compelling evidence that inter-regional connectivity varies over the cycle. This 

particular dense-sampling approach allowed the authors to examine brain-hormone 

relationships while accounting for intra-individual cycle variation.  

Estradiol is capable of inducing rapid, non-genomic effects and slower, 

genomic effects on the central nervous system. For example, spine density on 

hippocampal neurons varies by ~30% over the rodent estrous cycle. In-vivo MRI 

evidence in mice demonstrates that these hormone-mediated changes can occur 

rapidly, with differences detectable within a 24-hour period. To capture time-

synchronous (rapid) and time-lagged (delayed) effects of sex steroid hormones, we 

expanded upon Arélin and colleagues’ approach by sampling an individual every 24 

hours for 30 consecutive days. Our results illuminate how time-synchronous 

correlations and time-lagged computational approaches reveal unique aspects of 

where and how hormones exert their effect on the brain’s intrinsic networks. Time-

synchronous analyses illustrated contemporaneous, zero-lag associations between 

estradiol, progesterone, and whole-brain connectivity. The introduction of lagged 

states in VAR allowed us to examine the temporal directionality of those 

relationships and suggest that recent fluctuations in estradiol (within two days) 

inform current brain states—this raises the interesting possibility that estradiol may 
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play a partial role in driving changes in connectivity, particularly in the DMN and 

DAN.   

 

Neurobiological interpretations of hormonal effects and future studies 

The following considerations could enhance the interpretation of these data. 

First, our investigation deeply sampled a single woman, limiting our ability to 

generalize these findings to other individuals. To enrich our understanding of the 

relationship between sex hormones and brain function, this dense-sampling 

approach should be extended to a diverse sample of women. Doing so will allow us 

to examine the consistency of our results with respect to inter-individual differences 

in network organization over the menstrual cycle. Additionally, examining network 

organization during a state of complete hormone suppression would serve as a 

valuable comparison given that certain oral hormonal contraceptives suppress the 

production of both ovarian hormones. If dynamic changes in estradiol are facilitating 

increases in resting-state connectivity, we expect hormonally-suppressed individuals 

to show less dynamic modulation of functional brain networks over time. Given the 

widespread use of oral hormonal contraceptives (100 million users worldwide), it is 

critical to determine whether sweeping changes to an individual’s endocrine state 

impacts brain states and whether this, in turn, has any bearing on cognition. 

Second, in freely-cycling individuals, sex hormones function as proportionally-

coupled nonlinear oscillators (Boker et al., 2014). Within-person cycle variability is 

almost as large as between-person cycle variability, which hints that there are highly 

complex hormonal interactions within this regulatory system (Fehring et al., 2006; 
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Boker et al., 2014). The VAR models we have explored reveal linear dependencies 

between brain states and hormones, but other methods (e.g., coupled latent 

differential equations) may offer more biophysical validity (Boker et al., 2014). 

However, the current sample size precludes robust estimation of such a model.  

Third, while permutation tests have been used as empirical null models for 

VAR (Hyvärinen et al., 2010) and its statistical relatives (e.g. Granger causality; 

Barnett & Seth, 2014), the practice of temporally-scrambling a timeseries will 

drastically alter its autocorrelative structure and potentially skew observed 

dependencies over time. Phase-shifting, surrogate data tests such as the amplitude 

adjusted Fourier transform (AAFT) may offer more robust null distributions. 

However, AAFT also makes strong distributional assumptions about the original 

timeseries (Gaussian normality) that, unfortunately, are not met by these data. 

Additionally, the small sample size over a single cycle precludes the ability to derive 

robust surrogate realizations of the timeseries. While AAFT is arguably an ideal 

procedure for analyses such as those reported here, these data simply cannot meet 

the assumptions required for valid surrogate testing and thus is a major limitation 

within the current study. Future investigations involving larger samples of women 

over several cycles that allow implementation of such models will be critical.  

Fourth, while coherence is theoretically robust to timing differences in the 

hemodynamic response function, hormones can affect the vascular system (Krause 

et al., 2006). Therefore, changes in coherence may be due to vascular artifacts that 

affect the hemodynamic response in fMRI, rather than being neurally-relevant. 

Future investigations exploring the assumptions of hemodynamics in relation to sex 
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steroid hormone concentrations will add clarity as to how the vascular system’s 

response to hormones might influence large-scale brain function.  

Fifth, these findings contribute to an emerging body of work on estradiol’s 

ability to enhance the efficiency of PFC-based cortical circuits. In cycling women 

performing a working memory task, PFC activity is exaggerated under low estradiol 

conditions and reduced under high estradiol conditions (Jacobs and D’Esposito, 

2011). The same pattern is observed decades later in life: as estradiol production 

decreases over the menopausal transition, working memory-related PFC activity 

becomes more exaggerated, despite no difference in working memory performance 

(Jacobs et al., 2016a). Here, we show that day-to-day changes in estradiol enhance 

the global efficiency of functional networks, with pronounced effects in networks 

(DMN and FCN) that encompass major regions of the PFC (Yeo et al., 2011; 

Schaefer et al., 2018).  Together, these findings suggest that estradiol generates a 

neurally efficient PFC response at rest and while engaging in a cognitive task. 

Estradiol’s action may occur by enhancing dopamine synthesis and release (Creutz 

and Kritzer, 2002). The PFC is innervated by midbrain dopaminergic neurons that 

form the mesocortical dopamine track (Kritzer and Creutz, 2008). Dopamine 

signaling enhances the signal-to-noise ratio of PFC pyramidal neurons (Williams and 

Goldman-Rakic, 1995) and drives cortical efficiency (Cai and Arnsten, 1997; Granon 

et al., 2000; Gibbs and D’Esposito, 2005; Vijayraghavan et al., 2007). In turn, 

estradiol enhances dopamine release and modifies the basal firing rate of 

dopaminergic neurons (Thompson and Moss, 1994; Pasqualini et al., 1995; Becker, 

1990), a possible neurobiological mechanism by which alterations in estradiol could 
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impact cortical efficiency. Future multimodal neuroimaging studies in humans can 

clarify the link between estradiol’s ability to stimulate dopamine release and the 

hormone’s ability to drive cortical efficiency within PFC circuits.  

Sixth, we observed surprisingly few autoregressive effects in brain measures 

across our time-lagged models. This was despite relatively strong day-to-day 

similarity in whole-brain patterns of connectivity (Fig. S3), and clear evidence for 

autocorrelation when assessing the brain data in an independent, univariate fashion. 

Thus, the incorporation of sex hormones into a time-lagged modeling framework 

attributed more temporal variability in the brain to fluctuations in hormone 

concentrations. Nevertheless, an ongoing debate within the network neuroscience 

community surrounds test-retest reliability in resting-state functional connectivity 

analyses. Some studies state that large amounts of data (>20 minutes) are 

necessary for test-retest reliability (Noble et al., 2017; Gratton et al., 2018a), while 

others argue that reliability can be derived from shorter (5-15 minutes) scans (Van 

Dijk et al., 2010; Birn et al., 2014). We are limited in our ability to assess whether the 

ostensibly weak autoregressive trends suggested by our time-lagged models would 

be replicated under longer scanning durations and hope future work addresses this 

issue. 

 Finally, we chose to apply a well-established group-based atlas (Schaefer et 

al., 2018) to improve generalizability to other individuals, as a key goal of our 

investigation was to demonstrate how sex steroid hormones explain variability in 

intrinsic network topologies based on regional definitions shown to be reliable across 

thousands of individuals (Yeo et al., 2011; Schaefer et al., 2018). Yet, group-based 
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atlases can lead to potential loss in individual-level specificity, and recent work has 

demonstrated that fixed atlases may not capture underlying reconfigurations in the 

parcellations themselves within an individual (Bijsterbosch et al., 2019, Salehi et al., 

2020a, Salehi et al., 2020b). Therefore, future work using individual-derived 

functional networks will be necessary to determine whether spatial reconfigurations 

in parcellations emerge as a function of the menstrual cycle, over and above the 

influence of state or trait features. Relatedly, variation in analytic pipelines of brain 

imaging data can lead to divergent conclusions even within the same dataset 

(Botvinik-Nezer et al., 2020); for complete transparency, we are committed to 

making all neuroimaging data and code publicly available so that other investigators 

can assess these brain-hormone associations using their preferred methods.  

 

Estradiol modulates global efficiency in estrogen-receptor rich brain regions 

Using dense-sampling approaches to probe brain-hormone interactions could 

reveal organizational principles of the functional connectome previously unknown, 

transforming our understanding of how hormones influence brain states. Human 

studies implicate sex steroid hormones in the regulation of brain structure and 

function, particularly within ER-rich regions like the PFC and hippocampus (Berman 

et al., 1997; Girard et al., 2017; Hampson and Morley, 2013; Jacobs et al., 2015, 

2016a,b; Jacobs and D’Esposito, 2011; Shanmugan and Epperson, 2014, Zeydan et 

al., 2019), and yet, the neuroendocrine basis of the brain’s network organization 

remains understudied. Here, we used a network neuroscience approach to 

investigate how hormones modulate the topological integration of functional 
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networks across the brain, showing that estradiol is associated with increased 

coherence across broad swaths of cortex that extend beyond regions with 

established ER expression. At the network level, estradiol enhances the efficiency of 

most functional networks (with robust effects in DAN and DMN) and, to a lesser 

extent, modulates between-network participation (although critically, this finding 

failed to replicate in Study 2). Moving forward, a complete mapping of ER/PR 

expression in the human brain will be essential for our understanding and 

interpretation of brain-hormone interactions. Furthermore, this dense-sampling 

approach could be applied to brain imaging studies of other major neuroendocrine 

transitions, such as pubertal development and reproductive aging (e.g. menopause).  

 

Implications of hormonally regulated network dynamics for cognition 

An overarching goal of network neuroscience is to understand how 

coordinated activity within and between functional brain networks supports cognition. 

Increased global efficiency is thought to optimize a cognitive workspace (Bullmore 

and Bassett, 2011), while between-network connectivity may be integral for 

integrating top-down signals from multiple higher-order control hubs (Gratton et al., 

2018b). The dynamic reconfiguration of functional brain networks is implicated in 

performance across cognitive domains, including motor learning (Bassett et al., 

2011; Mattar et al., 2018), cognitive control (Seeley et al., 2007) and memory 

(Fornito et al., 2012). Our results suggest that the within-network connectivity of 

these large-scale networks is temporally-dependent on hormone fluctuations across 

the human menstrual cycle, particularly in states of high estradiol (e.g. ovulation). 
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Future studies should consider whether these network changes confer advantages 

to domain-general or domain-specific cognitive performance. Accordingly, future 

planned analyses from this dataset will incorporate task-based fMRI to determine 

whether the brain’s network architecture is similarly-variable across the cycle when 

engaging in a cognitive task, or in the dynamic reconfiguration that occurs when 

transitioning from rest to task. 

 

Implications of hormonally regulated network dynamics for clinical diagnoses 

Clinical network neuroscience seeks to understand how large-scale brain 

networks differ between healthy and patient populations (Fox and Greicius, 2010; 

Hallquist and Hillary, 2018). Disruptions in functional brain networks are implicated in 

a number of neurodegenerative and neuropsychiatric disorders: intrinsic connectivity 

abnormalities in the DMN are evident in major depressive disorder (Greicius et al., 

2007) and Alzheimer’s disease (Buckner et al., 2009). Notably, these conditions 

have a sex-skewed disease prevalence: women are at twice the risk for depression 

and make up two-thirds of the Alzheimer’s disease patient population (Nebel et al., 

2018). Here, we show that estradiol modulates efficiency within the DMN and DAN, 

with pronounced rises in estradiol significantly preceding increases in within-network 

coherence. A long history of clinical evidence implicates sex hormones in the 

development of mood disorders (Plotsky et al., 1998; Young and Korszun, 2002; 

Rubinow and Schmidt, 2006). For example, the incidence of major depression 

increases with pubertal onset in females (Angold and Costello, 2006), chronic use of 

hormonal contraceptives (Young et al., 2007), the postpartum period (Bloch et al., 
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2000), and perimenopause (Schmidt and Rubinow, 2009). Moving forward, a 

network neuroscience approach might have greater success at identifying the large-

scale network disturbances that underlie, or predict, the emergence of disease 

symptomology by incorporating sex-dependent variables (such as endocrine status) 

into clinical models. This may be particularly true during periods of profound 

neuroendocrine change (e.g. puberty, pregnancy, menopause, and use of hormone-

based medications, reviewed in Taylor et al., 2019) given that these hormonal 

transitions are associated with a heightened risk for mood disorders. 
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4 
Neuroanatomical changes observed over the 

course of a human pregnancy 
 
Adapted from the following manuscript: Pritschet, L., Taylor, C.M., Cossio, D., 
Santander, T., Grotzinger, H., Faskowitz, J., Handwerker, D., Layher, E., Chrastil, 
E.R., Jacobs, E.G. Neuroanatomical changes observed over the course of a human 
pregnancy. Under review.  
 
Authorship Contributions:  The overall study was conceived by L.P., C.M.T., 
E.R.C., and E.G.J.; L.P., C.M.T., D.C., T.S., E.L., E.R.C., and E.G.J. performed the 
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D.C. (Diffusion); L.P., C.M.T., H.G., D.C., E.R.C, and E.G.J. wrote the manuscript; 
T.S., J.F., D.A.H., and E.L. edited the manuscript. 
 

