
UC Irvine
ICS Technical Reports

Title
On the monotonicity of certain bin packing algorithms

Permalink
https://escholarship.org/uc/item/90f949nw

Author
Murgolo, Frank D.

Publication Date
1984
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/90f949nw
https://escholarship.org
http://www.cdlib.org/


I

I

I

On the Monotonicity of Certain
Bin Packing Aigorithms

Frank D. Murgolo

Technical Report No. 244

December 1984

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

Supported by National Science Foundation Grant MCS 79-04997



I

I

I

On The Monotonicity of Certain Bin Packing Algorithms

Frank D. Murgolo

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

ABSTRACT

This paper examines the monotonicity of the, approximation
bin packing algorithms Worst-Fit (WF), Worst-Fit Decreasing
(WFD), Best-Fit (BF), Best-Fit Decreasing (BFD), and Next-Fit-Jt
(NF-/:). Let X and Y be two sets of items such that the set X can
be derived from the set Y by possibly deleting some members of Y
or by reducing the size of some members of Y. If an algorithm
never uses more bins to pack X than it uses to pack Y we say that
algorithm is monotonic. It is shown that NF and NF-2 are mono-
tonic. It was already known that First-Fit and First-Fit Decreasing
were non-monotonic and we give examples which show BF, BFD,
WF, and WFD also suffer from this anomaly. One may consider
First-Fit as the limiting case of NF-t. We notice that NF-1 is
monotonic while First-Fit is not, suggesting there exists some criti
cal it for which NF-^' is monotonic, for k' <k, while NF-it' is
not monotonic for any k ' >k. We establish that this is indeed the
case and determine that critical k. An upi)er bound on the non-
monotonicity of selected algorithms is also provided.

December 7, 1984

Supported by Nutionul Science Foundution Gnnt MCS 79-04997



On The Monotonicity of Certain Bin Packing Aigorithms

Frank D. Murgolo

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

1. Introduction

It has become common when working with approximation algorithms for
combinatorial optimization problems to analyze the performance ratio of the
algorithm under study. If we let AL{!) be the measure of the performance of a
given algorithm for an instance / of a particular combinatorial optimization prob
lem and OPT{I) be the measure of an optimal algorithm for the same instance
then the ratio of AL{I) to 0PT{1) provides us with an indicator of the quality of
the given algorithm.

It has been shown that certain algorithms, although having comparatively
good performance ratios, possess the undesirable property of performing "worse"
when their inputs and/or constraints are made "better". For example, in the
common bin-packing problem we are given a list of items L and asked to pack
them into as few bins as possible. We form a new list L' by deleting some ele
ments of L and/or reducing the size of some elements of L. If an algorithm never
uses more bins to pack L' than it uses to pack L we say that algorithm is mono-
tonic, otherwise we say the algorithm is non-monotonic. It could be important to
know that an algorithm has the characteristic of not performing better when
seemingly favorable changes are made to its inputs.

In [Gr66] it is shown that certain multiprocessor scheduling algorithms suffer
from this anomaly. There it is shown that by changing the scheduling con
straints for a list of tasks in an apparently favorable fashion, i.e. decreasing the
time required for each task to complete or increasing the number of processors,
we may actually increase the time it takes for the task list to be completed. In
[Gr76] an example is given in which the bin packing algorithm First-Fit Decreas
ing uses fewer bins to pack a set Lot items than it uses to pack a subset of L.

In this paper we classify other bin packing algorithms showing Worst-Fit,
Worst-Fit Decreasing, Best Fit, and Best-Fit Decreasing are not monotonic. We
show that a simple packing scheme NF-I: is either monotonic or non-monotonic.

Supported by N&tion&l Science Foundation Grant MCS 79-04997



I

I

I

I

I

I

I

I

I

1

I

I

I

I

I

I

I

I

I

- 2 -

depending on k. We provide upper bounds on the anomalous behavior of First-
Fit Decreasing and Best-Fit Decreasing. We also provide an upp)er bound for a
particular class of bin packing algorithms. This class includes all of the commonly
studied approximation algorithms.

