
UCLA
UCLA Electronic Theses and Dissertations

Title
Probabilistic Reasoning for Fair and Robust Decision Making

Permalink
https://escholarship.org/uc/item/90g244ht

Author
Choi, YooJung

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/90g244ht
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Probabilistic Reasoning for Fair and Robust Decision Making

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

YooJung Choi

2022

© Copyright by

YooJung Choi

2022

ABSTRACT OF THE DISSERTATION

Probabilistic Reasoning for Fair and Robust Decision Making

by

YooJung Choi

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Guy Van den Broeck, Chair

Automated decision-making systems are increasingly being deployed in areas with high personal

and societal impact. This naturally led to growing interest in trustworthy artificial intelligence (AI)

and machine learning (ML), encompassing many fields of research including algorithmic fairness,

robustness, explainability, privacy, and more. These works share a common theme of questioning

and moderating the behavior of automated tools in various real-world settings, which inherently

exhibit different uncertainties.

This dissertation explores how probabilistic modeling and reasoning as a framework offer a

principled way to handle uncertainties when addressing trustworthy AI issues, in particular by

explicitly modeling the underlying distribution of the world. The main contributions are as follows.

First, it demonstrates that many problems in trustworthy AI can be cast as probabilistic reasoning

tasks of varying complexities. Secondly, it proposes algorithms to learn fair and robust decision-

making systems, while handling many sources of uncertainties such as missing or biased labels

at training time and missing features at prediction time. The proposed approach relies heavily on

probabilistic models that are expressive enough to describe the world underlying the system, whilst

being tractable enough to answer various probabilistic queries. The final contribution of this thesis

ii

is showing that probabilistic circuits are an effective model for this framework and expanding their

reasoning capabilities even further.

iii

The dissertation of YooJung Choi is approved.

Kai-Wei Chang

Stefano Soatto

Rina Dechter

Guy Van den Broeck, Committee Chair

University of California, Los Angeles

2022

iv

To my family

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Structure of the Thesis . 3

2 Foundations . 5

2.1 Probabilistic Models and Queries . 5

2.2 Probabilistic Circuits . 8

2.2.1 Syntax and Semantics . 8

2.2.2 Tractable Inference . 10

2.2.3 Learning and Compiling PCs . 15

3 Fairness-aware Learning from Biased Labels . 18

3.1 Introduction . 18

3.2 Latent Fair Decisions . 19

3.2.1 Motivation . 20

3.2.2 Modeling with a latent fair decision . 21

3.3 Learning Fair Probabilistic Circuits . 23

3.3.1 Parameter Learning . 25

3.3.2 Structure Learning . 30

3.4 Empirical Evaluation . 31

3.4.1 Real-World Data . 32

3.4.2 Synthetic Data . 35

Intermezzo 1: Expected Predictions . 37

vi

3.4.3 Learning With Missing Values . 38

3.5 Related Work . 38

3.6 Discussion . 40

4 Fairness of Predictions with Missing Features . 41

4.1 Problem Formalization . 42

4.2 Discovering Discrimination Patterns and Verifying δ-fairness 44

4.2.1 Searching for Discrimination Patterns . 44

Intermezzo 2: Fairness Considerations in Policy Making 46

4.2.2 Searching for Top-k Ranked Patterns . 46

4.2.3 Empirical Evaluation of Discrimination Pattern Miner 48

4.3 Learning Fair Naive Bayes Classifiers . 50

4.3.1 Parameter Learning with Fairness Constraints 50

4.3.2 Learning δ-fair Parameters . 51

4.3.3 Empirical Evaluation of δ-fair Learner . 52

4.4 Finding Discrimination Patterns in Probabilistic Circuits 55

4.4.1 Empirical Evaluation . 60

4.5 Discussion . 61

5 Robust Decision Making . 63

5.1 Introduction . 63

5.2 Expected Classification Agreement . 66

5.2.1 Example and Motivation . 66

5.2.2 Formalization . 67

vii

5.3 Searching for an Optimal Trimming . 69

5.3.1 Maximum Potential Agreement . 69

5.4 Probabilistic Reasoning Algorithms . 71

5.4.1 Computing the ECA using Constrained Circuits 72

5.4.2 Computing the MPA . 74

5.4.3 Computing the MAA . 74

5.5 Empirical Evaluation . 76

5.5.1 Accuracy vs. Agreement . 76

5.5.2 Trimming General Networks . 78

5.6 Conclusion . 79

6 Probabilistic Inference by Circuit Transformations 81

6.1 Marginal MAP . 82

6.1.1 Exact Solvers . 83

6.2 Circuit Pruning For Marginal MAP . 84

6.2.1 Motivation . 84

6.2.2 Edge Bounds . 87

Intermezzo 3: Inference by Composition of Circuit Transformations 92

6.3 Iterative Marginal MAP Solver . 93

6.3.1 Lower Bound . 94

6.3.2 Split Heuristics . 95

6.4 Empirical Evaluation . 96

6.5 Conclusion . 99

viii

7 Conclusion . 100

Appendix A Proofs . 102

A.1 Degree of Discrimination Bound . 102

A.1.1 Proof of Proposition 4.1 . 102

A.1.2 Computing the Discrimination Bound . 103

A.1.3 Proof of Lemma 1 . 104

A.2 Divergence Score . 104

A.2.1 Derivation of Equation 4.2 . 104

A.2.2 Upper Bounds on Divergence Score . 106

A.3 Proof of Proposition 4.2 . 109

A.4 Proof of Proposition 5.3 . 110

A.5 Proof of Proposition 6.1 . 112

ix

LIST OF FIGURES

2.1 Bayesian network for review decisions . 7

2.2 A probabilistic circuit over variables D,R1 ,R2 ,AC . For graphical conciseness, a node

labeled R1 ,R2 denotes a product node with literals R1 and R2 as inputs. The edge

parameters of the orange (resp. blue) sum node are θ1, . . . , θ4 (resp. θ5, . . . θ8) from left

to right. 9

2.3 Computing the marginal probability Pr(AC = +) on the PC in Figure 2.2. 11

2.4 Computing the MAP query maxd,r1,r2 Pr(D = d,R1 = r1,R2 = r2,AC = +) on the

PC in Figure 2.2. The max nodes are highlighted in purple. 13

2.5 A structured decomposable PC over X={X1, X2, X3} and its corresponding vtree. . . 14

2.6 A tree Bayesian network for p(A,B,C,D) compiled into a PC 16

3.1 Bayesian network structures that represent the proposed fair latent variable approach

(left) and model without a latent variable (right). Abusing notation, the set of features

X is represented as a single node, but refers to some local Bayesian network over X. . 22

3.2 A probabilistic circuit over variables S,X, D,Df . 24

3.3 Comparison of fair probability distributions. Columns: log-likelihood, F1-score,

discrimination score (higher is better for the first two; lower is better for last). Rows:

COMPAS, Adult, German datasets. The four bars in each graph from left to right are:

1) 2NB, 2) LATNB, 3) NLATPC, 4) FAIRPC. 33

3.4 Predictive performance (y-axis) vs. discrimination score (x-axis) for FAIRPC and fair

classification methods (FAIRLR, REDUCTION, REWEIGHT), in addition with two trivial

baselines (RAND and LR). Columns: accuracy, F1-score. Rows: COMPAS, Adult,

German datasets. 34

x

3.5 Accuracy (y-axis) vs. discrimination score (x-axis) on synthetic datasets. We compare

FAIRPC with 2NB, LATNB, NLATPC (left) and with REDUCTION, REWEIGHT,

FAIRLR (right). Each dot is a single run on a generated dataset using the method

indicated by its color. 36

3.6 Test log-likelihood under different missingness percentages on real world and synthetic

datasets. 38

4.1 Naive Bayes classifier with a sensitive attribute X and non-sensitive attributes Y1, Y2 . 42

4.2 Discrimination patterns with δ = 0.1 for the max-likelihood NB classifier on COMPAS. 49

4.3 Log-likelihood and the number of remaining discrimination patterns after each iteration

of learning on COMPAS dataset with δ = 0.1. 53

5.1 Naive Bayes classifier for a quiz scenario where answers on Q = {Q1, Q2, Q3} (fea-

tures) depend on knowledge C (class) . 65

5.2 Constrained vtree where F = {R1 ,R2 ,AC} and F′ = {R1}. The F′-constr. node is 2

and F-constr. node is 4. 72

5.3 A Bayesian network over features {F1, F2, F3} and class C. 76

5.4 (a),(b) ECA and average accuracy achieved by feasible feature subsets. (c) evaluation

of subsets with highest ECA and accuracy. 77

5.5 Comparing ECA of features selected by classifier trimming and information gain . . . 79

6.1 A smooth and decomposable PC over variables {X1, X2, X3}. Orange sum nodes are

Q-deterministic for Q = {X1, X2}; blue edges form the sub-circuit for joint assignment

q = {X1 = 1, X2 = 0}. 85

6.2 Upper and lower bounds (top) and circuit size (bottom) in each iteration of the solver

on an example instance on EachMovie dataset. 98

xi

LIST OF TABLES

2.1 Joint Probability Table . 6

4.1 Data statistics (number of training instances, sensitive features S, non-sensitive features

N , and potential patterns) and the proportion of patterns explored during the search,

using the Divergence and Discrimination scores as rankings. 48

4.2 Log-likelihood of models learned without fairness constraints, with the δ-fair learner

(δ = 0.1), and by making sensitive variables independent from the decision variable. . 53

4.3 Number of remaining patterns with δ=0.1 in naive Bayes models trained on discrimination-

free data, where λ determines the trade-off between fairness and accuracy in the data

repair step [Feldman et al., 2015]. 54

4.4 Comparing accuracy of our δ-fair models with two-naive-Bayes method and a naive

Bayes model trained on repaired, discrimination-free data. 54

4.5 Dataset statistics (number of examples, number of sensitive features S, non-sensitive

features N , and number of potential patterns) and speedup of top-k search v.s. naive

enumeration, in terms of the fraction of search space explored. 60

5.1 Table to calculate the MAA({F1, F2}) . 76

6.1 Average run time in seconds (with 1-hour time limit for each instance) and the number

of instances solved for different proportions of (query, evidence, hidden) variables. . . 97

xii

ACKNOWLEDGMENTS

There are many who helped me along the way on this exciting but challenging journey.

First and foremost I am extremely grateful to my advisor Guy Van den Broeck for his support

and guidance. I appreciate the constructive feedback and encouragement I have gotten over the

years, as well as the interesting research discussions and freedom to explore on my own when I

needed them. Looking back to when I started my graduate studies, I realize I was ignorant to what

PhD or academia is really like. Guy has not only taught me to be an independent researcher but also

inspired me to be an effective communicator and a caring mentor.

I am also honored to have Profs. Stefano Soatto, Rina Dechter, and Kai-Wei Chang on my

dissertation committee. I would like to express my gratitude for their valuable feedback on this

thesis and for all the insightful questions and discussions.

I consider myself extremely lucky to have shared this journey with the amazing members of the

StarAI Lab and friends at UCLA: Tal Friedman, Yitao Liang, Steven Holtzen, Pasha Khosravi, Zhe

Zeng, Honghua Zhang, Kareem Ahmed, Antonio Vergari, Anji Liu, Meihua Dang, Poorva Garg,

Yujia Shen, and Arthur Choi. All of you shaped my PhD life, from the whiteboard discussions and

late-night writing sessions before deadlines to the coffee breaks and board game nights.

To DJ, my biggest supporter: you helped me through the stressful times and were always there

to share the highlights. Thank you for being patient when I am distracted and for always making

me laugh.

Finally, I want to thank my family for understanding and putting up with me when I missed

many events. I could not have undertaken this journey without their unconditional love and support.

xiii

VITA

2012–2016 B.S. in Computer Science, summa cum laude. UCLA

PUBLICATIONS

YooJung Choi, Tal Friedman, and Guy Van den Broeck. Solving Marginal MAP Exactly by

Probabilistic Circuit Transformations. In Proceedings of the 25th International Conference on

Artificial Intelligence and Statistics (AISTATS), 2022.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A Compositional

Atlas of Tractable Circuit Operations for Probabilistic Inference. In Advances in Neural Information

Processing Systems 35 (NeurIPS), 2021.

YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group Fairness by Probabilistic Modeling

with Latent Fair Decisions. In Proceedings of the 35th AAAI Conference on Artificial Intelligence

(AAAI), 2021.

YooJung Choi*, Golnoosh Farnadi*, Behrouz Babaki*, and Guy Van den Broeck. Learning Fair

Naive Bayes Classifiers by Discovering and Eliminating Discrimination Patterns. In Proceedings of

the 34th AAAI Conference on Artificial Intelligence (AAAI), 2020.

Alicia Solow-Niederman, YooJung Choi, and Guy Van den Broeck. The Institutional Life of

Algorithmic Risk Assessment. In Berkeley Technology Law Journal (BTLJ), 2019.

xiv

YooJung Choi and Guy Van den Broeck. On Robust Trimming of Bayesian Network Classifiers.

In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), 2018.

YooJung Choi, Adnan Darwiche, and Guy Van den Broeck. Optimal Feature Selection for Decision

Robustness in Bayesian Networks. In Proceedings of the 26th International Joint Conference on

Artificial Intelligence (IJCAI), 2017.

xv

CHAPTER 1

Introduction

Machine learning systems are increasingly being used for critical decision making in a wide

range of areas: from personalized ads and financial lending, to healthcare and criminal justice

settings [Chouldechova, 2017; Berk et al., 2018; Datta et al., 2015; Henderson et al., 2015]. Despite

their significant impact, these systems are often used without much reasoning about their behaviors,

as black-box functions only comparable by metrics such as classification accuracy. As a result,

there has been growing interest and need for methods that provide explanations and guarantees,

especially relating to building trustworthy AI/ML systems that are robust, fair, accountable, and

explainable [Choi et al., 2012; Dwork et al., 2012; Barocas et al., 2019; Gunning, 2017].

Questions about model behaviors such as robustness and fairness must be answered with

respect to the world in which the model will operate. For instance, an important consideration for

algorithmic fairness is the existence of proxy variables. These are variables that are correlated with

sensitive attributes, such as race and gender which are protected by law, and may leak information

and introduce bias even when the sensitive attributes are not directly used to make decisions (e.g.

zip code as a proxy to race). The degree to which a variable is correlated with a sensitive attribute

depends on the underlying population; in fact, a seemingly innocuous variable in one population

may be a problematic proxy in another. While it is practically impossible to capture a perfect

description of the world in all its details, we can use probabilistic models to represent the underlying

distribution with inherent uncertainties.

Given such a model of the world, various questions in the field of trustworthy AI can be

cast as probabilistic inference tasks on the model. For example, one can provide explanations

1

for a certain instance of image classification by asking which subset of the pixels lead to the

same classification with the highest probability. In addition, a simple notion of fairness checks

whether the average decision differs significantly between protected groups (e.g. between males

and females). This corresponds to comparing the expectation of a model output, computed with

respect to the underlying distribution of each subpopulation. Therefore, a probabilistic model with

flexible inference capabilities would allows us to reason about different trustworthy AI behaviors.

Furthermore, there are additional sources of uncertainty when AI/ML systems are deployed

in the real world. While models are defined over a set of features, observing a feature is often

associated with a cost in practical settings. Consider a medical diagnosis setting: a patient is

diagnosed without running all possible tests, as that would be costly and unrealistic. Thus, different

subsets of features may be observed for different individuals, or the set of features may need to be

reduced, in which case one may wonder how robust the decision is against potential outcomes of

unobserved features. Moreover, there may be noise or bias in the training labels. This certainly

makes it challenging not only to learn fair classifiers but even to measure fairness. As we will show,

probabilistic modeling and reasoning provide a clear language and tool to reason about these model

behaviors while handling aforementioned types of uncertainties.

This thesis seeks to develop probabilistic reasoning algorithms for quantifying and verifying

robustness and fairness, and in turn, to use those to learn decision-making systems that can give

guarantees. In particular, as these reasoning tasks are often computationally hard, we especially

focus on tractable probabilistic models (TPMs), and in particular probabilistic circuits, which

are expressive models that allow for reliable and efficient inference. More concretely, the main

contributions of this thesis are: (1) showing how different robustness and fairness notions can be

written as probabilistic queries of varying complexities; (2) for each of those queries, identifying a

corresponding family of probabilistic circuits for tractable inference; (3) proposing algorithms to

learn probabilistic models that satisfy previously defined robustness and fairness guarantees; and

lastly, (4) introducing new techniques for tractable inference on probabilistic circuits.

2

1.1 Structure of the Thesis

Chapter 2 provides key background in probabilistic modeling and reasoning. It discusses the trade-

off between expressiveness and tractability of probabilistic models, and reviews some common

inference tasks. The remainder of the chapter studies tractable circuit representations, their syntax

and semantics as well as how they support efficient inference of a large class of probabilistic queries.

The next two chapters demonstrate how tractable probabilistic models can be leveraged for

fairness-aware machine learning. Chapter 3, based on Choi et al. [2021], addresses the common

problem of biased class labels in the training data. Specifically, the biased labels are treated as

noisy versions of some hidden fair label, which we explicitly model as a latent variable. This

approach is enabled by the tractability of probabilistic circuits in handling latent variables during

learning and inference, in addition to their expressiveness in modeling real-world distributions.

Next, Chapter 4 identifies how existing notions of fairness often overlooks the common setting

in which predictions or decisions are made with missing information, and proposes a new notion

called discrimination patterns to tackle this scenario. Focusing on probabilistic classifiers which

naturally handle predictions with missing values, it then presents algorithms to mine discrimination

patterns from a given model and to learn naive Bayes classifiers while eliminating discrimination

patterns. This chapter is largely based on Choi et al. [2020a] and includes part of a work under

review [Selvam et al., 2022].

Chapter 5 is concerned with developing decision-making systems that are robust to future

observations. As noted previously, observing features are often expensive, and thus decisions may

need to be made only with partial information. Then it is valuable to know whether such decisions

are likely to stay the same even with further observations. This chapter proposes a robust trimming

of probabilistic classifiers as a way to derive classifiers that use a smaller number of features while

making robust decisions. It shows that the feature selection criterion is a computationally hard

probabilistic query and proposes the first exact inference algorithm for it, using probabilistic circuits.

The work discussed in this chapter was previously published in Choi and Van den Broeck [2018]

3

and Choi et al. [2017].

In Chapter 6 we turn our attention to further advancing the tractable probabilistic inference

framework to answer more complex queries. The work on algorithmic fairness and robustness

presented in this thesis—as well as other methods in trustworthy AI such as explainability—is

made possible by the tractable inference capabilities of probabilistic circuits. This chapter thus

studies how we can push this framework and answer harder queries, which would in turn expand the

problems in trustworthy AI that we can tackle. In particular, it presents a new framework of exact

inference through circuit transformations, focusing on the marginal MAP query [Choi et al., 2022].

Other works that are relevant but not necessarily a central chapter to this dissertation are

discussed in short intermezzos throughout the thesis. They include expected predictions [Khosravi

et al., 2019b,a, 2020], algorithmic fairness in law [Solow-Niederman et al., 2019], and inference by

composition of circuit transformations [Vergari et al., 2021].

Finally, Chapter 7 concludes by summarizing the thesis and discussing future research.

4

CHAPTER 2

Foundations

This chapter will provide the background on probabilistic modeling and inference using tractable

circuit representations, which is integral to our proposed approach for robust and fair decision

making.

Notation We use uppercase letters (e.g., X) for discrete random variables and lowercase letters

(x) for their assignments. Negation of a binary assignment x is denoted by x̄. Sets of variables are

denoted by bold uppercase letters (X), and their joint assignments by bold lowercase (x). The set of

all possible values or assignments to variables X is written as val(X). Concatenations of sets (XY)

represent their union (X ∪Y).

2.1 Probabilistic Models and Queries

A probabilistic model is a particular representation of a probability distribution. The simplest form

of a model for a distribution over discrete variables would be a joint probability table. Each row

of the table corresponds to a joint assignment to the variables and is associated with a probability

mass. Table 2.1 shows some example rows of a joint probability table over 4 Boolean variables

D,R1 ,R2 ,AC . For a distribution over n Boolean variables, the table would require 2n rows which

is clearly not feasible in practice. Therefore, most probabilistic models are concerned with more

concisely representing distributions.

Probabilistic graphical models (PGMs), such as Bayesian networks and factor graphs, represent

5

Table 2.1: Joint Probability Table

D R1 R2 AC Pr(D,R1 ,R2 ,AC)

+ + + + 0.0756
+ + + − 0.0084
+ + − + 0.0112
+ + − − 0.0448

...
...

− − − + 0
− − − − 0.576

a probability distribution with a graph structure and a set of small tables associated with nodes

in the graph [Koller and Friedman, 2009; Darwiche, 2009a]. For example, a Bayesian network

(BN) consists of a directed acyclic graph (DAG) whose nodes represent random variables and

are each associated with a conditional probability table (CPT). Figure 2.1 shows an example

Bayesian network representing a paper review scenario. The variable D denotes the true quality of a

submitted paper; two reviewers, R1 and R2 , independently evaluate the paper, and their assessments

are summarized by the area chair AC . We can see from the CPTs that, for example, R1 will

positively rate a paper of high quality with 0.7 probability, and AC will agree with two positive

reviews with 0.9 probability. Note that this distribution can be described by a Bayesian network

with 9 parameters, as opposed to 24 − 1 = 15 free parameters in the case of a joint probability

table. Moreover, the DAG structure of a Bayesian network can concisely represent conditional

dependencies in the probability distribution. For instance, in Figure 2.1, the random variables R1

and R2 are conditionally independent given D.

Given such representation of the world as a probability distribution, we would naturally want to

ask questions, or queries, about various quantities of interest from the distribution. One of the most

basic queries asks about the probability of some complete assignment to the random variables. We

call this a complete evidence query or a likelihood. Bayesian networks can compute a complete

evidence query in linear time in the number of variables. For example, the BN in Figure 2.1

6

D

R1 R2

AC

Pr(D=+)

0.2

D Pr(R1 =+|D)

+ 0.7
− 0.2

D Pr(R2 =+|D)

+ 0.6
− 0.1

R1 R2 Pr(AC =+|R1R2)

+ + 0.9
+ − 0.2
− + 0.3
− − 0

Figure 2.1: Bayesian network for review decisions

factorizes the distribution as:

Pr(D,R1 ,R2 ,AC) = Pr(D) · Pr(R1 | D) · Pr(R2 | D) · Pr(AC | R1 ,R2).

Hence, a complete evidence query Pr(D = +,R1 = +,R2 = −,AC = +) can be computed as

0.2 · 0.7 · 0.4 · 0.2 = 0.0112.

On the other hand, we may also want to query the probability of an event that is given by a partial

assignment, rather than a complete assignment to all variables; computing queries of such form

is called the marginal inference. For instance, the probability that the area chair will recommend

accept is given by the sum of probabilities of all complete evidence that set AC = +.

Pr(AC = +) =
∑

d,r1,r2

Pr(D = d,R1 = r1,R2 = r2,AC = +)

In addition, we could also query the probability of this event conditioned on another event, such as

the paper having high quality (D = +):

Pr(AC = + | D = +) =
Pr(AC = +, D = +)

Pr(D = +)
.

7

This is called a conditional inference. In general, computing marginal and conditional probabilities

of PGMs is a #P-hard task.

Nevertheless, there exist subclasses of PGMs that support tractable marginal inference—that

is, computing marginal probabilities in polynomial time. For example, naive Bayes and other

tree-structured PGMs allow linear-time marginal inference. The cost of this tractability is their

expressivity: these models make assumptions about (conditional) independence between variables

that prohibit them from representing certain distributions. For example, a naive Bayes network with

D as the root will not be able to represent the distribution given by the BN in Figure 2.1.

Hence, choosing a specific family of probabilistic models often involve making a tradeoff

between how tractable the models are for certain queries and how expressive they are in concisely

representing a wide range of distributions. The probabilistic reasoning framework for fair and robust

decision making developed by this thesis employs a family of models called probabilistic circuits,

which aims to strike a balance and achieve expressivity as well as tractability for many queries of

interest. The remainder of this chapter provides relevant background on probabilistic circuits.

2.2 Probabilistic Circuits

A large family of tractable probabilistic models—including arithmetic circuits [Darwiche, 2002,

2003], and-or search spaces [Dechter and Mateescu, 2007] and multi-valued decision diagrams [Ma-

teescu et al., 2008], probabilistic sentential decision diagrams [Kisa et al., 2014a], cutset net-

works [Rahman et al., 2014], and sum-product networks [Poon and Domingos, 2011]—can collec-

tively be understood using the framework of probabilistic circuits (PCs) [Vergari et al., 2020].

2.2.1 Syntax and Semantics

A probabilistic circuit (PC) C = (G,θ) over variables X, characterized by its structure G and

parameters θ, defines a (possibly unnormalized) probability distribution over X in a recursive

8

× ×

D ¬D

×× ××

p1 p2 p3 p4

R1 ,R2 R1 ,¬R2 ¬R1 ,R2 ¬R1 ,¬R2

0.2 0.8

θ1 θ2 θ7 θ8

θ1 = 0.7 · 0.6
θ2 = 0.7 · 0.4
θ3 = 0.3 · 0.6
θ4 = 0.3 · 0.4
θ5 = 0.2 · 0.1
θ6 = 0.2 · 0.9
θ7 = 0.8 · 0.1
θ8 = 0.8 · 0.9

p1(AC = +) = 0.9
p2(AC = +) = 0.2
p3(AC = +) = 0.3
p4(AC = +) = 0

Figure 2.2: A probabilistic circuit over variables D,R1 ,R2 ,AC . For graphical conciseness, a node
labeled R1 ,R2 denotes a product node with literals R1 and R2 as inputs. The edge parameters of
the orange (resp. blue) sum node are θ1, . . . , θ4 (resp. θ5, . . . θ8) from left to right.

manner. The circuit structure G is a directed acyclic graph (DAG) such that each inner node is

either a sum node or a product node, and each leaf (input) node is associated with a univariate

input distribution. We denote the distribution associated with leaf n by fn(.). This may be any

probability mass function, a special case being an indicator function such as [X = 1]. Every edge

(n, c) between a sum unit n and its child c is also associated with a parameter θn,c > 0. A subcircuit

rooted at a PC node is itself a valid probabilistic circuit.

Let ch(n) denote the set of children, or inputs, of an inner node n. A scope of a node n, denoted

by φ(n), refers to all variables that appear in the subcircuit rooted at n. In other words, the scope of

a leaf node is simply the variable associated with the univariate distribution fn(.), and the scope of

an inner unit is the union of the scopes of its inputs: φ(n) =
⋃
c∈ch(n) φ(c). A PC node n whose

9

scope is X then recursively defines a distribution as the following: for every x ∈ val(X),

n(x) =





fn(x) if n is a leaf node
∏

c∈ch(n) c(x) if n is a product node
∑

c∈ch(n) θn,c · c(x) if n is a sum node

We write C(x) to refer to n(x)—the output of node n—where n is the root of the PC C. If the

PC defines a normalized distribution, we equivalently use Prn(x). Lastly, the support of n is the

set of all complete assignments to X for which the output of n is non-zero: supp(n) = {x ∈
val(X) |n(x) 6= 0}. Figure 2.2 illustrates an example probabilistic circuit, representing the same

distribution as the Bayesian network in Figure 2.1. Note that the literals D and ¬D refer to the

positive [D = +] and negative [D = −] assignments to D, respectively.

2.2.2 Tractable Inference

A key strength of probabilistic circuits is that, based on the structural properties they satisfy, certain

queries can be answered in polynomial time in the size of the circuit. In other words, they support

tractable inference of different classes of queries. We now define the structural properties needed

for some key query classes.

2.2.2.1 Marginal and Conditional Probability

Probabilistic circuits support efficient marginal inference if they are smooth and decomposable.

Definition 2.1 (Smoothness). A circuit is smooth if for every sum node n, its inputs depend on the

same variables: ∀ c1, c2 ∈ ch(n), φ(c1) = φ(c2).

Smooth PCs generalize shallow mixture models [McLachlan et al., 2019] to deep and hierarchical

models. Smoothness is sometimes referred to as completeness [Poon and Domingos, 2011].

Definition 2.2 (Decomposability). A circuit is decomposable if the inputs of every product node n

10

0.16

0.488 0.078

1 1
0.488 0.078

0.20.9 00.3

0.9 0.2 0.3 0

1 1 1 1

0.2 0.8

θ1 θ2 θ7 θ8

Figure 2.3: Computing the marginal probability Pr(AC = +) on the PC in Figure 2.2.

depend on disjoint sets of variables: ∀ c1, c2 ∈ ch(n), φ(c1) ∩ φ(c2) = ∅.

