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The Kinematic Sunyaev-Zel’dovich Effect with Projected Fields II: prospects,
challenges, and comparison with simulations

Simone Ferraro,1, 2, ∗ J. Colin Hill,3 Nick Battaglia,4 Jia Liu,3 and David N. Spergel4

1Berkeley Center for Cosmological Physics and Department of Astronomy,
University of California, Berkeley, CA, USA 94720

2Miller Institute for Basic Research in Science, University of California, Berkeley, CA, 94720, USA
3Dept. of Astronomy, Pupin Hall, Columbia University, New York, NY USA 10027

4Dept. of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ USA 08544

The kinematic Sunyaev-Zel’dovich (kSZ) signal is a powerful probe of the cosmic baryon distri-
bution. The kSZ signal is proportional to the integrated free electron momentum rather than the
electron pressure (which sources the thermal SZ signal). Since velocities should be unbiased on large
scales, the kSZ signal is an unbiased tracer of the large-scale electron distribution, and thus can be
used to detect the “missing baryons” that evade most observational techniques.

While most current methods for kSZ extraction rely on the availability of very accurate red-
shifts, we revisit a method that allows measurements even in the absence of redshift information
for individual objects. It involves cross-correlating the square of an appropriately filtered cosmic
microwave background (CMB) temperature map with a projected density map constructed from a
sample of large-scale structure tracers. We show that this method will achieve high signal-to-noise
when applied to the next generation of high-resolution CMB experiments, provided that component
separation is sufficiently effective at removing foreground contamination. Considering statistical
errors only, we forecast that this estimator can yield S/N ≈ 3, 120 and over 150 for Planck, Ad-
vanced ACTPol, and a hypothetical Stage-IV CMB experiment, respectively, in combination with
a galaxy catalog from WISE, and about 20% larger S/N for a galaxy catalog from the proposed
SPHEREx experiment. We show that the basic estimator receives a contribution due to leakage
from CMB lensing, but that this term can be effectively removed by either direct measurement or
marginalization, with little effect on the kSZ significance. We discuss possible sources of systematic
contamination and propose mitigation strategies for future surveys. We compare the theoretical
predictions to numerical simulations and validate the approximations in our analytic approach.

This work serves as a companion paper to the first kSZ measurement with this method, where
we used CMB temperature maps constructed from Planck and WMAP data, together with galaxies
from the WISE survey, to obtain a 3.8 - 4.5σ detection of the kSZ2 amplitude.

PACS numbers: 98.80.-k, 98.70.Vc

I. INTRODUCTION

The amount of baryonic matter in the Universe is
tightly constrained at high redshift by measurements
of the primordial cosmic microwave background (CMB)
anisotropies [1, 2] and of the abundance of light elements
formed through the process of Big Bang nucleosynthe-
sis (BBN) [3]. The baryonic abundance of the present-
day Universe must satisfy these primordial constraints,
assuming the absence of unknown, exotic physics. How-
ever, the cosmic baryon census at low redshifts has long
fallen short of the expected value (e.g., [4, 5]), especially
for halos smaller than galaxy clusters, such as individ-
ual galaxies or groups of galaxies. One hypothesis is that
these “missing baryons” reside in an ionized, diffuse com-
ponent known as the Warm-Hot Intergalactic Medium
[6], which has been difficult to detect in X-ray emission
due to its relatively low density and temperature. Obser-
vations of highly ionized gas in quasar absorption lines
provide some evidence and constraints on its properties

∗Electronic address: sferraro@berkeley.edu

[7, 8].

The kinematic Sunyaev-Zel’dovich (kSZ) effect is
caused by Compton-scattering of CMB photons off of
free electrons moving with a non-zero line-of-sight (LOS)
velocity [9–11]. The corresponding shift in the observed
CMB temperature is proportional to both the total num-
ber of electrons (or optical depth) and their LOS velocity,
which is equally likely to be positive or negative. More-
over, the kSZ signal should be unbiased, in the sense that
halos of different masses move in the same large-scale
cosmic velocity field, and therefore it is a direct probe
of the electron density. Thus it can be used to measure
the ionized gas abundance and distribution in galaxies
and clusters. These measurements can be performed as
a function of mass and redshift (and other galaxy proper-
ties of interest), informing us about the extent and nature
of feedback processes.

If the cluster optical depth can be determined through
other methods, the kSZ effect can be used to measure
statistics of LOS velocities, which are sensitive to the rate
of growth of structure and are hence a powerful probe of
dark energy or modified gravity [12].

The kSZ effect was first detected in Atacama Cos-
mology Telescope (ACT ) data by studying the pairwise
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momenta of luminous galaxies in the Baryon Oscillation
Spectroscopic Survey (BOSS) DR9 catalog [13]. Recent
analyses of the Planck, ACTPol and South Pole Tele-
scope (SPT-SZ ) datasets have found additional evidence
for the signal, using large-scale structure catalogs from
the Sloan Digital Sky Survey (SDSS) and Dark Energy
Survey (DES) [14–17]. A high-resolution analysis of a
particular galaxy cluster also found evidence for the kSZ
effect in that system [18, 19].

Most kSZ estimators in the literature [12, 20–23] re-
quire spectroscopic redshifts. The use of photometric
redshifts leads to a large degradation in the statistical
significance of the kSZ detection [24, 25]. In this paper,
we revisit a method that only makes use of projected
fields and therefore does not require individual redshifts
for each object, but only a statistical redshift distribution
for the low-redshift tracers used in the analysis. Such a
distribution could be constructed from photometric red-
shift data, but even photometric redshifts are not nec-
essarily required — a well-understood sub-sample cross-
matched to existing redshift catalogs would suffice. The
main motivation of this estimator is that photometric
or imaging surveys are much cheaper than their spectro-
scopic counterparts and are able to map larger volumes of
the Universe. An excellent example is the Wide-field In-
frared Survey Explorer (WISE ) data set [26], which cov-
ers the full sky in the mid-infrared. Moreover, the kSZ
technique described here will have comparable statistical
power and yield independent information to the tradi-
tional methods when applied to future high-resolution
CMB experiments, if component separation allows an ef-
fective removal of frequency-dependent foregrounds.