2. Definitions -

1. Let Y= X = with a(a:,) > 0, «(y.) > 0,
The set Y dominates the set X if n>m and

2. ar,-, y,- are the items of X and Y, respectively.

3. s(a:,) is the size of x,. We assume s(x,) e (0,1].

4. Bj^,- is the i""* bin allocated by the packing algorithm in packing X. Allo
cated bins are thought of as appearing left to right in order of allocation.
This may be abbreviated as B,- where the set being packed is clear from con
text.

5. X,—yj means item x,- is packed into B^j.

6. Time t of a packing is that time in the packing when items and x^_l
have been packed but y, and x^ have not. Time 1 is prior to any items being
packed and time n-f-l is after all items have been packed.

7. The space remaining in B^ ^at time t is:

REM'{Bx,) = l- E
fcjt—»i &nd k<t

The superscript will be omitted if the above property is to hold for all times
/ of a packing.

8. AL{X) is the number of bins used by bin packing algorithm AL to pack the
set A'.

9. A packing algorithm is reasonable if it never packs an item into an empty
bin if the item can fit into a non-empty bin.

All definitions pertaining to X and x,- also apply to Yand y,-.

The bin packing problem we consider can be stated as follows: given a list L
of piece sizes in .(0,1) place the pieces into a minimum number of bins so that in
no bin does the sum of the piece sizes exceed 1.



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

The First-Fit Decreasing Algorithm may be described as follows: let Bi, 82,
be the bins available for packing a set of pieces X. Arrange the pieces X into

non-increasing order of piece size and then pack the pieces in order according to
the following rule. Pack x,- into the least j such that REM'{Bj) >

Best-Fit packs piece j,- in the following way: find that j such that
REM'{Bj) > s{xi) and for all bins k with > «(a:,) we have
REM '{B(.) > REM '(By). If j is not unique choose the least j. Pack x,- into By.

Best-Fit Decreasing uses the same rules as Best-Fit with the additional step
of first placing its input into non-increasing order.

Worst-Fit Decreasing orders its input in the same way as FFD but it chooses
that j for which REM*{Bj) > 5(x,) and for all bins Ir with REM^Bj) > s(x,) we
have REM'{Bf.) < REM*{Bj). If no such ; exists a new bin is allocated to pack

Next-Fit can be described in the following way: let X be a list of items to be
packed. Pack Xj into a hew bin. If x,-^i can fit into the same bin as x,- pack it
there, otherwise pack x,.j.i into a new bin.

3. The Monotonicity of Some Algorithms

We exhibit a function which will aid us in examining the monotonicity of
several of the algorithms examined. Let AL be a reasonable bin packing algo
rithm. We compare how AL performs on two sets of items X and Y with Ydom
inating X by imagining AL packing items of Y and X alternately and then exa
mining the space remaining in the non-empty bins.

Let S= {1,2,...,AL( y)} and define the function g:S-*Sinitially as g(i)=i for
all i e S. We will say that AL supports g in monotonicity, or simply AL supports
g, if at all times t in the packings g can be maintained so the following conditions
are true:

(i) g:S—*^S and,
(ii) For all y, Xl REM{By,{) < REM{Bxj)

i:git)=}

Lemma 1: Let X and Y be two sets of items with Y dominating X which are
packed by the reasonable algorithm AL. If ALsupports g then AL{X) < AL{ Y).

proof

Because AL supports g we know that for all times t of the packings if Pt is
packed into By^i then REM\Bx^g[;^ > REM ^ByJ) > Because Ydom
inates X we further know REM\Bx^^;)) > Therefore since AL is reason
able Xi will be packed into a bin numbered no higher than AL( V).



I-

H 3.1. Next-Fit
M Theorem 1: Let X and F be two sets of items that satisfy the constraint Y dom-
I inatesX Then NF{X) <NF{Y).

I
proof

We start by proving the following

m Claim: If NF packs item into
rrl < m.

proof of claim (We use an induction on the items)
Basis: i=l When Xj and yj are packed they are each placed into new bins so the

claim is clearly true.

