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PREFACE

The work in this thesis encompasses two fairly disparate topics in Bioinformat-

ics: discovery of characters for phylogenetics, and DNA fragment assembly. Although

these two topics are effectively never mentioned together in Bioinformatics, they have

an intrinsic and slightly transparent link in my studies: they both involve comparisons

of sequences of length on the scale of the size of genomes.

In our phylogenetics analysis we consider sequences that are inverted in the

genomes of two different species as ideal characters for phylogenetic reconstruction. To

detect such characters we perform pairwise alignment genomes (or large Co-linear sub-

sequences of genomes), and allow for inversion rearrangements.

The motivation for this work came after we performed the first study on short

read fragment assembly and as an outcome of developing methods to perform comparison

of assemblies to judge assembly quality. When assemblies are compared, they often

agree in sequence composition of non-repetitive areas of the genome, however often

the order and orientation of certain segments often differ between assemblies, and are

considered ’misassemblies’. To detect misassemblies, it is necessary to perform a genome-

scale pairwise alignment of two sequences that allows for inversion and transposition of

sequences.

Our studies on short read fragment assembly began after the initial publica-

tions of protocols such as Pyrosequencing and Polonies, but before any real data was

produced, allowing freedom to investigate other topics. We found that our tools for

comparing genomes could discover inversions between human and chimpanzee, which

was just beginning to be released in draft form at the time. The same tool could be used

to detect inversions between human and mouse, and so it seemed possible to detect the

orientation of very short sequences across long evolutionary distances. Although many

more developments were required in the end to extend this to detecting inversions in

distantly related genomes, this resolves the link between the two fairly disparate topics

of this thesis.

Our method for phylogenetic reconstruction using inversions as characters was

published in the Proceedings of the National Academy of Sciences around the time

that other publications regarding use of characters that are rare: events such as inser-
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tions/deletions and inversions that are so infrequent that they are not likely to recur nor

revert, and thus do not suffer from homoplasy. Rare characters were not used in the

past because they require massive amounts of sequence to detect enough characters for

phylogenetic reconstruction, and without initiatives directed by the NHGRI and later

developments by high-throughput sequencing, would never had been possible. Since se-

quence data is growing at an exponential rate, rare characters will grow in importance

in phylogenetic reconstruction.

In 2007 we were approved on a grant with Dr. Xiaohua Huang to develop a

method for short read fragment assembly, based on previous work Dr. Pevzner had

done on fragment assembly, and our initial study of short read fragment assembly. This

presented us with two options: continue development on methods for phylogenetic recon-

struction as well as short read fragment assembly, or focus solely on fragment assembly.

We began attempting to work on both, however it became clear that there was going to

be fierce competition in short read fragment assembly, and diversion of attention from

this topic would be a competitive disadvantage.

Thus, the work of this thesis is divided into two parts. Part I is on our de-

velopment of inversions as characters for short read fragment assembly, the results for

building phylogeny, and finally a study we did that redefined the genome-scale map of

inversions between human and chimpanzee. Part II is on our development of the short

read fragment assembly tool: EULER-SR.
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ABSTRACT OF THE DISSERTATION

Combinatorial Methods in Computational Genomics: Mammalian Phylogenetics Using

Microinversions and Fragment Assembly With Short Reads by

Mark Chaisson

Doctor of Philosophy in Bioinformatics

University of California, San Diego, 2008

Professor Pavel A. Pevzner, Chair

In this dissertation, two problems are considered: phylogenetic reconstruction

using micro-inversions as phylogenetic characters, and de novo fragment assembly of

short reads. It is shown in Part 1 that one may use inversions at orthologous loci detected

in pairwise alignments to reconstruct phylogeny. In Part 2, a method to assemble “short”,

30-100 base reads is presented. First, a study is shown that was the first to show

that it is possible to perform de novo assembly of short (simulated) reads. Next, a

method, EULER-SR is presented to assemble short reads produced by the 454 Life

Sciences platform. Finally, the method EULER-USR is presented to perform mate-

paired assembly of short, 35-50 base reads, and to perform error correction on reads

with erroneous suffixes to recover a longer usable portion of an otherwise short read.
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1

Part I Introduction:

Phylogenetics

Nothing in Biology Makes Sense Except in the Light of Evolution
Theodosius Dobzhansky, 1973

This often cited quotation is given in the context of explaining why a subpopu-

lation differs from others, how a selective advantage arose, or seemingly any circumstance

involving an inference based on a comparison of a group of species that have evolved

from the same common ancestor. To make any inferences, however, the evolutionary

relationships that are used should be correct. The catch is, except for a few isolated

examples where evolution may be measured in a laboratory such as the evolution of

antibiotic resistant strains of bacteria, it is impossible to actually observe. This begs the

question: How may one first shed light on evolution? This question is addressed by the

field of Phylogenetics with the approach that given a set of measurements on a group

of extant species, and a model of how we believe evolution to occur, one may build a

phylogeny that most likely encodes what happened over the course of evolution.

The group on which a phylogeny is reconstructed is a taxa, and the features

that are measured characters. Until the work of Emile Zuckerkandal and Linus Paling,

phylogenetic reconstruction was performed using morphological characters. Morphology

may involve discrete characters, such as number of toes, however there is typically there

is much uncertainty in this as morphology is the result of complex developmental path-

ways. Considerable debate may arise when inferences are made using characters with

1



2

uncertainty. The efforts to discover the evolutionary relationship between whale, hip-

popotami, and pigs are a classical example of this. Careful morphological measurements

such as dental patterns and also blatant similarities such hind legs supported grouping

hippopotami Suiforms (including pig). The resolution of the controversy began in the

early 1990’s when several groups used protein sequences from hippopotami, and several

species from Suiforms and cetecae (whales) to derive a molecular phylogeny that placed

hippos and cetacae as sister groups. It is argued that sequences evolve differently from

morphology, (some) without natural selection, and provide for a more objective model

of evolution.

Sequence based phylogenetics began in 1962 when Pauling and Zuckerkandl

produced a primate phylogeny with hemoglobin sequences [154]. The motivation was

that morphology is a complicated result of different protein functions, so sequence based

phylogenies should be more accurate. Much progress has been made in the field of

sequence-based phylogenetics, from parsimony to probabilistic methods. An example of

the sophistication of sequence-based phylogenetics is a phylogeny of 44 mammals using

Bayesian phylogenetics [88]. Sequence based phylogenetic reconstruction is subject to

the constraint that it best models the underlying process of nucleotide or amino acid

sequence evolution. Unfortunately, the underlying mechanism for nucleotide evolution

may vary. Many Muridae sequences are more divergent from primate sequences due to

the lower accuracy of Muridae DNA polymerase than Laurasiatherian, yet Muridae are

thought to be more closely related to primates. Furthermore, the small character space

(the set of amino acids or nucleotides) suggests that homoplasy, independent evolution

to the same state, is more likely. Phylogenetic reconstruction may be more accurate

using characters less subject to homoplasy and for which the underlying mechanism for

change is constant.

Phylogenetic methods may be largely classified according to three approaches:

distance, likelihood, and maximum parsimony. All methods consider a set of n species for

which one would like to derive phylogeny using m characters, so each species s1, . . . , sn

is encoded by an m element character vector. The phylogeny is encoded as a tree

T where the leaves of the tree are extant species, and the parent of any node is the

immediate ancestor. Distance based methods define a distance measure on pairs of
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species di,j = Distance(si, sj), and form trees by joining species of least distance. A

popular method is the Neighbor-Joining method [121], where pairs of leaf vertices are

joined, and replaced by a single ancestral species representing a combination of the two

until one vertex (the root of the phylogeny) remains. Methods using likelihood require a

model of character evolution M that describes the likelihood of one character evolving

to another. The likelihood methods find a tree T that maximizes L(T |S,M). Finally,

maximum parsimony methods seek to find a similar edge-labeled tree where the total

number of transitions in the tree are minimized.

The character matrices used in molecular phylogenetics is a multiple alignment

of an orthologous sequence. Each column in the multiple alignment is a character. This

indicates that the type of alignment that is used affects the outcome of the reconstruction.

An example in [149] demonstrated that a certain protein sequence aligned with seven

different alignment methods produced six different trees using likelihood methods.

1.A Rare characters

A fairly radical alternative to the standard molecular phylogenetics of the last

40 years has emerged with rare characters. The motivation is simple: rather than using

somewhat uncertain point mutations as characters, find events that in all likelihood

are irreversible but also easy to define. Events that have been considered for rare rare

characters are gene duplications [32], retropositions [95, 8], and micro/macro genome

rearrangements [15]. The drawback to using rare characters is implied in the name: it

may be necessary to search large amounts of sequence in order to find relatively few

characters for phylogenetic reconstruction.

Some of the first investigations performed using rare characters used Short

Interspersed Nuclear Elements (SINEs) retropositions to build phylogeny. SINEs are

short, 100-500 base sequences that are copied from the genome and re-inserted. They

are good candidates for rare characters because they are believed to not be excised from

the genome, and are unlikely to insert at the exact orthologous position independently

in different lineages. The usefulness of SINE elements as phylogenetic markers was first

proposed by Norihiro Okada in 1991 [96], and practically demonstrated by resolving
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Figure 1.1 Manual validation of a transposition in a clade of Salmon [87]. This may be

used as a certificate to separate the Onchorynchus lineage from Salmo and Salvelinus

lineages.

closely related species of Salmonidae [87]. The presence/absence of SINE elements was

meticulously detected using PCR and gel electrophoresis. An example of a confirmed

SINE insertion is shown in Figure 1.1. After measuring presence/absence of a number

of SINE elements, a phylogeny was constructed (by hand) using the assumption that

elements are either present,absent, or unconfirmed (due to deletion). Once gained a

SINE could only become unconfirmed. This allows one to mark edges on the phylogeny

where certain SINE insertion events occurred, as shown in 1.2.

This method has been used by Okada to resolve small disputed phylogenies such

as the whale/hippotamus/pig trichotomy [95], and by others for primate phylogenies [134,

9]. The drawbacks to the Okada method are that it only validates phylogeny of closely

related species because of the use of PCR to validate insertion events. Furthermore,

the assumption that mobile elements never integrate at the same location, up to the

resolution of the method for detecting them may not be true when the mobile element

family has been very active and there is sequence specific insertion bias [55].

When methods for phylogenetic reconstruction using SINEs were formulated

one and a half decades ago they were formulated using a fairly small number of char-

acters because there was relatively little sequence information available in species other
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Figure 1.2 The phylogeny of salmon constructed using SINES by Okada [87]. This is one

of the first phylogenies built from rare molecular characters.

than a handful of model organisms. Because of the development of large scale sequenc-

ing facilities such as the Washington University Sequencing Center, and the support of

the National Human Genome Research Institute (NHGRI) and the NIH Intramural Se-

quencing Center (NISC) to gain functional understanding through comparative genomes,

a large number of targeted orthologous regions have been sequenced from a diverse set

of mammals [143].

After annotating known repeats using RepeatMasker with Repbase [65], one

may detect orthologous repeats using pairwise alignments. Methods to align pairs of

long (over 1-megabase) mammalian sequences were perfected to compare the human

and mouse sequences [130], and used to build a multiple alignments over collections of

long sequences [129]. This allows one to trace the presence/absence of a transposable

element across many species, and to thus create large datasets using repeat insertions as

phylogenetic markers.

A large scale study using orthologous transposable elements was performed by

Ali Bashir and others in 2003 [8]. As prior methods for phylogenetic reconstruction

were largely ad-hoc, manual methods based on the assumption that the characters did
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not exhibit any homoplasy, no computational methods had been defined to construct

phylogeny using computationally derived, large-scale datasets. This study had several

important results. First, they showed that insertion characters do exhibit a small degree

of homoplasy. Fortunately, due to the rare frequency of homoplasy, the authors were

able to develop robust methods to detect and remove homeoplasic characters prior to

reconstructing phylogeny. Finally, the authors developed a robust method for recon-

structing phylogeny using insertions as directed markers, when the presence/absence of

some markers are not known for all species: presence/absence/unknown were the three

possible states for a character.

The main drawback to this method is that it is very difficult to reliably detect

transposable elements across large evolutionary distance.

1.B Genome rearrangements

Genomes evolve at scales that range from point mutations to rearrangements of

large portions of chromosomes. Early observations of the latter were found in 1988, when

it was observed that the gene content for mitochondrial genomes of cabbage and turnip

are largely identical except in shuffled order [97]. When the gene content is identical, one

may transform the gene order of one species into the order of another using reversals.

Using parsimony, one may reconstruct what was likely the series of reversals that took

place during evolution by finding the minimal number of rearrangements to transform one

gene order into another. A wide body of research exists for finding optimal rearrangement

scenarios between two genomes [125, 50].

It was proposed by David Sankoff that rather than reconstructing the rear-

rangement history between two species, if the most parsimonious rearrangement of a

group of species were reconstructed, one may use that to build phylogeny [126]. Unfor-

tunately, this involves solving an NP-hard problem [22]. Several heuristics have been

proposed to do this [15, 85].

The main problem with this approach is that since it involves solving an NP-

Complete problem, different heuristics may produce different solutions. Furthermore,

most methods are based on parsimony, rather than likelihood of rearrangements. An
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analysis performed by Larget et al [72] demonstrated an instance where a method to

estimate the most likely rearrangement scenario also found a scenario that had fewer

rearrangements than the maximum parsimony method MGR.

The difficulty with reconstructing rearrangement scenarios is that rearrange-

ment events are overlapping. When the rearrangement events do not overlap (micro-

inversions), it is shown in the following chapter that one may reconstruct gene order in

linear time.

1.C Micro inversions

In this work we propose that micro-inversions may be added to the growing base

of rare characters for phylogenetic reconstruction. Unfortunately, this is hardly a novel

idea; in 1936 it was used by Dobzhansky and Sturtevant to reconstruct the phylogeny

of drosophila subspecies with inversions discovered from banding patterns in stained

chromosomes. The banding patterns of the polytene chromosomes in drosophila may be

viewed under a microscope (reproduced in Figure 1.3,left), which allowed Dobzhansky

and Sturtevant to characterize genome structure well before biochemical techniques to

do so were invented. The micro-inversions were used as the first data for molecular

phylogenetics to reconstruct the phylogeny of drosophila subspecies in the western United

States [34] (Figure 1.3, right).
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Figure 1.3 ((left) The banding patterns used to build a Drosophila phylogeny. (right) A phylogeny of Drosophila subspecies created

using inversions found in cytogenic banding patterns. Figure reproduced from [34]. Figures reproduced from [34].
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1.D Mammalian phylogeny

In the following chapter we use micro-inversions to reconstruct the phylogeny

of a diverse group of mammals. The importance of having an accurately reconstructed

mammalian phylogeny is underscored by the inferences made using comparative ge-

nomics [30], as well as having a long standing importance to basic understanding of

mammalian evolution. Many attempts have been made to infer the mammalian phy-

logeny [115, 88], yet even with sophisticated methods, controversy over areas of the tree

as small as the order of evolution of human,dog,and mouse still exist [21].

Rare characters were used in [8] for the reconstruction of the mammalian phy-

logeny, and in [62] for small branches. Our method for phylogenetic inference based on

micro-inversions adds to the aresnal of tools for phylogenetic reconstruction.
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Micro Inversions in Mammalian

Evolution

2.A Introduction

In this chapter we propose a new approach for identifying micro-inversions

across different species and show that micro-inversions provide a new source of low ho-

moplasy evolutionary characters. These characters may be used as “certificates” to verify

different branches in a phylogenetic tree turning the challenging problem of phylogeny

reconstruction into a relatively simple algorithmic problem. We estimate that there ex-

ist hundreds of thousands of micro-inversions in genomes of mammals from comparative

sequence projects, an untapped source of new phylogenetic characters.

Chromosomal inversions have been used as phylogenetic characters since the

time of Dobzhansky and Sturtevant (1938). Recent comparisons of whole mammalian

genomes have revealed a surprisingly large number of micro-inversions [108, 68]. While

this was first met with scepticism and was attributed to assembly errors and alignment ar-

tifacts, recent comparative study of human and chimpanzee genomes convincingly proved

that micro-inversions are indeed wide-spread [42]. We therefore decided to perform a

fine-grained search for inversions across many mammals in the greater CFTR region.

This is a 1.8 Mb region on chromosome 7 in the human genome that encompasses the

CFTR gene, and its many neighboring genes, that was sequenced for the ENCODE

10
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project [29, 143]. We found that micro-inversions are frequent across all species and

occur at roughly one micro-inversion per megabase per 66 million years of evolution. We

show that micro-inversions have low homoplasy, and thus provide ample characters for

phylogenetic studies.

Our work follows in the steps of the pioneering work by Okada’s group [94] and

Lake’s group [117] that demonstrated the power of repeat-based and deletion-based char-

acters to resolve difficult phylogeny problems that the traditional point mutation analysis

failed to resolve. The repeat-based and deletion-based approaches, while very successful,

have some drawbacks as reviewed in [55]. However, Bashir et al., 2005 [8] and Kriegs et

al, 2006 [71] recently demonstrated that many repeat-based characters may be extracted

from genomic sequences to alleviate these drawbacks and to resolve some existing con-

troversies. Our work reveals a new source of low homoplasy phylogenetic characters that

complement these previous studies in two respects. First, micro-inversion homoplasy

(if any) may be detected by the breakpoint graph analysis [4] and such characters can

be simply deleted from further consideration without affecting the tree reconstruction

algorithm. Second, micro-inversions may be identified as long as there is a detectable

sequence similarity thus not necessarily limiting the comparison to close species as in

the case of repeats and deletions. Indeed, Bourque et al., 2005 [16] documented many

micro-inversions between human and chicken genomes while Fischer et al., 2006 [43]

found many micro-inversions between yeast genomes that are molecularly as diverse as

the entire phylum of chordates.

While micro-inversions represent powerful evolutionary characters, their detec-

tion is far from being simple. A näıve approach is to detect reverse-strand local align-

ments between orthologous sequences. However, reverse-strand local alignments may also

be caused by palindromes and inverted repeats (Figure 2.1), ubiquitous genomic features

that do not reflect any variations in the genomic architecture between two genomes, i.e.,

they may be detected within a single genome without a need to align to another genome.

Reverse strand alignments may also be detected in inverted transpositions (Figure 2.1)

and more complex interleaving rearrangement events (not shown). The computational

challenge of distinguishing between micro-inversions and other genomic features is not

widely appreciated leading to an implicit assumption that whole-genome reverse-strand
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canonical weak forward similarity off-diagonal

inverted
palindromeinverted duplication

transposition
inverted repeat

Figure 2.1 Diagrammatic dot-plot of inversions (top) and genomic structures that are
often misclassified as inversions (bottom). The top row shows alignments that are re-
tained as inversions: canonical inversions, inversions with spurious forward similarities,
and off-diagonal inversions that have been shifted by insertions/deletions or have highly
diverged segments that elude similarity search. The bottom row represents inverted
duplications, inverted repeats, palindromes, and inverted transpositions.

alignments retained in a net by the UCSC chaining and netting algorithms [68] provide

a universal solution to the characterization of micro-rearrangements. Chaining and net-

ting combine optimal ordered sequences of pairwise alignments to create a genome-scale

alignment that allows for gaps and inversions (see Appendix A for additional details).

We developed a method, InvChecker, to find inversions in the CFTR region, and applied

it to the human and chimpanzee genomes to show that approximately 80% of the 1576

putative micro-inversions recently found in [42] are repeat-induced artifacts. At the same

time we uncover 167 human-chimpanzee micro-inversions missed in [42]. 1

These findings reveal some limitations of chaining and netting [68] as a micro-

inversion detection tool in [42]. This is not a criticism of this method but rather an

1This is a long footnote.A nighttime stream of fast-moving air in the Great Plains separates cool,
moist air near the ground from drier, warmer air above. The simulation found that the turbines would
catch this nocturnal jet, with ensuing turbulence and vertical mixing. When the upper air mass reached
the surface, the warming and drying effect would be significant, the model suggested.
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indication that accurate validation, parameter setting, and post-processing are necessary

to extract micro-inversions from netted alignments. The chaining and netting algorithms

[68] were carefully designed as a compromise between providing a simple and intuitive

representation of rearrangements on one hand, and reflecting all complexities of the

rearrangement process on the other hand. This representation, while extremely useful,

does not attempt to model complex rearrangements (e.g., overlapping inversions) in full

generality. We further illustrate the use of micro-inversions evolutionary studies.

2.B Results

2.B.1 Identification of micro-inversions

We searched for micro-inversions in 15 genomes with the nearly finished greater

Cystic Fibrosis Transmembrane conductance Regulator (CFTR) region2: human, chim-

panzee, baboon, macaque, marmoset, galago, rabbit, mouse, rat, cow, dog, platypus,

opossum (Monodelphis domestica), and hedgehog [143]. These sequences (May 2005

ENCyclopedia Of DNA Elements ENCODE release [66]) average 1.84 Mb in length. Se-

quences comprised of multiple contigs were ordered and oriented according to alignments

with the human sequence. Each sequence was repeat masked with Repeat Masker using

both the Repbase and species-specific RepeatScout libraries [65, 113].

While many putative inversions are detected using chaining and netting, simple

analysis of the netted files and reciprocal best hits as in [42] has serious shortcomings.

First, some more divergent inversions are missed in netted alignments because netted

alignments have a tendency to favor the direct alignment even if the reverse alignment is

more statistically significant, albeit miniscule. For example, two micro-inversions were

found in the alignment of human and chimpanzee in the greater CFTR region that

both remained undetected in whole genome nets (one of them is shown in Figure 2.2).

Second, BLASTZ based alignments that are processed by chaining and netting miss

some “ancient” inverted segments. For example, while a segment in human may have

a detectable similarity in mouse but not in rat, aligning the mouse segment against

the rat genome may lead to detecting similarity between the human and rat sequences.

2We limited our analysis to genomes with no more than 200,000 unfinished base pairs.
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Figure 2.2 The dot plot (left), and the corresponding BLASTZ alignments (right) of
a 290 bp micro-inversion that is not detected using netted alignments of human and
chimpanzee (false negative). The dot-plot on the left clearly shows the presence of a
micro-inversion. However, the gap spanning the forward alignment is small enough to be
closed by chain-and-extend alignment although the score of the direct strand alignment
is not statistically significant, particularly when compared to much higher score of the
reverse strand alignment.

Third, genomes typically have many palindromes and inverted repeats that may mimic

micro-inversions thus misleading the netting and chaining algorithms. An example of

this is shown in Figure 2.3 that represents an inverted repeat that is misclassified as a

micro-inversion.

Figure 2.1 shows seven genomic dot-plots, only the first three of which represent

micro-inversions. The four others may be mistakenly classified as micro-inversions if one

only considers reverse strand alignments. On the other hand, the inversion shown in the

second and third dot-plots are often missed in chaining and netting. Detecting inversions

is not unlike the problem of finding orientations of highly diverged synteny blocks (see

[110]) that requires a careful computational analysis. To address these complications,

we developed a program, InvChecker, that analyzes artifacts shown in Figure 2.1 by

searching for inversions in all reverse strand alignments, rather than those simply retained

in a net (see Appendix A).

The pairwise representation of micro-inversions detected by our analysis hides
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Figure 2.3 The dot plot (left), and the corresponding BLASTZ alignments (right) of
an inverted repeat that is misclassified as a putative micro-inversion by chaining and
netting (false positive). The red segment in the figure on the right corresponds to an
inversion taken from the list of inversions presented by [13]. The undetected forward
alignment, directly below red segment is caused by a short run of “N” nucleotides in
the chimpanzee assembly. The same effect may be caused by some regions in inverted
repeats/palindromes being more diverged than other thus eluding alignment algorithms.

the fact that are insertions/deletions and alignment artifacts affect in each genome that

make it difficult to rigorously define the term “inverted loci” (orthologous regions in-

volved in inversions) across multiple species. The intuitive definition of inverted loci as

a set of such orthologous regions across all species is somewhat imprecise since these

regions may differ in length (due to deletions) and may include diverged non-alignable

parts making it difficult to construct their multiple alignment [10]. Pairwise inverted

regions between species i and j form a set of regions Sij in species i and a set of regions

Sji in species j. The union of all such regions over all pairs of species is denoted
⋃

Sij

(the union is taken over all indices i and j). This set represents the set of all regions in

all genomes that were subjected to rearrangements (Figure 2.4). The exact endpoints

of the regions in the sets Sij and Sik may vary widely (for j 6= k) and therefore the set
⋃

Sij provides a more accurate estimate of the span of the inversions than individual sets

Sij. We remark that while a micro-inversion between two species A and B may be easily

detectable, the inverted region between species B and C may be too diverged to pass

the alignment threshold. However, if one may align the corresponding regions in A and
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Figure 2.4 Defining the boundaries of inversion loci through the union of the boundaries
of inversions found in a set of pairwise alignments.

C, the inversion between B and C may be confirmed. To address this complication, for

every continuous region in
⋃

Sij we use a more sensitive search to find all similar regions

in other species resulting in an extended set of species in which an inversion locus is

detected. We iteratively use the extended set of regions to find divergent loci that were

undetected in the pairwise comparisons until no new loci are discovered. This allowed

finding inversions in related yet divergent species and resulted in a 40 percent increase

in the number of regions found as compared to the set
⋃

Sij.

All loci are expected to be present in each species (in direct or reverse orienta-

tion) unless (i) the locus is in a gap in an assembly, (ii) the locus was deleted in the course

of evolution, or (iii) the locus is so diverged that it escapes the detection by sequence

alignment. As a result, we find only 520 out of the 68 · 15 = 1020 possible regions in all

inversion loci in 15 mammals.

We also detect a small number of regions that show evidence of overlapping

micro-inversions like: ABCDE → A-D-C-BE → ACD-BE in the human-baboon com-

parison. Although such micro-rearrangements are filtered out by InvChecker and are

not considered as characters for phylogenetic reconstruction, they are perfectly suitable

for phylogenetic analysis (work in progress).

2.B.2 Removing conflicting micro-inversions

Ideally, each inversion loci yields a valid evolutionary character. However, in

rare cases spurious alignments and overlapping inversions may produce ambiguous char-

acters that need to be detected and removed before the tree reconstruction begins. We

may remove ambiguous micro-inversions prior to tree reconstruction using two methods:

an alignment consistency test that is based on the consistency of alignments within a

single inversion loci, and the four gamete test that is based on consistency of pairs of
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inversion loci.

The alignment consistency test checks that the parity of a putative inversion

is consistent across multiple species. For example, if a segment in species A is inverted

relative to species B, and the same segment in B is inverted relative to a segment in C,

then the segments in A and C should have the same orientation. To check alignment

consistency within a given inversion locus, we construct an inversion graph for each

inversion locus: vertices correspond to the inversion locus in each species; red edges

connect vertices whose loci are in opposite orientation; and blue edges connect vertices

whose loci are in the same orientation (Figure 2.5). We determine the relative orientation

of two inversion loci by comparing the local alignment scores of the inversion loci in the

forward and reverse orientations to the (empirically determined) expected alignment

score of two random sequences of the same length. The orientation is determined by the

alignment that has a score k times greater than the random alignment scores, where k

is a parameter. Lower values of k allow one to analyze more divergent sequences, but

are more prone to errors. Furthermore, sequences that align with scores above k in both

orientation (as is the case with ambiguous loci boundaries such as partially deleted loci)

are not assigned an edge. When all alignments for an inversion locus are consistent then

all cycles in its inversion graph should have an even number of red edges (in particular,

red edges form a bipartite graph). Inversion loci that violate the “even number of red

edges in a cycle” condition are discarded. We found that for k = 2 there are no cycles

violating the “even number of red edges” condition.

