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THE NEAREST UNVISITED VERTEX WALK ON
RANDOM GRAPHS

DAVID J. ALDOUS

Department of Statistics, University of California, Berkeley, California 94720, USA

E-mail: aldous@stat.berkeley.edu

We revisit an old topic in algorithms, the deterministic walk on a finite graph which
always moves toward the nearest unvisited vertex until every vertex is visited. There
is an elementary connection between this cover time and ball-covering (metric entropy)
measures. For some familiar models of random graphs, this connection allows the order
of magnitude of the cover time to be deduced from first passage percolation estimates.
Establishing sharper results seems a challenging problem.

Keywords: deterministic walk, metric entropy, nearest neighbor, random graph

1. INTRODUCTION

Consider a connected undirected graph G on n vertices, where the edges e have positive
real lengths �(e). Consider an entity—let us call it a robot—that can move at speed 1 along
edges. There are many different rules one might specify for how the robot chooses which edge
to take after reaching a vertex—for instance, the “random walk” rule, to choose edge e with
probability proportional to �(e) or 1/�(e). One well-studied aspect of the random walk is
the cover time, the time until every vertex has been visited—see Ding et al. [7] for references
to special examples and surprisingly deep connections with other fields. This article instead
concerns what we will call1 the nearest unvisited vertex (NUV) walk, defined as follows.
A path of edges has a length, the sum of edge-lengths, and the distance d(v, v∗) between
vertices is the length of the shortest path. For simplicity, assume that all such distances
are distinct, so the shortest path is unique. Now, the NUV walk is the deterministic walk
defined in words by

after arriving at a vertex, next move at speed 1 along the path to the closest unvisited
vertex

1 Confusingly previously called nearest neighbor, inconsistent with the usual terminology that neighbors
are linked by a single edge, but justifiable by the artifice of extending the given graph to a complete graph
via defining each edge (v, v∗) to have length d(v, v∗). But the phrase nearest neighbor is used in many other
contexts, so the more precise name NUV seems preferable.
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852 D. J. Aldous

and continue until every vertex has been visited.2 In symbols, from the initial vertex v0, the
vertices can be written as v0, v1, v2, . . . , vn−1 in order of first visit:

vi = arg min
v �∈{v0,...,vi−1}

d(vi−1, v), 1 ≤ i ≤ n− 1 (1)

and this walk has length L = LNUV = LNUV(G, v0) =
∑n−1

i=1 d(vi−1, vi).
There are several types of question that one can ask about NUV walks.

• The order of magnitude of L for a general graph?
• Sharper estimates of L for specific models of random graphs?
• The structural properties of the NUV path in different contexts?

The first question has been studied in the context of TSP (traveling salesman problem)
heuristics and robot motion, and a 2012 survey of the general area, under the name online
graph exploration, is given in Megow et al. [16].

1.1. Outline of Results

Our first purpose is to record a formalization (Proposition 1) of the basic general relationship
between LNUV and ball-covering. This is implicit in two now-classical results: Corollary 2,
which compares LNUV to the length LTSP of the shortest path through all n vertices, and
Corollary 3, which upper bounds LNUV for n arbitrary points in the unit square with the
Euclidean distance. As shown in Section 2, each follows easily from our formalization.

Our main purpose is to point out that the relation with ball-covering enables (in some
simple probability models) the order of magnitude of L to be deduced easily from known
first passage percolation (FPP) estimates. In Section 4, we study two specific models.

• For the m×m grid with i.i.d. edge-lengths, Corollary 6 shows that L is indeed
O(m2) rather than larger order.

• For the complete graph on n vertices, with i.i.d. edge-lengths normalized so that the
shortest edge at a vertex is order 1, Corollary 7 shows that L is indeed O(n) rather
than larger order.

In both of those models, the (first-order) behavior of FFP is well understood, via the
shape theorem on the two-dimensional grid, and the Yule process approximation on the
complete graph model.

A final purpose is to point out that the second and third questions above have apparently
never been studied. The NUV rule on a deterministic graph is “fragile” in the sense that
small changes in the length of an edge might affect a large proportion of the walk. But it
is possible that introducing random edge-lengths might “smooth” the typical properties of
the walk on a random graph. We defer further general discussion to Section 5.

