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Abstract

Explorations of Magnetic Phases in F = 1 87Rb Spinor Condensates

by

Jennie Sara Guzman

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dan M. Stamper-Kurn, Chair

Spinor Bose Einstein condensates have widely been sought after as perfect emulators of
condensed matter phenomena, providing widely tunable and highly controlled systems.
Utilizing a novel spin sensitive phase contrast imaging technique, the vector magnetization
is measured in-situ with high spatial and temporal resolution and applied to a number
of experiments. Using optically trapped F = 1 87Rb spinor condensates, the equilibrium
phase diagram of a spin-1 Bose gas is quantitatively explored by observing the evolution of
unmagnetized spin textures and their thermal equilibrium properties. Spin domain coars-
ening and a strong dependence of the spin configuration on the quadratic Zeeman shift is
observed, supporting the predicted mean-field equilibrium phase diagram for small values
of the quadratic shift. Additionally, spinor Bose gases are demonstrated to be an effec-
tive tool in calibrating and characterizing experimental imaging systems. Sinusoidal test
patterns of varying pitch are created and used to extract the modulation transfer func-
tion and quantify optical aberrations which are of immense importance in systems which
claim to have high spatial resolution. Lastly we realize an optical kagome geometry in
a two-dimensional optical superlattice with a scalar Bose gases. The optical superlattice
can be tuned between various geometries, including kagome, one-dimensional stripe, and
decorated triangular lattice. Using atom optics we characterize the various geometries and
demonstrate the versatility of this optical superlattice. The kagome geometry presents a
new experimental arena for studies of geometrically frustrated systems.
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Chapter 1

Introduction

Since the first observation of Bose-Einstein condensation (BEC) in dilute atomic
gases in 1995 [1, 2], the field of ultracold atoms has seen a tremendous growth, both theo-
retically and experimentally. Since then, ultracold atom experiments can be classified into
two categories. The first category consists of experiments which study the fundamental
properties of ultracold atomic gases, much like the initial pioneering experiments in the
field, many of which include studies of supersolidity, dipolar quantum gasses and ultracold
molecules. The second category encompasses the other class of experiments that instead
seek to use ultracold atomic gas as a tool, such as for technological applications, including
magnetometers and gyroscopes [3, 4, 5, 6, 7], or as an experimental test bed for exploring
new physics [8, 9].

The work described in this thesis falls within both categories. While the first few
chapters are concerned with the design and construction of the experimental apparatus, the
last few chapters fit within the two classes of ultracold atomic physics experiments with
one chapter dedicated to exploring magnetic phases in a spinor gas, and the other chapter
dedicated to the construction of an optical kagome lattice.

Given the extraordinary amount of experimental and theoretical work that pro-
ceeds this thesis, only a brief introduction to BEC’s, spinor condensates and optical lattices
will be presented here and in Chapter 5. For a more detailed introduction to Bose-Einstein
condensation and laser cooling and trapping see the following theses [10, 11, 12, 13, 14],
review articles [15, 16, 17, 18, 19, 20, 21, 22, 23, 8] and books [24, 25, 26] on the subject.

1.1 Bose-Einstein Condensation

In this section, a brief overview of the salient features of BEC’s will be presented.
The BEC phase transition occurs when there is a macroscopic occupation of a single quan-
tum state. The condition for condensation can be expressed in terms of the spatial extent
of each atom, described by the thermal deBroglie wavelength,

λdB =
h√

2πmkBT
, (1.1)
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where h is Planck’s constant, m is the atomic mass, kB is the Boltzmann constant, and T
is the temperature. At fairly high temperatures, for instance room temperature, the de-
Broglie wavelength is much smaller than the inter-particle spacing of atoms. However, upon
decreasing the temperature of a sample of atoms, the spatial extent of each atom increases,
and when they begin to overlap, the system undergoes a phase transition to a Bose-Einstein
condensate. At this point, we can no longer think of the atoms as distinguishable particles,
but instead as a giant matter wave. Thus, we can describe the condition for condensation
in terms of the phase space density of the gas, ρ = nλ3

dB, where condensation occurs when
ρ ∼ 1.

Assuming that a gas of N noninteracting bosons occupy the same spatial wave
function, φ(r), the Hamiltonian describing such a system is

H =
N∑
i=1

[
p2
i

2m
+ Vext(ri)

]
, (1.2)

where Vext describes the external trapping potential. As is the case with most ultracold
atom experiments, our BEC is formed in a harmonic trapping potential,

Vext =
1
2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(1.3)

where ωi is the trapping frequency in the ith direction. While in the ground state, the
macroscopic wavefunction is given by the product of single particle states, Φ(ri) = Πiφ(ri).

The transition temperature for Bose condensation can be computed from the total
number of particles using the Bose-Einstein distribution function,

N =
∑
i

1
e(εi−µ)/kBT

, (1.4)

where εi is the energy of the ith state, and µ is the chemical potential. In the limit of large
N and a harmonic trapping potential the BEC transition temperature is

Tc = ~ω̄
(
N

ζ(3)

)1/3

(1.5)

where ω̄ is the geometric mean of the trapping harmonic trapping frequencies, and ζ(3) ≈
1.202 is the Riemann zeta function. The fraction of atoms in the condensate at a specific
temperature is

N0

N
= 1−

(
T

Tc

)3

(1.6)

where N0 is the number of atoms in the condensed state, and N is the total number of
atoms.

1.1.1 Interactions

The theory presented above is formulated for an ideal-gas and neglects the effect
of interactions. In experiments using alkali atoms, however, atom-atom interactions must
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often be taken into account. At large interatomic distances, the interaction is described
by van der Waals forces. These interactions would eventually bind the atoms together.
However, the rate at which this happens is very slow since binding can only take place
in a three-body collision in which one atom pair forms a bound state while the excess
kinetic energy is carried off by the third atom. Given the typically low densities of BEC’s,
n ∼ (1011−1014) cm−3, the probability of three particles colliding simultaneously is low [11].
Thus, the collisions between atoms is almost entirely two-body in nature. We can make
a further approximation if we only consider interactions at low temperatures, commonly
referred to as s-wave scattering for bosons. Here the interaction can be approximated by a
Dirac delta-function

V (r1 − r1) ≈ gδ(r1 − r2), (1.7)

where the constant g = 4πas~2/m characterizes the strength of the two-body interaction
and as is the s-wave scattering length. In general, two-body interactions do not greatly
affect the BEC transition temperature or condensate fraction, but they do affect the density
distribution of the condensate.

Taking into account atom-atom interactions, a nonlinear term is added to the
Hamiltonian. The Hamiltonian for a system of N interacting bosons is

H =
N∑
i=1

[
p2
i

2m
+ Vext(ri)

]
+

4πas~2

m

∑
i<j

δ(ri − rj). (1.8)

Defining the condensate wavefunction as ψ(r) =
√
Nφ(r), where φ(r) is the single particle

wavefunction, the energy of the system, in the context of mean-field theory, is given by

E =
∫
d3r

[
~2

2m
|∇ψ(r)|2 + Vext(r)|ψ(r)|2 +

4πas~2

m
|ψ(r)|4

]
. (1.9)

1.1.2 Spinor Condensates

The vast majority of research involving BEC’s typically deals with a single-component
systems, often involving a single Zeeman sublevel. A particularly intriguing variant of
BEC’s, however, is the extension to multi-component systems, where the internal spin of
the BEC is a new degree of freedom. For instance, the three Zeeman sublevels in F = 1
87Rb BECs. These multi-component systems are referred to as spinor condensates.

Like the scalar BEC interaction described above, the low energy dynamics of a
spinor condensate are described by a pairwise interaction. This contact interaction is ro-
tationally invariant and preserves the hyperfine spin of the individual atoms. The general
form of this interaction is

V (r1 − r1) = δ(r1 − r2)
2f∑
F=0

gFPF , (1.10)

where gF = 4πaF~2/m is the strength of the interaction, aF is the s-wave scattering length
in the total spin F channel, and PF is the projection operator which projects pair 1 and 2
into a total hyperfine spin F [27]. For the experimental studies pursued here, F = 1 87Rb is
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used. In such a system, cold s-wave collisions between two F = 1 atoms are characterized
by total angular momentum 0 or 2 due to symmetry requirements. The resulting contact
interaction potential is

V (r1 − r2) = c0 + c2F1 · F2, (1.11)

where we have used the relation F1 · F2 =
∑2f

F=0 PF to simplify the functional form of the
interaction potential, and c0(2) characterize the strength of the spin independent (dependent)
contact interaction. They are defined as c0 = (g0 + 2g2)/3 and c2 = (g2 − g0)/3.

For a spin-1 spinor condensate, the condensate is either ferromagnetic or anti-
ferromagnetic [27]. In the case of rubidium, c2 < 0 since a2 < a0, resulting in a ferromagnetic
ground state. This is in contrast to sodium spinor condensates, where a2 > a0, yielding
an anti-ferromagnetic ground state. We can gain a slightly more intuitive understanding
of the ferromagnetic nature of rubidium by considering the effective scattering lengths for
total angular momentum, F . The effective scattering length for collisions of total angular
momentum F = 0 is a0 ≈ 5.39 nm (where the spin of the atoms are roughly anti-aligned)
in 87Rb. This is a slightly larger than the scattering length for collisions of total angular
momentum F = 2, a2 ≈ 5.31 nm (where the spins are roughly anti-aligned). This tends to
favor the spin of the atoms to line up, which is what is meant by a ferromagnetic state. In
fact, the experimental work described in the later chapters of this thesis is primarily due
to these spin-dependent contact interactions and their effect on the ground state magnetic
phase for F = 1 spinor condensates.

1.2 Kagome Optical Lattice

In 1968, Vladilen Letokhov first suggested that atoms could be confined to the
wavelength-sized regions of a standing wave of light by means of the dipole force [28]. How-
ever, it would be approximately 20 years later before the first experimental demonstration
of atoms trapped in a one-dimensional standing wave [29]. Since this first successful trap-
ping, the field of optical lattices using ultracold quantum gases has rapidly flourished, with
current lattices occupying multiple dimensions and various geometries, including square,
triangular, honeycomb, double-well, and kagome [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

With the confinement and control that accompany these engineered optical crys-
tals, they have become a tool for cleanly simulating particular Hamiltonians, thereby serving
as a probe for studying fundamental condensed-matter phenomena. Such studies include
the pursuit of quantum magnetism and the Mott insulator to superfluid phase transition in
a two-dimensional square lattice [32, 41, 30].

Much of the work in optical lattices so far has involved primitive Bravais lattices,
the square lattice for instance, with a single lattice site per unit cell [32, 41, 30]. Recently,
however, lattice geometries with multiple-site bases such as the honeycomb, checkerboard,
and double-well superlattice have attracted much interest [37, 38, 39, 40]. Such lattices
have a low-energy orbital degree of freedom which can lead to non-trivial ordering or a new
quantum phase. This is where the lattice adventures of this experiment begin (referred to
as E5). Here we experimentally realize the first optical kagome lattice [38] .

The kagome geometry, consisting of a planar lattice with corner sharing triangles,
presents one of the most intriguing and highly studied crystal geometries in condensed-
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matter physics. This lattice geometry contains three s-orbital bands, one of which is non-
dispersing, which serves to accentuate the role of atom-atom interactions. In fact, the
question of what happens to a BEC, which has a very narrow momentum distribution,
when in this non-dispersing band is an intriguing subject. Furthermore, this lattice ge-
ometry may allow for the observation of new states of matter, such as a quantum spin
liquid or for studies of geometric frustration [44, 45, 46]. For example, competing exchange
interactions between spin 1/2 particles with antiferromagnetic interactions in this lattice
geometry can not be simultaneously satisfied, leading to a macroscopic ground-state degen-
eracy. It is this ground-state degeneracy that make it a promising candidate for realizing
unconventional quantum phases [44, 45, 46]. These are just a small sample of the many
unanswered questions unique to the kagome geometry, thus making it a promising avenue
for experimental pursuits.

