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Aims—Insulin resistance (IR) detection is challenging and no test is currently used in clinical 

practice. We developed salivary biomarkers that could be used for IR detection.

Methods—We collected saliva from 186 healthy and 276 pre-diabetic participants, divided them 

into high and low IR groups based on a HOMA cutoff of 2.5. We profiled extracellular 

transcriptome by microarray in saliva supernatant from 23 high IR and 15 low IR participants, and 

pre-validated the top ten extracellular mRNA (exRNA) markers in a new cohort of 40 high and 40 

low IR participants. A prediction panel was then built and validated in an independent cohort of 

149 high and 195 low IR participants.

Results—Transcriptomic analyses identified 42 exRNA candidates differentially present in saliva 

of high and low IR participants. From the top ten candidates, six were individually validated 

(PRKCB, S100A12, IL1R2, CAMP, VPS4B, CAP1) (p<0.01) and yielded AUC values ranging 

from 0.66 to 0.76. Body mass index (BMI) was significant higher in high compared to low IR 

group with AUC of 0.66, and showed no correlation with any of candidate biomarkers. The 

combination of four exRNA markers (IL1R2, VPS4B, CAP1, LUZP6) with BMI achieved 

excellent results in the prediction panel building dataset (AUC=0.79, sensitivity=79%, 

specificity=64%). The prediction model was validated in an independent cohort (AUC=0.82, 

sensitivity=63%, specificity=92%).

Conclusions—A panel of four salivary exRNA biomarkers (IL1R2, VPS4B, CAP1, LUZP6) 

and BMI was validated that can distinguish high and low IR participants, overall and in subgroups 

of healthy and pre-diabetic participants.

Keywords
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1. Introduction

Insulin resistance (IR) is a condition in which cells become less sensitive and resistant to the 

activity of insulin, causing glucose to build up in the blood, leading to hyperglycemia. IR 

and hyperglycemia are risk factors for type 2 diabetes, metabolic syndrome[1], and coronary 

heart disease[2]. Increasing evidence shows that IR occurs before impaired glucose tolerance 

or impaired fasting glucose levels[3]. Hence, it is important to identify IR early to enable 

timely intervention. The gold standard method for measuring IR is the euglycemic insulin 

clamp (EIC) test[4]; however it is clinically impractical because of cost and time 

constraints[5]. A variety of alternative simpler measures have been in use, the most common 

being homeostasis model assessment (HOMA). Other measures include Matsuda index and 

insulinogenic index[6–9]. All these indices are limited by their accuracy, cost and require 

blood drawing[10]. Hence, unlike hyperglycemia testing, IR is rarely evaluated clinically. 

Validated and practicable tests and biomarkers for IR are urgently needed. For this study we 

used HOMA to classify the subjects initially for IR status. We will seek to cross-validated 

our findings from HOMA, with the Matsuda insulin sensitivity index, an alternative standard 

metric[4] strongly correlated with clamp measures[11, 12].

Saliva has omics constituents that can be harnessed for biomarker development, and can be 

obtained non-invasively. Salivary biomarkers have been developed by our group for oral and 
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systemic diseases[13–15], including type 2 diabetes[16]. This study focused on development 

of salivary biomarker for IR detection in a prospective study design, using high-throughput 

RNA discovery to identify salivary extracellular RNA (exRNA) biomarkers, with the goal of 

early intervention and prevention of diabetes and its complications.

2. Material and methods

2.1 Study Design

This study is an ancillary project to the ongoing San Juan Overweight Adult Longitudinal 

Study (SOALS), and was approved by the Institutional Review Board at the University of 

Puerto Rico. The study followed the principle of prospective sample collection and 

retrospective blinded evaluation (PRoBE) design [17].

2.2 Study Population

SOALS participants included overweight and obese participants, aged 40 to 65 years, and 

free of major cardiovascular disease and diabetes (reported or based on evaluations using 

cutoffs from the American Diabetes Association diagnostic guidelines[18]). Details of study 

participants, pre-diabetes classification are provided in the Supplemental Tables 1 and 2).

Participants were classified into high IR group (HOMA-IR value ≥2.5) or low IR group 

(HOMA-IR value<2.5). We also replicated the analyses using the Matsuda index to validate 

our findings from HOMA. The Matsuda Index derived from 0, 30, 60, and 120 minute time 

points of oral glucose tolerance test (OGTT) measures.

