
UC Davis
UC Davis Previously Published Works

Title
Assessing the accuracy of contact and distance predictions in CASP14

Permalink
https://escholarship.org/uc/item/90f572sq

Journal
Proteins Structure Function and Bioinformatics, 89(12)

ISSN
0887-3585

Authors
Ruiz‐Serra, Victoria
Pontes, Camila
Milanetti, Edoardo
et al.

Publication Date
2021-12-01

DOI
10.1002/prot.26248
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/90f572sq
https://escholarship.org/uc/item/90f572sq#author
https://escholarship.org
http://www.cdlib.org/


Assessing the accuracy of contact and distance predictions in 
CASP14

Victoria Ruiz-Serra1, Camila Pontes1, Edoardo Milanetti2,3, Andriy Kryshtafovych4, Rosalba 
Lepore1,*,#, Alfonso Valencia1,5,#

1Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain

2Sapienza Università di Roma, Department of Physics, Rome, 00185, Italy

3Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 
Rome, Italy

4Genome Center, University of California, Davis, CA, USA

5ICREA, Pg. Lluís Companys, Barcelona, Spain.

Abstract

We present the results of the assessment of the intramolecular residue-residue contact and distance 

predictions from groups participating in the 14th round of the CASP experiment. The performance 

of contact prediction methods was evaluated with the measures used in previous CASPs, while 

distance predictions were assessed based on a new protocol, which considers individual distance 

pairs as well as the whole predicted distance matrix, using a graph-based framework. The results 

of the evaluation indicate that predictions by the tFold framework, TripletRes and DeepPotential 

were the most accurate in both categories. With regards to progress in method performance, the 

results of the assessment in contact prediction did not reveal any discernible difference when 

compared to CASP13. Arguably, this could be due to CASP14 FM targets being more challenging 

than ever before.
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1. INTRODUCTION

Contact prediction has been an active area of research since 1994 1,2 and an integral part 

of CASP since its early days 3. Much of the research in this area has been inspired by the 

hypothesis of coevolution, suggesting that compensatory mutations between pairs of amino 

acids in the MSA of a protein family can be used as a marker of their physical proximity 

in the 3D structure 1,4. A number of studies back in the 1990s illustrated the use of contact 

maps as constraints for protein structure prediction 5–7. During these two decades we have 
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seen continuous progress in the quality of the predictions by a combination of improvements 

in the basic sequence correlation algorithms, and better alignments 3,8–15.

In CASP11, the average precision on L5 long-range contacts in free-modeling targets 

(FM) reached 27%, mainly driven by the ability of new methods to disentangle direct and 

indirect coevolutionary signals, i.e. the direct coupling analysis (DCA) 16,17. The precision 

nearly doubled in CASP12 18,19, thanks to the integration of deep neural networks and the 

increased availability of sequence data from metagenomics sequencing. In CASP13, another 

leap in performance raised the limit of contact prediction accuracy to 70%. This was the 

result of a community-wide adoption of fully deep residual neural networks, able to capture 

higher-order residue correlations from the global network of contact restraints, and more 

specifically, of inter-residue distances 20–22.

While predictions have been usually assessed by measuring the accuracy of pairwise 

contacts, recent work, including the results of the CASP13 experiment, showed that 3D 

structure prediction methods can benefit from predictions of inter-residue distances as 

constraints in the folding algorithms. In particular, the finer-grained information contained 

in the distance matrix provides more physical constraints and a richer training signal than 

a contact matrix, which in turn may lead to more accurate predictions of the 3D structure 

as discussed in papers21,23. CASP14 added this new category to the assessment, which in 

turn required the development of the new assessment methodology presented here. While 

the employed assessment metrics and procedures were different in the two cases, the results 

indicate that predictions submitted by Tencent AI Lab and Zhang lab were the most accurate 

in both categories.

2. MATERIAL AND METHODS

2.1. Overview of targets and participating groups

In CASP14, the contact and distance prediction category included a total of 38 targets, 

23 belonging to the free modeling (FM) category and 15 to the overlap of free modeling 

and template-based modeling category (FM/TBM) (Kinch et al., Domains, This issue). The 

size of targets ranged between 72 and 464 amino acids. A total of 60 groups submitted 

contact predictions, including 51 groups who predicted at least 37 targets and 47 groups 

who predicted at least 20 targets. 39 out of the 60 groups also provided distance predictions, 

with all groups except two predicting at least 37 targets. Detailed information on groups and 

predictions is provided in Table S1.

2.2. Prediction format

Definitions, formats, and procedures in the CASP14 contact prediction category did not 

differ from previous experiments and therefore we provide here only the basic information, 

encouraging readers to refer to previous CASP assessment papers 15,16,20,24 for more 

detailed explanations.