I

I

I

I

I

Inductive step: Assuming the claim is true for all items {xi,X2,...,Xi_i},
it is also true for yj and

case.i) Vi-i^Byj, Xt_ieBx,k with k<j.

Jj Here even if Xf-^Bx^k-k-i we still have ^-fl <j so the claim is true,
case.ii) Vi-ieByj, Xi_i€Bxj.

Let the items in Bxj be, in order from bottom to top,
How many items can be in Hyy ?

ii.a) Byj contains k or more items.
By our assumption that Y dominates X and the way that

INF works we know a(y) > J] s(x). Because
ytByj jeBxj

s(ft) ^ if Vt is packed into Byj then can fit into Bxj-
I ii.b) Byj contains fewer than k items.

This tells us that at time t—k item yi_k was packed into
I Byj ,/ <y, but item Xj_^ was packed into Bxj, this is a

contradiction of the inductive hypothesis. Therefore, Byj
can not contain fewer than k items and the claim is proved.

The theorem follows immediately.

I

I

I

3.2. Next-Fit k

We have shown that NF is monotonic. One can generalize NF to NF-k where
I the algorithm is allowed to pack an item into any of the last k allocated bins,

examining the bins in increasing order df allocation. NF then becomes NF-1.
The limiting case of NF-k is the algorithm FF which was shown to be non-



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

- 5 -

monotonic indicating that there exists a critical k such that NF-k is monotonic
and NF-k+l is not. We determine that critical k.

Theorem 2: NF-2 is monotonic.

proof

Claim: NF-2 supports g.

proof of claim

To show this we show that we can maintain the function g on the last 2 allo
cated bins in a NF-2 packing. Since these are the only bins whose configurations
can influence whether or not an item causes a new bin to be allocated, this res
tricted g mapping is sufficient for proving the result. We assume at least two
bins are necessary to pack Yand initially define y(2)=2. (If the Yitems
can be packed into only one bin by NF-2 then clearly so can the X items and the
proof is complete.)

BASIS: Pieces and are packed.

Since and Xi—^Bx^\ we leave gdefined as is.

Induction step: Assume g is maintained on bins k—l and k after items and
Xi_i have been packed. We show that g continues to be maintained after y, and
Xi have been packed. (For our analysis we allocate a new empty bin for X each
time a new bin is allocated by NF-2 for Y and maintain g between the last two
allocated bins of X and Y even though the last two artificially allocated bins of X
may not be used by NF-2 in packing X If NF—2 packs an X item into an Xbin
of index less than it—1 we can ignore it in our analysis because g can be main
tained by being left alone. As a notational convenience we set i=k—l, j=k and
let Xdenote REM' {bin^ x)- Under the initial configuration for y shown in Fig
ure 1 we have the 4 following possible cases:

1)
2) yt-^Byj, x^-^Bx^g{j)

3) Vi-'Byj, Xi-yBx,g(,-) and ry_.- < ryj
4) Vt-^Byj, xy-^Bx^g^,-) and ry^ > ryj

The analysis of these cases shows they may give rise to only one new g
configuration, (see Figure 1.) Under this new g configuration we have two possi
ble occurrences:

3) x^-^Bx^i
6) Xi—^Bxj

recalling i=k—l, j=k.



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

. 6 -

Finally, under either g confi^ration we have the case of NF—2 allocating a
new bin for

7) Vi-^Byj+i
We now describe the maintenance of g in each of the 7 cases.

Case 1: yi—*Byi

We know > ry{, s{yi) > s{xt) and ry^ > 8{yt). Together this implies
rx,g{{) ^ SO NF-2 will pack Xi into Because we know
^Y{~^{yt)^^Xmodification of g is necessary.

Case 2: yt-^Byj,
This case is very similar to case 1.

