UCLA UCLA Previously Published Works

Title

Proteomics identification of radiation-induced changes of membrane proteins in the rat model of arteriovenous malformation in pursuit of targets for brain AVM molecular therapy.

Permalink

<https://escholarship.org/uc/item/90k1x0nf>

Authors

Simonian, Margaret Shirasaki, Dyna Lee, Vivienne [et al.](https://escholarship.org/uc/item/90k1x0nf#author)

Publication Date 2018

DOI

10.1186/s12014-018-9217-x

Peer reviewed

RESEARCH

Proteomics identifcation of radiation-induced changes of membrane proteins in the rat model of arteriovenous malformation in pursuit of targets for brain AVM molecular therapy

Margaret Simonian^{1,2*}, Dyna Shirasaki², Vivienne S. Lee¹, David Bervini^{1,3}, Michael Grace⁴, Rachel R. Ogorzalek Loo², Joseph A. Loo², Mark P. Molloy^{5,6} and Marcus A. Stoodley¹

Abstract

Background: Rapid identifcation of novel targets and advancement of a vascular targeting strategy requires a comprehensive assessment of AVM endothelial membrane protein changes in response to irradiation. The aim of this study is to provide additional potential target protein molecules for evaluation in animal trials to promote intravascular thrombosis in AVM vessels post radiosurgery.

Methods: We employed in vivo biotinylation methodology that we developed, to label membrane proteins in the rat model of AVM post radiosurgery. Mass spectrometry expression (MS^E) analysis was used to identify and quantify surface protein expression between irradiated and non irradiated rats, which mimics a radiosurgical treatment approach.

Results: Our proteomics data revealed diferentially expressed membrane proteins between irradiated and non irradiated rats, e.g. proflin-1, ESM-1, ion channel proteins, annexin A2 and lumican.

Conclusion: This work provides additional potential target protein molecules for evaluation in animal trials to promote intravascular thrombosis in AVM vessels post radiosurgery.

Keywords: In vivo biotinylation, AVM animal model, Membrane proteins, Radiosurgery

Introduction

Brain AVMs are the major cause of hemorrhagic stroke in adults and young children with each haemorrhage caring a 50% risk of death or morbidity [[1\]](#page-7-0). Radiosurgery is the treatment recommended for lesions<3 cm in diameter. Radiosurgery is relatively safe when treating small lesions<2.6 cm in diameter, without the risk of high radiation exposure to the surrounding tissues. Vascular occlusion after radiosurgery may take 2–3 years

² Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles (UCLA), 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA

Full list of author information is available at the end of the article

to complete therefore the risk of haemorrhage is not eliminated until complete obliteration is achieved [[2,](#page-7-1) [3](#page-7-2)]. Promoting rapid thrombosis after radiosurgery by targeting endothelial surface discriminating proteins has the potential to overcome the downside of radiosurgery. The processes of AVM vessel occlusion after radiosurgery are not understood completely, it is suggested to be involved a combination of cellular proliferation and intravascular thrombosis [[4,](#page-7-3) [5\]](#page-7-4). We have developed an animal model of AVM and demonstrated the ability of stimulating thrombosis in AVM vessels after radiosurgery by nonligand vascular targeting approach, however only small vessels showed a sign of thrombosis, and the non-ligand injection is not safe for use in humans $[6-8]$ $[6-8]$ $[6-8]$. Therefore a ligand based approach has the potential to overcome

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License [\(http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ([http://creativecommons.org/](http://creativecommons.org/publicdomain/zero/1.0/) [publicdomain/zero/1.0/](http://creativecommons.org/publicdomain/zero/1.0/)) applies to the data made available in this article, unless otherwise stated.

^{*}Correspondence: margaret@chem.ucla.edu

these obstacles. To achieve this goal, we have developed in vitro and in vivo biotinylation perfusion methodology to label endothelial cell surface proteins in murine bEnd. 3 cell cultures and the animal model of AVM [\[9](#page-7-7), [10](#page-7-8)] and we have shown the feasibility of employing proteomics methods on the arteriovenous fstula (AVF) tissues harvested from the animal model $[9, 10]$ $[9, 10]$ $[9, 10]$. Here, we employ our in vivo methodology to label, then identify and quantify the diferentially expressed membrane proteins in the irradiated and non irradiated animals using a labelfree quantitative mass spectrometry of expression (MS^E) technique.