The basic idea behind this estimator is that because of
the equal likelihood of positive and negative kSZ signals,
an appropriately filtered version of the CMB tempera-
ture map must be squared in real space before cross-
correlating with tracers (e.g., galaxies, quasars, or grav-
itational lensing convergence); we thus refer to this as
the kSZ2–tracer cross-correlation. Crucially, the CMB
temperature map must be cleaned of foreground (non-
kSZ) emission associated with the tracer objects, and
thus a multi-frequency analysis is necessary. First sug-
gested in [27] and studied further in [28], the kSZ2–tracer
cross-correlation probes the mass and LOS velocity of
the ionized gas associated with the tracer objects in the
large-scale structure sample. In other words, the CMB
temperature itself contains kSZ information, and this is
just the lowest-order non-zero estimator that allows one
to extract the signal from a given tracer population with-
out requiring 3D information. This is in essence a mea-
surement of the squeezed limit of the bispectrum of two
powers of the CMB temperature and one power of the
projected tracer field, and it can be shown to be the con-
figuration containing most of the information (we leave
a full treatment of optimality to future work).

Because the estimator is quadratic in temperature, it
is affected by leakage from weak lensing of the CMB, and
this lensing contribution — which can be larger than the

signal in some instances — must be appropriately re-
moved or marginalized over. Fortunately, the multipole-
dependence of the lensing leakage is quite different than
the kSZ2 signal, and thus it can be marginalized with
very little effect on the statistical significance of the kSZ2

signal.

We have recently presented the first measurement of
the baryon abundance with this technique in a compan-
ion paper [29] (hereafter H16). We used a galaxy catalog
constructed from WISE data [26] and CMB tempera-
ture maps cleaned via “local-generalized morphological
component analysis” (LGMCA) [30] constructed from
the Planck full mission [2] and Wilkinson Microwave
Anisotropy Probe (WMAP) nine-year survey (WMAP9)
data [31]. We detected the kSZ2 signal with signal-to-
noise (S/N) ≈ 3.8 − 4.5, depending on the use of exter-
nal CMB lensing information, and thus obtained a 13%
measurement of the baryon abundance at z ≈ 0.4.

Except where explicitly stated otherwise, we use cos-
mological parameters from the 2015 Planck data re-
lease [32].

The remainder of this paper is organized as follows: in
Section II we review the theory, including the approxima-
tions in our analytic approach. In Section III we present
forecasts for current and future experiments, while Sec-
tion IV discusses the lensing contribution and ways to
remove it. In Section V, we present a comparison of the
theory with numerical simulations to check the accuracy
of our approximations. We discuss our recent measure-
ment using this method in Section VI. Foreground con-
tamination poses a serious challenge for this type of mea-
surement, which we discuss in Section VII. We conclude
in Section VIII.

II. THEORY

The kSZ effect produces a CMB temperature change,
ΘkSZ(n̂) = ∆T kSZ/TCMB(n̂), in a direction n̂ on the sky
(in units with c = 1):

ΘkSZ(n̂) = −
∫
dη g(η) pe · n̂ (1)

= −σT
∫

dη

1 + z
e−τne(n̂, η) ve · n̂ , (2)

where σT is the Thomson scattering cross-section, η(z)
is the comoving distance to redshift z, τ is the optical
depth to Thomson scattering, g(η) = τ̇ e−τ is the visi-
bility function, ne is the physical free electron number
density, ve is the peculiar velocity of the electrons, and
we have defined the electron momentum pe = (1+δe)ve.

For concreteness, we consider galaxies as tracers in the
following, but the formalism extends straightforwardly
to any other tracer of the late-time density field (such as
quasars, lensing convergence, or 21 cm fluctuations).
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The projected galaxy overdensity δg is given by

δg(n̂) =

∫ ηmax

0

dη W g(η) δm(ηn̂, η) , (3)

where ηmax is the maximum source distance, δm is the
(three-dimensional) matter overdensity, and W g(η) is the
projection kernel:

W g(η) = bgps(η) . (4)

Here ps(η) ∝ dn/dη is the redshift distribution of the
galaxies (normalized to have unit integral) and bg is the
linear galaxy bias.

As explained in the introduction, the cross-correlation
between the kSZ signal and low-redshift tracers is ex-
pected to vanish on small scales (where the contribution
from the integrated Sachs-Wolfe (ISW) effect is expected
to be negligible) because of the ve → −ve symmetry. We
therefore square the CMB temperature fluctuation map
in real space before cross-correlating it with a tracer den-
sity map.

In order to downweight angular scales dominated by
noise (in our case primary CMB fluctuations and detector
noise), we filter the temperature map in harmonic space
with a Wiener filter F before squaring in real space:

F (`) =
CkSZ
`

Ctot
`

, (5)

where CkSZ
` is the (theoretical) kSZ power spectrum and

Ctot
` is the total fluctuation power, which includes pri-

mary CMB, kSZ, ISW, noise, and any residual fore-
grounds. Our template for CkSZ

` in Equation 5 is derived
from cosmological hydrodynamics simulations [33].

Moreover, the CMB is observed through a finite beam
b(`), so that the total filtered map Θf is related to the
underlying (true) CMB anisotropy Θ by

Θf (`) = F (`)b(`)Θ(`) ≡ f(`)Θ(`) (6)

where we have defined f(`) = F (`)b(`).
In this work, we are interested in the cross-correlation

C
kSZ2×δg
` between the square of the filtered CMB map

and tracers:

〈Θ2
f (`)δg(`

′)〉 = (2π)2δD(` + `′) C
kSZ2×δg
` . (7)

Following [27, 28] we can write the angular power spec-
trum of the kSZ2–galaxy cross-correlation as

C
kSZ2×δg
` =

∫ ηmax

0

dη

η2
W g(η)g2(η)T (k = `/η, η) , (8)

where we have used the Limber approximation [34], and
the triangle power spectrum T

T (k, η) =

∫
d2q

(2π)2
f(qη)f(|k+q|η)Bδpn̂pn̂(k,q,−k−q) .

(9)

Here, the hybrid bispectrum Bδpn̂pn̂ is the three-point
function of one density contrast and two LOS electron
momenta, pn̂. The triangle power spectrum T is the in-
tegral over all triangles with sides k, q, and −k−q, lying
on planes of constant redshift. Since the momentum field
is p ∼ vδ on small scales, the hybrid bispectrum Bδpn̂pn̂
is the sum of terms of the form 〈vv〉〈δδδ〉, 〈vδ〉〈δδv〉,
etc., and a connected part 〈vvδδδ〉c. Ref. [28] argues
that the former term 〈vv〉〈δδδ〉 dominates on small scales
(k � keq) and we will assume that the non-Gaussianity
is weak enough that the connected part can be neglected.

On small scales we can therefore approximate the hy-
brid bispectrum in terms of the 3D velocity dispersion
v2

rms and the non-linear matter bispectrum BNL
m [27, 28]:

Bδpn̂pn̂ ≈
1

3
v2

rmsB
NL
m (10)

We use fitting functions from [36] for the non-linear mat-
ter bispectrum BNL

m and the velocity dispersion v2
rms is

computed in linear theory, which should be an excellent
approximation.1 We test the validity of the approxima-
tions made here by comparison to numerical simulations
in Section V, and we find that these are excellent on the
scales relevant for the analysis of a Planck -like experi-
ment.