Contact predictions were provided in a 3-column format: i, j and p0, where i and j are amino 

acid indices, and p0 is the contact probability score [0;1]. Residues i and j are defined to 

be in contact if dij < 8.0 Å, where dij is the distance between their Cβ atoms (Cα in case 
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of Glycine). The assessment was performed on the top L/N contacts (L – protein length in 

residues, N={1,2,5}) according to the contact confidence score p0.

Distance predictions were provided in a 13-column format, containing i, j, and p0 (see 

above) and, additionally, the probabilities pN [0;1], reflecting the confidence of inter-residue 

distance falling within the bin N. Distance bins were defined in the increment of 2Å, with 

the exception of bin N=1 and bin N=10, with the following boundaries: bin1: dij≤4Å, bin2: 

4<dij≤6Å, bin3: 6<dij≤8Å, …, bin10: >20Å. Different from what was done in the contact 

assessment, distance predictions were assessed based on the entire distance map.

Previous to the evaluation of both contacts and distance predictions, submissions were 

trimmed to domains and amino acid pairs were excluded if their separation along the 

sequence was smaller than 6 amino acids. Any non-listed amino acid pair was assumed to be 

not in contact and assigned p0=0 for the contact evaluation, or belonging to the last distance 

bin and assigned p10=1 for the distance evaluation.

2.3. Assessment metrics

The assessment of contact predictions was performed based on precision, recall and F1 

score metrics, computed as follows:

precision = TP / TP + FP

recall = TP / TP + FN

F1 = 2 precision recall
precision + recall

where TP is the number of true positives (p0 > 0 and dij < 8Å), FP is the number of false 

positives (p0 > 0 and dij ≥ 8Å), and FN is the number of false negatives (p0 = 0 and dij 

< 8Å). Contacts were grouped into short, medium, and long-range categories according to 

their sequence separation, defined as pairs of residues separated by 6–11 residues, 12–23 

residues, and 24 residues or more, respectively.

Another metric traditionally employed to evaluate contact predictions is the Entropy Score 

(ES), computed as the relative drop of entropy in the protein structure as geometric 

constraints are imposed according to correctly predicted contacts, as follows 20:

ES = 100E 0 − E C
E 0

where E(C) and E(0) are the entropies of the protein with and without structural constraints, 

respectively. These entropies are calculated as the average value of the Shannon entropy for 

residue-residue distances, as follows:
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E(C) =
∑i, i > j

n log Uij − Lij
n n − 1 /2

where n is the number of residues in the protein, Lij and Uij are the lower and upper bound 

distances between residues i and j, respectively. We set Lij = 3.2Å for all pairs, and Uij = 8Å 

for contacts and equal the diameter of gyration 25 DG=5.54*n0.34 for non-contacts.

Similar to what done in previous CASPs 24, we evaluated the dependency between 

alignment depth and prediction accuracy based on the number of effective sequences in 

a given MSA, computed as follows :

Neff /L = max NeffPSIBLAST , NeffHHBLITS, NeffBFD, NeffMGNIFY /L

where NeffPSIBLAST, NeffHHBLITS, NeffBFD, NeffMGNIFY are the number of effective 

sequences retrieved using PSIBLAST, HHBLITS, BFD and MGNIFY, respectively, and L is 

the length of the target.

The bin-level assessment of distance predictions was performed based on the average bin 

precision, recall, and F1 score, computed for each individual bin and then averaged over all 

distance bins, as follows:

precision = 1
10 ∑

N = 1

10
TPN /(TPN + FPN)

recall = 1
10 ∑

N = 1

10
TPN /(TPN + FNN)

F1 = 1
10 ∑

N = 1

10 2 precisionN recallN
precisionN + recallN

where N in a distance bin, TPN is the number of true positives in the bin (pmax = pN and dij 

falls on bin N), FPN is the number of false positives (pmax = pN and dij does not fall on bin 

N), and FNN is the number of false negatives (pmax ≠ pN and dij falls on bin N), with pmax 

being the maximum predicted probability provided over all distance bins.

For comparison, we also considered an alternative precision metric,

precisionoverall = TP / TP + FP

where TP is the number of true positive among all predicted residue pairs (i,j), i.e. the 

number of pairs where pmax is assigned to the bin with the correct dij in the target, and FP is 
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the number of false positives among all predicted residue pairs (i,j), i.e. the number of pairs 

where pmax is assigned to a bin which does not correspond to the correct dij in the target.

Two additional bin-level metrics were considered in the assessment of distance predictions: 

the mean distance difference (MDD) and the mean bin neighbor (MBN). The MDD 

evaluates predictions in each bin N by weighting the difference between the native and 

the predicted distances by the provided probability pN, as follows:

MDD = 1 − 1
10 ∑

k = 1

10 1
Nk ∑

a = 1

Nk
∑

b = 1

10 pba Dk − db
Dmax

where Nk are the predictions falling on the kth bin, pba is the probability assigned to the bth 

bin in the ath prediction, |Dk - db| is the difference between the observed distance and the 

mean distance of the bth bin, and Dmax is 21Å.