The inversion graphs that do not violate the “even number of red edges in a

cycle” condition (e.g., all inversion graphs for k = 2) may be used to derive evolutionary

characters. The vertices of such graphs may be partitioned into two disjoint sets such

that every path between vertices from two sets has an odd number of red edges (loci in

one set are inverted as compared to loci in another set). We arbitrarily assign “direct”

orientation to all loci in the first set and reverse orientation to all loci in the second set.

Orientation is encoded in character vectors by assigning an orientation 1 to species on one

side of the graph, and 0 on the other. We also assign ? to species outside the connected

component (Figure 2.5, right). Combining all inversion loci results in an n × m matrix

C (with 0s, 1s, and “?”s) for m character vectors and n species, shown in Figure 2.6,
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Figure 2.5 The inversion graph (left) and corresponding character vector (right) for an
inversion of length 1300 bp created with edges assigned as the higher scoring alignments
(k = 2). The graph is bipartite, indicating that there are no spuriously assigned ori-
entations. Note that the graph is not complete; in particular the inversion locus in
macaque is partially deleted. It is counterintuitive that both macaque and human loci
are aligned to mouse locus but not aligned to each other. It is explained by independent
deletions in different regions in macaque and human that left no “common” sequence
between macaque and human sequences in this locus. However, both partial sequences
in macaque and human genomes may be aligned to the mouse locus.
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Figure 2.6 The character matrix for 67 micro-inversions in 15 species (top), and the ma-
trix after the performing the first 49 good inversions (bottom). Each column represents
an orthologous inversion locus. Red and green cells represent inversion loci in opposite
orientation, and gray cells correspond to ? signs (unknown orientation). Columns with a
single green cell are inversions unique to a species. The number of inversions performed
on each species is shown to the left of the bottom figure.

top. The condition Cij =? implies that the inversion locus j is unresolved in species i.

Note that the partition of each column into 0s and 1s is arbitrary and may be switched

(i.e. the characters are undirected). The increase in the number of unresolved inversion

loci with evolutionary time is attributed to both difficulties in validating such inversions,

incomplete coverage of CFTR regions for some species, and the stringent parameters we

use in this study (see Discussion section).

Next, we apply the four gamete test to pairs of inversion loci. We assume

that the set of micro-inversions is homoplasy-free. Therefore, the micro-inversions form

a perfect phylogeny and all pairs of characters must satisfy the compatibility or four-

gamete test [58, 40]: n × 2 sub-matrix of C formed by a pair of columns has the rows

00, 01, 10, and 11. Four-gamete violations may arise either from spurious alignments or

from inversions that are not homoplasy-free. While in general case violating characters

may be detected and removed using the Maximal Conflict Removal technique from [8],

our original dataset of 68 inversions contained only one violation. Manual inspection

of this violation revealed that it is caused by a misclassification of a rather diverged
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inverted duplication (fourth diagram in Figure 2.1). This misclassified micro-inversion

was removed resulting in 68-1=67 characters. Appendix B describes the distribution of

these micro-inversions along the human genome.

While micro-inversions rarely re-use breakpoints, there is difference between

large-scale rearrangements and micro-inversions when it comes to breakpoint re-use.

Sequenced genomes revealed large breakpoint re-use imposed by different (large-scale)

rearrangements that happen at the same rearrangement hot-spots [109, 89]. However,

when one claims that two genome-scale rearrangements use the same breakpoint it does

not mean that the breaks occur exactly the same nucleotide but rather that their exact

breakpoint positions are indistinguishable at the genomic scale. The situation is very

different for micro-inversions where even closely located breakpoints may be distinguished

due to the smaller scale of the aligned regions. Since we found very limited micro-

inversion breakpoint re-use with this higher level of resolution we postulate that repeated

micro-inversions with exactly the same pairs of breakpoints (that would paraphyletically

replicate micro-reversions and create homoplasy) are unlikely. The micro-inversions that

share only one of their breakpoints do not represent a problem since they may be detected

(via breakpoint graph [4] analysis) and discarded from further consideration.

2.B.3 Reconstructing phylogenetic trees

We first consider the case when all inversion loci are fully resolved (i.e, matrix

C has no ? signs). Let π1, . . . πn be n be n signed genomes 3 that evolved by some

(possibly overlapping) unknown inversions according to an unknown evolutionary tree.

Without loss of generality, we assume that there was at least one inversion on every

branch of the tree as zero length edges may be contracted. Every inversion creates up

to two breakpoints - pairs of adjacent orthologous sequences that are out of order.

One may classify an inversion as independent if it creates exactly two new

breakpoints (i.e., increases the number of breakpoints by 2) and does not re-use break-

points [110]. We call the rearrangement process independent if all its inversions are

independent, up to the resolution of the boundaries of each inversion.

If all inversions were resolved (no ? signs in matrix C) and did not re-use break-

3See Pevzner, 2000 [101] for a background on genome rearrangements.
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points, the following variation of the perfect phylogeny theorem [19] would immediately

resolve the problem of reconstructing inversion-based phylogenetic tree.

Theorem. If n genomes of length m are produced by independent inversions

then both the correct evolutionary tree (up to the zero-length edges) for these genomes

and the ancestral architectures of all its branching vertices may be reconstructed in

polynomial time.

For the sake of completeness, we give the outline of the proof below. Let

π1, . . . πn be n genomes that evolved according to an (unknown) evolutionary tree T

and let b(πi, πj) denote the number of breakpoints between genomes πi and πj . Since

every rearrangement creates exactly two breakpoints, the tree path between leaves πi

and πj accounts for b(πi, πj)/2 rearrangements. The inversion distance between these

genomes is at least b(πi, πj)/2 implying that the tree T is additive [101]. Since the

(unknown) tree T is additive and since the distances between its leaves are known,

Zaretskii’s theorem [150] implies that it may be uniquely reconstructed in linear time.

An observation that the median [15] of every three genomes πi, πj , and πt evolved by

independent rearrangements is unique and may be reconstructed in linear time implies

that the permutations corresponding to all branching vertices in the tree T may be

uniquely reconstructed.

The above theorem does not impose any restrictions on the reconstructed tree

(like parsimony) and only assumes the evolutionary process consists of independent

events. This is a reasonable assumption since micro-inversions rarely re-use breakpoints.

It is straightforward to show by following the arguments used in the proof of the

above theorem, that in case of independent evolution the MGR (Multiple Genome Rear-

rangements) algorithm [15] reconstructs the correct evolutionary tree. MGR constructs

an evolutionary tree while seeking to minimize the number of inversions. However, MGR

assumes that all inversions are resolved. Since micro-inversions are often unresolved for

distant species we developed an MGR-like heuristic that is directed toward data with

unresolved characters (the “?” signs in matrix C).

Note that a removal of an edge from a phylogenetic tree partitions the tree into

two subtrees. Our goal is to reconstruct a tree and assign every character to an edge in

the tree in such a way that if this edge is removed then all 1s are in one subtree, while
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all 0s are in another subtree (see [137]).

Intuitively, our algorithm attempts to move “back in time” undoing micro-

inversions, i.e., performing inversions of inverted loci that bring the existing species

closer to the ancestral mammalian genome. This is achieved by evaluating all possible

inversions for each genome, and identifying good inversions that bring a genome closer

to the ancestral genome. Of course, the ancestral genome is unknown and therefore it is

unclear how to find good inversions. However, Bourque and Pevzner, 2002 [15] argued

that an inversion which brings a particular genome closer to all other genomes is likely to

be a good inversion. If this is correct, then we do not need the ancestral genome to find

good inversions. We then carry on performing good inversions in all genomes and iterate

until some of genomes (e.g., A and B) do not have any loci in different orientations

(converge to their most common ancestor). After A and B become identical there are

no longer good inversions in A and B (since any inversion in A will make it more distant

from B) and we merge A and B into a single genome (thus enabling good inversions

at the next iteration) and iterate. Of course, this approach works well only for “nearly

perfect” characters, and we argue that it is the case for micro-inversions.

Therefore, our MGR-like algorithm is very simple: look for good inversions

in all genomes and perform them (if there are any) until some of the genomes become

identical, merge identical genomes and iterate. For example, in Figure 2.6 (top) is one

good inversion in chimpanzee (corresponding to the green cell in the first column), two

good inversions in human (green cells in the second and third columns), two in baboon,

one in macaque, etc. We “reverse” all 49 good inversions (Figure 2.6, bottom) so that

some species become identical. For example, human and chimpanzee, macaque and

baboon, mouse and rat, etc. become identical in Figure 2.6(bottom). The difficulty,

however, is that, since some inversions are unresolved, there is a danger that some

inversions may appear to be good while in fact they are not depending on the value (0 or

1) assigned to one of the “?” signs. Another danger is that some genomes may appear

identical (after performing some good inversions) while in fact they are not if the ? signs

are replaced by 0 or 1. Armadillo/hedgehog and platypus/opossum represent an extreme

case of such potentially incorrect merges since they have a single shared inversion locus.

We address the uncertainty caused by ? signs with a greedy heuristic: we postpone
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merging species in any iteration if they have less than p percent resolved characters

in common (where t is a threshold). For p = 90%, the merging of platypus/opossum

and armadillo/hedgehog will be postponed despite the fact that they represent “valid”

merges. The number of remaining characters decreases as species are merged, and so

merges that are postponed in an early stage are performed later.

Since our character matrices include “?” characters it is possible that there are

species that are pairwise, but not transitively equivalent. Consider a simple example of

species A, B, and C, with three characters in the matrix:
A 1 1 ?
B 1 ? 0
C ? 0 0

. In this example A ∼ B, and B ∼ C, but A 6∼ C. Sequences

that are highly divergent, or that contain many gaps may be missing characters that

create such inconsistencies. To avoid artifacts caused by unresolved characters we merge

the largest set of transitively equivalent species for which there are no inconsistencies.

While this greedy heuristic is important in cases when there are a limited number of

micro-inversions, it may not be necessary when more sequences are available.

After the first round of good inversions, our greedy heuristic merges human

and chimp, macaque and baboon, galago and rabbit, mouse and rat, and cow and dog.

Afterwards we are left with 18 characters that represent “earlier” micro-inversions (Fig-

ure 2.7a). Again, there exists 1 good inversion in the human+chimpanzee ancestor (1st

row), 2 good inversions in the macaque+baboon ancestor (2nd and 3rd rows), 6 good

inversions in the mouse+rat ancestor, and 2 good inversions in the cow+dog ances-

tor (Figure 2.7a). The further progression of the algorithm is shown in Figures 2.7c-f

(only four iterations are required to build the phylogeny). The 4 “dotted” edges in Fig-

ure 2.7 do not correspond to any micro-inversions (zero-length edges that have to be

contracted) and thus represent the same genomic architecture. Representing this ances-

tral architecture as a single vertex results in the final tree shown in Figure 2.8(left). The

currently accepted phylogeny on the same species constructed from accordant subsets

from [88, 115, 8] is presented in Figure 2.8(right).

While a number of edges in the reconstructed tree remain unresolved, our anal-

ysis provides a proof of principle that micro-inversions represent valuable characters for

phylogeny reconstruction. For example, the mitochondrial data analysis in [3] places the
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Figure 2.7 The reconstructed tree (left), the tree corresponding canonical mammalian
phylogeny (center), and the tree that is reconstructed using 14 ENCODE targets (right).
Vertices connected by dotted edges in Figure 2.8 (no corresponding micro-inversions) are
contracted into a single vertex.

hedgehog close to the root of the placentals, while others argue against this [145]. Our

result supports grouping of hedgehog with cow and dog, a result that is supported by

most recent studies.

2.B.4 Micro-inversions in human and chimpanzee lineages

The problem of discovering micro-inversions requires a careful analysis even

when comparing the human and chimpanzee genomes, where very high sequence similar-

ity suggests that micro-inversion breakpoints should be easy to detect. We analyzed the

1460 putative micro-inversions reported in [42] that are shorter than 15kb, by running

InvChecker on each inverted locus and 60kb of flanking sequence. Only 293 putative

micro-inversions were classified as inversions by InvChecker while 1005 inversions were

classified as artifacts. The remaining 162 putative micro-inversions represent ambiguous

genomic architectures that InvChecker is unable to call either way (as demonstrated in

Figure 2.9). A large fraction of these artifacts are palindrome-like structures. Feuk et
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Figure 2.8 Progression of the tree reconstruction algorithm.
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Figure 2.9 An inversion retained in the human/chimpanzee whole genome alignment for
which InvChecker is unable to determine if it is a proper inversion. The netted inversion
is in red. Because there is no surrounding forward alignment (within 60 kb region), we
cannot determine if this inversion is along the main forward diagonal.

al, 2005 [42] experimentally validated some selected micro-inversions and confirmed that

they indeed represent inverted sequences. Since a large portion of inversions in [42] rep-

resent artifacts, the questions arises how these artifacts can possibly be experimentally

validated. Of the 19 experimentally validated inversions from [42] that were shorter

than 15kb, InvChecker classified all of them as inversions except one (of length 4331 on

chr 7) that turned out to be an inverted duplication. This suggests that the selection of

inversions in [42] for experimental validation had a bias for selecting canonical inversions

(like the first inversion in Figure 2.1). This bias is likely to be a consequence of the

difficult repetitive nature of some breakpoint regions that makes PCR-based validation

difficult.

We manually analyzed the genomic micro-architecture of these inversions using
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genomic dot-plots of each inversion and flanking sequences. While a large number of

microinversions are flanked by inverted repeats (34%), many are flanked by insertions

(31%) (Appendix C). This suggests that while inversions are thought to arise from non-

homologous recombination of inverted repeats, local genomic architecture is subject to

rearrangement during repair of an insertion (or deletion).

2.B.5 Reconstruction on additional sequence

We applied InvChecker to two additional data sets: sequences of 14 species

across the 14 ENCODE manually selected target regions (ENCODE), and sequences

of 38 species released as part of the NISC Comparative Vertebrate Sequencing project

(CVSP). The ENCODE data set yielded 120 inversion loci that produce a phylogeny

shown in Appendix D. The additional regions added the resolution of the laurasiatheria

and euarchontogilres clades as well as further support for previously defined clades. The

CVSP data set yielded 122 characters that correspond to internal edges on the phylogeny,

and produced a phylogeny shown in Appendix E. On average, roughly 3 Mb are sequenced

in each species. Our phylogeny supports a Rodentia topology that differs with recent

nuclear gene-based phylogenies [90], and is discussed in Appendix F. This data set also

highlights the rare but necessary need to be able to detect overlapping micro-inversions,

as we found an instance of this in dog and ferret (discussed in Appendix G).

2.C Discussion

We have presented a method to discover micro-inversions and to use them as

evolutionary characters to reconstruct phylogeny. The reconstructed tree has a number of

unresolved branches but otherwise is in agreement with the currently accepted phylogeny.

High sequence divergence in non-coding regions makes it more difficult to find

micro-inversions at the deep branches of the mammalian evolution. In particular, we did

not detect ancient inversions shared by a human/rodentia (Euarchontogilres) ancestor

versus dog/cow/hedgehog (Laurasiatheria) ancestor. This is consistent with findings of

Bashir et al, 2005 [8], who only found two repeats in the CFTR greater region separating

Euarchontogilres from Laurasiatheria, compared with 112 that resolve primates. We were
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able to reconstruct the primate phylogeny with rather short branches thus indicating that

our limited capacity in finding “ancient micro-rearrangements” may reflect limitations

of our inversion detection tool and the choice of stringent parameters rather than the

shortage of ancient micro-inversions. Indeed, throughout this study we use the the

same BLASTZ alignment scoring matrix and stringent k = 2 threshold for detecting

micro-inversions, i.e., we apply the same threshold to human-chimpanzee comparison

(high similarity) as to human-platypus comparison (low similarity). Making a variable

threshold (depending on divergence of the species) will likely lead to significant decrease

in the number of unresolved characters and discovery of ancient micro-inversions that

remain undetected under the stringent threshold. Improving our algorithm to detect

ancient micro-inversions remains an important goal that we are now addressing using

ancestral sequence reconstructions [12].

We also remark that the assembly of most of 15 genomes we consider are still

incomplete and are currently represented by multiple contigs. These contigs are mapped

to human genome to produce ordered sequences. This procedure imposes a “human

order” on unfinished sequences and prevents us from detecting inverted sequences in

some species even if they exist. Such sequences may be discovered with completing the

NISC project. In the future, ongoing genome sequencing projects (even low coverage)

will enable micro-inversion based phylogenomics.
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2.E Appendix A

Discovery and Validation of Micro-Inversions

We analyzed pairwise alignments with BLASTZ [130], axtChain, chainNet [68],

and our program, InvChecker. For completeness, we include a more detailed description

of the chaining and netting algorithms, as described in [68]. The output of BLASTZ is

a set of high-scoring local alignments between a reference and query sequence. A chain

of local alignments, or chain is a non-overlapping, maximally scoring subset of the local

alignments that has consistent order in each species (no rearrangements are allowed).

Thus, if there is a rearrangement, such as an inversion, there will be a gap in the chain

starting and ending at the breakpoints of the inversion. A net of chained alignments,

or a net, is a set of full or partial chains that attempts to assign every nucleotide in

one sequence an alignment from a chain. The set is initialized to the highest scoring

chain, and agglomerates non-overlapping portions of the next highest scoring chain until

as many nucleotides as possible in one sequence are assigned in an alignment. Thus if

there is an inversion between two sequences, the net will comprise one chain that has

alignments of the forward strand of each sequence, with a gap in the alignments over the

inversion, and another chain that has alignments of the reverse strand of the query. An

inverted duplication in the reference sequence would similarly be stored as a net with two

chains, although the region in the query sequence that aligns to the duplication would

be involved in two chained alignments. We do not use chaining and netting to detect

inversions, but only to assemble BLASTZ hits into a main diagonal. We then considered

remaining reverse strand alignments in the context of the main (direct) diagonal to

detect inversions4. Insertions of repeats and sequence divergence often split continuous

inverted regions into disjoint segments thus creating several BLASTZ alignments instead

of a single one (Figure 2.11). We assemble such disjoint segments into a single region by

combining compatible reverse-strand alignments (regardless whether or not they were

chained by axtChain).

4Below, micro-inversions are referred to as inversions for brevity.
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Our approach for finding inversions is motivated by a simple observation that

captures the differences between true inversions (three top diagrams in Figure 2.10a, in

supplementary information) and artifacts (four bottom diagrams in Figure 2.10a). If we

invert the reversed (anti-diagonal) segments in the top three diagrams, the score of the

direct strand alignment will increase resulting in a somewhat “longer” direct diagonal

(Figure 2.10b, upper). However, if we invert the anti-diagonal segments in the lower

four diagrams, the score of the direct strand alignment will unlikely to increase since

inversions of the anti-diagonal segments do not contribute to the main diagonal (see

Figure 2.10b).

Let ρ be a substring of sequence P and ρ ·P be a sequence obtained from P by

inversion of the substring ρ. Given a sequence Q, we define ∆(ρ) as s(ρ ·P,Q)− s(P,Q),

where s(∗, ∗) is the score of alignment between two sequences. ∆(ρ) represents the gain

in the alignment score after inverting substring ρ in P . Given sequences P and Q and

a parameter τ we are interested in all substrings of P with ∆(ρ) > τ , i.e., all inversions

with significant gain in alignment score.

Although it is possible to rigorously incorporate inversion search into the for-

mulation of the classical global alignment problem [128, 18], the problem requires O(n4)

time for sequences of length n and becomes computationally prohibitive in the rigor-

ous setting. Schoniger and Waterman [128] described a heuristic approach based on

finding only top-scoring suboptimal reverse strand local alignments and rigorously com-

bining them with all direct strand alignments. We follow this approach by considering

only substrings ρ aligned in statistically significant reverse strand local alignments and

analyzing whether they represent true inversions so that ∆(ρ) > τ .

To simplify the analysis of micro-inversions, a 50 kb inverted sequence in

macaque was manually inverted back to exclude nested inversions from consideration5.

5The nested micro-inversions require a careful analysis since the relative ordering of larger and smaller
(nested) inversions is unknown. However, in case of this inversion, the analysis of other close species
(e.g. baboon) confirmed that the larger inversions happened after the shorter inversions thus justifying
this manual procedure.
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Figure 2.10 (a) Diagrammatic dot plots, reproduced from the main paper. (b) The result
of reverting the inverted segemnts, to visualize how alignment score could increase after
inverting a segment (without transposition).
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Figure 2.11 A single, divergent inversion that has been split into several different align-
ments (colors) by BLASTZ.
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2.F Appendix B

Distribution of Micro-Inversions Along the Genome

We examined the inversion loci in the human CFTR region to analyze their

distribution with respect to exons. 55 out of 67 inversion loci are present in the human

CFTR region, while the remaining inversion loci were either deleted in the course of

evolution or too divergent to be detected in the human genome. However, the positions

of most of these inversions can still be projected to the human genome by mapping their

flanking regions (Figure 2.12).

We hypothesize that there is evolutionary pressure against inverting exons (and

possibly some regulatory regions), but that inversions are distributed somewhat ran-

domly along the CFTR region. Indeed, no inversions overlap the exons of human genes.

Moreover the closest micro-inversion to the gene start (unique to galago) is located 670

nucleotides upstream of the CFTR gene. Using the start and end coordinates of human

genes, we found that 36 inversions map to transcribed sequence in the human genome.

Assuming a random distribution of inversion loci one would expect 34.7 in-

versions to lie within transcribed sequences, consistent with the observed number and

pointing to a somewhat random distribution of inversion loci in non-coding regions. The

minimum distance between any of the 55 inversions mapped to human is estimated as

0.5 kb.
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2.G Appendix C

Phylogeny of Fourteen Species on an Extended Set of EN-

CODE Targets

The ENCODE dataset consists of two separate classes of targets, manually

selected genomic regions, and stratified random regions of varying levels of conservation.

We elected to reconstruct phylogeny using the manually selected regions as they are high

in gene content and less likely to contain complicated rearrangements that our method

currently does not take advantage of.

The September 2005 release of sequences for ENCODE manually selected re-

gions, ENm001-ENm014, were downloaded from the UCSC ftp site: ftp://hgdownload.

cse.ucsc.edu /goldenPath/hg17/encode/alignments/SEP-2005/sequences. Repeat

libraries were generated with RepeatScout [113], and masked using both RepeatScout

and RepBase [65] repeat libraries using RepeatMasker. Any sequence with more than 20

contigs was discarded. We ran InvChecker on the pairwise alignments of repeat-masked

sequences. We removed 6 characters that cuase four-gamete violations using Maximum

Conflict Removal [8].

The phylogeny (Figure 2.13) is consistent with the one generated on the CFTR

target, ENm001, an constains more support for each edge. There is an additional in-

version that separates laurasiatheria from euarchontogilres. The data that was used to

generate the tree is shown in Figure 2.14.
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Figure 2.13 The phylogeny of 14 species generated using characters from the 14 ENCODE
manually chosen targets. The extended data set found more species-unique inversions as
well as additional support for all internal edges except for the encompassing clades for
galago, rabbit, and hedgehog.
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Figure 2.14 The steps for reconstructing phylogeny on14 species generated using charac-
ters from the 14 ENCODE manually chosen targets.
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2.H Appendix D

A comparison of Human-Chimpanzee inversions identified by

Ma et al [77]. and Chaisson et al [25].

Recent studies by the UCSC-PSU group (Ma et al) and the UCSD group (Chais-

son et al.) developed new algorithms for detecting micro-inversions and came up with

similar estimates for the number of human-chimpanzee micro-inversions (428 and 426).

These estimates are significantly lower than the recent estimate in Feuk et al., 2005 [42],

and moreover, many micro-inversions found in these papers were not discovered in [42].

While Ma et al. and Chaisson et al. agree on 251 micro-inversions, 175 micro-inversions

in Ma et al. were not found by Chaisson et al. and 175 (coincidentally) micro-inversions

in Chaisson et al. were not found by Ma et al. The discrepancy between the total (428 =

251+175+2) is accounted for by inversions that were fragmented and treated separately

in one study. The disagreement between two studies emphasizes that finding micro-

inversions is a difficult problem even in a seemingly trivial case of human-chimpanzee

comparison where the similarity between two sequences is very high. We therefore de-

cided to manually validate all annotations in Ma et al. and Chaisson et al. in a case-by-

case fashion to better understand the reason why two software tools sometimes disagree

in classifying micro-inversions.

We found that although both approaches are complementary, the method of

Chaisson et al. is slightly more sensitive than the method of Ma et al. In particular,

the false positive rate of Chaisson et al. is 17% while the false positive rate of Ma et

al., is 23%. The main source of false positives in both studies are palindromes (inverted

duplications) in human that undergone partial deletions in chimpanzee (and vice versa).

Inversions that are found by Ma et al. that were missed by Chaisson et al. were gen-

erally flanked by inverted repeats, and were difficult to discern as inversions or inverted

repeats. We are currently addressing this complication in a new release of InvChecker.

Furthermore, the study by Chaisson et al. aimed to gain an estimate of the total number

of inversions in human and chimpanzee, and examined only roughly 2.6 Gb of genomic

sequence.

Since 80% of micro-inversions found in [42] represent artifacts, their main con-
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clusions about the interplay between micro-inversions and repeats have to be revisited.

We now estimate that 34% of all human-chimpanzee micro-inversions are flanked by in-

verted repeats. These repeats are likely to promote micro-inversions. We also found that

a surprisingly large number of micro-inversions (31%) are flanked by insertions rather

than by repeats (the interplay between micro-inversions and insertions was overlooked

in [42]). Another surprising conclusion is the discovery of a large number of cryptic

micro-inversions whose flanking regions do not exhibit any detectable similarity between

human and chimpanzee genomes. These flanking regions without detectable similarity

are often long, a surprising finding since human and chimpanzee genomes are very sim-

ilar. We point to the parallel between this micro-rearrangement phenomenon of “lost

similarity” and the breakpoint regions in the context of the whole genome comparison

that also often do not exhibit any detectable sequence similarity.

Below is a summary of a manual case-by-case comparison of micro-inversions

that were found between human, release hg17 and chimpanzee, release ptr1. Dot-plots

were generated (with exact matches of length 12) of sequences 21 times the length of

each inversion, with the inverted sequence in the middle.