2.3 Sample Collection

Participants provided blood samples that were drawn at fasting, and after 75 g glucose load 

at 30, 60, and 120 minutes. Glucose and insulin were assessed from blood samples at all 

time-points, and hemoglobin A1c (HbA1c) was also assessed. During the baseline visit, 

participants were asked to refrain from eating, drinking, smoking or oral hygiene procedures 

for at least two hours prior to the saliva collection. Five ml of unstimulated whole saliva 

samples were collected, stabilized and preserved from all consenting participants as 

previously described[19]. Saliva samples were centrifuged at 2,600 × g for 15 min at 4°C. 

Supernatants were removed from the pellet and immediately mixed with the RNase inhibitor 

SUPERase-In (Ambion, Austin TX).

2.4 Study Protocol

This study consisted of three phases conducted among independent groups of participants 

selected from SOALS:

Biomarker discovery phase—RNA was isolated from 330μl of saliva supernatant using 

RNeasy Mini kit (Qiagen, Valencia, CA), This process was automated using KingFisher mL 

technology (Thermo Fisher Scientific, Waltham, MA), followed by TURBO™ DNase 

treatment (Ambion, Austin, TX). The quality of isolated RNA were examined by RT-PCR 

for three cellular gene transcripts: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

actin–β (ACTB), and ribosomal protein S9 (RPS9).
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Extracted RNA was linearly amplified using the RiboAmp RNA Amplification kit 

(Molecular Devices, Sunnyvale, CA). After purification, complementary DNA (cDNA) was 

in vitro transcribed and biotinylated using GeneChip Expression 3′-Amplification Reagents 

for in vitro transcription labeling (Affymetrix, Santa Clara, CA). The Affymetrix Human 

Genome U133 Plus 2.0 Array was used for mRNA profiling at the UCLA microarray core 

facility. Using the minimum information about a microarray experiment (MIAME) 

criteria[20], Expression values for the microarray analysis were calculated and normalized 

using the Li and Wong method using dChip[21]. For every probe set, the Wilcoxon rank sum 

test was applied to identify differential expression between IR high risk and low risk 

samples. After obtaining the estimates and the P values of each probe set, we corrected the P 

values for false discovery rate and then ranked the exRNA markers.

Individual salivary exRNA candidate validation phase—Quantifications of selected 

exRNA biomarkers from discover phase were performed with the use of reverse 

transcription PCR (RT-PCR) and droplet digital PCR (ddPCR) performed as singleplex 

assays adhering to digital minimum information of quantitative digital PCR experiments 

(MIQE) guidelines[22]. RT-PCR and ddPCR assays were designed using Primer3Plus 

(http://primer3plus.com/cgi-bin/dev/primer3plus.cgi) and their sequences were showed in 

table S3. All primers and probes were synthesized by Sigma-Genosys (Woodlands, TX). we 

used universal human reference RNA (Aglilent Technology, Santa Clara, CA) as positive 

control and UltraPure Distilled water (Life Technology, Carlsbad, CA) as negative control.

1.5ng extracted RNA was converted to DNA and pre-amplified in an GeneAmp 9700 

thermal cycler (Applied Biosystems, Foster City, CA) by using SuperScript™ III Platinum® 

One-Step qRT-PCR System (Invitrogen, Carlsbad, CA) with following cycling conditions: 

2minutes at 60°C, 30minutes at 50°C, 2minutes at 95°C, 15cycles each consisting of a 15 

seconds at 95°C, 30 seconds at 50°C, 10 seconds at 60°C and followed by a 72°C at 10 

seconds, and a final 10 minutes at 72°C. After reverse transcription and pre-amplification, 

DNA were purified with ExoSAP-IT (USB Corporation, Cleveland, OH) for 15 minutes at 

37°C and 15minutes at 80°C. 20μL DNA solution (10 μL ddPCR Probe Supermix, 900 nM 

primers, 250 nM probe, and template DNA) was then loaded into Bio-Rad QX-100 

emulsification device and droplets were formed following the manufacturer’s instructions. 

