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Abstract

Motivation: Repeat proteins, which contain multiple repeats of short sequence motifs, form a large

but seldom-studied group of proteins. Methods focusing on the analysis of 3D structures of such

proteins identified many subtle effects in length distribution of individual motifs that are important

for their functions. However, similar analysis was yet not applied to the vast majority of repeat pro-

teins with unknown 3D structures, mostly because of the extreme diversity of the underlying motifs

and the resulting difficulty to detect those.

Results: We developed FAIT, a sequence-based algorithm for the precise assignment of individual

repeats in repeat proteins and introduced a framework to classify and compare aperiodicity pat-

terns for large protein families. FAIT extracts repeat positions by post-processing FFAS alignment

matrices with image processing methods. On examples of proteins with Leucine Rich Repeat (LRR)

domains and other solenoids like proteins, we show that the automated analysis with FAIT cor-

rectly identifies exact lengths of individual repeats based entirely on sequence information.

Availability and Implementation: https://github.com/GodzikLab/FAIT.

Contact: adam@godziklab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Almost 20%, of all plant and animal, including human, proteins are

entirely built from or contain large domains that consist of multiple

repeats of short sequence motifs (Andrade et al., 2001). These re-

peated motifs typically contain between 3 and 40 amino acids and

cannot form independent structures by themselves (Kajava, 2012).

A subset of repeat proteins that folds into solenoid-like structures

have motif lengths typically in the range of 20–40 amino acids.

Since all repeats in any given protein are homologous, it is often

assumed that their lengths would be constant and, even if not, the

small differences in the length of individual motifs are usually

treated as noise. However, when a few available 3D structures of so-

lenoid proteins were analyzed, it was shown that small length vari-

ations of 1–5 amino acids between individual motifs can modify

structure in subtle but functionally important ways. For instance,

structures of the Leucine Rich Repeat (LRR) family are all known to

fold into curved solenoid (Kobe and Kajava, 2001; Kajava, 1998),

horseshoe-like structures and small motif length variations affect

their local curvature (Matsushima et al., 2005) and, hence, the spe-

cific shape of the binding cavity and their binding specificity. This

feature of LRR proteins is being explored in in silico design of artifi-

cial solenoid-like proteins with desired shapes and curvatures

(Bazan and Kajava, 2015; Park et al., 2015). The interest in detect-

ing and analyzing repeat proteins grew over the last decade as more

functionally important groups of such proteins were discovered.

This led to the development of many methods for their recognition

and analysis based, among others, on self-alignment—RADAR

(Heger and Holm, 2000), HMMs—HHRepID (Biegert and Söding,

2008), self-comparison approaches based on tiling (Parra et al.,

2013) or predefined databases and Fourier transformation—

Repetita (Marsella et al., 2009). Results of such structure analysis

now available in dedicated resources such as the RepeatDB database
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(Di Domenico et al., 2013), as analyzed with Raphael (Walsh et al.,

2012). However, nearly all methods focused on the first step of the

analysis—detecting the motifs—and not on identifying exact lengths

and variations thereof.

At the same time, detecting variations in periodic signals in other

fields, such as cardiographic signals or intense sunspot activities that

oscillate with an approximate period of 11 years, but with signifi-

cant variations, created a large repertoire of mathematical frame-

works that can be applied to detect length variability in solenoid-

like proteins (Jacobson, 2001; Scholkmann et al., 2012). Here, we

present a novel approach called FFAS-based Aperiodicity detection

using Image-processing Techniques (FAIT) for the in detail analysis

of solenoid like proteins. FAIT is an adaptation of image-processing

algorithms to the post-processing the graphic representation of re-

sults of the sensitive profile–profile alignment method FFAS de-

veloped previously in our group (Jaroszewski et al., 2011). We

analyze FAIT’s performance comparing FAIT to annotations from

our structure-based tool, ConSole (Hrabe and Godzik, 2014), since

no standard benchmark exists that contains information about pos-

itions and lengths of individual repeat units for sufficiently large sets

of proteins. Finally, we use FAIT to analyze variability of several

large families of solenoid proteins.

1.1 Aperiodicity profiles
In our previous publication, we introduced a concept of aperiodicity

profiles of solenoid-like protein structures to describe their precise

variation in solenoid motif lengths (Hrabe and Godzik, 2014).