1.2.1 Lattice Basics

Presented below is a very brief and basic overview of optical lattices. An opti-
cal lattice is formed by the interference of laser beams, resulting in a spatially periodic,
“egg-crate” potential. This is accomplished by overlapping laser beams with different wave
vectors, where the spatial periodicity of the lattice is λL/[2 sin(θ/2)] and θ is the mutually en-
closed angle of the light beams. The simplest optical lattice to consider is a one-dimensional
pair of counter-propagating laser beams of the same polarization, which creates a standing
wave interference pattern. The periodic potential has the form

Vlat(x) = V0 sin2(kLx) (1.12)

where kL = 2π/λL is the wave vector of the laser light used to form the optical standing
wave and V0 is the depth of the lattice potential. However, the Gaussian beam profile of the
laser beams superimposes a nearly harmonic trapping potential over the periodic potential.
It is this weak harmonic confinement that adds an extra degree of complexity to studies
of condensed matter physics, such as the superfluid-to-Mott insulator phase diagram [47].
Typically, the depth of the lattice potential is described in units of the recoil energy,

ER =
~2k2

L

2m
(1.13)

where m is the mass of a single atom. The recoil energy is a natural energy scale for atoms
in optical lattices.

One of the easiest ways to gather information from these systems is to use time-
of-flight (TOF) analysis. This technique is the same technique used to image BEC’s, which
entails the sudden turn off of the optical traps followed by a duration of free expansion and
then the use of resonant laser light to obtain an absorption image of the cloud. The density
distribution after some expansion time t has the following form (see [48, 49]),

nTOF (r) =
(m

~t

)
|w̃0(k)|2S(k) (1.14)

where k = mr/~t, the envelope function w̃0 is the Fourier transform of the Wannier wave
function, which constitute a set of wave functions that are maximally localized to individual
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lattice sites [50], and the grating-like interference term is

S(k) =
∑
rµ,rν

eik·(rµ,rν)〈a†µâν〉. (1.15)

Here a†µ is the creation operator, creating an atom at site rµ and âν is the annihilation
operator. The resulting pattern after TOF is an interference pattern, closely resembling the
Fourier transform of the real-space lattice geometry. Much like the double-split experiment
which can be thought of as consisting of many wave packet of light that interfere, the origin
of the interference pattern can be thought of as being assembled from many single-particle
wave packets at each lattice site that expand and interfere after the sudden release from
the optical trap. It is this method by which we extract information from our kagome lattice
geometry. Currently, steps are being taken to use other means for data extraction, such
as obtaining information about the quasi-momentum in the lattice using band-mapping
techniques, or using direct spectroscopy in the lattice [36, 8].

1.3 History of the Experiment

I joined the Stamper-Kurn group in the spring of 2006 and began working on the
first spinor experiment, referred to as “E1.” Already working on the experiment at that
time were Lorraine Sadler, Sabrina Leslie, and Dr. Mukund Vengalattore. Having had no
experience with a BEC machine, Mukund welcomed me to the project with easy tasks such
as turning on the machine, lab notebook documentation, and fiber alignment optimization.
One of my first independent tasks was to build a new laser dedicated for phase contrast
imaging. The laser at the time offered too little power, ∼ 1 mW at the fiber output, and the
laser frequency would come out of lock when the turn-off of the Ioffe-Pritchard magnetic
trap was initiated. This was primarily due to the proximity of the laser with respect to
the power supplies. After a lot of trial and error of testing and killing many high-power
diodes at 795 nm (∼ 50 mW), we finally found a diode from Power Technology that worked
reliably well. The final design was located on a work bench since there was no available
room on the topics table.

After building the D1 diode laser, I began to work primarily on E1. The first
major project that I was able to work on was the magnetometry project [3]. It was at this
time that I truly learned the complicated nature of a BEC machine. E1, however, was no
typical machine, as I think back comparing it now to E5. Everyday was a constant battle.
The MOT needed to be tweaked everyday for hours on end, and at the time, it seemed that
the only person who had the magic touch was Mukund. Fortunately, for us, Mukund never
left the lab, often working 30-48 hours straight. Between learning how to run E1, and fixing
the occasional laser (usually the repump laser) and electronic device, I along with Mukund
and the guys from E2 would enjoy the occasional coffee break at Strada and the occasional
late-night run to Kingpin Doughnuts. It would be during these next few years that I would
learn how to independently run a BEC machine.

In early 2008 we were given news that Birge would shut down for an entire month,
starting in mid-December of 2008. Believing that E1 would not recover from such a long
period of being inoperative, we decided to move ahead with plans to build a replacement



7

chamber for E1, referred to as “E5.” Because the construction of E5 had been planned to
occur when Mukund arrived at Berkeley in the summer of 2005, most of the parts of the
apparatus for E5 had been ordered by both Mukund and Sabrina. However, with the new
science coming out of E1, E5 was put on hold and the ordered parts were left to gather
dust in 75 LeConte. In the summer of 2008, Mukund and Sabrina are running E1, and
at this point I was in charge of making and carrying out the plan necessary to get E5 up
and running by the end of the year. Fortunately, at this same time, we gained Friedhelm
Serwane, a fantastic researcher. Friedhlem came with a tremendous amount of experience
in building a cold-atom machine, having built one in his previous group. The plan was
that Friedhelm would work on the project for one year before going back to complete his
doctoral program in Heidelberg. Together with Friedhelm, we designed and constructed
a magnetic transportation system, used to transport atoms to a glass cell. This required
many hours in the student machine shop, where Joseph kept a watchful eye on our use of
Stycast around his ancient equipment. However, much thanks also needs to be given to the
staff in the Physics Machine Shop. Our countless revisions to technical drawings for the
water-cooling mount for the magnetic coils and their unending patience helped us quickly
move forward with the construction of the magnetic transportation system. Soon after, I
began the construction of the Zeeman slower while Friedhelm designed a high numerical
aperture objective, with a design resolution of ∼ 1µm. His knowledge and expertise in the
optics design software, OSLO, not only helped in designing the objective we are currently
using today, but also greatly benefited the lab. Together, we characterized the objective
under a variety of conditions, verifying that it was performing as expected.

In the fall of 2008, we were fortunate to have Dr. Kater Murch join our project.
In his blindingly fast manner, he built the necessary interlock box for the water-cooled
coils and began winding the Helmholtz coils necessary for the compensation fields in the
magneto-optical trap. Then comes the dreaded shut down in December 2008. All electrical
and water to the building was turned off for necessary renovations. We were told of a
predicted date when the electricity, water, and air conditioning would be restored to the
building, but we were skeptical. Then in early January, Friedhelm left for the better life
in Germany, Mukund left for his professorship at Cornell University, and Birge was fully
operational once again. At this point, we put Kater up to the task of telling Dan of our
plans to dismantle E1. With his okay, we moved forward with E5. At Kater’s staggering
pace, we dismantled E1 within a few hours. We separated the two optics table and with
the help of the entire group, we moved the E5 vacuum chamber from B175 to B173/B171.
Within two weeks of dismantling E1, we had atoms in the magneto-optical trap (MOT)
of the new chamber. At this pace, we continued to proceed forward, by first magnetically
trapping a cloud of rubidium atoms and then transporting them 200 mm to the glass cell.
All of which was completed within a month of dismantling E1. Then on March 30, 2009,
much to the surprise of the group and ourselves, we achieved our first BEC in E5.

A few months after achieving our first BEC, we were joined by a visiting student,
Andrew Wenz, who was also from the same group as Friedhelm. Thus, he was nicknamed
“the new Friedhelm.” With Andre and Kater on the project we listened to a lot of music,
drank a lot of coffee from Nefelis Cafe, and made a tremendous amount of progress during
our early explorations of the magnetic phases of a spinor condensate. However, in the fall
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of 2009, Kater ceased being a postdoc on our project and moved to the world of quantum
nano-electronics in Professor Irfan Siddiqi’s research group. Shortly after Kater’s departure,
we were joined by an equally fantastic postdoc, Gyu-Boong Jo. With Gyu-Boong’s help,
we were able to wrap up the spinor equilibrium project and move on to the field of optical
lattices, despite the departure of Andre in the summer of 2010. Midway through wrapping
up spinors and starting lattices, we joined by graduate student Claire Thomas, whose
enthusiasm and optimistic attitude provided a nice change to the atmosphere in the lab.
In the spring of 2011, at an impressive pace, we successfully trapped atoms in our first
two-dimensional optical lattice. However, much thanks needs to be given to Michael Solarz.
His countless hours of help in designing and machining parts for the lattice experiment were
essential to its success. Shortly after trapping atoms in the triangular lattice, we obtained
our first experimental signal of atoms in an optical kagome lattice. We have only begun to
scratch the surface of science to be explored in this system. Thus, I’m sure that with the
current crew and the addition of graduate student Thomas Barter, that there will be an
unending slew of results coming out of the lab.

1.4 Outline of this thesis

The following chapters outline the efforts of my graduate student career. The
construction and operation of the experimental apparatus is presented in Chapter 2. In
chapter 3, a new vector magnetization imaging technique, referred to as spin-echo imaging,
is discussed. The design and implementation of a high numerical aperture imaging system
is presented in Chapter 4. This includes a characterization of the objective which uses the
spinor condensate as a potential in-situ test pattern. Chapter 5 is the first chapter with
published experimental results. Here the equilibrium phase diagram of an F = 1 spinor
condensate is experimentally verified. Chapter 6 presents an attempt to measure the long-
range order in spinor gases. Finally, in Chapter 7, we cease to study spinor condensates and
instead dive into the world of optical lattices, a little late in the game none the less. Here
a description of the optical kagome lattice is presented. Helpful procedures for obtaining a
phase contrast signal and for aligning an optical lattice are included in the Appendices.
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Chapter 2

Experimental Apparatus

This chapter gives a brief overview of the experimental apparatus used for our
studies of spinor condensate. Changes to the apparatus specific to the implementation of
optical lattices are discussed in Chapter 7.

Necessary in making a Bose-Einstein condensate are a few critical elements. These
elements include:

• Ultra-high vacuum (UHV) chamber - A versatile machine, able to achieve pres-
sures ranging from ' 10−9 Torr where the atom source is located to . 10−11 Torr
where the data and mesurements take place, with the latter pressure is typically de-
termined by the type of experiment.

• Atom source The atom source must provide a sufficiently high flux to be subse-
quently laser cooled and trapped. For this particular experiment, the source is a
recirculating rubidium oven.

• Laser system A laser system with adequate tunability of the laser frequency and
power for laser cooling and manipulation of the atomic sample.

• Atom Traps This can be a magnetic trap or an optical trap. It is in these traps that
the probing and manipulation of the atomic sample will take place.

• Computer and Electronic control Also important in the production of ultracold
gases is a precisely timed sequence of events. This includes control over many elec-
tronic components such as power supplies, acousto-optic modulators (AOMs), optical
beam shutters, mirror flippers, etc.

The bulk of this chapter is dedicated to describing each of these systems in some detail.

2.1 Vacuum Chamber

The UHV system is divided into three sections referred to as the “Oven chamber’,’
the “MOT chamber,” and the “Science chamber.” An illustration of the entire experimental
apparatus is shown in Figure 2.1.
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Figure 2.1: Entire Vacuum Chamber.

2.1.1 Oven Chamber

The goal of the oven chamber is to create a high-flux shuttered atomic beam while
simultaneously maintaining the integrity of the remaining vacuum chamber (MOT and
Science chamber). It is designed to be compact in size, allowing for quick and relatively
easy bake-outs, while still permitting the easy replacement of the rubidium reservoir. An
illustration is shown in Figure 2.2. Briefly discussed below are the relevant components to
the oven chamber.

The rubidium reservoir lies in an stainless-steel elbow, and is attached to a nozzle
consisting of a multichannel array of stainless shell tubes. Connected to this is a spherical
square from Kimball Physics (Part MCF600-SS200408).Within the Kimball sphere is a
custom built u-shaped thermoelectrically cooled copper plate (referred to as the “oven cold
catcher”) used to trap the bulk of the rubidium emitted from the oven that does not travel
through to the slower. Between the two copper plates of the oven cold catcher is a rotary
shutter from MDC (Part 54032-GE02-0002) and rigidly attached to this is a thin copper
plate, which is used to block the atomic beam.

