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Abstract

Memory and learning distinguish the movement of animals from other things, resulting

in trajectories that change over time, but still repeatedly return to specific locations. The

frequency and predictability with which animals return to favored locations, and the pat-

terns of change in the paths they use to get there, offer insights into the cognitive systems

of learning and memory that guide them. For animals that rely on resources that are

concentrated in sparsely distributed, high value patches, these systems are particularly

important for avoiding the costs of inefficient random-search foraging. In this thesis,

I analyze the trajectories of such animals across multiple contexts and spatial scales,

particularly the trajectories of primates and kinkajous (animals that look and behaves

much like a primate, but are in fact Carnivoran). I find that most of these animals are

quick to learn efficient paths between foraging locations, and some are able to generalize

strategies for efficient navigation to novel contexts. There is some evidence that more

selective foragers rely more on routine ‘traplines’ between multiple known locations, but

are faster to deploy strategies that exploit changing resource distributions. Taken to-

gether, results of these studies suggest that diverse animal species integrate episodic-like

memories into a cognitive map that helps them plan movements over large distances. Ev-

idence that kinkajous flexibly use knowledge of detailed route-networks through complex

canopy substrate to quickly find and exploit new resources, is particularly important

because it highlights that the advanced development of these cognitive systems is not

unique to primates and their socially complex groups, but may evolve readily in response

to particular resource distributions and environmental properties.
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Introduction

In her new book, “Techno-Scientific Practices”, Federica Russo (2022) claims that knowl-

edge has four essential properties: it is relational, embodied, distributed, and material.

This means, in brief, that knowledge is not an intangible element of individual minds, but

it is the physical inscription of information across a network of actors. This knowledge

allows actors in that network to ascribe meaning to the world “out there”. Russo builds

on this notion to develop a theory of agency in the co-production of knowledge between

scientists and technology, which asks us scientists to recognize that our ability to model

the world depends on the knowledge embodied in the technology we use. Technology,

then, plays an active role in producing further knowledge, and holds a degree of agency

in the process. Russo deems this process of co-producing knowledge “poiêsis”. Esoteric as

the idea may seem, it draws on a powerful combination of Philosophy of Science, Philos-

ophy of Technology, and Philosophy of Information to challenge the idea of knowledge as

belonging to “psyche”, and posits that knowledge is a physical thing that can be shared

among individuals - and studied. I believe this perspective is not only broadly important

for scientists and their work, but specifically relevant to the way we study knowledge in

animals. We can know what an animal knows when our knowledge is shared. That is -

when we ascribe the same meaning to world around us.

Not coincidentally, it is in large part the study of animals that brought us to this un-
1



CHAPTER 0. INTRODUCTION

derstanding of knowledge. Anthony Chemero (2013) traces the tradition of embodied

cognitive science, a foundation of Russo’s work, to Darwin. Darwin’s theory on the

continuity of life challenged the predominant view in psychology that the existence of

thought fundamentally held humans apart from other animals. Foundational Behavior-

ists that embraced Darwin’s theory, such as B.F. Skinner, John Watson, and Ivan Pavlov,

built theories of learning by studying the reinforcement of behavior in animals. Yet, in

rejecting the “introspective” methods of other psychologists, these animal researchers left

a gap between the development of behavior through reinforcement and the complex psy-

chology of humans. Descartes’ rationalist view of humans still reigned, and even as the

prominent philosopher Martin Heidegger wrote extensively about the nature of “being in

the world” as a continuous process of affording meaning to the state of matter around

us (Heidegger 1962), he also described animals as “poor-in-world”, unable to conceive of

things around them as “being” (Heidegger 1946).

There was at least one psychologist, however, that found found a middle ground. Ed-

ward Tolman’s “Purposive Behavior in Animals and Men” (Tolman 1932) describes an

extensive series of experiments, mostly based on the navigation of rats through mazes, in

which animals 1) latently acquired information about the world around them, 2) behaved

in novel situations as though they were considering multiple courses of action, and then

3) pursued courses of action that they could only have inferred (correctly) would most

effectively bring about desired outcomes, no reinforcement required. Most famously, he

demonstrated that when he changed the structure of a maze, rats would spontaneously

take shortcuts to out-of-sight food rewards. Through these experiments, Tolman detailed

an elaborate framework of the mind, which intricately connected the behaviorists’ notion

of reinforcement learning to Heideggers notion of “being in the world”. In his central

claim, he made analogy of the mind to a map, which modeled the world outside by
2



connecting concepts by “distance” and “direction”. The key target of reinforcement, in

this framework, was not stimulus-action pairs that yielded (un)desirable outcomes, but

distance and direction models that accurately predicted the future. As concepts in an

individual’s cognitive map were arranged and built up hierarchically into knowledge of

the world, he claimed, increasingly complex thoughts, “raw feels”, and even consciousness

would emerge naturally.

Tolman’s took a long time to become popular. It was not until O’Keefe (1976) measured

the activity of individual “place neurons” in the brains of rats and claimed that these

provided embodied and material evidence of Tolman’s cognitive map that “cognitivism”

entered the psychological mainstream. The decades of neuroscience research since have

slowly built a rich and compelling picture of how distance and direction can be embodied

by linking place neurons to grid neurons, and how cognitive maps can emerge as these

neurons are integrated into memory traces (engrams) through reinforcement (Leutgeb et

al. 2005, Weber and Sprekeler 2018, Josselyn and Tonegawa 2020). Validating the ideas of

both Tolman and Heidegger, the most fundamental feature of this system is increasingly

seen not as a the mapping of space, but of time (Dragoi and Tonegawa 2011, Ekstrom and

Ranganath 2018). In today’s psychology, the cognitive map concept is tightly connected

to the study of episodic memory, and the notion that behavioral flexibility emerges from

the ability to map information from the past onto possible futures (Suddendorf and

Corballis 2007).

Even now, a tug-of-war exists between the rationalist approach, which identifies elements

of human thought that demonstrate our unique capacity for reflection, and the embodied

approach, which claims that all thought has material origins traceable through an organ-

isms history. For example, a distinction is often made between “episodic-like” memory,

evidenced by animals’ ability to act according to information about when, where, and
3



CHAPTER 0. INTRODUCTION

how they experienced something, and episodic memory, which includes the awareness of

one’s-self “being” in the memory (Clayton 2017, Crystal and Suddendorf 2019). Tulving

describes the representation of self in memory as auto-noesis, and claims that even if an-

imals do this too, it is not possible to get in their heads in a way by which we could know

for sure (Tulving 2005). Perhaps he is right, or perhaps it possible to understand how

the process by which auto-noesis emerges and identify the signatures of that process in

animal behavior, as Tolman once did when he sought evidence that rats make inferences

and visualize the future.

If we are to hold the view that knowledge is relational, embodied, distributed, and

material (as follows from Tolman’s theory of cognitive maps) and that it is co-produced

by networks of human and non-human actors (as put forth by Russo), then it is possible

to see knowledge of the self not as an innate, ineffable aspect of human psychology, but

as tangible, and perhaps inevitable, product of a cognitive organism engaging with the

world around it. To study this process, however, we must step outside the world of

laboratories and rats, and into the complex, poorly defined world in which the human

capacity for auto-noesis evolved. We must ask how cognitive maps are built, from the

ground-up, and put ourselves back into the equation. What is the distance and direction

between the way we move through the world and the way an animal moves through

world, and what can then be inferred about the knowledge we share?

The rest of this thesis is not about self-awareness or consciousness. I try to limit myself

to the marginally less messy concepts of knowledge, learning, and inference. But my

background as a cognitive psychologist with an interest in primate theory of mind informs

the whole endeavor. My mission, in starting this Ph.D. program, was to take the big

questions of psychology and primate evolution to the field, and ask how cognition works

when you take away the controls. What I discovered is that in the field of behavioral
4



ecology, the concept of cognitive maps is used more like a tool than a theory (though

it still often traced back to Tolman and the use of shortcuts by rats in mazes). The

cognitive map, in ecology, takes the most literal form of Tolman’s cognitive map: a

mental topological representation of space. Though this may not accurately describe

most animals’ knowledge, it can be useful for approximating animal knowledge when

studying their decision making. And, if the use of shortcuts is demonstrated in wild

animals, its proof of a cognitive map’s existence can be rightfully hailed as a milestone

for the study of animal cognition. In each chapter of this thesis, I make an attempt to

integrate the ecological concept of cognitive maps (which I henceforth call topological

maps) and the pyschological concept of cognitive maps.

What I mean by this is, I make an effort in each chapter to measure the ways different

animal’s movement reflects an inference at a specific spatial scale, and what the nature

of this inference says about the animals’ knowledge. In the first chapter, I explore multi-

destination route-optimization by primates in local resources arrays. I ask how their

movement provides evidence that they have learned either the specific patterns that

optimize a given array, or general strategies that yield efficient routes in many arrays.

In the second chapter, I bring this controlled, lab test to the messy field, exploring how

kinkajous forage for flowers in the analagous but much more complicated crown of a balsa

tree. Then I expand the scale, asking how kinkajous learn routes and navigate between

feeding stations I experimentally baited with food over nearly two months. Finally, I

expand the scope, analyzing the movements of four different species for signs of spatial

inference as they forage for a particularly essential and dynamic food resource over a two

three-month seasons. In the process, I have repeatedly broken down and rebuilt my own

understanding of the nature of cognition. I hope, by the end, the reader might share in

some facet of that knowledge.

5



Chapter 1

Mild movement sequence repetition

in five primate species and evidence

for a taxonomic divide in cognitive

mechanisms.

Authors: Alexander Q. Vining1,2,3,4,†, L. Tamara Kumpan5,6,†, Megan M. Joyce7, William

D. Aguado8, Eve A. Smeltzer5, Sarah E. Turner7 & Julie A. Teichroeb5

1. Animal Behavior Graduate Group, University of California, Davis, USA

2. Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany

3. Department of Biology, University of Konstanz, Konstanz, Germany

4. Smithsonian Tropical Research Institute, Balboa, Republic of Panamá

5. Department ofAnthropology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.

6. School of the Environment, University of Toronto, Toronto, Canada.

7. Geography, Planning and Environment, Concordia University, Montréal, Canada.

8. Department of Anthropology, Rutgers University, New Brunswick, USA.

6



ABSTRACT

†These authors contributed equally: L. Tamara Kumpan and Alexander Q. Vining.

Abstract

When animals forage, they face complex multi-destination routing problems. Traplining

behaviour—the repeated use of the same route—can be used to study how spatial mem-

ory might evolve to cope with complex routing problems in ecologically distinct taxa.

We analyzed experimental data from multi-destination foraging arrays for five species,

two cercopithecine monkeys (vervets, Chlorocebus pygerythrus, and Japanese macaques,

Macaca fuscata) and three strepsirrhines (fat-tailed dwarf lemurs, Cheirogaleus medius,

grey mouse lemurs, Microcebus murinus, and aye-ayes, Daubentonia madagascariensis).

These species all developed relatively efficient route formations within the arrays but ap-

peared to rely on variable cognitive mechanisms. We found a strong reliance on heuristics

in cercopithecoid species, with initial routes that began near optimal and did not im-

prove with experience. In strepsirrhines, we found greater support for reinforcement

learning of location-based decisions, such that routes improved with experience. Further,

we found evidence of repeated sequences of site visitation in all species, supporting pre-

vious suggestions that primates form traplines. However, the recursive use of routes was

weak, differing from the strategies seen in well-known traplining animals. Differences

between strepsirrhine and cercopithecine strategies may be the result of either ecological

or phylogenetic trends, and we discuss future possibilities for disentangling the two.
7



CHAPTER 1. SEQUENCE REPITITION

Introduction

Foraging animals face complex multi-destination routing problems as they move between

food sites. By locating routes that strategically connect biologically meaningful locations

across space, animals may benefit from increased route efficiency during travel. However,

finding the most efficient path connecting multiple sites requires the cognitive capacity

to cope with the classic mathematical problem of the travelling salesperson (TSP), in

which a set of fixed locations are each visited once before returning to the point of origin

(Anderson 1983, Cook et al. 2011). When returning to the start is not required, the

problem is termed an optimal Hamiltonian path problem, open-TSP, or shortest path

problem (Janson 2014). The number of possible routes in a TSP-like problem increases

exponentially as sites are added, quickly making computation of the most efficient route

intractable. Animals with differing computational abilities likely evolved alternative

strategies to address these navigational challenges in the wild (Janmaat et al. 2021).

One approach to solving TSP-like foraging problems is to learn, through trial and error,

efficient sequences of location transitions within an array; a method sometimes called it-

erative learning. In bumblebees, an individual-based decision model of this type has been

used to explain traplining behaviour (Lihoreau et al. 2012b, Reynolds et al. 2013)—a

foraging strategy that involves the repeated use of a circuit to feeding sites in a stable

and predictable sequence (Thomson et al. 1997). In simulations and foraging exper-

iments, bumblebees eventually converge on an optimal or near-optimal route through

simple arrays via trial and error with iterative improvement, where the likelihood of a

given transition between locations increases if that transition was used in a trial that

resulted in a final path length decrease, relative to previous trials (Reynolds et al. 2013).

Alternatively, animals may utilize a different cognitive process, using pre-existing heuris-
8



INTRODUCTION

tics (Siekmann and Crocker 2010), which are simple “rules of thumb,” either learned

or innate, for solving multi-destination routes. For example, animals may prefer to al-

ways move to the nearest location that has not yet been visited—a strategy called the

nearest-neighbour rule (NNR) (Ohashi et al. 2008). This appears to be a solution used

by a variety of taxa to solve navigational challenges due to the low cognitive effort it re-

quires (bees (Ohashi et al. 2008); rats (Bureš et al. 1992); non-human primates (Cramer

and Gallistel 1997, Teichroeb and Smeltzer 2018, Teichroeb and Vining 2019)). Ani-

mals might also rely on other heuristics such as the “convex hull,” where a mental loop is

placed around the targets and visits occur in order based on distance from the outer edge

(Janson 2000, Teichroeb 2015, Teichroeb and Vining 2019). Importantly, though many

heuristic rules are possible (Janmaat et al. 2021), it can be expected that those that are

most generalizable to the greatest number of resource distributions should be the most

adaptive. The full suite of heuristics that humans use to solve TSP-like problems is still

unknown and new possibilities continue to be generated (Ryser-Welch et al. 2015). One

approach to understanding human heuristics and how such heuristics emerge is to study

how our closest relatives, primates, solve similar challenges within ecological contexts.

Several cognitive processes have been proposed as drivers of trapline foraging, includ-

ing iterative learning and nearest-neighbour heuristics (Lihoreau et al. 2012a). Thus,

traplining behaviour can inform how spatial memory might evolve to cope with complex

routing problems in ecologically distinct taxa (Ayers et al. 2018). Further, primate use

of traplining has been suggested in the literature (Garber 1988, Janson 1998, Dew and

Wright 1998, Di Fiore and Suarez 2007, Noser and Byrne 2010) however, these studies

did not explicitly test the hypothesis that primates form traplines.

Investigating whether primates use traplines, how quickly they develop traplines, and

how closely their routes resemble standard traplines, would reveal how they manage po-
9



CHAPTER 1. SEQUENCE REPITITION

tentially complex trade-offs between reinforcement learning, cognitively simple heuristics,

and the development of more complex, but flexible heuristics.

To examine primate strategies for approximating solutions to multi-destination routes, we

analyzed movement data from multi-destination foraging arrays for five species, two cer-

copithecine monkeys and three strepsirrhines: vervet monkeys (Chlorocebus pygerythrus),

Japanese macaques (Macaca fuscata), fat-tailed dwarf lemurs (Cheirogaleus medius), grey

mouse lemurs (Microcebus murinus), and aye-ayes (Daubentonia madagascariensis). We

measured the recursive movement characteristic of traplining behavior by quantifying

1) the repetitiveness of foraging sequences in which individuals completed experimental

arrays over multiple trials, and 2) the distance travelled in the arrays fitted to sim-

ple learning curves. Foraging arrays were originally designed for previous studies that

examined different theoretical questions (Teichroeb 2015, Teichroeb and Aguado 2016,

Teichroeb and Smeltzer 2018, Teichroeb and Vining 2019, Kumpan et al. 2019, Joyce

2021) and thus they vary for some species, however these data are useful to compare

these five primate species in their navigational strategies. Each array required decisions

in small-scale space where all sites were visible to one another and exploration between

platforms was not required.

We predicted differences in movement patterns based on known dietary and ecological

differences between our study species (Table 1) (Rosati 2017). Fat-tailed dwarf lemurs

are small nocturnal cheirogaleid strepsirrhines that are frugivorous (Lahann 2007). Since

they exhibit a strong reliance on stationary replenishing food items and have been found

to improve their accuracy and speed with experience in a multi-destination array (Te-

ichroeb and Vining 2019), we predicted that they would show a decrease in distance

traveled with experience consistent with an iterative improvement model. Grey mouse

lemurs are also small nocturnal cheirogaleid strepsirrhines but exhibit pronounced feed-
10



INTRODUCTION

ing plasticity, being omnivorous and consuming fruit, gum, insect secretions, and small

vertebrates (Dammhahn and Kappeler 2008). Aye-ayes are larger nocturnal strepsir-

rhines and are also known to exhibit diverse diets depending on where they live, relying

on insects in primary forest (Erickson et al. 1998, Randimbiharinirina et al. 2018) and

consuming fruits, coconut, flowers, and flower nectar in secondary forests (Ancrenaz et

al. 1994, Andriamasimanana 1994). For these two species that exhibit a stronger re-

liance on ephemeral and mobile food items, we predicted a minor decrease in distance

traveled with experience, and minimally repetitive route sequences. This prediction is

supported by results showing more randomness (i.e., rarely repeating foraging paths in

experimental set-ups) in the navigation patterns of strepsirrhines relying on ephemeral

resources (Teichroeb and Vining 2019). In addition, while vervet monkeys are medium-

bodied African monkeys that rely mainly on fruits and flowers and opportunistically prey

on insects (Wrangham and Waterman 1981, Bruorton et al. 1991), Japanese macaques

are medium-bodied Asian monkeys with a diet that varies as a function of forest type

but generally includes new and mature leaves, flowers, fruits, insects, and fungi (Hanya

2004, Go 2010). Since vervets have previously been shown to rely strongly on naviga-

tional heuristics (Cramer and Gallistel 1997, Teichroeb 2015, Teichroeb and Aguado 2016,

Teichroeb and Smeltzer 2018) and Japanese macaques have similar diets, we predicted

that these species would show patterns consistent with heuristic use: distance traveled

and route-repetition would both stay consistent throughout trials (because they stick to,

for example, a solution guided by the nearest neighbor heuristic), but distance traveled

would be significantly lower and route-repetition significantly higher when compared to

our simulations of other navigational strategies.

We tested two hypotheses focused on two different cognitive processes to understand

how primates approximate solutions to multi-destination routes. H1—Primates use rein-
11
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Table 1.1: Socio-ecological traits of the five primate species included in our sample.
Species Activity

Pattern
Social Structure Leaves Insects Fruit Gum Flowers

Strepsirrhines
Fat-tailed dwarf lemur (C. medius)1,2 Nocturnal Small groups None Low High None High
Grey mouse lemur (M. murinus)3,4 Nocturnal Solitary foragers Low High Mod High Mod
Aye-ayes (D. madagascariensis)5 Nocturnal Solitary None High High Low Mod
Cercopithecines
Vervet monkeys (C. pygerythrus)6 Diurnal Large groups Mod Low High None High
Japanese macaques (M. fuscata)7 Diurnal Large groups High Low High None Mod
Fietz and Ganzhorn (1999)1, Fietz et al. (2003)2, Génin (2003)3, Thorén et al. (2011)4, Sefczek et al. (2012)5,
Cancelliere et al. (2018)6, Hill (1997)7

forcement learning of location-based decisions that are more likely to lead to shorter and

more consistent routes and less travel with experience. This is a slow and cognitively

costly process of information acquisition and alteration of behaviour that may require

spatial rehearsal within visuo-spatial working memory and mental ‘chunking’ of locations

together (Zimmer et al. 2010). H2—Primates could use a less cognitively costly process,

heuristics, that can be generalized to approximate solutions to multi-destination routes

in many different arrays and if the best heuristics are applied, lead to both distance trav-

eled and route repetition remaining relatively consistent throughout trials. Additionally,

under this hypothesis, we would expect animals to immediately use more efficient paths

through resource arrays than expected by random decision making. Under the null hy-

potheses of random decision-making, we would expect to see no decrease in distance

traveled with experience and minimally repetitive route sequences. Since traplining is

beneficial for renewable and spatially predictable resources, ecological variables may also

predict traplining in primates. Specifically, frugivorous species or species that rely on

renewable, predictable resources should be more likely to trapline than species relying

on insects or other mobile, non-renewable resources (Lihoreau et al. 2011).

We also anticipated that our results might be impacted by living conditions because

some species were tested in captivity whereas others were wild. This could lead to many

variables altering experimental outcomes, such as internal factors influencing motivation,
12
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unknown variables such as diet, health status, distractions faced by wild but not cap-

tive animals, and unnatural territory sizes experienced in captivity. Coincidentally, all

strepsirrhines were captive and both cercopithecoids were wild, so these potentially con-

founding factors may lead to findings of similar navigational strategies for strepsirrhines

versus catarrhines.

Methods

Study subjects

We conducted foraging experiments on strepsirrhines (Nindividuals = 18) at the Duke

Lemur Center (DLC), North Carolina, from February to November 201513. Our sample

includes six fat-tailed dwarf lemurs (3–16 years of age, 3 males, 3 females), six gray mouse

lemurs (3–7 years of age, all female), and six aye-ayes (17–32 years of age, 2 males, 4

females). Because these species are solitary and nocturnal, most animals were housed

singly and were kept on a reversed light cycle such that they were active and could be

tested during the day. Housing conditions were similar for all individuals, and they were

all fed daily in a similar manner with a diet that included fruits, vegetables, meal worms,

and monkey chow (details in Teichroeb and Vining (2019)).

All vervet data were collected on wild animals (Nindividuals = 12) at Lake Nabugabo,

Uganda (0°22’–12° S and 31°54’ E) during four separate field seasons (April-June 2013,

Double Trapezoid array, M group (Teichroeb 2015); June–September 2013, Pentagon

array, M group (Teichroeb and Aguado 2016); August–September 2015, Z-array, M group

(Teichroeb and Smeltzer 2018); July–August 2017, Pentagon array, KS group (Kumpan

et al. 2019)). M group was composed of between 21–28 individuals, containing 2–3 adult
13
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males, 7–9 adult females, 2 subadult males, 1–3 subadult females, and 9–12 juveniles and

infants. KS group was composed of 39–40 individuals including 5 adult males, 11 adult

females, 3 sub-adult males, 5 sub-adult females, and 15–16 juveniles and infants. All

individuals were reliably identified based on natural features (details in Kumpan et al.

(2019); Teichroeb (2015); Teichroeb and Aguado (2016); Teichroeb and Vining (2019)).

Outside of foraging experiments, wild vervets were not provision fed.

All Japanese macaque data (Nindividuals = 10) were collected at the Awajishima Monkey

Centre (AMC), Awaji Island, Japan (34°14’43.6” N and 134°52’59.9” E) between July

and August 2019 (Z-array26). AMC is a privately-run tourist and conservation center

visited by a large group of free-ranging Japanese macaques (~400 individuals) called the

“Awajishima group” (Kaigaishi et al. 2019). The group is composed of different-aged

individuals of both sexes, with bachelor males and bachelor male groups living around

the periphery (Nakagawa et al. 2010). The Awajishima group forages on wild foods for

much of their dietary requirements but is also provision-fed a combination of wheat and

soybeans, supplemented with peanuts, fruits, and vegetables twice daily for ~10 months

of the year (details in Kaigaishi et al. (2019); Turner et al. (2008); Turner et al. (2018)).

Study design

Navigation arrays

The strepsirrhines and vervets were tested on a “double-trapezoid” shaped multi-

destination array with six feeding platforms (Teichroeb 2015, Teichroeb and Vining

2019) modified from Lihoreau et al. (2012a) (Fig. 1a), where there were 720 possible

routes (6!). Three different double-trapezoid arrays were built to account for differences

in body size: one for the smaller dwarf and mouse lemurs, one for the mid-sized aye-ayes,
14
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and one for the larger, wild vervets. Arrays were scaled such that the distance from

platform 1–2 (the shortest distance between targets) was approximately twice the body

length of the subject species. This does not necessarily control for the perceptual

abilities of the different species, and issue we address in the discussion. Vervets were

additionally tested on a Z-shaped array with six feeding platforms (720 possible routes,

Fig. 1b (Teichroeb and Smeltzer 2018)), and a pentagon-shaped array with five feeding

platforms (120 possible routes, Fig. 1c (Teichroeb and Aguado 2016, Kumpan et al.