Based on our previous proteomics study of the murine endothelial cell cultures (bEnd.3), the most extensive membrane protein changes in response to irradiation were observed at 24 h post irradiation [\[11](#page-7-9)]. Therefore in this study, the membrane protein changes in the rat model of AVM were studied at 24 h post irradiation. Up-regulated membrane proteins in the irradiated rats compare to the controls will be investigated as potential targets for the AVM ligand-directed molecular therapy to stimulate rapid thrombosis in AVM vessels post radiosurgery.

Materials and methods

Rats

An arteriovenous fstula (AVF) was created in six *Sprague*-*Dawley* male rats weighing from 360 to 411 g, according to Yassari et al. protocol [\[6](#page-7-5)]. Rats were returned to the animal care facility after the operation and monitored daily for the frst week then weekly for another 5 weeks, allowing the fstula to reach maturity.

Radiosurgery of the rats

After 6 weeks of creating the fstulas, three rats were irradiated using the Leksell Gamma knife (Elekta, Stockholm, Sweden) at Macquarie University Hospital by delivering 15 Gy to the AVF tissues directly, minimizing the dose to the trachea to less than 10 Gy. The remaining three rats were used as controls.

In vivo biotinylation perfusion

After 24 h of irradiation, all six rats were narcotized, prepared and perfused per Simonian et al. [\[9\]](#page-7-7) protocol, with a slight modifcation. A Gilson Minipuls 3 perfusion pump attached to a tube and needle was used to perfuse the rats with 1 mL of saline (NaCl) with a fow rate of 50 mL/min to wash away the blood, immediately followed with 100 mL of freshly prepared biotinylation solusion [1.5 mg/mL of Sulfo-NHS-LC-Biotin in pre warmed PBS at 37 °C + 10% Dextran 40] by pressing the syringe plug with a flow rate of 25 mL/min while monitoring the pressure and keeping it constant at \sim 100 mm Hg. After 5 min of perfusing the biotinylation solution, the rats were injected with 100 mL of (50 mM Tris–Hcl in $\text{PBS}+10\%$ Dextran 40) with a flow rate of 30 mL/min to wash out excessive biotinylation reagent, then were perfused with 200 mL saline at 30 mL/min to wash away Dextran. The fistula tissues were then excised and the surrounding fat and muscle tissue were removed. The vascular tissues were placed in a 1 mL Eppendorf tube and transferred to a -80 °C freezer immediately.

Membrane protein extraction

The harvested vascular tissues were homogenized using tissue grinder with pestle (Wheaton) in 1 mL of lysis bufer (20 mM HEPES, 150 mM NaCl, 10 mM NaF, 1 mM Na-EDTA, 1 mM Na-EGTA, pH 7.5, pH adjusted with NaOH, 0.1% Triton-X v/v) + protease inhibitor (4 μ L per mL of HEPES buffer, Sigma P-2714). Samples were probe sonicated for 15 s, three times using the Branson Sonifer 450 (John Morris Scientifc) and centrifuged in a pre-cooled rotor at 1500×*g* for 15 min at (4 °C). Supernatants were collected and pellets were re-lysed with 0.5 mL of HEPES bufer (same as above steps). Supernatants were collected and pooled with previous supernatants, the final volume of supernatants were \sim 1.5 mL. Sodium Bicarbonate solution (0.1 M, pH 11) was added to pooled supernatants (up to 5 mL) and incubated for 1 h at 4 °C on rocking platform. After incubation, samples were centrifuged at $100,000 \times g$ for 45 min at 4 °C. Pellets were washed with 0.5 mL of 100% cold acetone twice and left to dry. Pellets were then dissolved with 200 µL of 100 mM Amonium Bicarbonate containing 10 mM DTT (freshly prepared) in water bath sonication (FS30H, Fisher Scientifc) for 20 min and then incubated for 1 h at 37 °C to reduce the samples. To alkalize the samples, 5µL of 1 M idoacetamide stock was added to make fnal concentration to 20 mM idoacetamide and incubate in dark at room temperature for 30 min. Samples volume were then brought up to 5 mL with 100 mM Amonium Bicarbonate and centrifuged at 100,000×*g* for 1 h at 4 °C. Pellets were dissolved with 400 µL of 100 mM Amonium Bicarbonate in water bath sonication then 600 µL of methanol was added.