Between the oven chamber and the Zeeman slower is a differential pumping tube.
The tube is 70 mm long with an inner diameter of ∼ 7 mm, yielding an approximate
conductance of ∼ 0.5 liters/sec for rubidium atoms at room temperature. Typical operating
pressures in the oven are ∼ 10−9 Torr (last measured in Summer 2009). Lastly, the oven
chamber is isolated from the remaining UHV apparatus via a Viton O-ring-sealed gate valve
from MDC.

Cold Catcher

The oven cold catcher is cooled using a thermo-electric cooler (TEC). The TEC is
attached to a vacuum copper feedthrough which allows for good thermal conduction between
the copper plate in vacuum and the TEC located out of vacuum. A typical problem with
this setup, however, is related to condensation forming on the cold side of the TEC, typically
operated at −13◦ C. As condensation forms, the performance of the TEC deteriorates until
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Figure 2.2: Illustration of the oven chamber.

it has to be replaced, presumably due to corrosion or electrical shorting as water seeps into
the interior of the TEC. To reduce the amount of condensation, we have attached a cap
over the TEC and feedthrough, secured to the spherical square using a highly moldable
clay. This separates the TEC from the moisture ridden environment. Furthermore, we have
filled the cap with desiccant and secured a rough vacuum within the cap using the house
vacuum provided by the building. The TEC is water-cooled using city tap water which
is fed into the cap via brazed copper pipe feedthroughs. The TEC is also powered using
electrical feedthroughs.

To give a little perspective, in the previous experiment, E1, the TECs on the oven
and main chamber cold catcher were replaced every 6-8 months, approximately. The TEC
in this new system have never been replaced, operating continuously since January 2009.

2.1.2 Rotary Feedthrough

The rotary feedthrough from MDC (Part Number 670002) allows for external con-
trol of the atomic beam shutter. Unfortunately, the lifetime of these rotary feedthroughs are
limited. The ball bearings of the feedthrough need to be lubricated, which is accomplished
by rotating the feedthrough by 360 degrees. However, normal operation only rotates the
feedthrough by 45-60 degrees. Thus over time, it becomes more challenging to rotate. We
estimate that the feedthrough worked flawlessly for approximately 400,000-500,000 rota-
tions (30 s duty cycle, 8-10 hours/ day, 5 days/week, 45 weeks/year, 3 years), after which it
can no longer be used. An MDC representative suggests that by rotating the feedthrough by
360 degrees more frequently, perhaps as often as once a day, one could possibly circumvent
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or postpone this problem. We have yet to come up with a viable solution to this problem
that does not involve breaking vacuum. Currently, we do not operate with a shuttered
atomic beam, but instead leave the shutter open while operating the experiment.

2.1.3 MOT Chamber

The magneto-optical trap (MOT) is formed in the MOT chamber, consisting of a
custom 10-way cross. This is illustrated in Figure 2.3. Specifically, the chamber has ten
2 3/4 inch flanges with two oriented along gravity (up/down in Figure 2.3) and 8 in the
orthogonal plane (the perspective of the drawing in Figure 2.3 only permits 4 flanges to
be easily seen). Four flanges are located three inches from the chamber center, while the
remaining six are four inches from the center. Connected to the shorter flanges are the the
Zeeman slower, two glass cells and a four-way cross. By minimizing the distance between
the chamber center and the end of the Zeeman slower, we aimed to reduce the amount of
transverse heating from the slowed atomic beam. The six remaining viewports are allocated
for the MOT laser beams, which do not necessitate short distances to the chamber center.

Cold Catcher

Ion Pump
Titanium Sublimation

Pump

Gate Valve

Heated
Viewport

Slower Laser
Beam

MOT Chamber

Zeeman Slower

5-way Cross 4-way Cross
MOT Laser Beams

Figure 2.3: Illustration of the MOT chamber. The glass cell are not shown in this perspective
of the drawing. If shown, they would be oriented along the axis perpendicular to the page.

One major flaw in this chamber pertains to the flanges which are only three inches
from the chamber center. Careful inspection of this design would have foreseen the lack
of space for bolts and plate-nuts, which are necessary secure any vacuum component to
these flanges. To ameliorate this situation, the bolts and plate-nuts were filed down using a
mechanical grinder in the graduate student machine shop. Several millimeters were taken
off in order to secure vacuum components to these flanges.

The main pumping elements for the chamber are located on a 4-way cross and a
5-way cross. This houses the titanium sublimation pump (Ti-sub). The Ti-sub is connected
to a retractable vacuum piece (Thermionics Z-275 Series Translator), which permits the
deposition of titanium along the entire interior of the main MOT chamber and slower tube
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without blocking the slower laser beam which propagates along this axis (see Figure 2.3).
For operation procedures for the Ti-sub see Appendix A

Connected to the 5-way cross is an additional cold catcher, a 110 l/s ion pump
(Varian Vacion Plus), and a viewport, via an additional gate valve. The main chamber
cold catcher is cylindrical in shape, where the shape geometry was determined by trying
to maximize its surface area while considering the spatial constraints due to the vacuum
chamber. It is situated next to a heated viewport allocated for the slower laser beam, as
shown in Figure 2.3. Like the oven cold catcher, the main chamber cold catcher collects the
atoms that are not captured by the MOT and those which bounce off of the heated slower
vacuum viewport. When initially installed (January 2009), the temperature of the main
chamber cold catcher was −15◦ C, but today it is at −10◦ C while at the same operating
current (2.45 A). This temperature decrease is most likely attributed to moisture buildup
on the interior of the TEC.

2.1.4 Science Chamber

The science chamber consists of a single glass cell (for now), connected to the
shortened flange of the 10-way cross (MOT chamber). The motivation for the having a
science chamber separate from the main chamber and the use of a glass cell as opposed to a
stainless steel chamber is the potential for more optical access. In the previous experiment,
E1, optics used for steering the laser beams for the MOT reduced the available space for
other laser beams, including light used for optical trapping and imaging of the atomic
sample. Thus, by transporting the atoms a short distance from the MOT chamber, we
move to an area uncluttered with optics. However, once all of the magnetic traps, optics
for the optical traps, and bias field coils were positioned, there was very little space left.

Glass Cell

The glass cell is made of Hellma Borosilicate with a thickness of ' 2.5 mm and a
refractive index of n = 1.46. The size of the cell is approximately 1×1×3 inches3, with the
glass-to-metal seal not included in these measurements. The cells were purchased without
the glass-to-metal seal and were later sent to a different company where the seals were
made. However, careful inspection of these glass cells show the front face of the cell to be
littered with scratches. By comparing these glass cells to those without the glass-to-metal
seals, we have determined that these scratches were made by the company which attached
the metal seal. However unfortunate this may be, the scratches on this front face have not
greatly influenced the experiments so far.

2.2 Oven

The oven consists of a rubidium reservoir and a small aperture from which the
rubidium can escape, referred to as the nozzle. The general concept of this oven design has
been described in other references and won’t be elaborated in too much detail here [51, 52].
The main focus here will be on the elements unique to this oven design.
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The rubidium reservoir is contained in a stainless-steel elbow. A rubidium am-
poule, with approximately 5 g, is situated within the elbow and acts as the source to the
reservoir. The vapor pressure, and hence the flux of atoms, has a strong dependence on
temperature, and can thus be well controlled by tuning the temperature of the reservoir.
This is accomplished by a band heater surrounding the bottom flange of the elbow. Roughly,
the vapor pressure increases by an order of magnitude every 20◦C, with a pressure of 10−4

Torr at 100◦C and 10−3 Torr at 120◦C.

Nipple

Copper Adaptor

Swagelok Union

Figure 2.4: Oven nozzle used to hold multichannel array.

The flux of atoms leaving the rubidium reservoir is controlled by a nozzle (see
Figure 2.4) . The nozzle is comprised of a multichannel array of stainless steel tubes (see
Figure 2.5) [53, 54]. Each tube consists of a 17 AWG stainless steel needle with an inner
diameter of 1.295 mm and a length of 25 mm, resulting in a fairly large aspect ratio of ∼ 20.
The seven tubes are held in a Swagelok union and a custom machined vacuum nipple using a
sintering method. To do this, the tubes were placed in liquid nitrogen, where they thermally
contracted in size, then placed into a 4.8 mm tube and held using the Swagelok union. The
Swagelok union is attached to a custom-machined Conflat nipple via a copper adaptor. The
Conflat nipple is machined such that a cylindrically symmetric copper adaptor is able to
be press fit into the nipple. The union is then press fit into the copper mount (see Figure
2.4). The reason for the copper mount is ensure good thermal contact between the heated
stainless steel nipple and the Swagelok union which holds the multichannel array.

This multichannel array is ideal for providing a large flux of highly collimated
atoms [4, 53, 54, 55]. The large aspect ratio of the tubes prevents atoms with large transverse
velocities from traversing through the array. Simply, an atom that approaches a tube either
goes though the tube or collides with the tube wall and is reflected back into the reservoir.
The atoms that make it through the tubes must have a ratio of its longitudinal to transverse
velocity that is similar to the aspect ratio of the tubes. The effect of this is to provide a
well collimated atomic beam.

The criteria for determining the aspect ratio of the stainless steel tubes is based on
the solid angle subtended by the MOT and the collimation due to the Zeeman slower tube.
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We define the degree of collimation as the largest acceptable angle, θ = arctan(rid/l), where
rid is the radius of the inner diameter and l is the length. We aimed for the collimation
of the nozzle, θn, to be comparable to the collimation of the slower tube, θs. For instance,
θn � θs would result in a larger percentage of atoms failing to reach the end of the slower
tube. However, we decided not to have θn � θs, as we were unsure of whether the alignment
of the nozzle would be a problem. The collimation angle of a single stainless steel tube is
arctan(1.295/25/2) ≈ 1.3◦, while the collimation angle of the slower tube is arctan(.76/80) ≈
0.5◦. Thus, it seems that we are close to our desired criteria, but if we decide to redesign
the nozzle, a multichannel array with a larger aspect ratio can be used.

Furthermore, the rejection of atoms with large transverse velocities into the atomic
beam allows for the recirculation of rubidium. Neglecting collisions occurring at the edge of
the tubes, only atoms with sufficiently low transverse velocities compared to their longitu-
dinal velocity are admitted into the atomic beam. To get a sense of the extent that the oven
is recirculating, we can compute the time necessary to deplete the entire reservoir, assuming
no recirculation. The number of atoms traversing through an aperture of area A per unit
time is r = nAv̄/4, where v̄ =

√
8kBT/mπ is the mean velocity of the Maxwell-Boltzmann

distribution. Assuming typical experimental parameters of 115◦C for the reservoir temper-
ature, a density of 1.5× 1013 cm−3, and an open area of A = 0.1415 cm2, the rate of atoms
leaving the oven is 1.6× 1016 s−1. A 5 g ampoule of rubidium has approximately 3.5× 1022

atoms, which translates to a time of ∼ 106 s, or equivalently 30 days of nonstop operation.
In practice, the reservoir is run at a temperature of 115◦C and the nozzle is con-

tinuously run at 200◦C. The reason for this is to prevent the oven chamber from undergoing
many temperature cycles of cooling and heating. We assumed that this would maintain
the integrity of the system. The higher operating temperature of the nozzle prevents ru-
bidium from depositing onto the nozzle and clogging the tubes. However, its proximity to
the reservoir prevents the reservoir temperature from dropping below 69◦C when it is not
externally heated, resulting in a continuous flux of atoms leaving the oven. Under these
operating conditions, the oven has been fully operational since January of 2009, running
for approximately 50-60 hours per week, for a total run time of over 8000 hours with a 5
g rubidium ampoule. Based on the calculation above and the estimated run time on this
reservoir, the oven appears to be recirculating. As of yet, there is no indication that the
oven needs to be changed in the immediate future.

2.3 Optical System

The optical system necessary to achieve ultra-low temperatures in these cold-atom
systems is quite extensive. For the sake of simplicity, the optical system is divided into two
systems, the cooling system and the trapping system. Each system is discussed in some
detail below, along with the finicky nature of certain elements.