The MBN evaluates predictions by summing the probability assigned to the bin where the 

observed distance falls with those assigned to the two neighboring bins, adjusted by a factor 

of 0.5, as follows:

MBN = 1
10 ∑

k = 1

10 1
Nk ∑

b = 1

Nk
pb(Dk) +

pb dk − 1 + pb dk + 1
2

where Nk are the distances falling on the kth bin, pb(Dk) is the probability assigned to the bin 

where the observed distance falls (Dk), and pb(dk-1) and pb(dk+1) are the probability assigned 

to the two neighboring bins of Dk.

Additionally, distance predictions were assessed using graph-based metrics as described 

below. This was intended as a way of integrating into the evaluation the global properties 

of the predicted distance maps, and, at the same time, assess the contribution of each 

individual residue to the overall prediction accuracy. Each distance map was represented as 

an undirected, weighted graph with amino acid pairs i and j as nodes and weights as edges. 

Weights are defined as wij = 1/d2, where d is the mean distance in the pmax bin. If pmax = 

p10, the distance d was assigned a fixed value of 21Å. If more than one bin was predicted 

with equal pmax, a single bin was randomly selected and its corresponding distance range 

considered in the assessment. Similarly, given the distance map corresponding to the native 

protein structure, a graph was built by defining the edge weight between nodes i and j as wij 

= 1/d2, where d is the observed distance between the Cβ atoms of the amino acid pair (Cα in 

case of Glycine). When the distances in the native structure were greater than 20Å, d was set 

as the average value of all distances > 20Å for that target. Subsequently, for each graph we 

computed the following parameters:

si = ∑
j = 1

n
aijwij
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where the si is the Strength local parameter 26 of the i-th residue, aij are the elements of the 

adjacency matrix, and si is computed as the sum of the weights of the adjacent edges j.

The clustering coefficient local parameter 26,27 of the i-th residue is defined as:

c iw = 1
si ki − 1 ∑

j, ℎ

wij + wiℎ
2 aijaiℎajℎ

where si and ki are the strength and degree of residue i, respectively, and aij (as well as aih 

and ajh) are the elements of the adjacency matrix and wij (and wih) are the weights.

The normalization factor si(ki−1) ensures that 0≤ci
w≤1.

The average shortest path global parameter 28 of the i-th residue is defined as:

spi = 1
n ∑

j = 1

n
spj

and each shortest path connecting two nodes of the graph is defined as the path that 

minimizes the sum of a given real-valued weight function:

spi j = P (v1, . . . , vi, . . . , vn) P = min( ∑
i = 1

n − 1
f(wi, i + 1))

Where i and j are the residues, spi→j is the shortest path between nodes i and j as computed 

by the Dijkstra algorithm 29, n is the total number of nodes and w is defined as the inverse 

value of the weight.

The diversity global parameter of the i-th residue D(i), as defined in 30, is the normalized 

entropy of the weights of the normalized weights of all edges departing from a given node, 

calculated as follows:

D(i) = H i
log ki

where

H(i) = − ∑j = 1
ki pijlog(pij)

is the Shannon entropy of the i-th residue, and

pij = wij/∑l = 1
ki wil,
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where wij is the weight of the edge between residues i and j, ki is the degree of node i, and l 
runs over all neighbors of node i.

The comparison between predicted and native graphs was based on the Pearson correlation 

for all metrics. To rank the participating groups according to their performance both in 

distance and contact assessment, all metrics were transformed into z-scores. The per-target 

z-score of a group was set to zero if they did not submit a prediction on a given target. 

Finally, the cumulative rank of a group was assigned based on the sum of its per-target 

z-scores greater than zero.

3. RESULTS

3.1. Performance comparison to previous CASPs.

Figure 1 shows the results of the participating methods during the latest 4 rounds of 

contact prediction in CASP. In order to facilitate the comparison to previous CASP 

assessments, results of the CASP14 contact prediction assessment are reported in terms 

of average precision for FM domains and the L/5 lists of long-range contacts, unless 

specified otherwise. On average, the top 5 predictors in CASP14 (tFold-CaT_human, 

tFold-IDT_human, TripletRes, PreferredFold and DeepPotential) achieve 64% precision (22 

domains), a similar performance as observed among the top 5 groups (RaptorX-Contact, 

TripletRes, ResTriplet, GREMLIN_baseline and TripletRes_AT) in CASP13 (65% precision 

on 31 domains). While these results may indicate a setback in the advancement of contact 

prediction methods, we should emphasise that progress in this round might be offset 

by the increased difficulty of the CASP14 targets. As it can be seen in Figure 2A, 