Decomposable product nodes encode local factorizations. That is, a decomposable prod-

uct n over variables X encodes n(X) = c1(X1) · c2(X2) · · · cm(Xm), where m = |ch(n)|, and

X1, . . . ,Xm form a partition of X.

Taken together, decomposability and smoothness are sufficient conditions1 for performing

tractable marginalization over arbitrary sets of variables in a single feedforward pass, as they enable

larger sums to be efficiently decomposed into smaller ones [Darwiche and Marquis, 2002; Choi

et al., 2020b]. Next proposition formalizes it.

Proposition 2.1 (Tractable marginals). Let C be a smooth and decomposable circuit defining a

distribution Pr(.) over discrete variables X. Then for any variables Y ⊆ X and their assignment

y, the marginalization
∑
z∈val(Z) Pr(y, z) can be computed exactly in Θ(|C|) time, where Z denotes

X \Y.

1They are also the necessary conditions if the variables in the PC may be continuous or discrete. If the PC
is defined over Boolean variables, smoothness and consistency [Poon and Domingos, 2011]—a relaxed notion of
decomposability—suffice.

11

To answer a marginal query in a PC, we traverse the circuit in a feedforward manner as follows.

Leaf node n is evaluated as 1 if it does not depend on a variable in Y, and as fn(y) otherwise. Then

we simply evaluate the circuit, taking (weighted) sums and products accordingly. Moreover, any

conditional query can be written as a ratio of marginal probabilities, and can thus be computed by

two feedforward evaluations of the PC.

For instance, we can easily see that the PC in Figure 2.2 is smooth and decomposable. Then

to compute the marginal Pr(AC = +), we evaluate the leaf nodes whose scope is AC (i.e. those

marked as p1, . . . , p4) with the positive assignment and replace all other leaf nodes with 1. Evaluating

the circuit bottom up, we get the marginal probability Pr(AC = +) = 0.16. This is illustrated in

Figure 2.3.

2.2.2.2 Maximum A Posteriori

Another useful structural property is determinism; a PC over variables X is deterministic if for

every complete input x, at most one child of every sum node has a non-zero output. In addition to

enabling tractable inference for more queries [Choi and Darwiche, 2017], it leads to closed-form

parameter estimation of probabilistic circuits given complete data.

Definition 1 (Determinism). A circuit is deterministic if the inputs of every sum node n have disjoint

supports: ∀ c1, c2 ∈ ch(n), c1 6= c2 =⇒ supp(c1) ∩ supp(c2) = ∅.

Analogously to decomposability, determinism induces a recursive partitioning, but this time

over the support of a circuit. Determinism together with decomposability allows for tractable

maximization of circuits [Darwiche, 2009b]. The maximum a posteriori (MAP) queries—also

called the most probable explanation (MPE)—ask to find the complete assignment that maximizes

the probability, possibly given some evidence. This can be done in linear time for decomposable

and deterministic PCs, again by a feedforward evaluation after replacing each sum node with

a maximization node. For instance, consider the following MAP query on the example PC in

12

0.0756

0.378 0.036

1 1
0.378 0.036

0.20.9 00.3

0.9 0.2 0.3 0

1 1 1 1

0.2 0.8

θ1 θ2 θ7 θ8

Figure 2.4: Computing the MAP query maxd,r1,r2 Pr(D = d,R1 = r1,R2 = r2,AC = +) on the
PC in Figure 2.2. The max nodes are highlighted in purple.

Figure 2.2:

max
d,r1,r2

Pr(D = d,R1 = r1,R2 = r2,AC = +).

Because the PC is also deterministic, we can perform MAP inference as illustrated in Figure 2.4.

2.2.2.3 Beyond Marginals and MAP

Many types of PCs support tractable inference of harder queries by additionally inducing a form

of hierarchical scope partitioning [Pipatsrisawat and Darwiche, 2008; Mateescu et al., 2008]. In

particular, we study the property called compatibility [Vergari et al., 2021], which is defined

over pairs of PCs and asks whether they share the same scope decompositions. Intuitively, two

decomposable circuits are compatible if they can be rearranged in polynomial time2 such that their

respective product units, once matched by scope, decompose in the same way. We formalize this

2By changing the order in which n-ary product units are turned into a series of binary product units.

13

×

X1 X2

×

X1 X2

X3

×

×

X1 X2

×

X1 X2

X3

×

(a) A structured decomposable circuit

X3

X1 X2

(b) A vtree

Figure 2.5: A structured decomposable PC over X={X1, X2, X3} and its corresponding vtree.

with the following inductive definition.

Definition 2 (Compatibility). Two circuits C and C ′ over variables X are compatible if (1) they are

smooth and decomposable and (2) any pair of product units n∈C and m∈C ′ with the same scope

can be rearranged into products that are mutually compatible and decompose in the same way:

(φ(n)=φ(m)) =⇒ (φ(ni)=φ(mi), ni and mi are compatible) for some ordering of the inputs of

n and m.

We can derive from compatibility the following property pertaining to a single circuit, which

will be useful in our analysis later.

Definition 3. A circuit is structured-decomposable if it is compatible with itself.

Figure 2.5a shows an example of a structured decomposable PC. The decomposition of variables

can be described using a vtree: a full binary tree structure, with each of its leaves corresponding to

a variable in the PC [Pipatsrisawat and Darwiche, 2008]. Two structured-decomposable PCs are

compatible if they share the same vtree.

In addition, a structured decomposable PC is strongly deterministic if every sum node is

deterministic in the children nodes corresponding to its left vtree node. Consider the example

14

PC in Figure 2.5a. The root sum node is strongly deterministic if the two leaf nodes for X3 have

disjoint supports; i.e., at most one outputs non-zero for every input with an assignment to X3.

PCs satisfying structured decomposability and strong determinism are known to be tractable, for

certain variable ordering in the PCs, for hard queries such as marginal MAP and the same-decision

probability [Marinescu et al., 2018; Oztok et al., 2016], which are NPPP- and PPPP-complete,

respectively, for PGMs in general. We will more closely study these queries and the class of PCs

tractable for them in Chapters 5 and 6.

2.2.3 Learning and Compiling PCs

Probabilistic circuits are expressive models, shown to achieve competitive likelihoods in various

density estimation tasks [Dang et al., 2022; Liu et al., 2022; Peharz et al., 2020]. There exist various

probabilistic circuit structure and parameter learning methods [Peharz et al., 2020; Rahman and

Gogate, 2016; Liang et al., 2017; Dang et al., 2020] to directly fit the data. Alternatively, PCs can

also be compiled from other types of probabilistic models.

Bounded-treewidth graphical models—including naive Bayes networks, Chow-Liu trees [Chow

and Liu, 1968], polytrees [Dasgupta, 2013], and thin junction trees [Bach and Jordan, 2001]—can

be translated into smooth, decomposable, and deterministic probabilistic circuits in polynomial

time. Examples of such translation can be found in Darwiche [2009b]; Vergari et al. [2020]; Liu

et al. [2022].

At a high level, we can compile a Bayesian network to a PC by compiling its CPTs in a bottom-

up fashion, i.e., children before parents. For instance, consider the tree structured Bayesian network

in Figure 2.6a. To compile it into a smooth, decomposable, and deterministic PC, we first compile

the conditional probability p(A | C = 0) using a sum node with indicator leaf nodes as inputs,

illustrated in Figure 2.6b. Note that the edge parameters correspond to p(A = 0 | C = 0) = .3

and p(A = 1 | C = 0) = .7. Similarly, we can compile the CPTs for both leaf nodes of the

BN p(A | C) and p(B | C) as Figure 2.6c. Continuing to its parent, we connect the compiled

15

D

C

A B

(a) Tree BN

A = 0 A = 1

.3 .7

p(A|C = 0)

(b) PC for p(A | C = 0)

A = 0 A = 1 B = 0 B = 1

p(A|C) p(B|C)

(c) PCs for p(A | C) and p(B | C)

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.2
.8

p(C|D = 0)

(d) PC for p(A,B,C | D = 0)

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

(e) PC for p(A,B,C,D)

Figure 2.6: A tree Bayesian network for p(A,B,C,D) compiled into a PC

16

conditional probability distributions to the corresponding indicators for C, repeating the process

until we reach the root node and obtain the PC in Figure 2.6e.

This has also been studied extensively in the field of knowledge compilation [Darwiche and

Marquis, 2002], where Bayesian networks are compiled into circuit representations called weighted

model counting (WMC) circuits to perform probabilistic inference. It proceeds by first encoding the

BN into a weighted Boolean formula, which is then compiled into a logical circuit with some of its

leaf nodes associated with parameters. Then a marginal inference task on the original BN can be

performed by an analogous task called weighted model counting on the compiled circuit. WMC is

tractable if the circuit is smooth and decomposable, where the properties are concerned with OR

and AND gates in a logical circuit instead of sum and product nodes, respectively, in a probabilistic

circuit. For such WMC circuit, there exists an equivalent PC such that the parameters associated

with leaf nodes in the WMC circuit appear as edge parameters on sum nodes of the PC. We refer to

Darwiche [2003] for more details.

17

CHAPTER 3

Fairness-aware Learning from Biased Labels

Ensuring fairness of machine learning models is often made challenging by the fact that labels in

the data are biased. This chapter studies learning fair probability distributions from biased data by

explicitly modeling a latent variable that represents a hidden, unbiased label. We also show that

group fairness guarantees are meaningful only if the distribution used to provide those guarantees

indeed captures the real-world data. In order to closely model the data distribution, we employ

probabilistic circuits and propose an algorithm to learn them from incomplete data. We evaluate

our approach on a synthetic dataset in which observed labels indeed come from fair labels but with

added bias, and demonstrate that the fair labels are successfully retrieved. Moreover, we show on

real-world datasets that our approach not only is a better model than existing methods of how the

data was generated but also achieves competitive accuracy. The results described in this chapter

were previously published in [Choi et al., 2021].

3.1 Introduction

As discussed previously, there is growing concern that machine learning algorithms may produce

decisions that discriminate against particular groups of people. To address these concerns, vari-

ous methods have been proposed to quantify and ensure fairness in automated decision making

systems [Chouldechova, 2017; Dwork et al., 2012; Feldman et al., 2015; Kusner et al., 2017;

Kamishima et al., 2012; Zemel et al., 2013]. A widely used notion of fairness is demographic parity,

which states that sensitive attributes such as gender or race must be statistically independent of the

class predictions.

18

This chapter studies the problem of enforcing demographic parity in probabilistic classifiers.

In particular, focusing on the fact that class labels in the data are often biased, it proposes a latent

variable approach that treats the observed labels as biased proxies of hidden, fair labels that satisfy

demographic parity. The process that generated bias is modeled by a probability distribution over

the fair label, observed label, and other features including the sensitive attributes. Moreover, this

chapter shows that group fairness guarantees for a probabilistic model hold in the real world only if

the model accurately captures the real-world data. Therefore, the goal of learning a fair probabilistic

classifier also entails learning a distribution that achieves high likelihood.

The first contribution is to systematically derive the assumptions of a fair probabilistic model

in terms of independence constraints. Each constraint serves the purpose of explaining how

the observed, biased labels come from hidden fair labels and/or ensuring that the model closely

represents the data distribution. The second contribution is an algorithm to learn probabilistic circuits

so that the fairness constraints are satisfied. Specifically, this involves encoding independence

assumptions into the circuits and developing an algorithm to learn PCs from incomplete data, as the

model has a latent variable. Finally, the proposed approach is evaluated empirically on synthetic

and real-world datasets, comparing against existing fair learning methods as well as a baseline that

does not include a latent variable. The experiments demonstrate that our method achieves high

likelihoods that indeed translate to more trustworthy fairness guarantees. It also has high accuracy

for predicting the true fair labels in the synthetic data, and the predicted fair decisions can still be

close to unfair labels in real-world data.

3.2 Latent Fair Decisions

Let S denote a sensitive attribute, such as gender or race, and let X be the non-sensitive attributes

or features. Here we assume S to be binary for simplicity, but our method can be easily generalized

to multiple multi-valued sensitive attributes. We have a dataset D in which each individual is

characterized by variables S and X and labeled with a binary decision/class variable D.

19

One of the most popular and yet simple fairness notions is demographic (or statistical) parity.

It requires that the classification is independent of the sensitive attributes; i.e., the rate of positive

classification is the same across groups defined by the sensitive attributes. Since we focus on

probabilistic classifiers, we consider a generalized version introduced by Pleiss et al. [2017],

sometimes also called strong demographic parity [Jiang et al., 2019]:

Definition 3.1 (Generalized demographic parity). Suppose f is a probabilistic classifier and p is a

distribution over variables X and S. Then f satisfies demographic parity w.r.t. p if:

Ep[f(X, S) | S = 1) = Ep[f(X, S) | S = 0].

Probabilistic classifiers are often obtained from joint distributions Pr(.) over D,X, S by com-

puting Pr(D|X, S). Then we say the distribution satisfies demographic parity if Pr(D|S= 1) =

Pr(D|S=0), i.e., D is independent of S.

3.2.1 Motivation

A common fairness concern when learning decision making systems is that the dataset used is often

biased. In particular, observed labels may not be the true target variable but only its proxy. For

example, re-arrest is generally used as a label for recidivism prediction, but it is not equivalent to

re-offense and may be biased. We will later show how the relationship between observed label and

true target can be modeled probabilistically using a latent variable.

Moreover, probabilistic group fairness guarantees hold in the real world only if the model

accurately captures the real world distribution. In other words, using a model that only achieves low

likelihood w.r.t the data, it is easy to give false guarantees. For instance, consider a probabilistic

classifier f(X,S) over a binary sensitive attribute S and non-sensitive attribute X shown below.

20

S,X f(X,S) Pdata(X|S) EPdata [f |S] Q(X|S) EQ[f |S]

1,1 0.8 0.7
0.65

0.5
0.55

1,0 0.3 0.3 0.5

0,1 0.7 0.4
0.52

0.5
0.55

0,0 0.4 0.6 0.5

Suppose in the data, the probability of X = 1 given S = 1 (resp. S = 0) is 0.7 (resp. 0.4). Then

this classifier does not satisfy demographic parity, as the expected prediction for group S = 1 is

0.8 · 0.7 + 0.3 · 0.3 = 0.65 while for group S = 0 it is 0.52. On the other hand, suppose you have a

distribution Q that incorrectly assumes the feature X to be uniform and independent of S. Then

you would conclude, incorrectly, that the prediction is indeed fair, with the average prediction for

both protected groups being 0.55. Therefore, to provide meaningful fairness guarantees, we need to

model the data distribution closely, i.e., with high likelihood.

3.2.2 Modeling with a latent fair decision

We now describe our proposed latent variable approach to address the aforementioned issues. We

suppose there is a hidden variable that represents the true label without discrimination. This latent

variable is denoted as Df and used for prediction instead of D; i.e., decisions for future instances

can be made by inferring the conditional probability Pr(Df |e) given some feature observations

e for E ⊆ X ∪ S. We assume that the latent variable Df is independent of S, thereby satisfying

demographic parity. Moreover, the observed label D is modeled as being generated from the fair

label by altering its values with different probabilities depending on the sensitive attribute. That is,

the probability of D depends on Df and S.

In addition, our model also assumes that the observed label D and non-sensitive features X are

conditionally independent given the fair label and sensitive attributes, i.e., D ⊥⊥ X|Df , S. This is a

crucial assumption to learn the model from data where Df is hidden. To illustrate why, suppose

21

S Df

X D

(a)

S D

X

(b)

Figure 3.1: Bayesian network structures that represent the proposed fair latent variable approach
(left) and model without a latent variable (right). Abusing notation, the set of features X is
represented as a single node, but refers to some local Bayesian network over X.

there is no such independence. Then the induced model allows variables S,X, D to depend on

one another freely. Thus, such model can represent any marginal distribution over these variables,

regardless of the parameters for Df . We can quickly see this from the fact that for all s,x, d,

Pr(sxd) = Pr(s) Pr(xd|s)

= Pr(s)
(

Pr(xd|s,Df =1) Pr(Df =1) + Pr(xd|s,Df =0) Pr(Df =0)
)
.

That is, multiple conditional distributions involving the latent fair decision Df will result in the

same marginal distribution over S,X, D, and thus the real joint distribution is not identifiable

when learning from data where Df is completely hidden. For instance, the learner will not be

incentivized to represent any dependence between Df and other features, and may return a model

in which the latent decision variable is completely independent of the observed variables. This is

clearly undesirable because we want to use the latent variable to make decisions based on feature

observations.

The independence assumptions of our proposed model are summarized as a Bayesian network

structure in Figure 3.1a. Note that the set of features X is represented as a single node, as we do

not make any independence assumptions among the features. In practice, we learn the statistical

relationships between these variables from data. This is in contrast to the latent variable model in

Calders and Verwer [2010] which had a naive Bayes assumption among the non-sensitive features.

As we will later show empirically, such strong assumption not only affects the prediction quality

22

but also limits the fairness guarantee, as it will hold only if the naive Bayes assumption is indeed

true in the data distribution.

Lastly, we emphasize that Bayesian network structures were used in this section only to illustrate

the independence assumptions of our model. In practice, other probabilistic models can be used to

represent the distribution as long as they satisfy our independence assumptions; we use probabilistic

circuits as discussed in the next section.

3.3 Learning Fair Probabilistic Circuits

There are several challenges in modeling a fair probability distribution. First, as shown previously,

fairness guarantees hold with respect to the modeled distribution, and thus we want to closely model

the data distribution. A possible approach is to learn a deep generative model such as a generative

adversarial networks (GANs) [Goodfellow et al., 2014]. However, then we must resort to approxi-

mate inference, or deal with models that have no explicit likelihood, and the fairness guarantees no

longer hold. An alternative is to use models that allow exact inference such as Bayesian networks.

Unfortunately, marginal inference, which is needed to make predictions Pr(Df |e), is #P-hard for

general BNs [Roth, 1996]. Tree-like BNs such as naive Bayes allow polytime inference, but they

are not expressive enough to accurately capture the real world distribution. Hence, the second

challenge is to also support tractable exact inference without sacrificing expressiveness. Lastly, the

probabilistic modeling method we choose must be able to encode the independencies outlined in

the previous section, to satisfy demographic parity and to learn a meaningful relationship between

the latent fair decision and other variables. Probabilistic circuits (PCs) are tractable and expressive

as shown in Chapter 2; we will now show how we encode the independence assumptions in PCs

and learn fair PCs from data.

Encoding independence assumptions Consider the example PC in Figure 3.2: regardless of

parameterization, this circuit structure always encodes a distribution where D is independent of

23

× ×× ×

S=1 Df =1 Df =0 S=0× × × ×

D X D X XD D X

θ1 θ2 θ3
θ4

Figure 3.2: A probabilistic circuit over variables S,X, D,Df

X given S and Df . Observe that the four product nodes in the second layer each correspond to

four possible assignments to S and Df . Effectively, the sub-circuits rooted at these nodes represent

conditional distributions Pr(D,X|s, df) for assignments s, df . Because the distributions for D and

X factorize, we have Pr(D,X|s, df) = Pr(D|s, df)·Pr(X|s, df), thereby satisfying the conditional

independence D ⊥⊥ X|Df , S. We also need to encode the independence between Df and S. In the

example circuit, each edge parameter θi corresponds to Pr(s, df) for a joint assignment to S,Df ;

e.g. θ1 = Pr(S=1, Df =1). With no restriction on these parameters, the circuit does not necessarily

imply Df ⊥⊥S. Thus, we introduce auxiliary parameters φs and φdf representing Pr(S = 1) and

Pr(Df =1), respectively, and enforce that the circuit parameters for Pr(S,Df) factorize as follows:

φs = θ1 + θ2, φdf = θ1 + θ2,

θ1 = φs · φdf , θ2 = φs · (1− φdf), θ3 = (1− φs) · φdf , θ4 = (1− φs) · (1− φdf).

Hence, when learning these parameters, we limit the degree of freedom such that the four edge

parameters are given by two free variables φs and φdf instead of the four θi variables.

Next, we discuss how to learn a fair probabilistic circuit with latent variable from data. This

consists of two parts: learning the circuit structure and estimating the parameters of a given structure.

24

3.3.1 Parameter Learning

Given a complete data set, maximum-likelihood parameters of a smooth, decomposable, and

deterministic PC can be computed in closed-form [Kisa et al., 2014a]. However, our proposed

approach for fair distribution includes a latent variable, and thus must be learned from incomplete

data. One of the most common methods to learn parameters of a probabilistic model from incomplete

data is the Expectation Maximization (EM) algorithm [Koller and Friedman, 2009; Darwiche,

2009a]. EM iteratively completes the data by computing the probability of unobserved values

(E-step) and estimates the maximum-likelihood parameters from the expected dataset (M-step). We

propose an EM parameter learning algorithm for PCs that does not explicitly complete the data, but

rather utilizes a notion called circuit flows.

3.3.1.1 EM using expected flows

Definition 3.2 (Context). Let C be a PC over RVs Z and n be one of its nodes. The context γn of

node n denotes all joint assignments that return a nonzero value for all nodes in a path between the

root of C and n.

γn :=
⋃

p∈pa(n)

γp ∩ supp(n),

where pa(n) refers to the parent nodes of n, and supp(n) := {z : Cn(z) > 0} the support of node n.

Note that the context of a node is different from its support. Even if the node returns a non-zero

value for some input, its output may be multiplied by 0 at its ancestor nodes; i.e., such node does

not contribute to the circuit output of that assignment.

Then the circuit flow is defined as the following.

Definition 3.3 (Circuit flow). Let C be a PC over variables Z, (n, c) its edge, and z a joint

assignment to Z. The circuit flow of (n, c) given z is

Fz(n, c) = [z ∈ γn ∩ γc]. (3.1)

25

Intuitively, the context of a circuit node is the set of all complete inputs that “activate” the node.

Hence, an edge is “activated” by an input if it is in the contexts of both nodes for that edge. Then

the flow given a dataset is simply the sum of flows given each data point. That is, given a complete

data D, the circuit flow of (n, c) is

FD(n, c) =
∑

Di∈D

FDi(n, c),

whereDi is the i-th data point ofD, which must be a complete assignment z. For example, in Figure

3.2, the edges activated by sample {Df =1, S=1, d,x}, for any assignments d,x, are colored red.

For an edge between a sum node n and its child c, the associated maximum-likelihood parameter

for a complete dataset D is given by:

θn,c = FD(n, c)/
∑

c∈ch(n)

FD(n, c). (3.2)

We now introduce the notion of expected flow, which is the core element of our proposed

expectation-maximization approach.

Definition 3.4 (Expected flow). Let C be a PC over variables Z, (n, c) its edge, and e a partial

assignment to E ⊆ Z. The expected flow of (n, c) given e is given by

EFe,θ(n, c) := Ez∼PrC(·|e)[Fz(n, c)] =
∑

z|=e

Pr
C

(z|e) · Fz(n, c), (3.3)

where z |= e are the possible completions of partial assignment e.

Again, given an incomplete data D, the expected flow of (n, c) w.r.t. parameters θ is

EFD,θ(n, c) =
∑

Di∈D

EFDi,θ(n, c),

where Di may be a partial assignment e for some E ⊆ Z. For example, in Figure 3.2, the

26

expected flows of the edges highlighted in red and green, given a sample {S = 1, d,x}, are

PrC(Df =1 | S=1, d,x) and PrC(Df =0 | S=1, d,x), respectively. Similar to circuit flows, the

expected flows for all edges can be computed with a single bottom-up and top-down evaluation of

the circuit, as illustrated in the next section. Then, we can perform both the E- and M-step by the

following closed-form solution.

Proposition 3.1. Given a smooth, decomposable, and deterministic circuit with parameters θ and

an incomplete data D, the parameters for the next EM iteration are given by:

θ(new)
n,c = EFD,θ(n, c)/

∑

c∈ch(n)

EFD,θ(n, c).

Note that this is very similar to the ML estimate from complete data in Eq.3.2, except using

expected flows instead of circuit flows. Moreover, the expected flow can be computed even if each

data sample has different variables missing; thus, the EM method can naturally handle missing

values for other features as well.

Proof of Proposition 3.1. Completing a dataset D with missing values, given a distribution Prθ(.),

amounts to constructing an auxiliary dataset D′ as follows: for each data sample Di ∈ D, there are

samples D′i,k ∈ D′ for k = 1, . . . ,mi with weights αi,k such that each D′i,k is a full assignment that

agrees with Di. Moreover, the weights are defined by the given distribution as: αi,k = Prθ(D′i,k|Di).

Then the max-likelihood parameters of a circuit given this completed dataset D′ can be computed

as: θn,c = FD′(n, c)/
∑

c∈ch(n) FD′(n, c). Note that since D′ is an expected/weighted dataset, the

flows FD′ are real numbers as opposed to integers, which is the case when every sample has weight

1. Specifically,

FD′(n, c) =
∑

D′
i,k∈D′

αi,kFD′
i,k

(n, c) =
∑

Di∈D

mi∑

k=1

Prθ(D′i,k|Di)FD′
i,k

(n, c)

=
∑

Di∈D

∑

z|=Di

Prθ(z|Di)Fz(n, c) = EFD,θ(n, c).

27

3.3.1.2 Computing Expected Flow

We now describe how to compute expected flows, in particular for smooth, decomposable, and

deterministic PCs. First, focusing on the expected flow given a single partial assignment e, we can

express the expected flow as the following using Equations 3.1 and 3.3.

EFe,θ(n, c) = Ez∼PrC(·|e)[z ∈ γn ∩ γc] = PrC(γn ∩ γc|e) (3.4)

Furthermore, with determinism, the sub-circuit formed by “activated” edges for any complete input

forms a tree [Choi and Darwiche, 2017]. Thus, for a complete evidence z, a node n has exactly one

parent p such that Fz(p, n) = 1, or equivalently, z ∈ γp ∩ γn. Thus,

∑

p∈pa(n)

EFe,θ(p, n) =
∑

p∈pa(n)

PrC(γp ∩ γn|e) = PrC(γn|e). (3.5)

We can observe from Equations 3.4 and 3.5 that if
∑

p∈pa(n) EFe,θ(p, n) = 0, then we also have

EFe,θ(n, c) = 0.

For an edge (n, c) where n is a sum node,

EFe,θ(n, c) = PrC(γn ∩ γc|e) =
PrC(e, γc|γn) PrC(γn)

PrC(e)
=

PrC(γn|e) PrC(e, γc|γn) PrC(γn)

PrC(γn|e) PrC(e)

=
PrC(γn|e) PrC(e, γc|γn)

PrC(e|γn)
=


 ∑

p∈pa(n)

EFe,θ(p, n)


 θn,c Prc(e)

Prn(e)
. (3.6)

Here, Prn and Prc refer to the distribution defined by the sub-circuits rooted at nodes n and c,

respectively. Because e can be partial observations, these probability corresponds to marginal

queries. For a smooth and decomposable probabilistic circuit, the marginals given a partial input

for all circuit nodes can be computed by a single bottom-up evaluation of the circuit [Darwiche

28

and Marquis, 2002]. This amounts to marginalizing the leaf nodes according to the partial input

(i.e., plugging in 1 for unobserved variables) and evaluating the circuit according to its recursive

definition.

For an edge (n, c) where n is a product node, we have γn ⊆ γc as follows:

γn = γn ∩ supp(n) ⊆ γn ∩ supp(c) ⊆
⋃

p∈pa(c)

γp ∩ supp(c) = γc (3.7)

where Equation 3.7 follows from Definition 3.2 and the fact that any assignment that leads to a

non-zero output for n must also output non-zero for c (i.e. supp(n) ⊆ supp(c)). Then we can write

the expected flow of (n, c) as the following:

EFe,θ(n, c) = PrC(γn ∩ γc|e) = PrC(γn|e) =
∑

p∈pa(n)

EFe,θ(p, n). (3.8)

Therefore, Equations 3.6 and 3.8 describe how expected flow on edge (n, c) can be computed using

the expected flows from parents of n and the marginal probabilities at nodes n and c. We can thus

compute the the expected flow via a bottom-up evaluation (to compute the marginals) followed

by a top-down pass as shown in Algorithm 1. We cache intermediate results to avoid redundant

computations and to ensure a linear-time evaluation.

To compute the expected flow on a dataset, we can compute the expected flow of each data

sample in parallel via vectorization, and then simply sum the results per edge.