2. BASICS

2.1. Relation with Ball-Covering

A basic mathematical observation is that LNUV is related to ball-covering.3 Given r > 0
define N(r) = N(G, r) to be the minimal size of a set S of vertices such that every vertex

2 This walk convention is consistent with random walk cover times; one could alternatively use the tour
convention that the walk finally returns to its start, consistent with TSP.

3 And thereby to metric entropy—see Section 2.3.
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is within distance r from some element of S. In other words, the union over s ∈ S of the
balls of radii r centered at s covers the entire graph.

Proposition 1:

(i) N(r) ≤ 1 + LNUV/r, 0 < r <∞.

(ii) LNUV ≤ 2
∫ Δ/2

0
N(r) dr where Δ = maxv,w d(v, w) is the diameter of the graph.

Proof: Inequality (i) is almost obvious. As at (1), write the vertices as v0, v1, v2, . . . , vn−1

in order of first visit by the NUV walk, and say vi has rank i. Write ζ(vi) =
∑i−1

j=0 d(vj , vj+1)
for the length of the walk up to vi. Select vertices (z(k), 0 ≤ k ≤ k∗ − 1) along the walk by
selecting the first vertex at distance > r along the walk after the previous selected vertex.
That is, z(k) = vI(k) where I(0) = 0 and for k ≥ 0

I(k + 1) = min{i > I(k) : ζ(vi) − ζ(vI(k)) > r}
until no such i exists. By construction, every vertex is within distance r of some z, and the
number k∗ of selected vertices is at most 1 + LNUV/r. This establishes (i).

For inequality (ii), write D(vi) = d(vi, vi+1) for the length of the path (which may
encompass several edges) from the rank-i vertex to the rank-(i+ 1) vertex, andD(vn−1) = 0.
The argument rests upon the following simple observation, as illustrated in Figure 1. Fix a
vertex v∗ and a real r > 0, and consider the set of vertices within distance r from v∗:

B(v∗, r) := {v : d(v, v∗) ≤ r}.
Consider the vertex v̄ of highest NUV-rank within B(v∗, r). When the NUV walk first visits
vi ∈ B(v∗, r) with vi �= v̄, there is then some first unvisited vertex ṽ on the minimum-length
path from vi to v̄, and so

D(vi) ≤ d(vi, ṽ) ≤ d(vi, v̄) ≤ 2r

the final inequality using the triangle inequality via v∗. We conclude that

D(v) ≤ 2r for all v ∈ B(v∗, r) except perhaps one vertex. (2)

Now by considering a set, say S(r), containing N(r) vertices, such that every vertex is
within distance r from some element of S(r), inequality (2) implies

the number of vertices w with D(w) > 2r is at most N(r). (3)

Because D(w) is bounded by the graph diameter Δ, for a uniformly random vertex J we
have

LNUV = nE[D(J)]

= n

∫ Δ

0

P (D(J) > r) dr

=
∫ Δ

0

(number of vertices w with D(w) > r) dr

≤
∫ Δ

0

N(r/2) dr

which is equivalent to (ii). �
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Figure 1. Illustration of the proof of (2). The left panel shows the subgraph within a
radius-r ball. The NUV walk must consist of one or several excursions within the ball.
These excursions depend on the configuration outside the ball, and the right side shows one
possibility. The first excursion enters via edge a and exits via edge b. The second excursion
enters via edge c and exits via edge d, en route backtracking across one edge. The third
excursion enters via edge e and proceeds to vertex f ; at that time, only vertices g, h within
the ball are unvisited, and the next step of the walk is a path going via three previously
visited vertices to reach g and then h. The next step from h, not shown, might be very long,
depending on whether nearby vertices outside the ball have all been visited. Arrowheads
indicate the end of a step of the NUV walk, that is, the edge by which the vertex is first
entered.

Remarks: The simple formulation of Proposition 1 is more implicit than explicit in the
literature we have found. Part (i) is a less sharp version of a more complex lemma used in
Rosenkrantz et al. [19] to prove Corollary 2 below. In the context of TSP or robot exploration
heuristics, the NUV algorithm is typically (e.g. [11,13]) mentioned only briefly before con-
tinuing to better algorithms. From an algorithmic viewpoint, calculating N(r) on a general
graph is not simple, so part (ii) of Proposition 1 is not so relevant, but as we see in Section
4, it is very helpful in providing order-of-magnitude bounds for familiar models of random
networks.