A. Introduction 

Each year, ~140 million women around the globe experience one of the most 

transformative events of their lifetime—pregnancy (WHO, 2022). Over an 

approximately 40-week gestational window the maternal body undergoes profound 

physiological adaptations to support the development of the fetus, including 

increases in plasma volume, metabolic rate, oxygen consumption, and immune 

regulation (Thornburg et al., 2015). These rapid adaptations are initiated by 

hundred- to thousand-fold increases in hormone production, including estrogen and 

progesterone. These neuromodulatory hormones also drive significant 
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reorganization of the central nervous system. New mechanistic insights from animal 

models converge on pregnancy as a period of remarkable neuroplasticity (Puri et al., 

2023; Celik et al., 2022; Barrière et al., 2021; Haim et al., 2017; Brunton & Russell et 

al., 2008). In humans, reductions in gray matter volume (GMV) have been observed 

postpartum (Hoekzema et al., 2017, 2022; Martínez-García, et al., 2021a), 

particularly in regions central to theory-of-mind processing (Hoekzema et al., 2017). 

These GMV changes persist at six years postpartum (Martínez-García et al., 2021b) 

and are traceable decades later (De Lange et al., 2019; Orchard et al., 2020, 2023), 

underscoring the permanence of this major remodeling event. Yet, the changes that 

occur within the maternal brain during gestation itself are virtually unknown.  

Here, we conducted the first precision imaging study of pregnancy in which a 

healthy 38-year-old primiparous woman underwent 26 MRI scans and venipuncture 

beginning 3 weeks pre-conception through two years postpartum. We observed 

widespread reductions in GMV and cortical thickness (CT) occurring in step with the 

dramatic rise in sex hormone production across gestation. Next, high-resolution 

imaging and segmentation of the medial temporal lobe suggest specific volumetric 

reductions within parahippocampal cortex. In contrast to widespread decreases in 

GMV, correlational tractography analyses revealed non-linear increases in white 

matter quantitative anisotropy (QA) throughout the brain —indicating greater tract 

integrity— as gestational week progressed. Together, these findings are the first to 

reveal the highly dynamic changes that unfold in the human brain across pregnancy, 

raising the possibility that the adult brain undergoes extensive remodeling well into 

adulthood. 
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B. Methods 

Participant 

Our participant (author E.R.C.) was a healthy 38-year-old primiparous woman who 

underwent in-vitro fertilization (IVF) to achieve pregnancy. Previous studies reported 

no observable differences in neural changes pre- to post-pregnancy between 

women who conceived naturally versus women who conceived via IVF (Hoekzema 

et al., 2017), and doing so provides a controlled way of monitoring pregnancy status. 

The participant nursed through one-year postpartum, and had no history of 

neuropsychiatric diagnosis, endocrine disorders, prior head trauma or history of 

smoking. The participant gave written informed consent and the study was approved 

by the University of California, Irvine Human Subjects Committee. 

 

Study Design 

The participant underwent 26 magnetic resonance imaging (MRI) scanning sessions 

from 3 weeks prior to conception through two years postpartum (162 weeks), during 

which high-resolution anatomical and diffusion spectrum imaging scans of the brain 

were acquired. Scans were distributed throughout this period, including pre-

pregnancy (4 scans), first trimester (4 scans), second trimester (6 scans), third 

trimester (5 scans), and postpartum (7 scans) (Fig. 4.1B). The first 6 sessions took 

place at the UCSB Brain Imaging Center (BIC), the final 20 sessions took place at 

the UCI Facility for Imaging and Brain Research (FIBRE). The MRI protocol, scanner 

(Siemens 3T Prisma), and software (version MR E11) were identical across sites. To 

ensure the robustness of the findings, after the final study session the subject 
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completed two additional back-to-back validation scans at UCSB and UCI within a 

12-hour window to assess reliability between scanners. Intraclass correlation 

coefficients (two-way, random effects, absolute agreement, single rater) reveal 

‘excellent’ test-retest reliability between scanners, including: ROI-level GMV (ICC = 

0.97, 95% CI: 0.80–0.99); ROI-level CT (ICC = 0.96, 95% CI: 0.90–0.98); MTL 

subfield volume (ICC = 0.99, 95% CI: 0.97–0.99); and ROI-level QA (ICC = 0.94, 

95% CI: 0.91–0.97). Further, when examining the relationship between gestation 

week, cortical and subcortical GMV among UCI-only gestational sessions, consistent 

findings were observed (Appendix B Fig. 5), indicating that site differences are 

highly unlikely to have contributed meaningfully to the observed effects.   

 

Endocrine Procedures 

The participant underwent a blood draw (n = 19, Fig. 4.1B) prior to MRI scanning. 

Sex steroid concentrations were determined via ultra-sensitive liquid 

chromatography–mass spectrometry (LC-MS) at the Brigham and Women’s Hospital 

Research Assay Core (BRAC). Assay sensitivities, dynamic range, and intra-assay 

coefficients of variation were as follows: estradiol: 1.0 pg/ml, 1–500 pg/ml, <5% 

relative standard deviation (RSD); progesterone: 0.05 ng/ml, 0.05–10 ng/ml, 9.33% 

RSD. Serological samples were not acquired in five sessions due to scheduling 

conflicts with UC Irvine’s Center for Clinical Research. 

 

MRI Acquisition 



 
 

61 

Magnetic resonance imaging (MRI) scanning sessions at the University of California, 

Santa Barbara and Irvine were conducted on 3T Prisma scanners equipped with 64-

channel phased-array head/neck coil (of which 50 coils are used for axial brain 

imaging). High-resolution anatomical scans were acquired using a T1-weighted 

(T1w) magnetization prepared rapid gradient echo (MPRAGE) sequence (TR = 2500 

ms, TE = 2.31 ms, T1 = 934 ms, flip angle = 7°, 0.8 mm thickness) followed by a 

gradient echo fieldmap (TR = 758 ms; TE1 = 4.92 ms; TE2 = 7.38 ms; flip angle = 

60°). A T2-weighted (T2w) turbo spin echo (TSE) scan was also acquired with an 

oblique coronal orientation positioned orthogonally to the main axis of the 

hippocampus (TR/TE = 9860/50 ms, flip angle = 122°, 0.4 × 0.4 mm2 in-plane 

resolution, 2 mm slice thickness, 38 interleaved slices with no gap, total acquisition 

time = 5:42 min). The DSI protocol sampled the entire brain with the following 

parameters: single phase, TR = 4300 ms, echo time = 100.2 ms, 139 directions, b-

max = 4990, FoV = 259 x 259 mm, 78 slices, 1.7986 x 1.7986 x 1.8 mm voxel 

resolution. These images were linearly registered to the whole-brain T1w MPRAGE 

image. A custom foam headcase was used to provide extra padding around the 

head and neck, as well as to minimize head motion. A custom-built sound-absorbing 

foam girdle was placed around the participant’s waist to attenuate sound near the 

fetus during second and third trimester scanning. 

 

 

 

 

 

 

Image Processing 
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Cortical Volume and Thickness 

Cortical thickness and gray matter volume were measured with Advanced 

Normalization Tools version 2.1.0 (ANTs) (Avants et al., 2011). First, a custom 

subject-specific template (SST) (antsMultivariateTemplateConstruction2) and tissue 

priors (antsCookTemplatePriors) were built based on the subject’s two pre-

conception whole-brain T1-weighted scans to examine neuroanatomical changes 

relative to the subject’s pre-pregnancy baseline. Labels from the OASIS population 

template, provided by ANTs, were used as priors for this step. For each session, the 

structural image was processed and registered to the SST using the ANTs cortical 

thickness pipeline (antsCorticalThickness). This begins with an N4 bias field 

correction for field inhomogeneity, then brain extraction using a hybrid 

registration/segmentation method (see Tustison et al., 2014). Tissue segmentation 

was performed using Atropos (Avants et al., 2011) to create tissue masks of 

cerebrospinal fluid (CSF), gray matter, white matter, and deep gray matter. Atropos 

allows prior knowledge to guide the segmentation algorithm, and we used labels 

from our SST as priors to minimize warping and remain in native subject space. 

Cortical thickness measurements were then estimated using the DiReCT algorithm 

(Das et al., 2009), which estimates the gray/white matter interface and the gray 

matter/CSF interface and computes a diffeomorphic mapping between the two 

interactions, from which thickness is derived. Each gray matter tissue mask was 

normalized to the template and multiplied to a Jacobian image that was computed 

via affine and non-linear transforms. Summary, regional-level estimates of CT, GMV, 

and CSF for each scan were obtained by taking the first eigenvariate (akin to a 
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‘weighted mean’, Friston et al., 2006) across all voxels within each parcel of the 

Schaefer 400-region atlas (Schaefer et al., 2018). We then averaged ROIs across 

networks, which were defined by the 17-network Schaefer scheme (Yeo et al., 2011; 

Schaefer et al., 2018). Global measures of CT, GMV, and CSF were computed for 

each session by summing across all voxels within the respective output image. Our 

findings held when using an SST derived from all 26 MRIs (pre- through 

postpartum), as well as when estimating the mean (vs. weighted mean) of all voxels 

within each parcel. The ANTs CT pipeline is highly validated with good test-retest 

reproducibility and improved ability to predict variables such as age and gender from 

region-wise CT measurements compared to surface-based FreeSurfer (Tustison et 

al., 2014). However, to reproduce our findings across software packages, we also 

ran the T1w data through the longitudinal FreeSurfer cortical thickness pipeline 

(Dale et al., 1999), which corroborated our findings using both the Schaefer 400-

cortical atlas (Appendix B Table 1, Appendix Fig. 3) and the popular Desikan-

Killiany cortical atlas (Desikan et al., 2004, see Appendix B Fig. 5); lateral ventricle 

volume estimates were derived from this output. A complete reporting of findings can 

be found in the Appendix B.  

Mean framewise displacement (FWD) estimates from gestation sessions with 

a 10-minute resting state scan (n = 17) were used to indirectly assess whether 

motion increased throughout pregnancy. Average FWD (millimeters) was extremely 

minimal across the entire experiment (M = 0.13, SD = 0.02, range = 0.09–0.17) and 

varied only slightly by pregnancy stage (pre: M = 0.11, SD = 0.004; first: M = 0.11, 

SD = 0.01; second: M = 0.14, SD = 0.02; third: M = 0.16, SD = 0.007; post: M = 
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0.13, SD = 0.01). While mean FWD did correspond with gestation week (r = 0.90, p 

< .001), controlling for this did not alter our main findings (e.g., total GMV and 

gestation, partial correlation: r = -0.64, p = 0.004) owing to the fact that motion 

differences between stages were minuscule (Appendix B Fig. 6A).    

As a further test of the robustness of the dataset, I ran quality control (QC) 

assessments on all T1w images using the IQMs pipeline from MRIQC (Esteban et 

al., 2017). Assessments of interest included 1) coefficient of joint variation (CJV), 2) 

signal-to-noise ratio for gray matter (SNR), and 3) contrast-to-noise ratios (CNR). All 

QC metrics fell within expected standard ranges (Appendix B Fig. 6B–D). Although 

correlations existed between gestation week and QC measures (CJV, r = 0.70, p < 

.001; SNR and CNR, r = -0.83, p < .001), including these variables in the regression 

models did not alter our main findings. Gestation remained tied to decreases in 

GMV, especially within regions belonging to attention and somatosensory networks. 

When looking across all MRIQC outputs, discrepancies were noted in session seven 

(gestation week nine, first trimester). Removing this day from the analyses only 

strengthened observed relationships between cortical volume and gestation; 

however for completeness, data from this day is included in the main findings. 