2019, Joyce 2021)). Japanese macaques were tested on an identically sized Z-array

(Joyce 2021).

Figure 1.1: Design of the navigational arrays used, with (a) the Double Trapezoid array
used for Cheirogaleus medius, Microcebus murinus, Daubentonia madagascariensis, and
Chlorocebus pygerythrus. Three different arrays were built and scaled to the body size of
animals (see “Methods”). (b) The Z-array used for C. pygerythrus and Macaca fuscata.
The same size array was used for both species because they are similar in adult body
lengths (vervet mean range from four sites: 34.5–42.6 cm (Turner et al. 1997), Japanese
macaque mean range from six sites: 48.9–59.7 cm (Fooden and Mitsuru 2006). (c) The
Pentagon used for C. pygerythrus. Distances here are unitless but roughly proportional
to the body size of each species tested. Created in R version 4.0.4 and ProCreate.

For strepsirrhine trials, DLC staff captured individuals in their enclosures and trans-

ported them in padded crates to the testing room. The dwarf and mouse lemur array

was set up in a specially designed box (0.91×1.83 m) with a small compartment to contain

strepsirrhines for rebaiting between trials. The aye-aye array was set up on the ground in

a room measuring 2.44×4.27 m, where subjects stayed during the duration of their daily
15
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trials Teichroeb and Vining (2019). Vervet and macaque trials occurred when individual

monkeys voluntarily left their group to participate in foraging experiments alone. Vervet

arrays were set up using wooden feeding platforms (0.75 m long, 0.75 m wide×0.75 m

high) placed in an outdoor clearing measuring roughly 10×14 m in the home range of

the study group. Japanese macaque arrays were also set up using small wooden feeding

tables (0.40 m long, 0.30 m wide, 0.21 m high), covered in green plastic labeled with

the platform number. Two identical arrays were built in neighbouring provision-feeding

fields at the AMC (Near Lower Field: ~10×35 m, and Far Lower Field: ~15×45 m).

In these studies, all platforms were baited with a single food item. The reward used

varied by species (strepsirrhines: grape piece, apple piece, honey, agave nectar, or nut

butters, vervets: slice of banana, piece of popcorn; macaques: single peanut or piece

of sweet potato). Strepsirrhines have sensory adaptations for using olfaction to locate

food (Cunningham et al. 2021), while the cercopithecoids are heavily reliant on vision

to locate resources (Teichroeb and Chapman 2014), so we ensured that each platform

was baited with identical food items within a trial that smelled and looked the same to

avoid biasing where the animals chose to go. Platforms for the wild monkeys were not

rebaited between trials until all animals were ≥ 20m away and the entire sequence could

be rebaited before their return.

For all species, we started a trial when the tested individual entered the array and took

the reward at a platform. We then recorded each successive platform visit (including

revisits to empty platforms) until all rewards had been collected ending the trial. In our

analyses, we included a total of 852 trials collected over six navigational experiments,

completed by 40 unique individuals (18 lemurs, 12 vervets, 10 macaques) (Table 2).
16
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Table 1.2: Individuals and trial sample size included in the analysis.

Species Array Individuals Trials
C. pygerythrus Pentagon 4 110

Z-Array 9 269
Double-Trapezoid 3 70

C. medius Double-Trapezoid 6 158
M. murinus Double-Trapezoid 6 88
D. madagascariensis Double-Trapezoid 6 42
M. fuscata Z-Array 10 115
Totals 44 852

Data simulations

In addition to empirically collected data, we simulated agents learning to travel efficiently

in the same set of arrays using a simple iterative-reinforcement learning model based on

the one used by Reynolds et al. (2013) to test for traplining behavior in bumblebees.

In this model, agents move randomly between locations in an array until they visit all

locations, then reset for another trial. If the agent completed a trial by travelling less dis-

tance than on previous trials, the probability of the agent repeating location-to-location

transitions that occurred in that trial increased for future trials by a reinforcement fac-

tor. Initial transition probabilities were inversely proportional to the distance between

two locations. Unlike Reynolds et al. (2013), our simulated agents started at a random

location and were not required to return to that location to complete the trial. This

matches the trial structure used in our experiments (open-TSP), and reflects multiple

central place foraging patterns in primates (Chapman et al. 1989). Finally, agents could

not return to the location they had just come from, using an “avoid the last location”

behavioral heuristic observed in nectivores (Pyke 1978a, 1981), which prevented agents

from getting stuck in “loops” between two locations (Online Supplement - Simulation

Validation).
17
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Within each of the arrays used to collect empirical data, we ran simulations with rein-

forcement factors of 1 (no reinforcement), 1.2 (mild reinforcement), and 2 (strong rein-

forcement). These factors indicate the magnitude by which the probability of transitions

taken in a new shortest-path trial were multiplied, before re-normalizing all transition

probabilities. For each array and reinforcement factor combination, we ran 100 agents

that each completed 120 trials, where there was an equal probability of starting each

trial at any location. Then, for each array and reinforcement factor combination, we ran

100 additional simulations per species tested in the given array, where the probability

of starting a trial at any location was equal to the empirically observed location-starting

probabilities of the respective species.

These simulations were designed to help us test predictions of our two hypotheses re-

garding primate learning and decision making within the arrays. If primates learn to

solve navigational arrays efficiently by reinforcing movements between platform pairs,

they should exhibit overall greater receptiveness in their sequences of location visits than

reinforcement factor 1 simulations, and a greater decrease over time in total distance

traveled to complete the arrays. If primates are pre-disposed to navigate arrays using

appropriate heuristics, they should exhibit shorter distances travelled on initial trials

than in simulations.

Data analysis

From the raw sequences of locations visited in each trial, we calculated two metrics:

minimum distance traveled, and the proportion of platform revisits that occurred within

identical 3-platform visit sequences (determinism-DET) Ayers et al. (2018). All cal-

culations were done using R version 4.0.4 (Team 2020) and packages rstan (Stan De-

velopment Team 2023) and tidyverse (Wickham et al. 2019). A fully reproducible
18



METHODS

data notebook containing this work, as well as all analyzed data, is available at https:

//github.com/aqvining/Do-Primates-Trapline. All figures were created by AQV in

R version 4.0.4 and ProCreate.

Distance traveled

To calculate minimum distance traveled, we created a distance matrix for each resource

array containing the relative linear distance between any two resource locations. These

minimum linear distances approximate the distances traveled by the animals, which may

not necessarily be linear. We then summed the linear distances for all transitions made

in a trial. Because resource arrays were scaled to the subject species’ body size, these

relative distances were standardized.

Determinism

Given a sequence of observations, Ayers et al. (2015) defines determinism (DET ) as the

proportion of all matching observation-pairs (recurrences) that occur within matching

sub-sequences of observations (repeats) of a given length (minL). This metric has been

previously used to distinguish sequences of resource visitation generated by traplining

behaviour from sequences generated by known processes of random movement within a

given resource array (De Groeve et al. 2016, Riotte-Lambert et al. 2017, Ayers et al.

2018). It has several advantages in the analysis of foraging patterns, including the ability

to detect repeated sequences between non-consecutive foraging bouts, imperfect repeats

in sequences (i.e., omission or addition of a particular site), and distinguishing between

forward- and reverse-order sequence repeats (Ayers et al. 2015).

We adapted the methods of Ayers et al. (2015) to calculate the number of recurrences

and repeats generated by the sequence of location visits in each trial of our experiments
19
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and simulations. Based on an analysis of the sensitivity of DET scores to the param-

eterization of minL, we set minL to three for our calculations (Online Supplement -

Sensitivity Analysis).

Statistical analyses

Learning rates

We modelled distance travelled as a function of trial number, species, and individual.

Metrics of animal performance on learned tasks are known to follow power functions over

time and experience Jaber (2015), so we a priori applied log transformations to distance

travelled and trial number, then fit a linear model. Thus, in the resulting model, the

intercept can be interpreted as an estimated distance travelled on the first trial and the

slope can be interpreted as the exponent of a learning curve. We modelled species and

individual effects on the intercept by summing an estimated grand mean (µ0), species level

deviation (µsp), and individual level deviation (µid). We treated species and individual

level effects on the learning rate parameter (slope) the same way, summing a grand mean

(b0), species level deviation (bsp), and individual level deviation (bid). We estimated

additional parameters for the variance of individual level deviations in intercept and

slope (σµid and σbid , respectively). Finally, after finding residuals in an initial analysis

to have variances predicted by trial number and species, we estimated a separate error

variance for each species (σϵsp) and weighted the standard deviations of the resulting

error distributions by dividing them by the square root of one plus the trial number.

We set regularizing priors on the model parameters, assuming distances travelled would

remain within one order of magnitude of the most efficient route, but not setting any strict

boundaries. For the grand mean of the intercept, we used a normal distribution centered
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around twice the minimum possible distance required to visit all platforms in the array,

with a variance of one. For the grand mean of the slope and all species and individual

level deviations to the slope and intercept, we used normal distributions centered at zero

with variance of one. For all error terms, we used half-cauchy priors with a location

parameter of zero and a scale parameter of one. The full, hierarchical definition of the

model is given in Eq. (1).

Distance ∼µ0 + µsp + µid + (b0 + bsp + bid)Trial + ϵ

µ0 ∼N(4.78, 1)

µsp, b0, bsp ∼N(0, 1)

µid ∼N(0, σµid)

bid ∼N(0, σbid)

ϵ ∼N(0, σϵsp/
√
1 + Trial)

σµid , σbid , σϵ ∼HalfCauchy(0, 1)

Determinism

To compareDET between species, and between empirical and simulated data, we created

a binomial model of expected repeats generated in a trial given the number of recurrences
21
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(Eq. 2).

Repeats ∼binom(Recursions,DET )

DET =logit−1(α)

α =α0 + αsp + αsrc + αint + αID

α0, αsp, αsrc, αint ∼N(0, 1)

αid ∼N(0, σid)

σid ∼HalfCauchy(0, 1)

where α0 is the mean intercept, αsp is one of four coefficients determined by the species

(simulations are of the “species” which was used to assign its starting-location proba-

bilities), αsrc is one of four coefficients determined by the source (empirical data and

each level of simulated reinforcement factor), αint is one of 16 interaction coefficients

(each possible combination of αsp and αsrc), and αid is a varying effect of the individual.

Because the length of a sequence affects DET , we limit our analysis of DET to the

sequences generated by a subject’s or an agent’s first ten trials. Subjects that completed

fewer than ten trials were excluded from this portion of the analysis.

Results

Distance travelled and learning rates

Double trapezoid

In the Double Trapezoid array, the estimated minimum distance travelled on first trial

(model intercept) was far lower for vervets (95% Credible Interval (CI): 4.06–4.29) than
22



RESULTS

for the strepsirrhine species. Between the strepsirrhines, the estimated intercept was

lowest for dwarf lemurs, then mouse lemurs, and finally aye-ayes (95% CIs: dwarf lemur:

4.73–5.18, mouse lemur: 4.67–5.37, aye-aye: 4.86–5.52). The mean regression and sample

regressions from the posterior are plotted through the data for each species and all arrays

in Fig. 2. Because there is considerable overlap in the posterior distributions of intercept

parameters for strepsirrhine species, the hypothesis that dwarf lemurs travel the least in

initial trials is only weakly supported.

More than 80% of the posterior distribution for the slope parameter for mouse lemurs

falls below zero. This rises to >90% for aye-ayes, and 100% for dwarf lemurs (Fig. 3).

The mean estimated slope parameter for vervets is positive, though 20% of the posterior

sample falls below zero. Thus, there is strong evidence that dwarf lemurs and aye-ayes

improve their performance with experience and moderate evidence of the same for mouse

lemurs, but no evidence for vervets. However, even with improvement over experience,

none of the strepsirrhine species reach the initial performance of vervets, nor does our

model predict they would until at least 120 trials.

When the same statistical model used to analyze the empirical data was applied to sim-

ulated agents using a reinforcement learning algorithm to transition between locations

in the same array, the model did not fit as well. Model residuals were highly structured,

containing a strong negative relationship with predicted distance travelled and starkly

different variances dependant on trial number, suggesting our statistical model poorly de-

scribes the improvement dynamics of the iterative reinforcement algorithm. Nonetheless,

estimated learning rates for agents of each level of reinforcement factor showed predicted

patterns; the “species” level posterior for agents with reinforcement factor of 1 contains

0 (95% CI: 0.009 to 0.031), it is slightly (but entirely) below zero for those with a re-

inforcement factor of 1.2 (95% CI: 0.042 to : 0.0003), and well below 0 for individuals
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Figure 1.2: Raw data and model regressions for empirical analyses. The mean lin-
ear regression of log minimum distance traveled over log trial number for each species
(thick lines), plotted through raw data (points) for all empirical observations. Thin lines
represent linear regressions of 100 randomly selected samples from the posterior. All
regressions are determined by adding the species-specific deviations for the intercept and
slope in a given sample to the estimates of the grand mean for the intercept and slope,
respectively. Note that axes are fixed within arrays, but not between.
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Figure 1.3: Posterior credible intervals for species-level slope and intercept parameters.
80% intervals (wide bars) and 95% intervals (thin bars) of posterior distributions of the
model intercept for all species and simulated agents. The only species that show clear
improvement with experience are dwarf lemurs in the Double Trapezoid (credible interval
does not contain 0, dashed red line), though mouse lemurs and aye ayes also show some
evidence of improvement in this array. Across arrays, vervets and Japanese macaques
travel significantly less on initial trials than other species, and less than expected given
the distance weighted location transitions of the Reinforcement Factor 1 agents. Created
in R version 4.0.4.
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with a reinforcement factor of 2 (95% CI: 0.246 to : 0.207). Unexpectedly, the estimated

intercept (initial performance) is much higher for agents with a reinforcement factor of

2 (95% CI 5.29–5.44) than for those with 1.2 (95% CI: 4.84–5.00) or 1 (95% CI: 4.75–

4.90). Given that all agents (regardless of reinforcement factor) are known to behave

identically on the first trial, this result is certainly an artifact of the mismatch between

the statistical learning model and the actual dynamics of the reinforcement algorithm.

Plotting the regressions through the data reveals a floor effect, where agents lock into

one of a few short routes well before trials end, which may contribute to this poor fit.

Inspection of individual improvement curves over trial number also point to a cause of

this mismatch; individuals with reinforcement factors of 2 show initially flat or even

increasing distances traveled, followed by sharp decreases. The timing of this drop-off

varies greatly by individual (never even appearing for some) and explains both the high

inter-individual variance in estimated model parameters for reinforcement factor 2 agents

and the inaccurate intercept parameter estimates. Further analysis and visualization of

data from simulations can be found in the online Data Notebook.

Pentagon

Vervets in the Pentagon Array showed results comparable to their performance in the

Double Trapezoid. Initial performance started very close to optimal (Fig. 2), with

individuals circumnavigating the perimeter of the array on the majority of early trials.

This pattern is consistent with a predisposition for a number of route selection heuristics,

including nearest-neighbor and convex-hull. In later trials, there was a tendency to select

slightly less optimal routes, as indicated by the positive value of b0+bvervet in the majority

of our posterior samples (Fig. 3). However, with support from only 89% of the posterior

sample, this positive trend is insufficient to convincingly rule out the possibility that
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vervets do not alter their route selection heuristics with experience; instead, less efficient

routes in later trials may have occurred by chance.

Simulations in the Pentagon showed a different pattern than in the other arrays. Agents

with a reinforcement factor of 1.2 exhibited a strong learning effect, with a posterior

distribution of the slope greater in magnitude than agents with reinforcement factor of 2.

This can likely be attributed to a highly overestimated intercept, as reinforcement factor

1.2 agents did not achieve short routes as often as reinforcement factor 2 agents.

Z-Array

Japanese macaques and vervets in the Z-Array performed similarly on initial trials

(species intercept 95% CIs: vervets 3.99–4.03, macaques 3.97–4.04; Fig. 3). While vervets

remained consistent in their performance across trials (as in other arrays), Japanese

macaques showed slight improvement over trial number, with 86% percent of posterior

samples estimating a negative slope. This is not sufficient evidence to rule out the hy-

pothesis that decreased distance travelled in later trials occurred by chance, but is notable

given how close the initial performance of Japanese macaques was to optimal. Simula-

tions in the Z-array yielded similar results to the Double Trapezoid, though reinforcement

factor 1.2 agents appear slightly less able to find efficient routes in this array.

Traplining in primates: recursion relative to random transitions

in the arrays

Posterior estimates of parameters in the binomial model of DET were well mixed (online

supplement “DET Analysis”). In our empirical data, estimates of DET in the Double-

Trapezoid array were highest for aye ayes and lowest for vervets, but overlap between the
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posterior distributions of these estimates (Fig. 4) are too large to draw conclusions. As

expected, estimates of DET show clear distinctions between simulations with different

reinforcement factors, with higher reinforcement factors resulting in higher DET . For

the most part, lemurs exhibited higher DET than species-relevant simulations with a

reinforcement factor of one, but less DET than species-relevant simulations with a rein-

forcement factor of 2. The exceptions are vervets, for which about 50% of posterior DET

estimates fall within or below the posterior distribution of Learning Factor 1 estimates,

and aye ayes, for which more than 50% of the posterior DET estimates fall above the

posterior distribution of Learning Factor 2 estimates.

Pentagon and Z-array

The posterior distributions of estimated DET scores for vervets in both the pentagon

array and the Z-array were entirely above those for simulated reinforcement learning

agents (see online supplement “DET Analysis”). Japanese macaques, which were only

tested in the Z-array, exhibited DET scores in this array lower than those of the vervets.

The posterior distribution of estimated DET scores for Japanese macaques in the Z-array

fully contained that of reinforcement learning agents with a reinforcement factor of 2.

Discussion

Our results show several key takeaways: (1) Primate movement decisions in our multi-

destination arrays were more consistent than would be expected given random transitions

with probabilities proportional to distance between targets (i.e. Learning Factor 1); (2)

Wild vervets and Japanese macaques, with little to no experience, navigated our arrays

with far less travel than captive strepsirrhines and chose paths close to optimal; (3)
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Figure 1.4: Posterior distributions of alpha estimates. Estimates of alpha (related to
DET through a logit link-function) are calculated by summing the mean intercept (α0)
with relevant coefficients for species, source, and interaction. Colored plots represent
the density of alpha estimates in the posterior for each possible combination of these
coefficients, arrayed along the y-axis. The y-axis labels denote the source and plot color
denotes the species. The scale of the density axis (height) is not shown, but consistent
across all plots.
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Captive strepsirrhines exhibit reduced travel distance with more experience, showing

improvement rates that are well fit by traditional statistical models of learning rates; (4)

These improvement rates correlate with the degree of frugivory in strepsirrhines—being

greatest in dwarf lemurs, followed by aye-ayes, and then mouse lemurs. However there

is too much uncertainty in our estimates of learning rates to make definitive conclusions;

(5) The iterative-reinforcement algorithm proposed by Reynolds et al. (2013) to explain

traplining patterns in bumblebees is not sufficient to explain route-finding patterns in

the primates we tested, which are generally not central place foragers.

Our hypothesis that primates’ approximate solutions to multi-destination routes by rein-

forcement learning of location-based decisions was supported most strongly in our strep-

sirrhine sample. We found strong evidence for improvement with experience in dwarf

lemurs and aye-ayes, and notable improvement in mouse lemurs. Vervets finished the

Double Trapezoid array faster than the strepsirrhines but the credible intervals for their

learning rates contained zero and trended positive (increased distance travelled with ex-

perience). Initial performance by vervets was so close to optimal that we may not have

observed reinforcement-learning of location-based decisions even if it did occur. Thus,

we can rule out the null hypothesis that strepsirrhines do not improve their performance

with experience but cannot do the same for vervets. Our data suggest that the improved

performance in strepsirrhines results from reinforcement learning of location-based de-

cisions. There are, however, alternative explanations, such as strepsirrhines becoming

more motivated as they grew comfortable with the testing environment, thus exploring

less and reducing travel distances. Additionally, because the strepsirrhines were raised in

captivity, they may simply not have learned spatial heuristics potentially used by their

wild counterparts.

Analysis of our simulations also suggests that if strepsirrhines are improving perfor-
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mance through reinforcement learning, this process is not well modeled by the iterative-

reinforcement algorithm of Reynolds et al. (2013). At reinforcement factors that pro-

duced learning rates comparable to strepsirrhines, this algorithm also yielded very high

inter-individual variation in learning rates and learning curves that were not well fit by

traditionally used power law functions. Strepsirrhine learning curves were comparably

consistent between individuals and well-fit by power law function. Thus, strepsirrhines

may use search strategies that balance exploration with the identification and exploita-

tion of efficient navigation strategies. The simulations, conversely, depend on stochastic

transitions to find an efficient route and then quickly exploit that route, to the exclusion

of other possibilities.

Our second alternative hypothesis—that primates have either innate or previously learned

heuristics that can be generalized to approximate solutions to multi-destination routes

in many different arrays—was most strongly supported by our cercopithecoid sample.

We found that vervets and Japanese macaques did not significantly reduce their dis-

tance traveled over time in any array. Their observed distance traveled was significantly

lower than in simulations of the other strategies; they immediately started with effi-

cient routes and maintained them. This evidence suggests that vervets and Japanese

macaques depended on previously learned or innate spatial heuristics from the beginning

of their experience within the arrays and did not deviate from these. This is reinforced by

the finding that vervets in the Z-array strongly relied on the nearest-neighbour heuristic,

even though it was not consistent with the shortest possible path (Teichroeb and Smeltzer

2018). Japanese macaques also showed a reliance on heuristics in the Z-array that did

not lead to the shortest paths (Joyce 2021). These findings are not surprising—previous

work has found that other primates frequently choose routes that are more efficient than

chance but less efficient than optimal (Janson 2014). Optimal routes were frequently
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observed only in the relatively simple Pentagon array, but less frequently in the more

complex Z-array or Double Trapezoid array.

Though our learning simulations eventually reached an optimal path in the Pentagon

array (within 70–100 trials), the vervets achieved this optimal path often on the first

trial—much quicker than our model simulations. Use of either the convex-hull or the

nearest-neighbour rule leads to the shortest path. Thus, the simple heuristics that vervets

appear to apply in this array are far more efficient than a reinforcement-learning based

approach. This suggests that under certain conditions, these “fast and frugal” heuristics

are more adaptive and efficient than the cognitively more demanding learning-based

alternative (Gigerenzer and Todd 1999).

Traplining in primates

Within the first 10 trials in the Double Trapezoid Array, individuals from all species ex-

hibited DET values that were greater than those calculated via simulations with random

transitions between targets (Learning Factor 1). This evidence of repeated sequences of

site visitation supports previous suggestions that primate food site visitation sequences

were reminiscent of traplining (Garber 1988, Janson 1998, Dew and Wright 1998, Di Fiore

and Suarez 2007, Noser and Byrne 2010), though these sequences occur in a less stereo-

typed manner than well-established traplining animals (e.g., bees). The wide posterior

distributions of empirical DET estimates likely reflect both our small sample sizes and

the likely possibility that primates vary between trials in their tendency to repeat paths.

Additional studies with more animals could effectively model the effects of experience

on DET and potentially find narrow estimates that can be more usefully compared to

simulations with different learning factors.

The performance of our iterative reinforcement models were also array-dependent. In all
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arrays, a reinforcement factor of 2 produced strong decreases in distance over trial num-

ber, while a lower learning factor of 1.2 produced a strong decrease only in the Pentagon

and a minor decrease in the Double Trapezoid. This again reflects the simplicity of the

Pentagon array relative to the Double Trapezoid and Z-arrays. Reynolds et al. (2013)

also utilized an iterative-reinforcement algorithm to analyze traplining behavior across a

variety of arrays, finding fast and convergent learning rates between their algorithm and

bumblebees in a pentagon array, and noting the failure of the algorithm in other arrays.