Capture of biotinylated proteins

Biotinylated proteins were captured on streptavidin Sepharose (GE health care, USA). Five hundred microlitres of streptavidin Sepharose were washed three times with bufer A containing (1% w/v NP40, 0.5% w/v SDS in PBS), then three times with 500 µL PBS. Samples then were incubated with washed streptavidin Sepharose for 2 h at room temperature with gentle rotation. Streptavidin Sepharose was pelleted by centrifugation at 1600×*g* for 5 min. Unbound proteins were eliminated by washing three times with 1 mL of 1% Triton- $x (v/v)$, once with 400 μ L of 1% SDS (w/v) and five times with 1 mL of digestion buffer 0.25 mM ammonium bicarbonate. The use of high salt concentration and NP40 detergent in the washing bufers minimises the non-specifc interactions of biotin and streptavidin.

Tryptic digestion of biotinylated proteins and MS^E analysis

Streptavidin Sepharose was re-suspended in 200 µL of digestion bufer. Twenty microlitres of trypsin were then added and incubated overnight at 37° C. The samples were centrifuged at 14,100×*g* for 2 min at room temperature and the supernatant was collected. Chromatographic separation was achieved using Waters UPLC column (1.7 μ m, 75 μ m × 150 mm, 10 K psi). The mobile phase, used at a flow rate of 0.3 μ L/min, with a gradient of a mixture of (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile programmed as follows: initial 97% A for 1 min, reduced to 60% A in 60 min, then decreased to 5% in 2 min, held for 15 min, again increased to 97% A in 3 min. The column temperature was set at 28 °C.

Mass spectrometry analysis was performed utilizing a Waters Xevo quadrupole time of fight (Q-TOF) micro™ mass spectrometer coupled directly to Waters nanoACQUITY UPLC system (Waters Corp). Peptides were separated with a UPLC BEH C18 Column (1.7 µm, 75 μ m × 150 mm, 10 K psi). The mobile phase, used at a flow rate of 0.3 μ L/min, with a gradient of a mixture of (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile was programmed as follows: initial 97% A for 1 min, decreased to 60% A in 60 min, then decreased to 5% for 2 min, held at this for 15 min, again increased to 97% A in 3 min. The column temperature was set at 28 °C.

All analysis was performed using positive mode electrospray ionization (ESI). The LC-MS spectrometer was operated in the MS^{E} data independent acquisition mode. LC–MS data was collected in an alternating low energy MS and elevated energy MS/MS (MS $^{\rm E}$) mode of acquisition. In low energy MS mode the data were collected at a constant collision energy of 6 eV. In elevated energy MS/ MS mode the collision energy was ramped from 15 to 40 eV on laboratory frame energy to collect product ions of all precursors identifed from the MS scan. Samples were injected into the mass spectrometer in triplicates.

Data analysis

The LC MS and LC MS/MS data were processed using ProteinLynx Global Server (PLGS) version 2.5 (Waters Corporation). The quantification of protein levels was achieved by the addition of an internal protein standard (alcohol dehydrogenase trypsin digest) to which the data set was normalized. The protein identification was based on MS/MS peak lists which were generated by MSE data independent collision induced fragmentation using a *Rattus* database. Protein identifcations were accepted with greater than three fragment ions per peptide, seven fragment ions per protein and one unique peptide per protein identifed. Carbamidomethyl cysteine was set as a fxed modifcation while oxidized methionine was set as a variable modifcation. Trypsin was set as a proteolytic enzyme, and up to two missed cleavages were allowed. Peptide tolerance set at 10 ppm with fragment ion tolerance of 0.5 amu. When a peptide was not detected in the MSE experiment a nominal amount of 0.01 was reported to avoid zeros in subsequent calculations. The *p* values of the expression ratios of irradiated and control rats were determined using two tailed student's t test.

Results

To determine the efect of irradiation on AVF endothelium, and to study the up-regulated membrane proteins in response to irradiation, 18 mass spectrometry runs were analysed from 3 irradiated rats and 3 control rats. Triplicate samples were run for each rat. The proteomics data detected a total of 74 proteins in the irradiated rats, 20 of them were annotated as membrane proteins. A total of 104 proteins were detected in control rats, 37 of them were annotated as membrane proteins.