 

Hippocampal Segmentation 

T1- and T2-weighted images (n = 25) were submitted to the automatic segmentation 

of hippocampal subfields package (ASHS) (Yushkevich et al., 2015) for bilateral 

parcellation of seven MTL subregions: CA1, CA2/3, dentate gyrus (DG), subiculum 

(SUB), perirhinal cortex (PRC), entorhinal cortex (ERC), and parahippocampal 
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cortex (PHC). The ASHS segmentation pipeline automatically segmented the 

hippocampus in the T2w MRI scans using a segmented population atlas, the 

Princeton Young Adult 3T ASHS Atlas template (n = 24, mean age 22.5 years; Aly 

and Turk-Browne, 2016). A rigid-body transformation aligned each T2w image to the 

respective T1w scan for each day. Using ANTs deformable registration, the T1w was 

registered to the population atlas. The resulting deformation fields were used to 

resample the data into the space of the left and right template MTL regions of 

interest (ROI). Within each template ROI, each of the T2w scans of the atlas 

package was registered to that day’s T2w scan. The manual atlas segmentations 

were then mapped into the space of the T2w scan, with segmentation of the T2w 

scan computed using joint label fusion (Wang et al., 2012). Finally, the corrective 

learning classifiers contained in ASHS were applied to the consensus segmentation 

produced by joint label fusion. The output of this step is a corrected segmentation of 

the T2w scan. Further description of the ASHS protocol can be found in (Yushkevich 

et al., 2015). T2w scans and segmentations were first visually examined using ITK-

SNAP (Yushkevich et al., 2006) for quality assurance and then subjected to manual 

editing in native space using ITK-SNAP (v.3.8.0-b; author CMT). One bilateral 

segmentation (Scan 15, third trimester) was discarded due to erroneous scan 

orientation. The anterior extent of the segmented labels was anchored 4 mm (2 

slices) anterior to the appearance of the limen insulae, and the posterior extent was 

anchored to the disappearance of hippocampal gray matter from the trigone of the 

lateral ventricle. Boundaries between perirhinal, entorhinal, and parahippocampal 

cortices were established in keeping with the Olsen-Amaral-Palombo (OAP) 
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segmentation protocol (Palombo et al., 2013). In instances where automatic 

segmentation did not clearly correspond to the underlying neuroanatomy, such as 

when a certain label was missing several gray matter voxels, manual retouching 

allowed for individual voxels to be added or removed. All results are reported using 

the manually retouched subregion volumes to ensure the most faithful 

representation of the underlying neuroanatomy. Scans were randomized and 

segmentation was performed in a random order, blind to pregnancy stage. To 

assess intra-rater reliability for the present analyses, two days underwent manual 

editing a second time. The generalized Dice similarity coefficient (Crum et al., 2006) 

across subregions was 0.87 and the Intraclass Correlation Coefficient was 0.97, 

suggesting robust reliability in segmentation. 

 

White Matter Microstructure 

Diffusion scans were preprocessed using the automation software QSIprep version 

0.15.3 (Cieslak et al., 2022) and run primarily with the default parameters, with the 

exceptions ‘–output resolution 1.8’, ‘–dwi denoise window 5’,–force-spatial-

normalization’, ‘–hmc model 3dSHORE’, ‘–hmc-transform Rigid’, and ‘–shoreline 

iters 2’. Twenty-one sessions were preprocessed and analyzed, with the remaining 

five scans excluded due to missing data or the corresponding field map for distortion 

correction. T1-weighted (T1w) images were corrected for intensity non-uniformity 

(N4BiasFieldCorrection) and skull-stripped (antsBrainExtraction). The images 

underwent spatial normalization and registration to the ICBM 152 Nonlinear 

Asymmetrical Template. Finally, brain tissue segmentation of CSF, GM, and WM 
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was performed on each brain-extracted T1w using FMRIB's Automated 

Segmentation Tool (FAST). Preprocessing of diffusion images began by 

implementing MP-PCA denoising with a 5-voxel window using MRtrix3’s dwidenoise 

function. B1 field inhomogeneity was corrected using dwibiascorrect from MRtrix3 

with the N4 algorithm. Motion was corrected using the SHORELine method. 

Susceptibility distortion correction was based on GRE field maps. Preprocessed Nifti 

scans were prepared for tractography using DSI Studio version Chen-2022-07-31 

(Yeh et al., 2016). Diffusion images were converted to Source Code files using the 

DSI studio command line ‘--action=src’ and a custom script to convert all images. 

The diffusion data were reconstructed in MNI space using q-space diffeomorphic 

reconstruction (Yeh et al., 2011) with a diffusion sampling of 1.25 and output 

resolution of 1.8mm isotropic. The following output metrics were specified to be 

included in the output FIB file: quantitative anisotropy (QA) and mean diffusivity 

(MD). The quality and integrity of reconstructed images were assessed using `QC1: 

SRC Files Quality Control`. First, consistency of image dimension, resolution, DWI 

count, shell count was checked for each image. Second, each image was assessed 

for the “neighboring DWI Correlation” which calculates the correlation coefficient of 

low-b DWI volumes that have similar gradient direction. Lower correlation values 

may indicate issues with the diffusion signal due to artifacts or head motion. Finally, 

DSI studio performed an outlier check, labelling images as a “low quality outlier” if 

the correlation coefficient was greater than 3 standard deviations from the absolute 

mean. None of our scans were flagged as outliers. The reconstructed subject files 

were aggregated into one connectometry database per metric. 
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Statistical Analysis 

All statistical analyses were conducted in R (version 3.4.4). To isolate how brain 

structure changes during pregnancy, the following analyses included sessions from 

baseline through 36 weeks gestation unless otherwise stated. 

 

Gray Matter Volume & Cortical Thickness 

We first computed Pearson’s product-moment correlation matrices between the 

following variables (n = 19 pregnancy scans): gestation week, estradiol, 

progesterone, total GMV, and the 17 network-level average GMV values. We then 

ran a multivariate regression analysis predicting ROI-level GMV changes by 

gestation week. To identify which regions were changing at a rate different from the 

global decrease, we then re-ran the analyses to include total GMV in the regression 

model. This was extended at the network level, where we ran partial correlations 

accounting for total GMV. These analyses were then run for cortical thickness. 

Percent change at the network level was computed by subtracting the final 

pregnancy value (36 weeks pregnant) from the first pre-pregnancy baseline, then 

dividing that difference by said first pre-pregnancy baseline value. All analyses 

underwent multiple comparisons testing (FDR-corrected at q < 0.05). Ventricle 

volume and CSF displayed non-linear patterns across the experiment; therefore, we 

used generalized additive models (GAM; cubic spline basis), a method of non-

parametric regression analysis (R package: mgcv), to explore the relationship 

between ventricles, CSF, and gestation week. For each variable, the GAM model 

outperformed a linear model fit, as determined by a Chi-squared test. To note, for 
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this analysis, we included all 26 sessions to capture the sharp decline of these 

measures into postpartum.  

 

Hippocampal Segmentation 

To evaluate a linear relationship between time and medial temporal lobe (MTL) 

subregion volume change, we conducted Pearson’s product-moment correlations 

between gestation week and individual bilateral MTL subregion volumes (average of 

left and right, n = 7 subfields; N = 17 MTL scans). We had no strong a priori 

hypothesis that structure–hormone relationships would differ by hemisphere; thus, 

volumes are reported averaged across hemispheres. As a control, we also 

computed relative MTL subregion volumes expressed as a percentage of total 

intracranial volume (sum of whole brain gray, white, and cerebrospinal fluid volumes) 

calculated by ASHS. This allowed us to correct for the changes in total intracranial 

volume, which was linearly correlated with gestation week (r = -.723, p < .0001). 

Relationships were considered significant only if they met FDR correction with q < 

0.05. Finally, we conducted a linear regression to evaluate the relationship between 

endogenous sex hormones (estrogen and progesterone) and volumes of regions 

that changed significantly across pregnancy.  

 

Diffusion - White Matter Microstructure  

DSI Studio’s correlational tractography (Yeh et al., 2016) was used to analyze the 

relationship between white matter structure and gestational week (n = 15). A 

truncated model was run to examine the relationship between white matter and sex 
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steroid hormones (n = 10) for the subset of diffusion scans with paired endocrine 

data. A non-parametric Spearman correlation was used to derive the correlation 

between gestational week and endocrine factors and our metrics of interest (QA and 

MD; see Appendix B Tables 7–8, Appendix Fig. 4 for MD results) because the 

data were not normally distributed. Statistical inference was reached using 

connectometry, a permutation-based approach that tests the strength of coherent 

associations found between the local connectome and our variables of interest. It 

provides higher reliability and replicability by correcting for multiple comparisons. 

This technique provides a high-resolution characterization of local axonal orientation. 

The correlational tractography was run with the following parameters: T-score 

threshold of 2.5, 4 pruning iterations, and a length threshold of 25 voxel distance. To 

estimate the false discovery rate (FDR), a total of 4000 randomized permutations 

were applied to obtain the null distribution of the track length. Reported regions were 

selected based on FDR cutoff (FDR < 0.2, suggested by DSI Studio), and contained 

at least 10 tracts. For visualization of global QA at each gestational stage, QA values 

were extracted using DSI Studio’s whole brain fiber tracking algorithm and 

tractometry (Yeh et al., 2016). Finally, we used generalized additive models (cubic 

spline basis) to explore the non-linearity of QA from pre- through postpartum (N = 21 

scans; see GMV analysis).  

C. Results 

Endocrine Assessments 
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Serological evaluations captured canonical hormone fluctuations 

characteristic of the prenatal, perinatal, and postnatal periods (Fig. 4.1A–C). Serum 

hormone concentrations increased significantly over the course of pregnancy and 

dropped precipitously postpartum (pre-conception: estradiol (E) = 3.42 pg/mL, 

progesterone (P) = 0.84 ng/mL; 3 weeks prior to parturition: E = 12,400 pg/mL, P = 

103 ng/mL; 3 months after parturition: E = 11.50 pg/mL, P = 0.04 ng/mL).  

 

Cortical Volume & Thickness 

To begin, we quantified the neuroanatomical changes that unfold during 

gestation itself (baseline–36 weeks pregnant; 19 scans). Changes in GMV were 

near-ubiquitous across the cortical mantle (Fig. 4.1D), with strong negative 

associations between gestational week and total GMV (r = -0.90, p < .001, total 

change = -3.5%). Most large-scale brain networks exhibited decreases in GMV (Fig. 

4.1E, Appendix B Table 1); indeed, 80% of the 400 regions of interest (ROIs) 

demonstrated negative relationships with GMV throughout gestation (Fig. 4.1D, 

Appendix B Table 2). Together, these results provide evidence of a global 

decrease in cortical volume across pregnancy. A handful of sensory and attention 

subnetworks were particularly sensitive to gestation, such as the Control (B), 

Salience/Ventral Attention (A), Dorsal Attention (B), Default (A), and Somatomotor 

(A,B) Networks; each significantly covarying with gestation week even after 

accounting for total GMV change. Regions driving these network-level changes 
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include the inferior parietal lobe, post central gyri, insulae, prefrontal cortex, posterior 

cingulate, and somatosensory cortex (Fig. 4.2, Appendix B Table 2). These regions 

and associated brain networks appear to decrease in volume at a faster rate than 

Figure 4.1. Precision imaging reveals neuroanatomical changes throughout gestation. A) Standard 
medical demarcations for pregnancy stages (e.g., trimesters) by gestation week.  B) A healthy 38-
year-old primiparous woman underwent 26 scanning sessions from 3 weeks preconception through 
two years postpartum. Scans were distributed throughout preconception (4 scans), first trimester (4 
scans), second trimester (6 scans), third trimester (5 scans), and postpartum (7 scans); colors 
indicate pregnancy stage. The participant underwent in-vitro fertilization (IVF) to achieve pregnancy, 
allowing for precise mapping of ovulation, conception, and gestation week. Serological 
assessments to evaluate steroid hormones were available for 19 sessions (see Methods). C) Sex 
steroid hormones increased significantly over the course of pregnancy and dropped precipitously 
postpartum, as is characteristic of the pre- and postnatal periods. D) Multivariate regression 
analyses reveal largely negative relationships between gestation week and regional GMV (top), with 
only a minority of regions unaffected or increasing over the gestational window. All associations 
presented here were corrected for multiple comparisons (FDR at q < 0.05). Summarizing GMV 
across the entire study (baseline – 162 weeks) suggests slight recovery in the postpartum period 
(bottom). E) Average network change was calculated by estimating GMV change from baseline – 
36 weeks gestation. Attention and Control Networks appeared most affected. F) Left and right lateral 
ventricle and cerebrospinal fluid volumes displayed non-linear increases across gestation, with a 
notable rise in the second and third trimester before dropping sharply postpartum. Shaded regions 
represent a 95% confidence interval; dashed line indicates parturition. Abbreviations: IVF = in-vitro 
fertilization; Lat = lateral; Med = medial; t-stat = test statistic; GMV = gray matter volume; DMN = 
Default Mode Networks; VisPeri = Visual Peripheral Network; SomMot = Somatomotor Networks; 
VisCent = Visual Central Network; Cont = Control Networks; TempPar = Temporal Parietal Network; 
DorsAttn = Dorsal Attention Networks; SalVentAttn = Salience / Ventral Attention Networks; CSF = 
cerebrospinal fluid 
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the rest of the brain throughout pregnancy. GMV reductions were also significantly 

correlated with the participant’s sex hormone concentrations. (Appendix B Table 1). 

A highly similar pattern of results was observed when examining pregnancy-related 

cortical thickness changes (Appendix B Fig. 1 and Tables 3–4). In contrast, GMV 

within regions of the Default Mode (C), Limbic (A,B), and Visual Peripheral Networks 

buck the global trend by slightly increasing (e.g., temporal poles), remaining 

constant (e.g., orbitofrontal cortex), or reducing at a much slower rate (e.g., 

extrastriate) than total GMV (Fig. 4.1E, Appendix B Table 1–4). Cortical thickness 

changes in these regions exhibit similar patterns (Appendix B Table 3–4). 
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Subcortical Volume 

Consistent with the broader cortical reductions in GMV, high-resolution medial 

temporal lobe segmentations revealed decreased parahippocampal cortex (PHC) 

volume (r = -0.79, FDR-corrected at q < 0.05) across gestation (Fig. 4.3B). Results 

remained significant after proportional volume correction for total GMV. Notably, 

there was no significant change in other hippocampal and medial temporal cortical 

subregions, or in gross hippocampal volume (Appendix B Fig. 3 and Table 6).  