2.3.1 Cooling lasers

One of the major selling points of cooling rubidium is the easily accessible laser
light, conveniently derived from external cavity diode lasers (ECDL). To cool rubidium,
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currently being used

O 1 mm 

25 mm 

Figure 2.5: Photograph of the various types of nozzles made in the group. The nozzles
consists of 17 gauge tubes made of 304 stainless steel. The tubes have a diameter of roughly
1 mm and are 25 mm long. The tubes were mounted into a Swagelok housing sintering 7-12
tubes. For our particular experiment, we are using the right-most nozzle pictured.

essentially two colors of light are necessary; light near the cycling transition F = 2 to
F ′ = 3 transition, referred to as the “cooling” light, and light near the F = 1 to F ′ = 2,
referred to as the “repumper” light. However, for each stage in the cooling process, slightly
different frequencies are needed, which make these laser systems for ultracold atomic physics
experiments fairly complex. This is illustrated in Figure 2.6. For simplicity, we’ll focus on
the cooling light first. Light near the cycling transition is derived from a commercial ECDL
laser from Toptica (DL Pro), dubbed the “master” laser, with an output power of ≈ 60
mW at λ = 780.242 nm (measured after an optical isolator). However, prior to 2011, the
master laser light was derived from a home-built laser that preceded my start in the group.
The master laser light is split into two paths, approximately 5 mW is sent down one path
to stabilize its frequency and 55 mW is sent along the other path which is used for cooling
and imaging. The cooling path is then split into three parallel paths (see Figure 2.7): one
path for the slower cooling light, one for the imaging laser light, and the third is for the
MOT cooling light.

For optimal performance, the laser light necessary for the Zeeman slower needs to
be detuned from the F = 2→ F ′ = 3 cycling transition by ≈ 700 MHz and requires 16−24
mW of laser power (empirically determined). To accomplish this, light derived from the
master laser is downshifted in frequency by 265 MHz, via a double-pass AOM, and sent to
a free-running diode laser to establish a master-slave injection lock. The output of the slave
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Figure 2.6: D2 laser frequencies used for cooling 87Rb D2. (top)The detunings used for the
D2 (5s1/2 to 5p3/2) F = 1→ F ′ = 2 transition, referred to as the repumper light. (bottom)
Cooling frequencies derived from the “master” laser, referenced with respect to the cycling
transition (F = 2→ F ′ = 3).
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laser is then combined with the slower repump light (see below) before being fiber coupled
using fiber couplers from Schäfter Kirchhoff (60FC-4-M12-10) and fibers from OZ optics,
then delivered to the science table (optics table with the vacuum chamber). Measuring the
power before and after the fiber, we have a . 50% coupling efficiency, with ≈ 50 mW before
the fiber and ≈ 20 mW immediately after the fiber.

To obtain a MOTs with ∼ 1010 atoms, we require at least 150 mW with a detuning
to the red of the F = 2→ F ′ = 3 cycling transition of -18 MHz. This was accomplished by
first sending the master laser light to a free-running diode laser for a master-slave injection
lock and then upshifting the frequency of the injection laser, which provides the necessary
power of ∼ 20 mW for seeding a tapered amplifier (TA). The output of the injection laser
is then amplified using a tapered amplifier (1 W chip from Eagleyard). The output of the
tapered amplifier, however, is 500 mW (before the optical isolator). This is primarily due
to running the TA current below the standard operating settings. For more power, the TA
current could be increased from its current setting of 1.4 A to 2-2.5 A (3 A max). The
output of the TA is then combined with the MOT repump laser light (see below) before
being fiber coupled. The typical power at the fiber output is currently 130 mW (33%
coupling efficiency), but was as high as 210 mW (50 % coupling efficiency) when it was
initially installed in 2009.

The repump light is derived from a separate homebuilt ECDL. The output of this
laser is split into three paths, one of which is used to stabilize the laser frequency (see
below), while the other two paths are designated for the MOT repump and slower repump
cooling laser beams. The MOT repump light requires light resonant with the F = 1 → 2′

transition, accomplished by upshifting the frequency of the repump laser by 161.5 MHz.
From here, a small fraction of the light is picked off and fiber coupled, used during imaging
(∼ 0.3− 1 mW at the fiber output), while the remaining light is combined with the MOT
cooling light and fiber coupled. In contrast to the frequency of the MOT repump light, the
slower repump laser frequency needs to be down shifted in frequency by 488 MHz, after
which it is combined with the slower cooling light and fiber coupled. Typically, the power
at the fiber output for the slower repump is 8 mW and the MOT repump is 2.5 mW.

The laser frequency of the repump and master laser is stabilized by frequency
modulating the probe beam in the saturation-absorption spectroscopy of a rubidium vapor
cell. The probe beam is focused onto a New Focus fast photodiode (1.5 GHz bandwidth)
where the output is then mixed down at the modulation frequency. From this we obtain a
Doppler-free error signal, where we lock to the F = 2 → 3′ crossover for the master laser
and the F = 1→ 2′ crossover for the repump laser.

The use of a Toptica laser for the master laser has many benefits, some of which
include a stable laser frequency with ∼ GHz regions that are free of mode-hops and the
“turn-key” operation. However, a major drawbacks of using this system is the piezoelectric
transducer (PZT). On two occasions, the PZT was mysteriously destroyed, either due to
poor manufacturing, or due to a voltage spike originating from the locking electronics.
Replacing a PZT is not difficult and in fact, takes no more than an hour of time. But,
because Toptica has a custom PZT, they can only be replaced by PZTs from Toptica.
Thus, to prevent the further destruction of PZTs, as a fix, we stopped using the Toptica
PZT electronic box and added a low pass filter between the PZT and the electronic control
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signal from our homebuilt lock boxes. We have yet to encounter any problems since replacing
the PZT over a year ago.

2.3.2 Trapping laser

The impact of optical traps is so broad that merely searching for “optical trap” in
any internet search engine will immediately bring up numerous review articles, some of which
are listed here [56, 28, 26, 57, 58, 59, 60, 61]. However, for the sake of completeness, the basic
theory of optical trapping is presented below, with some emphasis on its characterization.

The working principle of the optical dipole trap (ODT) is contained in the following
equation,

H1 = −d ·E, (2.1)

where E is the electric field of the laser light and d is the atomic dipole moment. However,
for neutral atoms, since there is no permanent electric dipole moment, the energy shift of
the ground state using first order perturbation theory is zero. To compute the energy shift,
we go to second-order (non-degenerate) perturbation theory, which leads to an energy shift
of the following form

∆Ei =
∑
j 6=i

|〈j|H1|i〉|2
Ei − Ej

, (2.2)

where Ei is the energy of the unperturbed state. The ground-state energies can be estimated
assuming a two-level system and using the dressed-state picture, where the field energy is
n~ω and the total energy for the unperturbed state is Ei = n~ω. The excited state energy is
Ej = (n− 1)~ω, where by putting the atom into the excited state one photon was removed
from the laser field. Assuming a we have a two-level system, we can rewrite the energy shift
of the ground state as:

∆Ei = Udip = |〈e|H1|g〉|2
(

1
ω0 − ωL

+
1

ω0 + ωL

)
(2.3)

Udip = −3πc2

2ω3
0

(
γ

ω0 − ωL
+

γ

ω0 + ωL

)
I(x, y, z) (2.4)

where, Udip is the ac Stark shift of the ground state, ω0 is the atomic transition frequency,
ωL is the laser frequency, and γ is the linewidth of the upper state. We have also used the
following relations for the intensity and linewidth of the upper state,

γ =
ω3

0

3πε0~c3
|〈e|d|g〉|2, (2.5)

and the intensity

I = 2ε0c|E|2, (2.6)

to further simplify the expression. The first term in the parentheses of Equation 2.4 rep-
resents the Stark shift due to atomic resonances, while the second term, known as the
Bloch-Siegert shift, is interpreted as the Stark shift due to resonances at the corresponding
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negative frequencies. In some situations, the laser frequency of the trapping beam is close
to atomic resonance, which means that the equation for Udip can be simplified by ignoring
the Bloch-Siegert term. However, when the trapping laser frequency is sufficiently detuned
from atomic resonance, both the terms in the dipole potential are of nearly the same mag-
nitude, and no overall simplification can be made. This is true for the experiment discussed
here where the wavelength of the light used to create the ODT is λ = 1064 nm, which is
sufficiently detuned from the D1 and D2 transitions in 87Rb, 780 and 795 nm.

In order to apply this to the multi-level atom that we have here, we need to sum
over the dipole-matrix elements between the ground and excited states and their respective
detunings,

Udip(x, y, z) = −3πc2γ

2ω3
0

× I(x, y, z)
∑
j

(
c2
i,j

ωj − ωL
+

c2
i,j

ωj + ωL

)
, (2.7)

where ci,j is the Clebsch-Gordan coefficient between the ground and excited state. In
our experiment, the optical potential is derived from a fiber laser at 1064 nm. At this
detuning, the energy splittings due to the hyperfine structure are not relevant, and only
the fine structure needs to be considered: J = 1/2 → J ′ = 1/2 and J = 1/2 → J ′ = 3/2.
Substituting the appropriate Clebsch-Gordan coefficients into Equation 2.7 yields:

Udip(x, y, z) = −3πc2γ

2ω3
0

[
1
3

(
1

ωD1 − ω1064
+

1
ωD1 + ω1064

)
(2.8)

+
2
3

(
1

ωD2 − ω1064
+

1
ωD2 + ω1064

)]
× I(x, y, z).

Beam-shaping

From the functional form of Udip, it is clear that by shaping the intensity profile, we
can tune the shape of the optical potential. In general, to gain some perspective about the
overall shape of the trapping potential, we typically site the harmonic trapping frequencies
or the shape of the intensity profile. In general, trapping frequencies are the more intuitive
parameters that we use to describe the trapping potential. The trapping frequencies can
be extracted directly from Udip by a Taylor series expansion about the potential minimum.
This leads to the following form for the trapping frequencies:

ωx =

√
4Udip
mw2

x

(2.9)

ωy =

√
4Udip
mw2

y

(2.10)

ωz =

√
2Udip
mz2

R

. (2.11)

Note here that wx is the beam waist, which should not be confused with ωx, which is the
trapping frequency. To arrive at these trapping frequencies, we assumed an intensity profile



22

of the following form,

I(x, y, z) =
2P

πwx(z)wy(z)
exp

[
−
(

2
x2

wx(z)2
+ 2

y2

wy(z)2

)]
, (2.12)

where wx(y)(z) is the 1/e2 waist defined as

wx(y)(z) = w2
x(y)

√
1 + (z/zR)2, (2.13)

zR = πwxwy/λL is the Rayleigh range, and ωx(y) is the transverse beam waist in the x̂- and
ŷ-direction

In our particular trap geometry, the profile of the beam located at the atoms
resembles that of a surfboard potential, with the tightest confinement along gravity, ωy, and
the weakest confinement, ωz, along the propagation direction. To create such a potential,
we take the output of the fiber laser and shape the profile using cylindrical lenses. For
instance, in the current experiment, the beam waist along gravity, wy, is approximately ten
times larger than wx.

In practice, the trapping laser beam passes through many optics before reaching
the atoms. The output of the fiber laser is sent through an acousto-optic modulator to
stabilize the beam intensity. Following this, the beam is sent through a single-mode optical
fiber which delivers the beam to the science table and spatially filters the beam profile.
From here the beam is sent through two pairs of cylindrical telescopes, which shape the two
transverse waists, wy and wx. The resulting profile is a collimated elliptical beam profile,
with a beam waist of wx ≈ 2 − 3 mm and wy ≈ 30 mm. In addition, one lens from each
telescope pair is on a translation stage. This is to ensure that the two transverse foci occur
at the same position. Before reaching the atoms, the trapping beam passes through one
final spherical lens, positioned such that the focus of the trapping potential coincides with
the location of the atoms. The typical optical trap parameters in this experiment are shown
in Table 2.1.

Table 2.1: ODT Parameters

Beam waist: wx at atoms 100 µm
Beam waist: wy at atoms 8-10 µm

Initial Power ∼ 4-5 W (∼ 0.3 mK)
Final Power ∼30 mW(∼ 1µK)

Characterizing the laser profile

Before attempting to trap atoms in an optical trap, it is necessary to characterize
the beam profile after it has traversed through all of the optical shaping elements using
a profiling camera. To do this, we direct the laser beam, onto a beam profiling camera,
mounted to a translation stage. Then as a function of the camera position, the two trans-
verse waists are measured. Once this is done, the two waists are plotted as a function of the
camera position and fit to a function of the form described in Equation 2.13. From here,
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adjustments can be made to ensure that the two waists occur at the same location on the
beam profiler and that the minimum value of w(z) matches what is expected theoretically.
Although this procedure does not ensure that the final lens is in the correct location with
respect to the atoms, it does reduce potential errors associated with an astigmatic beam.