Dot plots of inversions found by Ma et al. are at:

http://bioinf.ucsd.edu/~mchaisso/jian/coords10/index.html

And plots of inversions found by Chaisson et al. are at:

http://bioinf.ucsd.edu/~mchaisso/mark/coords10/index.html

We then manually classified found micro-inversions into four classes (Figure

2.15):
1. Canonical inversion
2. Miscalled inversion.
3. Cryptic inversion

Type 1 (one of the flanking direct
strand alignments is missing)

4. Cryptic inversion
Type 2 (both of the flanking direct
strand alignments are missing).

5. Others (transpositions, nested inversions, and multiple
rearrangements).

We describe each type of inversion in further detail. An example of a dot-plot

of a canonical inversion is in Figure 2.15a. There are neither horizontal or vertical gaps

nor overlaps of the diagonals with the anti-diagonal, indicating that a unique sequence
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Figure 2.15 Four examples of dot-plots. (a) a canonical inversion, (b) a misclassified
inversion, (c) a cryptic single diagonal and single anti-diagonal, and (d) a cryptic anti-
diagonal.
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has been inverted. We show an anti-diagonal that has been misclassified as an inversion

in Figure 2.15b. Such anti-diagonals represent reverse-duplicated features of a single

genome.

There are many inversions that show up, ’cryptically’ in dot-plots as only a

single anti-diagonal segment (Figure 2.15c) that are not flanked by diagonal segments on

both the left and right, as opposed to the previous plot that has two diagonal segments.

While this may reflect the limitations of parameter choice for analyzing flanking regions,

it also begs the question as to why the flanking diagonal segments are not detected in the

dot-plot in sequences so close as human and chimpanzee. Two possibilities are that there

is a large insertion in one sequence, or there is a gap in the assembly shortly before the

inversion in one species. Misassembled contigs may mimic inversions, and we propose

that such dot-plots are of sequences that are more likely to have been misassembled,

rather than inverted and simultaneously diverged, and thus account for them differently.

Also, often the ends of supercontigs are enriched for assembly errors, and such cryptic

dot-plots are more likely to be artifacts from assembly. Also, there exist cryptic inversions

that only appear as a single anti-diagonal in the dot-plot, as shown in Figure 2.15d. This

is a more extreme case of the previous example, and as such is not counted as an inversion.

Finally, there are other cases that are likely to be nested or overlapping inversions, as

shown in Figure 2.16, and these are not counted as inversions.

Two other interesting genomic architectures were also documented (Figure 2.17):

1. Flanking inverted repeats.

2. Flanking insertions.

For inverted sequences, we also counted how often they were flanked by either

an insertion or flanking inverted repeats. Such tallies help give insight to the mechanism

of how sequences are inverted. The summary is given in Table 2.1.
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Figure 2.16 An example of nested inversions.

Table: 2.1 Counts of the various types of inversions classified using dot-plots of sequences
in [77] and [25]

M: Ma et al
C: Chaisson et al.

M C M
⋂

C M
⋃

C

Total sequences 428 426 246 606
Canonical inversions 248 296 200 344
Flanking inverted repeats 43 100 42 101
Flanking insertions 82 93 82 93
Miscalled sequences 101 73 12 172
Cryptic inversion, Type 2 36 27 12 51
Cryptic inversion, Type 3 28 26 20 34
Others 15 4 4 15
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Figure 2.17 Examples of inversions that are accompanied by other genomic features. On
the left, the inversion is flanked by inverted repeats. On the right an insertion/deletion
is immediately adjacent to the inversion.

2.I Appendix E

The BAC sequences for the most well-covered targets (1, 3, 5, 6, and 13) were

downloaded from Genbank and joined together using our own method similar to the

TPF processor (http://www.ncbi.nlm.nih.gov/projects/zoo_seq/). We generated

repeat libraries for each species using RepeatScout [113] and RepBase [65] libraries and

masked each genome with sensitive masking using RepeatMasker. Since low copy-number

repeats may lead to false positive repeat detection, we additionally masked each sequence

by performing a self-alignment using BLASTZ, and masking all sequences involved in

multiple alignments. Inversions were detected using InvChecker on pairwise alignments

of the repeat-masked sequences, as before. Figure 2.18 shows inversion loci where more

than one species is found in each orientation.

The sequences within each distinct targeted region are orthologous and may

be used to detect inversions. However, the NISC Comparative Vertebrate Sequencing

Project is ongoing, and the number of species sequenced in each target varies widely.

Table 2.2 presents a summary of the amount of sequence available for each species. Most

species are either sequenced in just one target (target 1), or are sequenced in almost every

target, such as species whose entire genomes have been sequenced. Adding additional

targets for species in the second category is not likely to aid in the current study, since
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Figure 2.18 Inversions in the ancestor of at least three to fourteen extant species.
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Figure 2.19 Four-primate phylogeny with an estimate of the number of years of evolution
along each branch.

all of the unresolved clades, such as the (human, chimpanzee, gorilla, orangutan) clade

only contain two species that have extra sequenced targets (in this case human and

chimpanzee), and characters with known values for all four species are required to resolve

the clade.

We note that with the inversion rate that we have observed: one inversion per 66

million years (My) of evolution per million bases (Mb), it is not surprising that additional

targets would be required to resolve some clades, such as the (human, chimpanzee, gorilla,

orangutan) clade. According to the accepted topology of this clade (Figure 2.19), a total

of 7My 6Mb = 42 My Mb of evolution have passed on the in internal edges of the

phylogeny, so less than one inversion is expected between ancestral species using target

1 alone. However, because there are many hundred inversions that have arisen between

human and chimpanzee in 5 million years, when full genome sequences are present there

will be ample information to resolve all primate phylogenies.

The phylogeny is shown in Figure 2.20. The phylogeny is consistent with that

observed in other studies [90], although there are a few unresolved clades. The only dis-
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crepancies with the tree presented in [90] are discussed in further detail in SI Appendices

F and G. Two of the interesting features of this tree are that there are several species that

have idential genomic architecture, such as gorilla and orangutan, while other species

that have an extremely high number of inversions, such as galago, hedgehog, cat, and

dog. Most of the species that are have a high number of inversions are sequenced in all 5

targets included in this study. The CFTR greater region is gene rich (10 genes in human),

and may be under greater evolutionary pressure against micro-rearrangements. This may

provide an explanation for the identical genomic architectures that are observed.
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Figure 2.20 Mammalian inversion-based phylogeny. Each edge is labeled with the number
of inversions that may be reversed in a species (extant or ancestral) in order to make its
genomic architecture closer to all other species, and in parenthesis is the number of such
inversions that are found in target 1. To the right of each species the number of targets
used in the study is listed in parenthesis.
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Table: 2.2 Summary of sequences for each species. The aggregate number of masked,
unmasked, unknown, and total sequence length from all targets available for each species
islisted, along with the number of targets used for each species. M, megabases; k,
kilobases.
Species Num

Repeat-
Num.
non-

Unknown Total Num.

-masked masked targets
Human 2.01 M 2.56 M 0 4.57 M 3
Chimpanzee 5.02 M 6.54 M 354.42 k 11.92 M 5
Gorilla 707.22 k 1.07 M 4.05 k 1.78 M 1
Orangutan 732.51 k 1.07 M 3.10 k 1.80 M 1
Baboon 5.92 M 7.47 M 21.20 k 13.42 M 5
Gibbon 1.75 M 2.25 M 7.04 k 4.01 M 5
Rhesus 640.95 k 1.03 M 0 1.67 M 1
Colobus 3.06 M 3.86 M 10.31 k 6.94 M 1
Green monkey 713.47 k 1.11 M 250 1.82 M 1
Marmoset 4.56 M 5.93 M 26.20 k 10.52 M 5
Spider monkey 692.47 k 1.03 M 4.15 k 1.72 M 1
Bolivian mon-
key

895.90 k 1.31 M 800 2.21 M 1

Owl monkey 2.99 M 4.11 M 14.46 k 7.12 M 5
Dusky titi 2.97 M 4.11 M 14.05 k 7.10 M 5
Ring-tailed 417.29 k 983.73 k 250 1.40 M 1
lemur
Black lemur 417.41 k 952.37 k 1.8 k 1.37 M 1
Gray mouse 2 .41 M 4.25 M 13.35 k 6.68 M 5
lemur
Galago 4.14 M 6.78 M 20.01 k 10.94 M 5
Rabbit 4.06 M 6.06 M 29.31 k 10.16 M 5
Squirrel 354.70 k 1.07 M 2.25 k 1.43 M 1
Guinea pig 1.92 M 4.75 M 9.70 k 6.68 M 5
Mouse 4.06 M 9.38 M 147.47 k 13.59 M 5
Rat 3.01 M 7.30 M 247.02 k 10.56 M 5
Pig 3.91 M 6.25 M 21.34 k 10.19 M 5
Cow 4.86 M 6.74 M 26.02 k 11.63 M 5
Sheep 826.98 k 1.19 M 3.41 k 2.02 M 1
Indian 747.67 k 1.16 M 3.05 k 1.91 M 1
muntjak
Chinese 569.66 k 885.74 k 2.70 k 1.45 M 1
muntjak
Horse 659.11 k 1.24 M 0 1.90 M 1

2.J Appendix F

Analysis of the Rodentia Clade
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Table 2.2 Continued.
Species Num

Repeat-
Num.
non-

Unknown Total Num.

-masked masked targets
Cat 4.26 M 7.10 M 27.12 k 11.39 M 5
Leopard 660.80 k 1.03 M 6.45 k 1.70 M 1
Dog 3.52 M 6.90 M 35.44 k 10.46 M 1
Ferret 535.75 k 955.53 k 5.35 k 1.49 M 1
Horsehoe bat 2.81 M 5.87 M 20.57 k 8.71 M 5
Seba bat 522.41 k 708.14 k 750 1.23 M 1
Hedgehog 3.70 M 3.82 M 23.04 k 7.55 M 5
Shrew 3.27 M 6.15 M 45.59 k 9.47 M 5
Echidna 260.22 k 448.29 k 6.31 k 714.84 k 1

In this appendix we present the analysis of part of the Rodentia clade: guinea

pig, squirrel, and mouse. The phylogenetic position of guinea pig is a very controversial

topic in systematic biology. For example , nuclear gene studies suggest guinea pig and

mouse as sister species [90, 78], while mitochondrial studies suggest squirrel and guinea

pig as sister species [116], or mouse and squirrel as sister species [75]. We show that

there is an inversion that supports the phylogeny: (guinea pig (squirrel, mouse)). Since

our phylogeny groups squirrel with mouse with only one inversion, we show a detailed

description of this inversion by taking galago as an out-group, and displaying the align-

ments for the regions surrounding the inversion. We performed the alignments using

BLASTZ; however, because the divergence in each species is quite high we used a lower

HSP cutoff, K=1000 (defaultK=3000). In each alignment plot, we draw boxes to indicate

the boundaries of the inversion locus in each species, and list the boundaries in Table 1.

We note that this inversion is in a region that has been subject to both much

divergence and many insertions. This is exemplified in the lack of resolution of the

dot-plot of guinea pig-squirrel, where there are no significant alignments in the region

corresponding to the inversion locus, and in galago, which contains an insertion within

the inversion locus. We assign an orientation of 1 to loci that are in the same orienta-

tion in Figures 2.21-2.23, 0 to species in the opposite orientation, and ? for unknown,

as summarized in Table 2. Although there are unknown characters in the table, their

orientation is not necessary to reconstruct the phylogeny because the only consistent ori-

entation is 0. Because we found only one inversion that supports the phylogeny:(guinea

pig (squirrel, mouse)) we do not present a definitive proof of a particular rodent phy-
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Figure 2.21 Galago/mouse and galago/squirrel alignments. The same region: 1287-1416
is inverted on the galago sequence between both mouse and squirrel.

Table: 2.3 Inversion locus boundaries. Start, End : Coordinates of each subsequence in
target 1. Locus start, Locus end : Coordinates of the inversion locus for each species
within the subsequence.
Species Start End Locus start Locus end

Galago 850200 852800 1287 1416
Squirrel 658400 661000 1260 1353
Guinea pig 754800 757400 1131 1386
Mouse 706000 708720 1353 1455

logeny, since it may be a rare example of homoplasy. Squirrel is sequenced only in target

1, thus presents limited sequence to detect microinversions. In particular, in our analyis

of the NISC sequences (Appendix E) we detected 19 inversions in mouse, and 28 inver-

sions in guinea pig, each of which is sequenced in five targets, and only one in squirrel.

We hope that when all targets are sequenced for rodents our technique will provide a

definitive answer to this ongoing debate of the phylogeny of guinea pig.

Guinea pig/mouse and guinea pig/squirrel alignments. The same region on

mouse, 1353-1455, is inverted in guinea pig and galago. The squirrel/guinea-pig region

is too divergent to align. The short forward diagonal in the region where squirrel and

galago loci overlap is a weak forward similarity, and is not significantly high-scoring to

consider an inverted duplication. The coordinates of the inversions are shown in Table 2.3

and the relative orientations are shown in Table tab:relinv.
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Figure 2.22 Guinea pig/mouse and guinea pig/squirrel alignments. The same region on
mouse, 1353-1455, is inverted in guinea pig and galago. The squirrel/guinea-pig region
is too divergent to align. The short forward diagonal in the region where squirrel and
galago loci overlap is a weak forward similarity, and is not significantly high-scoring to
consider an inverted duplication.

Figure 2.23 Galago/guinea pig and mouse/squirrel alignments. Each pair of genomes
is colinear, confirming the orientations of the inverted regions within the other pairwise
alignments.
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Table: 2.4 Orientations of the inversion locus separating guinea pig from mouse and
squirrel. Loci that are labeled with 1 are in the same orientation, 0 opposite, and ?
unknown.
Species Mouse Squirrel Guinea pig Galago

Mouse - 1 0 0
Squirrel 1 - ? 0
Guinea pig 0 ? - 1
Galago 0 0 1 -
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Analysis of Overlapping Inversions

We examined the micro-inversions found in ferret, dog, cat, and leopard species

using pairwise dot-plots, and found that unusual features in these dot-plots are caused

by a rare event of overlapping inversions.

We generated dot-plots of the regions surrounding each inversion locus in order

to have a clear view of the local genomic architecture of the overlapping inversions. In

order to remove confusion from repeats, we mask repeats from the dot-plots. Figure 2.24

shows the cat/dog, and cat/ferret dot-plots. Each dot-plot shows a clear inversion be-

tween cat/dog and cat/ferret. If this inversion happened in the dog, ferret ancestor, the

dog and ferret sequences should be colinear in this region. However, the superposition of

the two alignments in Figure 2.25 Left, shows that the inversions in dog and ferret cor-

respond to different (overlapping) boundaries in cat, and the dog/ferret dot-plot instead

shows multiple rearrangements. Micro-synteny blocks are outlined in red, green, cyan,

and magenta in Figure 2.25Right. If we label the block order in dog 1 2 -3 4, the order

in ferret is 1 -3 -2 4, requiring two inversions: 1 2 -3 4, 1 2 3 4 to transform dog into

ferret. This also corresponds to the block order in cat: 1 2 3 4, as it takes one inversion

to transform each of dog and ferret into cat, in accordance with the single inversion

architecture shown in the dot plots in Figure 2.24. With these inversions removed from

consideration our phylogeny does not separate ferret from the other species in this clade.

This presents a problem when determining the orientation of other species dur-

ing the generation of a phylogenetic character. In this case it is arbitrary for species to

be considered in the same orientation as dog (block 2), or opposite (block 3). Because

of this, it is possible to create a bipartite inversion graph that has dog, cat, and leopard

on one partition, and all other species on the other, thus creating an ambiguous charac-

ter. Fortunately, we can detect such overlapping rearrangements prior to reconstruction.

Currently we rely upon a sufficient quantity of valid characters so that erroneous char-

acters may be removed using maximum conflict removal [8]. Further work is needed

to incorporate the ability to model multiple genome rearrangements into our character

generation and phylogenetic reconstruction.
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Figure 2.24 Dot-plots of cat versus dog (left), and cat versus ferret (right). Each dot-plot
show a clear inversion against the cat sequence.

Figure 2.25 (Left) Superposition of the cat/dog (red) and cat/ferret (blue) dot-plots.
Different regions in cat are inverted in dog and ferret, indicating that the inversion has
taken place individually in the dog and ferret lineages. (Right) A dog/ferret dot-plot
showing multiple micro-rearrangements between the dog and ferret genomes.
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Part II Introduction: Fragment

Assembly

3.A A history of fragment assembly

It is now common to think of a genome as a string of nucleotides, and present

it as a string of the letters A, C, T, and G. With this abstraction it is easy to forget it is

a single, long polymeric molecule. Sequencing a genome amounts to the determination

of the chemical structure of a giga Dalton molecule, an impossible analytical task. Cur-

rently, the longest molecule that one may sequence is roughly a thousand bases. This

means that it is impossible to read the sequence of a genome from start to finish in one

piece, as one would read a book. Instead, the approach, pioneered by Frederick Sanger to

sequence the bacteriophage λ genome [123], is to sequence many short random fragments

of the genome, and computationally piece them back together, a method called fragment

assembly. This is analogous to taking a book (rather many copies of the book), passing

it through a shredder, and then reading the shredded fragments and taping them back

in the original order of the book. As techniques for sequencing DNA have progressed,

assembly methods have been tuned to analyze the sequencing data, and when the com-

putational task was impossible, modifications were suggested of sequencing protocols to

be more amenable to assembly. The research in fragment assembly may be seen as one of

the greatest examples of cooperation between the computational and biological sciences

56
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since researchers first began analyzing biological data with computers.

Methods for fragment assembly have evolved in step with the development of

sequencing data since DNA sequencing was started by Frederick Sanger in 1975 [122, 124].

The Sanger sequencing method, for which all sequencing has been based upon until

recently, measures sequences by replicating four samples of template in the presence

of both nucleotides and dideoxynucleotides (ddNTPs) that cause early termination of

replication upon incorporation. The sequence is then read by separating the four samples

on a polyacrylmide gel. The first reads produced by Sanger were about 200 bases,

and were from gel banding patterns deduced by eye [124]. The first methods written

to assemble small genomes (under 6000 bases) by Roger Staden [136] to work with

data collected from interpretation of gel images and manual input into data bases. A

great technological advance in sequencing was achieved when radiolabeled ddNTPs were

replaced by fluorescently labeled nucleotides and separation was done in using capillary

electrophoresis [135]. The sequencing signal could then be processed by a computer to

produce longer 400-base, and more accurate reads than sequencing on a gel. At the

same time, Applied Biosystems began to produce industrial-grade sequencers, to rapidly

expand sequencing capacity (marketing.appliedbiosystems.com). The methods for

assembly also became more sophisticated. Around this time, the assembler SEQAID

was written that formed the basis for most assemblers currently used [99]. Seeing the

need to resolve more complicated sequences, in 1991, Al Edwards and Thomas Caskey

proposed the use of read-pairs for assembly: pairs of reads sequenced from the same

clone so that the approximate distance between the reads is known. Finally, in 1998

computational methods were introduced by Brent Ewing to add a quality score for each

base in a read that reflected the probability that the base in the read is correct [38].

This part of this thesis is focused on methods to reconstruct genomes from

reads, specifically reads that are considerably shorter than what past methods for as-

sembly considered. The methods to be presented follow a long history of computational

fragment assembly, beginning in 1977 with the methods of Roger Staden [136] to assem-

ble very small genomes (under 6000 bases), with sequencing information entered by hand.

Since then, the methods for assembly have become considerable more sophisticated. A

time line of the development of assembly methods, as well as assembly milestones is
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shown in Figure 3.1. Methods were steadily released during the early 2000’s as whole-

genome sequencing projects were nearing completion. The de novo assembly competition

exploded in 2007 when the first High-Throughput Short Reads were released by 454 Life

Sciences, and shortly followed by reads produced by Solexa/Illumina.

In 2001, two projects were completed that were landmarks for both Sanger se-

quencing, and fragment assembly: the separate publications of the draft sequence of the

human genome [27, 144]. Separate, competing assembly routines were created for each

project [69, 144]. The reads were produced over the span of several years, at the cost of

hundreds of millions of dollars. The development of instruments for Sanger sequencing

was already backed by strong research and development investment by industry with only

incremental returns, and so researchers began to investigate ways to increase sequencing

throughput with alternative analytical techniques to the Sanger method. Many methods

were proposed such as Pyrosequencing [120], Sequencing by Polonies [133], and Sequenc-

ing by mass spectrometry [14]. The common theme to nearly all methods proposed as

alternatives to Sanger sequencing is that a much higher sequencing throughput may be

achieved at the expense of a shorter read length. Despite the shorter read length, and a

slightly higher error rate [79, 51], the reads are fundamentally the same.

The sophistication of existing assembly methods made it prudent to ask: if

the reads produced by alternative methods to the Sanger method are the same except

shorter, is it necessary to develop a new method to assemble them? In effect, yes, as no

single assembler has been universally applicable to all sequencing projects. For exam-

ple, the competing assemblers: the GigAssembler [69], and the Celera Assembler [144]

were both used to assemble the human genome, but considered different types of data.

The GigAssembler performed hierarchical assembly first on small pieces of the genome

sequenced in clones and ordered clones using a myriad of BAC paired-read data, mRNA

transcripts, and radiation hybrid data. The Celera assembler performed whole genome

shotgun assembly that lacked the hierarchical clustering of reads. The two types of

data are illustrated/contrasted in Figure 3.2. Examples of other methods, are the Atlas

assembler [52] which assembles a mix of hierarchical and shotgun based data, and the

ARACHNE assembler [11, 61], which is designed to assemble mate-paired reads from

libraries of several different clone sizes.
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Figure 3.1 A time line of the development of fragment assembly software. The assemble
of milestone genomes is shown to the left of the time line, and the release of assembly
methods to the right. The order of genomes is: φX174, bacteriophage, Haemophilus in-
fluenzae, Human, mouse,rat, chimpanzee, and finally dog. There was a major increase in
the rate that assembly programs were released when the use of high-throughput became
widespread.
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3.B Computational motivation of fragment assembly

To explain why new methods are required to assemble short reads, it is neces-

sary to describe the computational formulation for which fragment assembly is based,

and the approach many methods use to solve it. The framework is a type of problem

that is NP-Complete, and cannot be efficiently exactly solved. The many methods that

exist incorporate different types of data added to simplify the assembly problem, and are

often particular to an individual sequencing project. For example, the Rattus norvegi-

cus sequencing project used a combination of whole-genome-shotgun reads as well as

sequenced BAC clones to produce a whole genome assembly.

The reason why so many assembly methods exist lies in the limitations of the

solutions to the computational formulation for assembling genomes from reads randomly

sampled with the shotgun method. Under the condition that reads are all sequenced

without errors, the sequence of the genome must contain the sequences of all reads as

substrings. One possible assembly is simply the concatenation of all sampled reads,

but the correct assembly is assumed to follow maximum parsimony: the correct recon-

struction of the genome is the shortest possible genome that contains all reads. Further

restraints may be placed on this, such as appropriate gaps must exist between the place-

ment of reads from opposite ends from the same clone. The problem of constructing

a minimal length string containing set of substrings is the well studied problem, the

Shortest Common Superstring (SCS) Problem. In the SCS problem, we are given as

set of strings S = s1, . . . , sn over an alphabet Σ, and one must find the shortest string

s∗ that contains each string in S as a substring. Unfortunately, for |Σ| ≥ 2, the SCS

problem is NP-hard [45]. There is no known efficient solution, and so any approach must

be a heuristic. Furthermore, this abstraction hides the fact that there are nearly always

errors in reads so that the genome does not need to contain exact matches to all reads,

and reads may be sampled from either strand in the genome.

Approximation methods have been long studied for the SCS problem, of which

many mention from fragment assembly of genomes as an application [142, 74]. The ap-

proach for fragment assembly that is motivated by the SCS problem was first described
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Figure 3.2 A diagram of whole genome sequencing strategies contrasting BAC by BAC
(left) versus Whole Genome Shotgun (right). The BAC by BAC isolates BAC sized
sequences from the genome, 40-400Kb, and assembles each sequence independently. The
whole genome shotgun approach samples reads from the genome at random. In each
approach, a sequence is assembled from reads sampled at random from the genome. The
complexity of the assembly is reduced in the BAC-by-BAC approach, at the expense of
the construction of a BAC library. Reprinted by permission from Macmillan Publishers
Ltd: Nature Reviews Genetics [48], copyright 2001.
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by Roger Staden [33], and later adopted by nearly all subsequent assembly methods

including Phrap( www.phrap.org), the Celera assembler [92], ARACHNE [11, 61], AT-

LAS [52], and PCAP [56, 57], is the “overlap-layout-consensus” approach. This approach

builds an assemblies in three phases: (overlap:) An overlap graph is constructed repre-

senting all pairwise overlaps of reads. An overlap graph encodes reads as vertices in the

graph, and edges (u, v) are induced by overlaps between reads. Each edge is assigned a

weight wu,v according to the length of the overlap. (layout) The layout of reads in the

assembled genome is computed using the order that vertices are traversed in a maximum

weight Hamiltonian path through the overlap graph. (consensus) The final sequence is

determined using a consensus of overlapping reads.

To assemble the human genome, with over 3 billion bases and sequenced with

millions of reads, a method must be efficient (near linear in time). There are efficient

ways to compute all pairwise overlaps between reads [67] in O(ǫnm) time, where ǫ is

the expected error rate in reads, and so the overlaps, at least for Sanger reads, may be

computed somewhat quickly. The next step, however, demands finding a Hamiltonian

tour: a path through the graph that visits every vertex once. This is an NP-Complete

problem, implying that an exact solution for even just a small bacterial genome will take

more years to compute than there are particles in the universe! Paradoxically, there are

many sequenced and assembled genomes orders of magnitude larger and more complex.

3.C Definitions of terms

Coverage the number of times a nucleotide is expected to be sampled in a read.

This is Nl
G

, where N is the number of reads, l is the length of a read, and G is the genome

length.

Mate-pair a pair of reads sequenced from opposite ends of a clone. The distance

between the two reads is approximately known.

3.D Approaches to fragment assembly

Under certain conditions, a greedy heuristic to determining the layout of reads

is sufficient. For the sake of simplicity, assume reads are sequenced without errors, so that
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the maximal overlap ovp(a, b) between reads a, and b, is the longest length string s that is

both a suffix of a and a prefix of b. When reads are sufficiently long, and sampled which

high enough coverage that any two reads a, b that overlap in the correct layout overlap

by at least p nucleotides, and the maximal length of a repeated sequence in the genome

is r nucleotides, p > r, the following greedy heuristic will determine the correct sequence

of the genome: choose a pair of reads (a, b) with the longest length ovp(a, b), merge them

into a new read a′ = prefix(a) ∗ ovp(a, b) ∗ suffix(b), where a = prefix(a) ∗ ovp(a, b), and

b = suffix(b) ∗ ovp(a, b), and repeat until there is only one read. The layout of reads in

the genome is determined by the order they are merged. To prove this method works,

consider read a that has the longest overlap ovp(a, b), but instead is merged with read

c, so a′ = prefix(a) ∗ ovp(a, c) ∗ suffix(c). The sequence ovp(a, b) must then occur twice

in the assembled genome because a is not merged with b, and |ovp(a, c)| < |ovp(a, b)|.
However since definition of the input constrains the maximal length repeat r to less

than the overlap between any two adjacent reads, so any merging other than a and b

is invalid. In the context of an overlap graph, the greedy heuristic will work when the

maximum spanning tree is a nonbranching path from the vertex for a read at the start

of the genome to the vertex representing the read from the end of the genome.