 

White matter microstructure 

In contrast to decreasing global GMV, correlational tractography of white 

matter—which tests for linear trends in the data— revealed increasing 

microstructural integrity (quantitative anisotropy, QA) across the whole brain during 

gestation, concomitant with the rise in 17ß-estradiol and progesterone (FDRs < .001) 

(Fig. 4.3C, Appendix B Fig. 4). Tracts displaying robust correlations with 

gestational week include the cingulum bundle, middle and superior longitudinal 

fasciculus, corpus callosum, and arcuate fasciculus (Fig. 4.3D, see Appendix B 

Table 6 for complete list). Next, we widened the aperture to capture changes 

extending into the postpartum period (baseline–2 years postpartum; 26 scans), 

Figure 4.2. Pronounced GMV changes across gestation. A–F) Six representative regions that 
decline in volume at a rate greater than the global decrease. For each panel, we display results of 
a multivariate regression revealing significant associations between clustered ROI GMV and 
gestation week (left), Pearson’s product-moment correlations between the average GMV of the 
ROIs and gestation week (middle), and summary ROI GMV by pregnancy stage across the whole 
study (right). All statistical tests were corrected for multiple comparisons (FDR at q < 0.05). ROI 
subregions are color-coded by network affiliation (see Appendix B Fig. 2). N.b., shown here are 
raw data values (see Appendix B for more).  
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revealing non-linear patterns for several brain measures. Global QA for white matter 

increased throughout the first and second trimester before returning to baseline 

levels in the postpartum period (whole brain QA, F = 6.791, p < .002, deviance 

explained = 71.9%) (Fig. 4.3E). Similarly, we observed non-linear patterns of lateral 

ventricle expansion (left, F = 7.70, p < .001, deviance explained = 78.7%; right, F = 

11.99, p < .001, deviance explained = 85.8%) and increased cerebrospinal fluid 

(CSF; F = 13.32, p < .001, deviance explained = 83.8%), rising in the second and 
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third trimester before dropping sharply in postpartum (Fig. 4.1F). After linearly 

decreasing during gestation, GMV and CT appear to partially rebound postpartum. 

Figure 4.3. Hippocampal subfields and white matter microstructure across gestation. A) 
Sample image of medial temporal lobe segmentation determined via manual editing of the output 
of the Automatic Segmentation of Hippocampal Subfields (ASHS) software package. The 
participant’s hippocampus and surrounding cortex were segmented into seven bilateral subregions. 
B) Parahippocampal cortex (PHC) volume was negatively associated with gestation week (left) and 
did not return to baseline postpartum (right). C) White matter tracts demonstrate increasing 
quantitative anisotropy in relation to gestation week as determined by correlational tractography 
analysis. D) Summary of quantitative anisotropy (QA) values by pregnancy stage for representative 
ROIs identified as significantly associated with gestation week. Tractometry was used to extract 
quantitative anisotropy values. E) Whole brain QA displayed non-linear patterns of growth across 
gestation. Shaded region represents the 95% confidence interval. Abbreviations: AC= Anterior 
Commissure; PHC = parahippocampal cortex; GMV = gray matter volume; AF = arcuate fasciculus; 
CC = corpus callosum; ILF = inferior longitudinal fasciculus; CS = corticostriatal tracts; CST = 
corticospinal tracts; CPT = Corticopontine tracts; IFOF = inferior frontal occipital fasciculus; ML = 
medial lemniscus; MCP = middle cerebellar peduncle; DT = dentothalamic tract; QA = quantitative 
anisotropy 
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D. Discussion 

Emerging findings across taxa establish pregnancy as a remarkable period of 

synaptic plasticity, underscoring the brain’s ability to undergo neuroanatomical 

changes beyond adolescence (Dulac et al., 2014; Carmona et al., 2019; Hoekzema 

et al., 2017, 2022; Martínez-García, et al., 2021a; Pawluski et al., 2022). 

Investigations that compare women pre- and postpartum provide the strongest 

evidence to date that the human brain undergoes such neural changes (Martínez-

García 2021b, Orchard et al., 2023), and our results are largely consistent with the 

findings from those designs. But what about pregnancy itself? Over what time-

course do anatomical changes in the maternal brain manifest? Are they tied to the 

substantial increase in sex hormone production? Here, we begin to address these 

outstanding questions. This paper and corresponding open-access dataset offer 

neuroscientists the first atlas of the human brain across gestation.  

Our findings suggest that the gestational period is characterized by sweeping 

decreases in gray matter volume, cortical thinning, and enhanced white matter 

microstructural integrity that unfold week by week. Some of these changes persist at 

two years postpartum (e.g., global reductions in GMV, CT), while others, including 

markers of white matter integrity, appear to be transient. Ventricle expansion and 

contraction parallel these cortical changes. These patterns, paired with increased 

CSF volume, could reflect increased water retention and subsequent compression of 

cortical tissue. However, regional variation in GMV, CT, and QA changes hint at 

cellular underpinnings, such as alterations in glia or neuron number, synaptic 
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density, and myelination. Future studies of the relationship between fluid dynamics 

and volumetric changes will help clarify the factors that drive global neural changes 

during pregnancy; such insights have broad implications for maternal health (e.g., 

neurological effects tied to pre-eclampsia or edema).  

Dynamic neural changes occurred within the pregnancy window itself, a 

nuance not captured by studies limited to pre- versus post-pregnancy comparisons. 

For example, we observed large increases in white matter microstructural integrity 

(QA) throughout the first and second trimester of pregnancy, but these measures 

fully returned to baseline values by the first postpartum scan. This pattern may 

explain why previous studies report no pregnancy-related differences in white matter 

tractography (Hoekzema, 2022). Other measures, such as GMV and CT, decreased 

throughout gestation and displayed only a modest rebound postpartum. Together, 

these non-linear patterns suggest that only quantifying pre- and postpartum brain 

structure may overlook the full dynamic range of changes that unfold within the 

gestational window — and underrepresent the brain’s metamorphosis during 

pregnancy. Further, although global brain changes were the norm, some regions 

displayed notable stability (e.g., the majority of medial temporal lobe and extrastriate 

cortex), which merits further study. Similar precision imaging studies have captured 

dynamic brain reorganization across other neuroendocrine transitions, such as the 

menstrual cycle (see review: Pritschet et al., 2021), underscoring the powerful role 

sex steroid hormones play in shaping the mammalian brain (Taxier et al., 2020). 

Endocrine changes across pregnancy dwarf those that occur across the menstrual 
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cycle, which highlights the critical need to map the brain’s response to this unique 

hormonal milieu.  

The neuroanatomical changes that unfold during matrescence have broad 

implications for understanding individual differences in parental behavior (Dulac et 

al., 2014; Hoekzema et al., 2017; Kohl et al., 2018), vulnerability to mental health 

disorders (Pawluski et al., 2017; Barba-Müller et al., 2019) and patterns of brain 

aging (de Lange et al., 2019; Barth & de Lange, 2020; Orchard et al., 2020, 2023). 

Decreases in GMV may reflect “fine-tuning” of the brain by neuromodulatory 

hormones in preparation for parenthood (Pawluski et al., 2022). For example, GMV 

reduction is pronounced in areas of the brain important for social cognition and the 

magnitude of these changes correspond with increased parental attachment 

behaviors (Hoekzema et al., 2017). Similarly, we observed the greatest GMV 

change in regions within attention, sensory, and default mode networks (see also: 

Paternina-Die et al., 2023). Quantifying the rate of change within these circuits could 

be key for understanding the behavioral adaptions that emerge during and after 

pregnancy, such as honing the brain’s visual and auditory responses to infant cues 

and elicitation of maternal behavior.  

This precision imaging study mapped neuroanatomical changes across 

pregnancy in a single individual. These findings provide critical rationale for 

conducting further dense-sampling studies of demographically enriched cohorts to 

determine the universality and idiosyncrasy of these adaptations and their role in 

maternal health. For example, this approach could determine whether the pace of 

pregnancy-induced neuroanatomical changes drives divergent brain health 
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outcomes in women, as may be the case during other rapid periods of brain 

development (Tooley et al. 2021). One in five women experiences postpartum 

depression (Wang et al., 2021), and while the first FDA-approved treatment is now 

available (Deligiannidis et al., 2023), early detection remains elusive. Precision 

imaging studies could offer clues about an individual’s risk for or resilience to 

postpartum depression prior to symptom onset. Neuroscientists and clinicians also 

lack tools to facilitate detection and treatment of neurological disorders that co-

occur, worsen, or remit with pregnancy, such as epilepsy, headaches, multiple 

sclerosis, and intracranial hypertension (Shehata et al., 2004). This new area of 

study—precision mapping of the maternal brain—lays the groundwork for a greater 

understanding of the subtle and sweeping structural, functional, behavioral, and 

clinical changes that unfold across gestation. Such pursuits will advance our basic 

understanding of the human brain and its remarkable ability to undergo protracted 

plasticity in adulthood.    
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5 
The impact of endocrine aging on large-scale 

functional brain networks in healthy, midlife 
women 

A. Introduction 

A major challenge in neuroscience is to understand what happens to the brain 

as it ages. As such, over the last quarter century, a staggering number of human 

brain imaging studies have probed the neural basis of age-related cognitive decline. 

These studies generally enroll adults over the age of 65, a historical precedent 

rooted in the average retirement age of U.S. wage-earners (Jacobs and Goldstein, 

2018). A consequence of this research tradition is that it overlooks one of the most 

significant neuroendocrine changes in a woman’s life — the transition to menopause 

— a time in which many women report changes in memory and attention (e.g., 

“menopause fog”; Greendale et al., 2011). 

Reproductive (i.e., endocrine) aging, defined as the change in sex hormone 

production that occurs with age, is a major contributor to the physiological changes 

that take place during middle age in both men and women. For men, age-related 

changes in sex hormone production occurs at a gradual linear rate, with a protracted 

decline beginning in the mid-30s and continuing throughout life (Fabbri et al., 2016). 
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In contrast, women undergo a more complex hormonal transition at midlife, one that 

is marked by high fluctuations in steroid hormone production during the 

perimenopausal phase and culminating in ovarian senescence at the end of 

menopause—median age of complete reproductive senescence being 52.4 years 

(Gold et al., 2001; Harlow et al., 2012). The menopausal transition results in a 

substantial decline in sex steroid hormone production— up to 90% for both estradiol 

and progesterone—a dramatic endocrine change that impacts multiple biological 

systems including the nervous system (Morrison et al., 2006; Brinton et al., 2015).  

Sex hormones are critical neuromodulators, influencing the brain at all levels, 

from microscopic intracellular and synaptic events (Taxier et al., 2020) to 

macroscopic structural (Zsido et al., 2019) and functional connectivity (Pritschet et 

al., 2021). Two regions critical for higher-order cognition, the prefrontal cortex (PFC) 

and medial temporal lobes (MTL), contain abundant populations of sex hormone 

receptors and are major sites of sex hormone action. In nonhuman primates, 

estrogen receptor-α (ERα) is present in ~50% of PFC pyramidal neurons, and 

greater ERα expression is associated with better working memory performance 

(Wang et al., 2010). The suppression of sex hormones via surgical menopause 

decreases spine density in PFC neurons (Hao et al., 2006) and impairs working 

memory (Rapp et al., 2003). In rodent hippocampal CA1 neurons, surgical 

menopause leads to a 30% loss in dendritic spine density, which is reversed 

following estradiol replacement (Dumitriu et al., 2010). Similarly, in nonhuman 

primates surgical menopause reduces hippocampal spine density and impairs 

recognition memory (Hara et al., 2012) and in humans, early surgical menopause is 
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tied to thinner entorhinal cortex volume compared to age-matched controls (Zeydan 

et al., 2019). A handful of human studies have directly examined the effect of 

hormone replacement therapy (HRT) on brain morphology in menopausal women, 

revealing that hippocampal volume increases in response to certain HRT regimens 

(Albert et al., 2017).  

These macrostructural changes evident in the hippocampus in response to 

hormone supplementation may produce cognitive benefits (for a review, see Daniel 

et al., 2015). For example, Maki et al., (2011) found that women who began HRT in 

perimenopause had enhanced hippocampal activity during a verbal recognition task 

and better verbal memory performance relative to nonusers. When initiated early in 

the menopausal transition, hormone replacement also appears to enhance 

cognitive-control related dorsolateral PFC activity and improve task-switching 

performance in women (Girard et al., 2017). Thus, converging evidence strongly 

suggests that ovarian hormone depletion leads to morphological and functional 

changes in memory and attention circuitry. 