2.2. Two Classical Results

Two classical results follow readily from the formulation of Proposition 1. Write LTSP =
LTSP(G, v0) for the length of the shortest walk starting from v0 and visiting every vertex.4

So LNUV ≥ LTSP and it is natural to ask how large the ratio can be. This was answered in
Rosenkrantz et al. [19].

Corollary 2: Let a(n) be the maximum, over all connected n-vertex graphs with edge-
lengths and all initial vertices, of the ratio LNUV/LTSP. Then, a(n) = O(log n).

4 The convention that TSP refers to a tour has the virtue that the length is independent of the starting
vertex. But the latter is not true for the NUV tour.
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Proof: The argument for Proposition 1(i) is unchanged if we use the TSP path instead
of the NUV path, so in fact gives the stronger result N(r) ≤ 1 + LTSP/r, 0 < r <∞. Now
apply Proposition 1(ii) and note that Δ ≤ LTSP, so

LNUV ≤ 2
∫ LTSP/2

0

min(n, 1 + LTSP/r) dr ≤ 2LTSP + 2LTSP log n

the second inequality by splitting the integral at r = LTSP/n. �

There are examples to show that the O(log n) bound cannot be improved—see John-
son and Papadimitriou [13], Hurkens and Woeginger [11], Hougardy and Wilde [10], and
Rosenkrantz et al. [19]. As noted in the elementary expository article Aldous [2], in con-
structing such an example the key point is to make the bound in (2) be tight, in the
sense

for appropriate values of r with 1 � LTSP/r � n, there are distinguished vertices sepa-
rated by distance r along the TSP path such that the NUV path from one to the next is
order r.

Hurkens and Woeginger [11] show that one can make such examples be planar, embed-
ded in the plane with edge-lengths as Euclidean length, and edge-lengths constrained to a
neighborhood of 1. But such constructions seem very artificial.

Here is the second classical result. See Steele [20] for one proof and the early history of
this result.

Corollary 3: There is a constant A such that, for the complete graph on n arbitrary
points in the unit square, with Euclidean lengths,

LNUV ≤ An1/2.

Note this implies the well-known corresponding result LTSP ≤ An1/2 .

Proof: By ball-covering in the continuum unit square, there is a numerical constant C
such that N(r) ≤ C/r2, and so Proposition 1(ii) gives

LNUV ≤ 2
∫ √

1/2

0

min(n,C/r2) dr ≤ 4C1/2n1/2.

�

2.3. The Order of Magnitude Question

What is the size of LNUV for a typical graph? That is a very vague question, but let us
attempt a discussion anyway. For this informal discussion, it is convenient to scale distances
so that the typical distance from a vertex to its closest neighbor is order 1, and therefore,
LNUV is at least order n. Examples mentioned above show that LNUV can still be as large
as order n log n, but intuition suggests that, for natural examples, LNUV is of order n rather
than larger order. For this, it is certainly necessary, but not sufficient, that the length LMST

of the minimum spanning tree (MST)5 is O(n). Proposition 1(ii) provides a quantitative
criterion: it is sufficient thatN(r)/n is order r−α for some α > 1 over 1 � r � Δ. Intuitively,

5 Recall LMST ≤ LTSP ≤ 2LMST.
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this corresponds to “dimension >1”, where dimension is measured by metric entropy,6 as
illustrated in the examples in Section 4.

2.4. Other Questions in the Deterministic Setting

It is not clear what other results might hold for general graphs G. One can ask about the
variability of LNUV(G, v) as v varies. Clearly, it can be arbitrarily concentrated, e.g., on the
complete graph with edge-lengths arbitrarily close to 1. On the other hand, consider the
linear graphGn on vertices {0, 1, . . . , n− 1} with slowly decreasing edge-lengths �(i− 1, i) =
1 − i/n2. Here, there is a factor of 2 variability in LNUV(G, v) as v varies. We do not see
any easy example with large variability, prompting the following question.