CASP14 FM targets have the lowest coverage and sequence identity to available structural 

templates compared to all previous CASPs. This is also reflected by the number of effective 

sequences, which shows that 30% of the FM targets in CASP14 have very small numbers 

of homologous sequences (Neff/L < 0.2), while this was only the case for about 10% of the 

targets in the CASP13 FM dataset (Figure 2B). Interestingly, for targets with similar Neff/L, 

it is possible to see that the maximum achieved precision per target is higher in CASP14 

vs CASP13 (Figure 5). On average, maximum achieved precision per target (FM) reaches 

55% in CASP14, compared to 50% in CASP13. Notably, CASP14 best performance per 

target compares favorably both in the low (Neff/L<0.2) and high range of Neff/L values 

(Neff/L≥0.2), with 38% and 61% average best precision respectively, to be compared with 

29% and 52% achieved in the previous round. Notably, the extended FM+FM/TBM target 

set in CASP14 is only comparable in terms of sequence identity to CASP13 FM targets, with 

the difference that the CASP14 target set lies in a much lower range of sequence coverage 

(Figure 2A). In this regard, it is worth noting that CASP14 methods compare favorably on 

this target set with an average precision of 74% for the top five groups vs 64% seen in the 

previous round (Supplementary Figure S1).

We analyzed the accuracy of contact prediction with respect to the type of secondary 

structure elements, which were extracted from the experimental structures using the DSSP 

program 31,32. About 37% of the long-range contacts present in the FM target dataset 

involve at least one residue from a coil element, 53% are alpha-helices mediated contacts, 

and about 47% are beta-strands mediated contacts (Figure 2C). In terms of accuracy, β
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strand mediated contacts are generally predicted with markedly higher accuracy, especially 

β-β contacts (F-score = 0.7), compared to both alpha helices and coil mediated contacts 

(Figure 2C). The latter remains most challenging for predictors, with average F-score below 

0.2 for all contact types. While the results of this analysis are overall in line to what 

observed in CASP13 20, it is worth highlighting that in terms of secondary structure content 

the two sets of FM targets show a different composition, with CASP14 FM targets showing 

an overall lower content of β-strands compared to CASP13 FM targets (Supplementary 

Figure S2).

3.2. Assessment of contact predictions

The results of the analysis of group performance for long range contacts in L/5 contact 

lists is shown in Figure 3. For each group, results are shown in terms of cumulative 

z-scores based on the F1 + 0.5*ES(ext) metric computed over FM targets. Overall, the 

top 10 groups achieve comparable performances, with an average upper limit of precision 

of ~66% (Figure 1). A similar ranking of the top performing groups is observed across 

different contact ranges. Specifically, groups G368 (tFold-CaT_human) is the top ranked 

group in all rankings, followed by G488 (tFold-IDT_human), G024 (DeepPotential) and 

G009 (tFold_human) among the top 5 groups in both medium+long and short-range contacts 

(Supplementary Figure S3). Likewise, the ranking solely based on the precision is very 

similar to the adopted combined ranking, with the top three groups being the same in the 

same order (368, 10, 488) and the top ten groups being the same in slightly shuffled order 

(Supplementary Figure S4).

A head-to-head comparison performed based on common target domain sets (Figure 4) 

did not reveal statistically significant differences in the per-target performance between the 

top 10 groups with the exceptions of methods G368, G488 and G009 (tFold-CaT_human, 

tFold-IDT_human, tFold_human), which significantly outperform methods G183, G238 

and G351 (tFold-CaT, tFold and tFold-IDT). Interestingly, these two sets of methods are 

developed by the same research group (Tencent AI). Two main differences among these 

methods are the choice of input features used to feed the deep-learning neural network (e.g., 

multi-MSA ensembles and 2D attention modules in the case of tFold-Cat methods vs single 

MSA and template based features in the case of tFold-IDT methods), and the regime of 

generating predictions (as automatic servers with models due in 3 days, or human-expert 

groups with extra 18 days for the refinement step). Apparently, the refinement step, which 

embeds additional information from structural decoys, had a major impact on the accuracy 

of the Tencent models.

Finally, it is worth mentioning that the TripletRes (G010) server achieved comparable 

performance to the best human-expert methods, with average precision on FM targets of 

64% and 71% when considering top L/5 long and medium+long range contacts, respectively, 

and reaching 80% when considering the FM+FM/TBM targets on the same contact ranges 

(Supplementary Figure S1).
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3.3. Prediction performance as a function of alignment depth

The use of coevolution data has been the main driver of the observed improvements in 

contact prediction during previous CASPs 24. As coevolution-based features strongly depend 

on the availability of homologous sequences 33,34, the effective depth of MSAs is generally 

considered to be a determining factor for the accuracy of contact predictions. Such a 

relationship was apparent in CASP12 24 and CASP13 35, and it is still noticeable in the 

present round (R = 0.45)(Figure 5).