At late times, some fraction of the cosmological abun-
dance of electrons lies in stars or neutral media and there-
fore does not take part in the Thomson scattering that
produces the kSZ signal. We define ffree as the fraction
of free electrons, and note that in general this quantity
will be redshift-dependent. The visibility function g(η)

in Equation 1 is proportional to ffree, so that C
kSZ2×δg
`

scales like f2
free and hence can be used to measure the

free electron fraction. In H16 we note that the signal is
also proportional to the (square of the) baryon fraction
fb = ρb/ρm, so that if we allow fb to vary, the ampli-

tude of C
kSZ2×δg
` provides a measurement of the prod-

uct ffreefb. For convenience in what follows we will fix
fb = 0.155, the fiducial value in our assumed cosmology.

Technically, the bispectrum in Equation 10 is the
three-point function of one matter and two electron over-
densities, but for the purpose of forecasts, we will assume
that the free electrons trace the dark matter down to the
scales of interest. While this is expected to be true for an
experiment with the resolution of Planck, this assump-
tion will not hold as experiments proceed to higher reso-
lution. The overall amplitude of the signal is set by ffree,
but the shape of the cross-correlation on small scales is
directly related to the baryon profiles around galaxies and
clusters, which are expected to be heavily influenced by

1 Numerical simulations [35] show that linear theory is a very
good approximation to the velocity power spectrum up to k ≈
0.5h/Mpc, and therefore the velocity dispersion, which receives
most of its contribution from larger scales, should be well ap-
proximated by linear theory.
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feedback processes (for a measurement of the kSZ signal
as a function of scale for group-size tracers see [16]).

III. FORECASTS

In this section we present forecasts for detection of
the kSZ2 signal. As discussed above, the amplitude of

C
kSZ2×δg
` is proportional to the galaxy bias bg so that we

can define(
C

kSZ2×δg
`

)
measured

= bgAkSZ2

(
C

kSZ2×δg
`

)
fiducial

(11)

where the fiducial prediction assumes unit galaxy bias
and full ionization, such that AkSZ2 ∝ f2

free. It is often
the case that the galaxy bias is either known externally
to high accuracy (for example from the auto-correlation
function or in cross-correlation with CMB lensing maps),
or absent (for example if our tracer were lensing conver-
gence). Therefore, in this section we will assume that
we have an external sharp prior on the bias, so that the
fractional error on (bgAkSZ2) is the same as on AkSZ2 . If
this is not the case, we will show that the bias can be
jointly fit together with AkSZ2 , thanks to the fact that

there is a lensing contribution to the measured C
kSZ2×δg
`

which is proportional to bg, but independent of the kSZ
amplitude, as explained in Section IV. If the galaxy bias
is obtained by a joint fit, there will be some (generally
small) degradation in significance that depends on the
experimental configuration,2 but this can also serve as
a very useful consistency check, since the bias obtained
must agree with that determined from external data (e.g.,
the galaxy auto-correlation).

The maximum S/N ratio can be estimated by using
Fisher’s formula:(

∆AkSZ2

AkSZ2

)−2

= fsky

∑
`

(2`+ 1)
(
C

kSZ2×δg
`

)2

C T̄
2T̄ 2,f

` C
δgδg
` +

(
C

kSZ2×δg
`

)2

(12)

where fsky is the observed sky fraction, C
δgδg
` is the tracer

density power spectrum (including shot noise), and for

C T̄
2T̄ 2,f

` we use the Gaussian approximation:

C T̄
2T̄ 2,f

` ≈ 2

∫
d2L

(2π)2
C T̄ T̄ ,fL C T̄ T̄ ,f|`−L| . (13)

Here C T̄ T̄ ,f` = F 2(`)b2(`)(CTT` +CkSZ
` +N`) and CTT` is

the lensed primary CMB temperature power spectrum.
The noise power spectrum N` is given by

N` = ∆2
T b
−2(`) ≈ ∆2

T exp

(
θ2

FWHM`
2

8 ln 2

)
(14)

2 For an experiment with Planck resolution and noise, the degra-
dation in S/N when jointly fitting AkSZ2 and bg is about 15%
(see H16).

where ∆2
T is the pixel noise level of the experiment (usu-

ally quoted in µK-arcmin) and θFWHM is the beam full-
width at half-maximum (FWHM).

Since AkSZ2 ∝ f2
free, if we are interested in a measure-

ment of the free electron fraction ffree, the fractional error
is given by (

∆ffree

ffree

)
≈ 1

2

(
∆AkSZ2

AkSZ2

)
. (15)

Table II shows the expected results for a selection of
CMB experiments and large-scale structure probes. For
concreteness we have picked the WISE galaxy catalog
and a catalog from the proposed SPHEREx [37] space-
based experiment as our large-scale structure surveys of
choice, but we note that the next decade will see a large
number of galaxy surveys, both ground and space-based.
Details about the surveys considered here are given in
Appendix A.

The effective noise level for Advanced ACTPol [38] is
determined by assuming that the component separation
procedure yields a multiplicative increase over the pro-
posed 150 GHz channel noise equal to that found for the
2015 Planck + WMAP9 LGMCA map compared to the
Planck 143 GHz channel noise (a factor of 47/33 = 1.4).
The filters used in these forecasts are shown in Figure 1,
f(`) = F (`)b(`), where F (`) is constructed from Equa-
tion 5 and b(`) is the beam.

As seen in Table II, the statistical S/N for future CMB
experiments is enormous, and thus the actual results are
likely to be limited by systematics such as foreground
component separation or theoretical modeling uncertain-
ties. These and other challenges are discussed in Section
VII.

0 1000 2000 3000 4000 5000 6000 7000 8000
`

0.0

0.2

0.4

0.6

0.8

1.0

Fi
lte

r f
(`

)

Planck LGMCA
AdvACT
S4

FIG. 1: Filters f(`) = F (`)b(`) for the three CMB experi-
ments considered here. The normalization is arbitrary and
the results are independent of the normalization. The filter
for a hypothetical CMB-S4 experiment is matched to the con-
figuration of case 1 in Table I.
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CMB experiment beam FWHM effective noisea

[arcmin] ∆T [µK-arcmin]

Planck (2015 LGMCA map) 5 47

Advanced ACTPol 1.4 10

CMB-S4 (case 1) b 3 3

CMB-S4 (case 2) 1 3

CMB-S4 (case 3) 3 1

CMB-S4 (case 4) 1 1
aHere by “effective noise” we mean the residual cleaned CMB map

noise after component separation.
bSpecifications for a future S4 experiment are not yet set, there-

fore here we consider a few cases for illustration purposes. Actual
properties may be different.