By adding a no-backtracking rule to this algorithm, we were able to successfully simulate

improvements in array navigation, but these improvements were not well modeled by a

power-law learning curve, as often seen in animal learning (Donner and Hardy 2015). In

future work, more complex learning models may be able to more accurately reflect the

patterns of exploration and improvement that animals use to efficiently exploit resources

in environments with complex structure. New ways of measuring patterns of exploration

and improvement may complement DET metrics by revealing different aspects of animal

decision making.

Evidence of a phylogenetic signal in navigational behaviour, eco-

logical determinants, or a wild vs. captive difference?

It is intriguing that the navigational behaviours of the strepsirrhines in our dataset were

closely aligned, while the cercopithecoids were also similar to one another. This suggests

that the cognitive skills underlying navigational strategies in primates have some un-

known level of phylogenetic signal, consistent with other behavioural traits (e.g., social

organization (Ossi and Kamilar 2006); activity pattern (Wu et al. 2017)). However,

despite any potential constraints in navigational abilities introduced via evolutionary

history, some behavioural variability may still be introduced via specialized adaptations
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for ecological niches.

The strepsirrhine species we studied all share a distinct behavioural trait that separates

them from vervets and macaques—they are primarily solitary in contrast to the highly

social cercopithecoids. This is notable because recent work suggests that spatial cognition

brain regions are expanded in strepsirrhines and solitary primates, potentially because

animals ranging alone require greater spatial memory to find food and mates (DeCasien

and Higham 2019). Conversely, social species rely on each other for increased accessi-

bility to food, including detection and defense. Social species may benefit more from

improved sensory perception instead of enhanced spatial abilities, which would be more

useful for distinguishing between resources. Our findings may provide some preliminary

support for a trade-off between visual processing centers and spatial abilities in social

primates, with reduced spatial learning in cercopithecoids and enhanced spatial learning

in strepsirrhines. Future research with wild animals under natural conditions is needed to

provide further support for a trade-off between spatial abilities and sensory perceptions in

social versus solitary species. However, although the strepsirrhines aligned more closely

when compared to the cercopithecoids, we found differences between the strepsirrhines

which may be caused by their different ecological niches.

Ecological and dietary variability is great within primates, so it is highly unlikely that

most species will rely on the same or similar cognitive mechanisms during navigation.

Among the strepsirrhines in our dataset, the most frugivorous species (i.e., dwarf lemurs)

had the lowest overall credible intervals for initial travel paths and learning curves. While

this pattern fits our prediction that more frugivorous animals would adopt strategies to

efficiently navigate arrays, the degree of overlap in parameter estimates for the strep-

sirrhines prevents us from making any strong conclusions. Although dwarf lemurs align

more closely with the other strepsirrhines with regards to initial performance and faster
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learning, we know from previous work that they do appear to utilize some navigational

heuristics more often than either aye-ayes or mouse lemurs (Teichroeb and Vining 2019),

similar to cercopithecoids. Heuristic use in dwarf lemurs is also weakly supported by

our finding that they traveled shorter distances initially relative to other strepsirrhines

in the same array. Dwarf lemurs thus show some evidence for both reinforcement-based

learning of navigational paths and use of heuristics and may be utilizing both strategies.

This could be because dwarf lemurs face the added constraint of spending up to seven

months at a time in torpor, where they rely on accumulated fat for subsistence Fietz

and Ganzhorn (1999). Thus, they have limited time out of torpor to take in resources

and build up their reserves, and likely need to do this as efficiently as possible. Other

species heavily reliant on replenishing resources have also been reported to use multiple

navigational strategies, for example pollinating bees show iterative learning while also

linking nearest-neighbour flowers5. Our findings for dwarf lemurs suggest that the ten-

dency to combine navigation strategies may be motivated by a diet of spatially stable,

replenishing food sources. These findings support our prediction that dwarf lemurs would

show shorter distances with experience and increased determinism.

Our findings of similar navigational strategies for strepsirrhines versus cercopithecoids

also conform to the different conditions experienced by our sample (i.e., the strepsirrhines

were captive and the monkeys were wild). Many variables could potentially alter exper-

imental outcomes, such as internal factors that influence motivation (Janmaat 2019).

Wild monkeys were tested opportunistically at different times during the day and some

individuals ran more trials consecutively than others, which may have led to satiation

and performance fatigue. We also cannot consider unknown variables such as complete

diet and health status. For example, macaques were provision fed whereas vervets were

not. Provision feeding in particular may encourage repeated sequences of visits to baited
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sites. Further, wild animals experienced distractions including alarm calls, vigilance for

predators, and changes in weather conditions. The strepsirrhines in our sample were

all raised in captivity; environments much smaller than their natural territories that

lack the ecological pressures they evolved with. This may have kept them from learning

heuristics they might otherwise use Trapanese et al. (2018). These species are also all

nocturnal and may face different perceptual constraints. We cannot be certain of the

effect that these or other variables may have had on our results. Exploring whether

captive cercopithecoids also exhibit first-trial heuristic use in multi-destination routes

is an important future direction. Likewise, investigating a larger sample that includes

species with overlapping behavioural traits, such as social strepsirrhines (e.g., ring-tailed

lemurs), or strepsirrhines with varying activity patterns (e.g., diurnal or cathemeral),

and comparing with our results would be useful future studies.
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ABSTRACT

Abstract

Within the Procyonidae family, three lineages (kinkajous, olingos, and ringtails) have

independently evolved to become highly arboreal, nocturnal, and fruit dependent (fru-

givorous) - despite their membership in the Order Carnivora. Reliance on fruit is hy-

pothesized to select for behavioral flexibility mediated by cognitive mechanisms such as

episodic memory and topological mental mapping. This hypothesis arises because the

semi-predictable patterns of fruit production is patchy, and requires extensive environ-

mental knowledge to exploit effectively. Little is known, about how the shift to frugivory

has affected the cognitive evolution and foraging patterns of Procyonids, however. In

this study, we analyze the movement and behavior of the most strictly frugivorous of the

Procyonidae, kinkajous (Potos flavus), within a large balsa (Pyramidale ochroma) crown.

Balsa trees produce large flowers that open for one night, generate large quantities of

nectar, and then fall off the tree - creating a high value resource patch with internal

structure that changes every night. Our goal was to determine the contexts in which

kinkajou movements responded to the distribution of balsa flowers, and the types of

learning and memory necessary for such a response to be possible. We find that patterns

of kinkajou movements between major regions of this tree crown did not vary with the

changing distribution of flowers, but kinkajou movements do reflect a tendency to sample

different regions and stay longer where flowers are denser. We also find that kinkajous

frequently co-forage within the tree, showing increased levels of movement when other

kinkajous are present. These results suggest that foraging hotspots may act as social

hubs for otherwise solitary kinkajous - despite competitive dynamics. We discuss the

implications of these findings for understanding kinkajou cognition at different ecological

scales.
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Introduction

Intelligence, by one definition, is the ability to accurately predict the state of the world

at some future point in time. Organisms are often deemed more intelligent when they

anticipate conditions and outcomes further into the future, or by using knowledge of

multiple, interacting processes (Decker et al. 2016, Redshaw and Suddendorf 2020). So-

cial intelligence is often differentiated from ecological intelligence, with ongoing debate

as to the consequences natural selection in either domain has on other types of cognitive

performance (Rosati 2017, Ashton et al. 2018). Ecological and social hypotheses for

the origins of animal intelligence both posit that the ability to understand the nature

of multiple, interacting relationships provides fitness benefits to an animal. In the case

of ecological intelligence, the relationships in question are physical rather than social

(e.g. the spatial relations between patches, the temporal relations between productive

periods, the causal relations between rainfall and phenology). Understanding such envi-

ronmental relationships provides animals a means of directing their movements between

highly productive patches, which is more energy efficient than random search foraging

and presumed to carry fitness benefits when patches are sparsely distributed (Boyer and

Walsh 2010).

Fruit is one type of resource that is often distributed this way, leading to the hypothesis

that more selective foragers (i.e. those that eschew leaves and other hard-to-digest, easy-

to-find energy sources in favor of high-energy fruits) have evolved greater intelligence

(Milton 1981). This hypothesis is supported by phylogenetic analysis of primate and

bird brain sizes with regard to degree of frugivory (DeCasien et al. 2017, Hardie and

Cooney 2023, but see also Powell et al. 2017) and by the performance of both primates

and birds that rely on sparsely distributed food patches on multiple cognitive tests (Mals-
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burg et al. 2020). Neither of these approaches, however, directly measures an animal’s

understanding of environmental relationships; they provide only indirect support of the

ecological intelligence hypothesis.

Increasingly, behavioral ecologists are using technological advances in animal telemetry

and remote environmental sensing to analyze animal movements across different types

of landscapes, such as energy, risk, and information (Williams and Safi 2021). This

approach allows animal decision making to be studied as a sequential process that is

organized hierarchically across multiple spatial and temporal scales - context that is

missing from standard laboratory studies of cognition (Stephens 2008). However, deter-

mining the relevant scales of animal decision making in natural contexts and collecting

appropriate multi-scale data remains a challenging and rarely achieved goal (Kay et al.

2017). Recent examples have highlighted species that both live in complex social groups

and depend on dynamic resource distributions like fruit or watering holes (Presotto et

al. 2019, elephants, Toledo et al. 2020, fruit bats, Trapanese et al. 2022, macaques and

capuchins). There is an opportunity for studies of ecological decision making to enhance

our understanding of the relationship between ecological and social intelligence by ap-

plying this approach to species that selectively forage on sparsely distributed, high yield

resources, but do not live in large, complex social groups.

The Carnivora Order is a compelling place to begin this work, given that social carnivores

exhibit the same markers of intelligence as social primates, but do not meaningfully

diverge from solitary carnivores in terms of relative brain size (Holekamp and Benson-

Amram 2017). Kinkajous (Potos flavus) are particularly interesting in this context, as

they have evolved over the last 24 million years (approximately) from an omnivorous,

terrestrial ancestor into a highly specialized arboreal frugivore (Koepfli et al. 2007).

We thus predict that they are skilled learners of environmental relationships. Because
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kinkajous live in small social groups and typically forage alone (Kays and Gittleman

2001), comparing their understanding of environmental relationships to that of more

social animals will help distinguish the roles of diet and sociality in cognitive evolution.

Kinkajous often consume the nectar of balsa flowers (Pyramidale ochroma), which are

clustered across multiple spatial scales and thus provide an excellent system for studying

kinkajou decision making. Balsa flowers typically open around 17:00 hours with already-

high volumes of nectar, continue producing diminishing volumes of nectar through the

night, and fall off the tree with a day or two (Kays et al. 2012). Thus, within tree

crowns, the concentration of nectar in patches of large flowers is analagous to that of

the inflorescences exploited by bees and hummingbirds; a system that has been used

extensively to study learning mechanisms in these species (van der Kooi et al. 2021). At

larger scales, balsa trees are wind-dispersed pioneer specialists that grow best in forest

gaps and disturbed areas, resulting in highly patchy spatial distributions (Aikman 1955).

In this study, we begin the work of investigating the degree to which kinkajou movement

decisions reflect an understanding of the environmental relationships that define the

distribution of balsa nectar.

Kinkajou Socio-Ecology

Kinkajous are highly adapted to a diet of fruit and nectar, which make up 90-100%

of a kinkajou’s diet (Julien-Laferrière 1999, Kays 1999). Like platyrrhines (New World

monkeys), kinkajous have moderate body sizes (2-5 kilograms), prehensile tails, grasping

paws, alternating diagonal gaits, and visual sensitivity to brightness contrasts (Chausseil

1992), all of which aid in finding and accessing hard-to-reach fruit in the canopy. Com-

pared to their Carnivoran relatives, kinkajous also have shortened snouts, flattened molar

dentition, and squared jaws for processing fruit (Ford and Hoffmann 1988). Kinkajous
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do not appear to specialize on any one food source, however; they exploit a rich variety

of fruit and nectar sources across their broad range (much of Central and South Amer-

ica) (Julien-Laferrière 1999, Kays 1999, Nascimento et al. 2017), with some evidence of

population differences in food preferences (Séguigne et al. 2022). The selectivity and

diversity of kinkajous’ diets suggests they are promising candidates for the study of eco-

logical intelligence, but as of yet there exists little data that can elucidate their cognitive

flexibility or predictive ability.

Another advantage of studying the foraging of kinkajous is that they are largely solitary

(Julien-Laferriere 1993). Social groups consisting of one adult female, one or two adult

males, and two juveniles have been found associating at sleep sites and in large foraging

trees during up to 10% of their active hours, but kinkajous nearly always travel alone

(Kays and Gittleman 2001). Kinkajous are, however, known to be quite vocal and

frequently scent-mark using specialized glands on their cheeks, throat, and abdomen

(Ford and Hoffmann 1988, Kays 1999). It is possible that kinkajous maintain nuanced

social relationships with their neighbors mediated through channels of communication

that remain invisible to us. Further uncovering the social relationships of kinkajous

remains an intriguing line of research. At the same time, the solitary nature of kinkajous’

travel between foraging locations suggests decisions about where to forage are made

largely independently, meaning it is safer (relative to primates) to assume kinkajous

travel where they want to go, and not where other individuals want to go. Kinkajous

thus make an excellent species for studying decision making in dynamic, challenging

foraging environments.

Recent work revealed that kinkajous’ transits between foraging locations tend to ex-

hibit higher “pathiness” (i.e. occur along the same route) than those of other sympatric

frugivores (Alavi et al. 2022). Kinkajous’ nocturnality may be a contributing factor
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here; while diurnal frugivores can use distant landmarks to orient toward foraging loca-

tions, kinkajous are likely limited perceptually to local landmarks and thus become more

dependent on learned routes. Determining the extent to which kinkajous use their route-

networks flexibly to plan visits to highly productive trees, rather than relying on fixed

patterns of visitation between foraging sites, will require the study of kinkajou move-

ments relative to the changes in resource distribution in their home ranges. A complete

picture of kinkajou decision making requires this work to be done at multiple scales, such

that the decision making heuristics used to navigate local, perceptually available resource

distributions can be used to contextualize decisions made at home-range scales.

The Kinkajou-Balsa Mutualism

Balsa trees (Pyramidale ochroma) are an important food resource for kinkajous, and

one that provides opportunities to study kinkajou decision making at multiple scales.

During their flowering period, each of a balsa tree’s large flowers can produce around

22mL of nectar a night (Kays et al. 2012). These flowers open around dusk and fall

off 24-48 hours later. The timing and quantity of nectar production suggest balsas are

specifically soliciting larger bodied, nocturnal pollinators (Lynn Carpenter 1978). Indeed,

over 126 nights of observation across three balsa trees, 25 mammalian and bird species

were observed visiting. Kinkajous were the most frequently observed species (Kays et al.

2012).

Whether kinkajous and balsa have specifically co-adapted to each other is not known,

but we put forth a few hypotheses for why this could be a likely scenario. From the

kinkajous’ perspective, balsas in lowland tropical rainforests tend to flower during the

transition from wet season to dry season, a period on Barro Colorado Island when fruit

availability is typically very low (Foster 1982). Thus, balsa nectar may be an essential
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“fallback food”, sustaining kinkajous when their primary food source is scarce. From the

balsa’s point of view, kinkajous may be especially effective for cross-pollinating between

balsa stands. Kinkajous use their long tongues to drink nectar from the flowers, streaking

pollen across their faces in the process. Additionally, balsa most often occur in isolated

patches where treefalls or other disturbances have occurred (Aikman 1955); therefore,

cross-pollination between these patches requires that pollinators travel long-distances

over short period of times. Pollination efficiency would be increased if pollinators moved

between stands along direct routes. Pollination efficiency could be further increased

if pollinators selectively moved between actively flowering crowns by making flexible,

predictive foraging decisions, as we predict that kinkajous do.

Finally, the importance of balsa trees for kinkajous may extend beyond foraging gains.

As hotspots of activity, balsa trees may also serve as important social hubs for kinkajous.

A clearer picture of kinkajous’ social relationships, and the impacts these may have on

their movements, can be gained by observing the nature of kinkajous’ interactions during

co-foraging.

Defining and Measuring Intelligence Through Foraging Decisions

Foraging presents animals with a hierarchy of decisions about when to forage, where, and

for how long. These decisions require an animal to balance what it can perceive in its local

environment, the properties of the environment that it has learned, and the consequences

of each decision on future possibilities (Stephens 2008). Animals are expected to make

decisions that minimize their risk of acquiring insufficient energy (often best achieved

by maximizing energy intake), but are limited in their ability to make optimal decisions

by what they know about the properties of their environment (Pyke 1984). Thus, the

divergence of animal decisions from optimal decisions can reveal what the animal has
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learned.

Within individual balsa crowns, the nightly turnover of flowers creates a sort of natural

experiment, in which optimal paths through the crown vary each night. Thus, we are

able to test whether kinkajous attend to changing resource distributions at a local scale,

and flexibly navigate the tree crown by changing their travel route to optimize their

foraging success on a night to night basis. Within the balsa crown, it is possible that

kinkajous (a) assess flower distributions perceptually (likely by smell), (b) utilize learned

behavioral routines to efficiently exploit average flowering patters, and/or (c) monitor

changing flower distributions - using recent experience and knowledge of relationships in

flowering patterns between regions of the tree to selectively exploit areas predicted to

be most productive. Testing between these possibilities is therefore a good way to begin

understanding kinkajou decision making.

Hypothises and Predictions

In this study, we conducted observations of a single balsa tree. We collected data on the

distribution of flowers within the tree crown each night, and minute-by-minute data on

the distribution of kinkajous in the crown over four hour periods. By pairing these data,

we aimed to test several hypotheses regarding the ways kinkajous respond to changing

resource distributions at a local scale (Table 1).

First, under the hypothesis that animals will selectively forage in areas with above-average

energy returns (Charnov 1976), we predicted that kinkajous would spend more time in

regions of the tree crown with greater flower density. We then tested two alternative

hypotheses of how kinkajous decide to move between different regions of the tree against

a null hypothesis of random movement: A) kinkajous assess, perceptually, which regions

have the greatest density of flowers and B) kinkajous predict which regions of the tree
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will have the greatest density of flowers using information obtained on previous nights.

Next, we considered the role of social bonds on kinkajou behavior while foraging in the

balsa crown. We tested the additional hypothesis that kinkajous avoid direct foraging

competition by foraging in separate regions of the tree against the hypothesis that kinka-

jous use time in the balsa tree for physical means of social bonding such as grooming.

Lastly, we considered how working memory might influence kinkajou foraging decisions,

hypothesizing that kinkajous will avoid foraging in regions they have recently visited

(and likely depleted).

Methods

Study Site

Data were collected on Barro Colorado Island (BCI), Panama. BCI is a 15.6 km² island

with semi-deciduous lowland tropical forest. The wet and dry seasons on BCI are very

distinct, where approximately 90% of an average annual 2600mm rainfall occurs between

May and December (Dietrich 1982). We observed a single balsa tree beginning December

14, 2019 until January 26, 2020. This is a period of transition from the wet to dry season

during which there is little fruit production on BCI (Wright et al. 1999). The tree under

observation grows from the forest edge over a clearing made for a residential building

within the Smithsonian Tropical Research Institute Biological Research Station. As a

result, this tree crown has grown very large and is the only tree crown connecting two

forest segments. Consequently, there is direct visual access to the tree crown from above,

below, and from three sides. A steep hill to the west of the tree provides an eye-level

view into the tree crown.
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Table 2.1: Hypotheses and Predictions

Hypothesis Prediction Statistical
Support

1) Kinkajous prefer to forage in
regions with greater flower density

Kinkajous spend more time in the tree
when there are more flowers

Negative

1) Kinkajous prefer to forage in
regions with greater flower density

Kinkajous spend more time in regions
of the crown that have greater flower
density

Weak

2A) Kinkajous perceptually assess the
density of flowers across the tree
crown when deciding where to go

When moving between regions,
kinkajous tend to select the region
with greater flower density

None

2A) Kinkajous perceptually assess the
density of flowers across the tree
crown when deciding where to go

The difference in flower density
between regions is positively
associated with the probability a
kinkajou moves into the higher density
region

None

2B) Kinkajous predict which regions
will have more flowers using
information obtained from foraging on
previous nights

When moving between regions,
kinkajous tend to select the region
that has historically had greater flower
density

None

2B) Kinkajous predict which regions
will have more flowers using
information obtained from foraging on
previous nights

The difference in average previous
flower density between regions is
possitively associated with the
probability that a kinkajou moves into
the higher density region

None

3) While in the tree, kinkajous avoid
direct foraging competition

Kinkajous are more likely to depart a
tree region when there are other
kinkajous in that region

Strong

3) While in the tree, kinkajous avoid
direct foraging competition

When moving between regions,
kinkajous are more likely to enter the
region with the fewest other kinkajous

None

4) Kinkajous remember where they
have been, and avoid foraging in
recently depleted regions

The order of minimum conditional
entropy in sequences of region visits is
> 1

Weak
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Behavioral Observations and Thermal Videography

We conducted behavioral observations and thermal videography for four hour periods

over most nights of the study period. Prior to the observation, the tree achitecture

was diagrammed and each limb out to three branches (forks) from the trunk was given

a unique label. During observations, we audio dictated branch-to-branch movements

of kinkajous and opportunistically noted other interesting behaviors using the Animal

Observer app. In addition, scan samples were recorded in the app every 15 minutes,

with data taken on the behavior of each kinkajou in the tree (ethogram: resting, moving,

foraging, not visible) and the branch on which it resided.

During each observation period, we used FLIR t1020 cameras to collect thermal video

from two perspectives: an East-facing angle into the tree crown from an adjacent hilltop

(Figure 1A), and an upward facing angle from below the tree crown. Because it was

not possible for a single observer to live-track the movements of all kinkajous in the tree

crown, these videos were used to collect data on kinkajou locations within the tree at

every minute. However, compression of the three dimensional crown area into two di-

mensions often made the identification of specific branches impossible. Thus, we used the

diagram of the tree architecture to hand-draw three semi-distinct regions (Front, Top,

and Back; labelled 1, 2, and 3, respectively) that could be distinguished from both a side

view (thermal video, Figure 1A) and an aerial view (drone images of flowers, Figure 1B).

Thermal videos were converted from raw .seq format to .mp4 files using FLIR Thermal

Studio Pro. All videos were intitially converted using a scale minimum of 20.0◦ C, a

scale maximum of 28.0◦ C, and an isotherm at 28.3◦ C. In most cases, these settings

highlighted kinkajous in green, against greyscale thermal imagery; conversion settings

were adjusted for individual videos to achieve this effect where conditions required. Due
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to small discrepancies in the frame-rate recorded in video metadata and the actual num-

ber of frames collected per second, video conversion resulted in time dilation/expansion

that over a full four hour period could add up to several minutes. To account for the

discrepancy between converted video length and video length in the raw metadata, four

second breaks were inserted at regular intervals of the videos using iMOVIE. This pre-

vented the synchronization of the two video feeds, and only the side view of the full tree

was used for further analysis. We then used the ProCreate software to trace region out-

lines on the first frame of every video, and iMovie to overlay these traces across the full

videos. We used the resulting videos to record how many kinkajous were in each region

Figure 2.1: (A) Still frame from thermal video recorded on December 30, 2019. Colored
lines denote the three regions, and have been redrawn over the original image for visual
clarity in print. An isotherm was used during video conversion to set recorded temper-
atures above 84 F to green, making kinkajous easily identifiable, as with the kinkajou
visible inside Region 3 (Panel D). (B) Orthomosaic image of drone photos from December
30, 2019, with region shapes (black outlines) and geo-referenced upright-flower annota-
tions (circles) added in QGIS. Panel C zooms in on a region of the orthomosaic with two
upright flowers.

of the tree crown at each minute of the video. For parts of the videos when there was

no kinkajou movement, the video was fast forwarded up to 10 times speed. When there

were several kinkajous in the tree moving simultaneously, the video was slowed down to
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the original speed and reviewed as necessary. Because Region 3 largely occurs within

and behind Region 1 in the videos, we used our best judgement to determine when (a)

a kinkajou was inside the Region 3 trace, but had not in reality left Region 1 and (b)

when kinkajous were hidden from view but had not left the tree.