Twelve membrane proteins shared their presence in both irradiated and control rats (Table [1](#page-4-0)). Their average concentrations (fmol) and average ratios of expression (irradiated: control) were calculated to determine the changes in membrane protein level following irradiation.

The expression of Alpha-1 inhibitor protein increased in irradiated rats by (2.3) fold, however this increase wasn't significant $(p=0.164)$, while annexin-A2 and lumican showed significant decrease $(p=0.025$ and 0.041 respectively).

Interestingly, eight membrane proteins were detected in irradiated rats only, and not in control rats, due to their extremely low concentrations in the control rats (Table [2](#page-4-1)), such as proflin-1, ESAM-1, potassium voltage gated channel protein and chloride intracellular channel protein-2, they have shown signifcant up-regulation (293 fold, 28 fold, 390 fold and 60 fold respectively).

A list of all membrane proteins that were present in irradiated rats are presented in (Table [3](#page-5-0)), while the membrane proteins that were present in the control rats are presented in (Table [4](#page-5-1)).

Non membrane protein expression also difered between irradiated and control rats. Actin, myosin and tubulin were highly expressed in irradiated rats, while vimentin and fbroblast growth factor-16 expression were detected in control rats only (Additional fle [1:](#page-6-0) Tables S1 and S2, Additional fle [2](#page-6-1): Table S4).

Protein name	Accession #	MW	Ave (fmol) in R	SD	Ave (fmol) in C	SD	Fold change (R:C)	(p)
Alpha 1 macroglobulin	O63041	168,494.1	4.2	1.67	5.8	0.29	0.8	0.222
Biglycan	P47853	42,105.52	1.5	0.1	3.0	0.26	0.5	0.32
Annexin A1	P07150	39.171.71	1.4	0.83	2.1	0.13	0.7	0.288
Annexin A2	O07936	38,963.45	5.0	0.07	6.0	0.60	0.8	0.025
Lumican	P51886	38,678.25	2.6	0.30	4.1	0.18	0.6	0.041
GTPase	O8K3L6	37,665.02	5.2	0.2	18.9	0.1	0.3	
Prolargin	Q9EQP5	43,521.63	3.5	0.62	3.9	2.28	0.9	0.727
Serine protease inhibitor	P05544	46.448.34	1.1	0.01	8.1	0.01	0.1	0.82
Alpha 1 inhibitor 3	P14046	165.142.2	6.2	0.32	2.7	0.05	2.3	0.164
Collagen alpha 1	P02454	138,980.1	7.4	0.40	7.3	0.05	1.0	0.618
Collagen alpha 2	P02466	130.077.4	2.1	0.20	7.8	0.21	0.3	0.07
Decorin	O01129	40.147.32	1.8	1.15	3.1	0.06	0.6	0.205

Table 1 Membrane proteins shared between irradiated (R) and control (C) rats, their sequence accession number, molecular weight, average concentration on column (fmol) and average concentration ratios (irradiated: control); n=18

p < 0.05 indicate statistical signifcance

Table 2 Membrane proteins present in irradiated rats (R) only, their accession number, molecular weight average concentration on column (fmol), and average concentration ratios (irradiated: control); n=9

Protein name	Accession #	МW	Ave (fmol) R	SD	Ave fmol C 0.01	Fold R:C 293.625	(p) 0.001
Profilin 1	P62963	15,128.34	2.9	3.27			
Endothelial cell specific molecule-1	P97682	21,101.27	0.6	0.39	0.01	28.98	0.002
Bone morphogenetic protein 3	P49002	53.416.56	7.9	4.95	0.01	790	0.001
Potassium voltage gated channel subfamily A member 5	P19024	67.237.32	3.4	2.42	0.01	340	0.005
Myelin protein	P06907	27,741.78	7.4	6.48	0.01	737.5	0.017
Chloride intracellular channel protein 2	O5M883	28,446.33	0.6	0.39	0.01	60	0.051
Vomeromodulin	063751	10.890.35	7.2	5.07	0.01	720	0.090
Prothyroliberin	P01150	29.454.97	5.3	3.70	0.01	530	0.022

p < 0.05 indicate statistical signifcance

Discussion

This study aimed to identify differentially expressed surface proteins in the animal model of AVM subjected to irradiation, as these proteins could have utility for molecular targeting. In general the total number of proteins detected by mass spectrometry analysis in the control rats was higher than irradiated rats. This is expected since irradiation at doses 15–20 Gy may cause some cell death while doses higher than 100 Gy causes cell hypertrophy [\[12](#page-7-10)].