These are plots of motif lengths, indicating the variability between

individual solenoid units. Properties of repeat structures include the

mean unit length kl and the lengths of individual units ki, which can

also be described as differences from the mean length. Differences

from kl are specific for individual repeats, describing how they vary

from the average repeat motif length. They can be indicative for

presence of binding sites or local curvature of the protein, distin-

guishing specific individual repeats from other repeats of the same

family. For instance, aperiodicity in the TLR4 profile (2Z64) indi-

cates the binding region to MD2 with variable electrostatic potential

in several species (Anwar et al., 2015). Analysis of these parameters

allowed us to automatically highlight aperiodic regions in solenoid

structures and identify their specific aperiodicity signatures.

Here, we first benchmark FAIT’s sequence-derived aperiodicity

profiles by comparing them to more-accurate structure-based meth-

ods. We also introduce a novel aperiodicity score, the area A under

the aperiodicity profile curve, to use in a large-scale analysis of the

aperiodicity in LRR proteins (see Section 2 for details). Flat

aperiodicity profiles and hence low A scores indicate periodic struc-

tures, while profiles with many peaks and hence high A scores are

an indicator for highly aperiodic structures. For instance, A allows

us to automatically sort structures by their aperiodicity (Fig. 1).

We use aperiodicity profiles and A scores as descriptors to bench-

mark FAIT and to analyze large protein families.

2 Methods

Detection of aperiodicity patterns with FAIT is based on a custom-

ized signal-processing pipeline where the FFAS-generated profile–

profile scoring matrix M (Wilson, 1996) is enhanced with image-

processing techniques to reveal positions of repeat units in the query

sequence. The FFAS program (Jaroszewski et al., 2011), similarly to

other sequence alignment algorithms, returns the sequence align-

ment as the main output, but the full scoring matrix used to generate

the alignment can also be exported. Visualization of such matrices

was used in many early protein and nucleic acid alignment programs

to manually identify the alignment in a method referred to as a dot-

plot analysis (Vingron and Argos, 1991), but its popularity waned

with improvement of the automated methods for alignment identifi-

cation. Here, we identify and enhance repetitive patterns in a pro-

file–profile scoring matrix using image-processing tools.

A scoring matrix M is an n-by-m matrix, with n being the length

of the reference protein sequence, and m being the length of the

query protein sequence. In a classical alignment problem, values at

position i,j in M are the result of comparing query sequence residue

Q at position i and the reference sequence residue R at position j:

Mi;j ¼ BðQj;RjÞ (1)

where B is an amino acid substitution matrix. An optimal path

through matrix M, i.e. the alignment, is typically found by dynamic

programming (Wilson, 1996). This approach can be generalized to a

profile–profile scoring matrix in which positions in the two profiles

being compared are described by vectors rather than amino acids

(Rychlewski et al., 2000; Xu et al., 2014). Values at position i,j in the

scoring matrix are now determined using a matrix–vector product

defined as:

Mi;j ¼ ~v2;j � B � ~v1;i ; (2)

where ~v1;i is a vector describing a sequence variation at position ith

in the reference protein sequence, B is the amino acid substitution

matrix [BLOSUM62 substitution matrix (Henikoff and Henikoff,

1992) in FFAS], and ~v2;j is a vector describing a sequence variation

at the jth position in the query sequence (Xu et al., 2014).

Fig. 1. Several LRR structures sorted by their respective profile area A score. Ideally periodic internalin structures (1H6T A¼ 0, 2OMZ A¼0) have a low A score.

Ribonuclease inhibitors (1A4Y A¼ 0.5) show a larger degree of aperiodicity with their ki fluctuating between 28 aa and 29 aa. Structures with higher aperiodicity

such as the TLR4 (2Z6A A¼1.5) or TLR5 (3J0A A¼ 2.1) have larger A scores
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2.1 Reference sequence
The matrix analysis described below relies on the fact that starts

and ends of individual solenoid units in the reference protein are

known from structure analysis. For LRRs, we selected Listeria

internalin (PDB id: 2OMZ, chain A) as the reference protein. The

LRR domain in this structure is relatively long and consists of

n¼15 LRR units. Internalins are ideally periodic LRR structures,

so that:

8ki : ki ¼ kl; i � 1; N½ � (3)

Hence, 2OMZ provides a robust reference for detecting aperiod-

icity in LRRs. The whole protein was manually truncated to the

LRR domain, which was extracted from the 2OMZ structure, and

all LRR unit start positions were labeled in the sequence based on

the ConSole results. For Ankyrin and Armadillo sequences, we simi-

larly extracted positions from the structures 1AWC-B and 3TJ3-A,

respectively.

2.2 Matrix processing
Elucidating LRR aperiodicity from the profile–profile scoring matrix

M (Fig. 2.1) involves several steps modeled after image processing.

In the following description, we will refer to each matrix value at

position i,j as pixel pi,j.