Case 3: yr^Byj, Xc^Bx^g^c) and ry i<ryj
Because was packed into Byj we know (*) 8{yi) > fy,-. We also have

^x,g{j} ^ ^Yj which implies ^x,g{]}~^iyi) —̂ Y,~^iyt)- Therefore, we can take
away an amount of space equal to s(j/J from Tx,gij} have g properly
defined for bins Byj and Bx^g{jy In addition, by (*) we know that we can set
g{i)->—g{j) and have g properly defined for bins By,- and Bx^g^j^- Thus we modify
(/by setting and leaving y(y) unaffected.

Case 4: yi-*By j, Xi-^Bx^gf^i) and ry ,- > ryj
The NF-2 rule would not allow By,- to be passed over to pack yt—^Byj,

therefore this case is not possible.

Cases 5 and 6 consider the g configuration created by step 3.

Case 5; Xy-^Bx^i
Clearly, since neither {^(t) nor g{j) is affected by this packing we need not

modify g in order to maintain it.

Case 6; Xy^Bx^j
Here we see that a:< is always packed into the X bin that functionally

corresponds to the Y bin that y^ was packed in. So again no modification is
necessary.

Case 7: y^-^Byj+i

We know at that time g{k) = k and either y(^-l) = k-1 or g{k-l) = k
which means we do not need the remaining space of Bx^k-i to maintain g when
bins k and Jb+1 are the last two bins allocated. That is important because when



I

I

i

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

bins k and ^+1 are the last two bins allocated the space remaining in Bx^^i is
unavailable for the maintenance of g. To maintain g we do the following: if

Xi-^Bxk+\ ^(A;+l) A:+l; if Xf^Bx^k change ^(Jt)
to k+1. This works for reasons similar to those described in Case 3. Since this

does not introduce any new g configurations the proof of the lemma is complete.

The theorem is derived immediately from Lemma 1.

To show that NF-k for k>2 is non-monotonic we start with the example on
p. 67 of [Jo73]. This example shows the First-Fit heuristic can use three bins to
pack a set of items Y and four bins to pack a set X even though Y dominates X.
Because NF-3 only allows packing an item into the last three allocated bins of a
packing using a First-Fit strategy the example shows the non-monotonicity of
NFS. We can extend that example to lists of arbitrary length and arbitrary jt>3
by prefixing any number of items of size equal to the bin size to the items of the
original example.

3.3. Best-Fit and Best-Fit Decreasing

When proving NFS monotonic we were able to maintain g as a, well-defined
function satisfying the requirements necessary to support that algorithm in mono-
tonicity. We now show how one can use the function g to construct an example
which shows an algorithm is not monotonic.

Examining the conditions that must be maintained if an algorithm is to sup
port g in monotonicity, we make the following observation. Assume item y, is
packed into By,- and item is packed into Bx^g[j) with ry,->ryy and

might be that Bx^g^f) is completely filled after is packed
thereby requiring us to use the space in Bx^g(^ to accommodate both Byi and
Byj in maintaining g. We can do that because we know by the way BFD works,
that s{yi)>ryj. This enables us to use the space in Bx^g^,-^ to cover the space in
both Byj and the space left in By^ after has been packed. (See Figure 2.)

This leaves us with a properly maintained g which is not 1-1. In analyzing
the bin configurations which may arise under this scenario we find cases where g
can not be properly maintained. In particular this occurs in the following exam
ple. (See Figure 3.)

Item yi is packed into Byj, Xj is packed into with ry,>ryj- and
^X,git)<^x,g(]y If ^X,gi}) ^ere the image of only Byj, which would be true if g
were 1-1, then one could interchange jr(0 9ij) ^md continue to have g support
BFD. However, because g is not 1-1, rx,g(j) could be due to several Ybins map
ping to Bx^g[j) with the amount of space in Bx^g[j) which is assigned to the space
in Byj being of size less than ry ,-. We do know that an amount of space equal to
5(yj) in Bx^g(j) is available for re-mapping and that this space plus the space left



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

. 8 -

in is sufficient to cover the space in 5y ,-. Intuitively we know this because
the packing of and removes an amount of space equal to «(2rj) from
while simultaneously adding an amount of space equal to s(y^. However, the bin
it adds to is different from the bin from which it subtracted.