2.4 Zeeman Slower

A complete description on the functionality of a Zeeman slower is given in [62,
63, 64] and will not be discussed in detail here. Briefly, an inhomogeneous magnetic field
is shaped such that an atomic beam is kept in resonance with a fixed frequency laser
slowing beam. As atoms scatter photons from the slowing laser beam they are decelerated
and Doppler cooled. Thus, in order to compensate the reducing Doppler shift, a spatially
varying magnetic field shifts the atomic resonance via the Zeeman effect in order to maintain
resonance,

ω0 ≈ ωL + kv + ∆µB/~, (2.14)

where ∆µ is the difference in magnetic moments between the excited and ground states,
ω0 is the zero-field resonance, and ωL is the frequency of the slower laser light. Using this,
atoms exiting the oven at velocities near 300 m/s are slowed to MOT capture velocities
near v . 30 m/s.

The Zeeman slower used in this experiment was originally designed to produce
slowed atomic beams of rubidium and lithium. To accomplish this, a three-stage Zeeman
slower was designed. The details of this can be found in [4] and (hopefully soon) the theses
of Ryan Olf and Ed Marti. However, for the sake of completeness, the basic design concept
will be briefly discussed here.

The dual species Zeeman slower consists of three sections: Section I, Section II,
and Section III, where Section II (Section I and Section III) is aimed primarily at slowing
rubidium (lithium). The key concept of this design stems from the detrimental effects
of transverse heating, which leads to a divergence of the atomic beam, characterized by
θ = v⊥/v||, where v⊥ ∼ √vrv|| is the transverse velocity, vr is the recoil velocity, and v||
is the longitudinal velocity. This is of particular importance for the lighter lithium beam
(larger vr), where its larger initial velocity can lead to a larger divergence of the atomic
beam, thus requiring that its slowing take place in close proximity to the location of the
MOT [64]. In Section II, a moderate magnetic field profile is used to slow rubidium to
a final velocity well within the capture velocity of the MOT. This is followed by a high-
gradient stage, Section III, where the magnetic field abruptly increases in magnitude over
a very short distance (∼ cm). The increase in the magnetic field is large enough that the
heavier rubidium atoms can not adiabatically follow the field and are then no longer slowed,
whereas the lighter lithium can now be slowed. Section I also serves to slow lithium as well.
For our setup here, we did not operate the slower with current running through the coils of
Section III and Section I.
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2.4.1 Windings

For uniform deceleration, the necessary magnetic field profile is of the following
form,

Bslower(z) = Bv
√

1− z/Lslower +B0, (2.15)

where Bv = ~kv̄/∆µ, Lslower = v̄2/2amaxf defines the length of the Zeeman slower in
terms of atomic parameters, f = a/amax is the dimensionless slower parameter, and B0

is the offset magnetic field (used to achieve a large separation of the rubidium hyperfine
levels). The slower parameter, f , defines the desired acceleration in terms of the maximum
acceleration given by dissipative cooling, amax = ~kγ/2m = 0.11× 106 m/s, and is used to
determine the aggressiveness of the Zeeman slower, with f ≈ 1 being very aggressive. For
the Zeeman slower used here f = 0.66, which is fairly typical for the Zeeman slowers used
in this group.

The desired magnetic field profile is obtained by stacks of coils along the length
of a tube, which can be used to approximate the desired profile. The theoretical magnetic
field profile and the coil arrangement used to approximate the field for Sections I, II, and
III is shown in Figure 2.8.

To achieve this desired coil winding pattern, the lathe was used. A brass tube of
similar dimensions to the vacuum slower tube, was positioned on the lathe and a thin layer
of thermally conductive Stycast was spread over the tube. A lathe tool, pictured in Figure
2.8(c), was used to carefully position and hold the wire. With the aide of the lathe in mind,
the spacing between turns was designed to equal one of the threading options. Thus, with
the lathe configured in “threading mode” the wire was wrapped onto the brass tube at the
desired spatial frequency with fairly good accuracy. However, during the wrapping process,
careful attention must be made as the wire is wrapped onto the slower tube in order to
prevent the wire from rotating such that it is no longer flush with the tube surface. This
will ensure that subsequent layers are able to be accurately positioned.

Section II of the slower consists of two different types of square wire; insulated
1/8 inch square hollow wire used for providing water-cooling to slower and solid 1/16 inch
enamel coated square wire. The first two layers of Section II consist of the insulated 1/8
inch square wire wrapped at a threading pitch of 7 turns per inch. The remaining layers
are wrapped using the solid 1/16 inch wire at 14, 7, and 3.5 turns per inch. The first five
layers of the coil winding pattern are shown in Figure 2.8(b).

2.4.2 Measuring the slower fields

The magnetic field of the Zeeman slower was measured using a Hall probe that
was translated along the length of the slower. The field profile was measured using a single
current supply. A current of 1 A was applied to the coils. The resulting field measurement is
shown in Figure 2.9, which has been rescaled. The field agrees quite well with the expected
profile from Section II assuming a scaling factor of 6.5 or a current of ≈ 6.5 A. In practice,
the current used is 5.74 A, which was empirically determined.
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Figure 2.8: (a) Magnetic field profile from Zeeman slower. The solid red line is the desired
magnetic field profile and the filled circles is the profile generated from stacks of coils.
(b) The coil winding pattern used to approximate the desired magnetic field profile. (c)
Photograph of the coil winding tool used to position the wire on the brass slower tube.
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2.5 Magneto-Optical Trap

The MOT used in this work is the fairly standard configuration used in many cold-
atom experiments, consisting of six independent laser beams and a magnetic quadrupole
coil, positioned to be concentric on the vacuum flanges. References pertaining to the theory
and functionality of a MOT can be found here [26, 65, 58, 66, 67, 68, 69, 70, 71]. The laser
beams are approximately 1.5” in diameter and comprised of cooling and repumper light.
The cooling light consists of light detuned by 18 MHz to the red of the F = 2→ 3′ cycling
transition, with approximately 25 mW per beam (130-150 mW in total). The repump light
consists of light resonant with the F = 1 → 2′ transition, with approximately 0.42 mW
of repump power per beam (2.5 mW in total). The spherical quadruple trap is obtained
by running 15 A through the coil, which is also the first transport coil, TP0 (see below),
resulting in a magnetic field gradient of approximately 15 G/cm.

In order to guide such large beams, we ordered custom elliptical mirrors from
Lambda Optics (Part Number BBHR 600-900-0-EW-3806U). The minor and major axes of
the elliptical mirrors are 1.5” and 2.2” which allows us to use beams with diameters of 1.5”,
where the standard 2” mirrors would slightly aperture the profile of the MOT laser beams.

In this MOT about 10 × 109 atoms are loaded in about 4 s, using 150 mW of
cooling light and 2.5 mW of repump light. Increasing the amount of cooling and repump
light did not show a significant increase in the number of atoms loaded in the MOT. To
better illustrate this saturation, we extracted the number of atoms that are transported to
the glass cell as a function of the MOT power. This is shown in Figure 2.10. Since this plot
was taken, the number of atoms in the glass cell is a approximately of 3-4 times larger.

2.6 Magnetic Transport Coils

To transfer the atoms from the MOT Chamber to the glass cell, we make use of
a magnetic transport system consisting of partially overlapping magnetic quadrupole coils
[72, 73]. This method relies on the interaction of magnetic dipole moment of an atom
with the magnetic trapping potential. When placed in an inhomogeneous magnetic field,
the atom is subject to an external force, which is directed either towards the magnetic
field minimum or maximum, depending on the sign of the magnetic moment. Atoms that
are attracted to a magnetic field minimum are known as weak-field seekers. The simplest
magnetic trap is the spherical quadrupole trap, consisting of two coaxial coils that carry
opposite currents such that the magnetic field at their center cancels. To lowest order, the
magnetic field profile has the form

B(r) = B′(x,y,−2z). (2.16)

This is achieved using two coils of the same radius, each carrying opposite flowing currents.
We magnetically transport the trapped atoms using a series of partially overlapping

magnetic quadrupole coils, from the MOT, over a distance of 20 cm, to the glass cell. To
accomplish this, the cylindrical symmetry of a single quadrupole trap must be broken. This
is done with the addition of a second pair of quadrupole coils, with its symmetry axis
parallel to the first coil pair. In our experiment this axis is parallel to gravity. Suppose for
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Figure 2.10: Number of trapped atoms in glass cell versus MOT power. For powers greater
than 130 mW, the number of atoms reaching the glass cell is saturated. However, decreasing
the power below 130 mW results in a decreased number in the glass cell. For safe operation,
the MOT power should be kept above or near 130 mW. These measurements were conducted
at a MOT repump power of 2.5 mW (total).

instance the first coil pair with radius R1 is at (0, 0, 0) and the second with radius R2 is at
(x0, 0, 0). Running currents I1 and I2 through the respective coils leads to a superposition
of the two fields. By varying the ratio of I1 and I2, the location the magnetic field zero can
be made to smoothly move from x = 0 to x = x0. This is the principle behind magnetic
transport.

The magnetic transport systems consists of four quadrupole coils. A diagram of
the coils is shown in Figure 2.11. The size of each coil and the relative overlap between coils
was determined by the physical dimensions of the vacuum chamber and potential heating of
the atomic sample that could be accrued during the transportation sequence. The coils were
made using 0.280× .025 inch flat wire, as oppose to the square hollow wire, which allowed
us to reduce the overall size of each coil. The transport coils were dubbed the “MOT coils”
(Transport 0), “Transport 1”, “Transport 2”, and “Feshbach Coils” (Transport 3). The
last pair of coils, “Feshbach coils” are not configured to provide a a bias field as their name
seems to imply. It is currently setup to provide a quadrupole field. However, if configured
in a “Helmholtz” configuration with the current in each coil flowing in the same direction,
the Feshbach coils are capable of producing a field of ≈ 1100 G, intended for exploration of
the 87Rb Feshbach resonance [74]. The relevant parameters for each coil are listed in Table
2.2 and Table 2.3.

In order to ensure proper overlap of the transport coils, we opted to use a common
mount for all coils except the Feshbach coils. This was also motivated by the overall
simplicity of a single cooling mount. In following this route, we have reduced the number of
cooling connections necessary and reduced the possibility of a potential water leak, which
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Figure 2.11: Illustration of magnetic transport system. Four overlapping quadrupole coils
are used to transport the atoms from the MOT chamber to the glass cell. The illustration
accurately depicts the relative size and overlap of the coils used.

Table 2.2: Coil Parameters

MOT/TP0 TP1 TP2 Feshbach/TP3 Up/Down Bias
Position 0 mm 69 mm 137 mm 209 mm 209 mm
# Turns 32 33 32 50 13
# Layers 2 1 2 1 1

B′/Amp [G/cm/A] 1 0.8 1 1.8 1.6
Max Current 50 100 100 100 10

Inductance [µH] < 300 < 100 < 300 < 500 < 5

Table 2.3: Dedicated power supplies for magnetic transport coils

Coil Power Supply
MOT 2 Kepco 50 A, 6 V; wired in series
TP1 2 Kepco 100 A, 10 V; wired in parallel
TP2 1 Lambda 20 V, 400 A

Feshbach same supply as MOT
Up/Down Bias 1 Kepco 6V 10 A
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Figure 2.12: Magnetic transportation sequence. Plotted is the current as a function of
transport time for each pair of coils in the magnetic transport sequence.

becomes more likely with multiple connections. The mount consists of two hollow copper
plates, top and bottom, each shaped to the geometry of the overlapping coils. The coils are
secured to the mount using thermally conductive Stycast and the top and bottom mounts
are connected by several rods that go between the two. Thus, the relative overlap of each
coil and the separation between each coil pair is well constrained.