The eight membrane proteins that were present mainly in irradiated rats, such as proflin-1, ESAM-1, potassium voltage gated channel and chloride intracellular channel protein 2, are of importance to this study due to their signifcant up-regulation (293 fold, 28 fold, 390 fold and 60 fold respectively), as well as the non-membrane proteins highly expression in irradiated rats, such as actin, myosin and tubulin.

Proflin-1 is an actin binding protein; hence its increased expression is expected due to increase expression of actin in irradiated rats. Priflin-1 belongs to the proflin family, at high concentrations; it increases the ADP-to-ATP exchange on G-actin, and prevents the polymerization of actin, whereas at low concentrations it enhances it [[13](#page-7-11), [14\]](#page-7-12). Proflin-1 contribution to actin dynamics at plasma membrane is part of many other activities. Proflin-1 has been regarded as a tumoursuppressor molecule for breast cancer and the up-regulation of priflin-1 after irradiation, induced apoptosis in pancreatic cancer cells [[14,](#page-7-12) [15\]](#page-7-13). A ligand for proflin-1 have been identifed, p42*pop* which is a novel Myb-tran-scription factor [\[16](#page-7-14)]. Due to its association with plasma membrane actins, proflin-1 may well be regarded as a potential candidate for the AVM ligand directed vascular therapy to deliver thrombotic agents.

Potassium voltage gated channel protein is another membrane protein that was up-regulated

Table 3 Membrane proteins identifed by LC–MS/MS in irradiated rats, their accession number and classifcations

Table 4 Membrane proteins identifed my LCMS/MS in control rats, their accession number and classifcations

significantly in irradiated rats. This protein is an ion channel transport protein and membrane potential that facilitates the flow of potassium ions down an electrochemical gradient (Zhang et al. 2003). In the brain the greatest density occurs in the cerebral cortex. Previous studies have shown increased expression of this protein in response to irradiation [[17,](#page-7-15) [18\]](#page-7-16). Potassium channels are commonly expressed in tumour cells and have been

a target for many drugs. Diferent agents have been used to target potassium channels in animal tumour models and in clinical trials; they have also been used for the treatment of other diseases such as type 2 diabetes and hypertension, with minimal side effects $[19-21]$ $[19-21]$ $[19-21]$. The interference with potassium channels offered a new therapeutic characteristic for cancer treatment because this channel is sometimes favourably expressed in tumour cells and sometimes the abnormally expressed form is diferent from the physiological one, this made it easy to block the potential side efects of the drug by channel targeting in ordinary tissues $[18, 22]$ $[18, 22]$ $[18, 22]$ $[18, 22]$. Our future work will focus on studying the diferential expression of potassium voltage gated channels in AVM vessels and normal vessels. The fact that this protein is extracellularly accessible may simplify targeting and drug design. This protein will be investigated as a potential target for ligand directed therapy for brain AVMs.

Chloride intracellular channel protein 2 is another voltage gated ion channel transmembrane protein that was up-regulated signifcantly in irradiated rats. Chloride channel proteins have also been used as molecular targets for cancer therapy [[23\]](#page-7-20). Previous studies on human lung cancer cells and laryngeal cancer cells have shown increased expression of chloride intracellular channel proteins 4 and 1 in response to irradiation, suggesting these proteins as important and novel targets for anti cancer therapy and radiotherapy for cancer cells [[24](#page-7-21), [25](#page-7-22)]. Therefore our future work will also include extensive study of chloride intracellular channel protein 2 as potential target for molecular therapy for brain AVM.

Endothelial cell specifc molecule-1 (ESM-1) is yet another up-regulated membrane protein expressed signifcantly in the irradiated rats. ESM-1 is endothelial cell adhesion molecule that is also expressed on platelets. In 2009, Stalker et al., showed that after platelet activation, ESM-1 was localized to the junctions between adjacent platelets, suggesting a role for this protein in thrombus formation [\[26](#page-8-0)]. Exposed tissue factor that was found in some irradiated blood vessels lacking the endothelial lining suggested one mechanism in which thrombosis may occur post radiosurgery, however no signifcant diferences in expression have been shown after irradiation [\[7](#page-7-23), [8\]](#page-7-6). Further investigation of the ESM-1 role in thrombosis of AVM vessels may provide potential molecular target for the AVM vascular therapy.