This greedy heuristic works on simple, nonrepetitive sequences, however the

chances it will produce the correct assembly quickly deteriorate when there are repeats

in the genome. As a simple illustration, a read ending in a repeat r, a ∗ r may overlap

reads r ∗ b, or r ∗ c, to assemble into the sequences a ∗ r ∗ b, or a ∗ r ∗ c and it may

not be apparent which overlap to use without finding a Hamiltonian path. An example

of this is shown on the left in Figure 3.3, where the greedy heuristic of choosing the

longest overlap at each iteration causes the excision of a sequence (red-green) from the

assembly. Furthermore, it may be possible that there are multiple, degenerate solutions

(corresponding to multiple paths). An example of this is shown in Figure 3.3, where

three copies of a repeat, and equal-weighted alignments of reads allow two possible

Hamiltonian traversals of the overlap graph for two different layouts of the genome.

The approach most assemblers use to resolve this is to attempt to assemble
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Figure 3.3 Two diagrammatic examples of repeats causing misassemblies in overlap
graphs. (left) A repeat (red) causes the greedy approach to skip a repeat using a mis-
leading maximal overlap (dashed line). (right) A genome with three copies of a repeat
that has degenerate solutions.

all non-repetitive regions by masking known repeats [92], sequences that align to an

unexpectedly high number of other reads [139], or sequences with l-tuples that appear

more times than expected in the set of all reads, and then assembling all non-masked

sequences [61]. This restricts assembly to building repeat-free sequences where the greedy

heuristic is more likely to work. Each sequence that is assembled is referred to as a

contig [99], since the genome is assembled into many small components.

There are several problems with this approach. First, the contigs must be or-

dered and oriented to produce the final assembly, and the repetitive sequence in between

must be determined. This is accomplished in a scaffolding procedure, where a layout of

contigs is determined that is concordant with mate-paired read information. This often

results in a layout with misplaced (transposed), or misoriented (inverted) segments [60].

Another common problem with assemblies is that duplicated sequences with low diver-

gence are frequently collapsed into one sequence [5].

Rather than masking repeats, it is preferable to formulate assembly in a manner

that is able to preserve repeats. Such an approach is less likely to collapse repeats into

a single contig, because the repeat may be resolved considering all read and mate-pair

information, rather than early in assembly when finding overlaps.

3.E Sequencing by Hybridization

A different type of “read” was considered nearly 20 years ago in an application

called Sequencing by Hybridization (SBH) [36]. In this method, an array of probes for all
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combinations of DNA of length k is created. Fluorescently labeled DNA from a genome

is hybridized to this array, allowing one to test for the presence of all words of length k

(k-mer) in the genome by measuring probes that fluoresce. The set probes measured is

called a Spectrum(k). The fragment assembly problem is then to construct the genome

given Spectrum(k). Under the ideal conditions, Spectrum(k) is complete (no values are

missing), and correct (only contains k-mers from the genome), and so only overlaps of

k − 1 need to be considered. The method to reconstruct the genome may again be

formulated as the shortest common superstring, and solved by finding a Hamiltonian

path through an overlap graph constructed with all vertices as k-mers, and all edges as

exact overlaps of length k − 1.

However, due to the particular structure of this problem: the overlap must

be k − 1, there is an alternative formulation for this problem based on an Eulerian

path through a de Bruijn graph, first proposed by Pavel Pevzner [100]. Rather than

representing overlaps as edges, they may be presented as vertices. The de Bruijn graph

G = (V,E) on a spectrum S contains a vertex for every k − 1 mer contained in S, and

an edge (u, v) for ever k-mer in S that contains the k − 1-mer u as a prefix, and k − 1-

mer v as a suffix. An Eulerian path through G, a path that visits every edge exactly

once, will correspond to a reconstruction of the genome using SBH. An Eulerian path

may be found in linear time, providing a practical approach to fragment assembly using

Sequencing by Hybridization.

There is a drawback to fragment assembly using Sequencing by Hybridization:

any repeat longer than k − 1 bases in the genome will creates directed cycles in the

de Bruijn graph that allow multiple Eulerian paths through the graph, each creating a

different assembly of the genome. With the (overly optimistic) assumption that genomic

sequences are generated as random sequences with each position having equal probabil-

ity to be A,C,T, or G, the maximal length sequence that may be reconstructed with a

spectrum of k-mers is
√

2 · 4k [102]. Current technologies can produce arrays for k = 10,

allowing reconstructions of 1.5K base sequences. Furthermore, studies of word frequen-

cies in the human genome indicate that 40-base probes would be required to assemble

much of the human genome [148]. With current technology, such a “microarray” would
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require 1/5 of the surface area of the Earth!1

3.F Eulerian assembly

A method to increase the effective tuple size was proposed by Ramana Idury

and Michael Waterman [59] by applying the Eulerian path formulation for SBH to reads

produced by the Sanger method. The spectrum S was generated using all k-mers from

reads rather than an array. This limits k to the length of read overlaps rather than

the length of probes used on DNA arrays. With 10× coverage with 600 base reads,

the expected overlap is 540 bases, making the Eulerian approach appealing for fragment

assembly.

As with other methods, there are some drawbacks to the Eulerian method

for fragment assembly. Genomes are not generated by uniform independent random

processes, and contain many repeats. The expected length of a genome that may be

resolved by SBH (and therefore Eulerian assembly) is based off of an independent and

identical distribution of nucleotides, so it overestimates real sequences. More impor-

tantly, each repeat creates a cycle in the de Bruijn graph, and the number of pos-

sible reconstructions of a genome grows exponentially in the number of cycles in the

graph. An arbitrary Eulerian traversal of the de Bruijn graph is effectively guaran-

teed to give an incorrect reconstruction of the genome. Rather than finding an Eule-

rian traversal of a de Bruijn graph, the graph is condensed : paths along non branch-

ing vertices are replaced by a single edge labeled by the sequence that generated the

path, and the assembly is reported as the set of edge labels. For example, a path:

(GACT,ACTT ), (ACTT,CTTG), (CTTG, TTAA), (TTAA, TAAG) may be condensed

to an edge (GACT,GCGA) labeled by GACTTGAG. A very similar step is done by

overlap-graph based assembly methods to remove transitive edges in the overlap graph

up to repeat boundaries, and to find the consensus of sequences along non-branching

paths [91].

Second, because the de Bruijn graphs are constructed from a random sample

of reads that represent random, overlapping substrings from the genome, multi-edges

1Assuming an optimistic estimate of 1 M probes per/cm2.



67

(edges with the same start and end vertices) are replaced by a single edge. A de Bruijn

graph (without multi-edges) that has cycles will not have an Eulerian traversal: a path

that visits every edge exactly once. To transform the de Bruijn graph into a graph that

has an Eulerian path, edges corresponding to repeats in the genome must be replaced

by multi edges with a count equal to the multiplicity of the repeat in the genome. The

multiplicities may be determined as a solution to the Chinese Postman Problem [44]: a

path in a graph of minimal length that visits every edge at least once.

Simply outputting the edge labels of a condensed de Bruijn graph will typically

produce a very fragmented assembly. This is because there is information contained in

reads and mate-paired reads about the correct Eulerian path in the de Bruijn graph that

is lost when only adjacent k-mers from reads are considered. Because the de Bruijn graph

is constructed from overlapping k-mers in reads, each read corresponds to a unique path

in the graph, called a read path. The reformulation of fragment assembly as an (arbitrary)

Eulerian path in a de Bruijn graph from a set of reads (of length > k + 1) is incomplete.

In the ideal (and very artificial) case when reads do not have errors and the multiplicity

of every multi edge is known, the problem is to find an Eulerian path that contains

all read-paths as subpaths. Under the assumption of parsimony the length of the path

must be of minimal length. This problem was considered in [106, 104], as the Eulerian

Superpath Problem (ESP), although the presumption of a minimal length path was not

explicitly stated. This problem was formulated as the De Bruijn Superwalk Problem [82]

with the explicit requirement that the superwalk be of minimal length, and was proved

to be NP-hard.

The approaches taken to restore information from reads lost by creating the de

Bruijn graph in [59], and similarly the solution to the Eulerian Superpath Problem [106,

104] are based on a set of graph transformations. Rather than solving for an Eulerian

path, the graph is iteratively transformed into a more simple graph with fewer vertices

and fewer, longer edges. The new edges must preserve the sequence information from all

reads. The transformations defined in [59] are the elimination of forks and elimination

of crosses. Examples of these are shown in Figure 3.4.

The transformations defined in [106, 104] are much more sophisticated. All

transformations are done using detach operations 3.5(a → b). The idea behind the
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(a)

(b)

Figure 3.4 (a) Elimination of forks. When a branch has an unexpectedly low number of
read paths that map to it, it is likely spurious and should be removed. (b) Elimination of
crosses. Crosses happen from repeated k-mers. The elimination of a cross routes edges
out from the repeated vertex, when path information is not conflicting (each exit edge
is paired with only one entrance edge).
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heuristic is that three serially connected edges a,r,c may be joined into a single edge

containing the sequence of a, r, and c, if there is no path that contains any other edge d

following a.

The final difficulty for Eulerian assembly is that errors in reads add extra edges

to the de Bruijn graph that fragment the assembly. Fortunately, it is possible to detect

and correct errors in reads prior to assembly, as shown in [106].

Assembly using de Bruijn graphs has a practical advantage over assembly on an

overlap graph for high coverage: space efficiency with compact representation of overlaps.

The graph may be constructed in O(N) time where N is the space taken by all reads,

and in O(G) space, where G is the length of the genome. This is important because

the number of overlaps scales with the number of reads sampled, and as a conservative

estimate high-throughput short read sequencing projects sample an order of magnitude

more than in traditional Sanger sequencing projects. To estimate the number of overlaps

of any given read, let the sampling rate f be the number of reads per base in the genome

that are read. If reads are sampled at a uniform distribution from the genome so that a

read will start at a position x in a genome of length G with a probability 1

G
. There are

fG = N reads sampled from the genome, and since typically N is large (100,000,000 for

an Illumina sequencing run), and 1

G
is small, the expected number of reads starting at a

position may be approximated by a Poisson distribution with mean f . The number of

reads expected to begin in an interval of length p is pf . In high-throughput sequencing

projects, a conservative estimate for f is 3. With short, l = 35-base reads, if the minimum

allowed overlap length k is 20, the expected number of reads to overlap a given read is

(l − k) ∗ f = (35 − 20) ∗ 3 = 90. By comparison, there are far fewer reads in a Sanger

sequencing project: (600 − 40) ∗ (0.015) = 7.3 (600 base reads, a 40 base detectable

overlap, and 8X coverage). This is an increase in the number of overlaps per read. For

the purpose of an efficient implementation, a sequencing project with 108 reads there

will have ∼ 1010 overlaps, and assuming 8 bytes per overlap, a memory requirement of

80G bytes.
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Figure 3.5 A diagram of the equivalent transformation operation defined in [106]. (a)
All paths covering an edge are considered when performing transformations about that
edge. (b) The effect of the detach operation, where an edge is detached from a vertex,
and joined to a previous vertex possibly creating one fewer branch in the graph. All
paths are updated to be consistent with the detached and joined edges. Alternative
possible paths are shown that may be conflicting (red), or ambiguous (blue). (c) A
detach operation may be performed only if there are no conflicting paths or ambiguous
paths.
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3.G Description of short read sequencers

454 Pyrosequencing Reads generated by the Pyrosequencing method. Current reads

are up to 400 bases, however the original GS20 reads were 80-120 bases.

Illumina Genome Analyzer Sequencing-by-synthesis on templates amplified after be-

ing fixed on a chip. The first commercial reads were 35 bases, and by 2009 Illumina

intends to release sequencing kits to produce 100 base reads.

Applied Biosystems SOLiD Sequencing by ligation based method. This method uses

a special “colorspace” encoding of reads since 16 probes are colored with 4 different

fluorescent labels. Each read may be decoded based on the first nucleotide pair in

the read, however errors in the read change the interpretation of the entire read.

Helicos HeliScope Single molecule sequencing. At the time of publication of this

thesis, there is no commercial availability of a Helicos sequencer, however they

have published proof of concept [51].

3.H Outline of thesis

In Chapter 4, a pioneering study is presented that examined the feasibility of

short read fragment assembly. This first proposed the return to de Bruijn graphs to

assemble short reads. Furthermore, this work presents a dynamic programming method

for error correction that reduces the errors even highly erroneous reads (4%) by three

orders of magnitude.

In Chapter 5, the method EULER-SR is presented. This method is based off of

a combination of the de Bruijn based assembly [106], and A-Bruijn based assembly [107],

which uses graph-simplification methods to change the graph topology and correct errors

in reads. The methods were modified to use a Maximal Arborescence to define the correct

portions of the graph, in contrast to the Maximal Spanning Tree that is used in [107].

In Chapter 6, the extension of EULER-SR to assemble using mate-pairs is

described. This uses an approach similar to [104], except the method to transform mate

pairs: “read1 - gap of length d - read2” to mate-reads “read1 - sequence of length d -

read2” is modified to take advantage of high coverage and fill in the sequence between
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reads even in complicated repeats. Also, this paper introduces a technique called “read

threading” that is able to correct highly erroneous reads, as long as they have a high

quality short prefix.

Finally, in Chapter 7, several future directions for research in de novo fragment

assembly are presented.
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Fragment assembly with short

reads

In this chapter, we present a preliminary study conducted on 2004 that exam-

ined the feasibility of fragment assembly for short reads. At the time, several papers had

been published about methods for producing short reads, but no full scale studies had

been conducted. Although there were many compteting technologies, the most likely first

“Next Generation” non-Sanger sequencing technique was to be based on Pyrosequenc-

ing, developed by Mostafa Ronaghi while at Stanford. It was known this method would

produce reads much shorter than those of the Sanger method, and that there would

likely be many indels, however little else was known. We proposed that since Eulerian

assembly was based off of Sequencing by Hybridization, which is effectively assembling

short, 8-12 base reads, it was well suited for assembly of short reads. We tested this by

simulating data from human BACs, and assembling them with a modified version of the

EULER assembler [106]. We found it was necessary to produce a new error correction

routines for correcting reads that have a large number of indels.

4.A Introduction

The Sanger sequencing method has enjoyed great success since its debut in 1977,

as it is used in virtually all sequencing projects. The amount of sequence information

has exponentiated due to advances in automated sequencing technology and investment

73
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from the Human Genome Project. State of the art automated sequencers can sequence

a staggering 3 mb/day. However, despite its strong points, there are some drawbacks to

Sanger sequencing. First, it is dependent on clone libraries for sample preparation, and

some genomes have regions not amenable to cloning. Also, future genomics projects may

require sequence throughput orders of magnitude faster than what is currently possible.

Because of this researchers are searching for alternative sequencing techniques that would

bypass the shortcomings of Sanger sequencing ([120], [14], [36], [112]). These techniques

aim at clone free sequencing to enable sequencing of regions that are not amenable to

cloning, and to dramatically decrease the time and cost of sequencing. Almost all the

new techniques produce short reads, i.e. 80-200 bases, as opposed to the 500-750 length

reads produced by Sanger sequencing. It is hardly believed that such short reads can be

assembled efficiently; and efforts are being made on increasing the read length. In this

chapter we examine the limits of assembling short reads, and estimate the amount of

additional finishing efforts that will be be required for assembly.

The assembly of short reads is directly applicable to several new non elec-

trophoretic sequencing technologies being developed, such as PyrosequencingTM[120,

118] mass spectrometry based sequencing [14], seqencing by Polonies [84], and single-

molecule sequencing [17]. These have the goal of sequencing genomes several orders of

magnitude faster than what is possible with electrophoretic methods. The feasibility

of using non-electrophoretic methods to sequence a long DNA molecule was recently

demonstrated by the 454 Life Sciences Corporation by the sequencing of Adenovirus.

This resulted in the first DNA sequence entry in GenBank that was sequenced by a tech-

nique alternative to Sanger sequencing [131]. The reads produced by new sequencing

techniques differ in both read lengths and quality profiles characteristic of electrophoretic

sequencing. In particular the read length is sacrificed for much higher throughput, re-

sulting in high coverage with short reads.

The success of the new high throughput whole genome shotgun sequencing tech-

nologies will depend not only on the speed of the analytical process of producing reads,

but also the solution of the computational problem of assembling sequence fragments into

complete genomes. The common approach in many fragment assembly programs, such as

Phrap [38], CAP [56], PCAP [57], and the TIGR assembler [139], is the overlap-layout-
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consensus approach. The new genome assembler from Celera [92], and the ARACHNE

assembler ([11], [61]), mask the repeat regions in the reads in order to reduce the com-

plexity of the overlap graph and alleviate the difficulty of layout stage. This idea is

successfully applied to assembling large eukaryotic genomes with whole genome shotgun

reads, including fruitfly [1], human [144] and mouse [28]. The major difficulty in assem-

bly is the presence of repeats that are longer than the typical read length. Masking out

repeats in such an approach leads to a fragmentation of the overlap graph. Therefore

the shorter the read length the larger the number of repeats that present difficulties to

assembly, and a greater enhancement of loss of information of the repeat masking proce-

dure in ARACHNE and Celera assemblers. To demonstrate the increase of the assembly

complexity with the decrease of the read length, we computed the number of perfect

overlaps found in hypothetical sequencing projects with varying read lengths, shown in

Figure 4.A. While for a given genome the number overlapping reads scaled roughly lin-

early with read length, the number of repeat pairs increased dramatically in the larger

and more complex Neisseria meningitidis (NM) genome. With short reads, assembling

a BAC became as complicated as assembling a bacterial genome with normal reads, even

when reads have no sequencing errors. The assembly of the Neisseria meningitidis (NM)

genome, known to have a large number of repeats, became a formidable problem. In

practice, it was difficult to assemble even very short genomes using short reads using

Phrap1, an excellent program to assemble BACs with normal read lengths. Therefore

scaling short read assembly to longer and longer genomes presents a difficult computa-

tional problem. The recent announcement of Adenovirus sequence by 454 Life Sciences

Corporation did not reveal the computational approach behind this advance. However,

we remark that the Human Adenovirus E has only one repeated region 51 bases long,

and can otherwise be modeled as a “random” sequence. This 51 bp long repeat does not

present a problem to assembly because it can be bridged by even extremely short reads;

Phrap was able to assemble this with no modifications to the code. Moreover, one would

be able to assemble the equivalent of a human genome with short reads if the human

sequence followed a random distribution. Therefore, even after the 454 Life Sciences

1Phrap produced only a few very short (100 bp) contigs as well as a core-dump when assembling a
BAC with short reads. The adenovirus genome was assembled using less than 20X coverage.
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Corporation announcement of the Adenovirus genome, sequence assembly of short reads

for more complex genomes (even BACs) remains an open problem.

In an extreme case of high enough coverage and short enough reads, the frag-

ment assembly problem becomes effectively the same as sequencing by hybridization. In

this extreme case the read length is fixed (e.g. l = 20), and there is one read starting

at every position in the genome. The Eulerian Path approach to solve sequencing by

hybridization was presented by [100], and proposed for the assembly of regular reads by

[59]. This has been implemented in the EULER fragment assembly program [106] and

further developed in [104]. Euler has the advantage over assemblers based on overlap-

layout approach since it meticulously works with repeats, and instead of masking repeats,

generates a repeat graph that reveals the underlying structure of the repeats within a

genome. The repeat graph can direct biologists towards experiments that allow the

resolution of repeats [111].

4.B Alternative sequencing technologies

4.B.1 Pyrosequencing

PyrosequencingTM [120, 118] is a non-electrophoretic DNA sequencing tech-

nique that uses sequencing-by-synthesis. In this method, a solution of an amplified

sequence and corresponding primer is mixed with four enzymes: polymerase, ATP sul-

furylase, luciferase, and apyrase. Sequencing is carried out by iteratively adding solutions

of alternating nucleotides (A,C,T,G,A,C,T,G...). When a nucleotide is incorporated into

the template strand by polymerase, PPi is released and subsequently converted into ATP

by ATP sulfurylase. This drives a light emitting luciferin oxidation that can be detected

by a light sensor. Unincorporated nucleotides are degraded by apyrase. The light in-

tensities measured upon the addition of nucleotides are combined into a pyrogram from

which the sequence can be read. Pyrosequencing has been used effectively to sequence

short primer extensions for SNP detection [39]. It remains to be seen what the error rates

are of Pyrosequencing, however it is feasible that it is higher than that of electrophoretic

methods.
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Figure 4.1 Number of overlaps versus complete sequence (genome) length. Data were
sampled at 30X coverage from Adenovirus, CJ, NM, and two BACs. Overlaps were found
using megablast [152] and filtered for exact overlap alignments at least 30 nucleotides
long. Read length 750 was chosen as a reference of the assembly complexity when
assembling reads with current read length.
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4.B.2 Sequencing by MALDI-TOF

A recent development in de novo DNA sequencing by Matrix Assisted Laser

Desorption-Iionization Time of Flight (MALDI-TOF) mass spectrometry has been de-

scribed by [14]. In this technology sequences of up to 200 nucleotides are partially di-

gested by base specific endonucleases, and the resulting fragments are analyzed through

mass spectrometry. Each peak in the mass spectra corresponds to a number of nu-

cleotides called compomers. By solving the Sequencing by Compomers problem proposed

by Böcker [14], the spectra are resolved into high quality reads. The detection of com-

pomers through MALDI-TOF has been used for SNP discovery [13], and is implemented

in the SEQUENOM MassArray platform.

4.C Assembly of error-free reads

Errors in read data greatly complicate the task of fragment assembly. It is

possible to correct many of the errors in reads prior to assembly. However as a first step

in proof of concept for short read assembly it is necessary to show the upper bound on

the resolution that can be achieved in assembly of short reads. A modified version of

EULER was used to assemble the reads.

As described by ([106],[104]) the Eulerian approach to fragment assembly re-

solves a sequence by finding an Eulerian path through a de Bruijn graph representation

of a genome. Let Gl (Gl−1) be the set of l (l-1) tuples present in a genome G. To

form the de Bruijn graph a vertex v labeled 〈t1 . . . tl−1〉 is created for each l− 1 tuple in

Gl−1, and for each l-tuple t ∈ Gl a directed edge (〈t1 . . . tl−1〉, 〈t2 . . . tl〉) is added. The

sequence corresponds to an Eulerian path through this de Bruijn graph. In a sequencing

project Gl (and therefore Gl−1) is approximated by the set of l-tuples present in a set of

reads. Repeats in a genome create tangles in the de Bruijn graph [104]. The equivalent

transformation approach proposed by Pevzner et al. [104] uses reads and mate pair in-

formation if available to define paths through the read-generated de Bruijn graph, and

thus resolve many tangles. Tangles that remain require additional finishing experiments

to be resolved.

In this study we assembled simulated reads from several test viral genomes,
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BACs, and bacterial genomes: Adenovirus (Adeno), BAC 85H09 , BAC 47A01, Campy-

lobacter jejuni (CJ) , and Neisseria meningitidis (NM).2 The genomes were sampled

for 30× coverage, and ignoring end effects, all test cases had full coverage. The contigs

resulting from assembly for various read lengths are listed in Table 4.1. The number

of contigs drops at a decreasing rate with increasing read length. BAC 47A01 contains

many low complexity regions that were difficult to assemble with the shortest read length.

Also, the number of contigs may be artificially large since many of the contigs generated

for short reads are short, and most of the genome is contained in a few long contigs. For

example, the number of contigs that give 95% coverage using reads averaging 70 bases

for BAC 85H09 is 9; the largest 10 contigs for BAC 47A01. In CJ, 21 contigs produced

over 95% coverage when assembling reads averaging length of 70 while 11 contigs covered

at least 95% of the genome when assembled with 750 base reads. The complex nature

of the NM genome was reflected in the smaller size of contigs; 95% coverage required

344 contigs assembled from 70 bp reads (20% of all contigs generated), however only 28

contigs were required for this coverage when assembled from 750 base reads.

2NCBI accession: (Adeno) AF394196, (85H09) AC084390, (47A01) AC123854, (CJ) CJ11168X1 (NM)
NMA1Z2491
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Table: 4.1 Assemblies of sample genomes using read lengths averaging 70, 100, 150, 200, and 750, all ± 10 bases. Paths consisting
entirely of nodes of degree 2 are collapsed into one edge, representing the theoretical limit of resolution using the specified read length.
For each read length, the following are reported: {rep} the number of edges in the repeat graph (de Bruijn graph) constructed from
the test genome using tuples equal to the average read length size + 10, {asm} the total number of contigs generated from assembling
simulated reads, and {≥1K(%)} the number of contigs greater than 1kb with the percentage of the genome the contigs cover.

70 100 150 200
Genome [Length (kb)] rep asm ≥1K(%) rep asm ≥1K(%) rep asm ≥1K(%) rep asm ≥1K(%)

Adeno (35) 1 1 1(100) 1 1 1(100) 1 1 1(100) 1 1 1(100)
85H09 (177) 16 25 10(98.9) 10 20 7(98.9) 10 12 5(99.5) 7 12 5(99.6)
47A01 (206) 69 59 13(98.2) 25 28 6(98.9) 29 13 5(99.0) 13 13 4(99.3)
CJ (1,662) 73 72 37(99.5) 63 58 34(99.6) 54 48 29(99.5) 45 48 22(99.5)
NM (2,184) 1803 1864 309(93.4) 1299 1247 299(94.6) 563 296 215(96.2) 266 296 114(97.8)

750
Adeno (35) 1 1 1(100)
85H09 (177) 1 1 1(100)
47A01 (206) 1 1 1(100)
CJ (1,662) 22 27 22(99.9)
NM (2,184) 92 59 48(99.7)
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4.D Assembly of reads with errors

As mentioned in [104], the EULER assembly method works well on error-free

reads, however sequencing errors in reads can complicate the de Bruijn graph making it

difficult to determine the true sequence. This can be alleviated by detecting and fixing

errors prior to sequencing.

Rather than using alignment and base-calling during a post-processing (consen-

sus) step of fragment assembly, error correction is performed prior to assembly through

solving the Error Correction Problem [106]. In this problem, let Gl be the set of l-tuples

in a genome G. A read that has errors will contain l-tuples not in Gl, and is transformed

so that it only contains l-tuples in Gl. The transformation used is the Spectral Align-

ment Problem (SAP) [106]. In the SAP, one is given a collection of l-tuples, T , and a

string. A string is called a T -string if all its l-tuples belong to T . Let T be the collection

of all T-strings. The SAP is to find s⋆ such that the edit distance d(s, s⋆) is minimal

for all s⋆ ∈ T . Error correction is performed by setting T to Gl, and applying spectral

alignment to each read. In de novo sequencing Gl is not known, and an approximation

is made by choosing a threshold M then labeling any l-tuple present more than M times

throughout all reads as ‘solid’, and ’weak’ otherwise. An example of the distribution of

l-tuple multiplicities for sample reads from the CJ genome is given in Figure 4.D. For

this genome, we can use a threshold M = 10 that will eliminate false positives, erroneous

l-tuples that should not be in Gl, and minimize false negatives, l-tuples in Gl that do

not have the multiplicity to be solid.