3.3.1.3 Initial parameters using prior knowledge

Typically the EM algorithm is run starting from randomly initialized parameters. While the

algorithm is guaranteed to improve the likelihood at each iteration until convergence, it still has

the problem of multiple local maxima and identifiability, especially when there is a latent variable

involved [Koller and Friedman, 2009]. Namely, we can converge to different learned models with

similar likelihoods but different parameters for the latent fair variable, thus resulting in different

29

Algorithm 1 Computing the expected flow
Input: PSDD C, one data sample d, marginal likelihood PrC cached from bottom-up pass
Output: Expected flow of sample d for each node and edge, cached in EF

1: for n in PSDD C do . parents before children
2: if n is root then
3: EF(n)← 1
4: else
5: EF(n)←∑

p∈pa(n) EF(p, n)

6: if n is a sum node then
7: for c in ch(n) do
8: EF(n, c)← EF(n) · θn,c·Prc(d)

Prn(d)

9: else if n is a product node then
10: for c in ch(n) do
11: EF(n, c)← EF(n)

behaviors in the prediction task. For example, for a given fair distribution, we can flip the value

of Df and the parameters accordingly such that the marginal distribution over S,X, D, as well as

the likelihood on the dataset, is unchanged. However, this clearly has a significant impact on the

predictions which will be completely opposite.

Therefore, instead of random initialization, we encode prior knowledge in the initial parameters

that determine Pr(D|S,Df). In particular, it is obvious that Df should be equal to D if the observed

labels are already fair. Furthermore, for individual predictions, we would want Df to be close to D

as much as possible while ensuring fairness. Thus, we start the EM algorithm from a conditional

probability Pr(d|s, df) = [d = df].

3.3.2 Structure Learning

Lastly, we describe how a fair probabilistic circuit structure is learned from data. As described

previously, top layers of the circuit are fixed in order to encode the independence assumptions of

our latent variable approach. On the other hand, the sub-circuits over features X can be learned

30

to best fit the data. We adopt the STRUDEL algorithm to learn the structures [Dang et al., 2020].1

Starting from a Chow-Liu tree initial distribution [Chow and Liu, 1968], STRUDEL performs a

heuristic-based greedy search over possible candidate structures. At each iteration, it first selects

the edge with the highest circuit flow and the variable with the strongest dependencies on other

variables, estimated by the sum of pairwise mutual informations. Then it applies the split operation

– a simple structural transformation that “splits” the selected edge by introducing new sub-circuits

conditioned on the selected variable. Intuitively, this operation aims to model the data more closely

by capturing the dependence among variables (variable heuristic) appearing in many data samples

(edge heuristic). After learning the structure, we update the parameters of the learned circuit using

EM as described previously.

3.4 Empirical Evaluation

We now empirically evaluate our proposed model FAIRPC on real-world benchmark datasets as

well as synthetic data.

Baselines We first compare FAIRPC to three other probabilistic methods: fair naive Bayes

models (2NB and LATNB) [Calders and Verwer, 2010] and PCs without latent variable (NLATPC).

We also compare against methods that learn discriminative classifiers satisfying group fairness:

(1) FAIRLR [Zafar et al., 2017], which learns a classifier subject to co-variance constraints; (2)

REDUCTION [Agarwal et al., 2018], which reduces the fair learning problem to cost-sensitive

classification problems and learns a randomized classifier; and (3) REWEIGHT [Jiang and Nachum,

2020] which corrects bias by re-weighting the data points. All three methods learn logistic regression

classifiers, either with constraints or modified objective functions.

1It learns PCs that also satisfy properties such as structured decomposability that are not necessary in our case.

31

Evaluation criteria For predictive performance, we use accuracy and F1 score. Note that models

with latent variables use the latent fair decision Df to make predictions, while other models directly

use D. Moreover, in the real-world datasets, we do not have access to the fair labels and instead

evaluate using the observed labels which may be “noisy” and biased. We emphasize that the

accuracy w.r.t unfair labels is not the goal of our method, as we want to predict the true target,

not its biased proxy. Rather, it measures how similar the latent variable is to the observed labels,

thereby justifying its use as fair decision. To address this, we also evaluate on synthetic data

where fair labels can be generated. For fairness performance, we define the discrimination score

as the difference in average prediction probability between the majority and minority groups, i.e.,

Pr(Df =1|S=0)− Pr(Df =1|S=1) estimated on the test set.

3.4.1 Real-World Data

Data We use three datasets: COMPAS [Propublica, 2016], Adult, and German [Dua and Graff,

2017], which are commonly studied benchmarks for fair ML. They contain both numerical and

categorical features and are used for predicting recidivism, income level, and credit risk, respectively.

We wish to make predictions that are fair with respect to a protected attribute: “sex” for Adult and

German, and “ethnicity” for COMPAS. As pre-processing, we discretize numerical features, remove

unique or duplicate features (e.g. names of individuals), and remove low frequency counts.

Probabilistic methods We first compare against probabilistic methods to illustrate the effects

of using latent variables and learning more expressive distributions. Figure 3.3 summarizes the

result. In terms of log-likelihoods, both PC-based methods outperform NB models, which aligns

with our motivation for relaxing the naive Bayes assumption—to better fit the data distribution.

Furthermore, models with latent variables outperform their corresponding non-latent models, i.e.,

LATNB outperforms 2NB and FAIRPC outperforms NLATPC. This validates our earlier argument

that the latent variable approach can achieve higher likelihood than enforcing fairness directly in

the observed label. Next, we compare the methods using F1-score as there is class imbalance in

32

co
m

pa
s -4.228 -4.210

-3.922 -3.919

Log-likelihood

0.808
0.897

0.723

0.868

F1
0.057

0.036

0.024

0.009

Discrimination
TwoNB
LatNB
NlatPC
FairPC

ad
ul

t

-6.764

-6.515

-5.980 -5.962 0.725 0.761

0.649 0.674
0.205

0.132

0.084

0.028

NB PC

ge
rm

an

-12.207
-11.999

-11.454 -11.422

NB PC

0.665

0.475

0.663 0.641

NB PC

0.064

0.081

0.050
0.056

Figure 3.3: Comparison of fair probability distributions. Columns: log-likelihood, F1-score,
discrimination score (higher is better for the first two; lower is better for last). Rows: COMPAS,
Adult, German datasets. The four bars in each graph from left to right are: 1) 2NB, 2) LATNB, 3)
NLATPC, 4) FAIRPC.

these datasets. Although it is measured with respect to possibly biased labels, FAIRPC achieves

competitive performance, demonstrating that the latent fair decision variable still exhibits high

similarity with the observed labels. Lastly, FAIRPC achieves the lowest discrimination scores

in COMPAS and Adult datasets by a significant margin. As expected, PCs also achieve lower

discrimination scores than their counterpart NB models, as they fit the data distribution better.

Discriminative classifiers Next we compare FAIRPC to existing fair classification methods.

Figure 3.4 shows the trade-off between predictive performance and fairness. We add two other

baselines to the plot: RAND, which makes random predictions, and LR, which is an unconstrained

33

0.00 0.02 0.04 0.06
0.45

0.55

0.65

0.75

0.85

0.95

co
m

pa
s

Accuracy

0.00 0.02 0.04 0.06
0.45

0.55

0.65

0.75

0.85

F1

Random
LR
FairPC
Reduction
Reweight
FairLR

0.025 0.025 0.075 0.125 0.175
0.45

0.55

0.65

0.75

0.85

ad
ul

t

0.025 0.025 0.075 0.125 0.175
0.35

0.45

0.55

0.65

0.75

0.02 0.04 0.06 0.08
Discrimination score

0.45

0.55

0.65

0.75

ge
rm

an

0.02 0.04 0.06 0.08
Discrimination score

0.45

0.55

0.65

0.75

Figure 3.4: Predictive performance (y-axis) vs. discrimination score (x-axis) for FAIRPC and fair
classification methods (FAIRLR, REDUCTION, REWEIGHT), in addition with two trivial baselines
(RAND and LR). Columns: accuracy, F1-score. Rows: COMPAS, Adult, German datasets.

34

logistic regression classifier. They represent the two ends of the fairness-accuracy tradeoff. RAND

has no predictive power but low discrimination, while LR has high accuracy but unfair. Informally,

the further above the line between these baselines, the better the method optimizes this tradeoff.

On COMPAS and Adult datasets, our approach achieves a good balance between predictive

performance and fairness guarantees. In fact, it achieves the best or close to best accuracy and

F1-score, again showing that the latent decision variable is highly similar to the observed labels even

though the explicit objective is not to predict the unfair labels. However, on German dataset, while

FAIRLR and REWEIGHT achieve the best performance on average, the estimates for all models

including the trivial baselines are too noisy to draw a statistically significant conclusion. This may

be explained by the fact that the dataset is relatively small with 1000 samples.

3.4.2 Synthetic Data

As discussed previously, ideally we want to evaluate against the true target labels, but they are

generally unknown in real-world data. Therefore, we also evaluate on synthetic data with fair

ground-truth labels in order to evaluate whether our model indeed captures the hidden process of

bias and makes accurate predictions.

Generating Data We generate data by constructing a fair PC Ctrue to represent the “true distri-

bution” and sampling from it. The process that generates biased labels d is represented by the

following (conditional) probability table:

· Df S df , s 1,1 1,0 0,1 0,0

Pr(·=1) 0.5 0.3 Pr(D=1 | Df =df , S=s) 0.8 0.9 0.1 0.4

Here, S = 1 is the minority group, and the unfair label D is in favor of the majority group: D

is more likely to be positive for the majority group S = 0 than for S = 1, for both values of fair

label Df but at different rates. To evaluate on a wide range of datasets, we randomly generate the

sub-circuits of Ctrue over features X as tree distributions, randomly initializing the parameters with

35

0.2 0.1 0.0 0.1 0.2
Discrimination Score

0.50

0.75

1.00

Ac
cu

ra
cy

TwoNB
LatNB
NlatPC
FairPC

0.10 0.05 0.00 0.05 0.10
Discrimination Score

0.50

0.75

1.00

Ac
cu

ra
cy

FairPC
Reduction
Reweight
FairLR

Figure 3.5: Accuracy (y-axis) vs. discrimination score (x-axis) on synthetic datasets. We compare
FAIRPC with 2NB, LATNB, NLATPC (left) and with REDUCTION, REWEIGHT, FAIRLR (right).
Each dot is a single run on a generated dataset using the method indicated by its color.

Laplace smoothing. We generated different synthetic datasets with the number of non-sensitive

features ranging from 10 to 30, using 10-fold CV for each.

Results We first test FAIRPC, LATNB, NLATPC and NLATPC on the generated datasets. Fig-

ure 3.5 (left) illustrates the accuracy and discrimination scores on separate test sets with fair decision

labels. In terms of accuracy, PCs outperform NBs, and latent variable approaches outperform

non-latent ones, which shows that adopting density estimation to fit the data and introducing a

latent variable indeed help improve the performance. When comparing the average discrimination

score for each method, 2NB and NLATPC always have negative scores, showing that the non-latent

methods are more biased towards the majority group; while LATNB and FAIRPC are more equally

distributed around zero on the x-axis, thus demonstrating that a latent fair decision variable helps to

correct this bias. While both latent variable approaches achieve reasonably low discrimination on

average, FAIRPC is more stable and has even lower average discrimination score than LATNB.

We also compare FAIRPC to FAIRLR, REDUCTION, and REWEIGHT, the results visualized in

Figure 3.5 (right). Our method achieves a much higher accuracy w.r.t. the generated fair labels; for

instance, the average accuracy of FAIRPC is around 0.17 higher than that of FAIRLR. Also, we

are still being comparable in terms of discrimination score, illustrating the benefits of explicitly

modeling the latent fair decision.

36

Intermezzo 1: Expected Predictions

Computing the expected predictions [Khosravi et al., 2019b] is a task that lets us reason about
the outputs of a discriminative model with respect to a probability distribution. Formally,
let p be a probability distribution over X and f : X → R be a discriminative model, e.g., a
regressor, that assigns a real value (outcome) to each complete input configuration x ∈ X
(features). The task of computing the expected prediction of f with respect to the distribution
p is defined as:

Ex∼p(x) [f(x)] .

This task appears in many interesting ML applications including missing value predictions,
algorithmic fairness, and data analysis. For example, we can make predictions with missing
features by computing the expected prediction with respect to the distribution conditioned on
the partial observations, which outperformed various imputation techniques:

0 50 100
% Missing

3

4

5

RM
SE

Abalone
Median
Sample
M1 (ours)
Mean
Mice
MPE

0 50 100
% Missing

2.0

2.5

3.0

3.5
1e 4 Delta

0 50 100
% Missing

0.50

0.75

1.00

1.25
1e 2 Elevators

Moreover, suppose f is a regression model predicting the cost of healthcare for insurance
purposes. We could ask: “is the predictive model biased by gender?” To answer this question,
it would be interesting to compute:

Ex∼p(x|Female)[f(x)]− Ex∼p(x|Male)[f(x)] = 14, 170− 13, 196 = 974.

If the answer to this query is 0, the model exactly satisfies demographic parity with respect
to p. Furthermore, we can also audit the model in terms of other group fairness notions: for
instance by taking the expected predictions after conditioning the distributions also on the
class variable, or the latent fair decision variable (Section 3.2). Thus, tractable computation
of expected predictions would allow us to efficiently measure various fairness notions not
just for generative models encoding distributions, but also for discriminative models.

Unfortunately, computing expectations of a discriminative model with respect to a prob-
ability distribution defined by an arbitrary generative model has been proven to be hard in
general. In fact, the task is intractable even for simple models such as logistic regression
and a naive Bayes distribution [Khosravi et al., 2019b]. Nevertheless, we identify pairs of
generative and discriminative models that enable tractable computation of expectations—as
well as moments of any order—of the latter with respect to the former. Specifically, this is
the case for probabilistic circuits and compatible regression circuits [Khosravi et al., 2019a]
as well as for decision trees [Khosravi et al., 2020].

37

3.4.3 Learning With Missing Values

As described in Section 3.3.1, if the training data has some missing values (in addition to the

latent decision variable), FAIRPC parameter learning method still applies without change of the

algorithm. Table 3.6 shows the test log-likelihoods given missing values at training time, with

missing percentage ranging from 0% to 99%. We adopt missing completely at random (MCAR)

missingness mechanism and fix the circuit structure to the ones learned previously. We only compare

the density estimation performance here, comparing prediction performance as well as their fairness

implications under different missingness is left as future work.

0.00 0.50 0.99
% missing

4.5

4.3

4.1

3.9

lo
g-

lik
el

ih
oo

d

compas

0.00 0.50 0.99
% missing

7.4

7.0

6.6

6.2

5.8 adult

0.00 0.50 0.99
% missing

14

13

12

german

0.00 0.50 0.99
% missing

11.6

11.2

10.8

10.4

10.0 synthetic

Figure 3.6: Test log-likelihood under different missingness percentages on real world and synthetic
datasets.

3.5 Related Work

Several frameworks have been proposed to design fairness-aware systems. We discuss a few of

them here and refer to Romei and Ruggieri [2014]; Barocas et al. [2019] for a more comprehensive

38

review.

Some of the most prominent fairness frameworks include individual fairness and group fairness.

Individual fairness [Dwork et al., 2012] is based on the idea that similar individuals should receive

similar treatments, although defining similarity between individuals can be challenging. On the

other hand, group fairness aims to equalize some statistics across groups defined by sensitive

attributes. These include equality of opportunity [Hardt et al., 2016] and demographic (statistical)

parity [Calders and Verwer, 2010; Kamiran and Calders, 2009] as well as its relaxed notion of

disparate impact [Feldman et al., 2015; Zafar et al., 2017].

There are several approaches to achieve group fairness, which can be broadly categorized into (1)

pre-processing data to remove bias [Zemel et al., 2013; Kamiran and Calders, 2009; Calmon et al.,

2017], (2) post-processing of model outputs such as calibration and threshold selection [Hardt et al.,

2016; Pleiss et al., 2017], and (3) in-processing which incorporates fairness constraints directly in

learning or optimization [Corbett-Davies et al., 2017; Agarwal et al., 2018; Kearns et al., 2018].

Some recent works on group fairness also consider bias in the observed labels, both for evaluation

and learning [Fogliato et al., 2020; Blum and Stangl, 2020; Jiang and Nachum, 2020]. For instance,

Blum and Stangl [2020] study empirical risk minimization (ERM) with various group fairness

constraints and showed that ERM constrained by demographic parity does not recover the Bayes

optimal classifier under one-sided, single-group label noise (this setting is subsumed by ours). In

addition, Jiang and Nachum [2020] developed a pre-processing method to learn fair classifiers under

noisy labels, by reweighting according to an unknown, fair labeling function. Here, the observed

labels are assumed to come from a biased labeling function that is the “closest” to the fair one; on

the other hand, we aim to find the bias mechanism that best explains the observed data.

We would like to point out that while pre-processing methods have the advantage of allowing

any model to be learned on top of the processed data, it is also known that certain modeling

assumptions can result in bias even when learning from fair data [Choi et al., 2020a]. Moreover,

certain post-processing methods to achieve group fairness are shown to be suboptimal under some

conditions [Woodworth et al., 2017]. Instead, we take the in-processing approach to explicitly

39

optimize the model’s performance while enforcing fairness.

Many fair learning methods make use of probabilistic models such as Bayesian networks [Calders

and Verwer, 2010; Mancuhan and Clifton, 2014]. Among those, perhaps the most related to our

approach is the latent variable naive Bayes model by Calders and Verwer [2010], which also assumes

a latent decision variable to make fair predictions. However, they make a naive Bayes assumption

among features. We relax this assumption and will later demonstrate how this helps in more closely

modeling the data distribution, as well as providing better fairness guarantees.

3.6 Discussion

This chapter proposed a latent variable approach to learning fair distributions that satisfy demo-

graphic parity, and developed an algorithm to learn fair probabilistic circuits from incomplete data.

Experimental evaluation on simulated data shows that the proposed method consistently achieves

high log-likelihoods and low discrimination. It also accurately predicts true fair decisions, and even

on real-world data where fair labels are not available, our predictions remain close to the unfair

ones.

While this work focused on demographic parity as the main fairness definition, in the future I

hope to expand its applicability. In particular, a learned distribution over the latent fair decision

can be used in a number of ways to audit and enforce other group fairness notions. For example,

we can generate fair labels given a dataset with biased labels, by simply inferring the latent fair

decision for each data point via conditional inference on the fair probabilistic circuit. The generated

fair dataset can then be used by several downstream tasks. In addition, we can also measure other

fairness notions such as equalized odds with respect to the hidden fair labels, not the biased ones.

40

CHAPTER 4

Fairness of Predictions with Missing Features

This chapter studies fairness properties of probabilistic classifiers that represent joint distributions

over the features and decision variable. In particular, Bayesian classifiers treat the classification or

decision-making task as a probabilistic inference problem: given observed features, compute the

probability of the decision variable. Such models have a unique ability that they can naturally handle

missing features, by simply marginalizing them out of the distribution when they are not observed at

prediction time. Hence, they effectively embed exponentially many classifiers, one for each subset

of observable features. We ask whether such classifiers exhibit patterns of discrimination where

similar individuals receive markedly different outcomes purely because they disclosed one or more

sensitive attributes.

The first key contribution of this chapter is an algorithm to verify whether a Bayesian classifier is

fair, or else to mine the classifier for discrimination patterns. We propose two alternative criteria for

identifying the most important discrimination patterns that are present in the classifier. We specialize

our pattern miner to efficiently discover discrimination patterns in naive Bayes models using branch-

and-bound search. These classifiers are often used in practice because of their simplicity and

tractability, and they allow for the development of effective bounds. Our empirical evaluation shows

that naive Bayes models indeed exhibit vast numbers of discrimination patterns, and that our pattern

mining algorithm is able to find them by traversing only a small fraction of the search space.

The second key contribution is a parameter learning algorithm for naive Bayes classifiers that

ensures that no discrimination patterns exist in the the learned distribution. We propose a signo-

mial programming approach to eliminate individual patterns of discrimination during maximum-

41

D

X Y1 Y2

P (d)

0.2

D P (x|D)

+ 0.8
− 0.5

D P (y1|D)

+ 0.7
− 0.1

D P (y2|D)

+ 0.8
− 0.3

Figure 4.1: Naive Bayes classifier with a sensitive attribute X and non-sensitive attributes Y1, Y2

likelihood learning. Moreover, to efficiently eliminate the exponential number of patterns that could

exist in a naive Bayes classifier, we propose a cutting-plane approach that uses the discrimination

pattern miner to find and iteratively eliminate discrimination patterns until the entire learned model

is fair. Experiments show that this process converges in a small number of iteration, effectively

removing millions of discrimination patterns. Moreover, the learned fair models are of high quality,

achieving likelihoods that are close to the best likelihoods attained by models with no fairness

constraints. Our method also achieves higher accuracy than other methods of learning fair naive

Bayes models.

Lastly, we relax the naive Bayes assumption for the discrimination pattern miner. As previously

discussed, fairness guarantees are only as meaningful as how closely the model captures the data

distribution. Thus, we extend the search algorithm to a much more general class of models—

probabilistic circuits—by proposing a bound that can be computed efficiently, exploiting the

tractable circuit representations.

4.1 Problem Formalization

Each individual is characterized by an assignment to a set of discrete variables Z, called attributes

or features. Assignment d to a binary decision variable D represents a decision made in favor of the

individual (e.g., a loan approval). A set of sensitive attributes S ⊂ Z specifies a protected group of

entities, such as gender and race. We now define the notion of a discrimination pattern.

Definition 4. Let P be a distribution over D ∪ Z. Let x and y be joint assignments to X⊆S and

Y⊆Z\X, respectively. The degree of discrimination of xy is: ∆P,d(x,y) , P (d|xy)− P (d|y).

42

The assignment y identifies a group of similar individuals, and the degree of discrimination

quantifies how disclosing sensitive information x affects the decision for this group. Note that

sensitive attributes missing from x can still appear in y. We drop the subscripts P, d when clear

from context.

Definition 5. Let P be a distribution overD∪Z, and δ ∈ [0, 1] a threshold. Joint assignments x and

y form a discrimination pattern w.r.t. P and δ if: (1) X⊆S and Y⊆Z\X; and (2) |∆P,d(x,y)| > δ.

Intuitively, we do not want information about the sensitive attributes to significantly affect the

probability of getting a favorable decision. Let us consider two special cases of discrimination

patterns. First, if Y = ∅, then a small discrimination score |∆(x, ∅)| can be interpreted as an

approximation of statistical parity, which is achieved when P (d|x) = P (d). For example, the naive

Bayes network in Figure 4.1 satisfies approximate parity for δ=0.2 as |∆(x, ∅)|=0.086 ≤ δ and

|∆(x̄, ∅)|=0.109 ≤ δ. Second, suppose X=S and Y=Z\S. Then bounding |∆(x,y)| for all joint

states x and y is equivalent to enforcing individual fairness assuming two individuals are considered

similar if their non-sensitive attributes y are equal. The network in Figure 4.1 is also individually

fair for δ = 0.2 because maxxy1y2 |∆(x, y1y2)|=0.167 ≤ δ.1

Even though the example network is considered (approximately) fair at the group level and

individual level with fully observed features, it may still produce a discrimination pattern. In

particular, |∆(x̄, y1)| = 0.225 > δ. That is, a person with x̄ and y1 observed and the value of

Y2 undisclosed would receive a much more favorable decision had they not disclosed X as well.

Hence, naturally we wish to ensure that there exists no discrimination pattern across all subsets of

observable features.

Definition 6. A distribution P is δ-fair if there exists no discrimination pattern w.r.t P and δ.

Although our notion of fairness applies to any distribution, finding discrimination patterns can

be computationally challenging: computing the degree of discrimination involves probabilistic

inference, which is hard in general, and a given distribution may have exponentially many patterns.

1The highest discrimination score is observed at x̄ and y1ȳ2, with ∆(x̄, y1ȳ2) = −0.167.

43

Algorithm 2 DISC-PATTERNS(x,y,E)

Input: P : Distribution over D ∪ Z, δ : discrimination threshold
Output: Discrimination patterns L
Data: x← ∅, y← ∅, E← ∅, L← []

1: for all assignments z to some selected variable Z ∈ Z \XYE do
2: if Z ∈ S then
3: if |∆(xz,y)| > δ then add (xz,y) to L
4: if UB(xz,y,E) > δ then DISC-PATTERNS(xz,y,E)

5: if |∆(x,yz)| > δ then add (x,yz) to L
6: if UB(x,yz,E) > δ then DISC-PATTERNS(x,yz,E)

7: if UB(x,y,E ∪ {Z}) > δ then DISC-PATTERNS(x,y,E ∪ {Z})

Here we demonstrate how to discover and eliminate discrimination patterns of a naive Bayes

classifier effectively by exploiting its independence assumptions. Concretely, we answer the

following questions: (1) Can we certify that a classifier is δ-fair?; (2) If not, can we find the most

important discrimination patterns?; (3) Can we learn a naive Bayes classifier that is entirely δ-fair?

4.2 Discovering Discrimination Patterns and Verifying δ-fairness

This section describes our approach to finding discrimination patterns or certifying that there are

none.

4.2.1 Searching for Discrimination Patterns

One may naively enumerate all possible patterns and compute their degrees of discrimination.

However, this would be very inefficient as there are exponentially many subsets and assignments to

consider. We instead use branch-and-bound search to more efficiently decide if a model is fair.

Algorithm 2 finds discrimination patterns. It recursively adds variable instantiations and checks

the discrimination score at each step. If the input distribution is δ-fair, the algorithm returns no

pattern; otherwise, it returns the set of all discriminating patterns. Note that computing ∆ requires

probabilistic inference on distribution P . This can be done efficiently for large classes of graphical

44

models [Darwiche, 2009b; Poon and Domingos, 2011; Dechter, 2013; Rahman et al., 2014; Kisa

et al., 2014b], and particularly for naive Bayes networks, which will be our main focus.

Furthermore, the algorithm relies on a good upper bound to prune the search tree and avoid

enumerating all possible patterns. Here, UB(x,y,E) bounds the degree of discrimination achievable

by observing more features after xy while excluding features E.

Proposition 4.1. Let P be a naive Bayes distribution over D ∪ Z, and let x and y be joint

assignments to X ⊆ S and Y ⊆ Z\X. Let x′u (resp. x′l) be an assignment to X′ = S\X that

maximizes (resp. minimizes) P (d|xx′). Suppose l, u ∈ [0, 1] such that l ≤ P (d|yy′) ≤ u for all

possible assignments y′ to Y′ = Z\(XY). Then the degrees of discrimination for all patterns

xx′yy′ that extend xy are bounded as follows:

min
l≤γ≤u

∆̃
(
P (xx′l|d), P (xx′l|d), γ

)
≤ ∆P,d(xx

′,yy′) ≤ max
l≤γ≤u

∆̃
(
P (xx′u|d), P (xx′u|d), γ

)
,

where ∆̃(α, β, γ) , αγ
αγ+β(1−γ)

− γ.

Here, ∆̃ : [0, 1]3 → [0, 1] is introduced to relax the discrete problem of minimizing or maximiz-

ing the degree of discrimination into a continuous one. In particular, ∆̃
(
P (x|d), P (x|d), P (d|y)

)

equals the degree of discrimination ∆(x,y). This relaxation allows us to compute bounds efficiently,

as closed-form solutions. We refer to the Appendix for full proofs and details.

To apply above proposition, we need to find x′u,x
′
l, l, u by maximizing/minimizing P (d|xx′)

and P (d|yy′) for a given pattern xy. Fortunately, this can be done efficiently for naive Bayes

classifiers.

Lemma 1. Given a naive Bayes distribution P over D∪Z, a subset V = {Vi}ni=1 ⊂ Z, and an

assignment w to W⊆Z\V, we have: arg maxv P (d|vw) =
{

arg maxvi P (vi|d)/P (vi|d)
}n
i=1

.

That is, the joint observation v that will maximize the probability of the decision can be found

by optimizing each variable Vi independently; the same holds when minimizing. Hence, we can use

Proposition 4.1 to upper-bound the discrimination scores of extended patterns in linear time.

45

Intermezzo 2: Fairness Considerations in Policy Making

Much of the research in fair machine learning, including the works described in this thesis,
considers mathematical definitions of fairness and how to audit and enforce them. However, it
is imperative that we ultimately ground these discussions to real-world settings. For instance,
some technical notions or approaches to mitigate bias may not be compatible with certain
legal framework of discrimination [Xiang, 2020; Corbett-Davies and Goel, 2018]. Moreover,
algorithmic tools are developed and deployed within institutions and policies, and thus
studying algorithmic fairness in isolation could miss important institutional considerations.

In particular, Solow-Niederman, Choi, and Van den Broeck [2019] used California’s
Money Bail Reform Act of 2017 (SB 10) as an example to demonstrate how risk assessment
algorithms do not operate in isolation and that their fairness issues must be considered at
the policy-making stage. Specifically, risk assessment statutes may create tension between a
top-down, global understanding of fairness and accuracy and a tool that is well-tailored to
local considerations.