A number of non-membrane proteins also showed increased expression in the irradiated rats, such as actin, myosin and tubulin. This data is in agreement with our in vitro proteomics study of the murine cerebral endothelial cells in response to irradiation $[11]$ $[11]$. The expression of these cytoplasmic proteins may well be the result of radiation-stimulated surface expression, as we have used Sulfo-NHS-LC-biotin in this study, which is known to inhibit cell membrane penetration [\[27](#page-8-1)]. Previous in vitro studies of endothelial cells have shown cell surface translocation of intracellular proteins in response to irradiation [\[11](#page-7-9), [28,](#page-8-2) [29](#page-8-3)]. Additionally, this data also in accordance with previous data obtained from human cerebral endothelial cultures where it was suggested that radiosurgery by Gamma knife induces transformation of fbroblasts into contractile elements (i.e. actin and myosin) in AVM vessels similar to myofbroblasts, which may contribute to the obliteration of AVMs after radiosurgery [\[30,](#page-8-4) [31](#page-8-5)]. Furthermore, in 2009 a study by Sekis et al., showed that irradiation did not up-regulate the vascular endothelial growth factor in masctocytoma cell lines [[32\]](#page-8-6). Interestingly in this study, fibroblast growth factor was detected mainly in control rats AVF tissues; this may support the transformation of fbroblast into contractile elements in the irradiated rats. The expression patterns of these proteins are intriguing; they could potentially be targeted with the use of ligands to deliver thrombotic agents to AVM vessels.

Our previous proteomics investigation of the murine endothelial cerebral cell cultures (bEnd3) revealed a large number of membrane proteins that were diferentially expressed between irradiated and non-irradiated cells [[11\]](#page-7-9), many of those proteins are identifed in this study as well ((Additional file [1](#page-6-0): Table S3)), this consistency is important in candidate selection for AVM molecular therapy. The proteins identified from our in vitro and in vivo proteomics studies, are currently being investigated as potential targets for the ligand-directed molecular targeting trials in the rat model of AVM. Future studies will further include irradiation-induced changes in human primary endothelial cell cultures from resected AVM tissues. The significance of this novel research lies in its potential for rapid translation into therapies for currently untreatable brain AVMs, and for patients who currently have to wait up to 3 years after undergoing radiosurgery, for their AVM to be occluded completely, while they remain at risk of haemorrhage.

Additional fles

[Additional fle 1: Table S1.](https://doi.org/10.1186/s12014-018-9217-x) Expression of actins, tubulin, myosin, fbroblast growth factor-16 and vimentin in control rats. **Table S2**. Expression of actins, tubulin and myosin in irradiated rats. **Table S3**. Membrane proteins present in murine endothelial cell cultures, and the rats model of AVM.

[Additional fle 2: Table S4.](https://doi.org/10.1186/s12014-018-9217-x) MSE raw data for one control rat, as an exemplifcation.

Authors' contributions

MS performed all the experiments descried in this manuscript, analysed all the data, and prepared/wrote the manuscript. DS run the prepared samples on the mass spec instrument. VSL helped with animal perfusions, and looked after the rats pre/post irradiation. DV created the fstulas in the rats. MG irradiated the animals on the Gamma knife. RROL helped with the biotinylation optimization protocol for MS^E analysis. JAL supervised the proteomics experiments. MPM supervised the proteomics experiments, edited the manuscript. MAS the main PI of this project. All authors read and approved the final manuscript.

Author details

Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia. ² Department of Biological Chemistry, David Gefen School of Medicine, University of California Los Angeles (UCLA), 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA. ³ Neurosurgery Department, Bern University Hospital, Bern, Switzerland.
⁴ Genesis Cancer Care, Macquarie University Hospital, Sydney, NSW, Australia. ⁵ Department of Chemistry and Bimolecular Sciences, Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, NSW, Australia. ⁶ Lawrence Penn Chair of Bowel Cancer Research, Faculty of Medicine and Health, Northern Clinical School, Sydney, Australia.