Growing evidence from animal 

studies indicates that estradiol and 

progesterone play neuroprotective roles in 

the brain and support the structure and 

function of brain regions vulnerable to 

neurodegeneration (Mosconi et al., 2018; 

Beltz and Moser, 2020). In the context of 

cognitive aging, female reproductive aging 

Figure 5.1. The number of brain imaging 
publications considering the effects of 
endocrine aging (orange) is dwarfed by the 
number of chronological aging studies 
(blue). Figure adapted from Taylor et al., 
2019.  
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represents a critical yet highly understudied factor (Fig. 5.1) that is likely essential 

for understanding sex-specific trajectories of cognitive decline and sex differences in 

dementia risk (Rahman et al., 2020; Taylor et al., 2019). A striking feature of ER–rich 

regions is that they overlap with neural circuits vulnerable to age-related decline and 

encompass regions (e.g., entorhinal and perirhinal cortex, PFC, posterior cingulate 

cortex) that harbor accumulating neuropathology in the progression to AD (Brinton et 

al., 2015). Further, ~70% of women experience hot flashes and night sweats along 

with other neurological symptoms (e.g., mood disruption, insomnia, cognitive 

complaints) during menopause (Brinton et al., 2015), and the frequency of these 

symptoms paired with declining in sex hormones is hypothesized to increase the risk 

of Alzheimer’s disease (AD) (Rahman et al., 2020). However, to date, we lack a clear 

understanding of how sex hormones regulate the functional and structural 

architecture of higher-order cognitive and AD-sensitive circuits in the human brain. 

Our current understanding of how female endocrine aging impacts the brain 

stems from studies identifying fairly coarse regional differences in brain activity or 

morphology as a function of women’s menopausal status (Jacobs and Goldstein, 

2018). The degree to which menopause relates to neurophysiological changes in 

brain connectivity represents a significant knowledge gap that has yet to be 

adequately examined. Here, I combined techniques from network neuroscience and 

neuroendocrinology to determine how aspects of endocrine aging (i.e., menopause 

stage and symptoms) alter the topology of intrinsic functional brain networks. Based 

on our team’s previous work (see Studies 1 and 2), I predicted that ovarian decline 
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will preferentially and negatively impact the functional topology of the Default Mode 

(DMN), Frontal Control (FCN), and Dorsal Attention Networks (DAN). 

B. Methods 

Participants 

We recruited 99 midlife women (ages 43–60) from the greater Santa Barbara 

community to participate in the ‘Midlife Hormones and Cognition Study’. 

Exclusionary criteria included no history of hormone-replacement therapy, no current 

use of hormonal contraceptives, no MRI contraindications, and no major medical 

disorders. After quality control assessments, 14 women were excluded due to 1) 

incomplete or low-quality data, 2) confounding medication intake on the day of 

testing (e.g., prednisone), or 3) exceedingly high levels of estradiol (>300 pg/mL), 

likely due to the testing day not falling within the early-to-mid follicular phase of the 

participant’s cycle. The latter exclusion did not significantly impact the results. The 

final subject population (N=85) was enriched to include women at distinct stages of 

reproductive aging: premenopausal (N=32), perimenopausal (N=28), and 

postmenopausal (N=25) women. While the analyses here focus on endocrine aging 

in women, the larger parent study also included age-matched male subjects (N=38).  

No group-level differences were observed in body mass index (BMI), years of 

education, or verbal intelligence (American National Adult Reading Test; Grober et 

al., 1991). As expected, there were significant chronological age differences by 

group (F(2, 82) = 52.33, p < .001), with advancing endocrine age related to older 

chronological age (p < .05) (Table 5.1). 
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Study Procedure 

Subjects completed one 4-hour test session at the University of California, Santa 

Barbara (UCSB) (Fig. 5.2A). Women who were still menstruating were tested in the 

early follicular phase (day 2–5) of their menstrual cycle, pursuant to subject report. 

Each subject underwent a time-locked 2-hour MRI scanning session consisting of 

structural and functional sequences, followed by a blood draw to assess 

hypothalamic–pituitary–gonadal axis (HPG) hormones. Endocrine samples were 

collected, at minimum, after two hours of no food or drink consumption (excluding 

water) and standard caffeine intake was requested on the experiment day. A 

detailed medical history was acquired to assess diagnoses of chronic diseases, 

medications, lifetime and current substance use, and reproductive history (e.g., 

age at menarche, history and duration of hormonal birth control use, parity, 

fertility treatments, breastfeeding, reproductive surgeries).  

Additional assessments were collected on the day of testing, including mood 

and health/lifestyle factors that might impact or mediate the effect of endocrine aging 

on the brain and subsequent cognitive performance, such as perceived stress 

(Cohen et al., 1983), sleep quality (Buysse et al., 1989), and vasomotor symptoms. 

A composite ‘symptom score’ was computed by summing participants’ self-reported 

frequency of menopause-related symptoms over the last 14 days, including vaginal 

dryness, irritability, hot flashes, and night sweats. The composite symptom 

frequency did not significant differ by group (Fig. 5.2F, Table 5.1). Pearson’s 

product-moment correlation matrices were computed between sex hormones 

(estradiol, progesterone, FSH), menopausal symptoms (night sweats, hot flashes, 
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irritability, vaginal dryness), and state-dependent measures (perceived stress, sleep 

quality). Vasomotor symptoms, in particular, were significantly associated with HPG-

axis hormones: FSH was positively correlated with night sweats (r = 0.28, p = .03) 

and hot flashes (r = 0.39, p < .001), while estradiol demonstrated a negative 

relationship with frequency of hot flashes (r = -0.31, p = .01). As expected, individual 

menopausal symptoms were correlated to each other (p < .05) (Fig. 5.2B). 

 

Endocrine Assessments 

A licensed phlebotomist inserted a saline-lock intravenous line into the dominant or 

non-dominant hand or forearm to evaluate hypothalamic-pituitary-gonadal axis 

hormones, including serum levels of gonadal hormones (17β-estradiol, progesterone 

and testosterone) and the pituitary gonadotropins luteinizing hormone (LH) and 

follicle stimulating hormone (FSH). One 10cc mL blood sample was collected in a 

vacutainer SST (BD Diagnostic Systems) from each participant. The sample clotted 

at room temperature for 45 min until centrifugation (2000 × g for 10 minutes) and 

were then aliquoted into three 1 ml microtubes. Serum samples were stored at -20°C 

until assayed.  

Serum concentrations were determined via liquid chromatography-mass 

spectrometry (for all steroid hormones) and immunoassay (for all gonadotropins) at 

the Brigham and Women’s Hospital Research Assay Core. Assay sensitivities, 

dynamic range, and intra-assay coefficients of variation were as follows, 

respectively: estradiol, 1 pg/mL, 1-500 pg/mL, < 5% relative standard deviation 

(RSD); progesterone, 0.05 ng/mL, 0.05-10 ng/mL, 9.33% RSD; FSH and LH levels 
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were determined via chemiluminescent assay (Beckman Coulter). The assay 

sensitivity, dynamic range, and the intra-assay coefficient of variation were as 

follows: FSH, 0.2 mIU/mL, 0.2-200 mIU/mL, 3.1-4.3%; LH, 0.2 mIU/mL, 0.2-250 

mIU/mL, 4.3-6.4%. 

 

Menopausal Staging 

The timing of the menopausal transition, between the first clinical appearance of 

decreased ovarian function (i.e. shorter inter-menstrual time periods) to menstrual 

irregularity and final amenorrhea, is variable. Midlife women were sampled at 

various states of ovarian decline (Fig. 5.2C–E): some women were in menopause 

with permanent amenorrhea, low estradiol levels and elevated gonadotropins; some 

exhibit signs of follicular failure (elevated FSH and oligo-amenorrhea); and some 

show normal cycling patterns. Reproductive histories and hormonal evaluations 

determined women’s reproductive stage categorization, following the Stages of 

Reproductive Aging Workshop-10 criteria (Harlow et al., 2012). Principal staging 

criteria were based on menstrual cycle characteristics, with supportive criteria 

provided by FSH levels. Women fell within the late reproductive stage 

(‘premenopause’), menopausal transition (‘perimenopause’), or early 

postmenopause (‘postmenopause’).  

 

MRI 

Each participant completed an MRI scan on a Siemens 3T Prisma scanner equipped 

with a 64-channel phased-array head coil at the UCSB Brain Imaging Center. High-
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resolution anatomical scans are acquired using a T1-weighted magnetization 

prepared rapid gradient echo (MPRAGE) sequence with 0.8mm3 thickness, followed 

by a gradient echo fieldmap (TR = 785 ms, TE1 = 4.92ms, TE2 = 7.38ms, flip angle 

= 60). Participants completed an 8-min resting-state fMRI scan using a T2*-

weighted echo-planar imaging (EPI) sequence sensitive to the blood oxygenation 

level-dependent (BOLD) contrast (72 oblique slices, TR = 2000ms, TE = 37ms, 

voxel size = 2 mm3, flip angle = 52). Note that physiological recordings were not 

collected during scanning. 

 

fMRI preprocessing 

Initial preprocessing was performed using the Statistical Parametric Mapping 12 

software (SPM12, Wellcome Trust Centre for Neuroimaging, London) in Matlab. 

Functional data were realigned and unwarped to correct for head motion and 

geometric deformations due to motion and magnetic field inhomogeneities. 

Registration and normalization were performed using Advanced Normalization Tools 

(version 2.3.5) (Tustison et al., 2014). The mean motion-corrected image was first 

registered to the high-resolution anatomical scan, then all functional images were 

registered to the mean motion-corrected image. All images were normalized to 

standard MNI space for between-subject comparison. A 4 mm full-width at half-

maximum (FWHM) isotropic Gaussian kernel was subsequently applied to smooth 

the functional data. Further preparation for resting-state functional connectivity was 

implemented using in-house Matlab scripts. Global signal scaling (median = 1,000) 

was applied to account for fluctuations in signal intensity across space and time, and 



 
 

90 

voxelwise timeseries were linearly detrended. Residual BOLD signal from each 

voxel was extracted after removing the effects of head motion and five physiological 

noise components (CSF + white matter signal). Motion was modeled based on the 

Friston-24 approach, using a Volterra expansion of translational/rotational motion 

parameters, accounting for autoregressive and nonlinear effects of head motion on 

the BOLD signal (Friston et al., 1996). Our use of coherence allows for the 

estimation of frequency-specific covariances in spectral components below the 

range contaminated by physiological noise.  

 

Functional connectivity estimation 

Functional network nodes were defined based on a 400-region cortical 

parcellation (Schaefer et al., 2018) (Fig. 5.3A). To note, subcortical connectivity was 

not assessed here. For each participant, a summary timecourse was extracted per 

node by taking the first eigenvariate across functional volumes (Friston et al., 2006). 

These regional timeseries were then decomposed into several frequency bands 

using a maximal overlap discrete wavelet transform. Low-frequency fluctuations in 

wavelets 3-6 (~0.01-0.17 Hz) were selected for subsequent connectivity analyses 

(Patel & Bullmore, 2016). We estimated the spectral association between regional 

timeseries using magnitude-squared coherence: this yielded a 400 × 400 functional 

association matrix for each subject (Fig. 5.3B), whose elements indicated the 

strength of functional connectivity between all pairs of nodes (FDR-thresholded at q 

< .05). Coherence offers several advantages over alternative methods for assessing 

connectivity: 1) estimation of frequency-specific covariances, 2) simple 
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interpretability (values are normalized to the [0,1] interval), and 3) robustness to 

temporal variability in hemodynamics between brain regions, which can otherwise 

introduce time-lag confounds to connectivity estimates via Pearson correlation. 

With respect to brain states, we modeled factors related to macroscale 

network topologies. Specifically, we computed measures of within-network 

integration (global efficiency, quantifying the ostensible ease of information transfer 

across nodes inside a given network) and between-network integration (the 

participation coefficient; i.e. the average extent to which network nodes are 

communicating with other networks over time). These were derived using the 

relevant functions for weighted graphs in the Brain Connectivity toolbox (Rubinov & 

Sporns, 2010). For global efficiencies, the 400 x 400 matrices were subdivided into 

smaller network-specific matrices as defined by our parcellation, yielding estimates 

of integration only among within-network nodes. Estimation of participation 

coefficients took the full (400 x 400) FDR-thresholded coherence matrices along with 

a vector of network IDs, quantifying the extent to which each node was connected to 

other nodes outside of its own network; summary, mean participation coefficients 

were then obtained for each network across its constituent nodes.  

 

Statistical analysis 

The following statistical analyses were conducted in R (version 3.4.4).  

 

One-way Analysis of Variance (ANOVA) models were used to examine mean 

differences in sex hormones and network metrics between pre, peri, and 

postmenopausal groups. Multivariate regression analysis was used to predict 
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network topologies (global efficiency, network participation) by 1) sex hormones, 2) 

menopause status, symptomology, and the interaction between the two independent 

variables, and 3) chronological age, menopause status, and the interaction between 

the two independent variables. Lastly, we computed Pearson’s product-moment 

correlations to examine linear relationships between endocrine factors (e.g., 

symptoms, hormones), chronological age, and network metrics (e.g., global 

efficiencies and network participation)   

Dummy coding for menopause status (treated as discrete variable) in 

regression analyses was done automatically in R, with pre-menopausal women 

serving as the reference group. All significant associations reported below survived 

multiple comparisons correction (FDR-correction, q < .05). 

 

C. Results 

Endocrine Assessments 

 Analysis of sex steroid hormone and gonadotropin concentrations confirmed the 

expected hormonal profiles across the menopausal transition (Table 5.1, Fig. 2C-E). 