TABLE I: Specifications for the CMB experiments assumed
in the forecasts.

fsky ` range
(

∆ffree
ffree

)−1

Planck × WISE 0.7 100 - 3000 5.2

Planck × SPHEREx 0.7 100 - 3000 5.4

Advanced ACTPol × WISE 0.5 100 - 8000 232

Advanced ACTPol × SPHEREx 0.5 100 - 8000 280

CMB-S4 (case 1) × WISE 0.5 100 - 8000 296

CMB-S4 (case 1) × SPHEREx 0.5 100 - 8000 356

CMB-S4 (case 2) × WISE 0.5 100 - 8000 704

CMB-S4 (case 2) × SPHEREx 0.5 100 - 8000 866

CMB-S4 (case 3) × WISE 0.5 100 - 8000 702

CMB-S4 (case 3) × SPHEREx 0.5 100 - 8000 858

CMB-S4 (case 4) × WISE 0.5 100 - 8000 822

CMB-S4 (case 4) × SPHEREx 0.5 100 - 8000 1014

TABLE II: Forecasts for determining ffree from the kSZ2–
galaxy cross-correlation. The baryon profile on small scales is
very uncertain and in order to minimize the theoretical un-
certainties, we have fixed the filter for all S4 cases to the lower
resolution case 1. In all cases the noise and the resolution are
treated self-consistently.

For a CMB experiment with the angular resolution of
Planck, this method is suboptimal (in terms of S/N per
object) when 3D information is available and should only
be used in the absence of reliable spectroscopic redshifts.
This is easy to understand: our method uses the observed
CMB temperature as a proxy for the cluster peculiar ve-
locity, rather than the 3D position of the tracers. On
large angular scales (` . 3000), the primary anisotropy
is much larger than the kSZ amplitude and the signal-to-
noise per mode is very small. As high-resolution CMB
experiments allow us to access smaller scales, we expect
very high-S/N detections with Advanced ACTPol and
CMB-S4. In fact, at ` & 4000, the fluctuation field is
dominated by kSZ and not by the primary anisotropy.
This point is illustrated in Figure 2, where we show the

correlation coefficient between the total temperature field
that has a blackbody spectrum (i.e., lensed primary CMB
and kSZ on the scales of interest) and the kSZ field.
While this cross-correlation is small at low ` (including all
of the ` range probed by Planck and WMAP), it grows to
order unity at high `. This means that in the absence of
other frequency-dependent foregrounds and noise, high-
resolution CMB maps are a direct probe of the integrated
electron momentum.

Also note that even at Planck resolution, this method
allows us to use much larger photometric catalogs such as
WISE, instead of smaller spectroscopic samples. As seen
in Table II, we expect the combination of Planck and
WISE to yield constraints that are comparable to recent
analyses that use the full 3D (spectroscopic) information
in the galaxy density field, thanks to the fact that we can
use a much larger sample of tracer objects (∼ 108 in our
work with WISE, compared to ∼ 104 − 105 for previous
works [13, 14, 16]).

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

`

0.0

0.2

0.4

0.6

0.8

1.0

r(
`)

=
(C

k
S
Z

`
/
(C

k
S
Z

`
+
C
T
T

`
))

1/
2

FIG. 2: Correlation coefficient between the kSZ “field” and
the total temperature fluctuation field that has a blackbody
frequency spectrum. Noise is not included here since it is
experiment-dependent. The “kSZ” field includes both late-
time and reionization contributions. Note that while the exact
shape and amplitude of the kSZ signal are still uncertain, the
qualitative features should be correct. Here the CTT` power
includes lensing.

IV. CMB LENSING CONTRIBUTION

Since our kSZ2 estimator is quadratic in the CMB tem-
perature, it can potentially receive a contribution from
weak lensing of the CMB, due to matter inhomogeneities
between us and the surface of last scattering (see Ref. [39]
for a review on CMB lensing). In this section, we define
Θ = ∆T/T to be the unlensed (primary) CMB tem-

perature fluctuation and Θ̃ be the corresponding lensed
fluctuation.
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We first note that if we could observe the CMB with
an infinitesimally small beam and did not apply any fil-
ter, then the lensing contribution to our estimator would
vanish. This is because CMB lensing preserves the total
variance, since the lensing amounts to a remapping of
perturbations on the last scattering surface to a slightly
different point in the sky [39].

This argument no longer applies when we observe the
CMB through a finite resolution experiment and the map
is filtered as described above; in this case the weak lensing
contribution can be large. As before, we define the lensed
Θ̃f (`) = f(`)Θ̃(`), where f(`) = F (`)b(`) is the product
of a filter F and the beam function b. We would like to
compute the Fourier transform of 〈Θ̃2

f (x)δg(y)〉:

〈Θ̃2
f (`1)δg(`2)〉 =

=

∫
d2L

(2π)2
〈Θ̃f (L)Θ̃f (`1 − L)δg(`2)〉

=

∫
d2L

(2π)2
f(L)f(|`1 − L|)〈Θ̃(L)Θ̃(`1 − L)δg(`2)〉 .

(16)

The lensed fluctuation field can be expanded in terms
of the unlensed field [39]:

Θ̃(x) = Θ(x) +∇ψ · ∇Θ(x) + . . . (17)

where ψ is the lensing potential, so that we can express

[∇ψ · ∇Θ](L) = −
∫

d2L′

(2π)2
L′ · (L− L′)ψ(L′)Θ(L− L′) .

(18)
Up to first order in the lensing potential we have

〈Θ̃(L)Θ̃(`1 − L)δg(`2)〉 = 〈Θ(L)Θ(`1 − L)δg(`2)〉+
〈[∇ψ · ∇Θ](L)Θ̃(`1 − L)δg(`2)〉+ (L→ `1 − L) + . . .

(19)

The first term is simply the fiducial C
kSZ2×δg
` for the

kSZ2-galaxy cross-correlation that was computed in Sec-
tion II, while the second and third terms are the lowest
order CMB lensing contribution and are equal in mag-
nitude by symmetry. Plugging Equation 19 into 16 we
find

〈Θ̃2
f (`1)δg(`2)〉 = 〈Θ2

f (`1)δg(`2)〉−2

∫
d2L

(2π)2
f(L)f(|`1−L|)

∫
d2L′

(2π)2
L′ · (L−L′)〈ψ(L′)Θ(L−L′)Θ(`1−L)δg(`2)〉+. . .