Acknowledgements

MAS and MPM acknowledge funding from the National Health and Medical Research Council of Australia. The proteomics analysis was undertaken at Prof. Joseph Loo's laboratory at the University of California Los Angeles (UCLA). We acknowledge the support of the Radiation Oncology Department at Macquarie University Hospital.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

All data generated or analysed during this study are included in this manuscript. The supplementary fles and couple of the raw data fles were uploaded along with the manuscript.

Consent for publication

N/A.

Ethics approval and consent to participate

Animal ethics approval number, 2010/037.

Funding

We acknowledge the funding from the National Health and Medical Research Council of Australia. The proteomics analysis was supported by Prof. Joseph Loo's lab, at University of California Los Angeles (UCLA).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.

Received: 29 June 2018 Accepted: 12 December 2018

References

- Han PP, Ponce FA, Spetzler RF. Intention-to-treat analysis of Spetzler-Martin grades IV and V arteriovenous malformations: natural history and treatment paradigm. J Neurosurg. 2003;98(1):3–7.
- 2. Friedman WA, Blatt DL, Bova FJ, Buatti JM, Mendenhall WM, Kubilis PS. The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurg. 1996;84(6):912–9.
- 3. Maruyama K, Kawahara N, Shin M. The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med. 2005;352:146–53.
- 4. Friedman WA, Bova FJ, Mendenhall WM. Linear accelerator radiosurgery for arteriovenous malformations: the relationship of size to outcome. J Neurosurg. 1995;82(2):180–9.
- 5. Friedman WA, Bova FJ, Bollampally S, Bradshaw P. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery. 2003;52(2):296–307.
- 6. Yassari R, Sayama T, Jahromi BS, Aihara Y, Stoodley M, Macdonald RL. Angiographic, hemodynamic and histological characterization of an arteriovenous fstula in rats. Acta Neurochir (Wien). 2004;146(5):495–504.
- 7. Storer KP, Tu J, Karunanayaka A, Morgan MK, Stoodley MA. Thrombotic molecule expression in cerebral vascular malformations. J Clin Neurosci. 2007;14(10):975–80.
- 8. Tu J, Karunanayaka A, Windsor A, Stoodley M. Comparison of an arteriovenous malformation (AVM) animal model with human AVM. J Clin Neurosci. 2010;17(1):96–102.
- Simonian M, Molloy MP, Stoodley MA. In vitro and in vivo biotinylation of endothelial cell surface proteins in the pursuit of targets for vascular therapies for brain AVMs. Metabolomics. 2012;S1:007. [https://doi.](https://doi.org/10.4172/2153-0769.S1-007) [org/10.4172/2153-0769.S1-007.](https://doi.org/10.4172/2153-0769.S1-007)
- 10. Simonian M, Ogorzalek Loo RR, Loo JA, Stoodley MA, Molloy MP. Proteomics detection of endothelial cell surface proteins following irradiation as potential targets for brain arteriovenous malformations molecular therapies. MOJ Proteomics Bioinform. 2014;1(1):4–7. [https://](https://doi.org/10.15406/mojpb.2014.01.00002) doi.org/10.15406/mojpb.2014.01.00002
- 11. Simonian M, Rannulu N, Loo Ogorzalek R, Loo JA, Molloy MP, Stoodley MA. Identifcation of protein targets for brain arteriovenous malformations (AVMs) molecular therapies. J Clin Proteom. 2017;14(17):1–12.
- 12. Rosen EM, Goldberg ID, Myrick KV, Halpin PA, Levenson SE. Survival and repair of potentially lethal radiation damage in confuent vascular smooth muscle cell cultures. Radiother Oncol. 1986;5(2):159–63.
- 13. Kwiatkowski DJ, Bruns GA. Human proflin. Molecular cloning, sequence comparison, and chromosomal analysis. J Biol Chem. 1988;263(12):5910–5.
- 14. Das T, Bae YO, Wells A, Roy P. Loss of proflin-1 expression enhances breast cancer cell motility by Ena/VASP proteins. J Cell Physiol. 2010;219(2):354–64.