An approximation to the solution for the Spectral Alignment Problem is cur-

rently used in the EULER assembler. In the approximation, all unambiguous changes

are made that can transform weak l-tuples into solid ones. This method performs well

on the read lengths and error profiles of modern sequencing projects.

High coverage, repeats, and high error rates make it difficult to determine

which l-tuples should belong in T . Fluctuations in coverage by shotgun sampling require

a low threshold M so that valid regions are not considered weak. Unfortunately with

a large number of reads and high error rates this will also include many false positives.

Increasing l will decrease the false positive rate, but in reads with high error rates this
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Figure 4.2 Number of erroneous and correct l-tuples found in simulated reads from the
Campylobacter jejuni genome versus multiplicity. The genome was sampled at 30X
coverage with average read length of 100. Reads were corrupted with a 2% error rate
uniformly distributed between mutations and insertions/deletions. Most erroneous l-
tuples are present in low multiplicities.

makes it difficult to determine which changes are appropriate to transform the read

into a T string. A dynamic programming solution allows for choosing a small M while

eliminating many false positives since it considers multiple possible modifications to a

string before selecting the optimal ones.
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4.E Dynamic programming solution to Spectral Alignment

Problem

In the context of resequencing by hybridization, [98] studied a problem similar

to SAP where a dynamic programming solution was presented, although it was not

formulated as SAP. This approach finds the highest probability path through a de Bruijn

graph constructed from probe matches in an universal array. While the approach taken

in [98] is similiar to our approach, it cannot be directly applied here. First, the scoring

scheme is probabilistic rather than discrete, although this may be easily updated to fit

the edit distance score presented here. More importantly, the search for optimal path

transitions from 4l possibilities are considered at each iteration. This is computationally

tractable for universal arrays, where l can range from 6 to 9, however in the case of

error correction such small values of l can lead to saturation of the T -spectrum so that

nearly all 4l l-tuples are solid. In this approach values of l range from 15 to 20, and so it

is important to only search through a subset of the 4l possibilities. Here we describe a

complete solution to SAP, and give a heuristic that solves the SAP in most cases without

searching this complete search space.

In our solution we use the notation
→
a as a right-shift of the l-tuple a by i

characters, and X∗ →
a as the concatenation of the character X with the resulting l − 1-

tuple. For example, if a is the 4-tuple ACGT , and X is G, then X∗ →
a is GACG. For

a string s and an l-tuple a from spectrum T , we define a score score(i, a) to be the

minimum edit distance fo the prefix of s of length i and all T -strings ending in a (if a is

not in T , score(i, a) is infinity). This may be computed recursively using the following

relation:

score(i, a) =
min

X ∈ {A,C,T,G}



















































score(i − 1,X∗ →
a ) +











1 ifal 6= si

0 otherwise

score(i − 1, a) + 1

score(i,X∗ →
a ) + 1

L(si, a) if i = l

.

The inital condition is score(0, a) = 0. Denote hte length of string s as |s|.
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Figure 4.3 Example of a graphical solution to the SAP. Dashed edges have a score of

0 and solid edges 1. Left, vertices used to compute the score of vertex CG. Center,

vertices that reference CG. Right, a positive cycle. The complete cycle will not be used

in a shortest path.
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The minimum score(|s|, a) for all a ∈ T corresponds to the minimum cost T -string for s.

This recursion may be represented asa graph where each vertex cofresponds to a prefix

of length i and an l-tuple a. Edges connect vertices referenced by a recurrence relation.

The in-degree of a vertex is equal to the number of non-inifite score vertices referenced

to compute its score (for i = 0 the score is 0), and the out-degree is equal to the number

of times the vertex is used in a recurrence relation (0 for vertices corresponding to s|s|−l.

The minimum score T -string corresponds to a shortest path from any vertex with in-

degree of 0 to any vertex with out degree of 0. All edges have non-negative weight, and so

there are no negative cycles, and the shortest path may be computed using any shortest

path algorithm such as Bellman-Ford [31]. An example of t he graph representation of

the recurrence relation is shown in Figure 4.3.

We applied heuristic approximations to the SAP in order to improve perfor-

mance in fixing errors in projects using short reads. When performing spectral alignment

for reads with a known genome, the spectrum is set to Gl . Since Gl is not known in a de

novo sequencing project, it is approximated by the set GM
l , all l-tuples with multiplicity

not less than M within all reads. Although the size of GM
l is smaller than the total pos-

sible 4l l-tuples, it is desirable to reduce the search space for T -strings even further. If a

string s contains a substring u that is a T -string, we only consider T -strings containing

u. The scoring function for this is scoreu(u, i, l), the minimum edit distance for string s

to all T -strings containing u. Since this is easily computed if u is a prefix of s, we can

solve the SAP for a substring of s such that u is a prefix of s. In our implementation

we set u to be the first solid substring in s of length l + δ (in our application δ is about
1

6 l). Furthermore, the search space may be reduced when there is some intuition of the

maximum number of errors expected in a read. If no more than ∆ errors are expected

in a read, paths of score greater than ∆ may be ignored.

In a high-coverage project, a read covering a high multiplicity repeat may con-

tain errors that are not corrected using the spectrum GM
l . Rather than changing GM

l

for repeat regions, we note that the nucleotide alphabet is small, and the multiplicity

of consecutive l-tuples generally does not decrease rapidly. An example is the case of

an independent identical distribution of nucleotides immediately after a repeat region.

To account for this, we let scoreu(u, i, a) be the minimum edit distance from s to all
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T -strings ending in a that contain u and do not contain adjacent l-tuples with a ratio of

multiplicities less than ρ . Since this is a rare case, we generally set ρ to 0.01.

A read with minimum score less than ∆ is replaced by the corresponding min-

imum score T -string. If it is not possible to transform a read into a T -string in under

∆ changes, it is considered unfixable, and no changes to the read are made. Likewise,

it is ambiguous if there are multiple paths with the same cost, and such reads are also

considered unfixable. Finally, it is difficult to determine if changes made near the ends of

reads are correct, and so reads with erroneous edges are trimmed. After error correction

is applied to the set of reads, GM
l will change. The spectrum GM

l may be updated and

used iteratively to correct reads that were unfixable in a previous iteration. Reads that

remain unfixable in the last iteration are discarded.

In order to test our error correction algorithm, simulated reads from sequenced

genomes were corrupted with errors and subsequently treated with error correction. Two

different error models were used, uniform error distribution, and homopolymeric errors.

In the former, errors are distributed uniformly among positions in a read at a specified

rate. Errors are distributed randomly between insertions, deletions and mutations, with

rates ranging over 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5%. In Pyrosequencing, there may

be difficulty in sequencing homopolymeric regions [118] of > 56 nt, and the latter error

model attempts to simulate this. Homopolymeric regions longer than 6 nt were either

increased or decreased in length randomly, with a bias toward a decrease.

The results of running error correction on simulated reads at various error rates

are presented in Table 4.2. An additional ‘fictitious’ genome was created to show the

operation of error correction on random genomes. The fictitious genome is a 50 kb ran-

domly generated sequence, with 28 exact repeats ranging from 80 to 1000 bases. Exact

repeats were used rather than inexact ones, so that the l-tuple multiplicities of repeats

were greatly enhanced over random regions. Errors in such regions could often only be

detected using the multiplicity ratio threshold. Our error correction method is more

effective on the random dataset. Upon inspection of the error-corrected reads for the

BACs, many of the errors that were unfixed or corrupted were located in regions of

low complexity. In high coverage projects, the correct modifications to make are fur-

ther obscured in low-complexity regions because many erroneous l-tuples appear with
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high multiplicity. Also, many of the corruptions in low-complexity regions were in ho-

mopolymeric regions, unfortunately the regions that are most likely to be missequenced

in sequencing-by-synthesis. We believe that this problem can be fixed by changing the

scoring model to accommodate a bias toward indels within homopolymeric regions. How-

ever, such a change will be postponed until a true error distribution of this sequencing

technology is known.

While this method works well on short reads, it does not scale well to longer

reads. The expected number of errors per read increases with read length, and conse-

quently the size of the search space increases. For high error rates on long reads the size

of the search space becomes prohibitive.
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Table: 4.2 The result of running error correction on erroneous reads. For each genome the following are reported: i, the number
of errors in kb initially found prior to error correction in reads retained after error correction, r, the number of remaining (unfixed
errors), in bases, c, the the number of data corruptions (nucleotides that were correct in the original read and incorrect in the fixed
read), in bases % : the percentage of reads retained (fixable reads) after error correction.
Simulated
error rate

Fictitious 85H09 47A01

i r c % i r c % i r c %

0.5 10.2 K 54 37 99.2 302 K 354 277 99.5 35.3 K 907 717 99.6
1.0 30.7 K 46 17 99.2 603 K 948 754 99.4 70.4 K 1658 1276 99.4
1.5 20.6 K 90 37 98.7 892 K 1364 1080 98.8 104 K 2831 2348 98.9
2.0 40.0 K 123 35 97.5 117 K 2255 1836 97.9 137 K 3735 3089 98.0
2.5 48.7 K 180 77 96.2 141 K 3129 2524 95.8 165 K 5278 4376 96.2
3.0 55.8 K 233 106 92.3 162 K 3884 3154 93.3 190 K 8138 6759 93.8
3.5 60.6 K 256 101 88.8 175 K 4910 3942 88.8 206 K 9593 8009 89.3
4.0 62.0 K 280 132 82.2 180 K 6468 5353 82.5 213 K 10511 8791 83.2
4.5 60.4 K 332 137 73.7 174 K 5797 4775 73.2 209 K 12149 10225 74.8
5.0 57.2 K 353 156 64.7 157 K 5942 4832 61.2 187 K 12474 10512 62.6
random
walk

17.3 K 274 223 99.3 55.9 K 5846 4144 99.6 58.9 K 4148 3039 93.9
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Table: 4.3 Number of contigs for assembled reads at increasing error rates. Genomes
were sampled with 30X coverage with read a read length of 120 ± 40.

Simulated
error rate

Fictitious 85H09 47A01

0.5 29 29 47
1.0 27 25 67
1.5 29 39 69
2.0 24 38 84
2.5 32 86 122
3.0 37 74 225
3.5 41 122 72
4.0 56 184 200
4.5 74 183 116
5.0 84 355 460

random walk 28 41 189

After error correction was performed on the test data, the retained (corrected)

reads were assembled using a new version of EULER [105]. This version can detect

some of the topological features that are added to the de Bruijn graph when there are

sequencing inconsistencies (errors or a heterozygous sample) that otherwise fragment the

repeat graph. The errors and corruptions after error correction complicate the repeat

graph. To obtain 95% coverage for BAC 85H09, 29 contigs (38% of the total contigs)

were required at a 3.0% simulated error rate. BAC 47A01 contained more difficult to fix

low complexity regions, and required 109 (48% of total) contigs for 95% coverage. With

a very low error rate, 0.5%, BAC 85H09 required only 8 contigs for 95% coverage. The

results of assembly are shown in Table 4.3.

4.F Conclusions

In this chapter we have examined the feasibility of assembling reads produced

by emerging sequencing technologies. While many large contigs may be assembled using

even very short reads, substantial (if not prohibitive) finishing efforts are required to

entirely resolve all but the simplest of genomes. This is especially true in the assembly

of reads that have high error rates that may be a feature of some of these technologies.

Finally, we note that a powerful tool used in current sequencing projects is
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the use of mate-pairs for repeat resolution ([147],[104]). The Eulerian approach to frag-

ment assembly is well suited for mate-pairs analysis [104] and it is easy to incorporate

mate-pairs in our algorithm for short read assembly. However, since some of the new

technologies aim to produce genomes using clone-free data, we did not use mate-pairs

in the existing version of the assembly algorithm. The resolution described by repeat

graphs in table 4.1 dictate that an extra experimental step is required to finish a se-

quencing project. It remains a challenge for molecular biologists to determine a high

throughput method for producing data similar to mate-pair information, without the

tedious task of producing a clone library. We emphasize, however, that due to extreme

complexity of the repeat graph for short reads, there may be a need for more accurate

insert distance estimates, and it presents yet another challenge for developers of short

read sequencing. Alternatively, the repeat structure that is assembled after equivalent

transformation can provide information for a high throughput mapping technology. We

are eager to see the progress of this field.
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Short Read Fragment Assembly

of Bacterial Genomes

In the last year, high-throughput sequencing technologies have progressed from

proof-of-concept to production quality. While these methods produce high-quality reads,

they have yet to produce reads comparable in length to Sanger-based sequencing. Cur-

rent fragment assembly algorithms have been implemented and optimized for mate-

paired Sanger-based reads, and thus do not perform well on short reads produced by

short-read technologies. In this chapter a new Eulerian assembler is presented that

generates nearly optimal short read assemblies of bacterial genomes and describe an ap-

proach to assemble reads in the case of the popular hybrid protocol when short and long

Sanger-based reads are combined together.

5.A Introduction

In 2005 the first successful whole-genome shotgun sequencing project performed

without using Sanger-based sequencing was completed [79]. The analytical method, py-

rosequencing, was proposed in 1998 [119], and has been incorporated into an industrial

sequencing platform by 454 Life Sciences (www.454.com). While this was one of the origi-

nal technologies for high-throughput sequencing, many other next-generation competing

platforms have recently emerged including the Solexa/Illumina 1G SOLiD Sequencing

(www.appliedbiosystems.com) that have made their data available to many research

91
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groups. Other recent start-ups, including Helicos (www.helicosbio.com) and Complete

Genomics (www.completegenomics.com) plan to release their sequencing data soon (see

[83] for an overview of emerging short read technologies). Although each technology is

able to produce vast quantities of sequence information, in every case the underlying

chemistry limits reads to very short lengths in comparison to Sanger-based reads: from

over hundred bases (454 Life Sciences) down to as little as 24 (Solexa/Illumina and Ap-

plied Biosystems). These technologies usher a new era of High Throughput Short Read

(HTSR) sequencing.

The applications of HTSR sequencing have been largely limited, albeit with

great success, to resequencing [2], gene expression [70], and genomic profiling [7], which

all require a reference genome. Although many model organisms have been sequenced,

the success of recent comparative genomics studies [30] will increase the demand for de

novo assembly, which will be assisted by the assembly of HTSR sequences. Furthermore,

the discovery of rampant structural polymorphisms in the human genome [41] indicates

that it is necessary to perform de novo assembly of even the same species in order to

capture all variations.

Even before the release of the first draft bacterial genome assembly by 454

Life Sciences, we published a paper examining de novo assembly of short reads [23] (see

also Whiteford et al., 2005 [148]). In the absence of available data we simulated reads

from bacterial genomes with lengths and error-rates of what the contemporary proof-

of-concept short-assembly papers had cited. We came to the conclusions that while the

high-coverage facilitate the error correction in reads prior to assembly, it will be difficult

to assemble very large contigs without mate-pair information. Recently, 454 Life Sciences

developed Newbler assembler that is now a part of the software package distributed with

454 sequencing machines. Newbler is an excellent assembler that takes into account the

specifics of pyrosequencing errors to generate accurate contigs.

The publication [79] has shown that short read assembly is indeed difficult;

the assembly of Streptococcus pneumoniae (S. pneumoniae) had 255 long contigs (i.e.,

contigs longer than 500 bp), of which 11 were misassembled. Later, the proprietary

454 Newbler assembler was improved and it now produces 253 long contigs (of total

length 2000 Kb) and no missassembled contigs. The S. pneumoniae genome contains
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167 exact (unresolvable) repeats at least 120 bases long1 that fragment the assembly

into 504 contigs, of which 136 are longer than 500 bp. The difference between 253 and

136 illustrates the gap between the performance of the existing short read assemblers

and the lower bound on the number of contigs an optimal assembler would produce.

Our new assembler, EULER-SR, produces only 127 long contigs of total length 2001 Kb

thus illustrating that it comes close to the “optimal” assembler (136 long contigs of total

length 2091 Kb).

The assembly of short-reads is delayed by the inability to adapt older as-

sembly techniques from previous sequencing projects. Many whole genome assemblers

are optimized for assembling the mate-paired long reads that until recently have been

the sole type of data produced by large-scale sequencing centers. Programs such as

Phrap (www.phrap.org) and PCAP [57] simply do not run on next-generation data,

and Arachne [61] produces an over-fragmented output in the absence of mate-pairs.

Similarly, EULER+ assembler [105] does not scale well for high-coverage short read

sequencing projects.

The Eulerian approach for assembly was proposed by Pevzner, 1989 [100] in

the context of Sequencing by Hybridization (SBH), which may be viewed as the very

first short read sequencing technology.2 In a pioneering paper, Idury and Waterman,

1995 [59] extended the Eulerian approach to Sanger reads. Briefly, in Eulerian assembly,

a de Bruijn graph is created with a vertex v for every l-tuple present in a set of reads,

and an edge (v, v′) is created if an (l + 1)-tuple exists in the reads that contains v

as an l-prefix and v′ as an l-suffix. An assembly corresponds to an Eulerian path [31]

through this graph. However, the practical applications of both [103] and [59] were

hindered by high error rates of SBH and Sanger sequencing (circa 1995) that made the

direct applications of the Eulerian approach difficult. In the Eulerian assembly described

in [106], sequencing errors create extra vertices and edges in this graph that require error

correction procedures to improve the assembly quality.

1Most reads in this study are shorter than 120 bases.
2The paper [100] illustrates some potential advantages of the Eulerian path approach over the

“overlap-layout-consensus”’ approach for fragment assembly. For example, while [103] described a sim-
ple algorithm for constructing the SBH repeat graph, it is not immediately clear how to generalize the
approaches in [57, 61] for efficient construction of the repeat graph even in the simple case of SBH
“reads”’.
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More recently, Pevzner et al., 2004 [105] proposed a new Eulerian assembler

based on the notion of A-Bruijn graphs. The EULER+ assembler [105] deals with

errors in reads by inducing vertices with ungapped alignments that allow mismatches,

rather than the exact l-tuples in de Bruijn assembly, and by defining a set of graph-

simplification techniques that remove erroneous edges. Large benchmarking experiments

in [105] demonstrated that the A-Bruijn approach compares well with Phrap and Arachne

in assembling BACs and bacterial genomes. A similar approach was recently described by

Myers, 2005 [91] and Medvedev et al., 2007 [82]. The A-Bruijn graph was recently used in

various applications including multiple alignment [114], finding composite repeats [153],

shotgun protein sequencing [6], and dissecting the history of segmental duplications

in human genome [64]. However, the application of the A-Bruijn based assembly for

short read sequencing (with much higher coverage than in typical long-read sequencing

projects) is difficult since the graph structure that is used scales with coverage and thus

demands a large amount of memory. Therefore, the approach in [23] has to be modified

for high-coverage (and thus memory-intensive) short read assembly.

In this chapter we describe how to modify the A-Bruijn technique from [105]

for short read assembly and present a memory-efficient de Bruijn-based approach that

supports A-Bruijn-like graph-correction operations. Our EULER-SR assembler substi-

tutes the maximum Spanning Tree optimization of the A-Bruijn graph by the Maximum

Branching optimization on de Bruijn graphs. We benchmark our new EULER-SR as-

sembler on data generated by two 454 bacterial sequencing projects (with an average

read length of ≈ 100 bp). Our assembly of 454 reads compares well to the proprietary

454 assembly tool Newbler, and is the only assembler tool currently capable of assem-

bling shorter reads such as those produced by the Solexa (we were able to produce nearly

optimal BAC assembly with Solexa reads). In a difference from the Newbler assembler

that outputs the set of unrelated contigs, EULER-SR outputs both the contigs and the

repeat graph [106] of the assembled genome thus connecting the contigs by repeats and

directing finishing effort. In addition, this facilitates the use of mate-pairs when they

become available as recently announced by 454 Life Sciences and Illumina.

Currently, most sequencing centers utilize 454 reads by combining them with

low-coverage Sanger-based reads for bacterial assembly and finishing [47]. They first
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assemble only 454 reads using Newbler and later transform long Newbler contigs (longer

than 500 bp) into overlapping pseudo-reads modeling typical Sanger reads. These

pseudo-reads are further combined with real Sanger reads and subjected to a conven-

tional assembly with programs like Arachne. This computational protocol is clearly not

optimal: for example, even if Newbler was substituted by an “ideal” assembler, the valu-

able information about short contigs (shorter than 500 bp) would be lost. In particular,

all valuable information about repeated regions shorter than 500 bp (covered by 454

reads) is not utilized in this hybrid approach. However, since Newbler is not designed

to handle mate-pairs and since Arachne is not designed to handle short reads, no better

solution is currently available. Below we show that EULER-SR is well suited for hybrid

454+Sanger approach to assembly and finishing.

5.B Results

We analyzed 454 reads from E. coli and S. pneumoniae (454 Life Sciences), and

Solexa reads from a human BAC3 (Solexa). Many HTSR sequencers produce raw data

that is different from the traditional read traces found in Sanger sequencing, such as the

flowgram reads produced by 454 or color-space reads produced by Applied Biosystems. It

is possible to take advantage of the additional information in the raw read information, as

done by Newbler assembler (454 Life Sciences), however EULER-SR solely uses reads and

quality files (if available) so that it is applicable to any sequencing technology. Below we

demonstrate that EULER-SR compares well with 454 Newbler assembler and generates

nearly optimal assembly of Solexa reads despite the fact it does not take advantage of

the peculiarities of the platform-dependent error models.

5.B.1 Error correction

Our approach begins by preprocessing reads to remove errors. When quality

values are available, we trim or discard low quality reads, however typically our error

correction routine will detect low quality reads without quality values. Our method for

error correction, as described in Methods, introduces the fewest changes possible in a

3E.coli is 4,639,675 bp long, S. pneumoniae is 2,160,837 bp long and BAC is 173,427 bp long (chro-
mosome 6, bases 30537344-30710771).
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Table: 5.1 The results of error correction on 454 GS20 reads. Error correction using
Spectral Alignment was applied to each set of reads after trimming ends of reads with
Phred scores averaging less than 20 over 5 bases. The number of reads sequenced, number
of quality-trimmed reads, and the number of corrected reads after error correction, along
with the number of reads that have an exact match in the genome is given. Reads were
mapped to the original genome by querying a compressed suffix array as described in [76].

Reads, in thousands
Genome Total Quality trimmed Error corrected

(error-free) (error-free ) (error-free)

E. coli 1113 (757) 1113 (765) 1012 (1008)
S. pneumoniae 1063 (605) 1063 (652) 963 (954)

read such that every l-tuple in the read belongs to a set of l-tuples called a spectrum, S,

or considers the read unfixable if too many changes are required. We iteratively apply

our error correction as described in Methods to a set of reads, first setting S so that

reads in regions of high coverage are corrected, and gradually increase the set of reads

in which we fix errors by expanding the set S.

We tuned the parameters for iteratively fixing errors on 454 E. coli reads. This

data set has approximately 1.1 M reads for 27-fold coverage of the genome. The reads

are relatively high quality on average, and only 0.5% of bases were trimmed using quality

scores. We measure the rate of error correction by measuring the number of error-free

reads, i.e, reads that appear exactly in the genome (68% of the reads error-free). Our

error correction routine divides the reads into two sets: a large set of corrected reads and

a small set of non-fixable reads. The non-fixable set has ≈ 0.1M reads (9% of all reads),

and of the remaining corrected set, 99.6% reads are error-free (Table 5.1). Applying our

error correction to the S. pneumoniae (without changing parameters) resulted in slightly

lower (99.1%) but still high rate of error correction.

The bulk of EULER-SR time is taken by error correction; it takes ≈ 12 hours

to perform error correction on a single, 1.8 GHz workstation and only ≈ 1/2 hour to

assemble the genome. Fortunately error correction represents an embarrassingly parallel

application, and only takes a matter of minutes on a modest cluster. EULER-SR provides

support for parallelizing error correction on the SGE cluster platform.
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5.B.2 Fragment assembly of short reads

After correcting errors we ran EULER-SR on the set of corrected reads. Our

assembly procedure is performed in a set of steps that first builds the de Bruijn graph,

corrects errors in the graph, and transforms paths in the graph into assembled sequences.

When constructing the de Bruijn graph the l-tuple size should be chosen to be large

enough to avoid excessive tangling of the graph that leads to shorter contigs, yet small

enough to not fragment the genome since every (l + 1)-tuple must be covered by a read

in the de Bruijn graph. We found that l = 35 removes most tangles at a cost of slightly

fragmenting the assembly. To resolve the fragmentation, we ’artificially’ connect source

and sink edges that share a smaller unique overlap at the last stage of the algorithm.

We combined the error-corrected reads with the non-fixable reads that were discarded

during error correction in order to assemble low-coverage regions.

The parameters for graph correction control the maximum girth (for bulge and

whirl removal), maximum source or sink edge length to delete during erosion, and mini-

mum edge multiplicity to detect chimeric edges. We tuned our parameters for assembling

E. coli, and used this to assemble S. pneumoniae. After error correction, all computa-

tions were performed on a desktop computer. We compared our assembly with ones

produced by the 454 Newbler assembler (Table 5.2). For each assembly we report the

number of long contigs (i.e., contigs longer than 500 bp), the total length of long contigs,

the N50 contig size (the size of the contig such that 50% of the assembly is contained

in contigs of size N50 or greater), and the coverage using long contigs. Each of these

statistics in isolation may be misleading, for example, an assembler that misjoins con-

tigs may have the best parameters. However, neither the improved version of Newbler,

nor EULER-SR produced misjoined contigs making these parameters comparable for

different assemblers4.

The theoretical limits of short read assembly may be evaluated by construct-

ing the repeat graph of a genome with a minimum repeat length equal to the typical

length of a read. The repeat graph corresponds to the condensed de Bruijn graph if

an error-free read is generated at each position in the genome. Therefore, the repeat

4As described above EULER-SR does not try to estimate the multiplicities of tandem repeats and
misses three copies of tandem repeats in E. coli (approximately 1600, 1000, and 300 nucleotides) and
one copy of a tandem repeat in S. pneumoniae (approximately 500 nucleotides).
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graph models an “optimal” assembler that can be benchmarked against the existing as-

semblers (Table 5.2). The optimal assembly of E. coli on reads of length 120 has 800

contigs with 94 long (i.e., longer than 500 bases) contigs covering 4560 Kb. The optimal

assembly of S. pneumoniae on reads of length 120 has 504 contigs with 136 long contigs

covering 2091 Kb. For S. pneumoniae, EULER-SR comes close to optimal assembler

with 127 long contigs covering 2001 Kb. Newbler generated twice the number of larger

contigs (253) with similar total size (2000 Kb). We emphasize that Newbler uses the

platform-dependent error model of 454 technology and has access to flowgrams reflecting

the specifics of pyrosequencing errors. This may explain the deterioration in EULER-SR

performance in the case of E. coli (199 long contigs covering 4277 Kb) as compared to

Newbler (141 long contigs covering 4531 Kb). When Newbler is run on a FASTA data

that is the equivalent of only nucleotide sequences (an abuse of the intended usage), its

performance degrades to 311 long contigs covering 4,523Kb. This experiment demon-

strates that Newbler is an excellent tool for assembling 454 reads (as it uses flow values

to mitigate sequencing errors) that may not be easy to modify for other sequencing

technologies. As 454 read quality is constantly improving, the additional data provided

by 454 flowgrams is becoming less crucial. The difference in the errors rates between

different sequencing projects undertaken at different times/labs may explain a somewhat

better EULER-SR performance on S. pneumoniae as compared to E.coli.