(20)

The four-point function of the form 〈ψΘΘδg〉 on the
right-hand side of Equation 20 can be decomposed into a
connected four-point function (technically non-vanishing
because of ISW, but subdominant to the other terms in
the range of scales considered here), and two non-zero
contractions 〈ψδg〉〈ΘΘ〉 and 〈ψΘ〉〈Θδg〉, the latter again
non-zero due to ISW. Consider the first one and write:

〈ψ(L′)δg(`2)〉 = (2π)2 C
ψδg
`2

δD(L′ + `2)

〈Θ(L− L′)Θ(`1 − L)〉 = (2π)2 CTT|`1−L| δD(`1 − L′)

Then the main correction due to lensing3 is (from the
right-hand side of Equation 20)

−2

∫
d2L

(2π)2
f(L)f(|L− `1|) `1 · (L− `1) C

ψδg
`1

CTT|L−`1| .

(21)
Similarly, the other contraction gives rise to

−2

∫
d2L

(2π)2
f(L)f(|L− `1|) `1 · (L− `1) CψT`1 C

Tδg
|L−`1|

(22)

3 Here CTT` denotes the unlensed primary anisotropy power spec-
trum.

which is due to ISW and numerically is found to be factor
of ∼ 104 − 105 smaller than the former contribution on
the scales considered here. Thus it will be neglected in
the following.

Changing variables in Equation 21 to L′ = L− `1, we
can rewrite the leading-order lensing contribution as

∆C
T 2×δg
` ≈ −2

` C
ψδg
`

(2π)2

∫ ∞
0

dL′ L′2f(L′)CTTL′∫ 2π

0

dφ f(|L′ + `|) cosφ (23)

Finally, we see that in the absence of a filter and beam
(i.e., f(`) = constant), the lensing correction vanishes
as expected. Examples of the lensing contribution are
shown in Figures 5 and 6. It displays a characteristic
oscillatory behavior that makes it nearly orthogonal to
the kSZ2 signal.

Heuristically, we interpret the shape of the lensing con-
tribution as follows. The overall effect of lensing is to
slightly shift the amount of power that lies within the
filter applied in our analysis, i.e., to slightly change the
local variance in the filtered temperature map. There
are two competing effects due to lensing. First, in over-
dense (underdense) regions, lensing magnification (de-
magnification) shifts the temperature power spectrum to
lower (higher) multipoles, thus decreasing (increasing)
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the amount of power within our filter. Since the large-
scale structure tracer density will fluctuate higher (lower)
in overdense (underdense) regions, this effect produces a
negative correlation between the local variance of the fil-
tered map and the tracer density map. Second, lensing
transfers temperature power from low to high multipoles,
thus increasing the amount of power within our filter in
regions with strong density fluctuations. This effect pro-
duces a positive correlation between the local variance
of the filtered map and the tracer density map. The os-
cillatory shape of the overall lensing contribution comes
from the interplay of these two effects: our results indi-
cate that the first effect dominates on large scales, while
the second effect dominates on small scales, with a zero-
crossing at ` ≈ 1600–1700 for our Planck/WMAP/WISE
analysis (see Figure 6). The exact magnitude and shape
of the lensing contribution depends on the CMB experi-
ment, `-space filter, and large-scale structure survey used
in the analysis.

V. COMPARISON TO NUMERICAL
SIMULATIONS

In this section we compare our theoretical predictions
for the kSZ2 signal and lensing contribution to two dif-
ferent sets of numerical simulations. The first is a cos-
mological hydrodynamics simulation [33], while the sec-
ond is constructed from a dark-matter-only tree-particle-
mesh simulation, in which halos are populated with gas
in post-processing using a polytropic equation of state
and hydrostatic equilibrium [40]. In this section only, the
cosmological parameters for the theory curves are chosen
to match the respective simulations and will in general
differ from the fiducial cosmology assumed in the rest of
the paper.

As a first test, we set the filter f(`) to a constant
and compare our theoretical prediction to the simula-
tions from [33]. These are hydrodynamic simulations of
cosmological volumes (box side-length L = 165 Mpc/h)
using a modified version of the GADGET-2 code [41].
Included in these simulations are sub-grid physics mod-
els for active galactic nuclei (AGN) feedback [33], cos-
mic ray physics [42–44], radiative cooling, star forma-
tion, galactic winds, and supernova feedback [45]. The
halo catalogs from these simulations are incomplete be-
low masses of ≈ 5 × 1013M� [46], and thus we cannot
construct simulated galaxy density maps to mock the
WISE or SPHEREx samples. Instead, we consider weak
gravitational lensing convergence (κCFHT) as the large-
scale structure tracer of choice in this analysis. For the
present comparison, we construct mock lensing conver-
gence maps using mass shells extracted from the simu-
lations and a source galaxy redshift distribution match-
ing that of the Canada-France-Hawaii Telescope Lensing
Survey (CFHTLenS) [47].

The kSZ and the CHFTLenS-like lensing convergence
maps are made at each redshift snapshot following the

methods described in [46] and [48], respectively. We com-
pute the cross-power spectrum for each redshift output
and then average the cross-power spectra over ten ini-
tial condition realizations. We sum these average spectra
over the redshift outputs to compute the final spectrum.
The results of this comparison are shown in Figure 3,
with error bars computed from the scatter amongst the
ten realizations.

One important caveat when comparing theory to simu-
lations is that the velocity field is coherent on very large
scales and thus finite-box simulations can underpredict
the expected signal, since they lack contributions from
velocity modes with wavelength larger than the box size
[49]. To be more quantitative, from Equation 10, the sig-
nal is proportional to v2

rms, and we find that about half
of the contribution to v2

rms comes from k < 0.06 h/Mpc.
As seen in Figure 3, the agreement between theory and
simulations is excellent when using the same kmin and
kmax as the simulations, but there is a large discrepancy
if we neglect the effect of the finite box size.
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theory (kmin/kmax cuts)

FIG. 3: Theoretical cross-correlation between the unfiltered
kSZ2 signal and CFHTLenS-like weak lensing convergence
maps. The blue points with error bars show the result
measured from cosmological hydrodynamics simulations [33].
The dashed red curve shows the fiducial theory computation,
while the solid green curve shows the theory computation
with wavenumber cut-offs matching those of the simulation
(kmin = 0.038 h/Mpc and kmax = 76 h/Mpc). This compar-
ison shows that the simulation results are biased low due to
the lack of super-box long wavelength velocity modes. This
effect can be large, as seen here, but if properly accounted
for, the theory and simulations agree to . 5% over the whole
range considered. Here we have used ffree = 0.85, indepen-
dent of redshift. The small difference between theory and
simulations might be explained by the redshift evolution of
ffree or by the intrinsic uncertainty on our theory curve due
to the fitting function for the non-linear bispectrum, which is
of order 5-10% [36].