Then 40μL droplets were transferred to a 96-well reaction plate and sealed with a pierceable 

foil heat sealer at 170°C for 4 seconds. All digital PCR reactions were done singleplexed. in 

a T100 thermal cycler (Applied Biosystems, Foster City, CA) with the following cycling 

conditions: 10 minutes at 95°C, 40 cycles each consisting of a 30 second denaturation at 

94°C followed by a 60°C extension for 60 seconds, and a final 10 minutes at 98°C. After 

cycling, droplets were analyzed immediately. Quantification of each marker was analyzed by 

QuantaSoft software accompanied the ddPCR equipment (Bio-Rad DX100). Following 

PCR, each droplet is analyzed in a droplet reader to determine the fraction of PCR-positive 

droplets. These data were then analyzed using Poisson statistics to determine the absolute 

initial copy number of each marker in the original samples. To minimize the variation, the 

same cut-off value was used in all ddPCR reactions for each marker.

Prediction panel building and definitive validation phase: a prediction panel of salivary 

exRNA biomarkers was built and definitively validated in an independent cohort with the 
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use of RT-PCR and ddPCR. Techniques which were used in individual salivary exRNA 

candidate validation phase.

2.5 Statistical Analysis

Initial analysis using the microarray data and the individual marker evaluation used 

Wilcoxon rank sums tests to compare exRNA markers between high and low IR groups. 

Using the model building cohort, the performance of each exRNA biomarker was evaluated 

individually using receiver operating characteristic (ROC) curve and computing the area 

under curve (AUC) by numerical integration of the ROC curve. Next, a logistic regression 

model was constructed using forward stepwise variable selection to determine the best 

combination of biomarkers and clinical factors. The predicted probability for each 

participant obtained from the model was used to construct an ROC curve along with the 

AUC and its 95% confidence interval (CI). The sensitivity and specificity for biomarker 

combinations were estimated by identifying the cut-point of the predicted probability that 

yielded the highest sum of sensitivity and specificity. Finally, the locked down model was 

directly applied to the validation cohort. Predicted probabilities from the applied model were 

used to construct ROC curves and compute the AUC. To assess technical reproducibility, 

variance components models were constructed to partition the variance into patient and 

experimental variability. In addition, we computed predicted probabilities from the locked 

down logistic regression model for each aliquot and computed the variability of those 

probabilities within participants. All analyses were performed in R V3.1.2 (www.r-

project.org, Vienna, Austria) and SPSS V22 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1 Patient Characteristics

A total of 463 participants were selected for this study. One sample did not pass the 

microarray analysis quality control because of significant degradation; hence, 462 samples 

were included, 212 were in high IR group and 250 in low IR group.

The samples used in different phases of study were: (1) Biomarker discovery phase: 23 high 

IR and 15 low IR participants. (2) Individual salivary exRNA candidate validation phase: 40 

high IR and 40 low IR. (3) Prediction panel building and definitive validation phase: 149 

high IR and 195 low IR. Schematics of the study design are shown in Supplemental Fig 1, 

and descriptive statistics for all participants used for discovery, individual marker validation 

and definitive validation are shown in Table 1.

3.2 Salivary Transcriptomic Biomarker Discovery for IR Detection

In the discovery phase, after transcriptomic profiling of the cell free saliva, 42 genes showed 

significant differences between high and low IR groups (p<.05). Thirty-three genes were up-

regulated in high IR group of which eight exhibited over two fold up-regulation. Nine genes 

were down-regulated in the high IR group of which four exhibited over two fold down-

regulation. The microarray data generated in this study have been uploaded to the GEO 

database (http://www.ncbi.nlm.nih.gov/geo/, the access number is GSE67738). The ten 

exRNA markers that were most significantly different between high IR and low IR were 
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selected as the candidates for individual validation (PRKCB, ADI1, S100A12, KSR, 

LUZP6, IL1R2, CAMP, COX17, VPS4B, and CAP1).

Using a new independent cohort of 40 high IR and 40 low IR saliva samples, six of the ten 

candidate exRNAs were significantly different (p<.05) between high IR and low IR 

(PRKCB, S100A12, IL1R2, CAMP, VPS4B, CAP1) (Figure 2A). For these six markers their 

expression patterns in the independent cohort were consistent with that observed the 

microarray data. These validated exRNA markers yielded individual AUC values ranging 

from 0.66 to 0.76 (Table 2).