This is also closely related to the fact that questions regarding the fairness of a model
depends on the underlying distribution of the world, as argued throughout this thesis. Because
the population distribution can differ, for instance, at the county and state level, we must pay
close attention to the design of risk assessment policies, and specifically to who is granted
authority and discretion over the tools.

4.2.2 Searching for Top-k Ranked Patterns

If a distribution is significantly unfair, Algorithm 2 may return exponentially many discrimination

patterns. This is not only very expensive but makes it difficult to interpret the discrimination patterns.

Instead, we would like to return a smaller set of “interesting” discrimination patterns.

An obvious choice is to return a small number of discrimination patterns with the highest

absolute degree of discrimination. Searching for the k most discriminating patterns can be done

with a small modification to Algorithm 2. First, the size of list L is limited to k. The conditions

in Lines 3–7 are modified to check the current discrimination score and upper bounds against the

smallest discrimination score of patterns in L, instead of the threshold δ.

Nevertheless, ranking patterns by their discrimination score may return patterns of very low

probability. For example, the most discriminating pattern of a naive Bayes classifier learned on the

COMPAS dataset [Propublica, 2016] has a high discrimination score of 0.42, but only has a 0.02%

46

probability of occurring.2 The probability of a discrimination pattern denotes the proportion of the

population (according to the distribution) that could be affected unfairly, and thus a pattern with

extremely low probability could be of lesser interest. To address this concern, we propose a more

sophisticated ranking of the discrimination patterns that also takes into account the probabilities of

patterns.

Definition 7. Let P be a distribution over D ∪ Z. Let x and y be joint instantiations to subsets

X ⊆ S and Y ⊆ Z \X, respectively. The divergence score of xy is:

DivP,d,δ(x,y) , min
Q

KL (P ‖ Q) s.t. |∆Q,d(x,y)| ≤ δ, P (dz) = Q(dz), ∀ dz 6|= xy (4.1)

where KL (P ‖ Q) =
∑

d,z P (dz) log(P (dz)/Q(dz)).

The divergence score assigns to a pattern xy the minimum Kullback-Leibler (KL) divergence

between current distribution P and a hypothetical distribution Q that is fair on the pattern xy and

differs from P only on the assignments that satisfy the pattern (namely dxy and dxy). Informally,

the divergence score approximates how much the current distribution P needs to be changed in

order for xy to no longer be a discrimination pattern. Hence, patterns with higher divergence score

will tend to have not only higher discrimination score but also higher probabilities.

For instance, the pattern with the highest divergence score3 on the COMPAS dataset has a

discrimination score of 0.19 which is not insignificant, but also has a relatively high probability

of 3.33% – more than two orders of magnitude larger than that of the most discriminating pattern.

Therefore, such a general pattern could be more interesting for the user studying this classifier.

To find the top-k patterns with the divergence score, we need to be able to compute the score

and its upper bound efficiently. The key insights are that KLD is convex and that Q, in Equation 4.1,

2The corresponding pattern is x={White,Married,Female, >30 y/o},y={Probation, Pretrial}.
3x = {Married, > 30 y/o}, y = {}.

47

Dataset Statistics Proportion of search space explored
Divergence Discrimination

Dataset Size S N # Pat. k δ = 0.01 δ = 0.05 δ = 0.10 δ = 0.01 δ = 0.05 δ = 0.10

COMPAS 48,834 4 3 15K 1 6.387e-01 5.634e-01 3.874e-01 8.188e-03 8.188e-03 8.188e-03
10 7.139e-01 5.996e-01 4.200e-01 3.464e-02 3.464e-02 3.464e-02

100 8.222e-01 6.605e-01 4.335e-01 9.914e-02 9.914e-02 9.914e-02

Adult 32,561 4 9 11M 1 3.052e-06 7.260e-06 1.248e-05 2.451e-04 2.451e-04 2.451e-04
10 7.030e-06 1.154e-05 1.809e-05 2.467e-04 2.467e-04 2.467e-04

100 1.458e-05 1.969e-05 2.509e-05 2.600e-04 2.600e-04 2.597e-04

German 1,000 4 16 23B 1 5.075e-07 2.731e-06 2.374e-06 7.450e-08 7.450e-08 7.450e-08
10 9.312e-07 3.398e-06 2.753e-06 1.592e-06 1.592e-06 1.592e-06

100 1.454e-06 4.495e-06 3.407e-06 5.897e-06 5.897e-06 5.897e-06

Table 4.1: Data statistics (number of training instances, sensitive features S, non-sensitive features
N , and potential patterns) and the proportion of patterns explored during the search, using the
Divergence and Discrimination scores as rankings.

can freely differ from P only on one probability value (either that of dxy or dxy). Then:

DivP,d,δ(x,y) =P (dxy) log

(
P (dxy)

P (dxy) + r

)
+ P (dxy) log

(
P (dxy)

P (dxy)− r

)
, (4.2)

where r = 0 if |∆P,d(x,y)| ≤ δ; r =
δ−∆P,d(x,y)

1/P (xy)−1/P (y)
if ∆P,d(x,y)> δ; and r =

−δ−∆P,d(x,y)

1/P (xy)−1/P (y)
if

∆P,d(x,y)<−δ. Intuitively, r represents the minimum necessary change to P (dxy) for xy to be

non-discriminating in the new distribution. Note that the smallest divergence score of 0 is attained

when the pattern is already fair.

Lastly, we refer to the Appendix for two upper bounds of the divergence score, which utilize the

bound on discrimination score of Proposition 4.1 and can be computed efficiently using Lemma 1.

4.2.3 Empirical Evaluation of Discrimination Pattern Miner

In this section, we report the experimental results on the performance of our pattern mining

algorithms. All experiments were run on an AMD Opteron 275 processor (2.2GHz) and 4GB of

RAM running Linux Centos 7. Execution time is limited to 1800 seconds.

Data and pre-processing. We use three datasets: The Adult dataset and German dataset are

48

10−4 10−3 10−2 10−1

0.1

0.2

0.3

0.4

Probability of Pattern

D
is
cr
im

in
at
io
n
S
co
re All

Disc
Div
Prob

Figure 4.2: Discrimination patterns with δ = 0.1 for the max-likelihood NB classifier on COMPAS.

used for predicting income level and credit risk, respectively, and are obtained from the UCI machine

learning repository [Dua and Graff, 2017]; the COMPAS dataset is used for predicting recidivism.

These datasets have been commonly studied regarding fairness and were shown to exhibit some

form of discrimination by several previous works [Luong et al., 2011; Larson et al., 2016; Tramer

et al., 2017; Salimi et al., 2019]. As pre-processing, we removed unique features (e.g. names of

individuals) and duplicate features. See Table 4.1 for a summary.

Q1. Does our pattern miner find discrimination patterns more efficiently than by enumer-

ating all possible patterns? We answer this question by inspecting the fraction of all possible

patterns that our pattern miner visits during the search. Table 4.1 shows the results on three datasets,

using two rank heuristics (discrimination and divergence) and three threshold values (0.01, 0.05, and

0.1). The results are reported for mining the top-k patterns when k is 1, 10, and 100. A naive method

has to enumerate all possible patterns to discover the discriminating ones, while our algorithm visits

only a small fraction of patterns (e.g., one in every several millions on the German dataset).

Q2. Does the divergence score find discrimination patterns with both a high discrimina-

tion score and high probability? Figure 4.2 shows the probability and discrimination score of all

patterns in the COMPAS dataset. The top-10 patterns according to three measures (discrimination

score, divergence score, and probability) are highlighted in the figure. The observed trade-off

between probability and discrimination score indicates that picking the top patterns according to

each measure will yield low quality patterns according to the other measure. The divergence score,

49

however, balances the two measures and returns patterns that have high probability and discrimi-

nation scores. Also note that the patterns selected by the divergence score lie in the Pareto front.

This in fact always holds by the definition of this heuristic; fixing the probability and increasing the

discrimination score will also increase the divergence score, and vice versa.

4.3 Learning Fair Naive Bayes Classifiers

We now describe our approach to learning the maximum-likelihood parameters of a naive Bayes

model from data while eliminating discrimination patterns. A common approach to learning naive

Bayes models with certain properties is to formulate it as an optimization problem of certain form,

for which efficient solvers are available [Khosravi et al., 2019b]. We formulate the learning subject

to fairness constraints as a signomial program, which has the following form:

minimize f0(x), s.t. fi(x) ≤ 1, gj(x) = 1 ∀ i, j

where each fi is signomial while gj is monomial. A signomial is a function of the form

∑

k

ckx
a1k
1 · · ·xa1n

n

defined over real positive variables x1 . . . xn where ck, aij ∈ R; a monomial is of the form

cxa1
1 · · ·xann where c > 0 and ai ∈ R. Signomial programs are not globally convex, but a lo-

cally optimal solution can be computed efficiently, unlike the closely related class of geometric

programs, for which the globally optimum can be found efficiently [Ecker, 1980].

4.3.1 Parameter Learning with Fairness Constraints

The likelihood of a Bayesian network given data D is Pθ(D) =
∏

i θ
ni
i where ni is the num-

ber of examples in D that satisfy the assignment corresponding to parameter θi. To learn the

50

maximum-likelihood parameters, we minimize the inverse of likelihood which is a monomial:

θml =arg minθ
∏

i θ
−ni
i . The parameters of a naive Bayes network with binary class consist of θd, θd̄,

and θz|d, θz|d̄ for all z.

Next, we show the constraints for our optimization problem. To learn a valid distribution, we

need to ensure that probabilities are non-negative and sum to one. The former assumption is inherent

to signomial programs. To enforce the latter, for each instantiation d and feature Z, we need that
∑

z θz|d = 1, or as signomial inequality constraints:
∑

z θz|d ≤ 1 and 2−∑z θz|d ≤ 1.

Finally, we derive the constraints to ensure that a given pattern xy is non-discriminating.

Proposition 4.2. Let Pθ be a naive Bayes distribution over D ∪ Z, and let x and y be joint

assignments to X ⊆ S and Y ⊆ Z \X. Then |∆Pθ,d(x,y)| ≤ δ for a threshold δ ∈ [0, 1] iff the

following holds:

rx =

∏
x θx|d̄∏
x θx|d

, ry =
θd̄
∏

y θy|d̄

θd
∏

y θy|d
,

(
1− δ
δ

)
rxry −

(
1 + δ

δ

)
ry − rxr2

y ≤ 1, −
(

1 + δ

δ

)
rxry +

(
1− δ
δ

)
ry − rxr2

y ≤ 1.

Note that above equalities and inequalities are valid signomial program constraints. Thus, we

can learn the maximum-likelihood parameters of a naive Bayes network while ensuring a certain

pattern is fair by solving a signomial program. Furthermore, we can eliminate multiple patterns

by adding the constraints in Proposition 4.2 for each of them. However, learning a model that is

entirely fair with this approach will introduce an exponential number of constraints. Not only does

this make the optimization more challenging, but listing all patterns may simply be infeasible.

4.3.2 Learning δ-fair Parameters

To address the aforementioned challenge of removing an exponential number of discrimination

patterns, we propose an approach based on the cutting plane method. That is, we iterate between

parameter learning and constraint extraction, gradually adding fairness constraints to the optimiza-

51

tion. The parameter learning component is as described in the previous section, where we add the

constraints of Proposition 4.2 for each discrimination pattern that has been extracted so far. For

constraint extraction we use the top-k pattern miner from Section 4.2. At each iteration, we learn

the maximum-likelihood parameters subject to fairness constraints, and find k more patterns using

the updated parameters to add to the set of constraints in the next iteration. This process is repeated

until the pattern miner finds no more discrimination pattern.

In the worst case, our algorithm may add exponentially many fairness constraints whilst solving

multiple optimization problems. However, as we will later show empirically, we can learn a δ-fair

model by explicitly enforcing only a small fraction of fairness constraints. The efficacy of our

approach depends on strategically extracting patterns that are significant in the overall distribution.

Here, we again use a ranking by discrimination or divergence score, which we also evaluate

empirically.

4.3.3 Empirical Evaluation of δ-fair Learner

We will now evaluate our iterative algorithm for learning δ-fair naive Bayes models. We use the

same datasets and hardware as in Section 4.2. To solve the signomial programs, we use GPkit,

which finds local solutions to these problems using a convex optimization solver as its backend.4

Throughout our experiments, Laplace smoothing was used to avoid learning zero probabilities.

Q1. Can we learn a δ-fair model in a small number of iterations while only asserting a

small number of fairness constraints? We train a naive Bayes model on the COMPAS dataset

subject to δ-fairness constraints. Fig. 4.3a shows how the iterative method converges to a δ-fair

model, whose likelihood is indicated by the dotted line. Our approach converges to a fair model in

a few iterations, including only a small fraction of the fairness constraints. In particular, adding

only the most discriminating pattern as a constraint at each iteration learns an entirely δ-fair

4We use Mosek (www.mosek.com) as backend.

52

www.mosek.com

1 2 3 4 5 6 7 8
number of iterations

207400

207300

207200

207100

lo
g-

lik
eli

ho
od

KLD

1 2 3
number of iterations

207400

207300

207200

207100

Difference

k=1
k=10
k=100

(a) Log-likelihood

0 2 4 6
iteration number

0

1000

2000

#
re

m
ai

ni
ng

 p
at

te
rn

s KLD
Difference

(b) Number of remaining patterns

Figure 4.3: Log-likelihood and the number of remaining discrimination patterns after each iteration
of learning on COMPAS dataset with δ = 0.1.

Dataset Unconstrained δ-fair Independent

COMPAS -207,055 -207,395 -208,639
Adult -226,375 -228,763 -232,180
German -12,630 -12,635 -12,649

Table 4.2: Log-likelihood of models learned without fairness constraints, with the δ-fair learner
(δ = 0.1), and by making sensitive variables independent from the decision variable.

model with only three fairness constraints.5 Moreover, Fig. 4.3b shows the number of remaining

discrimination patterns after each iteration of learning with k = 1. Note that enforcing a single

fairness constraint can eliminate a large number of remaining ones. Eventually, a few constraints

subsume all discrimination patterns.

Q2. How does the quality of naive Bayes models from our fair learner compare to ones

that make the sensitive attributes independent of the decision? and to the best model without

fairness constraints? A simple method to guarantee that a naive Bayes model is δ-fair is to make

all sensitive variables independent from the target value. An obvious downside is the negative effect

on the predictive power of the model. We compare the models learned by our approach with: (1) a

maximum-likelihood model with no fairness constraints (unconstrained) and (2) a model in which

the sensitive variables are independent of the decision variable, and the remaining parameters are

learned using the max-likelihood criterion (independent). These models lie at two opposite ends of

the spectrum of the trade-off between fairness and accuracy. The δ-fair model falls between these

5There are 2695 discrimination patterns w.r.t. unconstrained naive Bayes on COMPAS and δ = 0.1.

53

Dataset λ =0.5 λ =0.9 λ =0.95 λ =0.99 λ =1.0

COMPAS 2,504 2,471 2,470 3,069 0
Adult >1e6 661 652 605 0
German >1e6 3 2 0 0

Table 4.3: Number of remaining patterns with δ = 0.1 in naive Bayes models trained on
discrimination-free data, where λ determines the trade-off between fairness and accuracy in the data
repair step [Feldman et al., 2015].

dataset Unconstrained 2NB Repaired δ-fair

COMPAS 0.880 0.875 0.878 0.879
Adult 0.811 0.759 0.325 0.827

German 0.690 0.679 0.688 0.696

Table 4.4: Comparing accuracy of our δ-fair models with two-naive-Bayes method and a naive
Bayes model trained on repaired, discrimination-free data.

extremes, balancing approximate fairness and prediction power.

We compare the log-likelihood of these models, shown in Table 4.2, as it captures the overall

quality of a probabilistic classifier which can make predictions with partial observations. The δ-fair

models achieve likelihoods that are much closer to those of the unconstrained models than the

independent ones. This shows that it is possible to enforce the fairness constraints without a major

reduction in model quality.

Q3. Do discrimination patterns still occur when learning naive Bayes models from fair

data? We first use the data repair algorithm proposed by Feldman et al. [2015] to remove dis-

crimination from data, and learn a naive Bayes model from the repaired data. Table 4.3 shows the

number of remaining discrimination patterns in such model. The results indicate that as long as

preserving some degree of accuracy is in the objective, this method leaves lots of discrimination

patterns, whereas our method removes all patterns.

Q4. How does the performance of δ-fair naive Bayes classifier compare to existing work?

Table 4.4 reports the 10-fold CV accuracy of our method (δ-fair) compared to a max-likelihood naive

Bayes model (unconstrained) and two other methods of learning fair classifiers: the two-naive-Bayes

54

method (2NB) [Calders and Verwer, 2010], and a naive Bayes model trained on discrimination-free

data using the repair algorithm of Feldman et al. [2015] with λ = 1. Even though the notion of

discrimination patterns was proposed for settings in which predictions are made with missing values,

our method still outperforms other fair models in terms of accuracy, a measure better suited for

predictions using fully-observed features. Moreover, our method also enforces a stronger definition

of fairness than the two-naive-Bayes method which aims to achieve statistical parity, which is

subsumed by the notion of discrimination patterns. It is also interesting to observe that our δ-fair

NB models perform even better than unconstrained NB models for the Adult and German dataset.

Hence, removing discrimination patterns does not necessarily impose an extra cost on the prediction

task.

4.4 Finding Discrimination Patterns in Probabilistic Circuits

This section extends the search algorithm to find discrimination patterns in probabilistic circuits.

Recall that the probability of a pattern corresponds to the proportion of the affected subpopulation,

according to the probabilistic model. Therefore, a meaningful analysis of discrimination patterns

depends on how well the model captures the population distribution. For instance, naive Bayes

classifiers make strong independence assumptions and are generally too restrictive to fit real-world

distributions. Thus, we consider a more expressive type of probabilistic models, in particular,

probabilistic circuits.

Algorithm 2 can be applied to any probabilistic model that allows efficient computation of

discrimination score and an upper bound for it. First, smooth and decomposable PCs support

linear-time computation of conditional probabilities, and in turn, of discrimination score for any

pattern. Next, we use the following as our bound UB(x,y,E), which does not rely on the naive

Bayes assumption:

max
{∣∣∣max

u
P (d | x,y,u)−min

u
P (d | y,u)

∣∣∣ ,
∣∣∣min

u
P (d | x,y,u)−max

u
P (d | y,u)

∣∣∣
}

(4.3)

55

where U can be any subset of Z\(X∪Y∪E)—in other words, the remaining variables to extend the

current pattern. The core component of above bound is maximizing or minimizing the conditional

probability of the form P (d | y,u) over the values of some U for a given y. We now show how

such optimization can be done tractably for certain classes of probabilistic circuits.

We use two key observations, expressed by the following lemmas.

Lemma 1. Let P be a distribution over D ∪ Z and x a joint assignment to X ⊆ Z. Also denote

V = Z \X. Then for any U ⊆ Z \X the following holds:

max
u∈val(U)

P (d | x,u) ≤ max
v∈val(V)

P (d | x,v)

That is, to maximize a conditional probability given some (partial) assignments for a set of free

variables, it suffices to consider only the complete assignments to those variables. Analogously, this

statement holds for minimization as well, with the direction of inequality reversed.

Proof. Consider any U ⊂ Z \X and W /∈ U. It suffices to show that

∀u ∈ val(U), P (d | x,u) ≤ max
w∈val(W)

P (d | x,u, w),

as the lemma then follows via a simple inductive argument. Denote val(W) = {w1, w2, . . . , wn}.
To show that there is at least one w ∈ val(W) such that P (d | x,u) ≤ P (d | x,u, w) for any u, we

will show that P (d | x,u) > P (d | x,u, wi) for i = 1, . . . , n− 1 implies that P (d | x,u) < P (d |
x,u, wn). First, it implies that P (d,x,u) ·P (x,u, wi) > P (x,u) ·P (d,x,u, wi) for all i ≤ n− 1

which leads to:

n−1∑

i=1

(P (d,x,u) · P (x,u, wi)) >
n−1∑

i=1

(P (x,u) · P (d,x,u, wi)).

56

Subtracting both sides from P (d,x,u) · P (x,u) we get:

P (d,x,u) · P (x,u)−
n−1∑

i=1

(P (x,u) · P (d,x,u, wi))

> P (d,x,u) · P (x,u)−
n−1∑

i=1

(P (d,x,u) · P (x,u, wi))

=⇒ P (d,x,u)−∑n−1
i=1 P (d,x,u, wi)

P (x,u)−∑n−1
i=1 P (x,u, wi)

>
P (d,x,u)

P (x,u)

=⇒ P (d | x,u, wn) > P (d | x,u).

Lemma 2. Let P be a distribution over D ∪ Z, x an assignment to X ⊆ Z, and U ⊆ Z \X. Then,

arg max
u∈val(U)

P (d | x,u) = arg max
u∈val(U)

P (x,u | d)

P (x,u | d)
.

Proof. Since P (d | x,u) = P (d,x,u)

P (d,x,u)+P (d,x,u)
= 1

1+P (d,x,u)/P (d,x,u)
, we obtain that

arg max
u∈val(U)

P (d | x,u) = arg min
u∈val(U)

P (d,x,u)

P (d,x,u)
= arg max

u∈val(U)

P (d,x,u)

P (d,x,u)
= arg max

u∈val(U)

P (x,u | d)

P (x,u | d)
.

Combining these observations, we see that the upper bound in Equation 4.3 can be computed

easily if we can efficiently maximize and minimize quantities of the form P (x,u | d)/P (x,u | d)

over values of U = Z \Y for some given assignment x ∈ val(X). In fact, we derive an algorithm

with worst-case quadratic time complexity (in the size of the circuit) for PCs that satisfy additional

structural constraints.

In particular, Algorithm 3 maximizes the ratio between two PCs that are deterministic and

compatible. A circuit is deterministic if the children of every sum node have disjoint supports

(denoted by supp(n)). In other words, for every complete assignment z, at most one of the children

57

Algorithm 3 Best Ratio: BR(n,m)

Input: deterministic and compatible PCs n and m over Z; an assignment x ∈ val(X) for X ⊂ Z
Output: maxu∈val(U) n(x,u)/m(x,u) where U = Z \X

1: if n,m are leaf nodes then
2: if supp(n) ∩ supp(m) 6= ∅ and n(x) 6= 0,m(x) 6= 0 then
3: BR(n,m)← 1
4: else
5: BR(n,m)← 0

6: else if n,m are product nodes then
7: BR(n,m)←∏|ch(n)|

i=1 BR(ni,mi)
8: else . n,m are sum nodes
9: BR(n,m)← maxni∈ch(n),mj∈ch(m)

θi
θj

BR(ni,mj)

nodes will have a non-zero output. In addition, two circuits are compatible if they are: (1) smooth

and decomposable; and (2) any pair of product nodes, one from each circuit, that are defined over

the same set of variables decompose the variables in the same way. We refer the readers to [Vergari

et al., 2021] for a more detailed discussion of compatibility. We can then apply this algorithm to

two compatible PCs, representing the conditional distributions P (Z | d) and P (Z | d). For instance,

consider a PC over variables D ∪ Z whose root is a decision node on D as in ??: then the two

subcircuits rooted at each child of the root node exactly corresponds to the conditional distributions

given D, and they are deterministic and share a vtree (i.e. are compatible). Moreover, we can easily

tweak the algorithm to minimize the ratio, by changing Line 9 to return the minimum over non-zero

values of the recursive calls if they exist, or zero otherwise.

Proof of Correctness. We proceed via induction. For the leaves, as they are compatible, by defini-

tion their supports are either identical or completely disjoint. Thus, the maximum ratio is 1, 0, or

undefined (we also propagate 0 in this case).

Next, consider two compatible product nodes. As they decompose the variables identically, we

can order their children nodes such that n(z) =
∏

i ni(zi) and m(z) =
∏

imi(zi), where ni and

mi are over the same set of variables Zi. Let us write Ui = U ∩ Zi and Xi = X ∩ Zi. Then, we

58

have:

max
u∈val(U)

n(x,u)

m(x,u)
= max

u∈val(U)

∏
i ni(xi,ui)∏
imi(xi,ui)

=
∏

i

max
ui∈val(Ui)

ni(xi,ui)

mi(xi,ui)
,

leading to Line 7 in Algorithm 3.

Finally, consider two deterministic sum nodes. Then for any z, at most one children each of

n and m would evaluate non-zero values. That is, the sum nodes can effectively be treated as

maximization nodes: e.g. n(z) =
∑

i ni(z) = maxi ni(z). Moreover, among all pairs of children

ni,mj , the ratio ni(z)/mj(z) for any fixed z would be non-zero for at most one pair (again, we

treat the ratio that is undefined as 0). Therefore, we have:

n(z)

m(z)
=

∑
i ni(z)∑
jmj(z)

=
maxi ni(z)

maxjmj(z)
= max

i,j

ni(z)

mj(z)
.

Thus, we can break down the maximization as the following, corresponding to Line 9:

max
u∈val(U)

n(x,u)

m(x,u)
= max

u∈val(U)
max
i,j

ni(x,u)

mj(x,u)
= max

i,j
max

u∈val(U)

ni(x,u)

mj(x,u)
.

Furthermore, we can similarly search for top-k patterns ranked by their divergence scores. The

upper bound on divergence score used in Section 4.2.2 in fact does not require the naive Bayes

assumption, and only needs efficient maximization/minimization of the conditional probability

of extensions. Thus, given the kinds of PC structure described above, we can also compute a

non-trivial bound and extend the branch-and-bound search approach in a straightforward manner to

mine divergence patterns in PCs as well.

59

Table 4.5: Dataset statistics (number of examples, number of sensitive features S, non-sensitive
features N , and number of potential patterns) and speedup of top-k search v.s. naive enumeration,
in terms of the fraction of search space explored.

Disc. Divergence
Dataset Size S N # Pat. k δ=0.1 δ=0.01 δ=0.05 δ=0.10

COMPAS 48834 4 3 15K
1 2.73x 2.17x 1.40x 1.16x
10 2.68x 1.85x 1.26x 1.10x
100 2.52x 1.46x 1.13x 1.04x

Income 195665 2 6 11K
1 1.22x 1.50x 1.32x 1.13x
10 1.20x 1.40x 1.26x 1.08x
100 1.13x 1.31x 1.15x 1.02x

Adult 32561 4 9 11M
1 1.32x 24.20x 16.72x 10.88x
10 1.31x 20.44x 14.75x 9.82x
100 1.29x 16.10x 11.87x 8.40x

4.4.1 Empirical Evaluation

We again evaluate the discrimination pattern mining algorithm on the COMPAS and Adult datasets,

as well as the Income [Ding et al., 2021] dataset used for predicting income levels. From each

dataset, a probabilistic circuit is learned using the STRUDEL algorithm [Dang et al., 2022], which

returns deterministic and structured decomposable PCs as required by our search algorithm.

We first evaluate the efficiency of our branch-and-bound search algorithm to find discrimination

patterns. As our approach is the first non-trivial method for a general class of probabilistic circuits,

we see whether it is more efficient than a naive solution that enumerates all possible patterns. We

mine the top-k patterns for two ranking heuristics (discrimination and divergence score), three

values of k (1, 10, 100), and three threshold values δ (0.01, 0.05, 0.1). Table 4.5 reports the speedup

in terms of the proportion of the search space visited by our algorithm compared to the naive

approach. Note that only the settings in which δ = 0.1 for ranking by discrimination score are

reported, because the results are identical for smaller values of δ. We observe that pruning is

effective, resulting in consistent speedup, including some significant improvement in performance

as high as 24x speedup in the case of mining top-k divergence patterns on the Adult dataset.

60

Moreover, note that our method must compute an upper bound at every search step, which has a

worst-case quadratic time complexity. However, we see that pruning the search space still improves

the overall run time of the algorithm, even with this extra computation. For example, our method

explores a little less than half the search space for top-k discrimination patterns with δ = 0.1 on the

COMPAS dataset, and it takes about 60% of the time taken by naive enumeration; concretely, it

takes 24.4s, 24.6s, and 25.3s for k = 1, 10, 100, respectively, while the naive approach takes 40.2s.

4.5 Discussion

This chapter introduced a novel definition of fair probability distribution in terms of discrimination

patterns which considers exponentially many (partial) observations of features. We have also

presented algorithms to search for discrimination patterns in naive Bayes networks and to learn a

high-quality fair naive Bayes classifier from data. We empirically demonstrated the efficiency of

our search algorithm and the ability to eliminate exponentially many discrimination patterns by

iteratively removing a small fraction at a time.

This approach to fair distribution implies group fairness such as statistical parity. However,

ensuring group fairness in general is always with respect to a distribution and is only valid under

the assumption that this distribution is truthful. While our approach guarantees some level of group

fairness of naive Bayes classifiers, this is only true if the naive Bayes assumption holds. That is, the

group fairness guarantees do not extend to using the classifier on an arbitrary population.