We also know the segment of space in assigned to Hy ,- after this re
mapping is large enough to accommodate the next item to be packed, ar^^j,
because the input is in non-increasing order of size. These observations suggest
that one might change the conditions for g to supp>ort BFD in monotonicity by
incorporating slightly weaker conditions which make use of the non-increasing
order of the input.

This would be of little use however, since the conditions which result from
the aforementioned example can be exploited to achieve the following anomaly:

Y={.7, .68, .5399, .3201, .15, .14, .08(x5), .07}

X={.7, .68, .5399, .32, .15, .14, .08(a:5), .07}.

The notation .08(i5) means 5 items of size .08. Here we see BFD uses 3 bins to
pack Yand 4 bins to pack X even though Ydominates X. (See Figure 4.)

In addition to the above example we provide a simple example showing BFs
non-monotonicity.

y={8/12, 6/12, 5/12, 8/12, 1/12, 4/12, 4/12}

A:={6/12, 6/12, 5/12, 8/12, 1/12, 4/12, 4/12}.

BF uses three bins to pack Yand four bins to pack X. (See Figure 5.)

3.4. Worst-Fit Decreasing and Worst-Fit

When creating item sets to cause an algorithm to be non-monotonic, it is
useful to choose item sizes that cause to be not 1-1. Although this is not always
sufficient, as we saw in NF-2, we find it useful in causing WFD to be non
monotonic. Consider the following item sets:

y={.6, .55, .451, .35, .25, .2, .2, .2, .199}

A:={.58, .55, .4, .35, .25, .2, .2, .2, .199}

After items and have been packed g is not 1-1, i.e. jr(3)=3 and jy(2)=3.
Once g is no longer 1-1 it is possible to cause a packing where g is no longer
maintainable. As shown in Figure 6, WFD uses three bins to pack Y while using
four bins to pack X. This example also shows that WF is non-monotonic.

NF-2 is monotonic even though g is not maintained in a 1-1 fashion. This
suggests that if we restrict a reasonable algorithm to considering only the last
two allocated bins we can cause the algorithm to be monotonic. This hypothesis
is npt true. If we replace the FF packing heuristic of NF-2 with either the BF or
WF heuristic we obtain a non-monotonic algorithm. It is the packing rule in



I
H conjunction with the special set of bins considered which causes NF-2 to be

I

I

monotonic.

4. Bounds for FFD, BFD and Any Reasonable Algorithm

Theorem 3.1: If Ydominates Xthen FFD{X)<^^FFD{Y)+4.
I proof

Clearly OPT{X) < OPT{ Y) < FFD{ F), from which we derive

I—OPT{X)+4<^OPT{Y}+4<^FFD{Y)+4 (1)

I

I

I

I

I

I

I
11

Because Ydominates Xwe know that for all xeXj^^j) , a(i,)<y. This gives an
immediate bound of

I (•)
— Claim: \Xadd\<RA{Y)

I proof ofclaim
Assume not. Because each a:,- has «(ar,)>rn,^, we know:

I E «(^.)> E (1)
*fi^ADD *it^ADD

I By assumption: |X^^£,|>/: which gives us

I

By results in [Jo73] we have FFD{X) <-^0Pr(A)+4 which together with (1)
*7

proves the theorem.

Theorem 3.2: If Ydominates Xthen BFD{X)<^BFD{ Y)+4.
proof

Same as Theorem 3.1 except replace FFD with BFD.

Theorem 4: If Y dominates X and RA is any reasonable algorithm then

RAiX)<^RAlY).
proof

Let k = RA{ Y) and P = RA(X) with P > k. Define X^j)j) as the set of X
items that are packed into Bvf^i, 5vj^.2, • **, kf = max

Jt ' ' ' k
{REM{Bx^i)}, l<i<t, REM{X) = '£REM{Bx^i), and REM{Y)='£REM{BY^i).