1. We apply an averaging filter to amplify local similarity at each

position (Fig. 2.2). The averaging filter calculates the mean value

of 10 pixels along the diagonal fragment [pi,j; piþ10,jþ10]. High

values detected for such diagonals indicate regions of high local

similarity between corresponding regions of two compared se-

quences (or profiles).

2. Because repeat unit positions in the reference sequence are

known, we now split the whole matrix into several submatrices

SM with the size of kreference�m, where kreference is the length of

the repeat unit in 2OMZ and m is the length of the analyzed

protein.

3. We calculate the average matrix AM of all SM: AM¼Ri
N SMi

(Fig. 2.3). Strong similarities, now visible on some diagonals, in-

dicate high local sequence similarities. This approach to reveal

strong features in the matrix is similar to noise-reduction in

signal or image processing as it is done by averaging images

acquired by cryo electron microscopes for instance (Hrabe and

Förster, 2011).

4. We use the discrete Laplace operator filter to amplify diagonals

(Fig. 2.4). The Laplace filter is a standard image-processing tech-

nique to detect edges in an image (Forsyth and Ponce, 2003).

The outcome of the convolution is matrix L (Fig. 2.4), which is

formally defined as L x; yð Þ ¼ @2AM
@x2 þ @2AM

@y2 . The filter is applied

by convoluting each position in AM with the kernel K, which is

defined as

K ¼

�1 �1 �1

�1 8 �1

�1 �1 �1

2
664

3
775 (4)

5. Finally, we average over the first five rows of L to analyze simi-

larity between the query sequence and the static LxLxx pattern

of the internalin LRR unit (Fig. 2.5).

2.3 Signal processing
As a result of the steps described in the previous paragraph, we ob-

tain a 1D signal of identical length as the query sequence length

(Fig. 2e). High values of the signal indicate high similarity to starts

of the LRR units in the reference protein. Hence, by extracting pos-

itions of these peaks, one can find start positions of units in the

query sequence. We use the signal statistics to detect peaks in the

Fig. 2. Processing the profile–profile scoring matrix from its original state (1) to the final signal (5) where LRR units can be detected. The respective steps (1–5) are

described in more detail in the main text. (5) Peaks in the final signal are indicators for the starting positions of the LRR units in the query sequence. The highest

peak in the profile identifies positions of two engineered residues in the 2OMZ sequence

2778 T.Hrabe et al.



signal. We define significant peaks as values larger than 2r of the

signal over the query sequence length. The average distance between

the detected peaks corresponds to the mean unit length kl. The

method accepts kl as a valid unit length if it falls within the known

unit length intervals [18;32] for LRRs, [23;43] for Ankyrin and

[31;51] for Armadillo (Kajava, 2012; Li et al., 2006; Tewari et al.,

2010). If kl is not within that interval, the rsignal factor used in unit

detection is gradually decreased. If a valid value of kl is still not

found at 1r, the query sequence is classified as a non-LRR.

Once kl is known, we iteratively identify LRR units from peaks in

the signal. Here, a numeric optimization method starts detection at

the first peak and optimizes Equation (5) to detect individual units:

ui ¼ argmaxj2 kl�d;klþd½ �ðvi þ viþjÞ (5)

Starting at the first peak with position i and a signal value vi, the

unit length j is sampled within the kl � d; kl þ d
� �

interval, where

d specifies the maximum length of a unit. The only predefined par-

ameter in FAIT and is set to d ¼ kl=2. Once a highest scored unit is

assigned to residue i, the method continues at position iþ jþ1.

2.4 Similarity of aperiodicity profiles
In order to compare two aperiodicity profiles, we calculate the pro-

file similarity s with a sliding L2 window. Here, we slide the shorter

profile p1 along the longer profile p2 and detect the minimal

Euclidean distance for all overlapping regions [Equation (6)], where

N is the number of elements in the shorter sequence p1 and M the

number of elements in the longer sequence p2:

s ¼ mini
M�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼0
ðp1;j � p2;iþjÞ2

r
(6)

We experimented with a similar approach by calculating the

correlation of p1 and p2, but the L2 norm yields more stable re-

sults. The problem with normalized correlation is that the similar-

ity of two vectors where one has all identical elements is not

defined. Correlation becomes not meaningful for extremely peri-

odic proteins, and hence L2 is a more stable score in this applica-

tion. Finally, each element in each profile is the respective

difference kui
–kl measured in amino acids (aa); then, the unit of s

is aa, too.