There is always a tension between three criteria of a probabilistic model: its fidelity, fairness,

and tractability. Our initial approach aims to strike a balance between them by giving up some

likelihood to be tractable (naive Bayes assumption) and more fair. There are certainly other valid

approaches: learning a more general graphical model to increase fairness and truthfulness, which

would in general make it intractable, or making the model less fair in order to make it more truthful

and tractable.

As a step towards achieving a better balance with more expressive models, Section 4.4 introduced

61

a search algorithm to mine discrimination pattern from probabilistic circuits. Then a promising

future direction is to learn fair probabilistic circuits by eliminating discrimination patterns. Moreover,

given the intractability of an exact search algorithm, I also hope to explore approximate methods.

62

CHAPTER 5

Robust Decision Making

In many applications, one can define a large set of features to support the classification task at hand.

At test time, however, these become prohibitively expensive to evaluate. This chapter considers the

problem of removing costly features from a probabilistic classifier—derived from a probabilistic

circuit or a Bayesian network for example—while staying robust to these changes and maintaining

its classification behavior. To this end, we propose a closeness metric between Bayesian classifiers,

called the expected classification agreement (ECA). Next, we present the first algorithm to compute

it exactly1 and a trimming algorithm that maximizes the expected agreement subject to a budgetary

constraint, utilizing new theoretical insights to perform branch-and-bound search in the space of

feature sets, while computing bounds on the ECA. Experiments on benchmark datasets investigate

both the runtime cost of trimming and its effect on the robustness and accuracy of the resulting

classifier.

5.1 Introduction

Bayesian classification plays a prominent role throughout machine learning [Wu et al., 2008;

Laidlaw et al., 1998; Metsis et al., 2006]. In this setting, one has a model that specifies a probability

distribution Pr(.) over a set of variables, including class variable C and attributes or features F =

{F1, . . . , Fn}. Given a particular instance, described as an assignment to features f = {f1, . . . , fn},

1The algorithm was initially developed for a closely related query called the expected same-decision probability
on Bayesian networks, based on compiling the network into a tractable circuit representation for weighted model
counting [Choi et al., 2017]. Here it is presented for ECA on probabilistic circuits, which can also be compiled from
Bayesian networks.

63

this model is used to compute the posterior probability Pr(C|f1, . . . , fn) which is then compared

against a threshold T to classify the instance.

In practice, observing features often has a cost, and one typically needs to keep it within a

given budget. For example, features in a medical diagnosis may be invasive, time-consuming, or

expensive medical tests [Kononenko, 2001]. Similar issues arise in active sensing [Gao and Koller,

2011], adaptive testing [Millán and Pérez-De-La-Cruz, 2002; Munie and Shoham, 2008], and

robotics [Kollar and Roy, 2008]. This problem has been studied from different angles, often under

the umbrella of feature selection. For example, one may select features at learning time based on

their relevance, redundancy, or classification accuracy [Kira and Rendell, 1992; Yu and Liu, 2004].

Alternatively, features may be selected at prediction time based on their expected misclassification

cost or information gain [Bilgic and Getoor, 2011; Krause and Guestrin, 2009; Zhang and Ji, 2010].

Such probabilistic objectives are computed on the distribution of the Bayesian classifier.

In this chapter, I approach the problem from a different perspective, namely, classifier trimming.

In addition to selecting features that fit the budget, trimming adjusts the threshold T to induce a new

classifier. Moreover, instead of simply optimizing the predictive accuracy, we want the trimming to

be robust—that is, to preserve the original classifier’s general behavior. This is due to the following

two reasons. First, Bayesian classifiers often incorporate significant expert knowledge in the form

of priors, structural assumptions, and choice of distribution class [Lucas, 2001]. This is particularly

true in medical applications where data is scarce [Bellazzi and Zupan, 2008]. Second, two classifiers

with the same predictive quality can exhibit vastly different behavior and failure modes. For example,

Zhao et al. [2017] describe two classifiers with a similar accuracy, but markedly different amounts

of gender bias in their predictions. In either scenario, it is essential to retain the desired behavior of

the original classifier during trimming.

Figure 5.1 depicts a classifier utilizing three features Q = {Q1, Q2, Q3} with a threshold of

T = 0.07. Consider two possible trimmings of this classifier: one obtained by removing Q2 and

adjusting the threshold to 0.10, the other with Q1 removed and the threshold changed to 0.30. The

trimmed classifiers are clearly less expensive than the original one, but how do we quantitatively

64

C

Q1 Q2 Q3

Pr(C=+)

0.1

C Pr(Q1 =+|C)

+ 0.9
− 0.3

C Pr(Q2 =+|C)

+ 0.9
− 0.6

C Pr(Q3 =+|C)

+ 0.4
− 0.2

Figure 5.1: Naive Bayes classifier for a quiz scenario where answers on Q = {Q1, Q2, Q3}
(features) depend on knowledge C (class)

compare and choose between these trimmings? To answer this question, this chapter introduces

the notion of expected classification agreement (ECA). It is an expectation of the two classifiers

agreeing on instances, measuring how much behavior from the original classifier is preserved.

Probabilistic graphical models, such as Bayesian networks, are often used to represent the

Bayesian classifier’s distribution. We propose an algorithm to find the best trimming of a Bayesian

network classifier subject to a budgetary constraint. The algorithm selects features and chooses a

new classification threshold in order to maximize the ECA. We also propose a specialized algorithm

for the case of naive Bayes classifiers that exploits the naive Bayes independence assumptions for

more efficient trimming. These novel trimming algorithms are based on the following progression of

ideas. We introduce the first algorithm to compute the ECA between the classifier and its trimming,

using tractable circuits. Next, we propose an upper bound on the ECA that can be computed more

efficiently, enabled by our formulation that adjusts the threshold. Lastly, we use this upper bound to

effectively trim classifiers with branch-and-bound search.

Finally, with evaluation on real-world data, we show that our approach finds robust trimmings

and demonstrate the relationship between robustness and accuracy. We also illustrate the importance

of optimizing the threshold for both classification similarity and efficiency of search. Moreover, we

show that our trimming approach consistently returns a classifier that is significantly more similar

to the original classifier than selecting features based on information gain.

65

5.2 Expected Classification Agreement

A binary Bayesian classifier is a tuple α = (C,F, T), where C is a binary class variable, F are

(possibly multi-valued) features, and T is a threshold. On a joint probability distribution Pr(.) over

variables C and F, the classification function is

CT (f) =





1, if Pr(C = 1|f) ≥ T

0, otherwise.

For example, with a threshold of 0.5, an instance will be classified into the more probable class

after observing its features. Next, we motivate and define our proposed closeness measure between

classifiers, quantifying their expected agreement.

5.2.1 Example and Motivation

Consider the scenario shown in Figure 5.1, where an instructor uses a quiz to test students’ knowl-

edge. The quiz contains three independent questions: Q1 is strongly indicative of being knowledge-

able, Q2 is an easy question, and Q3 is a hard question (only 40% of the knowledgeable students

answer it correctly). The subject of this quiz is quite difficult, and only 10% of the students are

expected to master it, as reflected by the prior on class variable C. Hence, the instructor sets a lenient

threshold of T = 0.07 to avoid failing students who may have grasped the subject. According to

this classifier, a student will pass the quiz precisely when their answer matches one of the following

three (out of eight) outcomes: {Q1 = +, Q2 = +, Q3 = +}, {Q1 = +, Q2 = +, Q3 = −}, and

{Q1 = +, Q2 =−, Q3 = +}. Moreover, the probability of seeing one of these outcomes is 32%:

the fraction of students that are expected to pass the quiz. Suppose now that we drop questions

Q1 and Q2, relying solely on question Q3 to evaluate students (using the same threshold). Since

Pr(C=+|Q3) is always greater than T = 0.07, all students will pass the quiz, completely ignoring

the test results. Alternatively, we can make more intuitive use of the test question and pass only the

students who answered Q3 correctly. This is equivalent to comparing Pr(C=+|Q3) against a new

66

threshold of T = 0.15. Using this new threshold, we will now obtain the same student assessment

on five test outcomes,2 whose probabilities add up to 75%. This is the expected classification

agreement (ECA). In particular, we say that the two classifiers α = (C, {Q1, Q2, Q3}, 0.07) and

β = (C, {Q3}, 0.15) have an ECA of 75%.

5.2.2 Formalization

We now formalize the notion of ECA and classifier trimming.

Definition 5.1. Let α = (C,F, T) be a Bayesian classifier using distribution Pr(.). The classifier

β = (C,F′, T ′) is a trimming of α if it uses the same class variable C and distribution Pr(.) as α,

and a subset of its features (i.e., F′ ⊂ F).

Definition 5.2. Let α = (C,F, T) be a Bayesian classifier and let β = (C,F′, T ′) be one of its

trimmings. The expected classification agreement (ECA) between these classifiers is:

ECA(α, β) =
∑

f

[CT (f) = CT ′(f ′)] · Pr(f).

Here, f ′ is the subset of instantiation f pertaining to variables in F′, and [.] is an indicator function

(evaluates to 1 when its argument is true and to 0 otherwise).

Section 5.1 asks to compare trimmings of classifier α in Figure 5.1. The first trimming has

ECA(α, (C, {Q1, Q3}, 0.10)) = 91% while the second has ECA(α, (C, {Q2, Q3}, 0.30)) = 68%.

We are now ready to define the classifier trimming problem more formally. The input to this

problem is a binary Bayesian classifier α = (C,F, T), a positive cost for each feature in F, and

a budget B. The output is a subset of features F? ⊆ F whose sum of costs is at most B and a

threshold T ?, leading to a trimmed classifier β? = (C,F?, T ?) that maximizes the ECA with α:

2The two classifiers will disagree on {Q1 =+, Q2 =+, Q3 =−}, {Q1 =−, Q2 =+, Q3 =+} and {Q1 =−, Q2 =
−, Q3 =+}.

67

Algorithm 4 ECA-TRIM(I,E, b)

Input: α : Bayesian classifier (C,F, T); B : budget
Data: I← ∅, E← ∅: set of included/excluded features; b← B: remaining budget; F?,M?, T ? :

optimal subset, MAA value, and threshold
Output: Optimal trimmed classifier β? = (C,F?, T ?)

1: if b ≥ 0 then
2: (m,Tm)← MAA(I)
3: if m > M? then M? ← m; F? ← I; T ? ← Tm
4: if minF∈F\(I∪E) cost(F) ≤ b then
5: m← UB(F \ E)
6: if m ≤M? then return
7: F ← a feature from F \ (I ∪ E)
8: ECA-TRIM

(
I ∪ {F},E, b− cost(F)

)

9: ECA-TRIM
(
I,E ∪ {F}, b

)

β? = arg maxβ ECA(α, β). I.e., we wish to find a solution to the following optimization problem:

ECA? = max
F′⊆F

max
T ′

ECA(α, (C,F′, T ′)) s.t.
∑

F ′∈F′

cost(F ′) ≤ B

This problem can alternatively be described as feature selection using the following criterion.

Definition 5.3. Let α = (C,F, T) be a Bayesian classifier. The maximum achievable agreement

(MAA) for feature subset F′ ⊆ F is defined as:

MAAα(F′) = max
T ′

ECA(α, (C,F′, T ′)).

The MAAα(F′) corresponds to the maximum ECA that is achievable by a trimmed classifier

with features F′. Hence, the classifier trimming problem reduces to searching for the subset of

features that fits within the budget and maximizes the MAA. We will drop the subscript α when

clear from context.

68

5.3 Searching for an Optimal Trimming

This section describes our approach to search for an optimal trimming of Bayesian classifiers, or

equivalently, selecting a feature subset with optimal MAA.3 Our approach is based on a branch-and-

bound search algorithm similar to Narendra and Fukunaga [1977] and Kolesar [1967]. As shown in

Algorithm 4, we run a depth-first search through a binary tree where each node is branched into

two nodes: one that includes and one that excludes a feature. Each node then represents the set of

features that are included by the path from the root to that node. The algorithm computes the MAA

at each node if the represented feature subset fits within the budget, keeping track of the best subset

and its MAA at each point in search, as in Lines 1–3. In particular, this means that we compute the

MAA even if the subset does not exhaust the budget, because MAA does not necessarily increase as

the subset size grows.

The essence of the algorithm is pruning subtrees without affecting the optimality of the solution.

Suppose given any node, we know the largest value of MAA that its descendants can achieve (UB).

Then we can safely prune the subtree rooted at that node if the bound does not exceed the current

best score (Line 6). Formally, let E be the set of features that were excluded by the path to a certain

node. Each descendant node will then represent a subset of F \E. Hence, an upper bound on MAA

for all subsets of F \ E would allow pruning of intermediate nodes in the search tree.

5.3.1 Maximum Potential Agreement

We now introduce an upper bound for the MAA and show how it can be used in the search for an

optimal trimming.

Definition 5.4. Consider a Bayesian classifier α = (C,F, T) . Let F′ ⊆ F be a subset of its

3Code available at https://github.com/UCLA-StarAI/TrimBN.

69

https://github.com/UCLA-StarAI/TrimBN

features, and let R = F \ F′. The maximum potential agreement (MPA) is

MPAα(F′) =
∑

f ′

max
c

{∑

r

[CT (f ′r) = c] · Pr(f ′r)

}
.

Intuitively, the MPA is the expected agreement between a Bayesian classifier α and a hypothetical

classifier γ that classifies an instance f ′ into the class that is more likely after observing the remaining

features in R. Note that such classifier γ is not a Bayesian classifier as it does not test the posterior

Pr(c|f ′) against a threshold. However, the MPA is still a useful computational tool due to its

relationship to the MAA.

Proposition 5.1. The MPA is an upper bound on the MAA: MAAα(F′) ≤ MPAα(F′).

Proof. Let R = F \ F′. The proposition follows from the definitions of MAA and MPA as follows:

MAAα(F′) = max
T ′

∑

f ′r

[CT (f ′r) = CT ′(f ′)] · Pr(f ′r) ≤
∑

f ′

max
T ′

∑

r

[CT (f ′r) = CT ′(f ′)] · Pr(f ′r)

=
∑

f ′

max
c

{∑

r

[CT (f ′r) = c] · Pr(f ′r)

}
= MPAα(F′). (5.1)

Equation 5.1 comes from the fact that, for a fixed instance f ′, choosing a threshold T ′ is equivalent

to choosing to classify that instance positively or negatively.

In addition, the MPA is monotonically increasing, a property that we utilize later in the proposed

algorithms.

Proposition 5.2. For any F1⊆F2, MPAα(F1) ≤ MPAα(F2).

Proof. Let R1 = F \ F1 and R2 = F \ F2. Say G = F2 \ F1 = R1 \R2. Then,

MPA(F1) =
∑

f1

max
c

{∑

gr2

[CT (f1gr2) = c] · Pr(f1gr2)

}
(5.2)

70

≤
∑

f1g

max
c

{∑

r2

[CT (f1gr2) = c] · Pr(f1gr2)

}
= MPA(F2). (5.3)

Equation 5.2 is from the assumption that R1 = G∪R2, and Equation 5.3 follows from the fact that

sum of maxima is an upper bound on the maximum of sums.

These two propositions together imply that the MPA of F′ also upper-bounds the MAA of all

subsets of F′.

Corollary 5.2.1. For any F1 ⊆ F2, MAAα(F1) ≤ MPAα(F2).

Therefore, we can use the MPA as an upper bound on the MAA of a node’s descendants in the

branch-and-bound search algorithm for optimal trimming.

Lastly, we provide an observation that leads to a computational gain, especially in the case of

naive Bayes models.

Proposition 5.3. If F′ and F \ F′ are independent given C, then MAAα(F′) = MPAα(F′).

Proof. See Section A.4.

The above property is useful because it is generally easier to compute MPA(F′) than MAA(F′),

as we can maximize each instantiation f ′ separately. Moreover, in naive Bayes models, the quantity

MAA that we wish to optimize is now monotonic. Thus, we need to compute this quantity only for

those subsets that exhaust the budget, instead of every subset that fits within budget.

5.4 Probabilistic Reasoning Algorithms

This section describes the algorithms to compute the expected classification agreement (ECA),

maximum achievable agreement (MAA), and maximum potential agreement (MPA) on probabilistic

circuits. Recall from Section 2.2 that Bayesian networks can be compiled into tractable circuit

71

1
R1 2

3
R2 AC

4
D P

Figure 5.2: Constrained vtree where F = {R1 ,R2 ,AC} and F′ = {R1}. The F′-constr. node is 2
and F-constr. node is 4.

representations, and thus we can use the algorithms presented in this section to run inference on

Bayesian networks as well.4

5.4.1 Computing the ECA using Constrained Circuits

Our approach to compute the ECA using probabilistic circuits is shown in Algorithm 5. It requires

a special type of PSDDs that are normalized for constrained vtrees [Oztok et al., 2016].

Definition 5.5. A vtree node v is X-constrained, denoted vX, iff it appears on the right-most path

of the vtree and X is exactly the set of variables outside v. A vtree is X-constrained iff it has an

X-constrained node, and a PSDD is X-constrained iff it is normalized for an X-constrained vtree.

The ECA between a classifier and its trimming—using the variables F and F′, respectively—can

be computed efficiently for a PSDD that is F-constrained as well as F′-constrained. Figure 5.2

depicts an example of such vtree. Note that the F′-constrained node vF′ is always an ancestor of the

F-constrained node vF.

To understand the algorithm, first consider the following alternate expression for the ECA

between α = (C,F, T) and β = (C,F′, T ′).

ECA(α, β) =
∑

f ′:CT ′ (f ′)=1

Pr(CT (f) = 1|f ′) · Pr(f ′) +
∑

f ′:CT ′ (f ′)=0

Pr(CT (f) = 0|f ′) · Pr(f ′). (5.4)

4Even though compiling the circuit is computationally heavy in general, computing the ECA and hence the MPA
is efficient once we have successfully compiled the circuit. Moreover, we can sometimes efficiently compile certain
networks (e.g. high treewidth) in which traditional inference techniques become infeasible [Choi et al., 2013].

72

Algorithm 5 ECA(α, β)

Input: Classifiers α = (C,F, T) and β = (C,F′, T ′); an F- and F′-constrained PC C
Output: ECA(α, β)

1: N← FEEDFORWARDORDER(C)
2: for each n ∈ N do
3: if n is a leaf node then
4: if n = [C = 0] then r1(n)← 0 else r1(n)← 1
5: else if n is a product node then
6: ri(n)←∏

c∈ch(n) ri(c) for i = 1, 2, 3
7: else . a sum node
8: ri(n)←∑

c∈ch(n) θn,cri(c) for i = 1, 2, 3

9: if n is F-constrained then
10: if r1(n) ≥ T then r2(n)← 1 else r2(n)← 0
11: else if n is F′-constrained then
12: if r1(n) ≥ T ′ then r3(n)← r2(n) else r3(n)← 1− r2(n)

13: return r3(root)

Here, Pr(CT (f) = 1|f ′) is the expected probability that observing all features in F will lead to a

positive classification, given that f ′ is already fixed. In other words,

Pr(CT (f) = 1|f ′) =
∑

f :f ′⊂f

[CT (f) = 1] Pr(f |f ′).

Algorithm 5 computes the ECA in a single feedforward pass through the circuit, caching three

values at each node. First, note that r1(.) simply corresponds to evaluating the PC with C = 1 as

evidence: that is, r1(n) = Prn(C = 1) = Pr(C = 1|γn). Recall that γn denotes the context of

node n (Definition 3.2). At each F-constrained node, its context corresponds to some assignment f ;

then the condition in Line 10 corresponds to checking whether Pr(C = 1|f) ≥ T , or equivalently

CT (f) = 1. Therefore, r2(n) contains the expected probability of positive classification given by

the distribution at node n: Prn(CT (f) = 1). Similarly, Line 12 checks CT ′(f ′) for some f ′ and

propagates the expected probability that observing the remaining features will lead to the same

73

classification. In other words, we have:

r3(n) =
∑

f ′

Pr
n

(CT (f) = CT ′(f ′))

At the root node, this exactly corresponds to the ECA between α and β.

5.4.2 Computing the MPA

We now describe how we compute the MPA at each search step. First, the MPA can be expressed as

follows:

MPA(F′) =
∑

f ′

max
(

Pr(CT (f) = 1|f ′), 1− Pr(CT (f) = 1|f ′)
)
· Pr(f ′). (5.5)

Note that Pr(CT (f) = 1|f ′) is the expected probability of positive class given f ′, which was a central

component to computing the ECA. Moreover, the marginal probabilities of f ′ are also computed as

part of the feedforward evaluation for the ECA. Thus, we can exploit this connection to compute

the MPA: it is as straightforward as replacing Line 12 in Algorithm 5 to propagate the maximum

between r2(n) and 1− r2(n).

With the ability to compute the MPA, we can now search for optimal trimmings of naive Bayes

classifiers. The condition in Proposition 5.3 holds for all feature subsets of a naive Bayes model,

and thus the MAA of a subset is always equal to its MPA. An optimal trimming is then found as

shown in Algorithm 4 where both the upper bound and value of MAA are computed using the MPA

algorithm described before.

5.4.3 Computing the MAA

Searching for an optimal trimming of arbitrary Bayesian network classifiers requires the computation

of MAA, which involves tuning the trimmed classifier’s threshold to maximize the ECA. First,

we utilize the observation that a change in threshold affects the value of ECA only if the class

74

Algorithm 6 COMPUTE-MAA

Input: α : Bayesian network classifier (C,F, T); F′ ⊂ F
Data: CPR(i)← Pr(C = 1|f ′i); MAR(i)← Pr(f ′i); POS(i)← Pr(CT (f) = 1|f ′i) for all i
Output: The score MAA(F′) and the optimal threshold T ′

1: Sort instances f ′i in nondecreasing order of CPR(i)
2: m←∑

i POS(i) ·MAR(i); m? ← m
3: t? ← [0,CPR(1)]
4: for i in 1, 2, . . . do
5: m← m−MAR(i) · (2POS(i)− 1)
6: if m > m? then
7: m? ← m; t? ← (CPR(i),CPR(i+ 1)]

8: return MAA(F′) = m? and any T ′ ∈ t?

probability given some instance lies on a different side of the threshold after the change. For

example, recall the trimmed classifier using only Q3 from the quiz example in Section 5.2. We

showed that a threshold of 0.15 will result in passing only the students who answered Q3 correctly.

In fact, any threshold between Pr(C=+|Q3 =−)=0.08 and Pr(C=+|Q3 =+)=0.18 results in

the same behavior and hence the same ECA. Therefore, the number of threshold values we need to

consider is finite and in fact linear in the number of possible instances f ′.

Algorithm 6 shows the pseudocode to compute the MAA and the optimal threshold given the

cached values from the ECA algorithm as inputs. Starting from T ′ = 0, the threshold is repeatedly

incremented to just above the next lowest class probability given some feature instance f ′. With

each threshold change, the ECA value is also updated by subtracting the expected probability of

positive classification given that instance and adding the complement of it, weighted by the marginal

probability of that instance, as in Line 5 of Algorithm 6. In other words, that instance f ′ is moved

from the first sum to the second in Equation 5.4. At the end, the highest value of ECA and its

corresponding threshold is reported.

Table 5.1 offers a visualization of the algorithm. Here, we wish to compute MAA({F1, F2})
with respect to the Bayesian network classifier α = (C, {F1, F2, F3}, 0.55) in Figure 5.3. Each table

row corresponds to a feature instance, sorted by the class probability. We consider five different

cutoff points, and the ECA value at each cutoff point is the sum of expected probability of positive

75

F1 C

F2 F3

Pr(F1 =+)

0.9

Pr(C=+)

0.6

C F1 Pr(F2 =+|CF1)

+ + 0.6
+ − 1.0
− + 0.4
− − 0.5

C F2 Pr(F3 =+|CF2)

+ + 0.4
+ − 1.0
− + 1.0
− − 0.4

Figure 5.3: A Bayesian network over features {F1, F2, F3} and class C.

{F1, F2} Pr(c|F1F2) + class pr. − class pr.

{−,+} 0.75 0.04 0.04
{+,+} 0.69 0.20 0.27
{+,−} 0.50 0.30 0.13
{−,−} 0.00 0.00 0.02

Table 5.1: Table to calculate the MAA({F1, F2})

class for instances above the line and the expected probability of negative class below the line. In

this case, MAA({F1, F2}) = 0.56 with the optimal threshold T ? ∈ (0, 0.50], indicated by a dotted

line in the table.

5.5 Empirical Evaluation

We now empirically evaluate our proposed algorithms on several naive Bayes and general Bayesian

network benchmarks.

5.5.1 Accuracy vs. Agreement

We evaluate our method on real-world datasets from the UCI repository [Bache and Lichman, 2013].

We randomly split each dataset into 80/20 train and test sets and learn a naive Bayes classifier using

76

0.6 0.65 0.7 0.75

0.7

0.8

0.9

Average Accuracy

E
C

A

Feasible F′

Optimal ECA
Optimal Accuracy

(a) ECA and average accuracy for pima

0.5 0.6 0.7 0.8

0.6

0.8

Average Accuracy

E
C

A

Feasible F′

Optimal ECA
Optimal Accuracy

(b) ECA and average accuracy for heart

Agreement Accuracy

pima
Opt. ECA 0.9863 0.7123
Opt. Acc. 0.9452 0.7260

heart
Opt. ECA 0.9245 0.8491
Opt. Acc. 0.9057 0.7925

(c) Test agreement and accuracy

Figure 5.4: (a),(b) ECA and average accuracy achieved by feasible feature subsets. (c) evaluation of
subsets with highest ECA and accuracy.

the training set. With the budget set as half the number of features and threshold as 0.5, we compute

the ECA of each feasible feature subset. In addition, we compute the average classification accuracy

of each feature subset using 10-fold cross validation on the training set.

Figure 5.4 shows the ECA and average accuracy achieved by each feasible subset, and the

subsets with highest ECA and highest accuracy are highlighted. We can see that optimizing the

ECA tends towards higher accuracy. More interestingly, we can observe a Pareto frontier where

one cannot increase the ECA without sacrificing average accuracy, and vice versa. This suggests

that one may need to make a tradeoff between classifier agreement (i.e., robustness) and accuracy

when selecting features. Moreover, we evaluate the subsets with highest ECA and accuracy on

the test set and report their empirical classification agreement and accuracy in Figure 5.4c. The

subset chosen for optimal ECA on the training set also achieves high classification agreement on

the test set. Surprisingly, on network heart, it also achieves higher test accuracy than the subset

77

with the highest average cross-validation accuracy on the training set. A possible explanation is

that choosing subsets based on their cross-validation classification accuracy does not generalize

well to the test set. It may introduce additional overfitting that ECA does not suffer from: if the

original model generalizes well, we also expect our trimmed classifier to generalize well. We

also evaluated accuracy and agreement of feature selection by information gain, but it neither

outperformed optimizing the ECA nor the average cross-validation accuracy. In addition, our

method achieves higher accuracy on most splits of the heart data, which suggests that this may be

a property of the dataset. In particular, the average cross-validation accuracy of the original full

classifier for pima was approximately 0.720, which was lower than the average accuracy of about

21% of the candidate subsets. As our method optimizes for agreement with this original classifier,

which has relatively low accuracy, the resulting trimming may have lower accuracy than if we were

to actively optimize for average accuracy. On the other hand, the original classifier for heart had

average accuracy 0.866, which was lower than only 2% of the candidate subsets. Hence, in this

case, optimizing the ECA to closely mimic the original classifier’s behavior also results in relatively

high classification accuracy.

5.5.2 Trimming General Networks

Next, we evaluate the quality of trimmed classifiers on general Bayesian networks from the UAI

2008 evaluation and a tree-augmented naive Bayes model for mammography reports [Gimenez

et al., 2014]. We run our method with T in {0.1, 0.2, . . . , 0.9} and the budget set to 1/3 the number

of features. For the UAI networks, we randomly chose a root node to be the class variable and

used the set of all leaf nodes as the feature set F. Each setting was repeated for three randomly

selected class variables. For the mammography network, we used the (root) decision node as the

class variable and chose 17 out of the 20 variables to be the feature set. Training data was not

available for these networks, so we compare against feature selection by information gain instead of

classification accuracy. Figure 5.5 highlights the results. The trimmed classifier by our algorithm

consistently achieves higher expected classification agreement, demonstrating that robustness is

78

0.2 0.4 0.6 0.8
0.9

0.92
0.94
0.96
0.98

1

Threshold

E
C

A
Trim
IG

(a) alarm

0.2 0.4 0.6 0.8
0.9

0.92
0.94
0.96
0.98

1

Threshold

E
C

A

Trim
IG

(b) win95pts

0.2 0.4 0.6 0.8
0.94

0.96

0.98

1

Threshold

E
C

A

Trim
IG

(c) mammography

Figure 5.5: Comparing ECA of features selected by classifier trimming and information gain

not easily achieved by other feature selection methods. We also want to stress that the features

selected using information gain differ for different class variables, but stay the same across different

initial threshold values. On the other hand, our algorithm is sensitive to the original threshold, and

thus results in trimmed classifiers with similar behavior as the original classifier with a particular

threshold.