Open Problem 4: Is maxv LNUV(G, v)/minv LNUV(G, v) bounded over all finite graphs
G?

In this context, it is perhaps more natural to extend the NUV walk to a tour which
finally returns to its start. Note that in the linear graph example above, |LNUV(G, v) −
LNUV(G, v′)| is small for adjacent vertices (v, v′), so one can ask whether there is a general
bound for some average of |LNUV(G, v) − LNUV(G, v′)| over nearby vertex-pairs (v, v′).

One can also consider the overlap of edges used in walks from different starts. Note that
if two vertices are each other’s nearest neighbor, then every NUV walk uses their linking
edge. One can ask, for the two walks started at arbitrary different vertices, how small can be
the proportion of time spent on edges used by both walks, though we hesitate to formulate
a conjecture.

2.5. The Three Levels of Randomness

Introducing randomness leads to different questions. There are three ways that one can
introduce randomness. One can simply randomize the starting vertex. This suggests the
following conjecture, modifying Open Problem 4.

Conjecture 5: The ratio s.d.(LNUV(G,V ))/ELNUV(G,V ), where the initial vertex V is
uniform random, is bounded over all finite graphs.

A second level of randomness is to start with a given deterministic G, but then consider
the random graph G in which the edge-lengths �(e) are replaced by independent random
lengths �∗(e) with the Exponential(mean �(e)) distribution. So here, we have a random
variable L∗(G) = LNUV(G, V ) where again the initial vertex V is uniform random. In this
model of random graphs G, results of Aldous [1] for FFP say that the percolation time is
weakly concentrated7 around its mean provided no single edge contributes non-negligibly
to the total time. So one can ask whether a similar result holds for L∗(G).

The third level of randomness involves more specific models of random graphs, which
we will consider in the next sections.

6 The reader may be more familiar with metric entropy involving small balls for continuous spaces, but
it is equally relevant in our context of large balls, as used, for instance, in defining the fractal dimension of
subsets of Z

d.
7 As in the weak law of large numbers.
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Figure 2. A NUV walk through 800 random points in the unit square and the histogram
of step lengths.

Table 1. Simulation data for lengths L∗
n in the random points in the unit square model.

Simulations and data in this model by Yechen Wang

n EL∗
n n−1/2

EL∗
n s.d.(L∗

n)

100 9.05 0.91 0.41
200 12.78 0.90 0.54
400 18.06 0.90 0.54
800 25.54 0.90 0.49

3. RANDOM POINTS IN THE SQUARE

One very special model of random graph is to take the complete graph on n random (i.i.d.
uniform) points in the unit square, with Euclidean edge-lengths. Figure 2 shows a realization
of the corresponding NUV walk with n = 800 random points, and Table 1 shows some
simulation data for the lengths L∗

n of the NUV walk (see discussion below). The qualitative
behavior seen in simulations corresponds to intuition: the walk starts to traverse through
most (but not all) vertices in any small region, goes through different regions as some
discrete analog of a space-filling curve, and near the end has to capture missed patches and
the remaining isolated unvisited vertices via longer steps across already-explored regions.
Indeed in Figure 2, we see that the actual behavior of the walk within a medium-sized ball
is like the sketch in Figure 1, with several different excursions.

The lack of scaling for the s.d. may seem surprising but is understandable as follows.
To adhere to our scaling convention (the distance to nearest neighbor is order 1), we should
take the square to have area n and write Ln = n1/2L∗

n for the length of the NUV walk.
Intuition, thinking of Ln as the sum of n order-1 lengths, suggests that there are limit
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constants

c := lim
n
n−1Ln = lim

n
n−1/2L∗

n; σ := lim
n
n−1/2s.d.(Ln) = lim

n
s.d.(L∗

n). (4)

Our small-scale simulation data suggests that this holds in the present model with c ≈ 0.9
and σ ≈ 0.5. How generally this holds is a natural question, and we defer further discussion
to Section 5.