We have also assembled a human BAC using ≈ 1 million 27 nucleotide long

Solexa reads generated at the Joe Ecker lab at the Salk Institute (150X coverage). The

Solexa technology is currently being optimized and the error model of the Solexa platform

remains poorly understood. In particular, the error rates of Solexa reads are position-

dependent and highly variable across different machines and even across different runs of

the same machine (Alla Lapudus, personal communication). As a result, while assembly

of Solexa-sized simulated reads was analyzed in [146], the assembly of real Solexa reads

proved to be more challenging. Since Solexa reads have very few indels, we have chosen

to use the heuristic error correction similar to [106] instead of Spectral Alignment. This

heuristic iteratively finds the mutation in a read that makes the most l-tuples solid (see

Methods) until all tuples in the read are solid, or no mutation is found to make an

l-tuple solid (we use l = 15). The error correction partitions the reads into 592K of
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Table: 5.2 Summary of bacterial assemblies using 454 reads. We report assemblies using
EULER-SR and Newbler, and the repeat graph as a reference for the optimal assembly.
#Long contigsContigs: the number of contigs greater than 500 bases. Total length of
long contigs: the sum of the length of all long contigs. N50: the size of the smallest
contig such that 50% of the length of the genome is contained in contigs of size N50 or
greater.
Genome Assembler # Long Total length of Total N50

contigs long contigs (in Kb) coverage

S. pneumoniae EULER-SR 127 2001 32619
Newbler 253 2000 11905
Repeat graph 136 2091 36004

E. coli EULER-SR 199 4277 46887
Newbler 141 4531 60757
Repeat graph 94 4560 125693

error-corrected reads and 402K of non-fixable reads. The significantly higher proportion

of non-fixable reads (as compared to 454 platform) reflects the higher error rates of Solexa

reads and some surprising run-dependent biases in the distribution of errors along the

reads. 580K out of 598K error-corrected reads are error free, 97% of all error-corrected

reads (as compared to over 99% in case of 454 reads). The assembly results in 82 long

contigs (larger than 500 bp) of total length 100,360. The optimal assembly (as revealed

by the repeat graph on 24-mers) results in 71 long contigs of total length 124,660.

5.B.3 Combining short read assembly with mate-pair data

One of the goals of HTSR sequencing is to sequence reads without the expensive

and slow step of producing a clone library. While it may be difficult to produce paired

reads in the traditional sense of sequencing opposite directions of an amplified clone,

it is possible to amplify and sequence short paired-end tags in parallel. To construct

the paired tags, short genomic sequences are circularized using a known linker sequence,

and are cleaved outside the ligation site using Type IIs restriction enzymes leaving 25-31

base tags of genomic sequence available for sequencing [132]. While other technologies

are also capable of producing longer paired ends (Michael Egholm, personal communica-

tion) there are currently no publicly available mate-paired short read data sets for these

genomes. We therefore decided to simulate the mate-pair information to investigate how
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it improves the assembly.

We modified the mate-pair assembler, Euler-DB [104] to run on the volume of

data generated in HSTR sequencing and tested it on simulated paired-end data of short

reads. The reads for E. coli and S. pneumoniae were mapped to the reference genomes,

and tag libraries of sizes 2.5Kb, and 10Kb were generated by selecting 50 bp tags from

the reads separated by 2,500±250 and 10,000±1000 bases, for each library. The number

of tags generated (300,000) is less than the total sequencing capacity of a typical HSTR

sequencing run. The results of our assembly using mate-pairs are listed in Table 5.35.

The current practice in most sequencing centers is to use low coverage Sanger

sequencing to complement short reads in hierarchical assembly [47]. Because EULER-

SR may be used with any length read, we simulated paired-end Sanger sequences for S.

pneumoniae, and performed assembly by combined these reads with S. pneumoniae 454

reads. The results are shown in Figure 5.1. While adding long reads results in substantial

improvement in the assembly quality, we found that remarkably small number of long

reads contribute to this improvement. For example, in the case of 5X read coverage by

long reads, ≈ 96% of all mate-pairs maped to a single contig composed of 454 reads and

thus do not provide complementary information for 454-based data except for marginal

potential improvement in the consensus quality. Moreover, most mate-pairs mapped to

multiple contigs span only two edges in the de Bruijn graph and thus also do not improve

the assembly of 454 reads. As a result, only 238 out of ≈ 6800 long mate-paired reads

(only ≈ 3%) map to more than two edges in the de Bruijn graph6 and thus meaningfully

contribute to improving the assembly.

Our analysis of the hybrid protocol revealed that the overwhelming majority

of long reads do not improve upon the assembly already generated from short reads. It

does not necessarily mean that the coverage by long reads in hybrid approaches may be

reduced without affecting the assembly quality: for example, Figure 5.1 does not reflect

5The surprising deterioration of N50 statistics for 10 Kb spacing (as comparing to 2.5 Kb spacing)
reflects ambiguities in mapping longer paths between mate-pairs in highly tangled de Bruijn graphs.

6123, 72, 31, 9, and 3 mate-pairs map to 3, 4, 5, 6, and more than 6 edges correspondingly.
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Table: 5.3 Summary of the assemblies using real 454 reads combined with simulated
mate-pairs. Each end of a clone is 50 bases.
Genome Tag library # Long contigs Total length of N50

long contigs (in Kb)

S. pneumoniae 2.5Kb 156 2111 43418
10Kb 139 2224 36253

E. coli 2.5 Kb 163 5016 91252
10 Kb 126 4897 101647
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Figure 5.1 Assembly of S. pneumoniae using 454 reads complemented with simulated
Sanger reads (3000 ± 300 bp spacing). Uniformly distributed 800 base reads were gener-
ated for coverage varying from 1X to 5X, and then assembled using EULER-SR. We show
the assembly using mate-pairs (solid), assembly using unpaired Sanger reads (dashed),
and the base assembly quality of 454 reads (dotted).
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the contribution of long reads to improving scaffolds. However, Figure 5.1 suggests that

a critical review of the benefits of the hybrid approaches may be necessary to compare

the relative benefits and costs of generating shotgun long reads as compared to other

finishing approaches.

5.C Discussion

We presented the EULER-SR short read assembler that significantly reduces

the memory requirements of previously described Eulerian assemblers and has a potential

to produce nearly optimal assemblies of bacterial genomes using modest computational

resources. Our assembly software is available at http://euler-assembler.ucsd.edu.

We have used assemblies produced by the proprietary Newbler assembler for

benchmarks, as there are currently no other methods available for assembling short

reads. Newbler is an excellent tool for assembling 454 reads as it uses raw flow values

to mitigate sequencing errors. Our assembler compares well with Newbler yet does not

rely on proprietary information, allowing it to assemble reads from multiple sequencing

platforms.

Sundquist et al., 2007 [138] recently proposed a new SHRAP experimental

protocol that may enable the assembly of mammalian genomes with short reads. SHRAP

uses the older version of EULER [105] as an engine for assembly of BAC-sized genome

segments, which are then joined. One benefit of EULER-SR assembly is that assemblies

of large genomes may be performed because de Bruijn graph construction is intrinsically

parallelizable. The de Bruijn graph of the union of two sets of reads is simply the union

of the de Bruijn graph for each independent set of reads. Therefore it may be possible

to generate short-read assemblies on large genomes by simply taking the union of small

sets of reads succinctly represented as condensed de Bruijn graphs.
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5.D Methods

5.D.1 Error correction in reads

Our assembly proceeds in several steps: error correction, graph construction,

graph correction, and assembly by transforming paths in the corrected graph into contigs.

Base miscalls and indels are inevitable in sequencing projects and it is necessary to

detect errors in reads in order to accurately determine the finished sequence. In the past

this was done after assembly by mapping reads to the consensus sequence. Pevzner et

al., 2001 [106] introduced error correction before the assembly and demonstrated that

it greatly simplifies the assembly. Now this is done as a standard preprocessing step

before assembly using a multiple alignment of reads [140], or by clustering and aligning

reads prior to assembly [11]. In HTSR sequencing, constructing multiple alignments of

short reads is very time consuming, and so we correct errors in reads prior to assembly

using a method called Spectral Alignment (SA) that does not use a multiple sequence

alignment. This method takes a read r and a set of l-tuples S, called a spectrum, and

finds the minimum number of substitutions, insertions, and deletions in r required to

make every l-tuple in r belong to S. The set S is chosen by counting the frequency of

all l-tuples present in all reads in a sequencing project, and selecting tuples that occur

with multiplicity above some threshold m (called solid l-tuples). An iterative solution

to SA was described in [106], followed by a dynamic programming solution in [23]. The

dynamic programming solution to SA allows for efficient searching through insertions

and deletions, and so it is particularly well-suited for fixing errors in reads generated by

pyrosequencing, in which the errors are biased towards indels. The Spectral Alignment

approach implemented in EULER-SR is faster and has a higher rate of error correction

than the approach described in [23].

The choice of appropriate parameters for fixing errors using Spectral Alignment

should minimize the number of erroneous l-tuples remaining in reads while not affecting

correct but low coverage sequences. Consider a sequencing project that produces N reads

of average length L over a genome of length G. The average number of reads covering

an l-tuple is a = N × (L − l)/G and is approximately distributed by a Poisson with

parameter a. To minimize the number of correct sequences considered to be erroneous
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we pick a multiplicity m for which there are few expected l-tuples covered by less than m

reads. The probability an l-tuple in a genome is covered m times is
∑m

y=0 PY (y), where

Y ∼ Poisson with parameter a. For a typical high-throughput sequencing project of a

bacterial genome of 4 million bases with 1 million 100 bp long reads, there are under

100 20-mers expected to be covered less than 5 times. Furthermore, under the gross

simplification that the sequences are random, and there is a 1% random error rate, no

erroneous l-tuples are expected to be made solid by coincident errors.

5.D.2 de Bruijn graph construction

Due to the massive scale of the data in short read assembly, it is necessary to

perform assembly in linear or close to linear time. Although it is possible to construct a

de Bruijn graph in linear time, memory efficiency is more of a premium for short reads

assembly than run time. Our de Bruijn graph construction is implemented in several

stages, in some of which we trade linear time for methods that run on sorted lists (thus

O(n · logn) time) but reduce memory requirements.

For a genome of length L, the de Bruijn graph has O(L) vertices and O(L)

edges, regardless of the number of reads in the data set. We find the set of vertices

in the de Bruijn graph using an efficient hashing structure in linear time proportional

to the number of reads R in the data set. We then represent the vertices as a sorted

list V of tuples allowing us to discard the memory overhead of the hashing structure

required for O(1) time access. We next generate adjacencies by querying the vertex

list V with a binary search for every adjacent pair of l-tuples in the set of reads R. By

representing the graph as an adjacency list, our de Bruijn graph uses a maximum of O(L)

* (k + l) bytes, where k is the memory allocated for each vertex (40 bytes in the current

implementation). For subsequent phases we form a condensed de Bruijn graph, where

every simple path consisting of vertices of in-degree and out-degree 1 is substituted by a

single (labeled) edge. Because the reads were used to generate the de Bruijn (and thus

the condensed) graph, every (l + 1)-tuple in a read maps to a unique edge and position

in the condensed de Bruijn graph. We use this to define a path of edges for each read,

and to assign a weight to every edge equal to the number of reads mapped to the edge.

These paths are used after graph correction to find the Eulerian path through the de
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Bruijn graph that corresponds to the assembled genome.

5.D.3 de Bruijn graph correction

If reads covered every (l + 1)-tuple in the genome and were error-free, the

generated de Bruijn graph G∗ would represent the repeat graph of the genome with

minimal repeat length l + 1. However after error correction, a small number of errors

remain resulting in some added and removed edges as compared to the repeat graph.

For example, a single mutation in a read will create (l + 1) extra edges in the de Bruijn

graph. Our goal is to construct the graph G∗ given G. If we assume every (l + 1)-tuple

in the original genome is sequenced correctly by at least one read, then G∗ is a subset

of the vertices and edges of the graph on real reads G. Thus we may perform additional

error correction by detecting and removing erroneous edges on the graph G.

We adapt the methods for graph simplification on A-Bruijn graphs from [105]

to perform graph correction on de Bruijn graphs. We distinguish the two methods

because graph simplification aims to capture the repeat-consensus and mosaic structure

of a genome, while the goal of graph correction is to simplify the de Bruijn graph until

all erroneous edges are removed, and no further. For example, in graph simplification,

repeats with high similarity are typically merged into a single edge corresponding to the

the repeat consensus sequence. A corrected de Bruijn graph contains a separate path

for each distinct repeat sequence.

When an A-Bruijn graph is constructed from a set of pairwise alignments, gaps

and substitutions in an alignment create undirected cycles called bulges, and inconsis-

tencies in an alignment create directed cycles called whirls [105]. A cycle is called short

if its girth is less than a fixed parameter g. The algorithm to generate an A-Bruijn graph

employs a heuristic to find a graph that represents the largest possible set of consistent

alignments through solving the Maximum Subgraph with Large Girth (MSLG) prob-

lem [105]. Because this problem is hard for arbitrary girth values, a heuristic is used

that replaces the A-Bruijn graph by its Maximum Spanning Tree, and successively adds

edges from the original graph to the spanning tree if they do not create a cycle of girth

less than g.

A similar approach for removing short cycles is used for fragment assembly on
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the de Bruijn graphs. One property of a de Bruijn graph is that every vertex should be

reachable by a directed path from the source vertex, if only one source vertex exists. A

shortfall of the bulge removal method in A-Bruijn graphs is that when a de Bruijn graph is

replaced by its undirected maximum spanning tree, certain vertices may not be reachable

from the source by directed paths. Although a path straightening heuristic [105] is used

in the A-Bruijn graph construction to repair edges to unreachable vertices, we circumvent

this problem entirely by replacing the de Bruijn graph with its Maximum Branching [37,

26], using the method described in [46] (the branchings have directed paths from the

source vertex to all vertices). Because “alignments” are found at each vertex by perfectly

matching sequences of length l, directed cycles are rarely erroneous other than those

covering long low complexity regions, e.g. homopolymeric and dinucleotides. When

checking to see if adding an edge to the maximum branching forms a cycle, we distinguish

between directed and undirected cycles, and add an edge to the branching if it does not

create an undirected cycle of girth u, nor a directed cycle of length d.

While tandem repeats can be detected as whirls in the de Bruijn graph (typically

directed cycles with two edges as shown in Figure 5.2, top), finding the number of copies

(multiplicity) in a tandem repeat is a difficult problem for any assembler. For example,

the multiplicity of perfect tandem repeats of length longer than half of the read length

cannot be inferred from de Bruijn graphs. As a result, inferring the multiplicities of

tandem repeats usually amounts to error-prone coverage analysis (e.g., a tandem repeat

with multiplicity 3 is expected to have 50% more coverage than a repeat with multiplicity

two). To avoid potential errors caused by the coverage analysis (short read technologies

often produce uneven coverage) and to reduce the fragmentation due to tandem repeats,

we assume there are only two copies of the perfect tandem repeat, and construct the

assembly as a path that traverses the repeat twice, as shown in Figure 5.2, bottom. While

this procedure may underestimate the copy number of tandem repeats we found that

it leads to very few errors7. We therefore feel that it is a practical approach, at least

until more information about coverage and specifics of errors of short read technologies

becomes available.

7Also in cases where coverage across the tandem repeat is low, tandem repeats may be collapsed into
a single copy.
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Figure 5.2 A tandem repeat as a whirl consisting of two edges in the condensed de Bruijn
graph, and its transformation into a tandem duplication with multiplicity 2. The bold
edge is the repeat, and the dashed edge represents the sequence between the consecutive
copies of the repeat.

Reads that are mapped to edges that have been deleted during graph cor-

rection are threaded through the remaining edges. Let the path of such a read be

(e0, . . . , ei, . . . , em), and ei be the removed edge. We search for an alternative path

P = (a0 . . . an) from the start to the end of edge ei such that the sequence corresponding

to ei and P are sufficiently similar, and replace ei with P if such a path is found.

In addition to bulge and whirl removal we also apply two additional techniques

for removing erroneous edges: erosion as described in [105], and low weight edge removal.

Erosion removes short sources and sinks from the graph. Low-weight edge removal is

typically a way to detect low-quality chimeric reads. Although most HSTR sequencers

do not use clone libraries, sequencing errors at the ends of reads create erroneous edges

similar to those created by chimeric reads.

After the de Bruijn graph has been corrected we apply the equivalent transfor-

mation described in [106] to resolve repeats that are shorter than the length of a read.

If no mate-pair information exists, we cut paths that do not cover repeats with an oper-

ation similar to the x-cut [106]. When mate-pair information is available, we postpone

the cutting operation, and apply equivalent transformation with mate-pairs [104].
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de novo Fragment Assembly with

Short Mate-Paired and

Error-Prone Reads

Increasing read length is currently viewed as the crucial condition for de novo

fragment assembly with next-generation sequencing technologies. However, introduc-

ing mate-paired reads (separated by a gap of length GapLength) opens a possibility to

transform short mate-pairs into long mate-reads of length ≈ GapLength and thus raises

the question whether the read length (as opposed to GapLength) even matters. A new

tool is described, EULER-USR, for assembling mate-paired short reads and use it to

answer the question whether the read length matters. We further complement the on-

going experimental efforts to maximize read length by a new computational approach for

increasing the effective read length. While the common practice is to trim the error-

prone tails of the reads, we present an approach that substitutes trimming with error

correction using repeat graphs. An important and counterintuitive implication of this

result is that one may extend sequencing reactions that degrade with length “past their

prime” to where the error rate grows above what is normally acceptable for fragment

assembly. We demonstrate that this approach allows one to increase the effective length

of Illumina reads while making them nearly error-free.

109
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6.A Introduction

The field of high-throughput sequencing has grown recently in both applications

and computational support. This is enabled by the many platforms that exist for high-

throughput sequencing, including those produced by 454 Life Sciences [80], Illumina 1G

Genome Analysis System (www.illumina.com), Applied Biosystems SOLiD Sequencing

(www.appliedbiosystems.com), and Helicos GSS Sequencing (www.helicosbio.com) .

Although the 454 sequencing platform is now producing reads that are of similar length

to Sanger reads, the underlying paradigm is that a higher throughput may be achieved

at the sacrifice of read length. The technologies with the highest throughput currently

available produce short, 20-40 base reads, distinguished as ultrashort reads.

Many recent successful applications of ultrashort reads have used the reference

genomes for whole genome re-sequencing [54], chromatin remodeling mapping [127] and

whole-genome methylation [7] profiling. An analysis in [148] showed that the number of

reads uniquely mapped to the human genome grows with the increase in reads length

but reaches a plateau after the first ≈ 40 nucleotides. This implies that there is little

incentive to increase the read length in re-sequencing applications since it provides little

return on investment. While generating 40 nt reads is usually sufficient for resequencing,

de novo fragment assembly may require longer reads. The Illumina platform can easily

generate longer reads, but the error rates deteriorate after the first 35 nt making the

ends of reads not suitable for fragment assembly. This again provides little incentive to

generate longer reads. By extending the effective length of reads, our new EULER-USR

assembler generates more reads that span the repeats and thus improves the assemblies.

Most de novo assemblers for Sanger reads follow the “overlap-layout-consensus”

paradigm that is optimized for such reads [57, 61] and does not scale well for short read

assembly. In contrast, most approaches to short read assembly including EULER-SR [24],

Velvet [151], and ALLPATHS [20] use an alternative Eulerian approach that model the

assembly problem as a search for an Eulerian path in a de Bruijn graph [106].

The advantage of the Eulerian approach is that it generates a theoretically op-

timal fragment assembly of reads of length k (in high-coverage projects) by essentially

mimicking fragment assembly as Sequencing by Hybridization (SBH) problem on a vir-
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tual DNA array with all k-mers [103]. Idury and Waterman, 1995 [59] demonstrated how

the Eulerian approach for SBH can be applied to fragment assembly of Sanger reads.

However, the Eulerian approach works best for error-free reads and quickly deteriorates

as soon as the reads have even small number of basecalling errors. To alleviate this

limitation, two different error-correction approaches are used: error correction in reads

prior to assembly [106, 20], and post-hoc graph corrections that remove spurious edges

from the assembled de Bruijn or A-Bruijn graphs [107, 151].

Correcting errors in reads prior to assembly was shown to be useful for both

Sanger and 454 Life Sciences reads [106, 24] (error rates reduced forty-fold from 1.2% to

0.03% for Sanger reads). However, this approach essentially transforms already rather

accurate reads (≈ 1% error rate) into nearly error-free reads. The efficiency of the

existing error correction approaches quickly deteriorates with even a small increase in

the error rates of original reads (e.g., from 1% to 3%). For example, an optimized error

correction tool from Tammi et al., 2003 [141] was able to reduce the error rates from

3.4% to 0.3% on simulated data, only a tenfold decrease. While it looks like a reasonably

low error rate, it makes it nearly impossible to apply the Eulerian approach that does not

tolerate even such seemingly small error rates. This makes the full-length Illumina reads

“ineligible” for Eulerian assembly (Figure 6.1 illustrates that the error rate is ≈ 20%

at the ends of reads) and sets an accuracy bottleneck for developing new sequencing

technologies.

In this chapter we focus on the Illumina technology and describe how to in-

crease the “usable” length of error-prone Illumina reads while keeping them nearly error

free. Although this chapter limits the benchmarking of EULER-USR to the Illumina

technology, our algorithm is applicable to any technology characterized by high error

rates, such as the Helicos platform. While the average error rate in Illumina reads is

under 2% for the first ≈ 30 nucleotides (Figure 6.1), it quickly increases in the tails of the

reads reaching ≈ 20% at position 50. No existing short read assembly tool can efficiently

deal with such high error rates and the conventional wisdom is that the read tails become

unusable when the error rate exceeds 3%. Below we introduce an alternative error cor-

rection approach that uses the de Bruijn graph constructed on the accurate read prefixes

in order to correct the error-prone read suffixes by fitting them into the de Bruijn graph.
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We demonstrate that our method improves the quality of assembly without changing

the experimental protocol. Since EULER-USR can assemble error-prone reads, we hope

that it can catalyze developments of sequencing platforms aimed at generating longer

but less accurate sequencing reads.

Reads may be combined with mate-paired information to further improve the

quality of assemblies and the next generation sequencing companies are actively pursu-

ing both increasing the read length and effectively generating mate-pairs. For example,

Illumina recently increased the effective read length from 35 to 50 nucleotides and an-

nounced the plans to provide capabilities for 75-100 nt reads in 2009. On the other

hand, Illumina and various sequencing centers are exploring applications of jump and

PET libraries [93] for generating mate-pairs in the context of short read technologies.

While increasing the read length is a high priority for most next-generation sequencing

companies, there exists an opinion that the read length almost does not matter if one

uses mate-paired reads. Indeed, Pevzner and Tang, 2001 [104] demonstrated that most

mate-pairs: “readstart - GAP of length d - readend” can be transformed into mate-reads

“readstart - SEQUENCE of length d - readend” by filling in the gap of length d with

the nucleotide sequence representing an appropriate path in the de Bruijn graph. As a

result, one can generate contiguous long reads of length 2 · l+d (span of mate-pairs) from

short mate-paired reads of length l making the read length almost irrelevant (typically,

d ≫ l).

We show how EULER-USR utilizes mate-pairs to significantly improve assem-

bly, and further use it to answer the question whether read length matters. We demon-

strate that the answer to this question is closely linked with the efficiency of transforming

mate-pairs into mate-reads (the percentage of mate-pairs successfully transformed into

mate-reads). When the read length exceeds a certain threshold, the read length barrier,

the efficiency reaches nearly 100%, so that the read length indeed does not matter. For

example, for the E. coli genome, the read length barrier is ≈ 35 nt.1 This is good news

for technologies with reads already longer than 35 nt (e.g., Illumina reads) but bad news

for technologies with shorter reads (e.g., Helicos and SOLiD reads). However, while

1We emphasize that the read length barrier depends on the genome, the span of mate-pairs, coverage,
error-rates in reads, variability in gap length, etc. The read length barrier ≈ 35nt for E.coli was computed
under the assumption that the span is 300 ± 30 nt.
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the current parameters of Illumina reads may be already sufficient for reliable assem-

bly of some bacterial genomes, they are not sufficient for slightly larger genomes like

Saccharomyces cerevisiae with higher read length barrier. This observation reveals a

synergy between EULER-USR error-correction approach to increasing the read length

and EULER-USR approach to transforming mate-pairs into mate-reads. Indeed, while

the length of the “usable” portions of Illumina reads is currently below the read legth

barrier for yeast (Figure 6.1), EULER-USR error correction allows one to increase the

effective read-length beyond 45 nt thus exceeding the read length barrier. Therefore,

while the mate-paired information represents by far the most important factor for im-

proving the assembly quality, the read length also provides a valuable contribution to

the assembly.

The EULER-USR software for assembling mate-paired short reads is publicly

available at http://euler-assembler.ucsd.edu.

6.B Methods

We have developed the EULER-USR algorithm for assembling mate-paired and

error-prone ultrashort reads. In addition to the previous Eulerian approaches [106] that

correct reads based on k-mer multiplicities, EULER-USR corrects reads based on how

they map to repeat graphs [106, 24], a generalization of the de Bruijn graphs.

The de Bruijn graph of a genome is constructed on the set of of all k-mers in the

genome. Vertices u and v are connected by a directed edge (u, v) if there is a (k+1)-mer

in the genome that has the k-mer u as a prefix and the k-mer v as a suffix. A small

example of a de Bruijn graph is shown in Figures 6.2a,b. As a result, every substring

of length > k in the genome maps to a unique path in its de Bruijn graph. Similar to

the de Bruijn graph of a genome (Figure 6.2c), one can construct the de Bruijn graph

of reads (Figure 6.2d) on the set of all k-mers present in reads. The de Bruijn graphs

of real genomes are very complex, a reflection of a large number of repeats with slightly

varying repeat copies. A repeat graph of a genome (or reads) is a “simplified” version

of the de Bruijn graph with small bulges and whirls removed [107, 91] (Figures 6.2e,f).

The key observation in the Eulerian assembly is that the repeat graph of a genome can
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be approximated by the repeat graph of reads and thus may be constructed from reads

alone, i.e., without knowing the genome [107] (compare Figures 6.2e and 6.2f).

If the repeat graph of the genome is known, one may correct errors in a read

by simply mapping this read to a path in the repeat graph and substituting the read

by the path.2 While this procedure would result in a nearly error-free set of reads, it

is not clear how to construct a repeat graph from inaccurate reads and how to further

map such reads to the repeat graph. In our approach, we construct the repeat graph

from (accurate) read prefixes and then map entire reads (with inaccurate suffixes) to this

graph by threading.