Remarkably, about 30% of the CASP14 FM targets had very little (Neff/L <0.2) or 

essentially non existing sequence information (Neff/L = 0.01) (see Methods and 20,24). 

Nonetheless, remarkable precision was achieved for some targets, such as T1043-D1 and 

T1074-D1, with precision of 0.97 and 0.96, respectively. In general, predictions where 

highly accurate for targets with relatively high number of homologous sequences (Neff/

L>0.3, average precision = 88%), with two exceptions, such as T1029-D1 (Neff/L = 1.84) 

and T1064-D1 (Neff/L = 0.11), which turned out to be very challenging targets for all 

predictors, with maximum achieved precision on Top L contacts of 10% (20% based on Top 

L5) and 17% (13% based on Top L5), respectively.

In summary, the top performing group benefited from large metagenomics libraries and 

the depth of the MSA. Performance is also affected by the length of the target, although 

to a lower extent which is only noticeable for FM targets (Supplementary Figure S5). 

TripletRes and DeepPotential, in particular, rely on using BFD/MGnify for sequence search. 

On the other hand, while the tFold family of methods did not rely on the same large 

metagenomics databases, they reached top performance by leveraging large ensembles of 

MSAs alignments. The different performance achieved by two very similar algorithms, i.e. 

G453 (DMP2) and G304 (Jones-UCL), highlights the importance of the MSA generation 

step, where the manual curation of the alignments constitute the main difference between 

the two methods (Figure 3). Finally, as anticipated in CASP13, the application of deep 

neural networks seems to be a key factor as most of the top performing groups based their 

methods on this framework, leading to high prediction accuracy even in the near absence of 

evolutionary information.

3.4. Assessment of distance predictions

Distance predictions were assessed based on two different sets of evaluation metrics, as 

described in the Methods section. Figure 6 shows a comparison of performance in terms 

of z-score for all metrics and considering the full FM+FM/TBM target set. Clustering 

was performed based on complete linkage of Euclidean distances and results visualised as 

heatmap coloured from yellow to blue, indicating low to high performance respectively. As 

it can be seen from the left-side dendrogram, the analysis identified four main clusters of 

participating groups. A first cluster is composed of 5 groups (G010, G024, G368, G488, 

and G009) achieving top performance according to all metrics. Within this cluster, methods 

are further grouped by research groups of origin, i.e. methods G024 (DeepPotential) and 

G010 (TripletRes) from the Zhang lab, and methods G368 (tFold-CaT_human), G488 

(tFold-IDT_human), and G009 (tFold_human) from the Tencent AI lab. Although marginal, 

differences in performance between the two subclusters are captured by the graph-based 
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metrics, where predictions from the Tencent AI seem to better capture interaction hubs 

(clustering coefficient) and patterns of long-term distances and inter-residue distance 

distributions (shortest path and diversity). Groups G351, G183, G192 and G304 constitute a 

second main cluster with lower performance. Within this cluster, a further segregation can 

be seen between human-expert methods (G304 and G192) vs server methods (G351 and 

G183), as revealed by bin-level metrics as well as local topological graph-based metrics, 

i.e. strength and clustering coefficient. As it can be seen from the top dendrogram, the 

clustering analysis segregates the bin-level metrics (F1-score, MDD, and MBN) and graph

level metrics (diversity, strength, clustering coefficient, and shortest path) into separate 

branches, reflecting their different nature. Despite their differences, the resulting rankings of 

top performing groups across all metrics are largely consistent (Supplementary Figure S6).

In terms of precision, the top 5 predictors achieve 32% average bin precision on long-range 

distances if considering FM domains (Supplementary Figure S7) and 38% on FM+FM/TBM 

domains. These results refer to the assessment on full distance maps and thus are expectedly 

lower than the contact precision, which is calculated on the subsets of the most reliably 

predicted contacts. Additionally, analysis of the dependency of the average bin precision on 

the depth of alignment showed no correlation between the two measures (Supplementary 

Figure S8).