Next we compare our predictions to the full-sky simu-
lation of Ref. [40], with a non-trivial filter f(`) that in-
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cludes the weighting and beam appropriate for the Planck
experiment (in particular, as constructed from the 2013
LGMCA map [51]). Note that the simulation box is
1 Gpc/h on a side, so effects related to the low-k cut-off
discussed above are substantially reduced here. For this
analysis, we consider CMB lensing convergence (κCMB)
as our large-scale structure tracer, since ray-traced maps
of this quantity have already been computed from this
simulation. The results are shown in Figure 4. In this
case, since only one simulation is available, we estimate
error bars from the scatter within each multipole bin.

We find agreement between theory and simulation to
better than 10% at ` & 500. There is a minor discrepancy
at very low `, but this might be explained by the filter-
ing applied to the simulations: because of the way that
the lightcone was constructed, the kSZ signal from the
inter-galactic medium was overpredicted on large scales

and therefore a filter of the form w(`) = 1 − e−(`/500)2

was applied to the kSZ map to suppress the large-scale
excess. The authors of [40] caution that “since the simple
filtering modifies the signal at ` < 1000, the maps should
not be used to predict the kSZ signal at these scales”
and thus the slight low-` discrepancy is not a significant
cause for concern.
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FIG. 4: Cross-correlation between the filtered kSZ2 signal
and CMB lensing convergence maps. The blue points with
error bars show the result measured from the simulation of
Ref. [40], using a filter f(`) appropriate for Planck data. The
agreement is better than 10% at high ` and the difference
at very low ` is likely due to the fact that these simulations
do not accurately predict the kSZ power spectrum on large
scales (see Section 2.4 of [40]). The shaded region at ` < 1000
represents the scales that may be unreliable in the simulation.

Finally, we test our lensing leakage prediction from
Equation 23, using κCMB rather than δg as the large-
scale structure tracer of choice. For this comparison, we
calculate the cross-correlation between the square of the
lensed, filtered CMB temperature map (with no other
secondary anisotropy) and the CMB weak lensing con-

vergence map. The result is shown in Figure 5, indicating
an agreement to better than 6% on all scales. Therefore
we conclude that higher order corrections are subleading
and can be neglected at the current level of precision.
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FIG. 5: Lensing leakage in the kSZ2 estimator, inferred from
simulated lensed CMB temperature maps cross-correlated
with CMB lensing convergence maps, i.e., 〈T̃ 2

f κCMB〉. (To be
clear, κCMB is simply the large-scale structure tracer consid-
ered in this test; the lensing leakage calculation can be applied
to any tracer.) The blue points show the cross-correlation
measured from the simulation of Ref. [40], while the solid line
is the analytic calculation presented in this paper (see Equa-
tion 23), and is obtained using fitting functions for the non-
linear matter power spectrum of [50]. The agreement is better
than 3% over the entire multipole range probed here, with the
exception of the highest ` point (where the non-linear correc-
tions are largest and which deviates from the theory curve by
≈6%).

VI. EXAMPLE: MEASUREMENT USING
WMAP, PLANCK, AND WISE

In H16, we recently presented the first measurement
of the kSZ signal using this method. Here we briefly
summarize the analysis as an example of an application
to real data. Some specific technical details are found
in H16. We also discuss several of the challenges of this
measurement in Section VII.

We use a cleaned CMB temperature map constructed
from a joint analysis of the nine-year WMAP [31] and
Planck full mission [2] full-sky temperature maps [30].4

The CMB is separated from other components in
the microwave sky using “local-generalized morpholog-
ical component analysis” (LGMCA), a technique relying

4 http://www.cosmostat.org/research/cmb/planck_wpr2
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on the sparse distribution of non-CMB foregrounds in the
wavelet domain. We refer the reader to [30, 52] for a thor-
ough description of this component separation technique
and characterization of the resulting maps. The method
reconstructs a full-sky CMB map with minimal dust con-
tamination and essentially zero contamination from the
thermal SZ (tSZ) effect, which is explicitly projected out
in the map construction (unlike in, e.g., the official Planck
SEVEM, NILC, or SMICA component-separated CMB
maps, which all possess significant tSZ residuals). Since
the kSZ signal preserves the CMB blackbody spectrum,
it is not removed by the component separation algorithm.
We further clean the LGMCA map to explicitly deproject
any residual emission associated with the WISE galaxies
(e.g., from dust) — see H16 for details.

As discussed in Section II, a filter is applied to the
CMB map before squaring in real space to downweight
scales that are dominated by the primary CMB or noise.
The filter used in H16 is shown in Figure 1 (including
multiplication by the FWHM = 5 arcmin beam of the
LGMCA map).

The WISE [26] source catalog contains more than 500
million objects, roughly 70% of which are star-forming
galaxies [53]. Color cuts can be used to separate galaxies
from stars and other objects. We use the same selection
criteria as Ref. [54] to select a sample of galaxies, origi-
nally based on previous work [55], and we refer the reader
to these papers for a detailed explanation.

The redshift distribution of WISE -selected galaxies
has been shown to be fairly broad, with a peak at z ≈ 0.3
and extending to z = 1 [53]. Here we note that the galaxy
selection is imperfect and that there is some residual stel-
lar contamination, especially close to the Galactic plane.
However, Galactic stars are expected to be uncorrelated
with the kSZ signal, and any contamination will only
lead to larger noise (which is taken into account in our
analysis), but not a bias. For this reason, we apply a con-
servative mask that leaves fsky = 0.447 and 46.2 million
galaxies.

The theory curve is the sum of the theoretical kSZ2 and
lensing templates, the amplitude of each being AkSZ2bg
and bg, respectively (where we have defined AkSZ2 ∝ f2

free
as the amplitude of the kSZ2 signal, with a fiducial ex-
pectation of unity). The best fit amplitude is found by
minimizing the function

χ2(AkSZ2 , bg) = (d−t(AkSZ2 , bg))
TC−1(d−t(AkSZ2 , bg))

(24)
where the theory template is

t(AkSZ2 , bg) = AkSZ2bg tkSZ2 + bg tlens , (25)

d is the data vector (from the measured cross-correlation)
and C−1 is the inverse of the noise covariance matrix
estimated from the data itself, sourced by primary CMB
fluctuations and other sources of noise. For the best fit
we find χ2

b.f. / dof = 13.1 / 11, indicating a good fit.
Figure 6 shows the total best fit to the data, as well as

the individual contributions from the kSZ2 and lensing

templates (matching Figure 1 of H16). In our fiducial
analysis, we marginalize over the lensing contribution,
but as a check we also obtain the galaxy bias by cross-
correlating the WISE sample with Planck CMB lensing
maps [56, 57]. This cross-correlation is shown in Figure
7.