Drone Flights and Flower Counts

Between December 27, 2019 and January 23, 2020, we piloted a DJI Phantom4 Pro drone

to collect aerial photographs of the tree crown each afternoon before the flowers opened

and each morning at dawn (weather permitting). Over 100 images were taken in in a

regular grid on each flight, then stitched into an orthomosaic image using Agisoft. Using

QGIS (Version 3.2.9), we geo-referenced all orthomosaics to Google Satellite imagery of

the research station and hand-traced outlines of the three regions. For each orthomosaic,

we then created a geo-referenced spatial point over each visible flower, annotating whether

the flower was upright or fallen over (Figure 1B). Flowers were assigned to regions using

the QGIS intersect function. Flower densities were calculated by dividing upright flower

counts by the area of corresponding region shapes in QGIS. On nights for which drone

flights on both the preceding evening and the next morning produced complete, high

quality orthomosaics, the average flower count of the two images was used for analysis.

Statistical Analysis

Overview

To assess the drivers of kinkajou movement within the balsa crown, we fit hierarchical

models examining 1) nightly kinkajou residence times within each region, 2) kinkajou
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transitions between regions based on flower densities, and 3) kinkajou transitions be-

tween regions based on the presence of other kinkajous. To create a useful reference for

understanding how kinkajou behavior deviates from what could be expected if an animal

moved at random between regions, we simulated random transitions and fit the same

models to the simulated data. Finally, to understand how memory influences kinkajou

movement through the tree crown, we extracted sequences of movement between regions

during periods when only one kinkajou was in the tree (and thus we could be confident

it was the same kinkajou) and analyzed the Shannon’s Entropy and 1st-4th order condi-

tional entropies of the sequences according to protocols described in Riotte-Lambert et al.

(2017). These measures tell us how random a kinkajou’s transitions appear given infoma-

tion about some number of previous locations it has been. If gaining information about

more previous locations makes transitions appear less random, it suggests the kinkajous

remember where they have been and modulate their behavior in response. The posterior

distributions of key regression parameters, based on our predictions, were compared to

null expectations (either 0, or the posterior distribution of the same parameter when the

model was fit to simulated data).

All analyses were conducted in R, using the package “rethinking” (McElreath 2020) to

interface with STAN (Carpenter et al. 2017). Each model was fitted using four Markov

Chain Monte Carlos (MCMCs) of 3000 iterations, with the first 1500 iterations discarded.

We used effective sample size and R̂ calculations alongside visual assessment to determine

whether MCMCs converged and parameter estimates were adequately mixed.

Reference Model Simulations

To serve as a reference model for our analysis, we simulated kinkajou movements between

tree regions using a first order Markov process with transition probabilities derived from
52



METHODS

the rate of kinkajou transitions between regions across the whole study. We maintained

the overall timing of kinkajou visits by initializing agents entering the tree at the same

times (and to the same regions) as kinkajous in the empirical data. We simulated this

process 100 times and use the resulting data throughout subsequent analyses as a refer-

ence for what kinkajou movements would look like if they were based purely on fixed,

per-minute transition rates and had no dependence on previous behavior, flower counts,

or other kinkajous.

Comparing Kinkajou Residence Time and Regional Flower Densities

To examine the relationship between regional flower densities and kinkajous’ residence

times, we fit a hierarchical, zero-augmented gamma model (a type of hurdle model) to

the data,

Residence ∽ dZAGamma(p, µ,Θ)

logit(p) ∽ p0 + pR + β1Ψ+ β2ψR + pt

log(µ) ∽ µ0 + µR + β3Ψ+ β4ψR + µt

p0, µ0 ∽ N(0, 2)

β1, β2, β3, β4 ∽ N(0, 2)

pR ∽ N(0, σpR)

µR ∽ N(0, σµR)

pt ∽ N(0, σpt)

µt ∽ N(0, σµt)

Θ, σpR , σµR , σpt , σµt ∽ exp(1)
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where Residence is the predicted number of minutes kinkajous spent in a tree region per

hour of observation on a given night, p is the probability of a kinkajou entering the region

on that night, µ is the average residence time per hour given at that at least one kinkajou

enters the region, Θ is the scale parameter of a gamma distribution, p0 is a grand mean

for the intercept of p, pR gives expected change in p given the region of interest, Ψ gives

the density of flowers in the full tree crown on the given night, ψR gives the difference

between the density of flowers in the region of interest and the density of flowers in the

full tree, pt and µt give the effect of the given night on p and µ, σ parameters give the

variance of fixed effects on p and µ across regions (R) and nights (t), and β coefficients

are linear estimators of corresponding flower densities on p and µ. dZAGamma is a

density function resulting from a mixture of the Bernoulli distribution and the gamma

distribution such that p gives the probability of observing a 0, and the probability of a

non-zero value x is (1− p) ∗ dgamma(x, µ/Θ,Θ)

We use this model to test the predictions of Hypothesis 1 (Kinkajous forage longer in

regions with greater flower density).

Kinkajou Decision Making

While the model of kinkajou residence time, presented above, reveals how kinkajous

respond to regional flower densities, it can not elucidate how kinkajous assess multiple

regions at once and make decisions. For this purpose, we analyzed the scans where the

distribution of kinkajous in the tree crown changed. Because we predicted that kinkajous

would choose regions with greater density, and the movement from one of the three

regions to another presents a simple binary choice, we encoded each region transition of

a kinkajou as either a success (moved to the available region with greater flower density)

or a failure (moved to the available region with lesser flower density). We then used
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Bayesian estimation to fit a hierarchical model of success to the data (Equation 2)

Success ∽ binomial(1, p)

logit(p) ∽ p0 + pFrom + pPref + pI + β5∆ψ

p0, β5 ∽ N(0, 2)

pFrom,∽ N(0, σFrom)

pPref ,∽ N(0, σPref )

pI ,∽ N(0, σI)

σFrom, σPref , σI ∽ exp(1)

where p is the probability that a particular transition is a success, p0 is a grand mean for

the intercept of p, pFrom is a conditional adjustment on the probability of success based

on the region in which the kinkajou started, pPref is a further adjustment to the intercept

based on the unoccupied region with the higher flower density, pI is an interaction effect

given the combination of pFrom and pPref , ∆ψ is the difference in flower density between

the region selected and the region not selected, β5 is a linear regression coefficient of ∆ψ,

and σtrans is the variance of transition effects.

We use this model to test the predictions of Hypothesis 2A (Kinkajous perceptually

assess the density of flowers across the tree crown), predicting a mean value of p̂ > 0.5,

marginal to regional effects, and that β̂5 > 0.

The Role of Memory in Decision Making

In addition to assessing the current distribution of flowers in the tree crown, kinkajous

may use information obtained during foraging on previous nights to inform their move-

ment decisions. To test this hypothesis, we fit our data to a third model, identical in
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structure to Equation 2 except that β5∆ψ is replaced by β6∆ψ, where ∆ψ is the difference

between (1) the average flower density of the selected region on all previous nights and

(2) the average flower density of the unselected region on all previous nights.

To assess the impact of working memory of kinkajou decision making, we isolated periods

during which only one kinkajou was in the tree crown, and thus sequences of transitions

could be identified. We calculated the Shannon’s Entropy and 1st-4th order conditional

entropy of these sequences, using the adjustments described in Riotte-Lambert et al.

(2017). We used the same calculations on data from Reference Model 1 to determine

whether the order and magnitude of the minimum conditional entropy from the empiri-

cal sequences differ significantly from expectations given a first-order Markov transition

process.

Social Behavior

We analyzed the role of con-specific presence in the tree crown on kinkajou decision

making the same way we analyzed the role of flower density. Thus, our fourth model uses

the same structure as Equation 2, except that Success = 1 when a kinkajou chooses the

region currently occupied by more con-specifics and β5∆ψ is replaced by β7∆κ, where ∆κ

gives the difference in number of present conspecifics between the selected region and the

unselected region.

We also explored how the distribution of kinkajous within the tree crown affects the tim-

ing of kinkajou transitions. To this end, we fit a fifth model to determine the probability

of a kinkajou leaving the region it is in during any given minute. This model takes the
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form given in Equation 3

Departures ∽ binomial(n, p)

logit(p) ∽ p0 + pR + pt + β8n+ β9k

p0 ∽ N(0, 2)

β8, β9 ∽ N(0, 2)

pR ∽ N(0, σR)

pt ∽ N(0, σt)

σR, σt ∽ exp(1)

where Departures is the number of kinkajous that leave a region during a given minute-

long scan period, n is the number of kinkajous in the given region that minute, p is

the probability of a single kinkajou leaving, p0 is a baseline departure rate, pR is a

region specific adjustment to the departure rate, pt is a night-specific adjustment to the

departure rate, k is the number of kinkajou in other regions, and σR and σt give the

variance in conditional adjustments to the intercept for region and night, respectively.

Results

Patterns of Flower Density and Kinkajou Residence

Prior to any statistical analysis of the relationship between the distribution of flowers and

the movements of kinkajous in the tree crown, we performed some descriptive analysis of

these patterns independently. The average density of visible, upright flowers in the tree

crown over the course of the study was 1.45 flowers/10m2 (sd = 0.64). The distribution of
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flowers across the regions we studied was relatively even and consistent: Region 1 differed

in flower density from the full tree crown by an average of -0.04 flowers/10m2 (sd = 0.21);

Region 2 differed by an average of 0.08 flowers/10m2 (sd = 0.15); Region 3 differed by an

average of -0.09 flowers/10m2 (sd = 0.28). We tracked the residence time of kinkajous

in the tree by measure of kinkajou-minutes (e.g. if three kinkajous were observed during

a 1-minute scan, we counted three kinkajou-minutes); kinkajous, collectively, spent an

average of 25.23 kinkajou-minutes/hour in the tree crown during our observations (sd =

22.92). The average times spent in Regions 1, 2, and 3 were 6.51 minutes/hour (sd =

7.44), 9.51 minutes/hour (sd = 9.54), and 9.21 minutes/hour (sd = 10.65), respectively.

Flower density trended upward over the course of the study, while kinkajou residence

times were highly variable night-to-night, with a drop-off at the end of the study period

(Figure 2). There were no immediately apparent differences between regions in these

trends.

Comparing Kinkajou Residence Time and Regional Flower Den-

sities

To statistically analyze the relationship between flower density and kinkajou residence

time, we built a model to estimate the residence time in a given region during an observa-

tion period in terms of 1) the probability at least one kinkajou entered the region and 2)

the expected residence time in the region if at least one kinkajou visited, and as a func-

tion of 1) the density of flowers in the whole tree crown during that observation period,

2) the flower density difference of the given region, relative to the full three crown, 3) the

region in question, and 4) the night of the observation period (Model 1). Assessment of

MCMCs used to estimate parameter values in all models revealed strong mixing and con-

vergence, meaning we are reasonably confident that estimates of our model parameters
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Figure 2.2: Changes in kinkajou residence and flower density across tree crown regions
for the full study period. All values are given in terms of percent change from initial
values in each region for unbiased visual comparison between variables.
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in the posterior distributions accurately represent the range of most-likely values.

Neither the total flower density in the tree crown nor the relative flower density of a

region had a clear effect on the probability that at least one kinkajou entered the region

in question. The mean estimate of p0, or the intercept of the logit-probability of a

kinkajou visiting an “average” region, was -2.39 (89% CI [-4.53, -0.19]). The effect of

absolute flower density in the full tree crown on this probability was greater than zero in

67% of the posterior samples (β̄1 = 0.31; 89% CI [-1.04, 1.55]), offering no clear evidence

of an effect. The effect of the difference in flower density between the given region and

the tree-crown average on the probability of a kinkajou arriving was greater than zero in

34% of the posterior samples (β̄2 = -0.67; 89% CI [-3.27, 1.95]).

Flower density had clearer effects on residence time in a region when at least one kinkajou

visited. The mean estimate of µ0, or the intercept of the log-residence-time in a region

(when not zero), was 2.58 (89% CI [0.94, 4.05]). In other words, our model predicts that if

at least one kinkajou visited a region with no flowers, we could expect a residence time of

approximately thirteen kinkajou-minutes in the region that night. The effect of absolute

flower density in the full tree crown on expected kinkajou-minutes (β3) was greater than

zero in only 11% of the posterior samples (β̄3 = -0.67; 89% CI [-1.5, 0.22]). This means

that, contrary to our initial prediction, if at least one kinkajou visited a region when both

the regional flower density and full tree crown density were at the study average density

of 1.45 flowers/10m2, our model predicts a residence time of 4.95 kinkajou minutes, and

we can be moderately confident that there is a true negative relationship between the

total density of flowers in the tree and the time that kinkajous spent in any given region.

The effect of the difference in flower density between the given region and the tree-crown

average on expected residence time (β4) was greater than zero in 75% of the posterior

samples (β̄4 = 0.3; 89% CI [-0.45, 1.02]). We thus have weak-to-moderate evidence that
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kinkajous spend more time in regions of the tree crown that have greater flower density

that other regions during that observation period (and this is not simply due to kinkajous

spending more time in regions that, on average, have greater flower density.)

Comparisons between the empirical data and simulated data reveal that as the flower

density of a region increases relative to the rest of the tree, kinkajous visit that region

less frequently - but stay longer - than would be expected if the kinkajous’ patterns of

movement through the tree were driven by a memory-less process agnostic to current

flower distributions. We observe this because posterior distributions of Model 1 coeffi-

cients, when fitted to the simulated data, reflect the posterior distributions when fitted

to empirical data, except in the cases of β2 and β4 (Figure 3). Whereas the majority

of estimates for β2 (effect of relative regional flower density of arrival probability) are

negative for the empirical data, most estimates are positive for the simulated data (β̄2sim

= 0.65; 89% CI [0.02, 1.28]). Conversely, the majority of estimates for β4 (effect of rel-

ative regional flower density on stay duration) were positive for the empirical data, but

most estimates were negative for the simulated data (β̄4sim = -0.21; 89% CI [-0.3, -0.12]).

Interpreting these differences requires careful consideration of why the real data are dif-

ferent from simulations. The simulations, by averaging transition rates between regions

across the study, would fail to capture the dynamics of kinkajous moving through the

tree based on where they have already been, or switching between states of movement

and residency. The simulations maintain, however, the time and location that kinkajous

first entered the tree. Thus, the somewhat surprising finding that flower density posi-

tively affects the probability of simulated kinkajous entering a region must reflect that

real kinkajous tend to initially enter higher density regions and then sample the full tree;

simulated kinkajous, by contrast, are more likely to exit the tree without first visiting

the lower density regions. At the same time, an overall tendency to move out of the
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initial-entry region for sampling, captured by the negative relationship between flower

density and residence time for simulated kinkajous, may be opposed in real kinkajous

that stay longer only when that region actually has greater flower density. For both pa-

rameters, however, the bulk of posterior estimates from the simulated data remain within

the credible interval of estimates from the real data, preventing strong conclusions from

being made.

Kinkajou Decision Making

To analyze whether kinkajous chose to move into regions with greater flower density, we

built a second model to estimate the probability that a transition between regions was

a “success”, meaning the kinkajou moved into the region with greater flower density,

as a function of 1) the transition the kinkajou made (e.g. Region 1 to Region 2) and

2) the difference in flower density between the region the kinkajou entered (Region 2, in

previous example) and the region it did not (Region 3, in previous example). We observed

54 transitions by kinkajous between tree crown regions on nights for which flower density

data were also available. Of these transitions, 35 (65%) were to the available region with

greater flower density. We found that success was driven primarily by the transition

being made, meaning that - although kinkajous were more often successful than not - we

can not say with any confidence whether this was due to a preference for moving into

more flower dense regions, or a tendency to move into the central region which, more

often than not, happened to be the most flower-dense (Figure 4A).

Specifically, kinkajous typically moved from Regions 1 and 3 into Region 2 and therefore

success rates are high when Region 2 has greater flower density, but lower when it is not

the more flower dense region. In a small majority of posterior estimates, the probability

of success also increases as the magnitude of difference in flower density between regions
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Figure 2.3: Posterior distributions of selected parameters from Model 1, which identifies
the impact of regional flower densities on kinkajou residence time. β1 and β2 give the
effect of one flower/10m2 in the whole tree and a given region, respectively, on the logit-
probability that a kinkajou enters the given region during the observation period. β3 and
β4 give the effect of one flower/10m2 in the whole tree and a given region, respectively,
on the expected log(minutes/hour) that kinkajous will spend in the given region during
the observation period.
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under consideration increases, but the range of this posterior distribution is wide (β̄5

= 0.48, 89% CI = [-1.83, 2.81]). This amounts to very weak evidence that if choosing

between regions with a greater differential in flower density, kinkajous are more likely

to go to the more dense region. Overall, however, when the probability of success is

marginalized over conditions (i.e. we control for repeated measures across nights and

specific transitions), the credible interval ranges from nearly zero to nearly one across all

levels of flower density difference (Figure 4C); i.e. we have no ability to determine how

likely a kinkajou is to choose the more flower dense region without knowing specifically

where it is, where it ought to go, and how frequently it makes that transition overall.

Comparisons of empirical and simulated data offer little additional insight. When Model 2

was fit to the simulated data, in which kinkajous moved between regions with probabilities

equal to full-study averages in the empirical data, the posterior distribution of estimated

success probability was nearly identical to estimates from the empirical model fit (Figure

4B). The posterior distribution of estimated effects of flower density difference on kinkajou

success rate for the simulated data was much narrower than the empirical model fit, but

still centered near zero (β̄5sim = -0.02, 89% CI = [-0.31, 0.27]). Comparing the posterior

distributions of empirically fit model parameter estimates to the posterior distributions

of model parameters fit to simulated data (rather than comparing to zero) accounts for

potential contingencies between observed flower distributions and apparent patterns of

decision making that might arise if kinkajous’ typical rates of movement through the tree

were driven by a memory-less process agnostic to current flower distributions. In this

case, such contingencies do not appear to be a concern.
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Analyzing the Role of Memory in Decision Making

When evaluating kinkajous’ transitions with regard to the average desntiy of flowers

on all previous nights (Model 3), the probability of success also varied significantly by

the transition being made, and along the same lines as Model 2 (Figure 4A). Of the

54 transition observed, 35 (65%) were to the region that had a higher average density

of flowers on previously monitored nights. Though this success rate is coincidentally

identical to that of Model 2, it was not the same set of transitions that counted as success

in the two models: only 21 transitions were to a region that had both the higher density

of flowers that night, and on average over previous nights. There was very little variation

in the magnitude of average historical density difference between regions (mean = 0.02

, sd = 0.06), which likely accounts for the greater degree of uncertainty for estimates

of the effect of average previous density on success, relative to that of current density.

What variation did exist did not have a notable impact on the decisions of kinkajous.

(β̄6 = -0.74, 89% CI = [-2.23, 0.78]). This holds true when Model 3 was fit to the

simulated data as well (Figure 4B). As with the difference in current flower density, the

estimated probability of a kinkajou moving to the historically more flower dense region

varies considerably by conditions; without knowing which region the kinkajou is currently

in and which of the other regions was historically more flower dense, we are unable to

predict the kinkajous’ probability of moving to the historically more flower dense region

(Figure 4C).

Recursion Analysis

The adjusted conditional entropies of solo-movement sequences offer no evidence that the

region a kinkajou came from influences the region it will go to next. We predicted that
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the empirical data will have a minimum conditional entropy at an order greater than

or equal to 2, meaning that information about its last location will improve our ability

to predict where it goes next, relative to having information only about its currently

location. The second order conditional entropy (0.725) is indeed slightly smaller than

the first order conditional entropy (0.737), but this reduction is not outside the range of

variation in the simulated data, which uses a memory-less process (Figure 4D).

Social Behavior

Region Transitions

As with flower density, we found no evidence that the distribution of other kinkajous

in the tree crown influences the region transition choices of kinkajous. We observed

16 transitions by kinkajous between tree crown regions during which the number of

kinkajous in the available regions differed, 5 (31%) of which were to the region with

more kinkajous. Unlike the distribution of flowers, the distribution of other kinkajous

during observed decision making events was not regionally biased, and thus the transition

made had relatively little impact on our “success” metric (moving to the region with

more kinkajous). Unsurprisingly, given the small number of social-decision-making events

observed, the posterior distributions of estimated success probability and its underlying

coefficients are wide (Figure 5). Overall, kinkajous moved more frequently into the region

with fewer kinkajous, but not more frequently than could be expected given random

variation (p̄0 = -0.42; 80% CI [-2.8, 1.99]).
66



RESULTS

Asocial Predictors of Region Transitions by Kinkajous
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Figure 2.4: A) Posterior predictive probability of a kinkajou choosing the region with
greater flower density, by success condition. Solid lines give the mean posterior estimate
and dotted lines the 89% credible interval. B) Posterior distributions of select Model 2
and 3 parameters when fit to empirical (colored) and simulated (black) data. p0 is the
grand mean of the success probability, β5 and β6 are the linear regression coeffeicients
for the flower density difference between regions at the moment of choice (Observed,
Model 2), and on previous nights (Average, Model 3). C) Posterior predictive probabil-
ity of a kinkajou choosing the region with greater flower density, marginalized accross
the estimated variances in condition-based adjustments to the intercept. D) Adjusted
conditional entropy of location sequences in empirical (green) and simulated (black) data.
’Order’ denotes the number of previous locations used to calculate entropy.
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Social Predictors of Region Transitions by Kinkajous
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Figure 2.5: A) Posterior predictive probability of a kinkajou choosing the region with
more kinkajous, by success condition (e.g. the condition ’Region 1 -> 2’ represents all
decisions for which the kinkajou was in Region 1 and Region 2 had more kinkajous
than Region 3). Solid lines give the mean posterior estimate and dotted lines the 89%
credible interval. B) Posterior distributions of select Model 4 parameters when fit to
empirical data. p0 is the grand mean of the success probability, β7 is the linear regression
coeffeicient for the kinkajou count difference between regions at the moment of choice.
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Departure Rates

Though we did not find evidence that the presence of kinkajous affects which region

a kinkajou moves to, we did find evidence that the presence and distribution of other

kinkajous in the tree affects how often kinkajous move between regions. We observed

at least one kinkajous in the balsa tree during 1128 minute-long scans. Of these scans,

212 (18.8%) included at least one kinkajou moving to a different region or exiting the

tree. Overall, kinkajous were more likely to move between regions as the number of

kinkajous increased (Figure 6). Kinkajous were significantly more likely to depart a

region as the number of other kinkajous in that region increased (β̄8 = 0.3; 89% CI [0.07,

0.52]). Kinkajous were also more likely to depart a region as the number of kinkajous

in other regions increased (β̄9 = 0.14; 89% CI [-0.04, 0.33). We thus see strong evidence

that kinkajous move around more in tree when other kinkajous are present, and weak

evidence that this effect is stronger when the kinkajous are in the same region, relative

to when they are in other regions.

Discussion

Conclusions

When examining the presence of kinkajous in the balsa crown, relative to the distribution

of flowers, three clear patterns stand out.

First, while the overall density of flowers in the crown increased over the course of the

study, the duration of kinkajou visits to the tree fell off sharply toward the study’s end.

This stands in clear contrast to our prediction that kinkajous would spend more time

in the tree crown when flower density was greater. This contradiction may be explained
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Figure 2.6: Posterior distributions of predicted departure rates of kinkajous from a balsa
crown region. A) Departure rates conditioned on the number of kinkajous present in the
region of interest and the number of kinkajous in other regions of the tree for a typical
region (region-specific adjustment to intercept equal to zero). B) Posterior distributions
of key parameters in the Departure Model (Model 5), where p0 is the grand mean of the
departure probability intercept, β8 is the linear effect of the number of kinkajous in the
region of interest, and β9 is the linear effect of the number of kinkajous in other regions.
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by the increasing availability of another food source, Dipteryx oleifera around the time

kinkajous visit durations decreased, suggesting balsa nectar may serve primarily as a

fall-back food during a resource scarce time-period.

Second, kinkajous move between regions more frequently when there are other kinkajous

in the tree, and especially when those kinkajous are in the same region of the tree crown.

This appears to support our hypothesis that kinkajous engage in scramble competition

for balsa flowers, but it is hard to rule out any number of other factors that could increase

overall movement activity when multiple kinkajous are present in the tree.

Third, the movement of kinkajous between regions is highly structured, with certain

transitions made much more often than others. This underlying structure appears to

be the primary driver of whether kinkajous move into a more flower-dense region or

not, with no evidence to suggest that between-night variance in regional flower densities

affects these decisions.