The correlation structure of the six validated salivary exRNAs showed that PRKCB and 

CAMP were correlated with IL1R2 (r= 0.71 and 0.69, p<.001); S100A12 and CAMP were 

correlated with CAP1 (r=0.80 and 0.77, p<.001) (Supplemental Table 4). Therefore only 

three markers (ILIR2, VPS4B and CAP1) are effectively useful for multivariate modeling.

We found no association between these variables (smoke, gender, hypertension) and IR 

status except for BMI, which alone yielded an AUC value of 0.76 (Table 2) and had no 

correlation with any of the 10 candidate biomarkers in the individual marker validation 

cohort (Supplemental Table 5). We decided to include BMI in our model building because of 

its strong association with IR, lack of correlation with our biomarkers, and its ease of 

measuring clinically.

3.3 Prediction Panel Building and Validation

To build the prediction panel, we subjected the three individually validated (IL1R2, VPS4B, 

CAP1) and three potential performance enhancing non-validated (KSR, LUZP6, ADI1) 

salivary exRNA markers to a second individual marker validation step using an independent 

cohort of 100 high IR and 130 low IR subjects (Table 1). The three validated markers 

(IL1R2, VPS4B, and CAP1) continued to show significant differences between two groups 

(Figure 1B) yielded AUC values from 0.61 to 0.63 (Table 2, prediction panel building). BMI 

also showed a significant difference between two groups (Table 1) yielded an AUC value of 

0.66. After logistic regression analysis, among the different models of exRNA biomarkers 

chosen by stepwise variable selection and the addition of a “non-validated” marker LUZP6, 

the combination of IL1R2, VPS4B, CAP1, LUZP6, and BMI yielded a best AUC value of 

0.79 with 79% sensitivity and 64% specificity (Table 3). This is the locked down prediction 

panel.

The locked down predictive panel was further evaluated in an independent cohort of 65 low 

IR and 49 high IR individuals (Table 1 and Figure 1C). The discriminatory performance of 

the prediction panel achieved an AUC value of 0.82, a sensitivity of 63% and a specificity of 

92% (Figure 2A). BMI alone achieved an AUC of 0.66. The four salivary exRNA 

biomarkers enhanced the discriminatory AUC to 0.82, an increase of 0.16. When we 

stratified the results by diabetes status, the model had an AUC value of 0.88 with 93% 

sensitivity and 78% specificity among healthy participants and an AUC value of 0.76 with 

69% sensitivity and 89% specificity among pre-diabetic participants (Figures 2B and 2C).
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3.4 Correlation Analysis between HOMA and Matsuda Index

In the prediction panel building phase, we found a strong relationship between HOMA and 

Matsuda index (Spearman’s correlation = −0.917, p<.001, Table 4). Then, we correlated the 

indices with the individual salivary markers, the Spearman’s correlation between HOMA-IR 

and individual markers were: ADI1: ρ=0.089 (p>0.05), KSR:ρ=0.041 (p>0.05), 

LUZP6:ρ=0.067 (p>0.05), IL1R2:ρ=0.169 (p<0.05), VPS4B:ρ=0.160 (p<0.05), 

CAP1:ρ=0.204 (p<0.05); the correlation between Matsuda index and individual markers 

were similar: ADI1: ρ= −0.104 (p>0.05), KSR:ρ= −0.037 (p>0.05), LUZP6:ρ= −0.097 

(p>0.05), IL1R2:ρ= −0.180 (p<0.01), VPS4B:ρ= −0.180 (p<0.01), CAP1:ρ= −0.192 

(p<0.01) (Table 4).

3.5 Correlation Analysis between Salivary ExRNA Biomarkers Panel and HOMA for IR 
Detection

As HOMA is commonly used for IR evaluation, we evaluated if the individual markers from 

the validated salivary IR prediction model are associated with HOMA using linear 

regression. The correlation coefficient for IL1R2 was 0.18 (p=0.001) (Supplemental Figure 

2A), and similar results were obtained for VPS4B (r=0.19, p<.001) and for CAP1 (r=0.23, 

p<.001) (Supplemental Figs 2B and 2C).

4. Discussion

People with IR have a high risk of developing type 2 diabetes and other metabolic 

disorders[23]. Effective non-invasive IR measurements could serve as an early and strong 

predictor for metabolic disorders. The gold standard for detecting IR is the EIC test. EIC is 

clinically impracticable because of the high cost, time needed and invasiveness. Other tests 

based on fasting blood (insulin-to-glucose ratio, and HOMA), OGTT derived indices 

(Matsuda Index[24] and Mari Index[9, 25] or serum biomarkers (fetuin-A, gamma-

glutamyltransferase, α-Hydroxybutyrate, ferritin, and calprotectin) for IR have been 

developed. However these tests lack standard insulin measurements, verification and 

validation[26] limit their value for routine IR assessment.