Because the Feshbach coils were intended to go to currents as high as 100 A, a
dedicated cooling mount for these coils was needed. The cooling mount is shown in Figure
2.11. The coils are secured to the mount using thermally conductive Stycast, thus providing
heat dissipation through the top and sides of the coils which are in contact through the
mount. However, after testing each coil by running 100 A through the coil pair, one coil
was found to have a significant temperature increase. This sets an upper limit of a ∼ 3 s
duty cycle for the coil assuming a current of 100 A. The temperature increase is most likely
attributed to the production process; the copper mount was not heated uniformly during
the gluing process, preventing the Stycast from being uniformly distributed between the
coil and mount.

The magnetic transport sequence is shown in Figure 2.12. This sequence was
obtained by first picking a trial overlap between coils and then optimizing the current
through each coil while trying to maximize the aspect ratio of the gas, where the aspect
ratio is defined to be less than or equal to one. The best trial overlap was then selected.
The current ramps for that sequence are shown in Figure 2.12.

An unfortunate consequence of this scheme is that the aspect ratio of the sample
along the transportation axis changes significantly during the transfer process. The aspect
ratio at each stage in the transfer process is shown in Figure 2.13. We can understand this
by considering the case when the same current is flowing through two quadrupole coils.
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In the overlap region of the coil pairs, the net magnetic field tends to cancel due to the
opposite flowing current directions, resulting in a strongly deformed trap geometry. This
in turn will lead to a modulation of the aspect ratio which could result in heating of the
atom cloud. However, by using a third quadrupole coil pair, it is possible to maintain a
constant trap geometry during the transport process [72]. Unfortunately, we were unable
to accomplish this with the coil configuration used here. This is evident in the calculated
aspect ratio (see Figure 2.13) which fluctuates at each stage in the transfer process.

The original planned transportation time was to be one second long. However,
transporting the atoms in this short time not only resulted in a severe temperature increase
from 120 µK at the start of the transport sequence to over 1 mK by the end, but also
significant atom loss. Increasing this time to 6 s reduced the observed heating, with a final
temperature of ∼ 800µK in the glass cell. In addition, there was no observed atom loss.
We observed no significant benefits by further increasing the transportation time.
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Figure 2.13: Calculated aspect ratio of the atomic sample as a function of the transport
distance. In order to reduce the effects of heating from the changing aspect ratio, the ramp
sequence can be slowed. The original planned time was a 1 s transportation sequence, but
due to severe heating, this is now 6 s.

We confirm that the field from each coils agrees well with theory. After positioning
the coils in the mount, we made measurements of the magnetic fields along the transporta-
tion axis for each coil. This is shown in Figure 2.14. Our measurements are in agreement
with theory.
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Figure 2.14: Magnetic fields for the coils used in the magnetic transport system. The solid
lines are derived from calculations and the data points are measurements using a Hall probe.
The magnetic field measurements agree well with theory.

2.7 Applied Fields

For the experiments on spinor condensates, we require precise control over the
magnitude and orientation of the background magnetic field. To do so requires the use of
pairs of coils to produce dc and ac magnetic fields.

2.7.1 Microwave field: evaporation

En route to making a BEC there a few stages of cooling. Above we discussed the
Zeeman slower, and the MOT, but these do not yield the necessary phase-space densities to
achieve quantum degeneracy. Forced evaporation, using radio-frequencies or microwaves is
a widely used technique in ultracold atom experiments to make quantum degenerate atomic
samples [75, 76, 77, 78]. For our experiment, we make use of microwaves to evaporate the
sample, thus, below we will only discuss microwave evaporation.

In principle, a microwave field of well defined frequency is resonant with a partic-
ular transition, for instance the |F = 1,mF = −1〉 → |F = 2,mF = −2〉. As a result, the
spin of the atom is flipped, and expelled from the magnetic trap, since |F = 2,mF = −2〉 is
not a magnetically trappable state. This technique can be used to selectively choose atoms
with energies that are larger than the average energy of the sample, and in doing so, cool
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Figure 2.15: Microwave evaporation setup.

the sample as it thermalizes.
In our experiment, we applied circularly polarized microwave fields detuned from

the |F = 1,mF = −1〉 → |F = 2,mF = −2〉 hyperfine ground states. The microwaves were
derived from a 6.8 GHz source from Microwave Dynamics (Part Number PLO-4000-06.80,
S/N: 6214-1021-001). This source was not easily tuned, so to reliably control the amplitude
and frequency of the microwaves, we added radio frequency (rf) sidebands from a radio-
frequency source, IFR 2023A. The resulting signal consisted of power at the microwave
frequency, fµ = 6.7 GHz, which is purposefully detuned from resonance, and power at
harmonics of the rf frequency sidebands, ±n × frf , where frf ∼100 MHz. Only the first
harmonic had substantial rf power, n = 1. After passing through a microwave switch (Part
Number HMC-CO11) and amplifier (Microwave Dynamics Part Number: AM53-6.85-4040),
the microwave signal was sent to a microwave circulator (Ditom Part Number D3C4080;
S/N 2110), which was used as an isolator to protect the amplifier from back-reflections of
the microwave field. The output of the circulator was then sent to a 6.8 GHz impedance-
matched spiral antenna.

An additional mixer was added to the setup described above. The purpose of this
component was to add a fast amplitude modulation control of the microwaves. The turn-on
time of the microwave switch (∼ ms) was too slow for our purposes here. There are faster
microwave switches, but none were available at the time we installed the evaporation setup.
This mixer combined a dc signal from the computer control program (Word Generator)
to the IFR signal, essentially multiplying the two signals, allowing for fast turn-on of the
microwave signal on ∼ 10µs timescale. To do this, the rf signal, with a maximum output
of 10 dBm, was sent to a Mini Circuits attenuator, -24 dBm, before passing through a Mini
Circuits phase detector. Because there was ' 5 dBm attenuation from the phase detector,
we added a 30 dBm Mini Circuits amplifier (Part Number ZHL-1-2W-S). This signal was
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then sent to the mixer, as discussed above. An illustration of the microwave components is
shown in Figure 2.15. It was this capability that enables the Rabi frequency measurements
discussed below.
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Figure 2.16: Rabi oscillation between |F = 1,mF = 0〉 and |F = 2,mF = 0〉 states when
irradiated with microwaves. As a function of time, the atoms periodically oscillate between
the two levels. This oscillation is the Rabi frequency. To determine the on-resonance (bare)
Rabi frequency, we repeated this measurement for different detunings of the microwave
frequency, ranging from 134.683 MHz to 134.681 MHz. The oscillation frequency as a
function of the microwave detuning is shown below. This is fitted to a parabola, where the
minimum is the bare Rabi frequency, ΩR. For these studies, ΩR = 134.682710± 2.6 MHz

We calibrated the strength of the applied microwaves by measuring the microwave
Rabi frequency, ΩR. This was done by measuring the fraction of atoms transferred from
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|F = 1,mF = 0〉 to the |F = 2,mF = 0〉 hyperfine level as a function of time and at a
constant microwave amplitude. This was then repeated for different microwave detunings.
Assuming the system is well approximated by a two-level system, the population in the
excited state scales as

Nex ∝ sin2

(
Ωeff × t

2

)
(2.17)

= sin(Ωeff t), (2.18)

where t is the time duration of the applied microwave field and the effective Rabi frequency
is defined as Ωeff =

√
Ω2
R + δ2, with the detuning from resonance defined as δ. Using this

model, we fit the data to a sinusoid and extracted the effective Rabi frequency from the
temporal evolution of the population in the |F = 2,mF = 0〉 hyperfine level. A specific
instance of one of these runs is shown in Figure 2.16. By maintaing a constant microwave
power while varying the frequency, we were able to measure the effective Rabi frequency,
Ωeff . Plotting the Ωeff as a function of the IFR sideband frequency, we were able to
accurately determine the bare Rabi frequency, ΩR. The bare Rabi frequency, ΩR, occurs at
the minimum of the Ωeff versus detuning. To determine this minimum, we fit the data to
a parabola and measured resonance to be at an IFR frequency of 134.682710± 2.6 MHz.
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Figure 2.17: Microwave Rabi frequency calibration curves. The Rabi frequency as a function
of the rf sideband power is measured (filled circles) and fit to an exponential (line).

Next we calibrated the bare Rabi frequency as a function of the sideband ampli-
tude. To do this, like above, we measured the population in the |F = 2,mF = 0〉 hyperfine
level as a function of time, while maintaining a constant detuning. This was repeated for
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different sideband amplitudes. For different sideband powers, we expected the bare Rabi
frequency to scale as an exponential, where the argument is a function of the IFR power,
due to the nonlinear nature of the mixer. A plot of the bare Rabi frequency for different
IFR powers is shown in Figure 2.17. Fitting the data to an exponential we found that the
Rabi frequency scales as

ΩR = 2920× 10P/20, (2.19)

where P is the IFR sideband power entered into the Word Generator, in units of dBm.

2.7.2 RF fields

The condensate was typically prepared in the |F = 1,mF = −1〉 hyperfine level. To
explore the other Zeeman sublevels within the F = 1 hyperfine manifold, we used resonant
radio frequency (rf) fields. The rf fields were derived from a function generator (SRS 345
30 MHz Function Generator) which was sent to an rf switch before being amplified. The rf
was then capacitively coupled to a 25 mm diameter coil located directly above the glass cell,
approximately 30 mm from the in-trap location of the atoms. The typical rf parameters are
described in later chapters.

2.7.3 DC magnetic bias field

We compensated and controled the external magnetic field through the use of
external magnetic field coils. This was accomplished by means of three pairs of coils situated
outside the glass cell. The coils were dubbed “up-down,” “east-west,” and “north-south,”
where their names were labelled according to their geographical orientation. The coils,
however, were not oriented along the condensate axes as shown in Figure 2.18. These coils
were held in a custom-built mount made of Delrin. The choice of Delrin was to prevent
possible electrical shorts with the mount and the other coils. A sketch of the mount and
the respective coils is shown in Figure 2.19.

The coils were assembled after the design and construction of the magnetic trans-
portation system. Thus, in order to prevent the coils from obstructing valuable optical
access and to maintain a compact design, a coil mount that fits within the Feshbach coils
was determined an optimal solution. In order to comply with the spatial dimensions dic-
tated by the Feshbach coils, the bias coils could not be larger than 40 mm in diameter. Thus
we settled on coils that were 40 mm in diameter and roughly 30 mm apart. Realizing that
these coils were not a true Helmholtz pair, we took precautionary steps to provide extra
coils in the mount that could be used to compensate curvature magnetic fields. These are
labeled at the “curvature coils” in Figure 2.19.

Despite these precautionary steps, an electric short was found between the east-
west coils and the experimental table. Thus, in the fashion of the experiments in B171/B173,
coils were wound around the glass cell well after the experimental apparatus had been
assembled. This coil pair was instead oriented along the ẑ axis of the condensate. The
reason for this was that there was already a magnetic field gradient coil along this axis and
adding a second coil to this axis was fairly easy.
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Figure 2.18: The condensate axes as compared to the geographical coordinate system. The
coils in the lab are often named based on their geographical orientation. This plot is meant
to clarify the orientation of the condensate axes with respect to the applied magnetic fields.

Magnetic Field Calibration

To calibrate the external bias coils, we used the linear Zeeman shift of the atoms
as a measure of the magnetic field at the condensate. To do this, we applied a relatively
weak rf field to the atoms and measured the populations within the magnetic sublevels using
Stern-Gerlach analysis [79, 52, 80]. When the rf frequency matched the energy difference
between the Zeeman sublevels, the atoms were transferred from the |F = 1,mF = −1〉 to
the |F = 1,mF = 0, 1〉 sublevel. By recording the rf frequency that resulted in the largest
transfer, we could determine the magnitude of the magnetic field. By using this approach
for each applied magnetic bias field, we were able to isolate the rf resonance to within 5
kHz. Using this somewhat laborious procedure, the total magnetic field (measured in kHz)
versus control voltage (Word Generator) was obtained for each bias field coil. An example
of such a curve is shown in Figure 2.20.

The expected functional form for these curves is a hyperbolic shape, linear at large
currents, but with a minimum that was determined by the transverse magnetic field. By
fitting these curves to determine the center control voltage and the slope at large voltages,
we were able to obtain a measure the calibration, relating the magnetic field dependence
on the applied computer control voltage. Using these coils, the typical field we operated at
was 187 kHz or equivalently 267 mG along the x̂-direction.