A fourth pattern is not strong enough to merit strong conclusions, but none-the-less

warrants attention. As the density of flowers in a specific region increases relative to

the other regions, kinkajous were less likely to visit that region but stayed longer when

they did. This is not likely to be a result of flower processing time, as the number of

flowers in the whole tree does not increase the duration of stay. If not simply a product of

noise, this pattern would suggest kinkajous are not making movement decisions based on

overall flower density, but do match foraging effort to local resource density - in keeping

with the basic tenets of Optimal Foraging Theory. For such behavior to occur, kinkajous

must be using information about the density of flowers in regions of the tree they do

not currently occupy. One way they could gain this information is directly through

perception. It would be somewhat surprising if they did this, given that they do not

chose to move into more dense regions, but could be explained if the size of our regions
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does not capture the scale of kinkajou decision making, or if kinkajous visit and deplete

patches of flowers systematically. This latter explanation would indicate kinkajous have

pre-existing knowledge of patch locations within the tree. Alternatively, kinkajous may

acquire information about the density of flowers in each region on a given night through

sampling. This would require the kinkajous to visit each region of the tree for at least

a short period each night (consistent with the data) and maintain within their working

memory an estimate of the flower density in previously visited regions.

Though we found no evidence that kinkajous assess the current distribution of flowers

across the tree crown when making decisions, or that their movements through the tree

crown were shaped by previous experience with the distribution of flowers, we are not able

to rule these hypotheses out. The number of relevant “decisions” we observed is small,

and the credible intervals on the parameters of interest in our models are large. In short,

we lack the power to rule anything out. Additionally, it is quite possible - likely even -

that kinkajous make decisions that are not captured by the boundaries and scale of our

regional distinctions. Exploring how kinkajous make decisions at individual branches in

the tree crown structure may yield different results. Unfortunately, our efforts to collect

additional data with better protocols for resolving the three-dimensional distribution of

kinkajous and flowers as a part of this project were disrupted by the COVID-19 pandemic.

The need to track individuals

Our ability to extend the conclusions of this study to the way kinkajous learn during

a foraging task is greatly limited by our lack of individually identified kinkajous. For

example, we use average flower counts on previous nights to estimate what information

a kinkajou might have; the power of this analysis would increase considerably if we could

assess the distribution of flowers when we knew a kinkajou to have previously visited the
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tree. For example, we could ask whether the distribution of flowers during one visit by

a kinkajou predicts that kinkajous initial trajectory through the tree on its next visit -

and whether this effect decreases the longer apart the two visits are. Such analyses could

reveal rates of learning and forgetting in kinkajous and whether they match the rates at

which flower density in the tree crown changes. Additionally, we could explore variation in

the patterns which kinkajous move through the tree. For example, if individual kinkajous

tend to move through the tree in a consistent pattern, but these patterns differ between

kinkajous, it would suggest kinkajou are more prone to reinforce decisions that are ‘good

enough’, rather than to explore at random or sample different strategies. Analyses such as

these are integral to studying the roles of reinforcement and inference in animal learning,

central themes of other chapters in this dissertation.

What kinkajou-balsa interactions can tell us about animal learn-

ing

Nectar is often patchily distributed at multiple spatial scales, and thus nectar foraging

has been used extensively to study animal learning. When foragers can perceive multiple

options, they typically choose the options that are nearest and from which energy can

most efficiently be extracted (Pyke 1981, Marden and Waddington 1981). Often, the

nectar concentrations of flowers are not immediately apparent, however, and thus nectar

foragers’ decisions usually change with time and experience as they learn to associate cues

such as location or honest scent signals with nectar quality (Knauer and Schiestl 2015,

Burdon et al. 2020). Learning by iterative reinforcement is sufficient to explain patterns

of route optimization between multiple, spatially stable foraging locations in honeybees

(Reynolds et al. 2013). In accord with the ecological intelligence hypothesis, the speed

and consistency of such route formation is strongest when foraging locations are further
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apart (Buatois and Lihoreau 2016). There were clear patterns in how kinkajous moved

between regions of the tree crown in our study, which may reflect learned routines or

the way kinkajous intrinsically interact with the structure of the tree. Further efforts to

keep track of kinkajous’ identities over the course of a similar study would help reveal

how individual behavior changes over time, and thus how they learn to associate certain

crown regions with higher overall nectar productivity.

In changing environments, foragers must balance the exploitation of learned environ-

mental properties with continued exploration and sampling. Nectar foraging bees, for

example, vary predictably in rates of exploratory behavior and behavioral extinction

(the abandonment of reinforced behaviors following loss of reinforcing stimuli) based

on species level differences in physiology, social structure, and central-place constraints

(Townsend-Mehler 2010, Al Toufailia et al. 2013). The species in most nectar foraging

studies (i.e. bees and hummingbirds), however, often fail to exhibit types of learning

associated with cognitive flexibility that are seen in mammals. Honeybees, for example,

fail to use novel shortcuts between known foraging locations, as has been demonstrated

in bats (Harten et al. 2020), indicating the bees can learn the behavioral links between

foraging locations, but do not learn the spatial relations (Dyer 1991). Conversely, some

primates adopt near-optimal routes through multi-destination arrays without needing

experience, perhaps by generalizing heuristics learned previously in similar situations

(Chapter 1). In a laboratory testing paradigm that switches the reward contingencies

back-and-forth between behavioral options, mammals - including one kinkajou (Brave-

man and Katz 1971) - learn to switch to previously unrewarded behaviors faster with

subsequent reversals in reward outcomes, while invertebrates maintain the same rates of

behavior switching no matter how many times the reversal occurs (Bitterman 1965).

Though the production of nectar in balsa crowns appears to offer a natural occurance
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of such an experiment, the spatial scale of our study may also be too small for any

benefits of flexible decision making to carry much consequence for kinkajous, potentially

explaining why we do not find evidence of such behavior. Additionally, the variation

in flower distribution across our selected regions is both minimal and fast; kinkajous

would have little opportunity to learn how to exploit a recent change before another

change occurred. Should kinkajous truly fail to learn new foraging strategies in response

to changing resource distributions, it would challenge the existing phylogenetic and eco-

logical theories of cognitive evolution. Thus, our results point to a need for inquiry at

smaller scales (e.g. branch level decision making) and larger scales (e.g. across trees in

their home-ranges) in which a lack of flexible decision-making and reversal-learning would

have greater fitness consequences for the kinkajous.
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ABSTRACT

Abstract

Research on the behavior of Barro Colorado Island’s primates has yielded insight into how

the distribution of food resources has shaped the evolution of human intelligence. In this

chapter, we first synthesize primate research on BCI that has helped define navigational

behaviors representative of intelligence, such as route-use and directed movements. We

then explore how measuring these behaviors in non-primate frugivores, such as kinkajous

(Potos flavus) supplements previous research by enabling comparisons to solitarily forag-

ing animals. Finally, we present new data from a study of kinkajou navigation, offering

preliminary evidence that kinkajous, like primates, flexibly navigate networks of learned

routes to efficiently exploit changing resource distributions.

Introduction

A history of ecological intelligence research on BCI

Based on observations of black-handed spider monkeys (Ateles geoffroyi) and mantled

howler monkeys (Alouatta palliata), on Barro Colorado Island (BCI), Milton (1981) hy-

pothesized that selective foragers evolve greater intelligence. The supposition is thus: if

higher energy foods are concentrated at more distant points in time and space, choosy

animals must be able to learn when and where those points will be to avoid fruitlessly

searching at random. Howler monkeys, Milton noted, were somewhat choosy and ap-

peared somewhat intelligent, while spider monkeys were quite choosy and appeared quite

intelligent. The interrogation of these observations and subsequent development of Mil-

ton’s Ecological Intelligence Hypothesis have remained a centerpiece of primate research
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on BCI, and throughout the world.

Spider monkeys and mantled howler monkeys make for a good comparative analysis; they

both weigh an average of 7-9 kg as adults, live in outsider-averse groups of variable sizes

(approx. 15-45 individuals (Milton 1981, Chapman 1990)), and they (or closely related

species) range in canopies through much of Central and South America. The diet of these

species differs substantially, however. While Milton observed spider monkeys on BCI to

spend 72% of their annual feeding time eating fruit, this number is as low as 42% for the

island’s howler monkeys – which spent much more time eating young leaves.

Such dietary differences are likely a proximate cause of other dissimilarities. The average

BCI howler monkey home-range is 31 hectares; that of the spider monkeys is 800. Howler

monkeys travel and forage cohesively as a group; spider monkeys employ a fission-fusion

approach. Milton (1981) argued that spider monkeys’ choosiness requires them travel

much further between resource patches, yielding larger home ranges and the need to

reduce inter-patch travel by foraging independently. The direct relationship between

sparsely distributed resources, larger home ranges, and fusion-fusion group structure,

captured by the ecological constraints model, is now well established (Chapman and

Chapman 2000).

Milton’s Ecological Intelligence Hypothesis, however, relies on a series of further argu-

ments that remain less agreed upon. Route-learning, such as Milton observed in howler

monkeys, is common in animals and requires only the reinforcement of behavioral re-

sponses to specific landmarks (Collett et al. 2003). For example, Chaib et al. (2021)

experimentally demonstrate the capacity of BCI’s Megalopta genalis, a sweat bee, to

navigate home by using patterns of the canopy against the night sky as landmarks. Yet,

more recent research found that the routes of BCI’s howler monkeys are more likely to

occur in areas with higher annual food production (Hopkins 2011), and are used flexi-
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bly to exploit emerging resources beyond the monkeys’ perceptual range (Hopkins 2016).

This mix of flexible and routine behavior highlights how gradations in a primate’s dietary

composition can shape the balance of multiple, interconnected cognitive faculties.

By contrast, spider monkeys appear able to find their own way as individuals and to

use their knowledge of the environment more flexibly as they respond to rapid changes

in resource availability. This is seen in their less concentrated space-use overall and,

subsequent to the discovery of a newly available type of fruit, rapid integration of newly

productive trees into daily travel paths. Novel use of known landmarks to achieve dif-

ferent goals, as spider monkeys seem capable, suggests extensive spatial knowledge and

flexible decision making. The information processing required for these faculties may also

explain why spider monkeys exhibit long periods of infant dependency, large repertoires

of communicative signals, and (maybe) parental teaching (Milton 1981). It is difficult

to quantify, however, degrees of flexible decision making or landmark use from broader

patterns of movement.

New technology is helping researchers on BCI link animal movements to environment

features, and thus assess decision making. Analyzing primate movements in conjunction

with canopy structure data obtained by airborne light detection and ranging (LiDAR),

McLean et al. (2016) found that a spider monkey and a capuchin, but not howler mon-

keys, preferred to move toward areas with a higher canopy. This behavior could be

associated with seeking vistas for visual wayfinding (Harel et al. 2022). High resolution

GPS tracking of white-faced capuchins, known for their tool-use and extractive foraging

skill (Oppenheimer 1968), and spider monkeys revealed that neither species relied exten-

sively on specific routes to move through their home ranges (Alavi et al. 2022). Taken

together, these results emphasize the complex interplay of locomotory capacity, dietary

need, social structure, and cognition in determining the movement of primates.
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Kinkajou navigation can differentiate ecological and social intel-

ligence

Disentangling the roles of diet and social structure in the evolution of intelligence requires

comparisons to animals outside the primate lineage, as frugivorous diets and complex

social structure are highly correlated in primates (Powell et al. 2017). Kinkajous (Potos

flavus) are an ideal study species for this effort. Fruit makes up 90-100% of the kinkajou

diet (Julien-Laferrière 1999), and many physical adaptations reflect this exclusive diet

combined with strict arboreality. A prehensile tail, grasping digits and hooked hallux,

flexible spine, sharp claws, and reversible hind paws help kinkajous to climb, cling, and

leap. A short snout, flattened dentition, and squared jaw help with fruit processing

(Ford and Hoffmann 1988). And finally, large, forward facing eyes and sensitivity to

brightness contrasts likely help kinkajous visually locate fruit, despite their nocturnal

activity patterns (Ford and Hoffmann 1988, Chausseil 1992). Most of these features

evolved convergently with primates, and kinkajous’ morphology more closely resembles

that of a lemur than most of their Carnivoran relatives.

However, kinkajous spend 80-99% of their active hours alone (Kays 1999). Though

kinkajou decision making is likely influenced by the need to coordinate sleep sites with

small family units (up to two adult males, one adult female, and two offspring, (Kays

and Gittleman 2001)), defend territorial boundaries from neighboring conspecifics, and

seek out extra-pair copulations (Kays 2003), kinkajous do not need to achieve group

consensus through their movement. This begs the question: has kinkajous’ cognition

evolved convergently with primates, like their morphology, or is primate intelligence

specific to their social contexts?

A recent study on BCI tracked kinkajous, spider monkeys, capuchins, and coatis using
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GPS collars. Compared to the other species, kinkajou movements were more constrained

to a network of routes within their home ranges (Kays et al. in review). This pattern of

movement resembles that of howler monkeys, prompting several further questions: how

do kinkajous learn routes, given that they don’t have access to the same social information

as howler monkeys? How precise are kinkajou routes, exactly – do they travel along the

same branches? Do kinkajous, like howler monkeys, flexibly use their route networks to

exploit ephemeral fruit resources?

Because kinkajous forage alone and mostly on fruit (like spider monkeys) but in a smaller

range (like howler and capuchin monkeys), answers to these questions will help identify

the mixture of selective pressures that shape the evolution of cognition across lineages.

Do BCI kinkajous utilize route-networks flexibly?

We recently piloted two new approaches to better understand how kinkajous on BCI

use routes and navigate between resources in the canopy. First, we equipped one kinka-

jou with a high-resolution tracking collar that recorded a GPS fix every second for six

hours each night over twelve nights. Second, we tracked a different kinkajou (at lower

resolution) for two months, including a period of experimental food provisioning.

Methods and Results

High Resolution Tracking

We fitted one adult male kinkajou, Tony Stark, with a high-resolution telemetry collar.

The collar was programmed to collect GPS fixes every second from 11PM to 5AM, for

twelve nights. Plotting Tony Stark’s movement data from each night reveals multiple
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regions in which he traveled along highly specific paths over multiple nights (Figure 1).

In one case, travel paths from four different nights are so tightly interwoven as to be

indistinguishable on the map. The degree of precision across paths through this route

(<5 m) relative to the route’s length (~200m) suggests either that his movement through

the canopy in this region is highly constrained, or that he is orienting to a highly localized

series of landmarks such as individual branches or previously laid scent markings. Our on-

the-ground observations that Tony Stark and other kinkajous move nimbly on a variety

of canopy substrates, including small branches and lianas, lead us away from the former

hypothesis. Notably, Tony Stark’s movement through both routes highlighted in Figure

1 occurs in either direction, indicating that he is able to use a single set of landmarks to

orient toward multiple goals.

Food Provisioning Experiment

Under the hypothesis that kinkajous flexibly use learned route networks to efficiently

exploit novel and ephemeral resources, we predicted that kinkajous would rapidly inte-

grate new, reliable food sources into their nightly movement. To test this prediction, we

equipped a single kinkajou (Molly) with the same GPS collar described previously, but

programmed to collect GPS points every four minutes over two months. We conducted

a food provisioning experiment during these months, divided into three phases: Baseline

(11 days), Learning (21 days), and Randomization (19 days). The location and frequency

of food provisioning varied between these phases, allowing us to measure how Molly’s

movement changed in response to the introduction of new resources.

During the Baseline Phase, we used incoming telemetry data to delineate Molly’s core

usage area and find locations for a “wagon-wheel” array of seven arboreal provisioning

stations, each separated from its closest neighbors by about 150m (Figure 2). During the
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Figure 3.1: High Resolution Tracking of a Kinkajou. 1 Hz GPS tracks from a single male
kinkajou, Tony Stark, tracked for six hours each night over twelve nights. Movements in
the inset panel are highly correlated between nights, indicative of route use. Elongated
triangles mark the direction of along each path within the inset window. The non-linear
section of the route present in all four paths and indicated by the red arrow is illustrative
of the degree of precision in movement that can be captured with high-resolution GPS
tracking, and could reflect the use of a learned route or the avoidance of a tree-fall gap.

83



CHAPTER 3. NAVIGATION AND COGNITION

Figure 3.2: Molly’s GPS Tracks by Experimental Phase. The schedule of food availability
at seven provisioning stations changed through a series of three phases. The four types
of stations are indicated by shape, and the frequency with which they contained food by
color. Neighboring stations were separated by approximately 150 meters. New routes
(light blue tracks) appeared to form between stations over the course of the study.

Learning Phase, we baited the central station and four perimeter (test) stations each night

by placing a portion of fruit (1/3 banana or 1/4 mango, both in the central station) into

a bucket and hoisting it into the canopy with a pulley (Figure 3). The two remaining

stations (control) were not baited during the Learning Phase. In the Randomization

Phase, the central and control stations were baited each night, along with two of the

four test stations, selected randomly. The total available portions available each night

was held constant. Based on kinkajous’ presumed ability to smell and locate ripe fruit

from non-trivial distances, we predicted that Molly would visit the central and test

provisioning stations sooner each night in both the Learning and Randomization Phases.

Then, according to our primary hypothesis that kinkajous rapidly learn to exploit new

resources, we predicted the time spent in each of these phases would have an additional

effect on the speed with which Molly visited the central and test stations each night. In

the Learning phase, when food was always present at these stations, we predicted Molly

would visit them sooner as the phase progressed. In the Randomization phase, when
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Figure 3.3: Molly retrieves a piece of mango from the Eastern provisioning station.

food was only sometimes available at test stations but newly and consistently available

at control stations, we predicted a gradual increase in the distance traveled between test

stations.

To test these predictions, we calculated the distance Molly traveled each night between

visits to the test and central stations. We fit custom statistical models to the distance

Molly traveled each night for her respective 1st, 2nd, and 3rd station visits. These

models estimated an overall effect of each phase (Condition Effects) and an accumulated,

logarithmic effect of time spent in each phase (Learning Effects) on distances traveled

between stations. A complete model description and its analysis can be found in the

online supplement to this chapter (data notebook).

Molly quickly located and used the feeding stations (Figure 4). Because the distance

Molly traveled before visiting the first station was highly dependent on where she slept,

and thus not well predicted by our model, we focus on the distances Molly traveled
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between stations for her 2nd and 3rd station visits each night. Relative to the Baseline

Phase, the distance Molly traveled for her 2nd visit was substantially reduced in the

Learning Phase (Condition Effect mean difference = -612m, 89% CI = [-1162m, -183m])

and the Randomization Phase (Condition Effect mean difference = -461m, 89% CI =

[-1043m, 43m]). Our model suggests there is moderate evidence that Molly’s 2nd visit

travel distances were further reduced with time spent in the Learning Phase (Learning

Effect 89% CI = [-0.34,0.06]). Molly never visited three stations in a single night during

the Baseline Phase, but did so frequently in the Learning and Randomization Phases.

Both her 2nd and 3rd visit travel distances subsequently increased over time spent in the

Randomization Phase (2nd visit Learning Effect 89% CI = [0.02,0.47]; 3rd visit Learning

Effect 89% CI = [0.00, 0.50]).

Discussion

We discovered that a kinkajou used multiple specific and bi-directional routes between

commonly visited locations. This behavior indicates knowledge of many different land-

marks within its home range, as well as the ability to use these landmarks for multiple

navigational purposes. This same repeated narrow route use is also seen in all kinkajous

tracked by Kays et al. (in review), especially males.

We also experimentally demonstrated that a different kinkajou rapidly integrated new

resources into its nightly travel paths. In addition to immediately reducing travel dis-

tances between feeding stations when provisioning began, this kinkajou continued to

reduce travel distances over time, evidence that the kinkajou is learning to optimize

travel paths to exploit new resources. Likewise, when reliable provisioning shifted to

control stations, a gradual increase in distance traveled between test station occurred.
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Figure 3.4: A Learning Model of Molly’s Inter-Station Travel Distances. (A) Molly’s
movement on night 31 of the study, illustrating how the travel path on each night is
broken into visitation segments. (B) The mean predicted distance for the second and third
segments (differentiated by color) across nights (solid lines). Empty circles represent the
observed distances traveled. Shaded areas indicate the 95% posterior predictive credible
interval. (C) Credible intervals of the Condition Effect and Learning Effect parameters
in the learning models.
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Taken together, these results suggest kinkajou route-use is not the result of fixed behav-

ioral routines, but reflects the flexible use of landmarks to efficiently exploit dynamic

resource distributions.

Our studies of kinkajou navigation offer preliminary evidence that kinkajous, like pri-

mates, use extensive knowledge of their environments to move efficiently between re-

sources, and that they can rapidly integrate new information to flexibly and efficiently

exploit ephemeral resources. In kinkajous, route-use may be a necessity of nocturnal

travel, in which perceptual limits require greater dependence on orientation to local land-

marks rather than distant ones. Our experimental results indicate kinkajous use routes

flexibly to connect many different resource locations and that they rapidly alter their

movement patterns in response to new resources. Kinkajous’ clear use of route-learning

and at least some degree of flexible decision-making is in accord with the Ecological In-

telligence Hypothesis, given kinkajous high-fruit diet. Though the difficulty of directly

comparing these kinkajou data to previously collected primate data prevents us from

drawing conclusions about the relative roles of sociality and diet, our methodology cre-

ates the potential for controlled, experimental comparisons if applied to other species.

Thus, further research that uses high resolution tracking and simple manipulations of

resources can be used to directly compare mammalian navigation on BCI. This work

will help elucidate the relationship between diet and sociality in cognitive evolution,

continuing a decades long research tradition on Barro Colorado Island.
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CHAPTER 4. ROUTE FORMATION

Abstract

For animals that selectively forage on resources distributed in spatially distant patches

with short periods of high productivity, such as fruit, the development of efficient routes

can greatly improvement foraging efficiency. A number of cognitive mechanisms, includ-

ing reinforcement learning, episodic memory, and cognitive mapping, likely play a role in

such route-formation. Though route-use is commonly observed in free-ranging animals,

few studies have quantified the development of such routes. Such efforts can elucidate the

learning mechanisms an animals uses for navigation and, when compared across many

species, the contexts in which those mechanisms are likely to evolve. We used high-

resolution GPS collars to track forty-six individual animals of four different mammal

species foraging for fruit in a lowland tropical rainforest. Due to seasonal scarcity, we

were able to map all potentially productive trees during the periods of study. Combining

a novel combination of recursive sequence analysis and a hierarchical Bayesian model,

we identify highly revisited points of interest (POIs) within each animal’s territory and

describe an asymptotically curved relationship between the distance separating two POIs

and the length of animal transits between them. We found that an animal’s previous

experience with a given transit significantly reduced its expected transit length, with

variation in learning rates mostly predicted by degree of frugivory. We suggest that

our results offer insight into how different animals learn about and map their environ-

ments, and that our methods open the door to broader, analytically rigorous comparative

analyses.
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INTRODUCTION

Introduction

Route-formation reflects an animal’s ability to build knowledge of the relationships be-

tween places and desired outcomes, such as food or mates (Reid and Staddon 1998). The

learning mechanisms of route-formation have been well studied through navigational ex-

periments, but most such studies occur in captive settings, such as the radial arm maze

and the Morris water maze (Knierim and Hamilton 2011). Janmaat et al. (2021) argue

that by studying the formation of routes (among other patterns) in animals’ natural

movement trajectories, it is possible to expand the scope of learning research in many

ways, including but not limited to: identifying learning patterns at larger spatio-temporal

scales (which may or may not differ from patterns at captive scales as a function of,

e.g. energetic constraints or memory (Fagan et al. 2013)); comparing learning patterns

across a broader scope of species; and exploring how learning shapes the behavior and

fitness of animals in a complex world. Measuring the formation of routes in the wild,

however, has been historically limited by the difficulty of collecting and analyzing data

on animal movements and resource distributions at appropriate resolutions and scales. In

this study - with the aid of new GPS tracking technology, remote environmental sensing,

and developing statistical methods - we analytically compare rates of route formation in

46 individual animals of four different species.