We have previously developed omics-based salivary biomarkers for detection of oral and 

systemic diseases[13, 15, 27], including type 2 diabetes[28]. The major goal of this study 

was to develop an effective non-invasive saliva-based test to screen non-diabetic and 

prediabetic individuals for their IR status. To reach this goal, we evaluated whether the 

salivary exRNAs varied across groups with high and low IR as assessed by HOMA; whether 

salivary exRNAs identified by microarray data could be validated in an independent cohort; 

and the discriminatory ability of a validated panel of salivary biomarkers. Our results 

confirmed that saliva biomarkers are effective non-invasive tools for IR detection.

A total of 42 genes exhibited differential expression, 33 were up-regulated and 9 were down 

regulated. We selected the top ten exRNA markers for individual validation, where six of ten 

genes (60%) were validated (p<.01, >1.5-fold); and were up-regulated in high compared to 

low IR group, yielding AUC values from 0.71 to 0.76. One salivary exRNA that were not 

significant individually but were chosen in the final models by stepwise selection, because 
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many of the validated individual exRNA markers are correlated while these non-validated 

markers are not correlated and subsequently complement the prediction panel by enhancing 

the discriminatory performance (AUC). These gene subsets were determined to be the most 

predictive overall indicators of IR.

Obesity is commonly recognized as a high risk factor for IR[29]. Lee confirmed the direct 

correlation of BMI with IR[30]. Although all our study participants were overweight (BMI ≥ 

25.0 kg/m2) or obese (BMI ≥ 30.0 kg/m2), participants’ BMI in high IR group were still 

higher compared to the low IR group in all phases (p<.01). Since BMI showed no 

correlation with candidate biomarkers and exhibited strong correlation with IR[31], we 

included BMI as an independent predictor.

The final locked down panel of IL1R2, VPS4B, CAP1, LUZP6, and BMI had a predicted 

performance of AUC=0.79. The actual validated performance of the prediction panel was 

AUC=0.82, confirming the discriminatory power and validity of salivary exRNA biomarkers 

for IR detection. In the final panel validation phase, BMI alone had an AUC of 0.66 whereas 

the combination of the four salivary exRNA biomarkers and BMI had an AUC of 0.82, a 

strong performance improvement of 0.16 AUC over BMI alone.

This study was restricted to high risk overweight/obese who would be most likely to benefit 

from this diagnostic test, given the very low prevalence of IR ranging from 0% to 16%[32] 

in lean or normal weight individuals[33]. Participants in this study were healthy or pre-

diabetic. This is of importance, as diabetes interventions are more effective at early stages. 

In the individual marker validation phase, we found that salivary biomarkers yielded similar 

AUC values in healthy (0.93) and pre-diabetic (0.94) participants. In the definitive 

validation, we assessed the prediction power of the validated panel among healthy and pre-

diabetic participants separately. The validated panel performed well in both groups (healthy: 

AUC=0.88, sensitivity=93%, specificity=78%; pre-diabetes: AUC=0.76, sensitivity=69%, 

specificity=89%), which indicates that our panel is a valuable tool in detecting IR among 

both healthy and pre-diabetic participants. While it is known that gender differences can 

impact gene expression, but gender did not impact salivary exRNA levels in our study.

We selected HOMA for this study as it is the most widely used measure of IR, and shows 

good correlation (r=−0.80) with clamp derived measures[34], especially among people 

without significant hyperglycemia, which is our target population[35]. EIC test is the gold 

standard but is also not perfect, as it does not accurately reflect physiological conditions as 

reflected post-meal or after an oral glucose load[36]. The use of measures such as HOMA as 

the standard is generally likely to underestimate rather than overestimate the diagnostic 

ability of the saliva markers, due to random misclassification[37]. Hence our results 

compared to HOMA can be viewed as a conservative estimate.