Once calibrated, we were able to apply a magnetic field of a specific magnitude
and orientation. For instance, the necessary currents for each coil can be determined from
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the coupled equations below,(
B cos(θ)
B sin(θ)

)
=
(
αz cos θ1 αn cos θ2

0 αn sin θ2

)(
I1

I2

)
. (2.20)

Here B is the magnitude of the magnetic field, θ is the orientation, Bz = B cos(θ), Bx =
B sin(θ), αz and αn are the calibrations in units of Volts/Gauss for the “z” coils and the
“north-south” coils, derived from the slope at large currents from the calibration curves
above, and θ1,2 are the angles listed in Figure 2.18. Not listed here is the up/down field, since
magnetization sensitive imaging technique requires in-plane magnetic fields. Furthermore,
to make changing the magnetic field simpler, we made a graphical user interface (GUI) in
the data analysis software, IGOR Pro. Using this GUI, we simply typed in the desired field
and the necessary control voltages were returned. An even better improvement would have
enabled communication between Igor and the Word Generator, then by simply typing in
the desired fields, the Word Generator would be automatically updated.
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Figure 2.20: Calibration of bias magnetic fields. By applying a current to a specified coil,
we could measure the magnetic field by measuring the resonant rf frequency. This was
determined by looking recording the rf frequency where the maximum transfer occurred.
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2.7.4 DC magnetic field gradients

In addition to the bias fields described above, it was also necessary to control
the spatial inhomogeneity of the bias magnetic field. This was done by the addition of
magnetic field gradient coils, with opposite flowing currents causing a cancellation of the
magnetic field at their center. From the Maxwells equations (∇ · B = 0, ∇ × B = 0), we
know that there are potentially five magnetic field gradients that need to be compensated.
However, based on the geometry of our spinor condensate, we could ignore gradients with
spatial variations along the ŷ-axis, dBx/dy (= dBy/dx) and dBz/dy (= dBy/dz). This
is because our condensate is essentially two-dimensional with respect to spin, with the
Thomas-Fermi radius along the ŷ-axis being much smaller than the spin healing length,
making any spatial variation of the spin along this axis energetically unfavorable [81, 51].
Thus, only cancellation of the following gradients was necessary: dBz/dz, dBz/dx, and
dBx/dx.

We used three pairs of coils configured in an anti-Helmholtz configuration to cancel
the residual magnetic field gradients. They were referred to as: “up-down” gradient coil, the
“z” gradient coil, and the “north-shim” gradient coil, named according to their geographical
orientation or their orientation with respect to the condensate axes.

In order to cancel the residual magnetic field gradients we needed to spatially
resolve the magnetic field. This was done by imaging the Larmor precession of the con-
densate magnetization (see Chapter 3), where accrued phase, δφ(r), after a given evolution
time is proportional to the local magnetic field. Then by constructing a spatial map of the
relative phases, we could determine the spatial variation of the background magnetic field,
δB(r) ∝ δφ(r)/t [79, 3, 80]. For example, following a given evolution time, the contribu-
tion to the background field from a magnetic field gradient oriented in the ẑ-direction was
determined from,

dBz

dz
=

~
gFµBt

dφz
dz

, (2.21)

where the phase gradient dφz/dz (B = B0 ẑ) was determined from a polynomial fit to φ(r),
averaged in the x̂-direction over a central region of the condensate. We compensated this
by applying current to the “z” gradient coil. Then by gradually increasing the evolution
time, a more sensitive measurement the magnetic field gradient could be made. A similar
method was used to compensate the magnetic field gradient along the x̂-direction, dBx/dx.
However, due to the narrow width of the x̂-dimension of the condensate, this measure-
ment was more challenging. In this particular system, the uncompensated gradients were
dBz/dz ' 40 kHz/cm, dBx/dx ' 20 kHz/cm, and dBx/dz ' 28 kHz/cm.

In practice, this routine was complicated by the fact that a single coil can be tuned
to cancel a magnetic field gradient along one axis, but only at the expense of introducing
magnetic field gradients along other axes. By using three coils, however, we were able to
cancel the following gradients: dBz/dz, dBx/dz, and dBx/dx. This resulted in a series of
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coupled equations described below,
Iz

Ishim

Iu/d

 =


− 2

3αz
−2(tan θ−cot θ)

3αz
− 2

3αz

0 2 csc θ sec θ
3αshim

0

4
3αu/d

−2 cot θ
3αu/d

2
3αu/d



dBx
dx

dBz
dx

dBz
dz

 , (2.22)

where the magnitude of αn for each n was determined from calibration measurements,
the sign of αn was determined by the coil orientation, and θ = 30◦ was the orientation
of the ”shim” gradient coil with respect to the condensate axes. From our calibrations
measurements the values we determined for αz , αshim, and αu/d were 25, 150, and -200, in
units of kHz/cm/Volt. Using these coils, we were able to reduce the spatial variation of
the magnetic field to < 1µG across the long axis of the condensate. In fact, we were able
observe Lamor precession for times up to 3 s of free evolution, where at 3 s, we had yet to
observe any spatial variation of the magnetic field as indicated by the spatial profile of the
condensate magnetization. Presumably, our ability to resolve Lamor precession at longer
times is limited by the lifetime of the condensate in the optical trap.

2.7.5 Applying quadratic Zeeman shifts using microwave fields

In addition to properly compensated dc magnetic fields, necessary measures were
be taken to provide a magnetic field environment free from ac magnetic fields. This was
difficult as the noise sources in the magnetic field environment of the room were charac-
terized by rf frequencies up to 100 kHz, with intermittent noise between 100 kHz and 130
kHz, greatly limiting the study of spinor condensates at variable magnetic fields. Thus, to
prevent their influence on our studies of spin-mixing dynamics in spinor condensates (see
Chapter 5), we operated at a magnetic field where the noise in the magnetic field envi-
ronment had no frequency component resonant with the energy scales in our system and
introduced the use of modulated magnetic fields.

In optically trapped gases of F = 1 atoms, spin-mixing dynamics are governed
by two spin-dependent interactions: the quadratic Zeeman shift, q, and the s-wave contact
interaction [27, 82, 52, 79, 83, 80]. For the case of F = 1 87Rb, the quadratic Zeeman shift
prefers an unmagnetized gas, with preferential population in the |F = 1,mF = 0〉, while
the contact interaction prefers a state which is magnetized (see Chapter 5 for more details).
Essentially, the net effect of these interactions can be seen to promote an atom pair initially
in the |F = 1,mF = 0〉 state to a final state with one atom in the |F = 1,mF = −1〉 state
and the other in the |F = 1,mF = +1〉 state. These dynamics can be controlled by tuning
the energy difference between the initial and final states of the colliding pair,

qB =
EmF=+1 + EmF=−1 − 2EmF=0

2
∝ B2 (2.23)

where EmF is the energy corresponding the |F = 1,mF 〉 state, and qB is the quadratic shift
due to the static magnetic field. Thus, when qB > 0, the |F = 1,mF = 0〉 state is lowest
in energy, and when qB < 0, the opposite is true. Typically, qB is tuned using dc magnetic
fields, which means that qB is always positive. This can be seen in the Breit-Rabi diagram
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Figure 2.21: Shown here is an illustration of the microwave components used to generate
the ac Zeeman shifts. Also shown is the power after each component, which we used as a
reference in order to determine if any component needed to be replaced or adjusted.

for 87Rb (see Figure 2.22). However, with the use of modulated magnetic fields, we can
introduce an additional term, qµ, which is the contribution to the quadratic Zeeman shift
from a modulated field. As will be shown below, using this field, we can tune the total
quadratic Zeeman shift, q = qB + qµ, such that it can take on values that are negative or
positive, greatly increasing the tunability of spin-mixing dynamics.

ac Zeeman shift

To implement such a scheme, we applied a linearly polarized microwave field,
Bµ(t) = Bµ sin(ωµt) x̂, detuned from the |F = 1,mF = 0〉 to |F ′ = 2,m′F = 0〉 hyperfine
levels. This induces an ac Zeeman shift, where the Hamiltonian describing the interaction
is

H = µ ·Bµ, (2.24)

where µ is the magnetic moment. We can write this in terms of the Pauli matrices,

µ = −gFµBmF

[(
0 1
1 0

)
x̂ +

(
0 −i
i 0

)
ŷ +

(
1 0
0 1

)
ẑ
]
, (2.25)
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Figure 2.22: Breit-Rabi Diagram for 87Rb (left) and quadratic Zeeman shift (right).

where we have assumed just a two-level system, in which the upper and lower states are
described by

|2〉 =
(

1
0

)
(2.26)

|1〉 =
(

0
1

)
. (2.27)

The two-level approximation is valid when we are far from any hyperfine resonance, which
is the case here (see below). After a bit of algebra we have

HDressed−State ≈
(

~δ/2 −i~ΩR/2
i~ΩR/2 −~δ/2,

)
(2.28)

where δ = ω0−ωµ is the detuning from resonance and ~ΩR = gµB|Bµ| is the Rabi frequency.
Here the Hamiltonian is rewritten in the dressed-state picture. This is done by going into
a frame rotating at ωµ and applying the rotating-wave approximation, where the counter-
rotating terms are far from resonance and can be ignored. Solving for the energy shift we
have

∆E1 = −Ω2
R

4δ
(2.29)

where we have made use of the fact that ΩR << δ, which allowed us to achieve the simplified
expression shown above. In practice, we apply linearly polarized microwaves detuned from
the |F = 1,mF = 0〉 to |F = 2,mF = 0〉 hyperfine levels, which represent the two levels
discussed above, with |1〉 = |F = 1,mF = 0〉. Thus, under these approximations, the
resulting quadratic Zeeman shift is

qµ = −~Ω2
R

4δ
. (2.30)
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The detuning was chosen to be far from resonance to avoid populating the F =
2 hyperfine manifold, but close enough to achieve a large quadratic Zeeman shift. The
detuning used in the experiment was δ = 2π × 40 kHz. The typical value for the magnetic
fields was 267 mG, resulting in a linear Zeeman shift of 187 kHz. Thus, to a fairly good
approximation, only the |F = 1,mF = 0〉 level is shifted, since the coupling to the other
sublevels is suppressed by ∼ 1/(δ − ωLP ), where ωLP ' 190 kHz is the Larmor precession
frequency.

Microwave Setup

The microwaves were applied using the setup as shown in Figure 2.21. Here, mi-
crowaves are derived from a microwave frequency source, IFR, referenced to a Rb atomic
clock. The output of the IFR, which provides a signal at ≈ 3.4 GHz at an amplitude of
14 dBm, passes through a microwave switch, controlled using a TTL, before being sent to
a frequency doubler and amplifier (Marki microwave DA-0210K). To control the frequency
and amplitude of the applied microwaves, we add rf sidebands using a function generator
(Stanford Research System DS340). This is accomplished by using a mixer, where the mi-
crowave source provides the input for the local oscillator (LO) and the rf function generator
provides the input for the intermediate frequency (IF). The resulting signal has a carrier,
fµ and sidebands at fµ±frf , where the amplitude of the sidebands are computer controlled
using the amplitude modulation port of the function generator. The signal is then amplified
using a 40 dB amplifier with a maximum total output power of 20 Watts. The output of
the amplifier then connects to a microwave circulator (Ditom Part Number D3C4080; S/N
2110) followed by a stub tuner (Maury Microwave Model 1819D). This is then attached to
a microwave waveguide (ATM Advanced Technical Material WG P/N 137-201B-2), rated
for frequencies ranging from 5-8 GHz. The waveguide is then secured to a 1/2” stainless
steel optical post and rigidly attached to the optics breadboard, located approximately 125
mm from the atoms.

Calibration

We calibrated the applied quadratic shift by monitoring the temporal evolution of
atoms in the |F = 2,mF = 0〉 state. This was done by first preparing a sample of atoms in
the |F = 1,mF = 0〉 sublevel. Next, the sample was irradiated with microwaves resonant
with the |F = 1,mF = 0〉 → |F = 2,mF = 0〉 transition and the total number of atoms
in the |F = 2,mF = 0〉 state was recorded. This was repeated for different time durations
of the applied microwaves field. An example of such a scan is shown in Figure 2.23 (top),
where the population in the |F = 2,mF = 0〉 oscillates in time at the Rabi frequency, ΩR.