The posteriors for AkSZ2 with and without the prior
on bg from the external CMB lensing data are shown in
Figure 8.
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FIG. 6: Results for the C
kSZ2×δg
` analysis of H16, shown in

blue. The dashed red curve is the best-fit kSZ2 template, the
dash-dotted cyan curve is the best-fit lensing template, and
the solid green curve is the sum of the two. No external prior
on the galaxy bias is used in the fit shown in this plot.
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FIG. 7: Cross-correlation between Planck lensing convergence
maps and WISE galaxies, shown for both the 2013 and 2015
version of the lensing maps. The best fit galaxy bias from the
2015 map is bg = 1.13± 0.02.

The best-fit kSZ2 amplitude and galaxy bias are pre-
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sented in Table III. The results indicate that marginal-
ization over the lensing contribution leads to a degrada-
tion of ≈ 15% in the error bar on AkSZ2 . The correspond-
ing posterior for ffree for our fiducial case (where both the
kSZ2 amplitude and galaxy bias are obtained without
using external CMB lensing data) is shown in Figure 9.
Since ffree ∼

√AkSZ2 , the posterior is fairly non-Gaussian
and shows a considerable negative skewness. For this rea-
son, our best fit measurement ffree = 1.48 is only in mild
tension with the fiducial value of ffree = 1, and from the
posterior we estimate that the probability of ffree ≤ 1 is
5.4%, so that if the posterior were Gaussian, this would
correspond to a 1.6σ upward fluctuation.

Case AkSZ2 bg

(A): C
T2
clean×δg

` only 2.18± 0.57 1.10± 0.11

(B): C
T2
clean×δg

` and C
κCMBδg
` 2.24± 0.50 1.13± 0.02

(C): +10% error on C
κCMBδg
` 2.21± 0.53 1.11± 0.08

TABLE III: Best-fit parameters for the kSZ2–WISE galaxies
cross-correlation from H16. We include three analysis scenar-

ios: (A) using only the C
T2
clean×δg

` data and marginalizing over
the lensing contribution amplitude (i.e., the galaxy bias); (B)
including an external prior on the WISE galaxy bias from

our measurement of C
κCMBδg
` ; (C) same as (B), but includ-

ing an additional 10% theoretical systematic error on the bg

constraint from C
κCMBδg
` , due to uncertainties from nonlinear

evolution and baryonic physics.
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FIG. 8: Posterior distribution for AkSZ2 and bg for the three
analysis cases given in Table III.
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FIG. 9: Posterior probability for ffree, obtained by replacing
AkSZ2 with f2

free in Equation 25 and marginalizing over bg with
no external prior (i.e., Case A from Table III). The maximum-
posterior value is ffree = 1.48, slightly larger than the fiducial
ffree = 1, but we find that the probability of ffree ≤ 1 (the
area shaded in green) is 5.4%. If the posterior were Gaussian,
this would correspond to a 1.6σ upward fluctuation.

VII. CHALLENGES

A. Foregrounds

As in most cross-correlation analyses, there are a num-
ber of possible contaminants that have to be carefully
scrutinized. In particular, any emission or imprint of
the tracer galaxies5 that leaks into the CMB maps will

contribute to C
kSZ2×δg
` and could be mistaken for the

kSZ2 signal. Since the kSZ signal arises from a Doppler
shift in photon energy, it preserves the blackbody spec-
trum of the CMB, simply producing a small shift in the
effective temperature. On the contrary, most other fore-
grounds give rise to emission that differs considerably
from a blackbody at TCMB and can therefore (at least
in principle) be separated using multi-frequency analysis
(see for example [58]). In particular, while most of the
kSZ estimators that require spectroscopic redshifts can
be applied to single-frequency CMB temperature maps,
our method explicitly requires multi-frequency analysis
for foreground subtraction.

To ensure that the foreground separation is effective
a number of null tests can be performed; here we com-
ment on some, but this is far from an exhaustive list.
We have noted before that because of the ve → −ve
symmetry, the kSZ contribution to the cross-correlation

5 or emission from other objects that are correlated with the tracer
population.
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between tracers and the CMB temperature vanishes, i.e.,
〈ΘkSZ

f δg〉 = 0. Checking that this quantity is consistent
with zero is therefore a powerful test for the absence of
contamination by foregrounds, such as Galactic or extra-
galactic dust, tSZ, or radio emission.6

Another useful test for dust or radio contamination is
to replace one power of the cleaned temperature map
in the standard analysis with a tracer of foregrounds
(for example the 545 GHz Planck map is an excel-
lent tracer of dust emission, while the 30 GHz map
traces radio emission). Schematically, we can look at

〈Θclean
f Θforeground

f δg〉. While this cross-correlation also

contains the kSZ2 signal (in principle), any potential con-
tamination will be greatly enhanced over its contribution
to 〈(Θclean

f )2δg〉.

The two null tests just described ensure that fore-
grounds are subtracted correctly on average. Spatially
varying source properties (such as fluctuations in the
spectral index) can lead to a situation where a subset
of the sources have been oversubtracted and the others
have been undersubtracted; the previous null tests, be-
ing linear in Θclean are not guaranteed to be sensitive to
such a contamination7, but our estimator is, since it is
quadratic in Θclean. One way to test for the latter sce-
nario is to generate mock catalogs in which galaxies are
associated with spatially varying emission (with the rele-
vant parameters drawn from a random distribution with
scatter matching known source properties). These mock
catalogs can then be subjected to the foreground sepa-
ration pipeline and used in place of Θclean in the kSZ2

cross-correlation to estimate the expected amplitude of
the effect. All of these null tests were performed in H16.

Note that our method only requires the removal of fore-
grounds that are correlated with the large-scale struc-
ture tracers under consideration. For example, it is well-
known that at high `, the cosmic infrared background
(CIB) is a major contributor to the measured CMB power
spectrum, but the bulk emission of the CIB originates
from unresolved galaxies at z ∼ 1− 3 [59, 60].

We have shown in H16 that component separation can
be used to detect the kSZ2 signal with S/N ≈ 4 on an-
gular scales up to ` ≈ 3000. We have estimated that
the residual contamination is a small fraction of the cur-
rent statistical uncertainty. It is not yet known how
well multi-frequency cleaning techniques will perform at
higher ` and with lower noise levels. This could poten-
tially be the limiting factor in the future performance of
this method, and will be the subject of future analysis.

6 There is a small contribution to this correlation due to the ISW
effect, which is detectable on large scales and is discussed later.

7 they can be sensitive to it if the specific intensity of emission of
the sources is correlated with spectral index or other properties.