The EULER-USR algorithm consists of the following 3 steps that can be further

supplemented by the threading procedure that we will describe later (section 6.B.4):

• Detecting accurate read prefixes and correcting errors within them using frequent

k-mers (multiplicity m and higher). This operation generates the set of extremely

accurate (nearly error-free) read prefixes.

• Constructing the repeat graph on error corrected prefixes using k-mers.

• Simplifying the repeat graph after transforming mate-pairs into mate-reads.

6.B.1 Detecting and error-correcting accurate read-prefixes

Although the quality of Illumina reads deteriorates with length, the prefixes are

quite accurate (less than 2% error rate). While many reads can be turned into error-free

reads by our error correction algorithm, errors will remain in low-quality reads even after

error correction. In this case, it is important to detect the longest read prefix that may

be error-corrected and discard the reads that cannot be corrected.

We correct reads using a modified version of the Spectral Alignment (SA) algo-

rithm described in [106] and [23]. The SA(Spectrum,read) method corrects read given a

set of k-mers Spectrum. Given a set of reads R and a frequency threshold m, we define

a spectrum Spectrum = Spectrumk(R,m) as the set of all k-mers that appear at least

m times in reads from from R. The set of such solid k-mers approximates the set of all

k-mers in the genome. We define a read as error-free if all its k-mers are solid, otherwise,

2This procedure may also result in error corruption [106].
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we attempt to make a read error-free by mutating a few nucleotides in the read [106, 24].

We only consider substitution mutations since there are few insertions/deletions in Illu-

mina reads.

We use a greedy heuristic to find the minimum number of mutations to make

every k-mer in a read solid. It records the number of k-mers that are made solid for all

3 possible mutations at every position in the read. The mutation that makes the highest

number of k-mers in the read solid is applied if it “solidifies” more than t k-mers, where

t is an internal threshold [24]. This heuristic is iteratively applied either until all k-mers

in the read become solid, or until there are no mutations that can solidify more than t

k-mers. We output the prefix of the read that is solid, or discard the read if none of it is

solid. This partitions all reads that are not discarded into an (accurate) prefix and (less

accurate) suffix that will be corrected at a later stage. The set of reads is divided into

two partitions: fixed and unfixable. The fixed partition has reads that have a solid prefix,

and the unfixable partition contains reads with no solid k-mers. A similar method is

used in[20].

In order to choose the multiplicity threshold m, we assume that k-mers are

generated from a mixture of two models: one erroneous, and the other correct (Figure

6.3). If we assume positional independence of errors in reads, the multiplicity of erroneous

k-mers follows a Poisson distribution, and the multiplicity of correct k-mers follows a

Poisson with a large mean that may be approximated by a Gaussian. We choose m by

fitting a Poisson and Gaussian mixture model to the distribution of k-mer multiplicity

and finding the first local minimum of this distribution (Figure 6.3).

6.B.2 Constructing the repeat graph on error-corrected read prefixes

We construct the de Bruijn graph on the error-corrected read prefixes and

further transform it into the repeat graph. Reads that contain errors or SNPs in the

middle create short undirected cycles in the de Bruijn graph called bulges, and reads that

contain errors in the end create erroneous sources or sinks. Finally, some read errors form

chimeric reads by transforming the sequence in one end of the read to that of a distant

part of the genome, creating an edge that erroneously connects two unrelated contigs.

Transformation of the de Bruijn graph into the repeat graph amounts to removing bulges,
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erroneous sources/sink edges, and chimeric reads as described in [24].

In high-coverage projects, the partition of fixed reads created by error correction

provides sufficient coverage across the genome to create a repeat graph that encodes the

entire genome. However, many sequencing projects still contain low-coverage regions

(often due to sampling bias). Since the error correction step relies upon redundancy

of k-mers in reads, the reads in regions of low coverage may be discarded at this step,

causing fragmentation of the assembled contigs. We found that the unfixable partition

often contains many reads from the low-coverage regions, and their exclusion from the

assembly causes fragmentation of the repeat graph.

In such cases it may be necessary to use what we call “Second Chance Assembly”

– an assembly of all reads discarded during error correction (see Supplementary Material)

6.B.3 Simplifying the repeat graph by transforming mate-pairs into

mate-reads

Since the initial proposal to use mate-paired reads for shotgun sequencing of

the human genome [147], the mate-paired reads have been considered essential to de

novo sequencing. Although in the past the short read mate-paired data have not been

available, various next-generation sequencing vendors have recently released modules

for high-throughput production of mate-pairs. EULER-USR utilizes the mate-paired

reads by modifying the EULER-DB approach [104] for incorporating mate-pairs into the

Eulerian assembly framework.

When mate-pairs are available, the input to the fragment assembly is a set of

mate-pairs: “readstart - GAP of length d - readend”. The key idea of EULER-DB [104]

is using the repeat graph to transform the mate-pairs “readstart - GAP of length d -

readend” into mate-reads “readstart - SEQUENCE of length d - readend” by filling in the

gap of length d with an appropriate path in the repeat graph. As a result, EULER-DB

has an ability to generate contiguous long reads of length 2 · l + d from short mate-

paired reads of length l. These long mate-reads are subjected to the traditional Eulerian

assembly afterwards. In reality, the gap length is not fixed but varies from d− δ to d+ δ.

Each mate-read corresponds to a mate-path between the mate-paired reads mapped to

the repeat graph.
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While EULER-DB worked well for traditional Sanger sequencing [107], it needs

to be modified for short reads. The key parameter of EULER-DB is the efficiency, the

percentage of mate-pairs successfully transformed into mate-reads. This transformation

is trivial if there is a single path of length ≈ d between readstart and readend in the

repeat graph, as the path is simply used to fill the gap between the reads. This was

indeed the case for the overwhelming majority of Sanger reads making EULER-DB

rather efficient. However, the repeat graphs for short reads are often very complex and

in some cases there are multiple paths of length ≈ d between paired reads (Figure 6.4).

An example of a complex subgraph of the E. coli repeat graph that further illustrates this

point is given in the Supplementary Material. Pevzner and Tang, 2001 [104] described

this problem and proposed an iterative approach to solve it (see Figure 4a in [104]).

EULER-SR [24], Velvet [151], and ALLPATHS [20] all implement the idea of filling the

gap between mate-pairs using the repeat graph and apply it to simulated data (e.g.,

compare Figure 4b in [104] with Figure 5c in [20]). Below we apply EULER-DB to real

Illumina mate-paired reads and show how to extend EULER-DB to analyze complex

repeat graph characteristic for short read sequencing.

The “Breadcrumb” “All paths definition” procedures in Velvet and ALLPATHS

are both aimed at filling up the gap between the mate-paired reads in the repeat graph.

For most mate-pairs in E.coli there is only one path between mate-paired reads. In

such cases the paths found by the “Breadcrumb” and “All paths definition” methods

are equivalent to EULER-DB. However, the remaining mate-pairs are important for

resolving complex tangles and Velvet and ALLPATHS describe different approaches to

addressing this challenge. Below we describe how a simple extension of EULER-DB

addresses this problem.

When there are multiple paths in the repeat graph between a mate-pair (readstart,

readend), we may choose the most likely path by measuring the support each path has

from mate-pairs. Figure 6.4 illustrates the situation when there are many ways to

transform the mate-pair (readstart,readend) into a mate-read using one of the paths be-

tween them. Let edge estart(eend) be the edge where readstart begins (readend ends ).

A mate-pair supports a path P between estart and eend if one of the reads is in either

estart or eend, and the other read is in an edge in P . The number of such mate-pairs



118

for a path P is denoted support(estart, eend, P ). The path P with the highest value

of support(estart, eend, P ) is the most likely path, and is used to create the mate-

path P+ = (estart, P, eend). Note that due to gaps in coverage there may be edges

in the most likely path that are not supported. Furthermore, errors in reads may cre-

ate reads that support edges not on the optimal path. Therefore, we use a path with

maximal Support(P ) among all paths between readstart and readend unless Support(P )

falls below MinSupport threshold. Further details of transforming mate-pairs and into

mate-reads are given in the Supplementary Information.

6.B.4 Assembling error-prone reads (error-correction by threading)

Each read corresponds to a unique read path in the de Bruijn graph representing

the sequence of the read. Since the repeat graph approximates the de Bruijn graph, a

similar argument applies to the read-paths in the repeat graph. A read may be mapped

to the de Bruijn graph by aligning it to a closest subpath in the graph. Since the de

Bruijn graph is built on read prefixes, the path corresponding to every read prefix (prefix-

path) is known thus facilitating the read mapping. We may find the path that the entire

read maps to by searching all subpaths continuing from the known prefix-path, a process

we refer to as threading reads through a graph, or simply threading.

In the case that threading is invoked, the EULER-USR(k,m, l) algorithm pro-

ceeds in five steps. The user has a choice of either specifying all three parameters: k,m,

and l, or specifying a single parameter k. In the latter case, EULER-USR selects the

suitable parameters m and l automatically.

• Detecting accurate read prefixes and correcting errors within them using frequent

k-mers (multiplicity m and higher). This operation generates the set of extremely

accurate (nearly error-free) read prefixes.

• Constructing the repeat graph on error corrected prefixes using k-mers. This op-

eration generates the set of k-mer contigs.

• Threading entire reads through the repeat graph to extend the effective read length.

This operation generates the set of accurate threaded reads.
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• Constructing the repeat graph on threaded reads and generating l-mer contigs

using l-mers (l > k).

• Simplifying the repeat graph by transforming mate-pairs into mate-reads

Once the repeat graph has been constructed on the (accurate) read prefixes, we

attempt to map every fixed read to the graph. However, while mapping of the (accurate)

read prefixes is well defined, mapping of (inaccurate) read suffixes is ambiguous. EULER-

USR utilizes the repeat graph to correct errors in read suffixes.3

Every read prefix ∗ suffix not discarded by error correction is represented as a

concatenation of its prefix and suffix. Since the genome is an Eulerian traversal of its

repeat graph, all substrings of the genome map to paths in the repeat graph. While

the accurate prefix may be uniquely mapped to a path path(prefix) in the repeat graph,

it is not clear how to map the entire read prefix ∗ suffix since suffix is inaccurate. We

argue that to map prefix ∗ suffix, one has to choose one of the extensions of path(prefix)

among all paths of length n (read length) that begin with path(prefix). We denote the

set of such paths as P and argue that a path in P with the minimum edit distance to

the read represents the “best” mapping of the read prefix ∗ suffix to the repeat graph.

While in many cases such a thread-path path(prefix ∗ suffix) may be used to correct the

read prefix ∗ suffix, it has to be done with caution (see below).

If P has a single edge (Figure 6.5a), we correct the read with the sequence on

the edge. However, these reads may not be used to resolve repeats (because they are

on a single edge), nor improve consensus quality (the consensus is used to fix the read),

thus, low quality reads that map to a single-edge are vestigial in terms of improving the

assembly.

If P has multiple paths (Figure 6.5b), we rank paths P1, P2, . . . in P in the

increasing order of their Hamming distances dist(P1), dist(P2), . . . to the read prefix ∗
suffix. While it is tempting to choose the “optimal” path P1 for correcting errors in the

read prefix ∗ suffix it has to be done with caution. The problem is that the sequencing

errors in the inaccurate suffix may transform it into an alternative string that maps to

a “wrong” path in the repeat graph. We therefore check that (i) the optimal path P1

3Error-corrected read suffixes only contribute to enlarging the assembled contigs and do not contribute
to basecalling.
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is sufficiently similar to prefix ∗ suffix, and (ii) the second best path P2 is sufficiently

dissimilar from prefix ∗ suffix. To check these conditions, we use a parameter f , the

expected error rate in read suffixes, and classify a path P as similar to the read if

dist(P ) ≤ f · |suffix|, and dissimilar otherwise. If both conditions (i) and (ii) are satisfied

we use P1 for correcting the read prefix ∗ suffix, otherwise we iteratively trim before the

position of the last difference, and re-thread the read until both these conditions are

satisfied.

To obtain the final assembly that takes advantage of the longer threaded reads,

we build the repeat graph on l-mers for l > k (where k was used to build the original

repeat graph) so that repeats of length l and shorter are resolved. The tradeoff between

the k-mer size and repeat resolution is that edges from the repeat graph G of the genome

(constructed on k-mers) will be split in the repeat graph of reads if there is a gap longer

than n − k between read start positions, where n is the read length. When l > k the

repeat graph of reads constructed on l-mers will be more fragmented than the repeat

of reads constructed on k-mers. We prevent fragmentation of the repeat graph of reads

constructed on l-mers by creating artificial reads x ◦ y for every pair of adjacent edges

(contigs) x and y in the repeat graph of reads constructed on k-mers (k-mer contigs).

One can either set the maximal l = n−2 or empirically chose l to minimize fragmentation

of the graph.

6.C Results

6.C.1 Datasets

We use the following datasets to benchmark EULER-USR and compare it with

Velvet [151], the most accurate among the recently published short read assemblers.

• ECOLI. A set of 29.8 million paired Illumina reads from the ≈ 4.6 Mb E.coli

genome (227X coverage). For benchmarking we randomly selected 10 million reads

from this dataset. Mapping of reads to E.coli genome revealed that 87% are error-

free. The separation between mate-pairs is 145 ± 25 bp.

• BAC50 and BAC35. A set of Illumina reads from an ≈ 170Kb human BAC gen-
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erated at the Joseph Ecker lab at the Salk Institute.4 This BAC was thoroughly

sequenced over several runs allowing us to generate an error profile that was not

biased to a single run. A total of 2 million 35-50 base reads were generated for

this BAC resulting in 500X coverage allowing us to choose an appropriate subset

for a typical coverage benchmark. We randomly selected reads resulting in 50X

coverage by 50 nt long reads. Mapping these reads from the BAC to the reference

sequence revealed that 20% are error-free and 12% have only 1 error. Furthermore,

84% are error free in the first 30 bases.

While EULER-USR is designed to work with longer reads, the Velvet assembler is

optimized for 35 base long reads and the performance deteriorates for longer reads.

In order to make a fair comparison with Velvet we created a 35 nt read dataset

BAC35 by truncating 50 nt reads from BAC50 to 35 nucleotides resulting in 35X

coverage of the BAC.

• simBAC100 and simECOLI100. A set of simulated 100 base reads from the human

BAC. This set was generated to check whether EULER-USR can support extending

sequencing reactions well beyond their prime. We simulated reads by mapping all

2 million reads from the dataset generated at Salk Institute to the BAC, extending

them up to 100 bases, and simulating random errors. We further selected a set

of resulting 100 base reads so that the coverage was 200X (to ensure that results

were not biased by gaps in coverage). Errors in the resulting 100 base long reads

were simulated using a 1% error rate for the first 35 bases, and 20% error rate for

the remaining 65 bases. This error profile leads to a challenging assembly without

making many assumptions about the distribution of errors along the reads. Our

method for correcting errors using a repeat graph requires that the entire genome is

covered by the high quality prefixes of reads. The simBAC100 dataset includes as

many reads as the BAC50 dataset to ensure that the entire genome is represented

in the repeat graph constructed on 35 bases read prefixes.

The simECOLI100 is the set of simulated 100 base reads from E. coli (100X cov-

erage). Errors were added to the reads according to the same 1%-20% error profile

4This BAC has a repeat content representative of the rest of the human genome.
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used for simBAC100.

• simBAC35. A set of 35 base read prefixes from simBAC100. Because the sim-

BAC100 dataset uses simulated reads, it is not directly comparable to the assem-

blies on real reads. Instead, to perform proper comparison for the effect of thread-

ing reads, we compare the assembly on 100 base (inaccurate) simulated reads to

the assembly on the 35 base (accurate) simulated reads.

6.C.2 Benchmarking

We compared five recently published de novo short read assemblers aimed at

short reads: SSAKE [146], SHARCGS [35], VCAKE [63], Edena [53], and Velvet [151].

Of all assemblers, Velvet performed the best in terms of N50 contig size.

SSAKE is designed for assembling error-free reads, and SHARCGS is designed

for reads with error-rate below 0.05%. Running these two methods on Illumina reads

resulted in filtering of all reads on a preprocessing step or (if preprocessing is turned off)

in an inferior assembly quality. VCAKE is an improvement of SSAKE and is able to

assemble reads with higher error rate. For the BAC35 dataset, VCAKE, Velvet, Edena,

and EULER-USR produced similar assemblies. However, the quality of assemblies gener-

ated by VCAKE or Edena deteriorate with increasing the read length (BAC50 dataset)

producing more fragmented assemblies than Velvet. Furthermore, the assemblies for

the ECOLI dataset by both Velvet and EULER-USR resulted in doubling the N50 con-

tig size as compared to VCAKE or Edena. We therefore decided to limit the detailed

benchmarking to Velvet only.

A goal in the Eulerian approach is to construct the repeat graph Gk(Reads) on

the set of Reads that best approximates the “ideal” repeat graph Gk(Genome) of the

Genome [24] (denoted as REPEAT-GRAPH(k) in the follow-up Tables and Figures),

as every Eulerian path in the repeat graph corresponds to a possible solution of the

fragment assembly problem. However, due to fragmentation, the REPEAT-GRAPH

statistics are misleading because the longer the contigs are, the more likely they are to

be fragmented by low coverage regions (note that fragmentation of long contigs leads to

a quick deterioration of the N50 size). Therefore, uneven distribution of reads over the

genome may turn approximating Gk(Genome) into an unattainable goal. To setup a
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more realistic goal, we transform the set Reads into the error-free set PerfectReads (by

substituting every read with the sequence of the genome it maps to). In the absence of

mate-pairs, the repeat graph Gk(PerfectReads) constructed on this set of reads represents

the best assembly our assembler aims for while assembling the real reads (refereed to as

OPTIMAL-ASSEMBLY in the follow-up Tables and Figures).

6.C.3 How are assemblies improved by mate-paired reads?

To benchmark EULER-USR and VELVET on the ECOLI dataset, we first eval-

uated assembly with unpaired reads in order to later gauge the effect of mate-pairs. Both

the EULER-USR and Velvet (k = 27) assemblies were close to the theoretically optimal

assembly (Table 6.1 and Figure 6.6) with similar N50 sizes (20K for EULER-USR and

16K for Velvet) and no miss-assemblies. The contigs longer than 500 bases in EULER-

USR assembly (those likely to be non-repetitive) contain 6 mismatches, 3 insertions,

and 1 deletion (30 mismatches, 3 insertions, and 3 deletions in the Velvet assembly).

This analysis underestimates the basecalling errors by limiting them to long contigs and

thus avoiding the most difficult repeated regions. Nevertheless, the basecalling accu-

racy appears to be comparable or even better than the accuracy of high-coverage Sanger

sequencing.

Since most mate-pairs are separated by ≈ 145 ± 25 nt, the average length

of transformed mate-reads for this dataset is 2 · 35 + 145 = 215 bp. Table 6.1 and

Figure 6.6 compare EULER-USR and Velvet and illustrate that mate-pairs signif-

icantly improve the assemblies. The N50 length for E.coli assembly increases from

16K to 45K for Velvet and from 19K to 62K for EULER-USR. EULER-USR gener-

ated 127 contigs longer than 1000 bp that is comparable to the typical number of con-

tigs resulting from pre-finished Sanger assembly of bacterial genomes (see [107] and

http://nbcr.sdsc.edu/euler/benchmarking/bact.html). An alignment of the assemblies

to the E. coli genome is shown in the Supplementary Materials.

6.C.4 How are assemblies improved by read-threading?

When estimating input parameters for EULER-USR, our mixture model sug-

gested the multiplicity threshold m = 5 for BAC50 dataset with k-mer size 20. The
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Table: 6.1 A comparison of assemblies of E. coli 35 base Illumina reads, unpaired and
mate-paired. N50 : the size of the contig such that 50% of the assembly is contained in
contigs of size N50 or greater. Length (# contigs) (>20000 nt), total length of all contigs
longer than 20000 and total number of such contigs. We found that Velvet produces
optimal results when run as Velvet(27,5). Missassemblies were counted as contigs that
have portions out of order that are greatr than 150 bases in length, to account for repeat
consensus basecalling.

Assembly N50 Len. (# contigs) Len. (# contigs)
>20000 nt >5000 nt

REPEAT-GRAPH(30) 22,173 2,432,772 (69) 4,232,578 (237)
EULER-USR unpaired 20,096 2,233,252 (68) 4,212,353 (249)
Velvet unpaired 16,424 1,953,255 (59) 4,068,326 (262)
EULER-USR mate-pairs 62,015 4,207,753 (72) 4,481,764 (96)
Velvet mate pairs 45,427 3,800,552 (79) 4,419,542 (131)

Assembly Len. (#contigs) # miss
>1000 nt assemblies

REPEAT-GRAPH(30) 4,484,685 (331) -
EULER-USR unpaired 4,490,810 (355) 0
Velvet unpaired 4,484,065 (416) 0
EULER-USR mate-pairs 4,524,074 (113) 2
Velvet mate pairs 4,507,932 (167) 0

accuracy of error correction was evaluated by mapping error-corrected reads to the BAC

(Table 6.2). ¿From the original sets of reads, 91.3% of the BAC35, 88.6% of the BAC50

datasets, and 98.0% of the simBAC100 dataset were retained after error-correction based

on Spectral Alignment. During graph correction, the removal of certain edges from the

graph truncates the reads that map to these edges, further shortening the average read

length. While most reads in this dataset were trimmed only by a few nucleotides, others

become rather short and need to be extended with threading as described above.
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Table: 6.2 Error rate (per read base) and average length of reads on different stages of the
EULER-USR threading algorithm. The error rate is computed by mapping reads to the
genome. We compute the length and error rate for the original reads, reads corrected by
Spectral Alignment that are retained after graph correction, and finally after threading.
The increased error rate after threading is due to threading reads in a repeat through
their consensus sequence in the repeat graph.

Original reads SA corrected reads Threaded reads
after graph corr.

Dataset Len. Error Avg. Error Retained Avg. Error
rate(%) length rate(%) reads (%) length rate(%)

BAC35 35 0.92 34.9 0.01 91.3 34.9 0.004
BAC50 50 4.36 46.7 0.04 88.6 49.3 0.049

simBAC100 100 13.3 46.6 0.07 98.0 94.5 0.050
simECOLI100 100 12.6 50.5 0.003 99.6 98.8 0.017
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Figure 6.1 The positional profile of basecalling errors for Illumina reads for 2 million 50
nt long reads from a human BAC. The error rate across reads is shown (solid) along with
the error rate for reads with a fixed number of errors. The erroneous nucleotides in each
read are detected by mapping the read to the reference genome. The high error rate in
position 6 is due to the bias in our particular data set rather than a systematic problem
with the Illumina technology.



127

Figure 6.2 From de Bruijn graphs to repeat graphs. The de Bruijn graph of a sequence
contains a vertex for every k-mer in the sequence, and an edge (u, v) for every pair of
consecutive (overlapping) k-mers in the sequence (a). The condensed de Bruijn graph
replaces all paths containing non-branching vertices by a single edge labeled by the se-
quence that generated the path (b). When the condensed de Bruijn graph is constructed
on a genome, it contains some small bulges and whirls representing repeats with slightly
varying repeat copies (c). In the repeat graph the bulges and whirls are removed (e).
The de Bruijn graph of reads contains additional spurious bulges and whirls caused by
sequencing errors in reads (d). The goal of the Eulerian assembly is to construct the
repeat graph of reads (f) that approximates the repeat graph of the genome. Differ-
ent papers use different terminology, e.g., the edges of these graphs are referred to as
“blocks” in [151] and “unipaths” in [20].
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Figure 6.3 Choosing the multiplicity threshold for error correction. All k-mers appearing
in the reads are classified as correct if they appear in the genome and incorrect otherwise.
For a multiplicity x, let correct(x)/incorrect(x) be the number of correct/incorrect k-
mers with multiplicity x (the plots are shown for 50 base long Illumina reads from
a human BAC and k = 20). As expected, most high-multiplicity k-mers are correct
and most low-multiplicity k-mers are incorrect. A Poisson/Gaussian mixture model
was fit to the distribution of all k-mer multiplicities in order to model the process of
generating incorrect (Poisson) and correct k-mers (Gaussian). To show the fit of the
model, the k-mer multiplicities were generated according to the estimated parameters
λ=0.95, µ=25, and σ=9.38, with a mixing parameter ω = 0.95. One may find the
multiplicity m with good separation between correct and incorrect k-mers by estimating
the first local minimum from the distribution of k-mer counts, or the minimum of the sum
of the probabilities of the mixture model, a more smooth distribution. For multiplicity
threshold m=5, only 0.6% of correct 20-mers have multiplicity <5 and only 0.3% of
incorrect 20-mers have multiplicity ≥5.
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(a)

(b)

Figure 6.4 (a) A fragment of a made-up repeat graph formed by three divergent copies
of a repeat. There are many possible paths from readstart to readend. To transform
the mate-pair “readstart - GAP of length d - readend” into a mate-read “readstart -
SEQUENCE of length d - readend”, we compute the support for every path between
readstart and readend and select a path with maximum support. In this example, the
“red” path P1 has greater support than the “blue” path P2. (b) A fragment of the real
repeat graph E. coli containing one of the most common repeats. This demonstrates the
complexity of the portion of the graph which is searched in order to define mate-reads.
Red edges are long edges that are unique in the genome, from which reads readstart and
readend are considered. Black edges are repeats that are gapped by a mate-pair, and
resolved using support from mate-pairs in readstart and readend.
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Figure 6.5 Mapping reads to the paths in the repeat graph. In (a) a read maps to a
single edge. In (b) a read maps to two paths, and the closest one is chosen. In (c) a read
may be mapped to two similar paths implying that trimming is required.

Figure 6.6 Comparison of EULER-USR and Velvet using both paired reads, and the same
reads with mate-pair information removed (ECOLI dataset). The contigs are ordered in
the decreasing order of sizes and the cumulative size of x longest contigs is shown on the
y-axis.
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Table: 6.3 Assembly statistics of various datasets of Illumina reads. N50 : the size of the contig such that 50% of the assembly is
contained in contigs of size N50 or greater. Length (>1000), Length (>500), and Length (>100): the total length of all contigs longer
than 1000, 500 nt and 100 nt, respectively. For Velvet(k − mer size, coverage) we found that the coverage cutoff t=5 maximizes the
assembly quality. The effect of threading reads on assembly quality may be seen by comparing simBAC35 and simBAC100. The rows
describing REPEAT-GRAPH(50) and OPTIMAL-ASSEMBLY(50) are identical since the reads cover the entire BAC in simBAC100
dataset.