Corollary 3 implies ELn ≤ An, which is all that we know rigorously. But there are
many questions that one can ask. As well as the limits (4) one might conjecture that there
are concentration bounds and a Gaussian limit for n−1/2(Ln − ELn). For TSP length, the
existence of a limit constant is known via subadditivity arguments [21,23] and concentration
via now-classical Talagrand arguments, and for MST length, the Gaussian limit is also
known by martingale arguments [15]. Alas, it seems hard to find any rigorous such arguments
for the NUV walk. One might also bear in mind that, for the random walk cover time
problem, the two-dimensional case is the hardest to analyze sharply, so this might also hold
for the NUV walk.

In any of our models, by considering the length as Ln(Gn, Vn) for a uniform random
starting vertex Vn, we can consider the variance decomposition

varLn = var E(Ln|Gn) + E var(Ln|Gn)

where the first term represents the variability due to the random graph and the second term
represents the variability due to the starting vertex. In simulations of the present model,
for n = 100 the two terms are roughly equal. Figure 3 superimposes the NUV walks from
three different starts, in a realization of the present model, giving some impression of the
extent of overlap.

4. RELATION WITH FPP

For graphs with i.i.d. random edge-lengths, one can seek to find the correct order of mag-
nitude of LNUV by combining Proposition 1(ii) with known FPP results. Here is the basic
example.

4.1. The Two-Dimensional Grid

Consider the m×m grid, that is, the subgraph of the Euclidean lattice Z
2, and assign i.i.d.

edge-lengths �(e) > 0 to make a random graph Gm. Because the shortest edge-length at a
given vertex is Ω(1), clearly LNUV is Ω(m2).

Corollary 6: For the two-dimensional grid model Gm above, the sequence (m−2LNUV(Gm),
m ≥ 2) is tight.

We conjecture that, in fact, m−2LNUV(Gm) converges in probability to a constant, but
we do not see any simple argument. Table 2 shows simulation data, where �(e) has the
Exponential(1) distribution.

Proof: For a vertex v of Gm, write B(v, r) for the random set of vertices v′ with d(v, v′) ≤
r, and write D(v, r) for the nonrandom set of vertices v′ with the Euclidean distance ‖v −
v′‖ ≤ r. Standard results for FPP on Z

2 going back to Kesten [14] (see [4] Thm. 3.41 for
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Figure 3. Three different starts for the NUV walk on 100 points in the square.

recent discussion) imply that there exist constants c1, c2, c3 (depending on the distribution
of �(e)) such that

P(D(v, r) �⊆ B(v, c1r)) ≤ c2 exp(−c3r), 0 < r <∞. (5)

The remainder of the proof is conceptually straightforward. Given large m and r, there is a
set S(m, r) of at most a1m

2/r2 vertices of Gm such that ∪v∈S(m,r)D(v, r) covers Gm, and
note that D(v, r) contains at most a2r

2 vertices; here, a1 and a2 are absolute constants. By
Markov’s inequality and (5), the probability of the event

the number of v in S(m, r) such that D(v, r) �⊆ B(v, c1r)

exceeds a given s > 0 (6)

is at most a1m
2r−2c2 exp(−c3r)/s. Apply this with s = m2r−2 exp(−c3r/2). Now, define a

vertex-set S+(m, r) as

the union of S(m, r) and all the vertices in all the discs D(v, r) with v ∈ S(m, r) and
D(v, r) �⊆ B(v, c1r).

Outside the event (6), we have that ∪v∈S+(m,r)D(v, r) covers Gm, and S+(m, r) has
cardinality at most

nm(r) := a1m
2/r2 + sa2r

2 = a1m
2/r2 + a2m

2 exp(−c3r/2).
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Table 2. Simulation data for lengths L(Gm) in the grid model

n = m2
EL(Gm) n−1

EL(Gm) s.d.(L(Gm)) n−1/2 s.d.(L(Gm))

100 66.2 0.66 7.67 0.77
400 259 0.65 14.8 0.74
900 576 0.64 17.0 0.57

So, we have shown
P(N(Gm, r) > nm(r)) ≤ a1c2 exp(−c3r/2). (7)

This holds for fixed r, but because N(Gm, r) and nm(r) are decreasing in r, we have the
inclusion of events, for j = 1, 2, . . .