Fig. 3. Examples of aperiodicity profiles detected for solenoid structures with FAIT (blue curve) or ConSole (green curve). X-axis is the solenoid unit index (start-

ing at 0) and Y-axis is the difference kui
– kl measured in amino acids (aa), solenoid units were colored as detected by FAIT. LRR box: (a) The aperiodicity profiles

of the ribonuclease inhibitor (1A4Y-A) match with a profile similarity of 0.06, and both show the characteristic, sawtooth-like pattern. (b) Profiles of the mouse

Toll-like receptor 4 (2Z64-A) shows a high aperiodicity, and both indicate aperiodicity at the same LRR units. Profile similarity equals 0.17. (c) Mouse Nod-like re-

ceptor 4 (4KXF-B) structure with its N-terminal LRR domain. Profile similarity equals 0.39. (d) Structure of bacterial LRR human gut symbionts with unknown func-

tion (4F0D-A). Unusually for LRRs, the structure is not curved and haves rather linear LRR domains with varying LRR unit lengths. The similarity between FAIT

and ConSole profiles are 0.32. Ankyrin box: (e) 4UUC-A structure with a profile similarity of 0.33. Armadillo box: (f) 3TJ3-A structure with a profile similarity of

0.54. Highlighted repeat units in sequence of all six structures are presented in the Supplementary Material
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2.5 Aperiodicity score A
The aperiodicity score A used for sorting structures in Figure 1 is

defined as the area under the aperiodicity profile:

A ¼
XN

i¼0
jkl � kij

N
(7)

where N is the length of the aperiodicity profile.

3 Results

3.1 Benchmark based on aperiodicity profiles

from structure
In order to benchmark FAIT, we compared its sequence-based aperi-

odicity profiles against structure-based profiles from our structure-

based method, ConSole. A total of 54 LRR, 148 Ankyrin and 80

Armadillo proteins were used to compare aperiodicity profiles

derived directly from structure (Console) to analogous profiles pre-

dicted from sequence (FAIT). For all structures, we could identify

the error distribution for the profiles as an average profile difference

of 0.6 aa and a standard deviation of 0.41 aa, as detected by

Equation (6). Moreover, profile lengths differed by 2 aa on average.

Figure 3 depicts structures and their compared aperiodicity profiles.

Our results indicate that aperiodicity profiles detected with FAIT

are in good agreement with the ones detected from structures with

ConSole.

3.2 Comparing FAIT and HHRepID
We compared FAIT to HHRepID repeat detector (Biegert and

Söding, 2008). HHRepID is probably the conceptually most

similar method from all the repeat detection algorithms, as the

HMM–HMM comparison not only detects any repeat motifs in a

sequence, but returns positions of repeat units as well. Hence, for

direct comparison, HHRepID was applied to generate aperiod-

icity profiles for the identical LRR dataset used to benchmark

FAIT.

Here, we show that FAIT clearly outperforms HHRepID

(Table 1). For instance, for the ribonuclease inhibitor (PDB ID

1A4Y-A), HHRepID returns unit some lengths as long as 57 aa.

This result is not satisfactory as it ignores the fact that these 57 aa

contains two LRR units that vary in length between 28 aa and 29

aa, as shown by FAIT (Fig. 3). Similar effects could be observed for

Armadillo repeats. Results for Ankyrin repeats, however, were

in good agreement for both methods. This must be attributed to

the low, intrinsic aperiodicity of the whole protein family, which

we also observed in our previously study (Hrabe and Godzik,

2014).

While HHRepID performs well as a generalized repeat detector

from sequence, it underperforms in detecting individual repeat units

in sequence. HHRepID with other sequence-based methods such as

RADAR, Repettita or Tiling were developed and benchmarked for

the general purpose of detecting whole repeat domains in sequence,

and were not specifically tailored to detect individual repeat units

and their lengths (Luo and Nijveen, 2014).

3.3 Model bias analysis
In order to analyze FAIT’s sensitivity to the type of reference used

for analysis, we varied the reference sequence for detecting LRR

units. Specifically, we used the Ankyrin (PDB: 1AWC-B) sequence

as reference for FAIT analysis. Ankyrin proteins also form solenoid-

like structures, but their sequence does not resemble any LRR pat-

tern and their structures significantly differ from LRR structures.

The difference between the Ankyrin-based FAIT and ConSole pro-

files detected by the sliding Euclidean score was significantly larger

than using the LRR 2OMZ-A as reference. The average difference

between aperiodicity profiles was 1.62 aa with a standard deviation

of 2.67 aa.