Significant group differences were observed for estradiol, F(2, 82) = 13.67, p < .001, 

with significantly lower concentrations in the postmenopausal group compared to 

premenopausal (p < .001) and perimenopausal (p < .001) women. A similar pattern 

was observed for progesterone, F(2,82) = 5.64, p = .005, with significantly lower 

concentrations in postmenopausal versus premenopausal women (p = .005). The 
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opposite pattern was observed for FSH, F(2,82) = 60.06, p < .001, which increased 

as a function of advancing menopause status (post > peri > pre, p < .05).  

Figure 5.2. Midlife women at various states of ovarian decline were recruited to participate in our 
study. A) Subjects completed one 4-hour test session, involving a 2-hour MRI session followed by 
a blood draw to assess ovarian hormone concentrations. B) A correlation matrix was computed to 
assess relationships between sex hormones, state-dependent measures, and menopausal 
symptoms. Cooler colors indicate negative correlations, warm colors indicate positive correlations. 
C-E) Average sex hormone concentrations differ by menopause stage, with decreasing ovarian 
hormones and increasing gonadotropins as a function of advancing endocrine age F) Composite 
symptom scores were computed by tallying the frequency of common vasomotor and neurological 
symptoms (e.g., night sweats, hot flashes, irritability, and vaginal dryness) over the last two weeks. 
Displayed here by menopause stage. Error bars indicate ± SEM. Asterisks indicate significant 
correlations after FDR-corrected at q < 0.05, p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Abbreviations: FSH, 
Follicle Stimulating Hormone.  
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Functional network topologies, sex hormones, and menopause status 

We first sought to examine the relationship between network connectivity and sex 

hormones across all 85 participants via linear regression. Weak negative 

relationships were observed between estradiol and Limbic Network B global 

efficiency (R2 = .08, F(1,83) = 7.29, p = .008) and network participation (R2 = 

.06, F(1,83) = 5.52, p = .02). Similar negative relationships were observed between 

estradiol and network participation among Control Networks B (R2 = .06, F(1,83) = 

5.11, p = .03) and C (R2 = .06, F(1,83) = 5.29, p = .02). No other relationships with 

hormones were observed.  

The sensitivity of Limbic Network B was extended when examining topology 

by menopausal stage (R2 = .18, F(2,82) = 5.29, p < .001). Here, postmenopausal 

women demonstrated slightly higher global efficiency compared to pre and 

perimenopausal groups. Taking these results together, estradiol may be an 

important driver of these group-level differences given the inherently lower estradiol 

concentrations among postmenopausal women. However, it is important to note that 

regions belonging to the Limbic B network all fall within orbitofrontal cortex, an area 

of the brain sensitive to extraneous noise (e.g., signal dropout, distortion from 

magnetic field inhomogeneities due to proximity of sinuses; Cordes et al., 2000). As 

such, these results must be interpreted with caution. No other group differences 

were observed (Fig. 5.3A-C, Appendix C). 
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Interactions between menopause status and symptoms  

We then asked whether the frequency of menopause symptoms — a hallmark of the 

menopausal transition — would play a role in shaping functional network topologies.  

 

Within-network connectivity 

Among postmenopausal women, frequent symptoms were associated with 

decreased within-network connectivity among several higher-order brain networks. 

Among Control (A/B), Default Mode (A), and Salience/Ventral Attention (A/B) 

Networks, multiple regression analysis revealed a significant main effect of 

Figure 5.3. In this study, we determined how aspects of endocrine aging alter the topology of 
intrinsic functional brain networks. A) Functional network nodes were defined based on the 
Schaefer 400-region cortical parcellation and averaged across networks defined by the 17-
network Yeo/Schaefer scheme (Yeo et al., 2011, Schaefer et al., 2018). B) A summary timecourse 
was extracted per node, yielding a 400 × 400 coherence matrix between all nodes for each 
subjects. C-E) No differences in global efficiency within the predicted association networks were 
observed between the three menopausal groups. Error bars indicate ± SEM. Abbreviations: DMN 
= Default Mode Networks; VisPeri = Visual Peripheral Network; SomMot = Somatomotor 
Networks; VisCent = Visual Central Network; Cont = Control Networks; TempPar = Temporal 
Parietal Network; DorsAttn = Dorsal Attention Networks; SalVentAttn = Salience / Ventral 
Attention Networks.  
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postmenopausal status on global efficiency, indicating that individuals with advanced 

endocrine age had slightly higher within-network connectivity. However, these 

effects were attenuated by a significant negative interaction between symptomology 

and post-menopause status, suggesting that the impact of frequency symptomology 

on network connectivity may be dependent on where women are at in the transition 

period (see Table 5.2, Fig. 5.4B, and Appendix C for full reporting of model 

estimates).  

Figure 5.4. Interactions between menopause status and symptoms in predicting global efficiencies 
of large-scale networks. A) A spatial map of large-scale networks sensitive to endocrine aging. B) 
Among postmenopausal women, frequent symptoms were associated with decreased within-
network connectivity among Control, Default, and Attention Subnetworks. C) A highly similar 
pattern emerged when examining network participation in relation to endocrine aging factors. This 
appeared to be a widespread pattern, as the majority of networks were implicated. See Appendix 
for a complete report; select networks shown here for consistency with global efficiency results. 
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A handful of networks showed heightened sensitivity to these interactions. For 

Dorsal Attention Network B, multiple regression analyses also revealed a significant  

main effect of symptomology (b = .03, SE = .008, p = .002) and postmenopausal 

status (b = .11, SE = .04, p = .01) on global efficiency, indicating that individuals with 

frequent symptoms and advanced endocrine age had higher within-network 

connectivity. Again, these effects were attenuated by a significant negative 

interaction between symptomology and peri/postmenopausal status (peri: b = -.02, 

SE = .01, p = .04; post: b = -.04, SE = .01, p = .001), suggesting that connectivity 

among this network may be reduced earlier in the menopausal transition depending 

on symptom frequency. The same pattern of results was observed for Limbic 

Network A global efficiency. Importantly, within-network connectivity among sensory 
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networks (e.g., Somatomotor and Visual), displayed no relationships with endocrine 

aging.  

 

Between-network connectivity 

A highly similar pattern of findings was observed for network participation, wherein 

postmenopausal stage and symptom frequency interactions consistently emerged to 

predict a decrease in network participation among most all 17 networks. The most 

sensitive networks appeared to be Control, Default, Limbic, and Attention 

subnetworks (see Fig. 5.4C). These widespread relationships highlight the potential 

for a global shift in communication between 

nodes across the cortex as a function of 

increasing symptomology and endocrine age. 

See Appendix C for a complete reporting of 

results. 

 

Functional network topologies and chronological 

age 

Despite significant differences between groups, 

chronological age did not seem to play a role in 

the relationship between endocrine aging and 

functional connectivity. No significant 

relationships were observed between age and 

network topologies when looking 

Figure 5.5.  Despite differences across 
menopausal groups, chronological age 
shows no relationship with network 
metrics at the individual level (A) or 
when incorporated into a regression 
model with menopause status (B). 
Shown here is DMN A, but this applies 
to all networks.  
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independently (Fig. 5.5A) or when including age in the regression models (Fig. 

5.5B), all p > .05. To note, chronological age was not controlled for in symptomology 

⨉ menopause regression models due to the high collinearity between chronological 

and endocrine age. 

D. Discussion 

Most women will spend 1/3rd of their lives in the post-reproductive years, yet 

cognitive neuroscientists largely overlook how the depletion of sex steroid hormones 

during menopause shapes the brain (Taylor et al., 2019). As a result, a major gap in 

the brain imaging literature is understanding how the brain’s intrinsic functional 

networks change throughout menopause when sex hormone production declines 

precipitously. Here, we leveraged techniques from network neuroscience to begin 

filling this gap, revealing that the frequency of menopausal symptoms likely 

exacerbates intrinsic brain network connectivity decline in post-menopausal women, 

especially among association networks (e.g., DMN, Control, Attention, Limbic).  

 When examining network topology in relation to menopausal group or sex 

hormones alone, few significant relationships emerged. This is perhaps unsurprising, 

considering the highly variable nature of individuals’ response to ovarian hormone 

decline in midlife (Avis et al., 2015). Some women are barely impacted by hormonal 

withdrawal, while others struggle with frequent and severe vasomotor and 

neurological symptoms over the course of months to years (Freeman et al., 2011; 

Avis et al., 2015; Brinton et al., 2015; Maki and Thurston, 2020). These symptoms, 

especially hot flashes, negatively impact known regulators of brain function, 
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including sleep quality (de Zambotti et al., 2014), blood pressure (Jackson et al., 

2016), and memory function (Maki et al., 2020). In our own midlife sample, night 

sweats and vaginal dryness were associated with increased irritability.  

An emerging literature has provided evidence to suggest that vasomotor 

symptoms may be key determinants of menopause-induced brain changes, over and 

above endogenous hormone levels and/or broad menopause categorizations (Maki 

and Thurston, 2020). In one recent study, the frequency and severity of physiologic 

hot flashes were shown to be associated with increased DMN connectivity among a 

sample of predominantly postmenopausal women (Thurston et al., 2015). This 

relationship was strongest when hot flashes occurred during the night, interrupting 

sleep. Hot flashes have also been linked to increased brain activity during a verbal 

working memory task (Maki et al., 2020). In both studies, the findings were 

independent of serum hormone concentrations. In this study, I incorporated 

menopausal symptomology (i.e., night sweats, hot flashes, vaginal dryness, 

irritability) as a variable of interest in models predicting brain connectivity to better 

capture meaningful differences in an individual’s experience with menopause. Once 

accounting for these major aspects of endocrine aging concurrently, interesting 

relationships began to emerge. To note, a similar pattern of results held when only 

incorporating the frequency of night sweats and hot flashes, suggesting that 

vasomotor symptoms may have the biggest impact on brain dynamics. 

When looking across the entire sample of women, the frequency of symptoms 

was associated with increased connectivity. However, this was only apparent with 

respect to Dorsal Attention Network B, Limbic Network A, Somatomotor Network A, 
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and Control Network A. Between-network connectivity among Attention, Limbic, 

Somatomotor, Visual, and Limbic (A) networks displayed similar positive 

relationships with symptoms. Dorsal Attention Network B, which is comprised of 

regions implicated in somatic sensation (i.e., postcentral gyrus) appeared to be the 

most sensitive. Interestingly, symptomology alone was not tied to DMN connectivity 

in this sample; rather, these findings suggest that a wider range of large-scale brain 

networks may be sensitive to these neurological and vasomotor symptoms. A 

number of factors could be driving the differences between these findings and the 

previous study, including 1) differences in how we define connectivity — seed-based 

versus the atlas-based approach I used here, 2) how we measured symptomology 

— skin conductance monitoring versus self-report, 3) sample size differences (18 vs. 

85), and/or 4) the hormonal profiles of the participants — here, the sample was 

made up of women at various stages of endocrine decline, including pre and 

perimenopausal women. Regardless, future work with larger cohorts of women, 

paired with objective measures of symptom severity and frequency, will be 

necessary to establish how menopausal symptomology — present in 70% of women 

— shapes intrinsic brain network connectivity. 

Once accounting for symptom frequency in the models, main effects of 

menopause status emerged. Postmenopausal women conferred slightly greater 

network connectivity compared to pre and perimenopausal groups. For network 

participation, this seemed to be a global effect; for global efficiency, this was only 

observed in a handful of higher-order networks. This pattern may reflect a 

compensatory response rather than a heightened advantage due to decreased 
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presence of sex hormones. Evidence for a ‘compensatory’ response throughout 

menopause has been shown in previous investigations by Emily Jacobs and 

colleagues (see review: Jacobs and Goldstein, 2018). For example, their team found 

that postmenopausal women showed greater dorsolateral PFC and hippocampal 

activity compared to premenopausal women during a verbal working memory task, 

going on to reveal that the magnitude of activity and the strength of functional 

connectivity in these regions was associated with task performance (Jacobs et al., 

2016a). One hypothesis is that the postmenopausal brain may have to expend more 

energy to properly integrate and segregate with other regions compared to pre and 

perimenopausal states. This idea is strengthened with the knowledge that decreased 

DMN connectivity, for example, has been associated with improved memory 

performance (Daselaar et al., 2004).  

However, this slight increase in connectivity was attenuated once considering 

interactions between menopause stage and symptomology — interestingly, only 

among postmenopausal women. These findings may be reflective of the ‘double hit’ 

hypothesis put forth in the aging literature (see Morrison and Baxter, 2012), wherein 

the loss of neuroprotective hormones after menopause, compounded by frequent 

menopause-related symptoms, may be drivers of decreases in both within- and 

between network connectivity. This presents the possibility that a compensatory 

response is no longer viable when frequent and/or severe neurological symptoms 

are present. However, more work is needed to support this idea, clarifying why there 

may be increased functional connectivity in postmenopausal and whether this has 
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any bearing on cognitive outcomes. In the future, I will examine the relationship 

between endocrine aging and task-based fMRI in this same sample of women. 

Implications for endocrine modulation of large-scale brain networks 

The application of network science techniques to the study of the brain has 

allowed neuroscientists to move beyond examining individual regions in isolation, 

instead granting us the ability to understand how functional networks distributed 

across broad swaths of cortex support cognition (Bullmore and Bassett, 2011). 