In order to calibrate precision of long-range distances versus 3D model accuracy, we 

correlated the predicted precision and GDT_TS scores of 3D models from groups who 

participated in both prediction categories. The correlation appeared to be low (Pearson 

CC=0.47), and thus it was hard to reliably establish the dependency of expected 3D model 

accuracy on the precision of distance prediction. To approach the problem from a different 

perspective, we analysed the dependency of the bin precision of long-range distances 

extracted from 3D models submitted to the TS category versus GDT_TS scores of the 

models. In this case, the two values correlated well (Pearson CC = 0.9). Supplementary 

Figure S9 shows that the average bin precision of 32%, which was achieved by the best 

distance prediction groups, corresponds to the expected GDT_TS of 50. This indirectly 

suggests that the accuracy of distance predictors in CASP14 is still insufficient to achieve 

3D results comparable with those from the AlphaFold2 group [Ref to Kinch et al – Fold 

assessment, this issue; and Pereira et al, High accuracy assessment, this issue], who attained 

GDT_TS scores in excess of 80 for 90% of targets (GDT_TS of 80–85 corresponds to the 

expected long-range distance precision of 55%). Indeed, although the AlphaFold2 (G427) 

did not participate in the distance prediction category, it is worth noticing that by assessing 

the distances extracted from AlphaFold2 models, top average precision on the set of FM 

targets reaches 62%, almost doubling the performance of the second best predictor on this 

dataset (Supplementary Figure S10).

We have also considered an alternative precision metric (overall precision, see Methods), 

which takes into account the overall number of TPs and FPs (one per predicted pair) in 

the whole prediction. As expected, this metric leads to a higher average precision over all 

groups, with top 5 predictors achieving 66% on both FM (Supplementary Figure S11A) and 

FM+FM/TBM domains. However, the score is heavily affected by the excess of long-range 

distances in the last distance bin (> 20Å), leading to a poor discrimination capacity of this 
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metric in terms of group performance as well as accuracy of corresponding 3D models 

(Pearson CC with GDT_TS = 0.4, Supplementary Figure S12A). However, when only the 

first nine bins are considered, the correlation with GDT_TS increases to 0.9 while the 

overall precision drops to 37% for FM and 39% for FM+FM/TBM (Supplementary Figure 

S11B and S12B), in line with the results of the per-bin evaluation (Pearson CC = 0.9, 

Supplementary Figure S13).

With the aim of unifying the results into a single ranking, a metascore was designed by 

combining all the individual scores that focus on different features of the predictions. To 

this aim, we removed possible biases towards any evaluated aspect by discarding metrics 

that shared high correlation values (R>0.80, Supplementary Figure S14). The final score was 

defined as the linear combination of 5 non-redundant metrics (z-MDD + z-F1 + z-clustering 

+ z-diversity + z-shortest_path) and the results of the corresponding group ranking are 

shown in Figure 7. Additionally, a head-to-head paired t-test on common target domains was 

performed across the top-10 groups according to the metascore (Figure 8). Results indicate 

that there is no statistical difference between the top-5 performing groups (G368, G488, 

G010, G009 and G024). Significant differences are observed between the top-3 groups 

(G488, G368 and G009), which significantly outperform all other groups from rank 6, 

between G010 (TripletRes) and G140 (YangServer), as well as between G351 (tFold-IDT) 

and G183 (t-Fold-CaT).

Notably, although the assessment of contact and distance predictions differed in terms of 

both evaluation metrics and assessed lists, i.e. L/5 vs full distance maps, the same five 

groups G368, G488, G010, G009 and G024 were identified as top ranking in both cases.

3.5. Graph-based metrics in detail

In this section we provide a description of the results of the assessment on two targets with 

the aim of illustrating how different assessment metrics behave, with a special emphasis 

on the graph-based metrics. In the first example, we show a comparison of the results 

obtained in the assessment of contact and distance predictions by two groups: a first group, 

achieving top performance according to F1 score, and a second group, reflecting the average 

performance achieved from all participants. In the second example, target T1080-D1 is 

chosen to highlight how different graph-based metrics capture local and global topological 

features of the predicted distance maps, and how they reflect different structural features of 

the target.

Figure 9 shows the results on target T1093-D1. The top performing group for this target, 

G368 (tFold-CaT_human), achieved high accuracy results both in contact and distance 

predictions (F-score = 0.368 and 0.329, respectively), despite the target was generally very 

challenging for most groups (average F-score contacts = 0.123; average F-score distances 

= 0.154). Predicted contact maps are shown in panels B and C and correspond to long

range L/5 contacts, where green dots refer to long-range contacts of the target, blue dots 

correspond to correct predictions (TP) and red dots to incorrect predictions (FP). As it 

can be seen in panel B, G368 identified contacts that are distributed across four main 

contact hubs in the targets. Both groups predicted contacts in a hub of alpha-helices (range 

75–85/120–130), where G368 predicted mostly TP contacts. The average predictor showed 
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lower accuracy in this region and also over-predicted two additional hubs, 43–48/70–75 and 

103–106/127–130, that are absent from the target. These results are also reflected in the 

predicted distance maps showing that group G368 reproduced correctly different patterns 

of distances observed at the N- and C-termini of the target, while the average predictor 

missed them and, instead, over-predicted at the level of the β-sheet (Figure 9E–F). This 

translates into differences in local and global topological features of the corresponding 

prediction graphs, as shown for the strength local parameter (Figure 9H–I). The per-node 

strength correlation between predicted graph and native graph is indeed high for group G368 

(R=0.88), but low for the average performing group (R=0.4). Mapping the predicted node 

strength values (i.e. the sum of the weights of the edges departing to/from a given node) onto 

the protein structure (Figure 9J) shows that G368 predicts a similar pattern to that seen in 

the target at the level of both α-helical elements and β-sheets (Figure 9K), while the average 

predictor exhibits major differences in both secondary structure elements (Figure 9L).