- 15. Cheng H, Li J, Liu C, Yao W, Xu Y, Frank TS, Cai X, Shi S, Lu Y, Qin Y, Liu L, Xu J, Long J, Ni QX, Li M, Yu XJ. Proflin1 sensitizes pancreatic cancer cells to irradiation by inducing apoptosis and reducing autophagy. Curr Mol Med. 2013;13(8):1368–75.
- 16. Lederer M, Jockusch MB, Rothkegel M. Proflin regulates the activity of p42POP, a novel Myb-related transcription factor. J Cell Sci. 2004;118:331–41.
- 17. Zhang Y, Song S, Fong CC, Tsang CH, Yang Z, and Yang M. cDNA Microarray analysis of gene expression orofes in human fbroblast cells irradiated with red light. J Investig Dermatol. 2003;120 (5).
- 18. Pardo LA, Stühmer W. The roles of K(+) channels in cancer. Nat Rev Cancer. 2014;14(1):39–48.
- 19. Gómez-Varela D, et al. Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res. 2007;67:7343–9.
- 20. Pillozzi S. Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers. Blood. 2011;117:902–14.
- 21. Leanza L. Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bakindependent death of cancer cells. EMBO Mol Med. 2012;4:577–93.
- 22. Chantôme A, Potier-Cartereau M, Clarysse L, Fromont G, Marionneau-Lambot S, Guéguinou M, Pagès JC, Collin C, Oullier T, Girault A, Arbion F, Haelters JP, Jafrès PA, Pinault M, Besson P, Joulin V, Bougnoux P, Vandier C. Pivotal role of the lipid Raft SK3-Orai1 complex in human cancer cell migration and bone metastases. Cancer Res. 2013;73(15):4852–61.
- 23. Kwang SS, Mutoh M, Gerdes M, Stuart H. CLIC4, an intracellular chloride channel protein, is a novel molecular target for cancer therapy. Yuspa Investig Dermatol Symp Proc. 2005;10:105–9.
- 24. Roboz J. Mass spectrometry in cancer research. Boca Raton: CRC Press; 2001. p. 407.
- 25. Kim JS, Chang JW, Yun HS, Yang KM, Hong EH, Kim DH, Um HD, Lee KH, Lee SJ, Hwang SG. Chloride intracellular channel 1 identifed using proteomic analysis plays an important role in the radiosensitivity of HEp-2 cells via reactive oxygen species production. Proteomics. 2010;10(14):2589–604.
- 26. Stalker TJ, Wu J, Morgans A, Traxler EA, Wang L, Chatterjee MS, Lee D, Quertermous T, Hall RA, Hammer DA, Diamond SL, Brass LF, Haemost T. Endothelial cell specifc adhesion molecule (ESAM) localizes to plateletplatelet contacts and regulates thrombus formation in vivo. J Thromb Haemost. 2009;7(11):1886–96.
- 27. Rybak JN, Ettorre A, Kaissling B, Giavazzi R, Neri D, Elia G. In vivo protein biotinylation for identifcation of organ-specifc antigens accessible from the vasculature. Nat Methods. 2005;2:291–8.
- 28. Prunotto M, Carnevali ML, Candiano G, Murtas C, Bruschi M, Corradini E, et al. Autoimmunity in membranous nephropathytargets aldose reductase and SOD2. J Am Soc Nephrol. 2010;21:507–19.
- 29. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Increased expression of mitochondrial proteins associated with autophagy in biliary epithelial lesions in primary biliary cirrhosis. Liver Int. 2013;33:312–20.
- 30. Major O, Szeifert GT, Fazekas I, Vitanovics D, Csonka E, Kocsis B, Bori Z, Kemeny AA, Nagy Z. Efect of a single high-dose gamma irradiation on cultured cells in human cerebral arteriovenous malformation. J Neurosurg. 2002;5:459–63.
- 31. Szeifert GT, Major O, Fazekas I, Nagy Z. Efects of radiation on cerebral vasculature: a review. Neurosurgery. 2001;48(2):452–3.
- 32. Sekis I, Gerner W, Willmann M, Rebuzzi L, Tichy A, Patzl M, Thalhammer JG, Saalmüller A, Kleiter MM. Efect of radiation on vascular endothelial growth factor expression in the C2 canine mastocytoma cell line. Am J Vet Res. 2009;70(9):1141–50.

Ready to submit your research? Choose BMC and benefit from:

- **•** fast, convenient online submission
- **•** thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- **•** gold Open Access which fosters wider collaboration and increased citations
- **•** maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