Intrinsic functional connectivity of large-scale brain networks changes as a 

function of chronological age (Andrews-Hanna et al., 2007), differs by sex 

(Scheinost et al., 2015), and disease states (Buckner et al., 2009; Seeley et al., 

2009). A central feature of healthy brain network connectivity is the presence of a 

set of highly interconnected hubs that support information flow between regions 

(Bullmore and Bassett, 2011). Due to high metabolic demands, these hubs are also 

the most vulnerable to degeneration. Indeed, clinical neuroscience studies have 

revealed consistent patterns of brain network disruption in neurological disorders 

(Stam, 2014). Hub nodes within the DMN (e.g. posterior cingulate cortex, 

precuneus), as well as highly-connected brain regions in temporal, parietal, and 

frontal association areas, are dysregulated in AD (Minoshima et al., 1997; Greicius 

et al., 2004; Palmqvist et al., 2017;). High spatial overlap exists between these DMN 

hubs and amyloid beta deposition (Pascoal et al., 2019) and several studies suggest 

that disruptions in DMN connectivity may be an early neural marker of AD 

pathophysiology before clinical symptoms emerge (Buckner et al., 2009). What 

physiological properties make these hubs so prone to damage? 
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Endocrine status also plays an integral role in maintaining and shaping 

properties of large-scale brain networks, particularly the DMN (Pritschet et al., 2021). 

In this study, I demonstrated that features of menopause — a key endocrine 

transition state that involves hormones going offline — are linked to decreasing 

global efficiency and network participation in the DMN, as well as other major higher-

order circuits (e.g., Frontal Control Network; Dorsal and Ventral Attention Networks). 

As such, endocrine aging, over and above chronological aging, may uniquely impact 

functional properties of the brain in midlife, placing these hub nodes in a vulnerable 

state and providing a sex-specific pathway contributing to women’s increased risk for 

AD decades prior to disease onset.  

 

Limitations and considerations 

It is important to note the limitations of this study. For one, although statistically 

significant, the effects are relatively subtle, explaining a small amount of variance. 

This may be due to the heterogenous nature of a cross-sectional design, 

exacerbated by the low sample size at the group-level (Marek et al., 2022) and short 

scanning duration (Noble et al., 2017). Although our study sample was tightly 

controlled with respect to reproductive and medical exclusionary criteria, 

confounding factors (e.g., undiagnosed medical conditions, lifestyle, and 

environment) can still permeate. Future studies with larger sample sizes and 

improved temporal resolution will be necessary to establish state- and trait-level 

features of the functional connectome that emerge during the menopausal transition.  
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 Another key limitation in this study is our inability to quantify how the 

menopausal transition changes the brain; given the cross-sectional nature, we can 

only identify differences between the stages. Changes in sex hormones, over and 

above absolute concentrations, are key drivers of brain state alterations and place 

the brain in a vulnerable state among a subset of women (Schiller et al., 2016). 

Future work using longitudinal and dense-sampling designs will be key to 

establishing how the rate and trajectory of change in brain structure and function 

may dictate cognitive, behavior, and health outcomes among midlife women in post-

reproductive years. Increasing the frequency of within-person measurements can 

also provide better opportunities to identify neural biomarkers that can lead to 

individualized inferences, detection, and treatment of psychiatric and neurologic 

conditions that emerge during hormonal transition periods (e.g., major depression). 

Further, deeply characterizing this midlife period may help us identify at-risk 

individuals in the earliest stages of neurodegeneration and may suggest new 

lines of preventative treatment (e.g., hormone therapy) for AD and cognitive 

decline in peri and early postmenopausal years. The women in this study were 

ostensibly healthy, as determined by strict medical and reproductive exclusionary 

criteria. Future studies should prioritize the recruitment of enriched sample of 

individuals with varied genotypes, lifestyle factors, environment exposures, and 

health conditions in pursuit of more ecologically valid models of disease risk as a 

function of endocrine aging. 

 Finally, the findings presented here are based upon a single imaging 

modality, resting-state fMRI. However, the menopause transition is a neurological 
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transition state that involves global shifts in biological features inherently tied to 

basic principles of fMRI, such as glucose metabolism, hemodynamics, and 

microstructure (Brinton et al., 2015). Considering widespread differences in network 

participation were observed across the whole brain as a function of menopausal 

status, it is highly likely that global shifts among other latent variables are driving this 

effect. Future planned analyses include taking a multi-modal approach (e.g., 

combining structural, functional, and diffusion MRI) to better understand the impact 

of endocrine aging on various brain dynamics. This may shed new light on these 

intrinsic brain network connectivity findings, in turn improving our interpretation of 

what happens during this midlife period. For instance, vasomotor symptoms have 

recently been linked to heightened white matter hyperintensities (Thurston et al., 

2023). Therefore, it is imperative that we examine whether structure–function 

relationships start to decouple in midlife, and whether this is accelerated by 

menopausal status or symptomology. My findings suggest that major aspects of 

endocrine aging interact to impact the brain’s functional architecture among midlife 

women. 

 

Endocrine aging from a lifespan perspective  

How does a woman’s lifespan reproductive history shape brain aging trajectories? 

Why, how, and over what time course? Focusing exclusively on factors related to 

menopause may not provide us with a complete understanding of the endocrine 

basis of brain aging and subsequent AD risk. For example, does age of initiation or 

duration of oral contraceptive use alter age-related changes in brain morphology? 
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Do common medications that suppress sex hormone levels (e.g. Lupron for 

endometriosis) have enduring effects on brain structure, function, and cognition? 

Although we collected extensive reproductive histories in this study, we do not have 

the statistical power to assess the relationships between lifespan endocrine events 

and brain function. Population-level consortium studies, such as UkBiobank, have 

the statistical power to ask these questions and have begun shedding light on some 

of these unanswered questions (Taylor et al., 2021). For one, it was recently 

revealed that the number of pregnancies can be traceable in brain structure and 

function decades later (de Lange et al., 2019, Orchard et al., 2020). Establishing 

these relationships at the population level can then help guide tightly controlled 

follow up studies.  
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6 
Conclusions 

 

Despite 20 years of evidence from rodent, nonhuman primate, and human studies 

demonstrating the tightly coupled relationship between our endocrine and nervous 

systems (Hara et al., 2015; Frick et al., 2018; McEwen, 2018; Beltz and Moser, 

2019), the field of cognitive neuroscience has largely overlooked how endocrine 

factors shape the brain (Taylor et al., 2021). The dynamic endocrine changes that 

unfold over the menstrual cycle, during gestation, and across the menopause 

transition are natural features of half of the world’s population. This collective body of 

work provides further evidence that basic neuroendocrine events significantly shape 

brain morphology and function over previously unexplored windows of time.  

 

Applying dense-sampling to reveal endocrine modulation of the nervous system 

The unique strength of these precision imaging studies derives from their ability to 

capture, with high spatial and temporal resolution, the brain’s response to a central 

feature of the mammalian endocrine system: hormonal rhythmicity (Pritschet et al., 

2021).  

In Study 1, we observed robust increases in coherence across the brain as a 

function of increasing estradiol across the menstrual cycle. In contrast to estradiol’s 
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proliferative effects, progesterone was primarily associated with reduced coherence 

across the whole brain. When used time-lagged methods from dynamical systems 

analysis to test the temporal directionality of these associations, we found that 

estradiol most strongly enhances within-network integration in the DMN and DAN. 

These results were replicated in the follow-up study (where progesterone, but not 

estradiol, was selectively suppressed), further strengthening the notion that estradiol 

drives changes in network connectivity. In fact, across both studies, estradiol often 

predicted brain states better than previous states of the brain itself. 

However, questions remained regarding how hormones shape large-scale 

functional brain network reorganization: which nodes are driving this network 

reorganization and how do they reorganize? Our team has since worked to further 

our understanding of the brain’s response to the menstrual cycle at the mesoscopic 

level. In collaborator with Joshua Mueller and Jean Carlson, we applied methods 

from complex systems analysis—dynamic community detection (DCD)—to identify 

periods of time when functionally coupled regions began to shift the network 

communities with which they were affiliated: so-called network ‘flexibility’. Despite a 

large degree of network stability over the menstrual cycle, a striking reorganization 

event occurred within the DMN, coincident with the peaks in serum estradiol (Mueller 

et al., 2020). During the 3-day ovulatory window, the DMN core split into two smaller 

groups, leading to the transient formation of a new functional community. This was 

one of only two large-scale reorganization events—the other occurring during the 

luteal phase’s secondary peak in estradiol, which involved an overlapping set of 

nodes located predominantly within the PFC (Mueller et al., 2021). 
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While DCD expanded upon our earlier finding by highlighting cycle-dependent 

alterations in DMN organization, unique effects emerged when comparing naturally-

cycling (Study 1) and oral contraceptive (Study 2) conditions. Our original 

investigation revealed that estradiol’s ability to drive global efficiency within the DMN 

was invariant to condition (i.e. evident under naturally cycling conditions and when 

progesterone was selectively suppressed). In contrast, a closer look with DCD 

revealed increased DMN network flexibility only during ovulation: networks were 

largely stable under the oral contraceptive regimen, with no major reorganizations 

despite the fact that fluctuations in estradiol were on par with those observed under 

naturally cycling conditions. It is possible that hormone-driven changes in 

subnetwork organization are specific to conditions in which gonadotropins and 

ovarian hormones exert coordinated action in the brain, as occurs across the 

menstrual cycle.  

In addition to sex hormone–driven changes in the functional connectome, the 

28andMe dataset was also leveraged by team member Caitlin Taylor to reveal 

hormone-related changes in morphology over short timescales (Taylor et al., 2020). 

Using high-resolution hippocampal subfield imaging, she discovered that 

endogenous hormone fluctuations and exogenous hormone manipulations alter 

medial temporal lobe morphology. Across the menstrual cycle, intrinsic fluctuations 

in progesterone were associated with volumetric changes in CA2/3, entorhinal, 

perirhinal, and parahippocampal cortex. Chronic progesterone suppression 

abolished these cycle-dependent effects. These results suggest progesterone has 
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the ability to dynamically shape medial temporal lobe morphology over rapid 

timescales.  

The work presented in Study 2 offers us the first atlas of the human brain 

across gestation. Notably, the fetal brain has received considerable attention over 

the past decade, with scientists generating increasingly intricate MRI-based maps of 

fetal brain development as early as ~20 weeks’ gestation (Thomason, 2020). A 

comparable understanding of the maternal brain is lacking. Our novel findings reveal 

that the gestational period is characterized by sweeping reductions in gray matter 

volume, widespread cortical thinning, and enhanced white matter microstructural 

integrity that unfold week by week. Ventricle enlargement and contraction parallels 

these cortical changes. Critically, dynamic neural changes occur within the 

pregnancy window itself, a nuance not captured by studies limited to pre- versus 

post-pregnancy comparisons. For example, white matter microstructural integrity 

increases throughout the first and second trimester, before returning to baseline 

values by the first postpartum scan. Other measures, such as GMV and cortical 

thickness, decrease throughout gestation and display a modest rebound postpartum. 

Interestingly, the only subcortical region to show sensitivity to pregnancy was the 

PHC — an area of the brain we also demonstrated to be influenced by hormone 

fluctuations in 28andMe (Taylor et al., 2020). Together, these non-linear patterns 

underscore the utility of precision imaging to capture the full dynamic range of 

changes that unfold within the gestational window — and more fully represent the 

brain’s remarkable metamorphosis during pregnancy. 
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The neuroanatomical changes that unfold during matrescence have broad 

implications for understanding individual differences in parental behavior, vulnerability to 

mental health disorders, and brain aging patterns. Precision mapping of the maternal brain 

lays the groundwork for a greater understanding of the subtle and sweeping structural, 

functional, behavioral, and clinical changes that unfold across gestation. Such pursuits will 

advance our basic understanding of the human brain and its remarkable ability to undergo 

protracted plasticity well into adulthood. 

 

The wax and wane of brain networks over the lifespan  

The studies shown here provide evidence that endocrine status is linked to the 

reorganization of the structural and functional connectome in humans, revealing a 

consistent set of networks that appear to be the most sensitive to changing 

hormonal milieus, especially the Default Mode Network. After the onset of puberty, 

hub nodes of the DMN display sex-specific perfusion trajectories, with females 

displaying increases in cerebral blood flow compared to males (Satterthwaite et al., 

2014). Across the menstrual cycle, our team demonstrated that functional 

connectivity is altered in response to fluctuations in sex hormones (Pritschet et al., 

2020; Mueller et al., 2021). Further, our group and others show that pregnancy leads 

to reductions in gray matter volume in regions overlapping with the DMN (Hoekzema 

et al., 2017). Lastly, postmenopausal HRT increases DMN resting-state blood flow 

(Maki and Resnick, 2000), and the findings in Study 3 suggest that DMN connectivity 

is influenced by features of the menopausal transition. Interestingly, hubs within 

these networks overlap with ER-rich brain regions, including the posterior cingulate 
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and prefrontal cortex. What might it mean for cognition, behavior, and health if these 

major networks undergo reorganization — continuous wax and waning — over the 

lifespan. Are there benefits? And perhaps more importantly, are there any 

consequences? This likely depends on the individual.  