There is a long history of using patterns of routine movement to make inferences about

the cognition of animals, including those with relatively small brains. The formation

of traplines - repeated visitation sequences between foraging locations - in honeybees

(Buatois and Lihoreau 2016), bumblebees (Lihoreau et al. 2012b), and hummingbirds

(Garrison and Gass 1999) has been studied extensively using artificial feeding arrays, with

compelling evidence that these animals learn traplines by reinforcing movement responses
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to specific landmarks that, on average, yield greater foraging gains during individual

bouts from a central place (Pyke 1978a, Reynolds et al. 2013). Evidence that honey

bees also make novel shortcuts between known foraging locations (Menzel et al. 2012)

has sparked debate about the roles of planning, path integration, and spatial mapping

in insect navigation (Collett et al. 2013, Menzel 2021). Overall, many insects appear

to exhibit site-fidelity and repeated travel sequences, indicating the storage of foraging

memory for route-development even at large spatial scales (Janzen 1971, Ackerman et

al. 1982, Collett et al. 2003, Wehner 2003, Chaib et al. 2021), with some variation in

the extent to which knowledge of learned routes is integrated into what is often called a

place-map (Collett and Collett 2006, Najera 2009).

For larger brained animals, ubiquitous patterns of site fidelity and routine space-use sug-

gest more wide-spread use of place-maps, which is widely hypothesized to be a primary

benefit in the selection for larger brains (DeCasien et al. 2017, Powell et al. 2017, Rosati

2017). Routes are used, for example, by spider monkeys and howler monkeys to mon-

itor large numbers of fruiting trees (Di Fiore and Suarez 2007, Hopkins 2016) and by

sea turtles to make long distance migrations (Krochmal et al. 2021). However, large-

brained animals also exhibit varying degrees of behavioral flexibility (Riotte-Lambert et

al. 2017) and possess neurological systems that appear capable of integrating place-maps

into near-euclidean spatial representations (Jacobs and Schenk 2003) and/or hierarchical

systems of knowledge (i.e. cognitive maps) (Buzsáki 2005, Behrens et al. 2018, Ek-

strom and Ranganath 2018). A small number of recent studies have used long-term

tracking to reveal the use of novel shortcuts in the natural foraging of, for example, ele-

phants (Presotto et al. 2019) and fruit bats (Harten et al. 2020), evidence of euclidean

representations. Some experiments with primates have also revealed flexible use of spa-

tial knowledge, suggestive of cognitive maps, to make foraging decisions (Janson 2016,
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Trapanese et al. 2022). Understanding the evolutionary and ontogenetic development

of reinforcement-based place-maps into more sophisticated mental representations, how-

ever, requires continuous metrics that can be compared across species and developmental

periods. Path linearity has been used as one measure of spatial knowledge (e.g. Harten

et al. (2020); Jang et al. (2019)), but Janmaat et al. (2021) note that path linearity can

result from many mechanisms other than spatial representations, and that a full picture

of what wild animals know requires measures of how path linearity (and other metrics)

change over time, experience, and context. As of yet, no study has quantitatively com-

pared the development of path linearity in multiple species of free rangining animals.

This is the primary goal of our study.

For a number of reasons, we focus our study on the fruit-eating mammals of Barro

Colorado Island, Panama. Firstly, this lowland tropical rainforest experiences a period

of food scarcity from November to December, alleviated somewhat by the fruiting of

a single tree species, Dipteryx oleifera, in January and February. The fruit-producing

crowns of D. oleifera are usually large, sparsely distributed, and visible from above the

canopy. They also exhibit significant inter-tree variation in the timing of peak fruit

productivity across the fruiting season (Caillaud et al. 2010). Therefore, we predicted

that rapid formation of efficient routes between productive trees will be important if

fruit-dependent species are to competitively exploit this resource.

Additionally, the diverse mix of fruit-eating species on the island lends itself to interesting

comparative analyses. Spider monkeys (Ateles geoffroyi) and kinkajous (Potos flavus)

are both exclusively arboreal, highly selective foragers that depend extensively on a diet

of high-quality fruit (Julien-Laferriere 1993, Kays 1999, Di Fiore et al. 2008, González-

Zamora et al. 2009, Lambert et al. 2014). Fruit is also an important dietary resource

for coatis (Nasau narica) and capuchins (Cebus capucinus) on the island, but these
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species additionally forage for insects, seeds, and other protein sources (coatis primarily-

but-not-always on the ground and capuchins primarily-but-not-always in the canopy)

(Alves-Costa et al. 2004, Hirsch 2009, Mosdossy et al. 2015). Coatis and capuchins also

both live in relatively stable social groups (Gompper 1997, Fragaszy et al. 2004, Crofoot

et al. 2011); spider monkey social groups exhibit fission-fusion dynamics (Asensio et

al. 2008); kinkajous den with small family units but typically forage alone (Kays and

Gittleman 2001). Kinkajous are the only one of the four species primarily active at night.

Kinkajous and coatis are both in the Procyonidae Family of Carnivora; spider monkeys

and capuchins belong to different Families of Primates. Because the variation in some

key life history traits in these species are not taxonomically linked, a comparison can offer

preliminary insights into potential convergent evolution of the cognitive mechanisms for

route-formation.

For example, when high quality resources are concentrated in sparse but spatially stable

patches with semi-predictable patterns of depletion and renewal (as with D. oleifera fruit),

the Ecological Intelligence Hypothesis predicts an energetic trade-off associated with

selective foraging: selective foragers need not invest in specialized digestive systems for

processing low-quality foods, but must travel further between food sources and maintain

energetically expensive cognitive systems to remember where food can be found, predict

when it will be available, and find efficient travel paths between productive foraging

patches (Milton 1981). For example, howler monkeys (which are closely related to and

broadly sympatric with spider monkeys) invest a lot of energy in a specialized digestive

tract for processing young leaves; compared to spider monkeys, however, they have much

shorter daily travel lengths and more stable (i.e. routine) travel patterns (Hopkins 2011).

For coatis and capuchins, the case may be that they have a more generalized diet, but

are not necessarily less selective. Instead they exhibit extractive foraging strategies for
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exploiting quality food sources that are more randomly distributed and difficult to find

or access than fruit. We predict that quickly learning efficient routes between highly

productive resource patches is less important for these extractive foragers.

In summary, the goal of our research is to identify the socio-ecological factors that drive

route-formation, keeping in mind 1) the inferences that can be drawn from rates of route-

formation regarding animal learning and 2) the trajectories of cognitive evolution across

different taxa.

Methods

Study Site

Data were collected on Barro Colorado Island (BCI), Panama. BCI is a 15.6 km² island

with semi-deciduous lowland tropical forest. The wet and dry seasons on BCI are very

distinct, where approximately 90% of an average annual 2600mm rainfall occurs between

May and December (Dietrich et al., 1982). Fruit availability fluctuates with these seasons,

with a period of scarcity in the late wet season (October and November) broken by the

fruiting of D. oleifera at the start of the dry season (mid-December) (Foster 1982).

Mapping Dipteryx oleifera

All trees on the island were mapped during 2015 and 2017 using either a custom designed

fixed wing (Penguin, FinWing, China) or multi-rotor UAV (Phantom 4 Pro, DJI, Shen-

zhen China). Two sets of flights were conducted in each year of the study, the first at or a

bit before peak flowering and the second approximately two weeks later. Due to weather

conditions and time constraints, flight altitude differed across the 4 sets of flights (but
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was held constant within each set), yielding imagery that ranged in resolution from 4-15

cm/pixel. Photos were processed using the Agisoft Metashape program (Agisoft LLC,

St. Petersburg, Russia),to create four georeferenced orthomosaic images of BCI, which

were imported into ArcGIS (ESRI, Redlands, CA, USA). Dipteryx trees were identified

by their distinctive pink/purple color and polygons were manually delineated to cover

the maximum visible extent of each tree crown. We merged contiguous tree crows into

larger polygons, thus some tree patch visits by our animals represented feeding at more

than one tree in a single patch visit.

Animal Capture and Tracking

We fit GPS/3-D accelerometer collars (e-Obs Digital Telemetry, Gruenwald, Germany)

to individuals from four species, two primates, capuchins (Cebus capucinus), spider mon-

keys (Ateles geoffroyi), and two procyonid carnivores, kinkajous (Potos flavus) and coati

(Nasua narica). Collars were programmed to collect a burst of six consecutive (1 hz)

GPS locations every 4 min during the animal’s active periods: 06:00–18:00 for capuchins

and spider monkeys, 06:00– 18:30 for coatis, and 23:00–6:30 for the nocturnal kinkajous.

3D acceleration was recorded at 1-min intervals to determine activity profiles. Collaring

occurred in 2015 and in 2017, with 20 individuals tagged the first field season and 26

individuals tagged the second field season. 8 spider monkeys, 7 capuchin monkeys, 16

coatis, and 14 kinkajous were tagged in total. From December 2015 to March 2016, the

GPS sampling regime of collars on kinkajous and coatis was ACC-informed, with collars

collecting data as described above when accelerometer readings were above a specified

threshold (1,000 mV). ACC-informed sampling was not used in the second field season,

from December 2017 to March 2018. All collars were programmed to timeout if they did

not acquire a fix after 90 s.
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Data Preparation

The last fix of each GPS burst consistently had the best horizontal accuracy measure-

ment, therefore only the last fix of each burst was used for all analyses. All data were

uploaded to Movebank, an online repository for animal movement data. Duplicate and

outlier fixes were removed using Movebank’s data filters, filtering fixes by the height above

ellipsoid. All fixes with height above ellipsoid values less than or equal to 21 or greater

than 244 were marked as outliers. This corresponds to the first quartile minus twice

the interquartile range and the third quartile plus twice the interquartile range, respec-

tively. Subsequent outlier detection was done using the ctmm package in R (Calabrese

et al., 2016), using error information, straight line speeds, and distances from the median

latitude and longitude to manually identify outliers via the outlie function. Further, ob-

viously impossible locations, such as location estimates in the water and clearly outside

the boundaries of the island, were marked as outliers. For ACC informed collars, GPS

locations were interpolated for times when the animals were below their ACC thresholds.

The error on the interpolated positions was modeled to replicate the observed GPS error

of a stationary collar in a tree, and was drawn from a negative binomial distribution with

a mean of 5.46m and a dispersion parameter of 2.4m.

Identifying Points of Interest

In order to study how animals learn to move between important locations, it was first

essential to identify where those important locations are. Though one option would be to

simply use D. oleifera tree crowns as points of interest (POIs), this misses two important

features of animal behavior. First, clusters of nearby tree crowns may be viewed by

an animal as a single foraging patch. Treating each individual crown as a POI would
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similarly strain the computational limits of our analysis and potentially reduce our ability

to identify the role of experience if an animal uses the same route to arrive at multiple,

adjacent crowns. Second, there are many reasons other than food why an animal may

frequently return to a location, including sleep sites, mating opportunities, territory

defense, and social coordination. Failing to consider these points could result in biased

analyses if, for example, animals frequently detour to these locations between foraging

bouts. We thus use each animal’s own movement to identify its individual POIs. We

do this by combining a recursion analysis (Bracis et al. 2018) with a clustering analysis

(Hahsler et al. 2019).

The recursion analysis works by identifying, for each GPS fix in an animal’s tracking data,

the number of times that location was revisited. It requires the user to set a radius that

defines the visitation region around each point, and a temporal threshold that defines

the time outside the visitation region after which the animal is considered to have left

the area. Any time the animal’s movement trajectory re-enters the visitation region after

a period of time outside the region greater than the temporal threshold, it is counted

as a re-visit, or recursion. We visualized heat-maps of recursion values using different

parameters, and used these heatmaps in combination with our own intuition about the

spatio-temporal scale of animal foraging decisions and the error of our GPS collars to set

a radius of ten meters and a temporal threshold of thirty minutes (Supplement 1: Path

Clustering and Segmentation).

In the second stage of POI identification, we selected an upper percentile of recursively

visited GPS fixes, performed a spatial cluster analysis of these points using the DBSCAN

algorithm, and drew minimum convex polygons around the resulting clusters. We call

the percentile of GPS points used the revisit cut-off (e.g. a revisit cut-off of 0.5 means

we cluster on the GPS points with revisit counts in the upper 50 percentile of an indi-
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vidual animal’s track). The DBSCAN algorithm detects clusters by identifying sets of

“density connected” points in the data. Points are said to be density connected when

at least one point in the cluster (a core point) contains at least some minimum number

(MinPts) of other points within a neighborhood of radius epsilon, and all points in the

cluster are within the neighborhood of at least one (other) core point. Given a value for

MinPts, the algorithm will select an optimal value of epsilon based on the distribution

of distances between each point and its MinPts nearest neighbor. This alogrithm has

several advantages for us over other clustering approaches such as k-means: it does not

require a specific number of clusters to be pre-specified, it can detect density clusters

of any shape, and it will label points that do not meet the criteria for being a cluster

“outliers” rather than assigning them a cluster. We ran the full recursion-and-clustering

algorithm across all animal tracks individually (producing unique POIs for each animal

ID) with several values of revisit cutoff and MinPts. For each combination of values,

we visually assessed resulting POI polygons across all animals tracks and chose values

for our final analysis that 1) minimized the total number of polygons and 2) maximized

the distance between polygons, but 3) minimized the number of polygons that included

large areas of low animal use (Supplement 1: Path Clustering and Segmentation). These

values were 0.5 for the revisit cutoff and 50 for MinPts.

This amounts to a (mostly) quantitatively rigorous way of defining our POIs as regions of

continuous space 1) which an animal revisited more often than average, 2) in which the

same animal spent approximately four or more hours total, and 3) which are separated

by a meaningful distance from other such spaces.
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Hierarchical Modelling

Following the identification of POIs, we split each animal’s movement trajectory into

transits, defined as the movement segments between two different POIs. We discarded

transits between POIs less than 10 meters apart, as we are primarily interested in how

animals move between regions they do not have immediate perceptual access to. We

treated the remaining transits as our primary unit of analysis, using as a dependent

variable ∆L, the difference between the transit length (assuming straight line travel

between GPS fixes) and the linear distance (D) separating the start and end POIs.

We built a hierarchical model of ∆L iteratively, first (1) exploring various non-linear

models and error distributions to best fit the relationship between D and ∆L. Based

on the appearance of a humped curve in plots of transit ∆L’s against D, we primarily

focused on non-linear models with this feature, including the Jenss curve, the Shephard

Curve, and a generalized Ricker curve. Ultimately, we chose to use the generalized Ricker

curve in further analysis for several practical reasons: 1) it provided a better fit to the

data, 2) it has easily interpretable parameters, 3) it has a log-linear form which simplifies

Bayesian parameter estimation, and 4) it can flexibly fit initial curves that are concave-up

or concave-down. Additionally, Persson et al. (1998) used the curve to model trade-offs

in predator attack rates as predator body size increases (e.g. increasing attack rates

due to development of perceptual systems vs. decreasing attack rates due to reduced

responsiveness). This has a rough analogue to the notion that animal transits may be

the result of either random search or directed travel, resulting in competing effects on

∆L as D increases. This is because the rate of increase in ∆L relative to increases in D

would be much greater in transits resulting from random search than those from directed

travel. However, the probability that a transit resulted from random search decreases

as D increases. We believed such a dynamic may have been producing the patterns we
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Figure 4.1: GPS trajectories for animals tracked during the 2017-2018 season. Each color
is a different individual.
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Figure 4.2: Breaking individual GPS trajectories into transits. A) The GPS fixes of a
single kinkajou, with POI polygons super-imposed. B) The track from a single day of
the same kinkajou in figure B, with transits between POIs colored red.
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observed in the data. Finally, we chose to fit the curve using a gamma distribution,

as this distribution (a) satisfies the physical constraint that ∆L is positive real and (b)

accommodates correlation between the expectation (mean) and dispersion (variance) in

the data, which we noted during initial data visualizations.

Next, (2) we added co-efficients for species-levels adjustments to each of the three pa-

rameters in the generalized Ricker curve, allowing our model to fit an independent curve

for each species (and us to compare species level differences in these curves). We then

(3) included experience as a predictor of ∆L by multiplying the maximum of the Ricker

curve by the number of previous times the animal had previously made that same tran-

sit, raised to the power of an experience coefficient. In effect, this stretches the entire

curve up or down (based on the sign of the coefficient) in a manner that scales with the

breadth of previous experience (based on the magnitude of the coefficient). Power laws

are frequently used to model learning curves (Donner and Hardy 2015). Next, we (4)

added species-level adjustments to the learning co-efficient, allowing us to model species

level differences in learning rates. Finally, we (5) accounted for individual difference

and repeated measures by building in individual-level adjustments to the maximum of

the generalized Ricker curve and the learning-rate co-efficient. At each stage, we fit the

model using Bayesian estimation with STAN (Carpenter et al. 2017) and RStan (Stan

Development Team 2023) and analyzed both the behavior of the Markov sampler and

the outcome of the model to gain a better understanding of the patterns in our data.
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However, we primarily present the results from the final model, which can be written

∆L ∼Γ(α, α/µ)

log(µ) =asp + βaid + log(k)(rsp + βrid) + csp(log(D)− log(bsp) + (1−D/bsp)))

α ∼exponential(5)

asp ∼N(1, 5)

rsp ∼N(0, 1)

βrid ∼N(0, 1)

βaid ∼N(0, 1)

bsp ∼N(1, 20)

csp ∼N(1, 1)

where D is the linear distance in kilometers between the start and end POIs of a given

transit, ∆L is the difference in kilometers between the length of the transit and D, α

is the shape parameter of a gamma distribution, µ is the expectation of the gamma

distribution, asp is the log of ∆L at the critical point in the Ricker curve (i.e. it’s max)

for the transiting species, βaid is an adjustment to asp based on the transiting individual,

k is the number of times the transiting individual has previously made the same transit,

rsp is the learning rate of the transiting species, βrid is an adjustment to rsp based on the

transiting individual, bsp is the value of D at the critical point in the Ricker curve, and

csp modifies the shape of the Ricker curve, such that values close to zero result in a wide

peak, and larger values a narrower peak.
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Results

Fitting a Generalized Ricker Model

We began our analysis of animal transits between POIs by fitting the differences of the

transit length and the linear distance between POIs (∆L) to a generalized Ricker curve,

dependent on the linear distance between POIs (D). We set bounds on the parameters to

fix the intercept at 0 and ensure the following conditions: 1) predictions of ∆L initially

increase as D increases, up until some critical point defined by the first two parameters,

a and b, which give, respectively, ∆L and D at the critical point, and 2) the shape

of the resultant “humped curve” is defined by the third parameter c, such that the

curve widens toward the flat line ∆L = a as c → 0, and narrows toward a spike as

c → inf. We predicted that at low values of b, this model would capture what, from

initial visualizations, appeared to be a rapid increase in ∆L with increasing D, followed

by a leveling off or decrease in ∆L growth rates with D.

This was not the case: estimates of b from our baseline model fell well outside observed

values of D (89% CI b [37.01, 140.07] kilometers). This means that the best fit of

the generalized Ricker curve to our data did not use the “humped-curved” features of

the model, but instead used just the front part of the curve that increases toward an

asymptote at ∆L = a. One possible reason for this, statistically, is that our initial

assessments of the shape of the data were biased (e.g. by the density of points or the

shape of the variance) and an asymptomatic curve would generally provide a better

fit to our data than a humped curve. Another is that the expectation of ∆L given

D does have a humped curve shape, but this shape cannot be accommodated by the

constraints of the generalized Ricker. We will elaborate further on these possibilities
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and their meaning in the discussion; for practical purposes, these results influenced the

way we further developed the model to account for learning rates. Namely, we noted

for values of b in the posterior distribution, changes to a would have a stronger and

more clearly interpretable effect on predictions, and so chose to model all learning effects

as modifications to a. We opted to continue the analysis using the generalized Ricker

instead of switching to a simpler asymptotic curve because the full features of the Ricker

curve may have been useful for describing species-specific patterns (they were not), and

the failure of these features to prove useful in this context is still informative.

Rates of Route-Formation

In our final model, there is clear evidence that the transits of all four species become

more direct with increasing experience (Figure 3). Species-level posterior distributions

of the learning effect, marginalized across individual effects, were entirely below zero and

highly overlapping for spider monkeys (mean r̂ = -0.21, 89% CI [-0.26, -0.16]), coatis

(mean r̂ = -0.17, 89% CI [-0.2, -0.14]), and kinkajous (mean r̂ = -0.16, 89% CI [-0.19,

-0.12]). This means that given our model of transit length, we can be nearly certain these

species travel more linearly as they repeat a specific transit over the course of our study.

The posterior distribution of the learning effect in capuchins (mean r̂ = -0.09, 89% CI

[-0.13, -0.05]) is significantly lower than that of the other species (spider monkeys, 99.88%

of posterior samples; coatis 99.25% of posterior samples; kinkajous 97.38% of posterior

samples), but still significantly below zero (1% of posterior samples), meaning we can be

highly confident capuchin transits become more linear with experience, but at a slower

rate than the other species. Recall that r determines ∆L at the critical point of our

model according to the term exp(a+r log(k)), where k represents transit experience, and

that this critical point has been estimated at values of D far outside our data. Thus, the
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best way to get a sense of the magnitude of the learning effect at relevant values of D is

visually (Figure 4).

Discussion

Route Formation and Implications for Animal Cognition

We find clear evidence that transit lengths between highly revisited locations decrease as

a given individual repeats a given transit over the course of our study. There are several

possible explanations for this.

The most likely explanation, we believe, is that as the spatial distribution of D. oleifera

changes - due to the inter-tree variance in peak fruiting period - individual animals learn

new routes between currently productive trees.

Such learning could be the result of procedural memory combined with some degree

of movement stochasticity, as with the formation of traplines in bees (Reynolds et al.

2013). In other words, when an animal makes a transit that results in the encounter of a

productive fruit tree, it is more likely to follow that same sequence of landmarks in the

future (via reinforcement learning), with minor variations due to chance. When a more

efficient transit is made as a result of such chance, the resultant simulus-action (landmark-

movement) pairs are further reinforced. However, this system per se is not particularly

flexible, and should produce only gradual changes in daily travel patterns of individuals

(Collett et al. 2003). We generally find, in looking at day-to-day paths of animals in

our study, that they are highly variable. This suggests that increases in transit linearity

over time are made by inferring the direction of a goal relative to a known landmark and

orienting accordingly (as described in macaques by Wirth et al. (2017)). At small scales,
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Figure 4.3: Posterior distributions of key model parameters a, b, c, and r, giving (re-
spectively) the maximum expected difference between the straight line path between two
POIs and the actual path travelled, the straight line distance between two POIs at which
this maximum occurs, the shape of the curve (where higher values mean greater ’peak-
iness’), and the learning rate, where negative values indicate a reduction in expected
travel length with increasing experience.
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this could be done through spatial processing of a perceptual field, i.e. an animal finding

a shorter path from one landmark to a nearby, intermediary landmark. At a larger scale,

this would require an animal to build a topological mental map, for example by using

path integration to keep track of its absolute distance and direction from a landmark and

remembering this vector when it arrives at a goal (Wang 2016). Though our work does

not clearly distinguish the scale at which animals are inferring more linear transits, we

posit that the combination of generally flexible space-use with increasingly direct transits

is evidence that these animals are using spatial reasoning to optimize their movement

during goal-oriented travel. We thus suggest that, at a minimum, coatis, kinkajous,

spider monkeys, and capuchins maintain knowledge of multiple important locations in

the environments and learn to navigate between them by orienting to a dense array of

local landmarks. Whether they optimize their travel paths by inferring direct transits

between distant landmarks and goals is an important question for future research.

The most common counter-argument to claims that path linearity is evidence of environ-

mental knowledge is that animals may adopt straight-line travel as a generally efficient

strategy for avoiding recently visited foraging patches, without necessarily knowing to

which location they are travelling or the path they are taking (Janmaat et al. 2021).

Under this counter-hypothesis, our observations that linearity increases over experience

would require that motivation for straight-line-travel increases over subsequent transits.

Our study occurred across a seasonal transition from food scarcity to greater abundance,

which we propose would have the opposite effect: as food becomes more abundant, di-

verse, and uniformly distributed, the need to avoid recently visited areas decreases and

the probability of interspersing straight line travel with bouts of opportunistic foraging

increases. It is possible, however, that our analysis has captured an initial increase in mo-

tivation to travel in a straight line as D. oleifera becomes available, which out-scales the
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predicted trend in the opposite direction at the end of the season. There may also exist

other motivational reasons for straight-line-travel to increase across our study period we

have not considered. Thus, though we go one step further than past research in demon-

strating the production of environmental knowledge of free-ranging animal movement,

we have not entirely removed the confound of motivation from our conclusions.