Graph-based metrics were adopted in order to capture both the local features of the predicted 

distance maps (strength and clustering coefficient) as well as to characterize global patterns 

of the molecular interaction network (average shortest path, i.e. the average length of all 

shortest paths departing from/to a given node, and diversity, i.e. the scaled Shannon entropy 

of the weights of the edges departing to/from a given node). Figure 10 illustrates how 

different metrics reflect different features of the predictions in the structural context of the 

target. The shown target (T1080-D1) is 133 amino acids long, composed of 9 β-sheets 

connected by both turns and long loops (Figure 10A–B). These loops correspond to regions 

of the predicted graphs where the per-node strength values disagree the most with those 

of the native graph (Figure 10C–D). Figure 10E, in turn, shows the difference between 

the average shortest path global parameter (orange line) computed for each node of the 

predicted graph from four predictors (G024, G252, G368 and G420) versus the same 

parameter computed on the native graph (Δs_path). In this case, major deviations from 

the native graph are observed at the N- and C-terminal of the protein (Figure 10E).

As contact and structure predictions are submitted separately in CASP, it is difficult 

to analyse how the accuracy of contact predictions influences the 3D model accuracy. 

However, for those cases where participants submitted in both categories, it is worth 

observing where relationships exist or fail to 20. In the case at hand, a high correlation exists 

between the Δs_path and the RMSD of the 3D model submitted by the same prediction 

group (R = 0.7 on average, Figure 10E). For both metrics, lower deviations from the native 

are observed at the level of the core antiparallel β-sheet motif of the target, while larger 

errors in both the predicted distance maps and 3 models are observed in the protein terminal 

segments. In conclusion, the different graph-based metrics presented here provide a sensitive 

way to assess distance predictions, enabling a deeper understanding of both the local and 

global characteristics of the predicted distance maps.

4. CONCLUSIONS

Over the years, contact prediction has evolved from being the niche of specialised groups 
3 to one of the clearest examples of theoretical and methodological advancements in the 

history of CASP 20,24. With regards to performance of the methods in CASP14, the results 
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of the assessment in contact prediction did not reveal a discernible progress when compared 

to the previous CASP round. Average precision in CASP14 reached 64%, slightly below 

the limit observed in CASP13. Arguably, this could be due to CASP14 FM targets being 

more challenging than ever before. At the same time, a larger number of participants 

in CASP14 reached an average precision of 50%, which is suggestive of continuous 

development and advances in the field. Contact prediction remains as an attractive challenge 

for the community with more than 60 groups participating in the category (30% increase 

compared to CASP13). Participation was also remarkable in the new category of inter

residue distance prediction, which attracted 39 groups. As opposed to contact prediction 

assessment, which was based on the standard protocol adopted in previous CASPs, distance 

prediction assessment required the development of a novel, ad-hoc procedure. In particular, 

the assessment relied on different sets of metrics, which evaluate distance pairs individually 

as well as in the context of the whole distance network, using a graph-based analysis 

framework. For long-range distances and FM targets, the top ranking methods reached 

32% precision on the average and 64% for the most accurately predicted contacts. In 

summary, despite the different formats, metrics and procedures adopted in contact and 

distance predictions, the results of the assessment indicate that predictions submitted by 

Tencent AI lab (tFold framework) and Zhang lab (TripletRes and DeepPotential) were the 

most accurate in both categories.

The main differences between top performing methods stem from the MSA generation/

selection step rather than the distance prediction itself, which is mostly done by deep neural 

networks (DNN) with a further quality refinement step. TripletRes and DeepPotential, in 

particular, leverage large metagenomics databases, such as MGnify and BFD, to build a few 

candidate MSAs which are used to produce different distance predictions using DNNs. The 

tFold family of methods, on the other hand, do not rely on large metagenomics databases 

but have a distinctive feature: starting from an ensemble of many different MSAs. Distance 

predictions are made using DNNs equipped with attention modules, clustered into distinctive 

patterns, and finally the best prediction is selected based on quality assessment and second 

round of clustering. With these large ensembles of MSAs, tFold is able to reduce the 

amount of noise in the predictions and achieve impressive results. Jones-UCL (G304), 

another top-performing method in distances, shows significantly improved performance 

on a very similar prediction pipeline (DMP2, G453) by including manual steps, such 

as manual domain parsing, assembly of multi-domain models and alternative alignments. 