Throughout the life course, major hormonal transition periods (e.g., puberty, 

pregnancy, initiation of oral contraceptive use, and perimenopause) coincide with an 

increased risk for depression (Rubinow and Schmidt, 2016), especially among 

susceptible women. Are ‘susceptible women’ the ones showing the greatest network 

reorganization in response to hormone fluctuations? If so, does this place them in a 

vulnerable state in post-reproductive years? The DMN is particularly vulnerable to 

AD progression, demonstrating distinct abnormalities in functional connectivity 

compared to healthy controls (Buckner et al., 2009). Notably, DMN connectivity is 

also altered in MDD (Scalabrini et al., 2020), a known risk factor for AD (Herbert and 

Lucassen, 2016). Given that women are disproportionately affected by both AD and 

MDD, and that the DMN is a highly endocrine-modulated network, it is imperative 

that we think about these diseases and disorders with a women’s health lens. 

Further, modeling dynamic changes in these tightly-coupled systems (e.g. 

brain networks, ovarian hormones) in the healthy brain could help us better predict 

the likely consequences of their disruption in the disordered brain. Doing so could 

afford us unique insight as to why hormonally-driven disorders (e.g., postpartum 

depression) emerge in some individuals but not others. However, given the wide 

array of direct and indirect influences sex hormones have on the brain, we must 



 
 

114 

transition to multi-modal (e.g., PET, MRI) and multi-level (e.g., structure, function, 

blood flow, receptor maps) designs. 

 

Future work 

Current studies exploring the impact of endocrine aging on the brain are often 

underpowered, model reproductive factors in isolation, and focus largely on pre vs. 

postmenopausal comparisons (Jacobs and Goldstein, 2018; Taylor et al., 2019). As 

such, it remains unclear how collective factors of endocrine aging—age at 

menopause, surgical versus spontaneous menopause, use of hormone therapy, 

polygenic risk factors—mediate the relationship between menopause and disease 

risk and cognitive decline in post-reproductive years. Beyond menopause itself, how 

do past neuroendocrine events shape current ones? In Study 2, we revealed that 

brain structure does not return to a baseline, pre-pregnancy state. What might this 

mean for brain aging, especially if one undergoes pregnancy several times? The 

same pressing question exists when thinking about the impact of oral hormonal 

contraceptives. What happens to the brain in midlife after decades of hormonal 

suppression? Taking away or modifying sex hormones — neuromodulatory and 

neuroprotective inputs across the brain — is likely to have a widespread effect. The 

answers to these questions are not straightforward, nor easy to address. However, 

only by deeply characterizing the normative effects of sex hormones’ influence on 

the human brain can we begin to understand the drivers of dysfunction. For 

example, applying dense-sampling methods to the menopausal transition would 

allow us to observe how an individual’s brain—especially DMN architecture—
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responds to a changing hormonal milieu decades before disease onset and may 

yield important clues about what constitutes normative reproductive aging versus a 

prodromal period of heightened disease risk.  

The training I have received in graduate school has provided me the vast skill 

set necessary to kickstart these future studies. Future plans include conducting a 

longitudinal menopause study combining multimodal brain imaging, extensive 

reproductive histories, serological assessments, genotyping, and higher-order 

cognitive paradigms to establish the full extent to which menopause changes the 

brain. This approach will greatly improve our ability to later build a comprehensive 

neuroendocrine model of AD risk. Lastly, it is imperative that future studies like the 

one proposed above are representative of all demographics to ensure that women of 

all racial, ethnic, and socioeconomic backgrounds are benefiting from our scientific 

efforts equally. Characterizing how menopause shapes the brain in one 

homogenous group of white women does not get us that much closer to our ultimate 

goal of understanding menopause — this is a priority of mine in all future 

investigations.   
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Figure S4. Whole-brain network similarity by stage of menstrual cycle. (A) 

Experiment days were divided into follicular (left) and luteal (right) stages of the cycle, 

and unthresholded coherence matrices were pairwise correlated with each other in order 

to assess inter-scan similarity in whole-brain patterns of connectivity. Fisher-Z 

transformed estimates are given. This revealed one session (experiment day 26) in the 

luteal stage that was markedly dissimilar relative to other days. (B) Mean nodal 

association strengths by network and hormone, after removing day 26 from the analysis 

shown in Figure 4. Critically, results were robust to this exclusion, suggesting no strong 

dependence on this session. 
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Figure S6. The ovulatory surge in estradiol is a key modulator of whole-brain 

functional connectivity. (A) Removal of the ovulation window in Study 1 (experiment 

days 22-24) almost entirely erases all significant associations between estradiol and 

edgewise coherence. (B) Removing analogously high estradiol days in Study 2 

(experiment days 28-30) also has a strongly diminishing effect. 
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Supplementary Figure 3. Medial temporal subregion volumes across gestation, 
all non-significant at p > 0.05.  

 



 
 

168 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

169 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

Supplementary Figure 4. Relationships between white matter integrity and gestation 
metrics. A) White matter tracts in which mean diffusivity (MD) was positively associated 
with gestational week (FDR q < .001). B) White matter tracts in which quantitative 
anisotropy (QA) was significantly associated with estradiol (FDR q < .001). C) White 
matter tracts in which quantitative anisotropy (QA) was significantly associated with 
progesterone (FDR q < .001). Abbreviations : AC = anterior commisure, AF = arcuate 
fasciculus, CC = corpus callosum, ILF = inferior longitudinal fasciculus, CS = 
corticostriatal tracts, CST = corticospinal tracts, CPT = corticopontine tracts, IFOF = 
inferior frontal occipital fasciculus, ML = medial lemniscus, MCP = middle cerebellar 
peduncle, DT = dentothalamic tract. 
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Supplementary Figure 5. Relationships between neuroanatomy and gestation when 
evaluating UCI sessions only (N=13). A) Gestation week remains significantly associated 
with decreasing total gray matter volume. Most large-scale brain networks remain 
negatively associated with GMV across gestation, except for Visual (Central, Peripheral), 
Limbic (A,B), and Default Mode Network (C) (see Table S1 for patterns across all 
sessions). B) Gestation week remains significantly associated with decreasing 
parahippocampal cortex volume.  
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Appendix C 
 
Supplementary Table 1. Network participation predicted by menopause factors 

Network Term Estimate Std. Error T-Statistic 

Control A 
 
 

Intercept 0.64 0.03 20.24*** 
Meno Status: Peri 0.02 0.05 0.35 

Meno Status: Post 0.16 0.05 3.35** 
Symptom Score 0.02 0.01 1.90 
Symptom X Peri -0.02 0.01 -1.50 

Symptom X Post -0.03 0.01 -2.67* 
F(5,79) = 2.78, p = 0.02, R2 = 0.15 

Control B 

Intercept 0.64 0.03 20.82*** 
Meno Status: Peri 0.00 0.05 0.01 

Meno Status: Post 0.15 0.05 3.37** 
Symptom Score 0.02 0.01 2.04 
Symptom X Peri -0.02 0.01 -1.45 

Symptom X Post -0.03 0.01 -2.74* 
F(5,79) = 3.35, p = 0.01, R2 = 0.17 

Control C 

Intercept 0.58 0.04 14.83*** 
Meno Status: Peri 0.00 0.06 -0.07 

Meno Status: Post 0.20 0.06 3.45** 
Symptom Score 0.03 0.01 2.08 
Symptom X Peri -0.02 0.02 -1.18 

Symptom X Post -0.05 0.01 -3.20** 
F(5,79) = 3.28, p = 0.01, R2 = 0.17 

Default A 

Intercept 0.61 0.03 17.45*** 
Meno Status: Peri 0.00 0.05 -0.04 

Meno Status: Post 0.17 0.05 3.36** 
Symptom Score 0.02 0.01 1.58 
Symptom X Peri -0.01 0.01 -0.98 

Symptom X Post -0.04 0.01 -2.80* 
F(5,79) = 3.07, p = 0.01, R2 = 0.16 

Default B 

Intercept 0.60 0.04 17.08*** 
Meno Status: Peri -0.01 0.05 -0.12 

Meno Status: Post 0.18 0.05 3.47** 
Symptom Score 0.02 0.01 1.77 
Symptom X Peri -0.02 0.01 -1.34 

Symptom X Post -0.04 0.01 -2.82* 
F(5,79) = 3.70, p = 0.004, R2 = 0.19 
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Default C 

Intercept 0.51 0.05 11.10*** 
Meno Status: Peri -0.02 0.07 -0.31 

Meno Status: Post 0.16 0.07 2.38* 
Symptom Score 0.02 0.01 1.03 
Symptom X Peri -0.01 0.02 -0.74 
Symptom X Post -0.03 0.02 -1.53 

F(5,79) = 2.06, p > .05, R2 = 0.12 

Dors A 

Intercept 0.64 0.03 19.33*** 
Meno Status: Peri -0.03 0.05 -0.66 

Meno Status: Post 0.14 0.05 2.86* 
Symptom Score 0.02 0.01 2.14 
Symptom X Peri -0.01 0.01 -1.13 

Symptom X Post -0.03 0.01 -2.63* 
F(5,79) = 3.17, p = 0.01, R2 = 0.17 

Dors B 

Intercept 0.63 0.03 19.74*** 
Meno Status: Peri -0.04 0.05 -0.72 

Meno Status: Post 0.14 0.05 2.98** 
Symptom Score 0.03 0.01 2.73* 
Symptom X Peri -0.02 0.01 -1.51 

Symptom X Post -0.04 0.01 -3.10** 
F(5,79) = 3.91, p = 0.003, R2 = 0.20 

Limbic A 

Intercept 0.41 0.05 8.06*** 
Meno Status: Peri -0.03 0.08 -0.44 

Meno Status: Post 0.28 0.08 3.65** 
Symptom Score 0.03 0.02 1.94 
Symptom X Peri -0.03 0.02 -1.34 

Symptom X Post -0.06 0.02 -3.37** 
F(5,79) = 4.85, p < .001, R2 = 0.23 

Limbic B 

Intercept 0.38 0.05 7.33*** 
Meno Status: Peri 0.01 0.08 0.18 

Meno Status: Post 0.25 0.08 3.24** 
Symptom Score 0.04 0.02 2.61* 
Symptom X Peri -0.04 0.02 -2.07 

Symptom X Post -0.06 0.02 -3.11** 
F(5,79) = 3.68, p = 0.005, R2 = 0.19 

SalVentAttn A 

Intercept 0.56 0.04 13.25*** 
Meno Status: Peri -0.02 0.07 -0.25 

Meno Status: Post 0.21 0.06 3.41** 
Symptom Score 0.03 0.01 2.28* 
Symptom X Peri -0.03 0.02 -1.61 

Symptom X Post -0.05 0.02 -3.17** 
F(5,79) = 3.84, p = 0.004, R2 = 0.20 

SalVentAttn B 
Intercept 0.56 0.04 13.05*** 

Meno Status: Peri -0.01 0.07 -0.15 
Meno Status: Post 0.23 0.06 3.53** 
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Symptom Score 0.03 0.01 2.17 
Symptom X Peri -0.02 0.02 -1.38 

Symptom X Post -0.05 0.02 -3.31** 
F(5,79) = 3.92, p = 0.003, R2 = 0.20 

SomMot A 

Intercept 0.45 0.05 9.41*** 
Meno Status: Peri 0.00 0.07 0.06 

Meno Status: Post 0.20 0.07 2.76* 
Symptom Score 0.04 0.02 2.40* 
Symptom X Peri -0.03 0.02 -1.54 

Symptom X Post -0.05 0.02 -2.73* 
F(5,79) = 2.42, p = 0.04, R2 = 0.13 

SomMot B 

Intercept 0.45 0.05 9.27*** 
Meno Status: Peri 0.04 0.07 0.56 

Meno Status: Post 0.23 0.07 3.23** 
Symptom Score 0.04 0.02 2.48* 
Symptom X Peri -0.04 0.02 -2.03 

Symptom X Post -0.05 0.02 -2.86* 
F(5,79) = 2.88, p = 0.02, R2 = 0.15 

Temp Parietal 

Intercept 0.55 0.05 11.98*** 
Meno Status: Peri 0.03 0.07 0.44 

Meno Status: Post 0.19 0.07 2.80* 
Symptom Score 0.03 0.01 2.11 
Symptom X Peri -0.04 0.02 -1.95 

Symptom X Post -0.04 0.02 -2.50* 
F(5,79) = 2.68, p = 0.03, R2 = 0.14 

Vis Central 

Intercept 0.49 0.04 10.93*** 
Meno Status: Peri 0.00 0.07 -0.04 

Meno Status: Post 0.21 0.07 3.13** 
Symptom Score 0.03 0.01 2.27* 
Symptom X Peri -0.02 0.02 -1.38 

Symptom X Post -0.05 0.02 -3.21** 
F(5,79) = 3.00, p = 0.02, R2 = 0.16 

Vis Peripheral Intercept 0.50 0.04 11.53*** 
 Meno Status: Peri -0.03 0.07 -0.50 
 Meno Status: Post 0.21 0.06 3.23** 
 Symptom Score 0.03 0.01 2.45* 
 Symptom X Peri -0.02 0.02 -1.42 
 Symptom X Post -0.05 0.02 -3.28** 

F(5,79) = 3.99, p = 0.002, R2 = 0.20 

FDR-corrected at q < 0.05; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 
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