The shape of our best-fit models offers further insights into the relative roles of knowledge

and motivation in determining the length of transits. We find that the relationship

between POI distance and transit length takes the shape of an asymptotic curve, such

that relative increases to transit length diminish with increasing POI distances. This

offers further evidence that animals anticipate or plan their destinations, and increase the

linearity of their travel when moving to a far-away goal. We must also consider, however,

that animals might alternate between strategies of local-search and linear travel without

a specific goal destination (an effective strategy for escaping depleted regions, ala a Lévy

walk (Viswanathan et al. 1999)). In this case, bouts of non-linear random-search are

more likely to occur between nearby POIs than distant ones. The distribution of error

in our data speaks to this reality: variance in transit length is much higher at small POI

distances than large ones, a statistical impossibility for a single, positive-real process

forced through zero (such as our model). Thus, we believe our data are produced by a

mixture of processes, local-search and goal-directed travel among them. The prevalence

of these processes could be better disentangled by fitting the data to a function of path

linearity over POI distance derived from a mixture of diffusion processes, for example by

adding together Brownian diffusion processes that differ in the way their diffusion rates

relate to POI distance.

Often, evidence of route-use and path inference are related to the question of whether or

not animals have cognitive maps. A theory of cognitive maps, first proposed by Edward
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Tolman (Tolman 1948), is well formed in the fields of psychology and neuroscience (see

Behrens et al. (2018); Ekstrom and Ranganath (2018); O’Keefe and Nadel (1978); Schiller

et al. (2015)). Though novel shortcuts have been used to study the cognitive maps of

rats in maze-based experiments, this field generally holds that cognitive maps are not

explicitly spatial, but use abstract measures of “distance” and “direction” to connect

memories and knowledge. Given this view, the most important evidence of cognitive

maps is the use of what has variably been called “vicarious trial and error”, “mental

replay and pre-play”, and “episodic memory”. In other words, cognitive maps describe

the way an animal uses past information to model and choose between possible futures.

Because this model of the cognitive map is so well supported by neurological research

into the function of the hippocampus and related brain regions, we hold the view that it

is counter-productive to refer to topological mental representations of space as cognitive

maps, as is common in behavioral ecology (e.g. Bennett (1996); Dyer (1991); Presotto

et al. (2019)), and suggest there is more nuance to studying cognitive maps through

movement than demonstrating the use of novel shortcuts.

Instead, we propose that the scale and context of route optimization can be used to quan-

tify the flexibility of animal navigation and compare cognitive maps between individuals

and species (see Mikhalevich et al. (2017) for more on this argument). This requires

a shift from the thinking that cognitive maps are rare, necessarily high-order systems

and toward the view that cognitive maps are common in animals and can develop, with

sufficient experience and memory capacity, into complex systems that enable topological

inference at large scales. Our analysis suggests that selectively foraging mammals use

spatial inference to optimize transits between frequently re-used locations at a time when

the distribution of a key fruit resource is shifting dynamically across highly concentrated

patches. The useful question, in this context, is not whether these animals have cogni-
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tive maps, but at what scale their cognitive maps are enabling spatial inference and what

causes variation in this process.

Inter-Species Differences

The clearest trend when comparing our model predictions between species is that spider-

monkeys increase transit linearity at the fastest rate, followed by coatis and kinkajous,

and then capuchins. It is not clear from our analysis whether these differences in learning

rates result from making spatial inferences more frequently, or at larger spatial scales.

We also note that coatis have longer (i.e. less linear) initial transits than the other species

- their faster learning rate, relative to capuchins, resulting in similar transit linearity only

when individuals from both species have made the transit multiple times. These results

generally comport with the prediction that more fruit-dependent species (spider monkeys

and kinkajous) will optimize transit between high value POI’s faster, but with only four

species there are many other ecological factors that must be considered. Coatis are the

most terrestrial of the four species, which may enable greater variance in path linearity -

from more tortuous random search to more linear directed travel. This could explain why

coatis have initially less linear transits, but are similar in linearity to capuchins when

both have high levels of transit experience. Kinkajous are the only nocturnal species

in this study; in general, we expect foraging at night would limit an animal’s ability to

orient using distant landmarks, and thus reduce the scale at which they can make spatial

inference. This could explain why kinkajous exhibit route optimization rates less than

spider monkeys and similar to coatis, despite their high degree of frugivory. Kinkajous

and spider monkeys, in addition to eating the highest percentages of fruit, also travel

in smaller groups. Higher rates of route-optimization in these species could reflect an

individual’s increased ability to use spatial knowledge when there is less need to build
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group consensus in movement direction.

This narrative offers a contrast to the social brain hypothesis (Byrne and Whiten 1988,

Reader and Laland 2002), which has been popular for decades and posits that primate

intelligence evolved largely to keep track of complex social relationships. The species

in our study with the least socially complex groups, kinkajous, exhibited rates of route

optimization equal or greater than coatis and capuchins, which live in moderate to large,

highly cohesive groups. Capuchins, known for maintaining cultural traditions and their

use of tools for extractive foraging (Ottoni and Izar 2008, Perry 2011, Barrett et al.

2018), exhibited the lowest rates of path optimization. Our point here is not to refute

the idea that capuchins are intelligent, but to note that a less social, non-primate species

appears to more flexibly adjust its goal-directed travel to changing resource distributions.

Given that many group living animals do not evolve complex social relationships, and

diet has been shown to be a better predictor of brain size than social structure in primates

(DeCasien et al. 2017), it may be time to flip the thesis of the social brain hypothesis on

its head: maybe primates did not evolve intelligence because they were social, but they

became social because they evolved intelligence (i.e. they evolved the ability to respond

flexibly to changing environments at multiple spatio-temporal scales, and this mechanism

also enables them to learn about individual differences and keep track of relationships).

It is worth noting that although kinkajous do not live in complex social groups, they

are long-lived and may very well develop individual relationships with their neighbors

through vocalization, scent-markings, and other means that are largely invisible to us

(Kays and Gittleman 2001).

Of course, it is frequently possible to craft a compelling evolutionary narrative when

studying fewer species than ecological degrees of freedom. The coherence of our findings

with a priori predictions is not a strong case for concluding that selectively foraging on
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fruit leads to natural selection for cognitive maps that enable spatial inference at large

scales, but offers compelling evidence that it might. To our knowledge, this is the first

study to rigorously compare rates of route optimization between species in an ecological

context with large spatial scale. We thus offer a toolkit for analyzing animal cognition

in a comparable manner through a combination of telemetry, environmental sensing,

and hierarchical modelling. Applying these methods across a broad enough array of

species would enable a phylogenetic analysis that more rigorously assesses the roles of

diet, sociality, and spatio-temporal niche in the evolution of large scale spatial inference.

This work would complement existing strategies such as comparisons of brain size and

cognitive test batteries (Malsburg et al. 2020) to paint a fuller picture of how interactions

between social structure and resource distribution result in different strategies for storing

memories, consolidating knowledge, and predicting the future.

Suggestions for future comparative analyses of ecological cogni-

tion.

Janmaat et al. (2021) propose a compelling system of analysis for studying animal

cognition through natural movement, which includes 1) comparisons of changes in path

linearity with experience, 2) decision analysis as animals move between locations with

known, relevant qualities, and 3) informational analysis to quantify patterns of location

revisitation. In each case, Janmaat et al. (2021) call for the development of hierarchical

statistical methods to compare metrics across species. We have tackled the first case,

with applicable lessons for moving forward.

First, we suggest a small adjustment to the linearity index recommended by Janmaat et

al. (2021) for quantifying route directedness. This measure (the POI distance divided

by the length of the transit) is useful for a cursory comparison of transits with different
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straight-line-distances. This, however, washes out any potential effects of POI distance

on transit length, which we have noted are both present in our data and a logical product

of differing motivations (e.g. random foraging, social cohesion, directed travel) underlying

animal movement. Though it is possible to account for these differences by including POI

distance as a predictor of the linearity index, properly modelling a fraction as an outcome

of its numerator is not straightforward. We use, instead, the difference between straight-

line-distance and transit length (∆L), and suggest that for the statistical modeler this is

both simpler and more interpretable.

Second, our work calls for further exploration of the relationship between POI distance

and transit length, both to ensure that the transits of animals that tend to travel be-

tween distant locations are properly compared to those with shorter transits, and to

better identify the underlying factors that result in a non-linear relationship. Because

we visually observed a pattern in our data where ∆L initially increased, as a function

POI distance, then decreased, and finally leveled out, we focused on exploring “humped-

curve” functions to model this relationship. We settled on the generalized Ricker used by

Persson et al. (1998) because its parameters usefully describe a critical point that could

result from the balancing of a positive effect between predictor and outcome (e.g. the

scaling of random-search motivated path lengths as POI distance increases) and a neg-

ative effect (e.g. the increasing probability of a transit being goal-directed). However,

this model did not fit our data as expected, and the critical point was estimated well

outside the range of observed POI distances. This could be because 1) reduction in path

linearity at larger POI distances resulting from an increased rate of directed travel does

not outweigh the exponentially scaling tortuosity of the large POI distance transits that

do occur from random-search, 2) the generalized Ricker does a poor job of modelling the

dynamics between goal-directed travel and non-directed foraging (i.e. the humped curve
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shape of the data is real, but not captured by the constraints of the Ricker curve), or 3)

our conceptualization of the processes underlying the relationship between POI distance

and ∆L is wrong. Though using the generalized Ricker turned out to be useful to us for

exploring what the relationship between POI distance and ∆L is not, we were unable

to make full use of its multiple parameters to derive meaning from the patterns in our

data; for those with smaller data sets or the desire to build more appropriate models, we

suggest starting with functions that increase positively toward an asymptote.

Third, we suggest there is a need for further theoretical work to understand how dif-

ferent movement processes shape the relationship between POI distance and ∆L. This

need is motivated most strongly by the strange pattern of error in our data, in which

the variance decreases as the POI distance (and predicted ∆L) increase. This inverse

relationship between ∆L and its variance may explain why visualizing the data gives the

impression of a humped curve. It is also anathema to the gamma distribution, or any

other distribution that results from a single, positive-real process that runs through the

origin. From an applied statistics perspective, one way to address this problem would be

to develop mixed models to describe the balance of multiple processes producing tran-

sits (e.g. random foraging and directed travel). A promising avenue for determining

what such a statistical model might look like is the study of Brownian Bridges. This

method calculates probability densities of possible transits given the time and place of

the start and end points and the assumption that the underlying movement process is

a Brownian random walk. If the same derivations were made for an underlying pro-

cess that combines multiple Brownian random walks (representing, e.g., deviations from

straight-line-directed-travel made due to alternative motivations and deviations made

due imperfect knowledge) with magnitudes dependent on start- and end-point distances,

the resulting probability densities would describe predicted distributions of ∆L relative
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to POI distance.

Finally, there are many intersting ways in which the model we have developed can be used

a foundation, and expanded upon to further identify when and where path optimization

occurs across animals. Building in parameters to adjust the learning rate based on

the properties of a target POI, for example, could illuminate how animal learning is

motivated differently by specific outcomes. Similarly, we apply the same learning function

to model path optimization across all POI distances, but (like ∆L) learning rates could

vary depending are far apart to POIs are. Appropriate parameters to test this could

also be built into our model, and could reveal the scale at which animals make spatial

inferences to optimize their routes. These are just a few suggestions - the flexibility

of our modelling approach opens the door to comparatively assessing any number of

environmental variables that might determine how an animals learns and infers optimal

paths between important locations. As these methods develop, and are integrated into

existing approaches for comparing animals cognition, a clearer picture will emerge of how

animals in complex, natural environments process information to make effective, future

oriented decisions.
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I began my graduate research program with the intention to study how a cognitive

system evolves such that it is capable of understanding complex societies and building

sophisticated technologies, as seen in human behavior. My foundational hypothesis was

that the foraging behavior of primates and other species that share their ecology would

reveal the basic features of such cognitive systems. The most useful idea I found in

the pursuit of this goal is that of the cognitive map. In this conclusion, I will outline

the contours of how I understand cognitive maps now, which differs considerably from

how I understood cognitive maps when I designed each of my chapters, and which itself

differs from how I understood cognitive maps as I wrote the chapters. Once my personal

theory of cognitive maps is briefly laid out, I will highlight some of the ways my research

helped my views to evolve and discuss some ways I believe that this theory could shape

the future of ecological research. Finally, I will consider some of the emerging bridges

between the research fields of artificial intelligence and animal cognition that I think have

the most potential, especially those that might ead to mathematical models necessary

for formally testing conceptual theories of cognitive maps.
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Building a Cognitive Map

The concept of the cognitive map is, at its core, an analogy. In the conclusion to *Pur-

posive Behavior in Animals and Men”, Tolman writes

“All science necessarily presents, it seems to us, but a map and picture of

reality. If I were to present reality in its whole concreteness, science would

be not a map, but a complete replica of reality. And then it would lose its

usefulness. For it would have to cover as many pages as does life itself; it

would no longer serve as a brief and a handbook. One of the first requisites of

a science is, in short, that it be a map, i.e. A short-hand for finding one’s way

about from moment of reality to the next—that it be a symbolic compendium

by means of which to predict and control. Our account of the mind, we hold,

is a map account.”

The central question Tolman attempts to answer in his book is “how do animals make

this map?” The framework he presents is rigorous and insightful, but also sprawling,

complex, and somewhat archaic - no doubt a reason that its influence in psychology was

slow to emerge and often misunderstood. Here, I draw on this framework, as well as more

modern accountings and my own insights, to present a simpler outline of the cognitive

map’s primary mechanics (as I understand it).

The simplest definition of a cognitive map I can offer is “a hierarchical representation of

the state of the world, built from memory by the combined processes of inference and

reinforcement.” At the lowest level, inference occurs when an animal determines that

one perceptual scene is “like” another. It can then use the outcomes of its behavior in

that previous scenario to guide its decisions in the current moment. If the outcomes of
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the two scenarios are congruous, the shared elements of the scenarios can be stored in a

scheme. Schema reduce the information in a perceptual scene to a subset of important

features, and they are the building blocks of a cognitive map. Learning occurs when an

outcome causes the connections between the schema and motor pathways activated prior

to that event to become reinforced. In this way, animals learn not only how to respond

to specific perceptual cues, but also how to make inferences across increasingly disparate

and diverse scenarios by attending to their most important features. The network of

associations between schema that an animal builds over time - its semantic knowledge -

allows the animal to translate a given perceptual scene into a representation of possible

actions and their outcomes - a cognitive map.

My hope, in presenting this highly simplified explanation of a cognitive map, is to high-

light how reinforcement and inference are highly integrated processes that build on each

other to produce intelligent behavior. This view contrasts with the one I held enter-

ing this dissertation that reinforcement and inference form a dichotomy. On one side

of such a dichotomy, reinforcement produces stable patterns of action that can only be

changed by repeated, countervailing experience. On the other side, inference is a sepa-

rate cognitive faculty that enables some animals to behave optimally without the need

for reinforcement. The research I have presented offers several opportunities to consider

why the idea of a cognitive map depicts nuance in the relationship between reinforcement

and inference that is necessary for studying the behavior of intelligent animals in complex

environments.

Take the differing responses of primates placed into small foraging arrays in Chapter

1, for example. The vervets and Japanese macaques needed no experience to adopt

efficient movements between resource platforms. Despite the novelty of the platforms

and their arrangement, these primates inferred an efficient way to acquire all of the
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food. The strepsirrhines did not. Instead, the strepsirrhines spent many of their initial

trials exploring. Only with repeated exposure did strepsirrhines begin showing behaviors

that indicated they had inferred, from previous trials, properties of they array: they

focused more on the platforms, avoided returning to the same platforms, and in a few

cases began to consistently follow efficient routes between all platforms. Because this

project lacked an experimental component and there were confounding differences in the

nature of the strepsirrhine environments and those with vervets and Japanese macaques,

it is impossible to say what drives the observed differences. That the strepsirrhines

evevntually prove themselves capable of navigating the arrays as efficiently as vervets

and Japanese macaques, however, emphasizes the question of why they do not do it

in the first place. Perhaps their different sensory organs perceive the scene differently

and the food is less salient to them; perhaps they have less prior experience with arrays

of depleting resources than the vervets and macaques. Or, perhaps the reinforcement

of schema in their cognitive maps is more modular, and less likely to bridge between

disparate contexts, even if they share some salient features. Future work could resolve

these alternative hypothesis by sequentiall introducing individuals of each species to

arrays of different scales (eg one-half or twice the sizes used in Chapter 1), and in different

contexts (eg. light vs dark, different colored rooms). The differently sized arrays would

enable measurement of how learning rates change with the scale of the array, which makes

for more robust comparisons between species. Introducing the same individual to arrays

in different contexts would allow some control over experience, allowing to measure how

individuals generalize their experiences, instead of just guessing.

In Chapter 2, kinkajous face the opposite problem: a familiar environment where the

resource array changes. In this case, kinkajous may still benefit from learning move-

ment patterns through the tree crown that optimize foraging success on average (direct
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reinforcement of cues such as crown structure to motor action). In addition, kinkajous

might hypothetically learn strategies that help them efficiently exploit the specific array

of flowers on a given night (reinforcing the use of particular schema, e.g. the appearance

of flowers on one branch that commonly blooms synchronously with a branch in another

region). However, at the scale of our analysis we found neither patterns that could be

exploited as such, nor much variation in flower distribution at all. Such absence was

reflected in the apparent randomness of kinkajous’ movements within the crown.

Analyzing the results of the first two chapters from the perspective of reinforcement and

inference illustrates how animals, if they are to exploit the patterns of an ever-changing

world, must move beyond simple stimulus-action reinforcement. They need to use schema

to make inferences - learning occurs as they reinforce the use of schema that enable better

inferences. This type of learning usefully describes the process of developing semantic

knowledge from episodic memory. A sense of the cognitive map begins to emerge when

considering how an animal combines its knowledge of multiple schema to conceptualize

its current context and the actions that would be most useful. The nature and value of

the cognitive map becomes clearer when considering it in an explicitly spatial context,

as done in Chapters 3 and 4.

The results of Chapter 3 illustrate how kinkajous use both reinforcement and inference

to behave efficiently and flexibly throughout space. In some places, the high resolution

tracking of Tony Stark reveals incredibly consistent paths through the canopy, indicating

the power of reinforcement to develop efficient behavior in a complex environment. Yet,

these paths are used in two directions. This could not be achieved by simply reinforcing

stimulus-action responses, as the stimuli moving the opposing directions are likely very

different. Instead, an animal learning to use a route bi-directionally might reinforce

schema along the route that includes schema of where the animal has been. A couple
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interesting factors become apparent here. First, the hierarchical nature of a cognitive

map; while lower order schema might store the salient features of a simple concept, like a

certain type of object, higher order schema organize lower order schema into increasingly

complex concepts, such as a place. Second, the use of bi-directional routes demonstrates

the role of cognitive maps in allowing an animal to represent the state of the world outside

of its current perceptual context by building associations. As Tony Stark learns to use a

route in one direction, if the schema he builds are associated with schema of where he has

been, he will be better able to infer the utility of using the route in the other direction.

This same idea applies to the intersections in a kinkajou’s route network, but with added

complexity. These points in space are not just used for two navigational goals, but

three or more. In the food provisioning experiment with Molly, she rapidly integrated

provisioning locations into her nightly movements and developed more direct routes be-

tween these locations. Though route intersections could emerge if different behaviors

are reinforced according to different motivations (e.g. food vs. water), this is not suffi-

cient to explain Molly’s behavior. Instead, Molly’s behavior suggests she has previously

reinforced associations between movement decisions at important intersections and par-

ticular place schema. If her scheme for a place changes, say because she has recently

found food there, it can influence her decision at an intersection previously associated

with the place, but not the food. I have taken some liberty in describing the results of

this chapter, as the limited data do not rule out many alternative hypotheses, but what I

hope to have illustrated is that the flexible navigation of kinkajous can not be explained

by magnitudes of reinforcement learning and/or inference alone; it requires a theory of

how reinforcement and inference create a feedback loop that can build an increasingly

complex system of knowledge like a cognitive map.

If the behavior of the kinkajous tracked in Chapter 3 point toward an integrated role of
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reinforcement and inference in the development of a cognitive map, Chapter 4 provides

evidence of this process in action. The analysis takes the assumption that animals know

of a relationship between two locations, but the connections may be indirect or through

weakly reinforced schema. If a change occurs in the animal’s cognitive map, e.g. the

appearance of new food at one of these two locations, and that change motivates the need

for a more direct route, the animal may follow the known connections, but use learned

strategies for orientation to build more direct and reinforced schema along the way.

Examples of this could include learning new landmarks on the physical path that aid in

orientation, or cutting landmarks out of the route by finding a direct connections between

the landmarks that come before and after. As an animal’s route shifts through space, it

will need to infer the utility of new places it visits, then reinforce those schema that are

most useful. By measuring the rate at which animals build direct routes between locations

separated by varying distances, we are able to assess how they balance reinforcement of

paths that work with learned strategies for inferring new choices that may produce better

results.

In summary, each chapter of this dissertation finds animals attempting to navigate ever-

changing worlds, but the factors that change differ from chapter to chapter. In each

case, the changing features render simple stimulus-action reinforcement ineffective for

producing optimal behavior. Instead, optimal behaviors could be produced by reinforcing

the use and associations of schema that mediate between perception and action, allowing

for inference. In the first two chapters, these inferences involve strategies for serial

decision-making in local, multi-destination arrays. In chapters 3 and 4, the problem

expands to environments that are only partially observable, and thus call for a more

complex cognitive map that, through hierarchical organization, can build concepts of

places and their spatial properties. Across all chapters, the data reveal variance between
125



CHAPTER 4. ROUTE FORMATION

individuals and species in how quickly they learn optimal behaviors, and the breadth of

contexts between which they can make inferences.

One piece that is largely missing from these studies is the development of cognitive maps

over an individual’s lifetime, or across different experimental contexts. The methods of

analysis developed in this work opens the door to rigorously conduct such research. These

efforts would be greatly supplemented by the formalization of a cognitive map model, as

is happening in the field of artificial intelligence, enabling the simulation of learning (and

emergent behaviors) across parameter values that balance inference and reinforcement.

Taken together, these efforts could integrate theories of learning with ecological theories

such as optimal foraging and the ecological constraints model. In the following sections,

I outline further details about the directions this research could take.

Modelling a Cognitive Map

Inference is of primary interest to AI scientists, and is generally studied within the field

under the moniker “first-trial learning”. First-trial learning refers to the ability of an

agent to behave more optimally upon its first exposure to a new environment if it has

previously had experience in a different environment with some shared properties (relative

to agents that have no previous experience).

One of the algorithms most proficient in first-trial learning is called Projective Simulation

(PS; Briegel and De Las Cuevas (2012)), which draws explicitly on the ideas of episodic

memory, schematization, and reinforcement outlined in the previous section. In the

infinite color game, for example, a PS agent is presented with a simple perceptual scene

(percept) that contains two elements, an arrow with one of a discrete set of n directions

and a random color drawn from the continuous color space. The actions the agent
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can take correspond to the directions of the arrows, and the goal is for agents to learn

to chose the action that matches the arrow direction in a percept. The first step for

the algorithm to achieve this is to create a network of encountered percepts (episodic

memory), ‘wildcard generalizations’ (nodes in the graph that replace at least one element

of percept vector with a ‘#’ symbol, i.e. schema), and actions. Second, when an agent

encounters a new percept (which occurs at every step because every color is unique), it

creates edges between that percept’s node in the memory network and any wildcard nodes

to which it can be generalized. It then conducts a random walk through the network,

starting at the current percept node and ending when it arrives at an action. Finally,

when the agent successfully matches an action to the observed arrow direction, the weight

of all the network edges it traversed prior to that decision are reinforced, increasing

their likelihood of being followed again in the future (Melnikov et al. 2017). Over

time, the links between wildcard schema that contain only arrow direction information

become strongly linked to the correct actions, and this architecture thus provides a

computationally simple means for the agent to derive the relevant properties of a scene,

even when no two scenes are ever the same.