{N(Gm, r) > nm(r − 1) for some j ≤ r ≤ j + 1} ⊆ {N(Gm, j) > nm(j)}

Applying (7) and summing over j,

P(N(Gm, r) > nm(r − 1) for some r > r0) ≤ Φ(r0)

where Φ depends on the distribution of �(e) but not on m, and

Φ(r0) ↓ 0 as r0 → ∞. (8)

Noting that nm(r)/m2 does not depend on m and

ψ(r0) :=
∫ ∞

r0

nm(r − 1)/m2 dr → 0 as r0 → ∞

and N(Gm, r) ≤ m2 we have, for all r0 > 0,

P

(∫ ∞

0

m−2N(Gm, r) dr > r0 + ψ(r0)
)

≤ Φ(r0)

which, together with (8) and Proposition 1(ii), implies tightness of the sequence
(m−2LNUV(Gm), m ≥ 2). �

The central point is that the argument depends only on some bound like (5), which
one expects to hold very generally in FPP-like settings in dimension >1. For instance, FPP
on a large family of connected random geometric graphs is studied in Hirsch et al. [9] and
it seems plausible that results from that topic can be used to prove that LNUV is O(n) on
such n-vertex graphs.

The next example is infinite dimensional, and the bound (10) below will be the analog
of the bound (5) above.

4.2. The Mean-Field Model of Distance

Take the complete graph on n vertices and assign to edges i.i.d. random weights with
Exponential (mean n) lengths. This “mean-field model of distance” Gn turns out to be
surprisingly tractable, because the smallest edge-lengths 0 < �1 < �2 < · · · at a given vertex
are distributed (in the n→ ∞ limit) as the points of a rate-1 Poisson point process on (0,∞),
and as regards short edges, the graph is locally tree-like. A now classical result of Frieze
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Table 3. Simulation data for lengths Ln in the mean-field model

n ELn n−1
ELn s.d.(Ln) n−1/2 s.d.(Ln)

100 209 2.09 22 2.2
400 865 2.14 41 2.1
900 1954 2.17 57 1.9

Figure 4. Mean-field model: vertices and edges within a ball of radius 4 in a realization,
illustrating the local tree-like property. Edges to vertices outside the ball not shown.

[8] proves that the length L(n)
MST of the MST in this model satisfies EL

(n)
MST ∼ ζ(3)n. A later

remarkable result of Wästlund [22], formalizing the ideas of Mézard and Parisi [17], shows
that the expected length of the TSP path in this model is asymptotically cn for an explicit
constant c = 2.04 . . .. Might it be possible to get a similar explicit result for the NUV length?
Corollary 7 below gives the correct order of magnitude by essentially the same method as
above for Corollary 6. Table 3 gives some simulation results.

As in the previous models, we expect limits of the form

c := lim
n
n−1

ELn, σ := lim
n
n−1/2 s.d.(Ln)

and Table 3 is loosely consistent with that (Figures 4 and 5).
As in Section 3, by considering the length as Ln(Gn, Vn) for a uniform random starting

vertex Vn, we can consider the variance decomposition

varLn = var E(Ln|Gn) + E var(Ln|Gn)
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Figure 5. Mean-field model: in the Figure 4 realization, the NUV walk within the ball
and entrance-exit edges. Vertices numbered according to the order in an NUV walk started
outside the ball, with vertices outside the ball in parentheses.

where the first term represents the variability due to the random graph and the second term
represents the variability due to the starting vertex. In simulations with n = 100, the former
variance term is around 30 times larger than the second term, consistent with the general
conjectures (Section 2.5) that the initial state v typically has little influence on LNUV(G, v).

We now prove the O(n) upper bound in this model.

Corollary 7: For the mean-field model of distance Gn, the sequence (n−1LNUV(Gn), n ≥
2) is tight.

To prove this, we first record a simple estimate.

Lemma 8: Let Zp have the Geometric(p) distribution. Let Z∗
p coincide with Zp − 1 outside

an event A. Let H be a random subset of [n] = {1, 2, . . . , n} distributed uniformly on size
Z∗

p subsets of [n]. Then,

P(Ac and H ∩ [s] = ∅) ≤ p

1 − e−s/n
.
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Proof: It is standard (by comparing sampling with and without replacement) that

P(H ∩ [s] = ∅|Z∗
p = i) ≤ exp(−si/n).