•=i *=1



I ->o-

I E w>E''m»>^™W- (2)
'li^ADD

Together, (1) <5^ (2) imply:
I

I

I

Now observe:

X; s(xi)>REM(X). (3)

E »{i() = i - + E »W W
2,cX *iiXjiDD

Together, (3) ii (4) imply:

I X; s{xi)>k - REM(X) + REM{X)=k > X) «(yy)-
• 2.<X Vj^Y

I

I

I

or S«(^.)>E«(fy)-
x,cX Tijt Y

This contradicts the fact that Y dominates X and completes the proof of the
claim.

Substituting into equation (*) gives us the theorem.

Theorem 5: Define max{Y} = max{s{y) : yeY), max{X} = max{a(a:) : xeX}.
Let X, Y, RA, RA{X), and RA{Y) be as in theorem 4. If max{Y} < r, r< 1,

Ithen (Y) <— ii:>l (10+1.
1 — r

proof

We first observe:I

I
Certainly RA{Y) > y,-, which taken with equation (1) and the fact Y dom-

inates X implies:

I o.

This bound is only interesting for small values of r.

I

• Theorem 6: (A bound on performance ratios): RA{Xi < 20PT{Xi + 1.

1

I

E^.>(l-r)(i224(Y)-l). (1)
2,(X



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

-11

proof

In a packing of X by RA an item x^eX will not be placed into a new bin, Bj,
if it can fit into 5y_i. Therefore, if a:,- is placed into a new bin we know that

5] 5(2' ) + a(2,) >1. This inequality is true for all pairs of successive bins;

taking into account the possibility of RA{X) odd we have:

(,)
tcX ^

Clearly, OPT[X) > 5^a(a:) which together with (1) yields the result.

5. Further Work

The author intends to strengthen the bounds for FFD and study the mono-
tonicity of other approximation algorithms for combinatorial optimization prob
lems to see how they perform on sets of inputs that are related by the dominance
relation. Besides answering the question for the algorithms studied he hopes to
find basic reasons why some algorithms p>ossess their monotonicity and others do
not. These reasons may then shed some light on those characteristics of com
binatorial optimization problems that enable such anomalies to occur.

6. Acknowledgements

I would like to thank George Lueker for suggesting Theorem 3, and for
many other helpful comments and suggestions.



I

I
^ [Gr66] R.L. Graham, Bounds for certain multiprocessing anomalies, Bell Sys-
I tem Technical Journal, 45, no.9 (1966) pp. 1563-1581.

[Gr76] R.L. Graham, Bounds on Performance of Scheduling Algorithms, in
I Computer and Job Shop Scheduling, E.G. Coffman, Jr. (ed.), John Wi

ley & Sons, Inc. New York, 1976.

I[Jo73] D.S. Johnson, Near-optimal bin packing algorithms. Doctoral Thesis,
Mass. Inst. of Tech., Cambridge, Mass., 1973

I

I

I

I

I

I

I

I

I

I

I

I

I

I

12

References



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Original NF- 2 g Configuration

f(0 fl(i)

A g Configuration Created by NF- 2

9{i)
ff(/)

Figure 1.



I

I

II

I

I

I

I

1

I

i

I

I

I

I

I

I

I

I

Causing g to Become not 1- 1

Before y^ and x^ are packed:

?(>•) qU)

After and have been packed:

Figure 2.



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Causing g to Become not Well-defined

5(0

Figure 3.



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Nbn-MDDotonicity of BFD

The packing of Y by BFD

.07 .08 .14

.08 .08

.3201.15 .08

.7

.08

.68 .5399

The packing of X by BFD

.08

.08

.08

.08

.08

.5399

r={.7, .68, .5399, .3201, .15, .14, .08(x5), .07}

X={.7, .68, .5399, .32, .15, ,14, .08(z5), .07}

Figure 4.

.07



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Non-MDnotonicity of Best-Fit

The packing of Fby BF

1/12

4/12
5/12

4/12

8/12
6/12

8/12

The packing of X by BF

y={8/12, 6/12, 5/12, 8/12, 1/12, 4/12, 4/12}

X = {6/12, 6/12, 5/12, 8/12, 1/12, 4/12, 4/12}

Figure 5.

4/12