This significant difference in performance achieved by different methods highlights the 

importance of the MSA generation step for prediction. In conclusion, after the dramatic 

progress seen in de novo protein structure prediction in CASP14, we are looking forward 

to seeing if in future CASPs, contact prediction will still remain a necessary task of protein 

structure prediction algorithms, or whether inter-residue distance prediction will establish 

itself as the core step, as the state-of-the-art in this CASP is hinting at.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CASP critical assessment of protein structure prediction

DCA direct coupling analysis

DG diameter of gyration

ES entropy score

FM free modeling

MBN mean bin neighbor

MDD mean distance difference

MSA multiple sequence alignment

TBM template-based modeling

DNN deep neural network
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Figure 1. 
Improvement of contact prediction over CASP11-CASP14 meetings. Participating groups 

(X-axis) are ranked according to average precision (Y-axis) for the top L/5 contacts.
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Figure 2. 
Analysis of target difficulty in CASP14. (A) Scatter plot representing the average sequence 

identity vs. average coverage of the best structural templates from CASP12 to CASP14. 

Cyan circles correspond to FM targets while blue triangles represent FM + FM/TBM targets. 

Red to green gradient of the plot box reflects predictive difficulty from harder to easier, 

with the lower bottom corner hosting the most difficult target sets. (B) Proportion of FM 

targets with low alignment depth (Neff<0.2) in CASP13 vs CASP14. Data are only shown 

for targets containing long-range contacts. (C) Contact predictions accuracy as a function 

of connected secondary structure elements (x-axis). Results are shown in terms of average 

F1-score (green bars) for long-range L/5 contacts (all participating groups). Orange bars 

indicate the overall frequency of long-range contacts as a function of connected secondary 

structure elements in target structures.
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Figure 3. 
Cumulative z-score ranking of participating groups on FM targets. Performance is shown for 

the top L/5 long-range contacts. Group names are labeled as h and s to denote human-expert 

and server methods, respectively.
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Figure 4. 
Results of the paired Student’s t-Test computed on the top-10 performing groups according 

to cumulative z-score ranking. Red cells correspond to p-value < 0.05.
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Figure 5. 
Contact precision of the best prediction method as a function of alignment depth. Data are 

shown for Top L long-range contacts and FM targets in CASP13 and CASP14. R refers to 

Pearson coefficient and p to p-value.
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Figure 6. 
Heatmap clusters of group performances and assessment metrics. Columns include four 

bin-level assessment scores (average bin precision, F1, MDD, and MBN) and four graph

based scores (Diversity, Strength, Clustering Coefficient, and Shortest Path). Rows represent 

participant groups. Rows and columns were clustered using Euclidean distance with 

complete linkage. The heatmap is coloured according to the per-group sum of z-score values 

>0 for each metric, and ranges from yellow (low) to blue (high).
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Figure 7. 
Cumulative z-score ranking of participating groups in the distance prediction category. 

Performance is shown according to the linear combination of 5 non-redundant metrics 

(z-MDD + z-F1 + z-clustering + z-diversity + z-shortest_path). Group names are labeled as 

h and s to denote human-expert and server methods, respectively.
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Figure 8. 
Results of the paired Student’s t-Test computed on the top-10 performing groups according 

to the metascore-based ranking. Red cells correspond to p-value < 0.05.
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Figure 9. 
Target T1093-D1, log(Neff/len) = 0.11. (A-C) Contact maps. (D-F) Distance maps. (G-I) 

Graphs-based representation of predicted and native distance maps. Graph nodes represent 

amino acid residues and are colored based on per-residue strength values. (J-L) 3D structure 

of the T1093-D1 target colored according to per-residue strength values. Color ranges from 

red (high strength) to blue (low strength). Highlighted regions correspond to amino-acid 

residues showing the highest strength values in the native graph.
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Figure 10. 
(A) 3D structure of target T1080-D1, N-terminal and C-terminal in blue-red gradient color. 

(B) Diagram of secondary structure content. β-strand elements are indicated by green 

rectangles while turns and loops are denoted by the black line. (C) Normalized mean 

difference (NMD) between observed and predicted per-residue strength computed over all 

predictions. (D) Heatmap showing the normalized absolute difference in per-residue strength 

between predicted and native graphs for each participant group (y-axis). (E) Absolute 

difference between predicted and native per-residue shortest path (Δs_path, yellow line) 

and RMSD (black line) for predictors G009, G304, G488 and G319. Values of Δs_path and 

RMSD are shown as normalised values between 0 and 1.
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