Though it is unsurprising to see that principles of psychology, developed in large part

through the study of animal behavior, have been influential in the field of Artificial In-

telligence (AI), the insights of AI research have been slower to make their way back to

behavioral ecology. The most obvious reason for this is that applying these insights to

the behavior of real animals in complex environments is among the most difficult class

of AI problems. Russell and Norvig (2020) identify seven binaries that categorize the

difficulty of an environment in terms of its difficutly for AI to solve, noting that “the

hardest case is partially observable, multiagent, nondeterministic, sequential, dynamic,

continuous, and unknown. Without going into detail about each of these qualities, I will
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suffice it to say they clearly describe the conditions of Chapters 3 and 4 (and also the

first two chapters, if one considers the role of the external environment in the animals’

behavior - e.g. how changing abundance of other food sources affected the time kinkajous

spent in the balsa tree studied in Chapter 2). The types of algorithms that can handle

these types of environments are new, and require specialized study to implement (Rus-

sell and Norvig (2020)‘s 1200 page volume is an introductory text to the study of these

algorithms). The Projective Simulation algorithm in the infinite color game addresses

only the ’continuous’ problem of challenging environments. Nonetheless, emerging AI

algorithms have enormous potential for informing the development of new models relat-

ing individual learning to the emergence of group- and population-level phenomena in

behavioral ecology.

I believe that the cognitive map concept will be essential for filling this gap. Consider a

hypothetical version of Projective Simulation that includes a ‘working memory’ element

of each percept. This working memory might contain a vector for each possible action

the agent can take (memory vector), with a magnitude equal to the number of times that

action was taken since some event (e.g. a successful foraging action). Like the colors in

the infinite color game, the possible vectors that could be held in this element are infinite,

but need only be added to the memory network as they are experienced, with links to

the wildcard nodes that generalize the vectors away. Such functionality would enable

agents to learn about the ‘distance’ and ‘direction’ between experiences and schema, the

key features of a cognitive map. If the structure of nodes representing memory vectors

is further constrained such that the connection between a node in vector x of magnitude

i and a node in vector y of magnitude j is equal to rxy|i − j|, where the value of rxy

that minimizes an agent’s surprise can be learned, I believe agents in a spatial foraging

task would begin to use novel shortcuts. The true power of such an approach, however,
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is that it need not be applied only to spatial domains; it would allows an agent to learn

generally about how its actions change its environment and the relationships between

different actions and their consequences.

The role of Cognitive Map models in Optimal Forag-

ing

The notion of an intelligent agent that can solve foraging tasks in the most challeng-

ing environmental cases begs the question of how such agents will behave relative to

real animals. For example, the Marginal Value Theorem predicts that animals will stop

foraging in a patch when the rate of return in that patch falls below the average rate

of return in the environment, including the time costs of travel (Charnov 1976). This

theorem assumes that an animal has perfect knowledge of the average return rate and

distance of foraging patches in its environment, but no knowledge of the locations or val-

ues of specific patches. Perfect knowledge of the average environment seems unlikely for

animals, and Chapter 4 adds to a large body of evidence that animals have some knowl-

edge of future destinations. None-the-less, early research using relatively simple systems

found that foraging behavior matched the predictions of the Marginal Value Theorem

in species as diverse as black-capped chickadees (Krebs et al. 1974), great tits (Cowie

1977), hummingbirds (Pyke 1978b), chipmunks (Giraldeau and Kramer 1982), and bum-

blebees (Pyke 1978a, Cibula and Zimmerman 1984). However, subsequent work found

that animals generally overstay in patches (Nonacs 2001), but sometimes leave energy

rich patches too early (Alonso et al. 1995). The ability of animals to match Marginal

Value Theorem predictions can be explained by learning models that closely approximate

the solution using limited memory (Belisle and Cresswell 1997), while deviations from
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these predictions have been attributed to animals learning to leave a patch based on

multi-scale foraging contexts (e.g. they leave a quality patch sooner if they know it to be

in a high quality region) (Watanabe et al. 2014). Deviations for optimal foraging may

also result from animals learning to satisfice multiple competing demands, rather than

maximize energy intake (Alonso et al. 1995). A formal cognitive map model of learning

could explain such higher order learning, and lead to the derivation of new marginal

value predictions based on the multi-scale foraging challenges faced by most animals in

real environments.

I will conclude by (1) re-iterating the distinction posed in my introduction between

cognitive map models of knowledge often used in movement ecology and cognitive map

models of learning used in psychology, (2) emphasizing the reasons my research motivates

a need to integrate cognitive map models of learning into ecological research, and (3)

briefly speculating on the power of cognitive map models of learning to extend beyond

foraging behavior and into higher level processes like social learning and theory of mind.

(1) In ecological research, cognitive models generally have a spatially explicit structure;

they are useful for assessing how animals make decisions under the assumption they

already know relevant features of the environment are location. In psychology, cog-

nitive map models the the way a network of ideas is constructed to hold information

about the distance and direction seperating these ideas. These models are useful

for understanding how an animal can develop spatially explicit knowledge in the

first place, and have the added benefit of being useful for explaining learning in

non-spatial domains.

(2) In my dissertation, I have illustrated how movement decisions and patterns of

navigation differ in contexts with small and large spatial scales. Yet, I also observe

there is a link between the ways animals learn the strategies effective for each
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context. Cognitive map models of learning can unify accounts of how animals learn

heuristics for navigating arrays within local, perceptually available scenes, and how

animals learn routes that traverse the continuous space between distant patches.

They provide a means of explaining (and predicting) the inferences animals make

(e.g. the relevant context of a novel scene, or a shortcut between patches) that are

typically baked into cognitive map models of knowledge.

(3) Finally, cognitive map models of learning should, in theory, allow for learning

beyond spatial domains, such as social domains - so long as the agent or animal

can perceive the other relevant actors and learn how sequences of its own actions

intervene between one state of the world and the next. If true, these models could

be integrated into our understanding of how animals respond to each other in their

movements, offering insights into how animals achieve an ideal free distribution

(Křivan et al. 2008) or modulate group size according to ecological constraints

(Chapman 1990).

To achieve these ends, behavioral ecologists and computer scientists will need to bring

their domains of knowledge together. Many behavioral ecologists conducting research

like my own are building substantial knowledge of what inferences animals make, and

when. Computer scientists are increasingly able to explain how intelligent systems learn

to make sophisticated inferences by integrating episodic memory and reinforcement learn-

ing into hierarchical networks of knowledge. These systems relate perceived world-states

according distances and directions along an agent’s action space, much like Tolman de-

scribed cognitive maps. Somewhere between the leading edges of these two fields, there

is a predictive model of animal foraging in stochastic, multi-scale environments that does

not need to assume animals possess a-priori representations of topological space. The

route through this space just needs to be mapped.
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Appendix

This dissertation is supported by several hundred pages of supplementary code, analy-

sis, and figures. These documents, along with a completely reproducible workflow, can

be found in an online repository at github.com/aqvining/Thesis-patterns_of_learning.

Here, we offer a guide to important supplements (included those cited in the preceding

chapters) and where to find them within the main repository.

Chapter 1

1.1 - Chapter 1 Markdown

Location: “Do Primates Trapline/DOCS/Movement Sequence Repetition.Rmd”

Description: The document used to compile Chapter 1. Primarily text and figure em-

bedding. The bulk of analysis for Chapter 1 was competed in other documents (see

below).

1.2 - Chapter 1 Data Notebook
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Location: “Do Primates Trapline/CODE/Data_Notebook.pdf”

Description: A reproducible report on all analyses included in chapter 1. Includes 1)

pointers to the code used to clean and prepare data used for the chapter, 2) Detailed

written and visual assessment of model validity for the learning rate models used in

chapter 1, 3) Code to reproduce all Chapter 1 figures, and 4) detailed analysis of model

posterior distributions. The markdown version of this PDF is also available using the

.rmd extension.

1.3 - Chapter 1 Simulation Validation

Location: “Do Primates Trapline/CODE/Simulation-Validation.html”

Description: Simulations in Chapter 1 were based on the descriptions of a model from

another paper (Reynolds et al, 2013), with modifications. In this report, I reproduce the

results of the Reynolds paper, validating that differences in our model were the result of

our intentional changes and not due to errors or differences in code. I also note how the

Reynolds model performs in the novel arrays used in Chapter 1, discussing the importance

of our model modifications for these more complex environments. The markdown version

is also available using the .rmd extension.

1.4 - Initial analysis of DET metric

Location: “Do Primates Trapline/CODE/Primate DET Report.html”

Description: This report details how the properties of the DET metric were explored and

understood, leading the selection of analysis parameters used and described in Chapter 1.

It includes several insights into the use of the DET metric for studying primate behavior

not included in the main body due to their complexity and tangential relevance. Some

caution should be used, however, as the models used for analysis in this report are not

as comprehensive as those in the final analysis, and the document has not been updated
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or modified from its original form.

1.5 - Final Analysis of primate sequence DET

Location: “Do Primates Trapline/CODE/DET_Analysis.html”

Desription: A companion to the Data Notebook, this documents provides a complete and

reproducible description of the models used to analyze the DET of primate movement

sequences through experimental arrays. This includes code, model diagnostics, detailed

descriptions of posterior distributions, and written analysis.

Chapter 2

2.1 Chapter 2 Markdown

Location: “Balsa_Spatial_Analysis/DOCS/The-movement-and-behavior-of-kinkajous-

within-a-dynamic-foraging-hotspot.Rmd”

Description: The analysis and writing of this chapter were integrated. Thus, this docu-

ment contains all of the code necessary to produce Chapter 2, including the text mark-

down, analysis, statistical reports, and figures. This also include figures and statistics for

model diagnostics and in-depth analysis that are hidden in the final PDF version.

2.2 Chapter 2 Reference Simulations

Location: “Balsa_Spatial_Analysis/CODE/Reference_Model1_Analysis.html”

Description: A detailed description of the simulations used to create reference data, and

the code used. The markdown version is also available using the .Rmd extension

2.3 Initial Analysis Short Report

Location: “Balsa_Spatial_Analysis/CODE/Kinkajou_Scan_Analysis.html
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Description: An initial report on the raw data data used in chapter 2 along-side an early

analytical model. Includes many figures included in the main markdown code, but hidden

and not described in the output of that document. This version is thus easier to access

and read for anybody interested in a more detailed breakdown of the data.

Chapter 3

3.1 Chapter 3 Markdown

Location: “BCI Anniversary/DOCS/Navigation on BCI markdown.Rmd”

Description: Markdown of text and figure embedding for Chapter 3. Analysis for this

chapter was not integrated into the markdown body, and can be found in supplementary

documents (see below).

3.2 Chapter 3 Data Preparation

Location: “BCI Anniversary/CODE/Path_Segmentation.html”

Description: Detailed descriptions, figures, and code for processing raw data for chapter

3. Also available in markdown using .Rmd extension

3.3 Chapter 3 Reproducible Analysis

Location: “BCI Anniversary/DOCS/Data-Notebook.html”

Description: A more thorough analysis of the models and statistics presented in Chapter

3, including model diagnostics and code used to analyze the data and create figures. The

markdown version is available in the CODE folder using the .RMD extension.
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Chapter 4

4.1 Chapter 4 Markdown

Location: “Segment Linearity/DOCS/manuscript.Rmd”

Description: Integrated markdown of Chapter 4 text, code, and analysis, sufficient to

reproduce the full chapter. Many of the more detailed figures are hidden in the final

output.

4.2 Chapter 4 Data preparation

Location: Segment Linearity/CODE/Path-Clustering-and-Segmentation.Rmd

Description: Code and figures used to process raw data, with descriptions and explana-

tions of parameter settings used for each step in the data processing pipeline.

4.3 Chapter 4 Model Development

Location: Segment Linarity/CODE/Gamma-Generalized-Ricker-Model-Development

Description: The final model presented in Chapter 4 is complex. It was developed

iteratively, testing each new parameter and its prior distributions to determine its effect

on the models health and the properties of the model when fit to the data. Each model

tested in contained in this document, as well as brief written descritption of what was

learned at each stage.
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This document is set in EB Garamond, Source Code Pro and Lato. The body text is set

at 11pt with lmr.

It was written in R Markdown and LATEX, and rendered into PDF using aggiedown and

bookdown.

This document was typeset using the XeTeX typesetting system, and the University

of California Thesis class. Under the hood, the elements of the document formatting

source code have been taken from the Latex, Knitr, and RMarkdown templates for UC

Berkeley’s graduate thesis, and Dissertate: a LaTeX dissertation template to support the

production and typesetting of a PhD dissertation at Harvard, Princeton, and NYU

The source files for this thesis, along with all the data files, have been organ-

ised into a git repisitory, which is available at https://github.com/aqvining/

Thesis-Patterns-of-Learning. A hard copy of the thesis can be found in the

University of California, Davis library.

This version of the thesis was generated on 2023-08-25 16:47:26. The repository is cur-

rently at this commit:

Commit: 98ee595ec3674312339f1743190e841431bcf7ee

Author: Alexander Vining <aqvining@ucdavis.edu>
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When: 2023-08-25 13:49:06 GMT

thesis submission

The computational environment that was used to generate this version is as follows:

- Session info ---------------------------------------------------------------

setting value

version R version 4.2.2 (2022-10-31 ucrt)

os Windows 10 x64 (build 19044)

system x86_64, mingw32

ui RTerm

language (EN)

collate English_Germany.utf8

ctype English_Germany.utf8

tz Europe/Berlin

date 2023-08-25

pandoc 2.19.2 @ C:/Program Files/RStudio/resources/app/bin/quarto/bin/tools/ (via rmarkdown)

- Packages -------------------------------------------------------------------

! package * version date (UTC) lib source

abind 1.4-5 2016-07-21 [1] CRAN (R 4.2.0)

aggiedown * 1.0 2023-06-14 [1] Github (ryanpeek/aggiedown@ae99300)

arrayhelpers 1.1-0 2020-02-04 [1] CRAN (R 4.2.1)

backports 1.4.1 2021-12-13 [1] CRAN (R 4.2.0)

bayesplot * 1.10.0 2022-11-16 [1] CRAN (R 4.2.2)
138



CHAPTER 4

bitops 1.0-7 2021-04-24 [1] CRAN (R 4.2.0)

bookdown 0.34 2023-05-09 [1] CRAN (R 4.2.3)

broom 1.0.4 2023-03-11 [1] CRAN (R 4.2.3)

cachem 1.0.8 2023-05-01 [1] CRAN (R 4.2.3)

callr 3.7.3 2022-11-02 [1] CRAN (R 4.2.2)

caTools 1.18.2 2021-03-28 [1] CRAN (R 4.2.1)

checkmate 2.2.0 2023-04-27 [1] CRAN (R 4.2.3)

class 7.3-22 2023-05-03 [2] CRAN (R 4.2.3)

classInt 0.4-9 2023-02-28 [1] CRAN (R 4.2.3)

cli 3.4.1 2022-09-23 [1] CRAN (R 4.2.2)

cmdstanr * 0.5.3 2022-08-01 [1] local

coda 0.19-4 2020-09-30 [1] CRAN (R 4.2.1)

codetools 0.2-19 2023-02-01 [2] CRAN (R 4.2.2)

colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.2.3)

corrplot * 0.92 2021-11-18 [1] CRAN (R 4.2.1)

crayon 1.5.2 2022-09-29 [1] CRAN (R 4.2.2)

curl 5.0.0 2023-01-12 [1] CRAN (R 4.2.3)

DBI 1.1.3 2022-06-18 [1] CRAN (R 4.2.1)

devtools * 2.4.5 2022-10-11 [1] CRAN (R 4.2.2)

digest 0.6.31 2022-12-11 [1] CRAN (R 4.2.3)

distributional 0.3.2 2023-03-22 [1] CRAN (R 4.2.3)

dplyr * 1.1.2 2023-04-20 [1] CRAN (R 4.2.3)

e1071 1.7-13 2023-02-01 [1] CRAN (R 4.2.3)

ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.1)

evaluate 0.21 2023-05-05 [1] CRAN (R 4.2.3)

fansi 1.0.4 2023-01-22 [1] CRAN (R 4.2.3)
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farver 2.1.1 2022-07-06 [1] CRAN (R 4.2.1)

fastmap 1.1.1 2023-02-24 [1] CRAN (R 4.2.3)

foreign 0.8-84 2022-12-06 [2] CRAN (R 4.2.2)

fs 1.6.2 2023-04-25 [1] CRAN (R 4.2.3)

generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.1)

geosphere * 1.5-18 2022-11-15 [1] CRAN (R 4.2.1)

ggdist 3.3.0 2023-05-13 [1] CRAN (R 4.2.3)

ggforce * 0.4.1 2022-10-04 [1] CRAN (R 4.2.2)

ggplot2 * 3.4.2 2023-04-03 [1] CRAN (R 4.2.3)

ggridges * 0.5.4 2022-09-26 [1] CRAN (R 4.2.2)

git2r * 0.32.0 2023-04-12 [1] CRAN (R 4.2.3)

glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.1)

gplots * 3.1.3 2022-04-25 [1] CRAN (R 4.2.1)

gridExtra 2.3 2017-09-09 [1] CRAN (R 4.2.1)

gtable 0.3.3 2023-03-21 [1] CRAN (R 4.2.3)

gtools 3.9.4 2022-11-27 [1] CRAN (R 4.2.3)

highr 0.10 2022-12-22 [1] CRAN (R 4.2.3)

hms 1.1.3 2023-03-21 [1] CRAN (R 4.2.3)

htmltools 0.5.5 2023-03-23 [1] CRAN (R 4.2.3)

htmlwidgets 1.6.2 2023-03-17 [1] CRAN (R 4.2.3)

httpuv 1.6.11 2023-05-11 [1] CRAN (R 4.2.3)

httr 1.4.6 2023-05-08 [1] CRAN (R 4.2.3)

inline 0.3.19 2021-05-31 [1] CRAN (R 4.2.1)

jpeg * 0.1-10 2022-11-29 [1] CRAN (R 4.2.2)

jsonlite 1.8.4 2022-12-06 [1] CRAN (R 4.2.3)

kableExtra * 1.3.4 2021-02-20 [1] CRAN (R 4.2.2)
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KernSmooth 2.23-21 2023-05-03 [2] CRAN (R 4.2.3)

knitr 1.43 2023-05-25 [1] CRAN (R 4.2.3)

labeling 0.4.2 2020-10-20 [1] CRAN (R 4.2.0)

later 1.3.1 2023-05-02 [1] CRAN (R 4.2.3)

lattice 0.21-8 2023-04-05 [2] CRAN (R 4.2.3)

lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.2.2)

loo 2.6.0 2023-03-31 [1] CRAN (R 4.2.3)

lubridate * 1.9.2 2023-02-10 [1] CRAN (R 4.2.3)

lwgeom * 0.2-13 2023-05-22 [1] CRAN (R 4.2.3)

magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.1)

maptools 1.1-6 2022-12-14 [1] CRAN (R 4.2.3)

MASS 7.3-60 2023-05-04 [2] CRAN (R 4.2.3)

Matrix 1.5-4.1 2023-05-18 [1] CRAN (R 4.2.3)

matrixStats 0.63.0 2022-11-18 [1] CRAN (R 4.2.3)

memoise 2.0.1 2021-11-26 [1] CRAN (R 4.2.1)

mime 0.12 2021-09-28 [1] CRAN (R 4.2.0)

miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.2.1)

modelr * 0.1.11 2023-03-22 [1] CRAN (R 4.2.3)

move * 4.1.12 2023-01-20 [1] CRAN (R 4.2.3)

munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.1)

mvtnorm 1.1-3 2021-10-08 [1] CRAN (R 4.2.0)

pillar 1.9.0 2023-03-22 [1] CRAN (R 4.2.3)

pkgbuild 1.4.1 2023-06-14 [1] CRAN (R 4.2.2)

pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.1)

pkgload 1.3.2 2022-11-16 [1] CRAN (R 4.2.1)

polyclip 1.10-4 2022-10-20 [1] CRAN (R 4.2.1)
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posterior 1.4.1 2023-03-14 [1] CRAN (R 4.2.3)

prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.2.1)

processx 3.8.1 2023-04-18 [1] CRAN (R 4.2.3)

profvis 0.3.8 2023-05-02 [1] CRAN (R 4.2.3)

promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.2.1)

proxy 0.4-27 2022-06-09 [1] CRAN (R 4.2.1)

ps 1.7.5 2023-04-18 [1] CRAN (R 4.2.3)

purrr * 1.0.1 2023-01-10 [1] CRAN (R 4.2.3)

R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.1)

raster * 3.6-20 2023-03-06 [1] CRAN (R 4.2.3)

rbbt * 0.0.0.9000 2023-05-26 [1] Github (paleolimbot/rbbt@a7053f7)

RColorBrewer * 1.1-3 2022-04-03 [1] CRAN (R 4.2.0)

Rcpp 1.0.10 2023-01-22 [1] CRAN (R 4.2.3)

D RcppParallel 5.1.7 2023-02-27 [1] CRAN (R 4.2.3)

readr * 2.1.4 2023-02-10 [1] CRAN (R 4.2.3)

remotes 2.4.2 2021-11-30 [1] CRAN (R 4.2.1)

rethinking * 2.21 2022-08-29 [1] Github (rmcelreath/rethinking@783d111)

rgdal * 1.6-6 2023-04-18 [1] CRAN (R 4.2.3)

rgeos 0.6-3 2023-05-24 [1] CRAN (R 4.2.3)

rlang 1.1.1 2023-04-28 [1] CRAN (R 4.2.3)

rmarkdown 2.22 2023-06-01 [1] CRAN (R 4.2.3)

rstan * 2.26.13 2022-06-25 [1] local

rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.2)

rvest 1.0.3 2022-08-19 [1] CRAN (R 4.2.2)

scales * 1.2.1 2022-08-20 [1] CRAN (R 4.2.1)

sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.1)
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sf * 1.0-13 2023-05-24 [1] CRAN (R 4.2.3)

shape 1.4.6 2021-05-19 [1] CRAN (R 4.2.0)

shiny 1.7.4 2022-12-15 [1] CRAN (R 4.2.3)

sp * 1.6-0 2023-01-19 [1] CRAN (R 4.2.3)

StanHeaders * 2.26.25 2023-05-17 [1] CRAN (R 4.2.3)

stringi 1.7.12 2023-01-11 [1] CRAN (R 4.2.2)

stringr * 1.5.0 2022-12-02 [1] CRAN (R 4.2.3)

svglite 2.1.1 2023-01-10 [1] CRAN (R 4.2.3)

svUnit 1.0.6 2021-04-19 [1] CRAN (R 4.2.1)

systemfonts 1.0.4 2022-02-11 [1] CRAN (R 4.2.1)

tensorA 0.36.2 2020-11-19 [1] CRAN (R 4.2.0)

terra 1.7-29 2023-04-22 [1] CRAN (R 4.2.3)

tibble * 3.2.1 2023-03-20 [1] CRAN (R 4.2.3)

tidybayes * 3.0.4 2023-03-14 [1] CRAN (R 4.2.3)

tidybayes.rethinking * 3.0.0 2022-08-30 [1] Github (mjskay/tidybayes.rethinking@7da9946)

tidyr * 1.3.0 2023-01-24 [1] CRAN (R 4.2.3)

tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.2.2)

timechange 0.2.0 2023-01-11 [1] CRAN (R 4.2.3)

tweenr 2.0.2 2022-09-06 [1] CRAN (R 4.2.1)

tzdb 0.4.0 2023-05-12 [1] CRAN (R 4.2.3)

units * 0.8-2 2023-04-27 [1] CRAN (R 4.2.3)

urlchecker 1.0.1 2021-11-30 [1] CRAN (R 4.2.1)

usethis * 2.1.6 2022-05-25 [1] CRAN (R 4.2.1)

utf8 1.2.3 2023-01-31 [1] CRAN (R 4.2.3)

V8 4.3.0 2023-04-08 [1] CRAN (R 4.2.3)

vctrs 0.6.2 2023-04-19 [1] CRAN (R 4.2.3)
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viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.2.3)

webshot 0.5.4 2022-09-26 [1] CRAN (R 4.2.2)

withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.1)

xfun 0.39 2023-04-20 [1] CRAN (R 4.2.3)

xml2 1.3.4 2023-04-27 [1] CRAN (R 4.2.3)

xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.1)

yaml 2.3.7 2023-01-23 [1] CRAN (R 4.2.3)

[1] C:/Users/avining/AppData/Local/R/win-library/4.2

[2] C:/Program Files/R/R-4.2.2/library

D -- DLL MD5 mismatch, broken installation.

------------------------------------------------------------------------------
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