5.6 Conclusion

This chapter developed a novel operator on Bayesian classifiers: to trim the set of features to fit

within a budget, while simultaneously adjusting the classification threshold. Our objective was to

optimize the expected classification agreement between the original classifier and its trimmed coun-

terpart. By analyzing the properties of classifier agreement and its maximum potential agreement,

we developed a branch-and-bound search algorithm to find optimal trimmings. Experiments on

naive and general Bayesian networks demonstrated the effectiveness of our approach in finding

79

robust trimmings of classifiers, especially compared to optimizing more traditional objectives such

as expected SDP and information gain.

80

CHAPTER 6

Probabilistic Inference by Circuit Transformations

A standard technique for exact inference on probabilistic circuits is to enforce certain structural

constraints such that the query of interest can be computed efficiently, often simply through a

feedforward pass through the circuit. The inference algorithms discussed in the previous chapters

also followed such technique. For example, marginal probabilities can be computed in a feedforward

evaluation of smooth and decomposable PCs; and the expected classification accuracy can be

computed in linear time for deterministic and constrained PCs.

Harder queries tend to require more restrictive structural properties, and enforcing them on a

given PC can be highly expensive. Alternatively, learning probabilistic circuit structures with more

constraints might degrade the likelihood of the learned models, compared to learning PCs with less

restrictive conditions and thus more freedom and flexibility in exploring the candidate structures.

Instead, this chapter proposes a new approach to probabilistic circuit inference: through a series

of circuit transformations. A circuit transformation, or operation, manipulates the structure of a

given PC, which may or may not change the distribution represented by the PC. Here, we show how

the transformations prune and split can be performed iteratively to solve marginal MAP queries.

We also briefly discuss decomposing many queries into pipelines of atomic circuit operations,

which allows us to easily derive the tractability conditions and inference algorithms for new queries.

Through this new approach, I aim to push the boundaries of our probabilistic reasoning framework

and hope to more easily address various problems in the field of trustworthy AI.

81

6.1 Marginal MAP

Perhaps the most widely supported queries for tractable inference by different kinds of PCs are:

marginal inference, which computes the probability of a partial assignment; and the most probable

explanations (MPE),1 which computes for a given partial assignment (or evidence) the most likely

state of all the remaining variables. However, many related inference tasks remain hard even on

those PCs tractable for marginals and MPE [Rahman et al., 2021; Rouhani et al., 2018]. In particular,

marginal MAP (maximum a posteriori hypothesis) is a closely related problem that still appears to

be hard for most probabilistic circuits, despite being used in many applications including image

segmentation, planning, and diagnosis, among others [Lee et al., 2014; Kiselev and Poupart, 2014;

Bioucas-Dias and Figueiredo, 2016]. A marginal MAP (MMAP) problem, unlike MPE, computes

the most likely state of a subset of variables, while marginalizing out the others.

Definition 6.1. Suppose p(X) is a probability distribution over a set of variables X which is

partitioned into three subsets Q, E, and H, referred to as the query, evidence, and hidden variables,

respectively. Given some evidence e ∈ val(E), the marginal MAP problem MMAP(Q, e) is defined

as follows:

arg max
q∈val(Q)

p(q, e) = arg max
q∈val(Q)

∑

h∈val(H)

p(q,h, e).

Note that if H is empty, this corresponds to an MPE (most probable explanations) problem.

Although these queries appear closely related, a PC that can tractably solve both marginals

and MPE queries does not necessarily solve the marginal MAP tractably. In fact, exactly solving

marginal MAP is known to be NP-hard, even for tractable PCs [de Campos, 2011]. This remains to

be the case when solving it approximately [Conaty et al., 2017; Mei et al., 2018].

1MPE is sometimes referred to as MAP (maximum a posteriori hypothesis). To avoid confusion, this chapter will
use the terms MPE and marginal MAP.

82

6.1.1 Exact Solvers

Most existing marginal MAP solvers on PCs are based on variations of branch-and-bound search [Mei

et al., 2018; Huang et al., 2006], as has been the case for exact marginal MAP solvers for prob-

abilistic graphical models [Park and Darwiche, 2002; Marinescu and Dechter, 2009; Marinescu

et al., 2018]. Alternatively, probabilistic circuits satisfying more restrictive structural constraints

can support efficient inference of marginal MAP and related queries [Oztok et al., 2016; Choi et al.,

2017]. These structural constraints can be generalized into the notion of Q-determinism [Choi et al.,

2020b].

Definition 6.2. Suppose C is a PC over variables X and let Q ⊆ X be a subset. A sum node in

C is Q-deterministic if computing the marginal probability for any partial assignment q ∈ val(Q)

makes at most one of its children evaluate to a nonzero output. A PC C is Q-deterministic if all sum

nodes containing variables in Q are Q-deterministic.

Then, solving a marginal MAP problem MMAP(Q, e) of a Q-deterministic PC simply amounts

to evaluating the circuit bottom-up similar to computing a marginal, except that every sum node that

contains a variable in Q takes the weighted maximum of its inputs, instead of the weighted sum.

As one may intuit from the complexity of marginal MAP, enforcing this structural constraint

on an arbitrary PC is an intractable task in general, as we also later demonstrate empirically.

Furthermore, even if one somehow learns or constructs a PC that satisfies Q-determinism, this

would support tractable marginal MAP only for this specific Q. This is clearly infeasible in

applications where one wishes to answer different marginal MAP queries using the probabilistic

model.

This chapter proposes a novel approach to marginal MAP inference: probabilistic circuit

transformations. In particular, I will show that large parts of the circuit may be irrelevant to the

marginal MAP problem at hand, and thus can be pruned away without affecting the solution. This in

a sense “specializes” the PC to a particular MMAP instance and makes it more amenable to solving.

I then develop an efficient algorithm to determine which parts of the circuit can be safely pruned,

83

using a novel edge bound. Lastly, I propose an exact MMAP solver that leverages this pruning

algorithm and iteratively transforms the PC structure until the MMAP solution can be easily read

from it. Empirical evaluation on real-world benchmark datasets shows that this approach can solve

more marginal MAP instances with faster run time than existing solvers.

6.2 Circuit Pruning For Marginal MAP

In the following sections, we assume a PC that satisfies smoothness and decomposability. Moreover,

for simplicity of exposition, we consider only the marginal MAP problems without any evidence.

This is because a given evidence can be incorporated into the PC by setting the leaf nodes (just like

for computing marginals), and then we can equivalently solve the marginal MAP problem with no

evidence on the resulting PC.

We now describe the main contribution behind our proposed marginal MAP solver: pruning

parts of a probabilistic circuit without affecting its MMAP solution. This is motivated by two key

observations.

6.2.1 Motivation

Consider the following two observations.

(i): Computing the marginal probability of any partial assignment q is equivalent to evaluating a

sub-circuit in which every Q-deterministic sum node has one input. In other words, the sub-circuit

for q includes the parts of the PC that are used or “activated” when computing the marginal of

q. Let us call this the q-subcircuit and denote it by C ′q. Formally, an edge (n, c) is said to be in

the q-subcircuit if q ∈ γ(n,c)

∣∣
Q

; i.e., the context of (n, c) (Definition 3.2) reduced to variables in

Q contains the assignment q. We illustrate this with the example PC in Figure 6.1a. Suppose

Q = {X1, X2} and we wish to compute the marginal probability of q = {X1 = 1, X2 = 0}.
Recall from Chapter 2 that this corresponds to setting the input units for ¬X1 and X2 to 0 and

84

× ×
0.6 0.4

X1 ¬X1

× ×

0.7 0.3

×

0.2 0.8

X3
¬X3 X3

X2 ¬X2 X2 ¬X2

0.9 0.1 0.8 0.2

(a) Example PC

× ×
.558 .336

X1 ¬X1

× ×

.558 .558

×

.336 .336

X3
¬X3 X3

X2 ¬X2 X2 ¬X2

.558
.222

.336 .144

× ×
.378 .28

X1 ¬X1

× ×

.378 .138

×

.28 .256

X3
¬X3 X3

X2 ¬X2 X2

.378 .256

(b) PC before and after pruning. Sum edges are labeled with edge bounds.

Figure 6.1: A smooth and decomposable PC over variables {X1, X2, X3}. Orange sum nodes
are Q-deterministic for Q = {X1, X2}; blue edges form the sub-circuit for joint assignment
q = {X1 = 1, X2 = 0}.

all others to 1, then evaluating the circuit in a bottom-up fashion. We can quickly check that the

output is 0.6 · (0.7 · 0.1 + 0.3) = 0.222, which is equivalent to simply evaluating the sub-circuit

highlighted in blue with its input units set to 1. Moreover, observe that every Q-deterministic sum

85

node (highlighted in orange) that is included in this sub-circuit has exactly one input.

(ii): If we remove an edge that does not appear in the sub-circuit for any assignment q, then

the (unnormalized) probability of q is unchanged in the resulting PC. This directly follows from

observation (i). For example, removing any non-colored edge from the PC in Figure 6.1a does

not affect the marginal for q, as defined previously, in the resulting circuit. Moreover, if an edge

in the sub-circuit for q is removed, then the probability of q decreases in the resulting PC. Again

visiting Figure 6.1a, removing the edge represented by the dashed line will drop the probability of

q = {X1 = 1, X2 = 0} from 0.222 to 0.6 · 0.3 = 0.18.

We can apply observations (i) and (ii) to the marginal MAP state, denoted by q?, to conclude

that any edge that does not appear in the q?-subcircuit (namely the “solution sub-circuit”) can be

pruned away while keeping the MMAP problem equivalent. That is, removing an edge that is not in

the solution sub-circuit will not affect the probability of q? but may decrease the probabilities of

other assignments to Q; hence, q? remains as the solution for marginal MAP problem in the pruned

circuit. Solving a MMAP instance by solving the equivalent problem on a pruned circuit can have

the following important benefits. First, the complexity of inference algorithms on PCs generally

depends on the size of the circuit, and thus reducing the size by pruning edges is desirable. In

addition, because pruning as described above keeps the marginal MAP probability while potentially

decreasing other marginal probabilities, it effectively increases the gap between the solution and

other states. This can not only lead to more iterations of pruning, further specializing the circuit

to the MMAP problem, but also arguably make the problem easier to solve. For example, in the

extreme case that all edges other than the solution sub-circuit are pruned, the resulting MMAP

problem becomes trivial to solve.

Given these benefits, we naturally raise the following question: can we efficiently determine

which edges do not appear in the solution sub-circuit (i.e. q?-subcircuit)? The challenge is to do

this without knowing a priori the marginal MAP state q?. In the following section, we propose an

algorithm that efficiently computes, for every edge, an upper bound on the output of any sub-circuit

that includes the edge, which gives a positive answer to the previous question.

86

6.2.2 Edge Bounds

We will now define more formally our edge bounds and the algorithm to efficiently compute them.

Definition Abusing notation, let us denote by MMAP(Q|(n,c)) the largest marginal probability

obtainable by an assignment q whose q-subcircuit includes the edge (n, c). Formally,

MMAP(Q|(n,c)) := max
q:(n,c)∈C′q

C(q). (6.1)

Intuitively, this corresponds to a marginal MAP problem where the possible states have been reduced

from val(Q) to those that “activate” the edge (n, c) when computing their marginal probability.

Moreover, suppose we define a hypothetical edge from the root to output, denoted (·, root). Then by

definition, the MMAP reduced to this edge, i.e. MMAP(Q|(·,root)) is simply the MMAP problem

MMAP(Q).

For each edge (n, c), we wish to obtain an edge bound EB(n, c) that satisfies the following:

MMAP(Q|(n,c)) ≤ EB(n, c).

Let us also introduce EB for each node n, which may be useful as intermediate quantities as will be

apparent later.

MMAP(Q|n) ≤ EB(n).

It is important to note that the edge bound EB(n, c) is not a bound on some output from the edge or

either of the nodes connected by it. Rather, it bounds from above the output of the PC at the root,

using the edge to limit the state space. Suppose we are given such edge bound; clearly, if we also

have a lower bound on the marginal MAP probability, we can safely prune any edge whose EB is

smaller than the given lower bound.

87

Computing the Edge Bound To develop an edge bound with the properties described above, we

first observe that every q-subcircuit that includes an edge (n, c) must also include the node n. Then,

we can conclude that MMAP(Q|(n,c)) ≤ MMAP(Q|n). Suppose we have an upper bound on the

MMAP reduced to node n. Such bound will also be at least as large as the MMAP reduced to

edge (n, c), and can be used as edge bound EB(n, c). However, EB(n, c) need not be as large as

MMAP(Q|n), so there may be some opportunity to tighten the bound going from n to (n, c).

As a base case of the top-down recursion, we need an upper-bound of MMAP at the root. For

this, we use the algorithm by Huang et al. [2006], shown in Algorithm 7, which not only computes

the upper-bound on marginal MAP at the root node but also bounds the output of every node, via a

single feedforward pass on the PC. Formally, for every node n ∈ C it computes an upper bound on:

max
q:n∈C′q

n(q) = max
q∈val(Q)

n(q), (6.2)

and stores it in mn. Let us denote the upper-bound at the root by mC .

Intuitively, our proposed edge bound EB(n, c) aims to upper-bound the largest value returned

by Algorithm 7 on a q-subcircuit that includes the edge (n, c). In other words, for each edge (n, c),

we bound from above the following:

max
q:(n,c)∈C′q

mC′q ≥ MMAP(Q|(n,c)).

EB(n) then similarly upper-bounds MMAP(Q|n). It is worth pointing out that this bounds the

output at the root for states q that includes n in their sub-circuits, whereas mn by Algorithm 7

upper-bounds the output at each node.

Let us now describe the recursive steps. First, suppose we want to compute EB(n) where

EB(p, n) for every parent p of n (i.e. n ∈ ch(p)) has been computed by the recursion. In order to

make sure that EB(n) upper-bounds the marginal MAP reduced to n, we observe that if q is the

solution to MMAP(Q|n) then the q-subcircuit must also include one of the edges (p, n). Thus,

88

Algorithm 7 OUTPUT-BOUNDS(C,Q)

Input: a smooth & decomposable PC C over variables X and a set of query variables Q ⊂ X
Output: mn storing output bounds for each node n

1: N← FEEDFORWARDORDER(C)
2: for each n ∈ N do
3: if n is an input unit then
4: mn ← Cmax

n (xφ(n))
5: else if n is a product unit then
6: mn ←

∏
c∈ch(n) mc

7: else if n is Q-deterministic then
8: mn ← maxc∈ch(n) θn,cmc

9: else
10: mn ←

∑
c∈ch(n) θn,cmc

EB(n) = maxp(EB(p, n)) is a valid edge bound:

max
p:n∈ch(p)

EB(p, n) ≥ max
p:n∈ch(p)

MMAP(Q|(p,n)) = MMAP(Q|n)

Next, suppose we wish to compute EB(n, c) from a given EB(n). We consider the three possible

cases of n being a Q-deterministic sum node, a non Q-deterministic sum node, and a product node.

For the latter two cases, the edge bounds are simply propagated from the node. This is because any

sub-circuit that includes such node will also include both of its input edges, and thus their bounds

will be the same.

Finally, we consider the edge bound EB(n, c) for an input edge to a Q-deterministic sum node.

To illustrate the intuition, we use the example PC in Figure 6.1a. Suppose we want the edge

bound between the root and its right input, denoted EB(root, r). Running Algorithm 7, we get the

upper bound mroot = 0.558 at the root and ml = 0.93 and mr = 0.84 for its left and right input,

respectively. Note that for every q that includes this edge in its sub-circuit,2 the marginal C(q) must

2This corresponds to {X1 = 0, X2 = 0} and {X1 = 0, X2 = 1}.

89

be 0.4 · r(q), leading to:

max
q:(root,r)∈C′q

C(q) = 0.4 · max
q:(root,r)∈C′q

r(q) ≤ 0.4 ·mr.

Thus, we can use 0.4 · mr = 0.336 as the edge bound for (root, r). Similarly, we can derive the

edge bound for (root, l) as 0.6 ·ml = 0.558. This can be expressed as:

EB(root, c) = EB(root)−mroot + θroot,cmc (6.3)

for any c ∈ ch(root). Note that this holds trivially because EB(root) = mroot as the base case. How-

ever, we can generalize this to derive the expression for edge bound from an inner Q-deterministic

node.

Let us again use Figure 6.1a as an example; this time we consider the blue dashed edge, denoting

it (n, c). Recall that EB(n, c) aims to upper-bound what Algorithm 7 would return at the root of a

q-subciruit that includes edge (n, c). In such sub-circuit, (n, c) would be the only input edge to node

n, and thus the algorithm would propagate up θn,cmc = 0.1 instead of mn. This hints at a similar

expression as Equation 6.3 where we subtract the contribution of mn and add θn,cmc. However, a

key observation is that m bounds from Algorithm 7 concern the output of each node, whereas the

edge bounds concern the output of the root node. Thus, we need to consider how the contribution of

mn gets scaled when it is propagated up to the root node. In this instance, it would be multiplied by

0.7 · 0.6, which is the product of edge parameters that lie in the path from n to the root. In other

words, we get the following expression:

EB(n, c) = EB(n) + 0.7 · 0.6(−mn + θn,cmc)

The pseudocode for this recursive algorithm is described in Algorithm 8.

Proposition 6.1. Given a smooth and decomposable PC C over variables X and a subset Q ⊂ X,

Algorithm 8 computes an upper bound on Equation 6.1 for every edge in C.

90

Algorithm 8 EDGE-BOUNDS(C,Q)

Input: a smooth & decomposable PC C over variables X and a set of query variables Q ⊂ X
Output: rn,c storing edge bounds for each edge (n, c)

1: m← OUTPUT-BOUNDS(C,Q)
2: troot ← 1
3: rroot ← mroot

4: N← BACKWARDORDER(C)
5: for each n ∈ N s.t. tn > 0, c ∈ ch(n) do
6: if n is a product unit then
7: rn,c ← rn
8: rc ← max(rc, rn,c)
9: tc ← min(tc, tn)

10: else if n is a sum unit then
11: if n is Q-deterministic then
12: rn,c ← rn + tn(θn,cmc −mn)
13: else
14: rn,c ← rn

15: rc ← max(rc, rn,c)
16: tc ← min(tc, θn,ctn)

Pruning example We refer to the Appendix for a formal proof of the above proposition, and

instead conclude this section with an example round of pruning. Suppose we wish to prune edges

from the PC in Figure 6.1a, for an MMAP problem with Q = {X1, X2}. First, we compute the

edge bounds as shown in the left circuit in Figure 6.1b. To perform pruning, we need a lower bound

on the marginal MAP probability to compare against. The probability of any q ∈ val(Q) state

suffices; suppose we use q = {X1 = 0, X2 = 1} with p(q) = 0.256. Then we can prune two edges,

resulting in the circuit on the right in Figure 6.1b. More notably, all sum nodes in the resulting

circuit become Q-deterministic (highlighted in orange). In particular, as we will discuss more in

the next section, this allows us to answer the marginal MAP query via a single feedforward pass.

Running Algorithm 7 on this PC, the output at the root is 0.378 which exactly corresponds to the

marginal MAP solution p(X1 = 1, X2 = 1) = 0.378.

Thus, pruning not only has the immediate effect of decreasing the circuit size, but also changes

the PC and its distribution in such a way that can make it easier to solve the marginal MAP problem.

91

Intermezzo 3: Inference by Composition of Circuit Transformations

Characterizing the tractability of various circuit transformations can also allow us to systemat-
ically derive probabilistic circuit inference algorithms, by decomposing queries into modular
operations. Specifically, Vergari, Choi, Liu, Teso, and Van den Broeck [2021] proposed to
represent queries as circuit pipelines: computational graphs whose intermediate operations
transform and combine the input circuits into other circuits.

First, we can build a set of simple circuit transformations—sums, products, powers, loga-
rithms, and exponentials—and characterize their tractability in terms of structural constraints
on the input circuits and the guaranteed properties of the output circuits. For example, we
can take two compatible probabilistic circuits p and q and, in quadratic time, construct a
decomposable circuit that represents their product p · q [Shen et al., 2016].

Then given a query that is composed of these simple operations, we can analyze its
tractability by propagating the sufficient conditions for tractability of the intermediate opera-
tions in the pipeline.

p

q

/

r

log

s

×
t

∫
function kld(p, q)

r = quotient(p, q)
s = log(r)
t = product(p, s)
return integrate(t)

end

function xent(p, q)
r = log(q)
s = product(p, r)
return -integrate(s)

end

1

For instance, the figure above on the left shows the pipeline for computing the Kullback-
Leibler Divergence between two distributions p and q encoded by circuits, defined as:

KL (p ‖ q) =

∫
p(x) log

p(x)

q(x)
dX.

We can identify a general class of models that supports its tractable computation: by tracing
the conditions for tractable quotient, logarithm, and product over circuits such that the output
circuit (i.e., t) admits tractable integration, we can derive a set of sufficient conditions for the
input circuits. Moreover, the inference algorithm for KLD can quickly be implemented in a
few lines of code as shown on the right. The tractability conditions and inference algorithms
can be derived similarly for various information-theoretic quantities, including but not limited
to the cross entropy, Shannon entropy, Rényi entropy and divergence, and the squared loss.

In addition, recall the task of computing expected predictions discussed in Intermezzo 1.
We can alternatively derive the tractability conditions for it by observing that an expected
prediction Ep(x)[f(x)] can be expressed as

∫
f(x) · p(x). Therefore, if we can efficiently

take the product f · p and output it as a smooth and decomposable circuit (which is the case if
f and p are compatible circuits), then we can compute the expected prediction by composing
the product operation and marginalization.

92

Algorithm 9 ITER-SOLVE(C,Q)

Input: a smooth & decomposable PC C over variables X and a set of query variables Q ⊂ X
Output: MMAP(Q)

1: u← OUTPUT-BOUNDS(C,Q)
2: l← LOWER-BOUND(C,Q)
3: V← Q
4: while u > l do
5: r← EDGE-BOUNDS(C,Q)
6: for all (n, c) ∈ C s.t. rn,c ≤ l do
7: C ← PRUNE-EDGE(C, (n, c))
8: X ← PICK-VAR(V); V← V \ {X}
9: C ← SPLIT(C, X)

10: u← min(u,OUTPUT-BOUNDS(C,Q))
11: l← max(l, LOWER-BOUND(C,Q))

12: return u

6.3 Iterative Marginal MAP Solver

We are now ready to show how the pruning algorithm from the previous section can be leveraged to

solve marginal MAP exactly.

As discussed briefly in Section 6.1.1, we can tractably answer a marginal MAP query for a Q-

deterministic PC. Thus, a naive solver may try to transform the input PC into a Q-deterministic one to

solve a marginal MAP instance. For example, one could apply the split operation [Liang et al., 2017;

Dang et al., 2020] on the root for each variable in Q. Splitting on a variable Q ∈ Q effectively turns

the root of the PC into a Q-deterministic sum node while maintaining the distribution represented

by it; thus, splitting on every variable in Q would result in a Q-deterministic circuit. However, this

would be highly intractable as each split operation could at most double the size of the PC.

Instead, we propose to prune the circuit as well as split on a query variable in each iteration.

While the circuit could grow exponentially in the worst case, we show empirically in the next

section that pruning plays a crucial role in indeed keeping the circuit size from growing too much.

In fact, in many instances, it decreases the circuit size over the iterations.

93

A pseudocode of our approach is shown in Algorithm 9.3 The solver maintains an upper

and lower bound on marginal MAP and updates it after every prune and split. The upper bound

is computed using Algorithm 7 as discussed in Section 6.2.2. The marginal probability of any

instantiation of Q can be used as a lower bound on the MMAP probability. In particular, we use

the solution to a different MMAP instance whose query variables include Q and can be solved

efficiently; more details can be found in the following section. In each iteration, we first prune all

edges whose edge bound, computed by Algorithm 8, does not exceed the current lower bound. Then

we split on a variable chosen according to some heuristic (discussed further in the next section).

The solver is guaranteed to converge after at most |Q| iterations, at which point the PC must be

Q-deterministic, allowing exact computation of MMAP. Furthermore, each prune and split improves

the bounds, and thus the solver may also terminate before splitting on all query variables. That is,

pruning can decrease the upper bound as we saw in Figure 6.1b, and a split operation also improves

the bounds by adding a new Q-deterministic node at the root. Lastly, we again emphasize that our

marginal MAP solver only assumes smoothness and decomposability; determinism is not required.

For example, this implies that we can also exactly solve MPE for non-deterministic PCs.

6.3.1 Lower Bound

We now describe the algorithm to compute the lower bound used in our iterative solver. First, note

that the probability of any assignment to query variables can be used as a lower bound for marginal

MAP by definition. A simple and common approach to approximate the marginal MAP state is to

solve MPE instead and reduce the MPE state to the query variables. We use a similar approach but

with a key additional guarantee: after splitting on all query variables, it exactly solves the marginal

MAP problem. A pseudocode of our method is shown in Algorithm 10. Note the similarity of its

feedforward pass to Algorithm 7: they both evaluate the circuit while replacing some sum nodes to

take the weighted maximum. However, our algorithm not only replaces the Q-deterministic sum

3Our marginal MAP solver is implemented in https://github.com/Juice-jl/ProbabilisticCircuits.jl.

94

Algorithm 10 LOWER-BOUND(C,Q)

Input: a PC C over variables X and a set of query variables Q ⊂ X
Output: an assignment q ∈ val(Q)

1: N← FEEDFORWARDORDER(C)
2: for each n ∈ N do
3: if n is an input unit then mn ← 1.0
4: else if n is a product unit then mn ←

∏
c∈ch(n) mc

5: else if n or its descendant is Q-deterministic then mn ← maxc∈ch(n) θn,cmc

6: else mn ←
∑

c∈ch(n) θn,cmc

7: return EXTRACT-STATE(C,Q,m)

8: procedure EXTRACT-STATE(n,Q,m)
9: if n is an input unit then

10: if Variable(n) ∈ Q then return {Literal(n)} else return {}
11: else if n is a product unit then
12: return

⋃
c∈ch(n) EXTRACT-STATE(c,Q,m)

13: else
14: return EXTRACT-STATE(arg maxc∈ch(n) θn,cmc,Q,m)

nodes but all of their ancestors as well. This is so that we can extract a state q by a backward pass,

following the edges that were selected by the weighted maximum. Moreover, if the input PC C is

Q-deterministic, this algorithm behaves the same as Algorithm 7 and exactly solves the MMAP

problem.

6.3.2 Split Heuristics

This section describes the two variable split heuristics that are evaluated in Section 6.4. (Pruned)

selects variables based on the number of pruned edges associated with the variable; (UB) selects

variables by the expected change in upper bound after splitting on a variable, which can be computed

efficiently via a single pass on the circuit.

Using the (Pruned) heuristic, at every iteration we split on the query variable that had the most

number of associated edges pruned. In other words, for each query variable Q ∈ Q that is yet to be

split on, we count how many edges of a Q-deterministic sum node have been pruned (this value

95

can be cached to minimize redundant calculations) and choose the variable with the highest count.

Intuitively, using this heuristic would tend to minimize a size blow-up by each split.

On the other hand, (UB) aims to maximize opportunities for pruning in the iteration following

each split. To compute the heuristic, we first compute for each query variable Q ∈ Q the MMAP

upper-bounds as described in Algorithm 7, one setting Q = 0 as evidence and the other Q = 1.

Because splitting the root on Q would introduce a deterministic sum node whose children set Q to

0 and 1, these bounds equal the edge bounds on the two input edges to the root after splitting. Let

us denote these bounds BQ=0 and BQ=1 respectively, the lower bound in the current iteration as lb,

and the candidate query variables by Q′ ⊆ Q (i.e. query variables that have not been split on in the

previous iterations). Then the (UB) heuristic selects a variable as follows:





arg minQ:min(BQ=0,BQ=1)<lb max(BQ=0, BQ=1) if ∃Q ∈ Q′ s.t. min(BQ=0, BQ=1) < lb,

arg minQ∈Q′ BQ=0 +BQ=1 otherwise.

In other words, if any variable would have a corresponding edge bound drop below the lower bound,

we prioritize selecting from those variables as this guarantees a large part of the circuit is pruned in

the next iteration. Then we choose the variable that would decrease the upper bound the most, which

would, intuitively, result in more edges being pruned in the next iteration. Note that computing

this heuristic requires additional passes through the PC, but as shown in the next section, it makes

pruning much more effective and the resulting solver more efficient, despite the added time to

compute the heuristic.