So

P(Ac and H ∩ [s] = ∅) ≤
∑
i≥0

p(1 − p)i exp(−si/n)

=
p

1 − (1 − p)e−s/n

≤ p

1 − e−s/n
.

�

As before, for a vertex v ∈ [n] = {1, 2, . . . , n}, write Bn(v, r) = {v′ : d(v, v′) ≤ r} for
the ball of radius r in Gn. Conceptually, we want to consider balls around s randomly
chosen vertices, but by symmetry, this is equivalent to using the first s vertices, which is
notationally simpler. So define the vertex-set

Cn(s, r) = complement of
⋃
i≤s

B(i, r)

and then by appending to [s] every vertex in Cn(s, r),

N(Gn, r) ≤ s+ |Cn(s, r)|, 1 ≤ s ≤ n. (9)

Recall (see, e.g., [18] Sec. 6.1.3) the standard Yule process (Y (r), 0 ≤ r <∞) for which Y (r)
has exactly the Geometric(e−r) distribution. The n→ ∞ limit distribution of the process
(|Bn(v, r)|, 0 ≤ r <∞) over a fixed r-interval is well known to be this standard Yule process
(This is part of the theory in Aldous and Steele [3] surrounding the PWIT.8). Choosing
r1 = 1

3 log n, so that exp(r1) = n1/3, it is not difficult to use the natural coupling of the two
processes to quantify this convergence to show

the distribution of (|Bn(v, r)|, 0 ≤ r ≤ r1) agrees with the distribution of (Y (r), 0 ≤ r ≤
r1) outside an event An(v) of probability δn = O(n−1/4) → 0 as n → ∞.

For a vertex v ∈ [s+ 1, n], and for r ≤ r1,

P(Ac
n(v) and v ∈ Cn(s, r)) = P(Ac

n(v) and Bn(v, r) ∩ [s] = ∅)

≤ e−r

1 − e−s/(n−1)
(10)

the inequality from Lemma 8 applied to [n] \ {v}. Apply this with

s = sn(r) := −(n− 1) log(1 − e−r/2)

which is the solution of e−r/2 = 1 − e−s/(n−1), so

P(Ac
n(v) and v ∈ Cn(sn(r), r)) ≤ e−r/2.

8 Poisson Weighted Infinite Tree.

https://doi.org/10.1017/S0269964821000115 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964821000115


864 D. J. Aldous

Summing over v, from (9) we can write, for r ≤ r1,

N(Gn, r) ≤ sn(r) +Xn + Yn(r) where EXn ≤ nδn and EYn(r) ≤ ne−r/2.

Applying Markov’s inequality separately to the two terms on the right side of the first
inequality above,

P(N(Gn, r) > sn(r) + nδ1/2
n + ne−r/4) ≤ δ1/2

n + e−r/4, r ≤ r1.

As in the proof of Corollary 6, we can use monotonicity to convert this fixed-r bound to a
uniform bound over a “medium” interval r0 ≤ r ≤ r1:

P(N(Gn, r)>sn(r − 1)+nδ1/2
n +ne−(r−1)/4 for some r0 ≤ r≤�r1�)≤ δ1/2

n log n+ 5e−r0/4.

Because sn(r) ≈ ne−r/2 over the interval of interest,

n−1

∫ r1

r0

(sn(r − 1) + nδ1/2
n + ne−(r−1)/4) dr ≤ Ke−r0/4 + δ1/2

n log n

for some constant K, and so

P

(
n−1

∫ r1

r0

N(Gn, r) dr > Ke−r0/4 + δ1/2
n log n

)
≤ δ1/2

n log n+ 5e−r0/4.

For the tail of the integral, the diameter Δ of Gn is known [12] to be asymptotically 3 log n
and so by monotonicity of N(r)

n−1

∫ Δ

r1

N(Gn, r) dr = O(n−1 ·N(Gn, r1) · log n) → 0 in probability.