Assembly N50 Len. (# contigs) Len. (# contigs) Len. (#contigs) # miss
method/dataset >1000 >500 >100 assemblies

BAC35

REPEAT-GRAPH(25) 1869 97946 (34) 126774 (74) 153378 (194) -
OPTIMAL-ASSEMBLY(25) 1609 92758 (39) 119773 (78) 153348 (225) 0
EULER-USR(20,2,25) 1786 89905 (39) 118576 (80) 147227 (210) 0
Velvet(21,5) 1428 87551 (43) 113522 (80) 138554 (173) 0

BAC50

REPEAT-GRAPH(40) 4168 143224 (39) 160679 (64) 175246 (128) -
OPTIMAL-ASSEMBLY(40) 2023 129392 (55) 152551 (87) 176491 (193) 0
EULER-USR(20,5,40) 2022 119489 (45) 148319 (86) 171082 (164) 0
Velvet(31,5) 1381 84292 (39) 112886 (78) 139176 (169) 0

simBAC35

REPEAT-GRAPH(25) 1869 97946 (34) 126774 (74) 153378 (194) -
OPTIMAL-ASSEMBLY(25) 1847 95180 (35) 159359 (85) 175305 (242) 0
EULER-USR(20,5,25) 1818 98187 (39) 129671 (85) 162109 (242) 0
Velvet(21,5) 1844 97174 (36) 122816 (73) 144578 (153) 0
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Assembly N50 Len. (# contigs) Len. (# contigs) Len. (#contigs) # miss
method/dataset >1000 >500 >100 assemblies

simBAC100

REPEAT-GRAPH(50) 7163 167112 (31) 172990 (39) 175444 (53) -
OPTIMAL-ASSEMBLY(50) 3971 162129 (47) 169794 (58) 176908 (94) 0
EULER-USR(20,5,50) 2639 140718 (47) 163244 (80) 175900 (135) 0
Velvet(31,5) 695 36796 (22) 77557 (80) 120147 (241) 0

simECOLI100

REPEAT-GRAPH(50) 59656 4519592 (140) 4528404 (152) 4583803 (533) -
EULER-USR(20,10,50) 44710 4519083 (182) 4531837 (200) 4562551 (366) 1
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Table 6.3 presents the statistics of of the N50 contig size as well as the cumula-

tive contig size for various datasets (reported for contigs longer than 1000, 500, and 100

bases). Since the N50 statistic is limited we show the differences in assemblies by plot-

ting the cumulative length of contigs ordered by size (Figure 6.7). Figure 6.7 shows how

longer threaded reads improve the assembly quality for both real and simulated reads.5

Figure 6.7 illustrates that while VELVET and EULER-USR show similar results for the

BAC35 dataset (no read threading), the EULER-USR assembly improves for BAC50 and

simBAC100 datasets (due to its ability to utilize the error-prone reads) while VELVET

assembly remains the same. Indeed, even with a modest increases in read length from

35 nt to 50 nt, read threading increases N50 contig size by 13% and the total length of

long contigs (¿1000 nt) by 22%. Figure 6.8 shows how assembly improves with increase

in read coverage when assembling the E. coli genome and leads to a conclusion that the

coverage increase beyond 55X results only in modest increase in assembly quality.

When the BAC50 dataset is assembled without threading reads, the N50 contig

size is 1752 with a net assembly size of 171301. Read-threading only improves the quality

of assembly by correcting reads that pass through 3 or more edges (most reads map to

one or two edges in the repeat graph). Table 6.4 shows the number of reads that are

correctly fixed with threading and how many edges they are threaded through. Although

a very small fraction of reads are threaded through more than 3 edges, they improve the

quality of assembly.6

5In some cases the statistics for EULER-USR is slightly better than for OPTIMAL-ASSEMBLY due
to subtle differences in contig reporting.

6For BAC50 dataset, EULER-USR has 20 mismatches and 2 insertions, a higher error rate as com-
pared to ECOLI dataset. The Velvet assembly on this dataset contains fewer errors: 4 mismatches and
7 deletions.
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Figure 6.7 Comparison of EULER-USR (threading) and Velvet. In each plot, the contigs
are ordered in the decreasing order of sizes and the cumulative size of x longest contigs
is shown on the y-axis (only contigs longer than 100 bases are shown). See Table 6.3 for
the choice of parameters of all programs in these plots. For all assemblies of the BAC,
the locations of the contigs closest to lengths 5000, 2000, 1000, and 500 bases are shown
with a ”+” mark.
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Figure 6.8 Statistics of assembly for various read coverages (E. coli genome). The cu-
mulative length of contigs in order of decreasing length is shown for the 1000 longest
contigs. The cumulative length of contigs of the repeat graph on the genome is shown
as a dashed line.
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Table: 6.4 The results of read threading. Reads are classified into four categories: correct/correct (if threading does not change a
correct read), correct/incorrect (if threading turns a correct read into incorrect), incorrect/correct (if threading turns an incorrect
read into correct), and incorrect/incorrect (if threading turns an incorrect read into an incorrect read). The table classifies reads in
each of these four categories depending on how many edges in the repeat graph they span.

No. reads Total Reads spanning Reads spanning Reads spanning Average read length
one edge two edges > 2 edges (after threading)

BAC50

correct/correct 100942 95781 2161 2550 50
correct/incorrect 207 174 27 6 50
incorrect/correct 55515 52408 1464 1643 42
incorrect/incorrect 347 254 33 60 45

simBAC100

correct/correct 2819 2523 115 181 97
correct/incorrect 5 2 3 0 100
incorrect/corrected 323589 272290 16480 34819 96
incorrect/incorrect 4116 717 888 2511 91
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Table: 6.5 Mapping of the 4136 genes from E.coli into theoretical repeat graph and repeat
graph constructed by EULER-USR and Velvet for the ECOLI dataset (see Table 6.1 for a
description of the parameters). We show the number of genes that are contained entirely
within the constructed contigs.

Method REPEAT-GRAPH EULER-USR Velvet

# complete genes 3937 (95.2%) 3956 (95.7%) 3912 (94.6%)

We analyzed the simBAC100 dataset to evaluate how threading improves the

assembly quality. The Spectral Alignment error correction routine trims reads to on

average 46.6 bases. However, after threading, the average read length was recovered to

94.5 bases. The longer read length allowed us to perform repeat resolution with a larger

k-mer size (50), resulting in a further 18% improvement in N50 assembly as compared

to simBAC35. There is a large disparity between the assembly on perfect reads of

length 100, and the assembly on threaded reads, even though the average threaded read

length is over 90 nt. Most of the repeats in the genome are due to repetitive elements

longer than 100 bases. When the repeats diverge from the consensus sequence they may

be resolved by perfect reads. However, we thread reads through the repeat graph, a

simplified representation of the genome that merges repeats into a consensus. When the

repeat consensus is longer than the average read length, small mutations that differentiate

repeat copies are lost, and therefore are not resolved by reads only covering a portion of

the repeat.

Since bacterial genomes have a compact gene structure, we analyzed how many

genes are captured within contigs constructed by various programs. Even though the re-

peat graph of E. coli is fragmented into many contigs (over 500 for REPEAT-GRAPH(30)),

many contigs are long, and contain multiple genes. We mapped the contigs of REPEAT-

GRAPH, EULER-USR, and Velvet assemblies to the genome, and counted the number of

genes that contained entirely within a contig. Table 6.5 illustrates that contigs captured

by Velvet and EULER-USR capture a large number of bacterial genes thus enabling var-

ious applications. For example, one can perform MS/MS proteomics analysis of bacterial

genomes with Illumina contigs almost as efficiently as with completed genomes [49].

The E. coli genome contains relatively few repetitive elements compared to

the human genome, and so the longer reads should be able to resolve more repeats in
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E. coli than in the human BAC. In the simECOLI100 dataset, the usable read length

was increased from an average of 50.5 nt to 98.8 nt (Table 6.2) by threading. When

we compare the assembly on the simulated read prefixes to the threaded reads, the N50

contig size more than doubles to ≈ 45K. This indicates that the announced increase in

Illumina read length to 100 nt (planned for 2009) will lead to significant improvement

in assembly in the case of unpaired reads. While it is an important improvement in

applications like single cell sequencing (where the mate-paired protocols are not available

yet), it remains unclear whether the read length (as opposed to span) matters in case of

mate-paired reads (i.e., would increasing the length of mate-paired reads from 35 nt to

100 nt lead to significant improvements in assembly if the span remains fixed?)

6.C.5 Does the read length matter?

The availability of two methods to resolve repeats (mate-pairs and threading)

brings the question whether they may be used in conjunction to further improve assem-

blies. To test this, we simulated mate-pairs with span 300±30 nt in the genomes of E.

coli and S. cerevisiae. The read length r was fixed in each simulated dataset, with a

minimum read length of 25 nt and maximum length 100 nt. The goal was to evaluate

whether the quality of assembly (e.g., N50(r), N50 length for reads of length r) with

longer reads improves as compared to the quality of assembly with shorter reads (e.g.,

whether 100 nt mate-paired reads result in a better assembly than 35 nt reads). We

define the read length barrier as the read length after which the quality of assembly does

not significantly improve (e.g., N50 does not increase by more than 5%).

The error-free mate-paired reads were simulated starting at every genomic posi-

tion and each simulated dataset with reads of length r was assembled with EULER-USR

(k-mer size 24). To evaluate the quality of assemblies, we used N50 contig size and effi-

ciency (the percentage of mate-pairs transformed into mate-reads). The efficiency should

be analyzed with caution because only mate-pairs spanning multiple edges in the repeat

graph contribute to improving the assembly. In the E. coli assembly of Illumina reads,

this was only 3.9% of all mate-pairs. As a result, for the simulated E. coli assembly, the

efficiency is rather high for all read lengths (varying from 97.8% for r = 25 to 99.0% for

r = 55 and to 99.2% for r = 100). However, even a small increase in efficiency translates
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into significant increase in N50 statistics (varying from ≈ 40K for r = 25 to ≈ 60K for

r = 55). Therefore, small increases in efficiency may reflect very significant increase in

the number of “useful” mate-pairs, i.e., mate-pairs that improve the assembly. To better

gauge the contribution of such “useful” mate-pairs, we introduce the relative efficiency

parameter, (the percentage of useful mate-pairs transformed into mate-reads (we call a

mate-pair useful if its reads reside on different edges). For the yeast dataset, the relative

efficiency varies from from 61% for r = 25 to 80% for r = 55 (the maximum value among

all simulations is 81%). These results indicate that for the yeast dataset efficiency hardly

change after the read length exceeds ≈ 60 nt.

Our attempt to answer the question “Does the read length matter?” is limited in

many aspects (e.g., reads were simulated error-free, and coverage was perfectly uniform)

and it only answers the question whether the read length matters for EULER-USR

assemblies (rather than for a theoretically optimal assembly with mate-pairs).7 However,

it reveals that for the E.coli, the assembly hardly improves after the read length exceeds

35 nt (efficiency=98.7%, N50=60Kb). However, the assembly deteriorates when the read

length decreases from 35 to 25 indicating that the read length barrier for E.coli (with

the chosen simulation parameters) is ≈ 35 nt.8

For the S. cerevisiae genome, the assembly quality only slightly improves after

the read length exceeds 60 nt (N50 is ≈ 70K for r = 60 but drops to approx62K at

r = 45 and to ≈ 41K at r = 25. It indicates that the read length barrier for S. cerevisiae

(with chosen simulation parameters) is ≈ 60 nt.

6.D Discussion

The recent addition of mate-paired reads to the arsenal of short read tech-

nologies opened a possibility of assembling complex genomes for a fraction of the cost

of the traditional Sanger sequencing. We demonstrated that the Eulerian approach is

well suited for assembling mate-paired short reads by transforming mate-pairs into mate-

7The theoretically optimal algorithms for assembling mate-paired reads remain unknown even for
error-free reads and fixed distance between between mate-pairs [82].

8We found that assemblies of mate-pairs with average span d ± σ may be sensitive to the parameter
σ even for the same d. For example, simulated assemblies with error-free reads may have lower quality
than the real assemblies with the same d but different σ.
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reads using repeat graph. We further complemented the approach from [104] by selecting

the most “supported” mate-reads to resolve some difficult cases when a mate-pair may

be transformed into multiple mate-reads.

In addition to incorporating mate-pairs into fragment assembly, we also show

that the conventional wisdom of “read trimming” may be substituted by threading to

correct error-prone read tails. We demonstrate that if a sequencing technique “suffers”

from quality degradation along the length of a read, it may still be used effectively in

de novo assembly. Despite the fact that short read assemblies are rather fragmented, we

demonstrate that most bacterial genes map to single contigs thus enabling gene discovery

and annotation of bacterial genomes.

The Eulerian approach models the error-prone suffixes of the reads as short

edges to vertices of out-degree zero. All recently developed short read assemblers remove

such edges from the graph (e.g., via the the erosion procedure in [107]) thus essentially

discarding information contained in the error-prone read suffixes. Therefore, even if the

reads are not explicitly trimmed, they are implicitly trimmed after the de Bruijn graph is

constructed (e.g., using the “clipping” procedure in Velvet [151] or “removal of hanging

ends” procedure in ALLPATHS [20]). EULER-USR differs from these approaches by

utilizing information in the error-prone read prefixes.

Our study on the use of mate-paired reads in conjunction with read threading

revealed that there exist some synergy between these two approaches when the read

length remains below the read length barrier. While mate-pairs represent the major

factor in improving the assembly quality, read threading contributes to further improve-

ments in assembly. The next challenge for short-read technologies is to assemble larger

and more complex genomes. The ability to exploit any information possible to resolve

repeats will become important when assemblers move to mammalian genomes.
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6.F Second chance assembly

In low-coverage regions it may be necessary to use “Second Chance Assembly”

to complement the standard EULER-USR assembly pipeline. The “Second Chance As-

sembly” attempts to assemble reads discarded during error correction along with ’hooks’:

edges from the assembly on fixed reads that they may be assembled with. The motiva-

tion is that fragmentation may be caused by a relatively small number of reads that are

discarded during error correction, and if they overlap the ends of contigs they may be

brought into the original assembly to bridge gaps.

In real sequencing projects, read coverage varies greatly and is typically de-

pendent on sequence features. For example, a 45 nt inverted palindrome was correctly

read only 3 times in the entire set of 50 nt long reads with 500X coverage (in the hu-

man BAC dataset). In some applications (e.g., single cell sequencing), the variation in

coverage is even more extreme. The variations in read coverage affect the k-mer cover-

age Coveragek(i) defined as the number of reads covering the position i in the genome

and fully containing the k-mer starting at this position. We define a k-mer gap as a

longest sequence of consecutive genomic positions with Coveragek(i) < m, where m is

the multiplicity threshold. The fluctuations in read coverage create k-mer gaps and each

such gap fragments the repeat graph, as shown in Figure 6.9. It is possible to reduce

the fragmentation of the repeat graph using a lower k-mer multiplicity threshold during

error correction, or further by simply constructing the de Bruijn graph on all available

reads, as error correction filters out reads that cannot be fixed. On the dataset of 50

nt long reads (50X coverage) lowering the multiplicity threshold from 5 to 2, and fur-

ther to 1, decreases the number of gaps in the genome coverage from 27 to 15, and to

9 correspondingly. Lowering the threshold increases the size of the de Bruijn graph,

due to inclusion of a number of erroneous reads, resulting in possible miss-assemblies.

Therefore, we choose the k-mer multiplicity threshold conservatively as a lower bound.

The threshold of 5, used in error correcting the dataset of 50 nt long reads, filters 8.1%
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Figure 6.9 The choice of k-mer size affects the number of k-mer gaps (left Y-axis) in the
the genome (human BAC). An increase in the k-mer size increases both the number of k-
mer gaps and the number of connected components in OPTIMAL-ASSEMBLY(k) (neg-
ative effect). On the other hand, it increases the N50 size of OPTIMAL-ASSEMBLY(k)
(positive effect). The N50 values are presented on the right Y-axis. For the Human BAC
the optimal k-mer size is under 40 bases.

of original reads resulting in a high quality set of reads that covers the majority of the

genome (99.6%). This allows us to drastically reduce memory constraints relative to no

thereshold, and operate on a more simple graph; the graph on reads without a k-mer

multiplicity threshold has 320,261 vertices and 338,836 edges versus 10,060 vertices and

11,464 edges in the de Bruijn graph on error corrected data. Table 6.6 shows the number

of gaps in the genome coverage formed by reads on different stages of our algorithm.

We examined the tradeoff between the k-mer size and repeat graph fragmenta-

tion by constructing the de Bruijn graph on k-mers with k ranging from 10 to 45 nt using

perfect reads. The results are shown in Figure 6.9. The number of gaps grows similarly

to that expected by the Poisson distribution of fragments if coverage is uniform, however

it grows slightly more quickly indicating sample bias at the resolution of less than the

size of a read.
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Read length Coverage Original SA corrected Threaded and
threshold reads reads Second Chance reads

BAC35 5 27 69 41
BAC50 5 27 59 56

simBAC100 5 14 17 14

Table: 6.6 The number of k-mer gaps at different stages of the EULER-USR assembly
(k = 20). The increase in the number of k-mer gaps after the error correction is mainly
caused by discarding reads.

6.G EULER-SR runtime

The EULER-SR running time can be estimated as follows. The input to

EULER-SR is given as a set of t reads of length n each of the overall length N = t ·n. Er-

ror correcting reads and the construction of the de Bruijn/repeat graph takes O(N ·log N)

time [24]. Threading requires a depth first search starting at the edge on which the read

begins. While the total number of edges searched per read may be high, it is usually small

for typical repeat graphs with small vertex degrees (like most repeat graphs). Therefore,

the overall running time is typically O(N · log N).

The Velvet assembly ran considerably faster than EULER-SR: 7 minutes com-

pared to 48 minutes. Since the data required roughly a week to generate, we do not

anticipate assembly time to be a bottleneck in bacterial sequencing projects.

6.H Detailed description of how mate-paths are used to

resolve repeats

Once mate-pairs have been transformed into mate-reads, we use the result-

ing mate-paths to resolve the repeats and simplify the repeat graph (compare with the

Eulerian Superpath Problem discussed in [104]). Mate-paths that begin and end on

edges with sequences unique to the genome may be used to resolve repeats. To detect

if an edge is (likely) unique, first consider a repeat graph G = (V,E) constructed on

a genome. We will use paths in the repeat graph defined by reads (read-paths) and

mate-pairs (mate-paths) to label edges as unique or not (read-paths and mate-paths cor-

respond to superpaths in [104]). The motivation for determining which edges are unique
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are from solutions to the Chinese Postman Path (CPP) discussed in [24]. A CPP PCP

is a path of minimal length that visits every edge at least once. Edges that are visited

multiple times on the CPP are not unique. The path PCP may be replaced by an Eule-

rian path if edges are replaced by multiedges with a count equal to the number of times

they are traversed in PCP [104]. Let P = (P1, . . . Pn) be a set of arbitrary subpaths from

PCP , but for the sake of simplicity, assume that no path in P is fully contained by any

other path in P. If an edge e is represented by a sequence that is unique in the genome,

then only one path path in P may begin with e, and only one path from P may end with

e. When more than one path from P begins with (ends with) e, there is more than one

sequence in the genome that begins with (ends with) e, therefore e is not unique. The

converse is not necessarily true; it is possible that only one path from P starts and ends

at e because P is a set of arbitrary subpaths from PCP . We denote an edge as unique if

the above condition holds given a set of paths P.

In assembly projects, the PCP is not known and the goal is to detect it using

mate-pair information. Mate-paths that start and end on unique edges must be part of

PCP . To detect unique edges using reads, the set of sub-paths from the repeat graph

are defined by read-paths PR and mate-paths PM . A path that begins and ends on

unique edges is a resolving path. To find resolving paths, let P = PR ∪ PM . Again, for

simplicity, assume no path in P is fully contained by any other path in P (if not, P is

further processed to remove such paths). For each edge e, start(e) is the the number of

paths starting at e, and end(e) is the number of paths ending at e. When a path P from

P begins at an edge es with start(es) = 1 and ends on an edge ee with end(ee) = 1, P is

a resolving path, and may be used to link es to ee in the assembly.

The repeat graph is transformed using resolving paths to route paths out of

repeat tangles (similar to the equivalent transformations in [104]). Given a resolving

path P begining on an edge (sstart, dstart), and ending on edge (send, dend). The edge

(sstart, dstart) is replaced by an edge (sstart, dend), and edges (sstart, dstart) and (send, dend)

are removed from the graph. The sequence of (sstart, dend) is set to the sequence of the

path (estart, P, eend), and all reads from mate-pairs that supported P are mapped to the

new edge. Each edge contains a list of reads that map to it in the assembly. Reads that

supported path (estart, P, eend) are removed from edges along P , and re-mapped to the
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new edge (sstart, dend). When no reads map to an edge, the edge is removed from the

graph.

There are two difficulties when labeling edges as unique: an edge corresponding

to a duplicated sequence is marked as unique (false positive), and an otherwise unique

edge may be considered duplicated (false negative). The false positive labels result from

missing paths due to a lack of coverage, i.e. no end of a mate-pair is sampled from a

duplicated sequence. When coverage is high, we found that the rate of misclassifications

is very low when considering edges of a minimal length 200 for E. coli. The second

misclassification arises when paths are added erroneously to the graph due to reads that

contain sequencing errors. Although error correction is performed both prior to assembly,

and in graph correction operations, errors typically remain in repeat regions. We found

that the set of paths P contains very few erroneous edges, although only using P results

in more false positive edges. As a result, we resolve tangles first using PR ∪ PM , then

only PM .

6.I Paired-end assemblies using EULER-SR and Velvet

Figure 6.10 illustrates the results of both Velvet and EULER-SR by mapping

contigs to the E.coli genome.
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Figure 6.10 Comparison of contigs generated by EULER-SR and Velvet. The gap at the
top shows where the reference genome was linearized.
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Future Directions

The initial (and largely theoretical) studies regarding short read fragemnt as-

sembly [23, 148] showed that contrary what some had believed, it was feasible to as-

semble genomes using short reads to similar quality of Sanger sequencing. When the

inital short read data was released, several methods were quickly implemented and pu-

bished [35, 146, 63], although they were written for perfect data or unrealistically high

expectations of read quality. In the following year, four methods were published that are

now considered “industrial” strength and were sophisticated enough to assemble large

datasets of real data: Edena [53], Velvet [151], ALLPATHS [20], and EULER-SR [24].

The Edena, Velvet, and EULER-SR methods are in wide distribution and use within the

short read sequencing community. The only method not shown thus far to assemble real

reads is ALLPATHS. Our benchmarking tests have shown Velvet to produce the high-

est quality assemblies, second to EULER-SR. Although we have shown higher assembly

quality using EULER-SR (for N50 values) than Velvet, others have reported the best

quality by assembling data with all methods, and combining the result.1.

There is a large community of users of EULER-SR: over 320 investigators have

registered to download the source, and many have reported favorable results using it. In

addition to the original application to assemblying bacterial genomes with EULER-SR,

the versitility of high-throughput short read sequencing have lead to a large number of

applications, many of which will benefit from de novo assembly.

1Shmuel Petrovsky, personal communication

147
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7.A RNA-Seq Assembly

The field of functional genomics has been driven by microarryas for nearly the

last decade. Microarrays, effectively massively parallel, miniaturized Northern blots on

a chip, have several disadvantages. First, there is a large amount of noise with sequences

with low expression levels due to cross hybridization, and volumes of publications have

been dedicated to the statistical analysis of such data. More importantly, sequences not

covered by probes are obviously left out from expression analysis.

The approach of RNA-Seq is to sequence cDNA samples in order to measure

expression. Although the method is young, there are already protocols and publications

showing that RNA-Seq analysis is comparative to microarrays [81, 86]. As sequencing is

nearing the price-point where it is feasible to replace microarrays by sequencing, RNA-

Seq will become more widespread.

RNA-Seq has the benefit that it is not limited to measuring expression of a

probe set. Furthermore, since the sampling of cDNA is stochastic and fairly uniform, it

is possible to quantify relative expression levels between two samples. The applications

in [81, 86] measure RNA by mapping reads back to RefSeq. This analysis is limited

because it does not identify splice forms, relative abundance of splice forms, and abberant

splicing (such as in tumor genomes).

We have applied EULER-SR to the assembly of RNA-Seq from tumor cells in

a collaboration with Catherine Quist and Arul Chinnaiyan. This analysis was able to

assemble the noncoding sequence MALAT1, which was difficult to detect using arrays

as well as mapping RNA-Seq reads because of its repetitive nature. Using Euler-SR the

high level of the ncRNA was immediately apparent and Dr. Quist was able to use the

assembled region to select an area to consider when calculating an expression level using

RNA-seq.

Although there has already been success demonstrated with EULER-SR for de

novo assembly of RNA-Seq data, many improvements may be made. First, EULER-

SR performs error correction prior to assembly that assumes uniform of sampling of

reads. The k-mer spectrum of reads is counted, and k-mers that appear above a certain

threshold are considered to be correct. Since RNA-Seq samples uniformly from a wide
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range of expression, the assumption of uniform coverag is not valid. Since the quality of

the assembly depends largely on the preprocessing error correction, methods need to be

developed to correct errors in reads sampled from a wide range of expression values.

Furthermore, although EULER-SR maintains a list of multiplicity of reads on

every contig that is assembled, this information obscures information about abundance

of splice variants. Every splice variant corresponds to a unique path in the repeat graph

built on RNA-Seq reads. Robust methods remain to be developed to determine what

splice variants are present in a sample, and their relative abundance using repeat graphs.

7.B Single Cell Sequencing

The current protocol to sequence a species is to collect DNA from a large sample

of cells so that there is enough DNA to amplify before sequencing. For bacteria, the

approach is to take a cell, and amplify it in a culture. For rapidly evolving species such as

most prokaryotes, this may obscure how much genetic diversity is present. An alternative

approach is Single Cell Sequencing [73] (SCS). In SCS, the genome is amplified using a

random-primer based method called Multiple Displacement Amplification (MDA). While

MDA is able to amplify enough DNA to sequence, it has the inherent drawback that

some regions are amplified exponentially more than others.

Similar to the problem faced by de novo asembly of RNA-Seq data, de novo

assembly of SCS must be able to account for widely varying coverage, rather than the

uniform coverage one would expect when sequencing a large clonal sample.

7.C Large Genome Assembly

The initial release of “Next Generation” high-throughput sequencers produced

enough reads for 50-100× coverage of bacterial genomes, reaching the minimal required

coverage for assembling short reads. As of 2008 it is still cost-prohibitive for many labs

to produce this coverage of larger, 100Mbase, genomes, and so the focus of de novo

assembly has been on the assembly of bacterial genomes. Due to large investments

from the National Human Genome Research Institute, sequencing throughput will likely

increase again by several orders of magnitude (for “Next2 Generation” sequencers), so
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that it will be reasonable to sequence a mammalian genome in a single sequencing run.

Such throughput will be useless if current methods are not able to assemble them.

EULER-SR has been shown to work on bacterial and yeast genomes. The next

development is to use the current implementation to assemble the Arabidopsis thaliana

and Caenorhabditis elegans genomes (both roughly 120Mbase).

7.D Metagenomic Assembly

EULER-SR has been used to assemble data from two separate oceanographic

metagenomic samples: coral samples by Forest Rhower, and seawater samples by Vaughn

Iverson in the Virginia Armbrust Lab at the University of Washington. The latter case

was accompanied by proteomic analysis to map peptides to contigs assembled from ABI

SOLiD reads. This analysis was performed on reads assembled without using mate-

pair information. EULER-SR can currently use mate-paired reads to assemble bacterial

genomes, but it remains to be shown how paired-ends will aid in assembling metagenomic

samples.
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