6.4 Empirical Evaluation

We evaluated the iterative solver on probabilistic circuits learned from twenty widely-used bench-

mark datasets. The number of variables ranges from 16 to 1,556, and the size of PCs, learned using

Strudel [Dang et al., 2020], ranges from 3,177 to 745,815. We generated marginal MAP instances

with two different proportions of query, evidence, and hidden variables—30%, 30%, 40% and 50%,

96

Table 6.1: Average run time in seconds (with 1-hour time limit for each instance) and the number of
instances solved for different proportions of (query, evidence, hidden) variables.

(30%, 30%, 40%) (50%, 20%, 30%)
Dataset MaxSPN (Pruned) (UB) MaxSPN (Pruned) (UB)

NLTCS 0.004 (10) 0.35 (10) 0.54 (10) 0.01 (10) 0.39 (10) 0.63 (10)
MSNBC 0.01 (10) 0.29 (10) 0.50 (10) 0.03 (10) 0.43 (10) 0.73 (10)
KDD 0.02 (10) 0.42 (10) 0.64 (10) 0.04 (10) 0.49 (10) 0.68 (10)
Plants 0.27 (10) 0.99 (10) 1.36 (10) 2.95 (10) 2.61 (10) 2.72 (10)
Audio 188.59 (10) 16.57 (10) 2.87 (10) 2041.33 (6) 15.61 (10) 13.70 (10)
Jester 265.50 (10) 16.16 (10) 6.17 (10) 2913.04 (2) 44.16 (10) 14.74 (10)
Netflix 344.71 (10) 22.23 (10) 5.61 (10) – (0) 936.83 (10) 47.18 (10)
Accidents 0.54 (10) 2.00 (10) 2.00 (10) 109.56 (10) 19.81 (10) 15.86 (10)
Retail 0.03 (10) 0.47 (10) 0.61 (10) 0.06 (10) 0.67 (10) 0.81 (10)
Pumsb-star 273.70 (10) 106.04 (10) 6.04 (10) 2208.27 (7) 54.32 (10) 20.88 (10)
DNA 2809.44 (4) 65.27 (10) 9.16 (10) – (0) 2634.41 (3) 505.75 (9)
Kosarek 1.60 (10) 0.81 (10) 0.98 (10) 48.74 (10) 2.65 (10) 3.41 (10)
MSWeb 25.70 (10) 3.63 (10) 0.96 (10) 1543.49 (10) 48.89 (10) 1.28 (10)
Book – (0) 56.47 (10) 7.25 (10) – (0) 907.51 (9) 46.50 (10)
EachMovie – (0) 2563.02 (3) 93.66 (10) – (0) 3293.78 (1) 1216.89 (8)
WebKB – (0) 3378.03 (2) 102.37 (10) – (0) – (0) 575.68 (10)
Reuters-52 – (0) 1238.10 (7) 22.91 (10) – (0) 3107.57 (3) 120.58 (10)
20 NewsGrp. – (0) 2882.95 (3) 88.13 (10) – (0) – (0) 504.52 (9)
BBC – (0) – (0) 766.93 (9) – (0) – (0) 2757.18 (3)
Ad – (0) – (0) 344.81 (10) – (0) – (0) 1254.37 (8)

Total Solved 124 155 199 105 146 187

20%, 30%, respectively—randomly dividing the variables and generating evidence while ensuring

its probability is nonzero. We generated 10 instances for each dataset and each proportion.

For comparison, we also solved the marginal MAP problems using MaxSPN4 which is a

search-based exact solver for (marginal) MAP on sum-product networks [Mei et al., 2018]. All

experiments were ran on a Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz.

Table 6.1 summarizes the results. First, we compare the two heuristics. (Pruned) is comparable

or faster than (UB) on relatively easy datasets, but is significantly slower on most of the datasets.

Moreover, (Pruned) failed to solve any instance on BBC and Ad datasets, whereas (UB) was able

4Specifically, we use the forward checking technique with ordering and stage, which was shown to be the best
performing among the exact solvers by Mei et al. [2018].

97

0 50 100 150 200 250

Iteration

−395

−394

−393

−392

−391

−390

−389

−388

Lo
g

pr
ob

ab
ilit

y

Upper bound
Lower bound

0 50 100 150 200 250

Iteration

6000

8000

10000

12000

14000

16000

18000

20000

Si
ze

Figure 6.2: Upper and lower bounds (top) and circuit size (bottom) in each iteration of the solver on
an example instance on EachMovie dataset.

to solve at least one instance in all datasets. In fact, it was able to solve all 20 instances (10 for each

proportion) on 15 out of the 20 datasets. This clearly demonstrates the importance of variable split

heuristics and the benefit of explicitly choosing splits that lead to better bounds.

Next, we compare our iterative solver to the search-based approach of MaxSPN. We observe

that MaxSPN is faster than our algorithm on easy instances (sub-1 second average run time). This

is likely because there is a minimum overhead of performing circuit transformations. On the other

hand, our iterative approach clearly outperforms MaxSPN on all other datasets, both in terms of

average run time and the number of instances solved.

Lastly, we examine more closely an example run of our solver to empirically demonstrate the

benefits of pruning a PC for a specific marginal MAP problem; see Figure 6.2. As we expected,

iterative prune and split improve the upper and lower bounds until they converge. The next plot on

circuit size clearly illustrates the importance of pruning the circuit. Even though split operations

can increase the circuit size, we are very effective at pruning away irrelevant parts of the circuit for

MMAP that the circuit size actually decreases over time. Indeed, the size at the point of convergence

is smaller than the initial size. Judging by the rate of increase in the early iterations, it is not hard to

imagine that without pruning, the circuit would quickly grow too large to run any inference.

98

6.5 Conclusion

We have introduced a novel approach to marginal MAP inference on probabilistic circuits. It is

fundamentally distinct from existing solvers, which are based on a branch and bound search [Mauá

et al., 2020; Mei et al., 2018; Huang et al., 2006] using the tractable circuit to prune the search.

Instead, we showed that the circuit can be pruned by keeping edges that are relevant to the marginal

MAP state. Furthermore, our edge bounds algorithm can effectively find such edges to prune.

What remains to solve marginal MAP is to perform simple splits on the circuit, tightening the

bounds, and providing more opportunity to prune edges, until a marginal MAP solution is found.

Our experiments empirically show that this novel approach to marginal MAP outperforms the

search-based approach on a large number of real-world learned probabilistic circuits.

99

CHAPTER 7

Conclusion

This dissertation proposed a framework of probabilistic modeling and reasoning to address trust-

worthy AI issues, in particular focusing on the use of probabilistic circuits to measure and enforce

different notions of fairness and decision robustness.

The fair and robust machine learning methods as currently described in this thesis are limited in

the sense that they assume a generative model will be used as both the prediction/decision-making

system as well as the probabilistic model of the underlying distribution. However, it is well known

for many real-world applications that specialized discriminative models tend to perform better on

making classifications and predictions, compared to generative models whose strengths are more

general and flexible reasoning. Therefore, a more broadly applicable and impactful framework

would be one that can reason about different prediction models with respect to a distribution

represented by a separate probabilistic model.

The initial foundations to develop such reasoning framework have been laid by a tractable

inference scheme called expected predictions [Khosravi et al., 2019b,a, 2020] (Intermezzo 1).

The task is to compute the expected output of a function (in addition to related queries such as

its moments), defined by some discriminative model, with respect to a distribution represented

by a probabilistic circuit. For instance, we can compute the expected (average) decisions for

different demographic groups to audit a model for fairness. In particular, Chapter 3 proposed a

fair probabilistic circuit learning algorithm to model the hidden fair labels from data with biased

labels. While the PC was also used subsequently to make classifications, we can instead exploit

expected predictions to reason about the fairness properties of a given prediction model with respect

100

to the learned PC. This would allow us to properly handle the uncertainty in the true labels even for

classifiers that are not by nature probabilistic.

Furthermore, the current results require strong constraints on probabilistic circuits to solve

hard queries such as discrimination pattern mining (Chapter 4) and the expected classification

agreement (Chapter 5), which can again limit the scalability and practicality of the proposed

approach. Specifically, requiring a constrained vtree may result in a size blow-up of the circuit,

nullifying the benefits of linear-time exact inference. As a first step to address this, Chapter 6

introduced a new inference technique that requires less restrictive properties on the PCs and

instead answers queries through a series of circuit transformations. A natural future direction to

explore would be to employ similar techniques to solve other queries, in particular those relevant to

trustworthy AI.

Lastly, even though this thesis demonstrated that several fairness and robustness questions can be

answered through probabilistic inference, the reasoning and learning methods were still contained

within their respective area. However, I believe there is an unrealized potential to seamlessly bring

together various subfields of trustworthy AI within a single framework. By advancing efficient and

flexible reasoning in terms of both the inference tasks and the types of models we can handle, I

hope we can build a unified framework that would allow us to easily audit various properties—such

as fairness, explainability, privacy, robustness, and more—and develop more trustworthy automated

decision-making systems.

101

Appendix A

Proofs

A.1 Degree of Discrimination Bound

A.1.1 Proof of Proposition 4.1

We first derive how ∆̃ represents the degree of discrimination ∆ for some pattern xy.

∆P,d(x,y) = P (d|xy)− P (d|y) =
P (x|d)P (dy)

P (x|d)P (dy) + P (x|d)P (dy)
− P (d|y)

=
P (x|d)P (d|y)

P (x|d)P (d|y) + P (x|d)P (d|y)
− P (d|y) = ∆̃(P (x|d), P (x|d), P (d|y))

Clearly, if l ≤ γ ≤ u then minl≤γ≤u ∆̃(α, β, γ) ≤ ∆̃(α, β, γ) ≤ maxl≤γ≤u ∆̃(α, β, γ). There-

fore, if l ≤ P (d|yy′) ≤ u, then the following holds for any x:

min
l≤γ≤u

∆̃(P (x|d), P (x|d), γ) ≤ ∆̃(P (x|d), P (x|d), P (d|yy′))

= ∆P,d(x,yy
′) ≤ max

l≤γ≤u
∆̃(P (x|d), P (x|d), γ).

Next, suppose x′u = arg maxx′ P (d|xx′) and x′l = arg minx′ P (d|xx′). Then from Lemma 1,

we also have that x′u = arg maxx′ P (d|xx′yy′) and x′l = arg minx′ P (d|xx′yy′) for any yy′.

Therefore,

min
l≤γ≤u

∆̃
(
P (xx′l|d), P (xx′l|d), γ

)
≤ ∆̃

(
P (xx′l|d), P (xx′l|d), P (d|yy′)

)
= ∆P,d(xx

′
l,yy

′)

102

= P (d|xx′lyy′)− P (d|yy′) ≤ P (d|xx′yy′)− P (d|yy′) = ∆P,d(xx
′,yy′)

≤ ∆P,d(xx
′
u,yy

′) = ∆̃
(
P (xx′u|d), P (xx′u|d), P (d|yy′)

)
≤ max

l≤γ≤u
∆̃
(
P (xx′u|d), P (xx′u|d), γ

)
.

A.1.2 Computing the Discrimination Bound

If α = P (x|d) = 0 and β = P (x|d) = 0, then the probability of x is zero and thus P (d|xy) is

ill-defined. Therefore, we will assume that either α or β is nonzero.

Let us write ∆̃α,β(γ) = ∆̃(α, β, γ) to denote the function restricted to fixed α and β. If α = β,

then ∆̃α,β = 0. Also, ∆̃0,β(γ) = −γ and ∆̃α,0(γ) = 1 − γ. Thus, in the following analysis we

assume α and β are non-zero and distinct.

If 0 < α ≤ β ≤ 1, ∆̃α,β is negative and convex in γ within 0 ≤ γ ≤ 1. On the other hand,

if 0 < β ≤ α ≤ 1, then ∆̃α,β,γ is positive and concave. This can quickly be checked using the

following derivatives.

d

dγ
∆̃α,β(γ) =

αβ

(αγ + β(1− γ))2 − 1,
d2

dγ2
∆̃α,β(γ) =

−2αβ(α− β)

(αγ + β(1− γ))3

Furthermore, the sign of the derivative at γ = 0 is different from that at γ = 1, and thus there must

exist a unique optimum in 0 ≤ γ ≤ 1.

Solving for d
dγ

∆̃α,β(γ) = 0, we get γ = β±
√
αβ

β−α . The solution corresponding to the feasible

space 0 ≤ γ ≤ 1 is: γopt = β−
√
αβ

β−α . The optimal value is derived as the following.

∆̃α,β(γopt) =
α
(
β−
√
αβ

β−α

)

(α− β)
(
β−
√
αβ

β−α

)
+ β
− β −√αβ

β − α =
α(β −√αβ)√
αβ(β − α)

− β −√αβ
β − α =

2
√
αβ − α− β
β − α .

Next, suppose that the feasible space is restricted to l ≤ γ ≤ u. Then the optimal solution is:

γopt if l ≤ γopt ≤ u; l if γopt < l; and u if γopt > u.

103

A.1.3 Proof of Lemma 1

Now we prove that we can maximize the posterior decision probability by maximizing each

variable independently. It suffices to prove that for a single variable V and all evidence w,

arg maxv P (d|vw) = arg maxv
P (v|d)

P (v|d)
. We first express P (d|vw) as the following:

P (d|vw) =
P (v|d)P (d|w)

P (v|d)P (d|w) + P (v|d)P (d|w)
=

1

1 + P (v|d)P (d|w)
P (v|d)P (d|w)

Then clearly,

arg max
v

P (d|vw) = arg min
v

P (v|d)P (d|w)

P (v|d)P (d|w)
= arg max

v

P (v|d)

P (v|d)
.

A.2 Divergence Score

A.2.1 Derivation of Equation 4.2

We want to find the closed form solution of the optimization problem in Equation 4.1. Because P

and Q differs only in two assignments, we can write the KL divergence as follows:

KL (P ‖ Q) =
∑

dz

P (dz) log

(
P (dz)

Q(dz)

)
= P (dxy) log

(
P (dxy)

Q(dxy)

)
+ P (dxy) log

(
P (dxy)

Q(dxy)

)

Let r be the change in probability of dxy. That is, r = Q(dxy) − P (dxy). For Q to be

a valid probability distribution, we must have Q(dxy) + Q(dxy) = P (xy). Then we have

Q(dxy) = P (dxy) + r, and Q(dxy) = P (xy) − Q(dxy) = P (dxy) − r. We can then express

the KL divergence between P and Q as a function of P and r:

gP,d,x,y(r) , P (dxy) log

(
P (dxy)

P (dxy) + r

)
+ P (dxy) log

(
P (dxy)

P (dxy)− r

)

Moreover, the discrimination score of pattern xy w.r.t Q can be expressed using P and r as the

104

following:

Q(d|xy)−Q(d|y) =
P (dxy) + r

P (xy)
− P (dy) + r

P (y)
= P (d|xy)− P (d|y) + r

(
1

P (xy)
− 1

P (y)

)

= ∆P,d(x,y) + r

(
1

P (xy)
− 1

P (y)

)
.

The heuristic DivP,d,δ(x,y) is then written using r as follows:

min
r
gP,d,x,y(r) (A.1)

s.t.
∣∣∣∣∆P,d(x,y) + r

(
1

P (xy)
− 1

P (y)

)∣∣∣∣ ≤ δ, −P (dxy) ≤ r ≤ P (dxy)

The objective function gP,d,x,y is convex in r with its unconstrained global minimum at r = 0.

Note that this is a feasible point if and only if |∆P,d(x,y)| ≤ δ; in other words, when the pattern xy

is already fair. Otherwise, the optimum must be either of the extreme points of the feasible space,

whichever is closer to 0. The extreme points for the first set of inequalities are:

r1 =
δ − P (d|xy) + P (d|y)

1/P (xy)− 1/P (y)
, r2 =

−δ − P (d|xy) + P (d|y)

1/P (xy)− 1/P (y)
.

If ∆P,d(x,y) > δ, then r2 ≤ r1 < 0. In such case, g(r2) ≥ g(r1) and −P (dxy) ≤ r1 ≤ P (dxy)

as shown below:

r1 < 0 ≤ P (dxy),

−r1 =
−δ + P (d|xy)− P (d|y)

1/P (xy)− 1/P (y)
≤ P (d|xy)− P (d|y)

1/P (xy)− 1/P (y)
≤ P (d|xy)− P (dx|y)

1/P (xy)− 1/P (y)
= P (dxy).

Similarly, if ∆P,d(x,y) < −δ, then r1 ≥ r2 > 0. Also, g(r1) ≥ g(r2) and −P (dxy) ≤ r2 ≤
P (dxy) as shown below:

r2 > 0 ≥ −P (dxy),

105

r2 ≤
−P (d|xy) + P (d|y)

1/P (xy)− 1/P (y)
≤ P (d|xy)− P (d|y)

1/P (xy)− 1/P (y)
= P (dxy).

Hence, the optimal solution r? is

r? =





0, if |∆P,d(x,y)| ≤ δ,

δ−∆P,d(x,y)

1/P (xy)−1/P (y)
, if ∆P,d(x,y) > δ,

−δ−∆P,d(x,y)

1/P (xy)−1/P (y)
, if ∆P,d(x,y) < −δ,

and the divergence score is DivP,d,δ(x,y) = gP,d,x,y(r?).

A.2.2 Upper Bounds on Divergence Score

Here we present two upper bounds on the divergence score for pruning the search tree. The first

bound uses the observation that the hypothetical distribution Q with ∆Q,d(x,y) = 0 is always a

feasible hypothetical fair distribution.

Proposition A.1. Let P be a Naive Bayes distribution over D ∪ Z, and let x and y be joint

assignments to X ⊆ S and Y ⊆ Z \X. For all possible valid extensions x′ and y′, the following

holds:

DivP,d,δ(xx
′,yy′) ≤ P (dxy) log

maxz|=xy P (d|z)

minz|=y P (d|z)
+ P (dxy) log

maxz|=xy P (d|z)

minz|=y P (d|z)

Proof. Consider the following point:

r0 =
−P (d|xy) + P (d|y)

1/P (xy)− 1/P (y)
.

First, we show that above r0 is always a feasible point in Problem A.1:

∣∣∣∣∆P,d(x,y) + r0

(
1

P (xy)
− 1

P (y)

)∣∣∣∣ = |∆P,d(x,y)−∆P,d(x,y)| = 0 ≤ δ,

106

r0 =
P (d|xy)− P (d|y)

1/P (xy)− 1/P (y)
≤ P (d|xy)− P (dx|y)

1/P (xy)− 1/P (y)
= P (dxy),

−r0 =
P (d|xy)− P (d|y)

1/P (xy)− 1/P (y)
≤ P (d|xy)− P (dx|y)

1/P (xy)− 1/P (y)
= P (dxy).

Then the divergence score for any pattern must be smaller than gP,d,x,y(r0):

DivP,d,δ(x,y) ≤ gP,d,x,y(r0) = P (dxy) log
P (d|xy)

P (d|xy)
+ P (dxy) log

P (d|xy)

P (d|xy)

≤ P (dxy) log
P (d|xy)

minx P (d|xy)
+ P (dxy) log

P (d|xy)

minx P (d|xy)
.

Here, we use x to mean that x does not hold. In other words,

P (d|xy) =
P (dy)− P (dxy)

P (y)− P (xy)
=
∑

x

P (d|xy)P (x|xy).

We can then use this to bound the divergence score any pattern extended from xy:

DivP,d,δ(xx
′,yy′)

≤ P (dxx′yy′) log
P (d|xx′yy′)

minxx′ P (d|xx′yy′) + P (dxx′yy′) log
P (d|xx′yy′)

minxx′ P (d|xx′yy′)

≤ P (dxy) log
maxz|=xy P (d|z)

minz|=y P (d|z)
+ P (dxy) log

maxz|=xy P (d|z)

minz|=y P (d|z)
.

We can also bound the divergence score using the maximum and minimum possible discrimina-

tion scores shown in Proposition 4.1, in place of the current pattern’s discrimination. Let us denote

the bounds for discrimination score as follows:

∆(x,y) = max
l≤γ≤u

∆̃
(
P (xx′u|d), P (xx′u|d), γ

)
, ∆(x,y) = min

l≤γ≤u
∆̃
(
P (xx′l|d), P (xx′l|d), γ

)
.

107

Proposition A.2. Let P be a Naive Bayes distribution over D ∪ Z, and let x and y be joint assign-

ments to X ⊆ S and Y ⊆ Z \X. For all possible valid extensions x′ and y′, DivP,d,δ(xx
′,yy′) ≤

max (gP,d,xx′,yy′(ru), gP,d,xx′,yy′(rl)) where

ru =
δ −∆(x,y)

1/P (xx′yy′)− 1/P (yy′)
, rl =

−δ −∆(x,y)

1/P (xx′yy′)− 1/P (yy′)
.

Proof. The proof proceeds by case analysis on the discrimination score of extended patterns xx′yy′.

First, if |∆(xx′,yy′)| ≤ δ, DivP,d,δ(xx
′,yy′) = 0 which is the global minimum, and thus is

smaller than both g(ru) and g(rl).

Next, suppose ∆(xx′,yy′) > δ. Then from Proposition 4.1,

ru =
δ −∆(x,y)

1/P (xx′yy′)− 1/P (yy′)
≤ r? =

δ −∆P,d(xx
′,yy′)

1/P (xx′yy′)− 1/P (yy′)
< 0.

As g is convex with its minimum at 0, we can conclude DivP,d,δ(xx
′,yy′) = g(r?) ≤ g(ru).

Finally, if ∆(xx′,yy′) < −δ, we have

rl =
−δ −∆(x,y)

1/P (xx′yy′)− 1/P (yy′)
≥ r? =

−δ −∆P,d(xx
′,yy′)

1/P (xx′yy′)− 1/P (yy′)
> 0.

Similarly, this implies DivP,d,δ(xx
′,yy′) = g(r?) ≤ g(rl). Because the divergence score is always

smaller than either g(ru) or g(rl), it must be smaller than max(g(ru), g(rl)).

Lastly, we show how to efficiently compute an upper bound on gP,d,xx′,yy′(ru) gP,d,xx′,yy′(rl)

from Proposition A.2 for all patterns extended from xy. This is necessary for pruning during the

search for discrimination patterns with high divergence scores. First, note that ru and rl can be

expressed as
c

1/P (xx′yy′)− 1/P (yy′)
, (A.2)

where c = δ−∆(x,y) for ru and c = −δ−∆(x,y) for rl. Hence, it suffices to derive the following

108

bound.

gP,d,xx′,yy′

(
c

1/P (xx′yy′)− 1/P (yy′)

)

= P (dxx′yy′) log

(
P (dxx′yy′)

P (dxx′yy′) + c
1/P (xx′yy′)−1/P (yy′)

)

+ P (dxx′yy′) log

(
P (dxx′yy′)

P (dxx′yy′)− c
1/P (xx′yy′)−1/P (yy′)

)

= P (dxx′yy′) log

(
P (d|xx′yy′)(1− P (xx′|yy′))

P (d|xx′yy′)(1− P (xx′|yy′)) + c

)

+ P (dxx′yy′) log

(
P (d|xx′yy′)(1− P (xx′|yy′))

P (d|xx′yy′)(1− P (xx′|yy′))− c

)

≤





0 if c = 0

P (dxy) log
(maxz|=xy P (d|z))(1−minx′y′ P (xx′|yy′))

(minz|=xy P (d|z))(1−maxx′y′ P (xx′|yy′))+c
if c < 0

P (dxy) log
(maxz|=xy P (d|z))(1−minx′y′ P (xx′|yy′))

(minz|=xy P (d|z))(1−maxx′y′ P (xx′|yy′))−c if c > 0

A.3 Proof of Proposition 4.2

The probability values of positive decision in terms of naive Bayes parameters θ are as follows:

Pθ(d|xy) =
Pθ(dxy)

Pθ(xy)
=

θd
∏

x θx|d
∏

y θy|d

θd
∏

x θx|d
∏

y θy|d + θd̄
∏

x θx|d̄
∏

y θy|d̄
=

1

1 +
θd̄

∏
x θx|d̄

∏
y θy|d̄

θd
∏
x θx|d

∏
y θy|d

,

Pθ(d̄|y) =
Pθ(dy)

Pθ(y)
=

1

1 +
θd̄

∏
y θy|d̄

θd
∏
y θy|d

.

For simplicity of notation, let us write:

rx =

∏
x θx|d̄∏
x θx|d

, ry =
θd̄
∏

y θy|d̄

θd
∏

y θy|d
. (A.3)

109

Then the degree of discrimination is ∆Pθ,d(x,y) = Pθ(d|xy)− Pθ(d|y) = 1
1+rxry

− 1
1+ry

. Now we

express the fairness constraint |∆Pθ,d(x,y)| ≤ δ as the following two inequalities:

−δ ≤ (1 + ry)− (1 + rxry)

(1 + rxry) · (1 + ry)
≤ δ.

After simplifying,

ry − rxry ≥ −δ(1 + rxry + ry + rxr
2
y), ry − rxry ≤ δ(1 + rxry + ry + rxr

2
y).

We further express this as the following two signomial inequality constraints:

(
1− δ
δ

)
rxry −

(
1 + δ

δ

)
ry − rxr2

y ≤ 1, −
(

1 + δ

δ

)
rxry +

(
1− δ
δ

)
ry − rxr2

y ≤ 1

Note that rx and ry according to Equation A.3 are monomials of θ, and thus above constraints are

also signomial with respect to the optimization variables θ.

A.4 Proof of Proposition 5.3

Proof. We have MAA(F′) ≤ MPA(F′) from Proposition 5.1. To show MAA(F′) ≥ MPA(F′)

under the independence assumption, we will use the following claim.

Claim 1. Suppose features F′ and R are independent given class C. For any instances f ′1 and f ′2, if

Pr(c|f ′1) ≥ Pr(c|f ′2), then at least one of the following must hold:

1.
∑

r [CT (f ′1r) = c] · Pr(r|f ′1) ≥ 0.5, or

2.
∑

r [CT (f ′2r) = c] · Pr(r|f ′2) ≥ 0.5.

If inequality 1 is true, we say f ′1 “favors positive classification”, and if inequality 2 is true, we say

f ′2 “favors negative classification”.

Above claim states that, if F′ and R are independent given C and if positive class c is more

110

likely given f ′1 than given f ′2, then we cannot have f ′1 favor negative classification while f ′2 favor

positive classification.

Assuming the claim is true, we can choose a T ′ such that Q1 < T ′ ≤ Q2, where Q1 =

maxf ′ Pr(c|f ′) such that f ′ favors negative class and Q2 = minf ′ Pr(c|f ′) such that f ′ favors positive

class. Then, an instance f ′ favors positive class if and only if Pr(c|f ′) ≥ T ′. Thus, we obtain the

following inequality:

MAA(F′) ≥
∑

f

[CT (f) = CT ′(f ′)] · Pr(f) (A.4)

=
∑

f ′

max
c

{∑

r

[CT (f ′r) = c] · Pr(r|f ′)
}
· Pr(f ′) (A.5)

= MPA(F′)

Equation A.4 follows from the definition of MAA as the maximum of ECA across different T ′.

Equation A.5 holds because T ′ was explicitly constructed such that the trimmed classifier classifies

each instance f ′ into the class that it favors in the original classifier.

Now we prove the claim by considering two possible cases. Suppose there exists f ′1 and f ′2 such

that Pr(c|f ′1) ≥ Pr(c|f ′2) but f ′1 favors negative class while f ′2 favors positive class. Since F′ and R

are independent given C, we can write the following in log-odds domain: logO(c|f ′r) = logO(c) +

wf ′ + wr, where wx = log Pr(x|c)
Pr(x|c) . Then Pr(c|f ′r) ≥ T if and only if logO(c|f ′r) ≥ λ = log T

1−T .

Case 1: Pr(c|f ′2) < T . Equivalently, logO(c|f ′2) < λ. Also, logO(c|f ′2) ≤ logO(c|f ′1) by

assumption. Then ∀ r logO(c|f ′2r) ≥ λ =⇒ logO(c|f ′1r) ≥ λ. For such r, wr > 0 and thus

Pr(r|c) > Pr(r|c), which implies:

Pr(r|f ′1) = Pr(r|c) Pr(c|f ′1) + Pr(r|c) Pr(c|f ′1) = Pr(r|f ′2) + α(Pr(r|c)− Pr(r|c)) ≥ Pr(r|f ′2),

111

where α = Pr(c|f ′1)− Pr(c|f ′2) ≥ 0.