We cross-validated our findings from HOMA, with the Matsuda insulin sensitivity index, an 

alternative standard metric[4] strongly correlated with clamp measures[11, 12]. There was a 

strong correlation between HOMA and Matsuda in our prediction model training set showed 

a strong relationship (Spearman’s correlation = −0.917, p<.001), highlighting the validity of 

HOMA against a more invasive and extensive measure. The individual salivary markers 
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(ADI1, KSR, LUZP6, IL1R2, VPS4B, and CAP1) had very similar correlations with HOMA 

and with Matsuda (Table 4). The AUC of our final model for HOMA was 0.79 (95% CI 

0.73–0.84) and for Matsuda (using above/below the median Matsuda score in our dataset 

which was 3.97) was 0.77 (95% CI 0.71–0.83). The comparative results for our biomarker 

panel against two IR assessment indices (HOMA or Matsuda) and the correlations in the 

literature relating these indices to EIC, support the validity of our panel as a measure of IR. 

Future studies should consider evaluation against EIC.

The known biological functions of these validated biomarkers are mainly linked to protein 

binding, ATP binding and ATPase activity (Supplemental Table 6), some of which were 

associated with insulin secretion and glucose metabolism. For example, IL1R2 was found to 

be positively correlated with reduced insulin secretion and higher HbA1c levels[38]; VPS4B 

was up-regulated in response to the inhibition of glucose stimulated insulin secretion[39]; 

and CAP1 expression level was associated with insulin sensitivity[40]. These studies 

corroborate our findings and strengthen the premise that our panel could be used in the 

clinical detection of IR. Furthermore, identifying the genes that are involved in IR, will 

allow us to better understand its pathogenesis and mechanism of the diseases, and means for 

prevention.

This is the first study to evaluate salivary exRNA from non-diabetics and pre-diabetics to 

obtain a discriminatory panel of salivary biomarkers capable to differentiate IR. We have 

developed and validated a predictive panel for detection of IR in healthy and pre-diabetics in 

a high risk Hispanic population. Future studies should evaluate the ability of this panel in 

predicting progression of IR and hyperglycemia and evaluate potential utility in different 

populations and ethnic groups. Furthermore, the multi-center evaluation of the panel should 

be conducted to fully address its clinical predictive value.

5. Conclusions

This study is an important milestone for salivary biomarker development as the first study to 

complete the biomarker development path for salivary biomarkers, based on prospective 

study design (PRoBE-compliant) for discovery and validation, and the definitive validation 

of individual and panel of salivary exRNA markers for IR detection with discriminatory 

clinical performance. A panel consisting of four salivary exRNA biomarkers and BMI was 

developed and validated that can distinguish high and low IR participants, among non-

diabetic people and within subgroups of healthy and pre-diabetes participants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Saliva is a desirable non-invasive bodily fluid for biomarker detection in 

clinical applications.

• Performed the definitive validation of salivary biomarkers for insulin 

resistance detection.

• The first systematic disease, insulin resistance, for saliva biomarker 

development.
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Figure 1. 
Panel A shows the mean (±SE) salivary levels of ten candidate markers in individual exRNA 

marker validation set, six of them (PRKCB, S100A12, IL1R2, CAMP, VPS4B, CAP1) 

showed significant difference between high IR and low IR groups.

Panel B and C show levels of six candidate markers used in prediction panel building (B) 

and validation of the prediction model (C).

In Panel A, B, and C, a single asterisk denotes P<.05 for the between-group comparison; 

double asterisks denote P<.01.

Zhang et al. Page 14

Diabetes Res Clin Pract. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
ROC curves for final prediction panel for IR in: A) non-diabetic and pre-diabetic; B) non-

diabetics; C) pre-diabetics
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Table 3

Performance of biomarker combinations in the prediction panel building phase

exRNA biomarkers combination AUC (95% CI) Sensitivity Specificity

IL1R2+VPS4B+CAP1 0.62(0.55–0.69) 0.29 0.93

IL1R2+VPS4B+CAP1+BMI 0.70(0.63–0.77) 0.58 0.74

IL1R2+VPS4B+CAP1+KSR 0.64(0.57–0.71) 0.35 0.89

IL1R2+VPS4B+CAP1+LUZP6 0.71(0.64–0.77) 0.91 0.42

IL1R2+VPS4B+CAP1+ADI1 0.62(0.54–0.69) 0.32 0.92

IL1R2+VPS4B+CAP1+LUZP6+BMI 0.79(0.72–0.84) 0.79 0.64
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