B. Gravitational secondary anisotropies

There are other secondary CMB anisotropies that pre-
serve the blackbody spectrum of the CMB and therefore
cannot be removed by multi-frequency component sepa-
ration: the contribution from weak lensing and the ISW
effect [61], as well as its non-linear generalization known
as the Rees-Sciama effect [62]. As we have noted in Sec-
tion IV, the weak lensing contribution can be large and
must be accounted for, but its characteristic ` depen-
dence and the possibility of using external priors allow it
to be cleanly separated from the kSZ2 signal.

Regarding ISW, we should distinguish between the lin-
ear and non-linear contributions. The linear part is due
to the decay of the gravitational potential on large scales
because of the late-time cosmic acceleration. This is a
very large-scale effect and detectable at ` < 100 (for a
measurement of ISW with WISE galaxies, see [54, 63]).
For this reason any analysis of the kSZ2 signal should
explicitly filter out scales with ` less than a few hundred.
The non-linear contribution is expected to be subdomi-
nant to kSZ on all scales with ` > few hundred. Pertur-
bation theory and halo model calculations indicate that
it is at least two orders of magnitude smaller than kSZ
on the scales of interest [64–66]. If non-perturbative ef-
fects are large or the kSZ S/N is large enough (e.g., &
100), then this contribution will need to be modeled and
accounted for.

C. Theoretical uncertainties

Finally, we note that the approximations presented
here, while more than adequate for the analysis in H16,
may need to be improved for the high S/N regime. In
particular, we have used fitting functions for the non-
linear matter power spectrum and bispectrum, which
have a calibration uncertainty ≈ 5-10% [36, 50], consis-
tent with the level of agreement found when comparing to

simulations in Section V. In addition, the C
kSZ2×δg
` sig-

nal depends steeply on the cosmological parameters, for
example scaling as σ6−7

8 [27]. Moreover, for the purpose
of this work we have assumed that the baryons follow
the dark matter exactly on the scales of interest. This
should be a good approximation on the scales probed by
H16, but it is known not to be the case on small scales.
However, the baryon profile in the outskirts of galaxies
and clusters is still very uncertain. In fact, the small-scale

shape of C
kSZ2×δg
` can be used as a probe of the free elec-

tron profile, which is sensitive to the effects of feedback
and energy injection into the intracluster and intergalac-
tic media (for a measurement of the baryon profile with
kSZ and comparison to dark matter, see [16]).

For this analysis, we have used a scale- and redshift-
independent galaxy bias, and moreover we have assumed
that the shape of the lensing contribution is known ex-
actly, up to a multiplicative constant (that is, the galaxy
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bias). While marginalizing over the galaxy bias can mit-
igate some of the theoretical uncertainties on the ampli-
tude of the lensing term, scale-dependent bias or baryonic
effects can introduce systematic effects in the high S/N
regime, which may require appropriate treatment in the
future.

D. Future directions

As discussed in the previous section, unmodelled scale-
dependent effects in the lensing contribution can poten-
tially mimic the kSZ2 signal and bias the results in the
high S/N regime. It is possible to write down estimators
that use temperature and/or polarization that are insen-
sitive to the lensing signal, regardless of its amplitude
and shape. In particular, CMB polarization is lensed by
the same gravitational potential as the CMB tempera-
ture, while it receives a negligible contribution from the
kSZ effect. Therefore an appropriate combination of tem-
perature and polarization can cancel the lensing signal,
while preserving the correct kSZ2 amplitude.

Another improvement that can be implemented in fu-
ture analyses is optimal redshift weighting of the pro-
jected tracer field in Equation 3, which has not been
considered in this work. Ref. [27] shows that the peak
differential contribution to the kSZ2 signal comes from
z ∼ 0.5, and the WISE galaxy distribution is fairly
well matched to the signal redshift distribution. Optimal
weighting should especially benefit surveys for which the
source distribution is peaked at higher redshift or with
very extended tails. For example, the SPHEREx experi-
ment might benefit from downweighting the high-redshift
population tail and it may be possible to obtain higher
statistical significance than that predicted in Table II.

These points will be explored in future work.

VIII. CONCLUSIONS

We have revisited a kSZ estimator based on projected
fields, which does not require expensive spectroscopic
data. This will allow the use of large, full-sky imaging
catalogs for kSZ measurements, yielding accurate deter-
minations of the low-redshift baryon abundance and the
free electron distribution associated with galaxies and
clusters. In a companion paper (H16), we have shown
that this method is already competitive with other kSZ
approaches when applied to current data, allowing a de-
tection of the kSZ signal with S/N ≈ 4 by combining
Planck and WMAP microwave temperature maps with
a WISE galaxy catalog. If foreground cleaning methods
in future experiments are effective at separating the CMB
blackbody component from other microwave sky signals,
we forecast kSZ measurements with S/N > 100 for Ad-
vanced ACTPol and CMB-S4. This will allow precision
measurements of both the abundance and profile of the
baryons associated with the tracer sample. Since both

of these properties are expected to vary with mass and
redshift, the tracer population can be split into multiple
samples that can be compared to high precision. In addi-
tion, other properties such as color, star formation rate,
or AGN activity are expected to influence the gas dis-
tribution, and comparing the kSZ2 signal from multiple
different tracer populations will shed light on galaxy evo-
lution and feedback processes. When combined with tSZ
measurements of the same objects, the gas temperature,
density, and pressure of the intergalactic medium can be
simultaneously inferred, providing information about the
amount of energy injection.

It is also important to point out that while for con-
creteness we have shown forecasts for “galaxy overden-
sity” as our tracer, any tracer of the late-time density
can be used in this approach. In particular we expect
interesting measurements when using galaxy lensing as a
tracer (our measurement will then probe the matter-gas
correlation), or 21 cm observations (to probe the ionized-
neutral gas correlation).

Finally, these measurements will soon complement kSZ
measurements obtained from the small-scale CMB power
spectrum [67, 68], and will be useful to disentangle the
contributions due to late-time structure from those pro-
duced during “patchy” cosmic reionization.
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Appendix A: Assumptions about WISE and
SPHEREx

In this appendix we show the assumed redshift distri-
butions for WISE and SPHEREx galaxies, derived from
Refs. [53] and [37], respectively (see Figure 10). For
WISE we have approximately 50 million galaxies over
half of the sky, while on the same footprint, the full
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SPHEREx galaxy catalog is predicted to have about 290
million objects.

The galaxy bias is assumed constant for WISE, while
for SPHEREx we use the (redshift-dependent) bias
model from [37].
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FIG. 10: Normalized redshift distributions for WISE and
SPHEREx galaxies. The weight pg(z) is related to pg(η) in
Equation 4 by pg(η) = H(z)pg(z).
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