Combining these, we have

∑

r

[CT (f ′1r) = c] Pr(r|f ′1) ≥
∑

r

[CT (f ′2r) = c] Pr(r|f ′2) > 0.5,

which is a contradiction of our assumption that f ′1 favors negative class (i.e.
∑

r [CT (f ′1r) = c] Pr(r|f ′1) <

0.5).

Case 2: Pr(c|f ′2) ≥ T . Similarly, ∀ rPr(c|f ′1r) < T implies Pr(c|f ′2r) < T and Pr(r|c) < Pr(r|c).

Thus,

Pr(r|f ′2) = Pr(r|c) Pr(c|f ′2) + Pr(r|c) Pr(c|f ′2) = Pr(r|f ′1) + α(Pr(r|c)− Pr(r|c)) ≥ Pr(r|f ′1).

This leads to the following:

∑

r

[CT (f ′2r) = c] Pr(r|f ′2) ≥
∑

r

[CT (f ′1r) = c] Pr(r|f ′1) > 0.5,

which is a contradiction of our assumption that f ′2 favors positive class and thus
∑

r [CT (f ′2r) = c] Pr(r|f ′2) <

0.5. This concludes the proof of the claim and the proposition.

A.5 Proof of Proposition 6.1

Proposition 6.1. Given a smooth and decomposable PC C over variables X and a subset Q ⊂ X,

Algorithm 8 computes an upper bound on Equation 6.1 for every edge in C.

To prove above proposition, let us define some auxiliary circuit structures. First, running

Algorithm 7 to compute m can be interpreted as a feedforward evaluation on a circuit obtained from

C by replacing every Q-deterministic sum node n with a node that simply returns the output of

child node c = arg maxc∈ch(n) θn,cmc (i.e. they are “fixed” to select the same branch as Line 9 in

112

Algorithm 7). Suppose we unroll such circuit into a tree structure: i.e. create copies of any node

with multiple parents and recurse down. We denote this circuit byM. Then we have mroot =M(∅),

whereM(∅) represents the circuit evaluation for marginal with no evidence. Moreover, for any

node n′ inM that corresponds to node n in C, written as n′ ∈ copy(n), we have mn =Mn′(∅).

In addition, for every node n′ inM, we define a circuit denotedM(n′) obtained fromM by

“fixing” the Q-deterministic nodes that appear in the path from root to n′ such that they select the

branch that reaches n′. In other words, let Q′ be Q \ φ(n′) and q′ = γn′|Q′ . Note that becauseM
is a tree structure, every assignment in the context of n′ has the same value for variables in Q′; this

is given by the Q-deterministic sum nodes in the path from n′ to the root which is unique. Then

M(n′) is identical toM, except for the Q-deterministic nodes that are ancestors of n′, which output

the child node whose context agrees with q′.

Lemma 3. Let C be a PC over variables X and M be its tree-unrolled max-sum circuit (as

described above) for a set of query variables Q. For anyM(n′) constructed fromM as above, the

following statements hold:

1. M(n′)(∅) =
∑
y∈val(X\Q)M(n′)(y).

2. For any q ∈ γn′|Q,M(n′)(∅) ≥ C(q).

Note that above statements also apply toM = M(root). We now provide a proof of Proposi-

tion 6.1 using above lemma, which we will prove at the end of this section.

Proof. We will show that for every node n in C, Algorithm 8 returns

rn ≥ max
n′∈copy(n)

M(n′)(∅), (A.6)

and for every edge (n, c) it returns

rn,c ≥ max
(n′,c′)∈copy((n,c))

M(c′)(∅). (A.7)

113

Note that Equation A.7 implies that rn,c upper-bounds the quantity MMAP(Q|(n,c)) given by

Equation 6.1:

max
(n′,c′)∈copy((n,c))

M(c′)(∅) ≥ max
(n′,c′)∈copy((n,c))

max
q∈γc′ |Q

C(q) = max
(n′,c′)∈copy((n,c))

max
q∈ (γn′∩γc′)|Q

C(q)

= max
q∈

⋃
(n′,c′)∈copy((n,c)) (γn′∩γc′)|Q

C(q) = max
q∈ (γn∩γc)|Q

C(q) = max
q∈γ(n,c)|Q

C(q)

= max
q:(n,c)∈C′q

C(q) = MMAP(Q|(n,c))

We will now prove that Equations A.6 and A.7 hold by induction. For the base case, rroot is set

as mroot, which is exactlyM(∅) =M(root)(∅).

Next, assume Equation A.6 holds for a node n in C, and we want to show that Equation A.7

holds for any of its input edges (n, c). If n is a product unit or a sum unit that is not Q-deterministic,

for any edge (n, c) and its copy (n′, c′) the circuitsM(n′) andM(c′) are identical by definition.

Then Equation A.7 holds as follows:

max
(n′,c′)∈copy((n,c))

M(c′)(∅) = max
(n′,c′)∈copy((n,c))

M(n′)(∅) = max
n′∈copy(n)

M(n′)(∅) ≤ rn = rn,c.

If n is a Q-deterministic sum node, the circuitsM(n′) andM(c′) can differ only by whether node

n′ is fixed to take c′. Thus, for any y 6∈ γn′ |Y where Y = X \ Q, M(n′)(y) = M(c′)(y). For

y ∈ γn′ |Y, we have

M(n′)(y)−M(c′)(y) =
(∏

θ∈path(n′)

θ
)
· M(n′)

n′ (y)−
(∏

θ∈path(n′)

θ
)
· θn′,c′ · M(c′)

c′ (y)

where path(n′) denotes the set of all edge parameters that appear in the path from root to node n′.

Note thatM(n′)
n′ , i.e. the subcircuit ofM(n′) rooted at n′, is identical toMn′ as the two max-sum

circuits differ only in the ancestors of n′. Similarly,M(c′)
c′ is equal toMc′ . Then we can express the

114

circuit evaluation ofM(c′) as

M(c′)(∅) =
∑

y∈val(Y)

M(c′)(y) =
∑

y 6∈γn′ |Y

M(c′)(y) +
∑

y∈γn′ |Y

M(c′)(y)

=
∑

y 6∈γn′ |Y

M(n′)(y) +
∑

y∈γn′ |Y

M(c′)(y) =M(n′)(∅)−
∑

y∈γn′ |Y

M(n′)(y) +
∑

y∈γn′ |Y

M(c′)(y)

=M(n′)(∅) +


 ∏

θ∈path(n′)

θ




θn′,c′

∑

y∈γn′ |Y

Mc′(y)−
∑

y∈γn′ |Y

Mn′(y)




=M(n′)(∅) +
(∏

θ∈path(n′)

θ
)

(θn′,c′Mc′(∅)−Mn′(∅)) =M(n′)(∅) +
(∏

θ∈path(n′)

θ
)

(θn,cmc −mn)

Because mn ≥ θn,cmc, above equation among copies of (n, c) can be bounded from above by:

max
(n′,c′)∈copy((n,c))

M(c′)(∅) ≤ max
n′∈copy(n)

M(n′)(∅) +
(

min
n′∈copy(n)

∏

θ∈path(n′)

θ
)

(θn,cmc −mn) .

We will show that rn,c = rn + tn (θn,cmc −mn) (Line 12 in Algorithm 8) is at most the right-

hand side quantity of above inequality, thereby satisfying Equation A.7. First, we have rn ≥
max(n′)∈copy(n)M(n′)(∅) by the inductive hypothesis. Next, we want to show that tn ≤ minn′∈copy(n)

∏
θ∈path(n′) θ.

For a given node c, suppose this holds for tn of every parent node n ∈ pa(c). Then we have

tc = min
n∈pa(c)

θn,ctn ≤ min
n∈pa(c)

θn,c

(
min

n′∈copy(n)

∏

θ∈path(n′)

θ
)

= min
c′∈copy(c)

∏

θ∈path(c′)

θ

For simplicity, we say θn,c = 1 for a product node n.

Finally, assume that Equation A.7 holds for edges (p, n) where p ∈ pa(n), and we will show

that Equation A.6 must hold then for node n. rn, which is set to maxp∈pa(n) rp,n in Algorithm 8,

satisfies Equation A.6 as follows:

max
p∈pa(n)

rp,n ≥ max
p∈pa(n)

max
(p′,n′)∈copy((p,n))

M(n′)(∅) = max
n′∈copy(n)

M(n′)(∅).

115

This concludes the proof of Proposition 6.1.

Proof of Lemma 3. To show property (1) M(n′)(∅) =
∑
y∈val(X\Q)M(n′)(y), first observe that

M(n′) fixes every Q-deterministic node to always return the value of one of its children and thus

can be simplified by removing those nodes and directly connecting its parent to the appropriate

child node. This results in a smooth and decomposable PC with the normal types of sum and

product nodes. Then (1) simply holds by the fact that smooth and decomposable PCs allow marginal

inference by feedforward evaluation.

Property (2)M(n′)(∅) ≥ C(q) holds for any q ∈ γn′ |Q if and only ifM(n′)(∅) ≥ C ′q(∅), as

computing the marginal probability of q is equivalent to evaluating the q-subcircuit. Note that for

any q ∈ γn′ |Q, the ancestor nodes of n′ inM(n′) are equivalent to those in the q-subcircuit. On the

other hand,M(n′)
n′ (∅) =Mn′(∅) upper bounds maxq∈γn′ |Q n(q) (recall Equation 6.2), hence must

be at least n(q). Therefore, at the root nodes,M(n′) must evaluate to at least C ′q.

116

Bibliography

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna Wallach. A

reductions approach to fair classification. In International Conference on Machine Learning,

pages 60–69, 2018.

Francis Bach and Michael Jordan. Thin junction trees. Advances in neural information processing

systems, 14, 2001.

K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http://archive.

ics.uci.edu/ml.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairml-

book.org, 2019. http://www.fairmlbook.org.

Riccardo Bellazzi and Blaz Zupan. Predictive data mining in clinical medicine: current issues and

guidelines. International journal of medical informatics, 77(2):81–97, 2008.

Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in

criminal justice risk assessments: The state of the art. Sociological Methods & Research, page

0049124118782533, 2018.

M. Bilgic and L. Getoor. Value of information lattice: Exploiting probabilistic independence for

effective feature subset acquisition. JAIR, 2011.

José M. Bioucas-Dias and Mário A. T. Figueiredo. Bayesian image segmentation using hidden

fields: Supervised, unsupervised, and semi-supervised formulations. In 24th European Signal

Processing Conference (EUSIPCO), pages 523–527, 2016.

Avrim Blum and Kevin Stangl. Recovering from biased data: Can fairness constraints improve

accuracy? In 1st Symposium on Foundations of Responsible Computing, 2020.

117

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.fairmlbook.org

T. Calders and S. Verwer. Three naive bayes approaches for discrimination-free classification. Data

Mining and Knowledge Discovery, 2010.

Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and

Kush R Varshney. Optimized pre-processing for discrimination prevention. In Advances in

Neural Information Processing Systems, pages 3992–4001, 2017.

A. Choi, Y. Xue, and A. Darwiche. Same-Decision Probability: A confidence measure for threshold-

based decisions. IJAR, 2012.

A. Choi, D. Kisa, and A. Darwiche. Compiling probabilistic graphical models using sentential

decision diagrams. In ECSQARU, pages 121–132, 2013.

Arthur Choi and Adnan Darwiche. On relaxing determinism in arithmetic circuits. In Proceedings

of the Thirty-Fourth International Conference on Machine Learning (ICML), 2017.

YooJung Choi and Guy Van den Broeck. On robust trimming of bayesian network classifiers. In

IJCAI, 2018.

YooJung Choi, Adnan Darwiche, and Guy Van den Broeck. Optimal feature selection for decision

robustness in bayesian networks. In IJCAI, 2017.

YooJung Choi, Golnoosh Farnadi, Behrouz Babaki, and Guy Van den Broeck. Learning fair naive

bayes classifiers by discovering and eliminating discrimination patterns. In AAAI, 2020a.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying

framework for tractable probabilistic models. Oct 2020b.

YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic modeling

with latent fair decisions. In AAAI, Feb 2021.

YooJung Choi, Tal Friedman, and Guy Van den Broeck. Solving marginal map exactly by proba-

bilistic circuit transformations. In Proceedings of the 25th International Conference on Artificial

Intelligence and Statistics, 2022.

118

Alexandra Chouldechova. Fair prediction with disparate impact: a study of bias in recidivism

prediction instruments. Big data, 5(2):153–163, 2017.

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees.

IEEE Transactions on Information Theory, 14:462–467, 1968.

Diarmaid Conaty, Denis D Maua, and Casio P de Campos. Approximation complexity of maximum

a posteriori inference in sum-product networks. In The 33rd Conference on Uncertainty in

Artificial Intelligence (UAI). AUAI, 2017.

Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness: A critical review

of fair machine learning. arXiv preprint arXiv:1808.00023, 2018.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic decision

making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 797–806. ACM, 2017.

Meihua Dang, Antonio Vergari, and Guy Van den Broeck. Strudel: Learning structured-

decomposable probabilistic circuits. In Proceedings of the 10th International Conference on

Probabilistic Graphical Models (PGM), sep 2020.

Meihua Dang, Antonio Vergari, and Guy Van den Broeck. Strudel: A fast and accurate learner of

structured-decomposable probabilistic circuits. International Journal of Approximate Reasoning,

140:92–115, jan 2022. ISSN 0888-613X.

Adnan Darwiche. A logical approach to factoring belief networks. In Proceedings of KR, pages

409–420, 2002.

Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the ACM,

50(3):280–305, 2003.

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press,

2009a. doi: 10.1017/CBO9780511811357.

119

Adnan Darwiche. Modeling and reasoning with Bayesian networks. Cambridge University Press,

2009b.

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial

Intelligence Research, 17:229–264, 2002.

Sanjoy Dasgupta. Learning polytrees. arXiv preprint arXiv:1301.6688, 2013.

Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated experiments on ad privacy

settings. Proceedings on Privacy Enhancing Technologies, 2015(1):92–112, 2015.

Cassio P de Campos. New complexity results for map in bayesian networks. In IJCAI, volume 11,

pages 2100–2106, 2011.

Rina Dechter. Reasoning with probabilistic and deterministic graphical models: Exact algorithms.

Synthesis Lectures on Artificial Intelligence and Machine Learning, 7(3):1–191, 2013.

Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical models. Artif. Intell., 171

(2-3):73–106, 2007. doi: 10.1016/j.artint.2006.11.003. URL https://doi.org/10.1016/

j.artint.2006.11.003.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for

fair machine learning. Advances in Neural Information Processing Systems, 34, 2021.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.

ics.uci.edu/ml.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness

through awareness. In Proceedings of the 3rd innovations in theoretical computer science

conference, pages 214–226. ACM, 2012.

Joseph G Ecker. Geometric programming: methods, computations and applications. SIAM review,

22(3):338–362, 1980.

120

https://doi.org/10.1016/j.artint.2006.11.003
https://doi.org/10.1016/j.artint.2006.11.003
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

M. Feldman, S.A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian. Certifying and

removing disparate impact. In KDD, 2015.

Riccardo Fogliato, Max G’Sell, and A. Chouldechova. Fairness evaluation in presence of biased

noisy labels. In AISTATS, 2020.

T. Gao and D. Koller. Active classification based on value of classifier. In Advances in Neural

Information Processing Systems (NIPS 2011), 2011.

Francisco J Gimenez, Yirong Wu, Elizabeth S Burnside, and Daniel L Rubin. A novel method

to assess incompleteness of mammography reports. In AMIA Annual Symposium Proceedings,

volume 2014, page 1758. American Medical Informatics Association, 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural

information processing systems, pages 2672–2680, 2014.

David Gunning. Explainable artificial intelligence (xai). Defense Advanced Research Projects

Agency (DARPA), nd Web, 2(2), 2017.

M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In NeurIPS,

2016.

Loren Henderson, Cedric Herring, Hayward Derrick Horton, and Melvin Thomas. Credit where

credit is due?: Race, gender, and discrimination in the credit scores of business startups. The

Review of Black Political Economy, 42(4):459–479, 2015.

Jinbo Huang, Mark Chavira, and Adnan Darwiche. Solving MAP exactly by searching on compiled

arithmetic circuits. In Proceedings of the 21st National Conference on Artificial Intelligence

(AAAI), pages 143–148, 2006.

Heinrich Jiang and Ofir Nachum. Identifying and correcting label bias in machine learning. In

International Conference on Artificial Intelligence and Statistics, pages 702–712, 2020.

121

Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, and Silvia Chiappa. Wasserstein fair

classification. In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence

(UAI), jul 2019.

Faisal Kamiran and Toon Calders. Classifying without discriminating. In 2009 2nd International

Conference on Computer, Control and Communication, pages 1–6. IEEE, 2009.

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier

with prejudice remover regularizer. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 35–50. Springer, 2012.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerrymandering:

Auditing and learning for subgroup fairness. In International Conference on Machine Learning,

pages 2564–2572, 2018.

Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck. On

tractable computation of expected predictions. In NeurIPS, 2019a.

Pasha Khosravi, Yitao Liang, YooJung. Choi, and Guy Van den Broeck. What to expect of

classifiers? reasoning about logistic regression with missing features. In IJCAI, 2019b.

Pasha Khosravi, Antonio Vergari, YooJung Choi, Yitao Liang, and Guy Van den Broeck. Handling

missing data in decision trees: A probabilistic approach. In The Art of Learning with Missing

Values Workshop at ICML (Artemiss), jul 2020.

Kenji Kira and Larry A Rendell. The feature selection problem: Traditional methods and a new

algorithm. In AAAI, volume 2, pages 129–134, 1992.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential deci-

sion diagrams. In Proceedings of the 14th International Conference on Principles of Knowledge

Representation and Reasoning (KR), 2014a.

122

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential

decision diagrams. In KR, 2014b.

Igor Kiselev and Pascal Poupart. Policy optimization by marginal-map probabilistic inference in

generative models. In Proceedings of the 2014 international conference on Autonomous agents

and multi-agent systems, pages 1611–1612, 2014.

Peter J Kolesar. A branch and bound algorithm for the knapsack problem. Management science, 13

(9):723–735, 1967.

Thomas Kollar and Nicholas Roy. Efficient optimization of information-theoretic exploration in

slam. In AAAI, volume 8, pages 1369–1375, 2008.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques -

Adaptive Computation and Machine Learning. The MIT Press, 2009. ISBN 0262013193.

Igor Kononenko. Machine learning for medical diagnosis: history, state of the art and perspective.

Artificial Intelligence in medicine, 23(1):89–109, 2001.

A. Krause and C. Guestrin. Optimal value of information in graphical models. JAIR, 2009.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In

Advances in Neural Information Processing Systems, pages 4066–4076, 2017.

David H Laidlaw, Kurt W Fleischer, and Alan H Barr. Partial-volume bayesian classification of

material mixtures in mr volume data using voxel histograms. IEEE transactions on medical

imaging, 17(1):74–86, 1998.

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we analyzed the compas

recidivism algorithm. ProPublica (5 2016), 9, 2016.

Junkyu Lee, Radu Marinescu, and Rina Dechter. Applying marginal map search to probabilistic

conformant planning: Initial results. In Workshops at the Twenty-Eighth AAAI Conference on

Artificial Intelligence, 2014.

123

Yitao Liang, Jessa Bekker, and Guy Van den Broeck. Learning the structure of probabilistic

sentential decision diagrams. In Proceedings of the 33rd Conference on Uncertainty in Arti-

ficial Intelligence (UAI), August 2017. URL http://starai.cs.ucla.edu/papers/

LiangUAI17.pdf.

Anji Liu, Stephan Mandt, and Guy Van den Broeck. Lossless compression with probabilistic

circuits. In International Conference on Learning Representations (ICLR), apr 2022.

Peter Lucas. Expert knowledge and its role in learning bayesian networks in medicine: an appraisal.

In Conference on Artificial Intelligence in Medicine in Europe, pages 156–166. Springer, 2001.

Binh Thanh Luong, Salvatore Ruggieri, and Franco Turini. k-nn as an implementation of situation

testing for discrimination discovery and prevention. In Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 502–510. ACM, 2011.

Koray Mancuhan and Chris Clifton. Combating discrimination using bayesian networks. Artificial

intelligence and law, 22(2):211–238, 2014.

Radu Marinescu and Rina Dechter. AND/OR branch-and-bound search for combinatorial optimiza-

tion in graphical models. Artif. Intell., 173(16-17):1457–1491, 2009. doi: 10.1016/j.artint.2009.

07.003. URL https://doi.org/10.1016/j.artint.2009.07.003.

Radu Marinescu, Junkyu Lee, Rina Dechter, and Alexander T. Ihler. AND/OR search for marginal

MAP. J. Artif. Intell. Res., 63:875–921, 2018. doi: 10.1613/jair.1.11265. URL https:

//doi.org/10.1613/jair.1.11265.

Robert Mateescu, Rina Dechter, and Radu Marinescu. AND/OR multi-valued decision diagrams

(aomdds) for graphical models. J. Artif. Intell. Res., 33:465–519, 2008. doi: 10.1613/jair.2605.

URL https://doi.org/10.1613/jair.2605.

Denis Deratani Mauá, Heitor Ribeiro Reis, Gustavo Perez Katague, and Alessandro Antonucci.

124

http://starai.cs.ucla.edu/papers/LiangUAI17.pdf
http://starai.cs.ucla.edu/papers/LiangUAI17.pdf
https://doi.org/10.1016/j.artint.2009.07.003
https://doi.org/10.1613/jair.1.11265
https://doi.org/10.1613/jair.1.11265
https://doi.org/10.1613/jair.2605

Two reformulation approaches to maximum-a-posteriori inference in sum-product networks. In

International Conference on Probabilistic Graphical Models, pages 293–304. PMLR, 2020.

Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. Finite mixture models. Annual

review of statistics and its application, 6:355–378, 2019.

Jun Mei, Yong Jiang, and Kewei Tu. Maximum a posteriori inference in sum-product networks. In

Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras. Spam filtering with naive bayes-

which naive bayes? In CEAS, volume 17, pages 28–69, 2006.

Eva Millán and José Luis Pérez-De-La-Cruz. A Bayesian diagnostic algorithm for student modeling

and its evaluation. User Modeling and User-Adapted Interaction, 12(2-3):281–330, 2002.

Michael Munie and Yoav Shoham. Optimal testing of structured knowledge. In Proceedings of the

23rd National Conference on Artificial intelligence, pages 1069–1074, 2008.

Patrenahalli M. Narendra and Keinosuke Fukunaga. A branch and bound algorithm for feature

subset selection. IEEE Transactions on Computers, 26(9):917–922, 1977.

U. Oztok, A. Choi, and A. Darwiche. Solving PPPP-complete problems using knowledge compilation.

In KR, 2016.

James D Park and Adnan Darwiche. Solving map exactly using systematic search. In Proceedings

of the Nineteenth conference on Uncertainty in Artificial Intelligence, pages 459–468, 2002.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy

Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable

learning of tractable probabilistic circuits. In Proceedings of the 37th International Conference

on Machine Learning (ICML), 2020.

125

Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured decom-

posability. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI),

pages 517–522, 2008.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness

and calibration. In Advances in Neural Information Processing Systems, pages 5680–5689, 2017.

Hoifung Poon and Pedro Domingos. Sum-product networks: a new deep architecture. In UAI,

pages 337–346, 2011.

Propublica. Compas analysis. https://github.com/propublica/compas-analysis,

2016.

Tahrima Rahman and Vibhav Gogate. Learning ensembles of cutset networks. In AAAI, pages

3301–3307. AAAI Press, 2016.

Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. Cutset networks: A simple, tractable,

and scalable approach for improving the accuracy of chow-liu trees. In ECML/PKDD, 2014.

Tahrima Rahman, Sara Rouhani, and Vibhav Gogate. Novel upper bounds for the constrained most

probable explanation task. Advances in Neural Information Processing Systems, 34, 2021.

Andrea Romei and Salvatore Ruggieri. A multidisciplinary survey on discrimination analysis. The

Knowledge Engineering Review, 29(5):582–638, 2014.

Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1–2):273–302,

1996.

Sara Rouhani, Tahrima Rahman, and Vibhav Gogate. Algorithms for the nearest assignment

problem. In Proceedings of the 27th International Joint Conference on Artificial Intelligence,

pages 5096–5102, 2018.

126

https://github.com/propublica/compas-analysis

Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. Interventional fairness: Causal

database repair for algorithmic fairness. In Proceedings of the 2019 International Conference on

Management of Data, pages 793–810. ACM, 2019.

Nikil Roashan Selvam, Guy Van den Broeck, and YooJung Choi. Certifying fairness of probabilistic

circuits. (submitted), May 2022.

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic circuits of

probabilistic models. In Advances in Neural Information Processing Systems, pages 3936–3944,

2016.

Alicia Solow-Niederman, YooJung Choi, and Guy Van den Broeck. The institutional life of

algorithmic risk assessment. BTLJ, 2019.

Florian Tramer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, Jean-Pierre Hubaux, Mathias

Humbert, Ari Juels, and Huang Lin. Fairtest: Discovering unwarranted associations in data-driven

applications. In 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pages

401–416. IEEE, 2017.

Antonio Vergari, YooJung Choi, Robert Peharz, and Guy Van den Broeck. Probabilistic circuits:

Representations, inference, learning and applications. AAAI Tutorial, 2020.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A compositional

atlas of tractable circuit operations for probabilistic inference. In Advances in Neural Information

Processing Systems 35 (NeurIPS), dec 2021.

Blake Woodworth, Suriya Gunasekar, Mesrob I Ohannessian, and Nathan Srebro. Learning non-

discriminatory predictors. In Conference on Learning Theory, pages 1920–1953, 2017.

Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geof-

frey J McLachlan, Angus Ng, Bing Liu, S Yu Philip, et al. Top 10 algorithms in data mining.

Knowledge and information systems, 14(1):1–37, 2008.

127

Alice Xiang. Reconciling legal and technical approaches to algorithmic bias. Tennessee Law Review,

88:649, 2020.

Lei Yu and Huan Liu. Efficient feature selection via analysis of relevance and redundancy. Journal

of machine learning research, 5(Oct):1205–1224, 2004.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi. Fairness

constraints: Mechanisms for fair classification. In 20th International Conference on Artificial

Intelligence and Statistics, pages 962–970, 2017.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations.

In ICML, pages 325–333, 2013.

Y. Zhang and Q. Ji. Efficient sensor selection for active information fusion. IEEE Transactions on

Systems, Man, and Cybernetics, Part B, 2010.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Men also like

shopping: Reducing gender bias amplification using corpus-level constraints. In EMNLP, 2017.

128

	Introduction
	Structure of the Thesis

	Foundations
	Probabilistic Models and Queries
	Probabilistic Circuits
	Syntax and Semantics
	Tractable Inference
	Learning and Compiling PCs

	Fairness-aware Learning from Biased Labels
	Introduction
	Latent Fair Decisions
	Motivation
	Modeling with a latent fair decision

	Learning Fair Probabilistic Circuits
	Parameter Learning
	Structure Learning

	Empirical Evaluation
	Real-World Data
	Synthetic Data
	Intermezzo 1: Expected Predictions
	Learning With Missing Values

	Related Work
	Discussion

	Fairness of Predictions with Missing Features
	Problem Formalization
	Discovering Discrimination Patterns and Verifying -fairness
	Searching for Discrimination Patterns
	Intermezzo 2: Fairness Considerations in Policy Making
	Searching for Top-k Ranked Patterns
	Empirical Evaluation of Discrimination Pattern Miner

	Learning Fair Naive Bayes Classifiers
	Parameter Learning with Fairness Constraints
	Learning -fair Parameters
	Empirical Evaluation of -fair Learner

	Finding Discrimination Patterns in Probabilistic Circuits
	Empirical Evaluation

	Discussion

	Robust Decision Making
	Introduction
	Expected Classification Agreement
	Example and Motivation
	Formalization

	Searching for an Optimal Trimming
	Maximum Potential Agreement

	Probabilistic Reasoning Algorithms
	Computing the ECA using Constrained Circuits
	Computing the MPA
	Computing the MAA

	Empirical Evaluation
	Accuracy vs. Agreement
	Trimming General Networks

	Conclusion

	Probabilistic Inference by Circuit Transformations
	Marginal MAP
	Exact Solvers

	Circuit Pruning For Marginal MAP
	Motivation
	Edge Bounds
	Intermezzo 3: Inference by Composition of Circuit Transformations

	Iterative Marginal MAP Solver
	Lower Bound
	Split Heuristics

	Empirical Evaluation
	Conclusion

	Conclusion
	Appendix Proofs
	Degree of Discrimination Bound
	Proof of Proposition 4.1
	Computing the Discrimination Bound
	Proof of Lemma 1

	Divergence Score
	Derivation of Equation 4.2
	Upper Bounds on Divergence Score

	Proof of Proposition 4.2
	Proof of prop:mpa-equiv
	Proof of prop:bound