Table 1. Benchmark of HHRepID and FAIT aperiodicity profiles

against structure-based ConSole results

Avg. L2 distance L2 deviation

LRR

FAIT 0.6 aa 0.41 aa

HHRepID 3.82 aa 14.57 aa

Ankyrin

FAIT 1.53 aa 1.29 aa

HHRepID 1.56 aa 1.38 aa

Armadillo

FAIT 0.92 aa 0.19 aa

HHRepID 4.9 aa 4.15 aa

Fig. 4. Comparison of structure aperiodicities detected by ConSole (Str.) and FAIT (Seq.). The distribution of kl and A score determines the position of each sub-

family cluster in the plot. The cluster centers are determined by the mean values of kl and A score and the cluster width by corresponding standard deviations in

the cluster. Structures of the bacterial internalin family and the ribonuclease inhibitor family form clusters in the lower A-score regions, with the ribonuclease in-

hibitor cluster overlapping the NLR subfamily cluster (not shown). TLR structures generally have a higher aperiodicity (they form clusters in higher A-score re-

gions). LRR structures from human gut show the largest aperiodicity of all subfamilies. The positions and widths of FAIT-based clusters are highly correlated with

structure-based results

2780 T.Hrabe et al.



3.4 Pan-family LRR analysis
The intended application of FAIT was to analyze large protein fami-

lies, with most proteins known only on the sequence level. Here, we

analyzed various LRR subfamilies ranging from ideally periodic

internalin proteins to highly aperiodic TLR proteins and generated

aperiodicity profiles in each subfamily based entirely on sequence in-

formation. Aperiodicity profiles were generated for subfamily spe-

cific structures and sequences. Figure 4 shows a comparison of

structure- and sequence-based aperiodicity analysis. The plot con-

firms our previous observations about existence of several subfami-

lies of LRR proteins and hence corroborates the robustness of FAIT:

(i) human NLRs and ribonuclease inhibitors have a repeat-unit

length of 28 aa and generally a low aperiodicity, (ii) internalins are

known to have short unit lengths of typically 22 aa, and (iii) human

TLRs cluster around a unit length of 24 aa and have a larger aperi-

odicity than all previously discussed subfamilies. In addition, our re-

sults show that bacterial LRRs from human gut symbionts have the

largest aperiodicity we observed in our analysis and are systematic-

ally different both from TLR and NLR-like proteins. Again, as

shown in Figure 4, FAIT analysis of sequences is highly correlated

with structure-based results from ConSole and validates the robust-

ness of our method.

4 Conclusion

FAIT is a novel method developed to analyze variations in length of

individual repeats in solenoid-like proteins, and it is the first method

developed specifically to detect it only from sequences. It can, there-

fore, be used to analyze proteins from newly sequenced genomes

and/or large families that were never structurally characterized. It

uses information from the profile–profile alignment scoring matrix

calculated with FFAS and extracts subtle variations of individual re-

peats with image-processing algorithms.

FAIT was benchmarked against an established structure-based

method and shown to give results closely correlated with those ob-

tained using structural data. This allows it to be used on much larger

groups of proteins, as 3D structures of only a very small percentage

of all repeat proteins are known. HHRepID is probably the se-

quence-based method with the most similar annotation detail, but as

nearly all existing methods it was developed to detect repeat do-

mains and not to specifically provide exact positions of individual

units as FAIT. Hence, the major difference between existing meth-

ods and FAIT is the analysis of individual units, not the detection of

repetitive domains in sequence.

Using a previously annotated protein as reference in FFAS com-

parison is the key feature of our approach, as it allows us to pre-

cisely detect individual repeats. Our results indicate that while

varying references for cross-family experiments yields valuable re-

sults, to get the best results possible it is preferable to use a family-

specific reference. Hence, using annotated reference protein seems

to be a required step to increase the resolution in analyzing repeat

sequences. We mainly demonstrate the proof of concept of our algo-

rithm on the large LRR protein family, using a previously annotated,

long and extremely periodic sequence. However, results on other so-

lenoid-like protein families such as Ankyrin and Armadillo repeats

indicate that the FAIT procedure can be readily adapted to other

protein families with one previously annotated sequence and known

length of repeat motifs.

In FAIT, we also introduce a novel framework using the A score

and aperiodicity profiles to analyze large groups of solenoid-like

proteins and group them by their variability, allowing us to

investigate structural and sequence flexibility in more detail than

currently possible on the PDBFlex.org webserver (Hrabe et al.,

2015). We performed such analysis to visualize aperiodicity in sub-

families of LRRs. These results also provided additional validation

of our method since we compared clustering according to FAIT with

structure-based clustering and showed that they are highly corre-

lated. We are currently conducting a larger study in which we use

FAIT to analyze the evolution of aperiodicity in NLR and TLR

families.

As all of our previous methods, FAIT is currently available as an

open-source package, and will be extended in a future web-server

implementation that automatically distinguishes between multiple

solenoid families.
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