We will show below that
EN(Gn, r1) = O(n11/12). (11)

Because δ1/2
n log n→ 0 and n−1N(Gn, r) ≤ 1 for r ≤ r0, these bounds establish tightness of

the sequence

n−1

∫ Δ/2

0

N(Gn, r) dr, n ≥ 2

which by Proposition 1(ii) implies that the sequence (n−1LNUV(Gn), n ≥ 2) is tight.
To outline a proof of (11), take expectation in (9) to get

EN(Gn, r1) ≤ s+ nP(v ∈ Cn(s, r1)), 1 ≤ s ≤ n (12)

for a vertex v ∈ [s+ 1, n]. We will use this with s = n3/4. Conditional on |Bn(v, r1)| = β we
have, in order of magnitude,

P(v ∈ Cn(s, r1)) � (1 − β/n)s � exp(−βs/n).

Now, the distribution of β is asymptotically Exponential with mean er1 = n1/3, so by
integrating over β, the unconditional probability becomes

P(v ∈ Cn(s, r1)) � n−1/3

n−1/3 + s/n
� n−1/12.

Combining with (12) gives (11).
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5. FINAL REMARKS

5.1. Analogy with the MST

As an algorithm, the NUV walk is somewhat similar to the greedy (Prim’s) algorithm for
the MST (minimum spanning tree), in that both grow a connected graph one edge at a
time. Recall that for the MST, there is an intrinsic criterion for whether a given edge e is
in the MST

e is in the MST if and only if there is no alternative path between the endpoints of e, all
of whose edges are shorter than �(e).

This enables a martingale proof [15] of the central limit theorem for the length LMST

within the Euclidean model (complete graph on random points in the square) which we will
discuss in Section 3. There is no such intrinsic criterion for the NUV walk, so to improve the
order-of-magnitude result (Corollary 3 below) for LNUV in that model one would need some
other kind of control over the geometry of the set of points visited before each step. Also, as
noted in Section 4.2, in the “mean-field model of distance”, the exact asymptotic constants
for the lengths of the TSP tour and the MST are known: can they also be calculated for
the NUV walk?

5.2. Local Weak Convergence

Our results are conceptually merely consequences of Proposition 1, and further progress
would require some other technique. One possible general approach is via local weak con-
vergence [3,5]. Our three specific models each have local weak convergence limits (complete
graph on a Poisson point process on the infinite plane with the Euclidean distance; i.i.d.
edge-lengths on the infinite lattice; and the PWIT), and intuitively, the conjectured limits
limn n

−1
ELn are the mean step-lengths in an appropriately defined NUV walk on the limit

infinite graph. Can this intuition be made rigorous?
In fact, one expects the limits in our models to be collections of disjoint doubly infinite

walks which cover the infinite graph. This relates to a longstanding folklore problem: for
the NUV walk on the complete-graph Poisson point process on the infinite plane, estimate
the number of never-visited vertices in the radius-r ball, as r → ∞ (see Bordenave et al. [6]
for discussion).

5.3. Restrictions on Local Behavior of Paths

For another possible direction of analysis, consider the Figure 1 sketch of one possible
trajectory for the NUV path through a given ball. In general, there will be many possible
trajectories, depending on the graph outside the ball, but can one find restrictions on the
possibilities, extending the obvious restriction:

if two vertices are each other’s nearest neighbor, then every NUV walk, after visiting the
first, immediately visits the second.

Intuitively, for 1 � r1 � r2, given the subgraph in the ball B(v∗, r2), in a random graph,
there will typically be only a few possibilities for the NUV trajectory within B(v∗, r1).

5.4. Variance of LNUV?

A final issue involves the variance of LNUV in random graph models. We expect order n
“each other’s nearest neighbor” pairs, and then, the randomness of edge-lengths suggests
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that the contribution to variance of LNUV from these edges alone must be at least order n
(in our conventional scaling). However, our small-scale simulation results in Tables 2 and 3
cast some doubt on this conjectured lower bound.
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XIV—1984, vol. 1180. Lecture Notes in Mathematics. Berlin: Springer, pp. 125–264.

15. Kesten, H. & Lee, S. (1996). The central limit theorem for weighted minimal spanning trees on random
points. Annals of Applied Probability 6(2): 495–527.

16. Megow, N., Mehlhorn, K., & Schweitzer, P. (2012). Online graph exploration: New results on old and
new algorithms. Theoretical Computer Science 463: 62–72.
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