In the experiment, we vary the magnitude of the quadratic shift by tuning the
magnitude of the microwave Rabi frequency using the amplitude modulation port of the
SRS frequency generator. We determine the calibration of the Rabi frequency versus the
computer control voltage by repeating this same time-resolved scans described above, but
while varying the amplitude of the rf sidebands between iterations of the experiment. Such
a curve is shown in the bottom plot of Figure 2.23. The curve is fit to a line where the
offset is constrained to zero and from this we extract dependence of the Rabi frequency on
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Figure 2.23: Rabi oscillation between two lower hyperfine states, F = 1 and F = 2. The
Rabi frequency is measured by fitting the oscillation to a sinusoid. The dependence on the
sideband power is obtained by measuring the Rabi frequencies for different sideband powers
and fit to a line. For the experiments here, the maximum Rabi frequency was roughly 5
kHz, where the dependence on the computer control voltages was 1.5 kHz/V. The resulting
quadratic Zeeman shift is dependent on the detuning from resonance, but at δ = 40 kHz,
quadratic shifts as high as ' 500 Hz could be achieved.

2.8 Computer Control

Creating an ultracold sample of atoms requires precise timing and control of many
elements of the experimental apparatus, such as optical laser beams, optical beam shutters,
power supply currents, to name a few. To implement such control, we have chosen to
use a graphical-user-interface (GUI) called Cicero Word Generator (WG), developed in
the Ketterle group at MIT, programmed by Aviv Keshet. Presented below is a very brief
description of the hardware used and how it pertains to our experiment. An in-depth
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review about the source code can be found at Ketterle’s physics webpage and in the recent
publication [84].

Briefly, the WG provides a GUI that is useful for running National Instruments
digital and analog output cards. The cards are controlled using a client-server architecture
where the client, Cicero, is the interface for controlling, editing, and saving time-resolved
sequences, while the server, Atticus, handles the hardware configuration. Using the WG,
we are able to create time-resolved sequences using National Instruments digital and analog
cards, with user specified times as short as 50µs. On a day-to-day basis, we typically work
with Cicero and rarely make any changes the Atticus panel.

In our experiment, the WG controls the experiment using National Instrument
analog and digital output cards. Currently installed, we have four analog output cards
(PCI NI 6713), 3 digital cards (PCI NI 6533 and PCI NI 6534) and one gpib card, used
to control the IFR during the evaporation sequence. Each analog card supplies us with
8 output channels, where each channel can output a 12-bit signal between -10 and 10 V
and each digital card supplies us with 32 TTL channels. Typically, most computers today
have at most two to three PCI slots. To accommodate the 8+ PCI cards, we used a PCI
expander slot (Magma PE6R4) in addition to our main computer, giving us an additional
six PCI slots.

Unfortunately, user-specified times shorter than 50µs are needed to run the ex-
periment. For instance, when imaging using absorption imaging, pulse durations as short
as 30µs are needed, and for phase-contrast imaging, probe pulse durations near 200 ns
are needed. This time is limited by the sample clock of the PCI card. New generation
experiments can achieve much shorter times due to higher onboard clock frequencies, but
the cards inherited from the older generation E1 experiment, prevented us from accessing
these shorter word times. The onboard clock frequency is 50 kHz, which should enable a
pulse duration as short as 20µs. However, from my experience, times shorter than 50µs
are unreliable.

To circumvent this problem, we use an 4-channel pulse generator (Digital De-
lay/Pulse Generator DG535). The pulse generator is able to achieve pulses as short as 50
ps and as long as 1000 s. Rather than rely on the WG, we instead use the WG to trigger
the pulse generator, which can be subject to 5 ps delays, and use this to dictate the pulse
durations for our probe beams or any other signal that is sensitive to time delays as short
as ∼ 10µs.

2.9 Water-cooling

To cool the coils used in the experiment, we employ the use of a Neslab recirculating
chiller. Cold water exits the recirculating chiller at a temperature of 18◦C and a pressure
of 30 pounds per square inch (PSI). This water is fed into 3/8” inch flame resistant rubber
tubing from Goodyear (because you just never know) rated up to pressures of 300 PSI before
being split into six parallel channels, where each channel is directed into a valve then to
the coil. Currently only three channels are being used to cool three coils: slower, Feshbach,
and magnetic transport coils. However, the remaining three channels are stopped using
a high pressure valve from Swagelok. These extra lines allow for more coils to be easily
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incorporated into the system. Water exiting each coil is then directed to flowmeters (Lake
Monitor Style R) which then transmit analog readings, indicative of the flow through each
coil, to an interlock box, described below. After the flowmeters, the parallel paths are
recombined and returned to the recirculating chiller where the water is cooled using a heat
exchanger which is cooled by the building chilled water supply.

Cold water output
T=18   C

Recirculating Chiller

Pressure Sensor
30 PSI

3/8” tubing rated to 300 PSI

Flow meters

3/8” tubing to and from coils
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Figure 2.24: Illustrated here is the water cooling system for three coils. To cool the coils for
the slower, magnetic transport system, and Feshbach coils, we use water from a recirculator.
Water leaving the recirulator is at a temperature of ≈ 18◦C and has a pressure of ≈ 30
PSI. It is split into several paths, where each path specifies a specific system to cool. Extra
water cooling lines are available for additional coils.

To ensure that cooling water is running through the coils before current is allowed
to flow through the coils, an interlock logic box is used. The analog output of each flowmeter
is directed to home-built interlock, where the flowmeter signal is compared to a threshold
value set by a potentiometer, which can be adjusted using the front panel of the box.
The comparison is made using a simple comparator circuit consisting of a single op amp.
The three outputs (Slower coil, Feshbach coil, and Magnetic transport mount) are then
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ANDed together and fed into a flip-flop circuit consisting of two NAND gates. The output
is normally low but can be pulled up by means of a reset button on the from panel of the
interlock box, where the LED on the front panel is indicative of the output state. The
ac wall power dedicated to the high-current power supplies is also controlled in a similar
manner. The ac wall power passes through a set of relays, whose output state is determined
by the output state of the two NAND gates.
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Figure 2.25: Illustration of interlock logic circuit used to ensure water is flowing through
the magnetic coils and coil mounts before current is run.

The logic for the interlock is as follows. When the reset is not being pressed and
no logic fault has occurred (i.e. no cooling water), the output will remember what was the
previous state. Pushing the rest button forces the output to be high. It will remain in
this state until a fault has occurred. Once a fault is registered, the output is forced low,
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shutting off ac power to the high-current supplies, and will remain so even if the logic fault
was momentary. This design is deliberate and used to force a conscious decision on part
of the experimentalist to either proceed forward with the experiment or to understand the
origin of the logic fault. In order to restore ac power to the supplies, the manual reset
button must be pressed again. In the present experiment, two manual reset buttons can
be found on the flowmeter interlock box, located above the power supplies, and on the ac
power interlock box located on wall near the ac power lines.

2.10 Making a BEC

On March 30, 2009, just a mere three to four months after replacing older gener-
ation apparatus, E1, we achieved our first BEC of 1 × 106 atoms in the new experimental
apparatus. Forewarned by the problems that plagued E1, we sought to make a more stable
BEC-making machine; one that would make large-numbered condensates at a fairly high
duty cycle. The result of our efforts are summarized in Figure 2.26. After some improve-
ments, the BEC number was increased, and the machine was able to produce condensates
containing ≈ 2.5× 106 atoms in the |F = 1,mF = −1〉 hyperfine state every 26 s.

A breakdown of the cooling process is reviewed here and the relevant parameters
are listed in Table 2.4. The sequence begins with loading atoms into a MOT for 4 s from a
Zeeman slower, after which, the atoms are compressed by nearly extinguishing the repump
laser light in the MOT and increasing the magnetic quadrupole gradient and decreasing the
MOT cooling light detuning. This process is commonly referred to as the compressed MOT
(cMOT) [11, 51, 52]. Following the complete turnoff of the MOT (laser beam power and
quadrupole field), the atoms evolve in a nearly gradient free field for 1.5-2 ms before the
magnetic trap is rapidly turned on. This short evolution period where the atoms are not
trapped was found to be very critical for efficient transfer into the magnetic trap. Decreasing
or increasing this time substantially resulted in lower numbers in the magnetic trap. The
magnetic trap is rapidly turned on within 10µs of this free evolution time using a resonant
circuit. Next, the atoms are magnetically transported to the glass cell, where the optimal
transport time was found to be 6 s. Decreasing this to as short as 5 s had a detrimental
effect on the atom number and temperature. Once in the glass cell the atoms undergo
forced microwave evaporation for 10 s, where the IFR sideband frequency is scanned from
80 MHz to 129 MHz. This produces cold thermal gases containing 100−120×106 atoms at
a temperature of 30− 40µK. Midway through the evaporation sequence, the power for the
ODT is ramped to full power. Approximately 12 − 15 × 106 atoms are transferred to the
optical trap, where the atoms are evaporated using an exponential ramp of the optical trap
power over 2.4 s with a time constant of τ = 0.6 s. This results in nearly pure condensates
of 2.4− 2.6× 106.
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Figure 2.26: Initial phase-space density measurement of cooling sequence on April 30 2009.
We compare our phase-space density to another experiment with a similar combined mag-
netic and optical trapping potential for making quantum degenerate samples of 87Rb in the
|F = 1,mF = −1〉 hyperfine state [85].

Table 2.4: Atom number and temperature

Stage Temperature Number Phase-space Density
Oven 475 K (∼ 300 m/s)

Zeeman Slower 4 K (∼ 20 m/s)
MOT ∼ 150− 200µK 8× 109 ∼ 10−6

(2× 109 s−1) (4 s loading)
Magnetic Trap (TP0) ∼ 150− 200µK 2× 109 ∼ 10−6

Glass Cell, no evap. ∼ 600− 900µK 2× 109 ∼ 10−7

End of µ-Evaporation ∼ 30µK 100× 106 ∼ 5× 10−4

End of Optical Trap Evap. ∼ 100 nK 2.5× 106 ∼ 1
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Chapter 3

Imaging Magnetization

In order to observe the rich array of physics associated with a F = 1 spinor Bose
condensate, we must obtain as much information as possible from such a system, such as
the separate spin populations as well as the coherences among them. To do this we use
a combination of absorption imaging and magnetization sensitive imaging to extract the
populations as well as coherences among them (diagonal and off-diagonal components of
the one-body density matrix). Our imaging technique enables us to image in-situ the vector
magnetization profile of the gas with high spatial resolution and enables the possibility of
temporally resolving magnetization dynamics. Presented in this chapter is a brief summary
of the phase contrast imaging technique and a new method to image the vector magnetization
which is called polarization contrast imaging.

3.1 Phase Sensitive Imaging

In many experiments on spinor gases, imaging is performed by first spatially sep-
arating spin components via a magnetic field gradient (Stern-Gerlach) then imaged using
standard optical absorption. Although this method allows enables us to count the popu-
lations within each spin component, it is destructive and unable to probe the coherences
between differing spin components. An alternative technique is to utilize the dielectric prop-
erties of the spinor Bose condensate, where the measured signal depends upon the internal
spin state. Thus by analyzing the intensity, phase, and polarization of light propagating
through an atomic cloud, information about the spinor order parameter, specifically the
density and spin density can be retrieved.

3.1.1 Basic Principle

The phase contrast technique is a fairly standard interferometric measurement
technique, which exploits the differing refractive indices within a sample, yielding a measure
of the structures that might otherwise be transparent. First developed by Frederick Zernike
in 1942 [86, 87], for which he was later awarded the Nobel prize, the use of this technique has
flourished, becoming a standard tool for non evasive imaging, with applications extending
across many disciplines within the sciences [1, 88, 51, 89, 90].
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In this method, light from a single source is split into a local oscillator and a probe.
The probe passes through an atomic gas and acquires a phase shift relative to the local
oscillator. The resulting interference pattern yields information about the local properties
of the sample. A simple model for this can be found in other theses [79, 52, 80], but for
clarity it will be presented here. The electric field of light propagating in the x̂-direction
can be described by a plane wave, E = E0e

ikx, where k is the wave vector. Upon passing
through a medium, a few things occur; the phase velocity is varied and light is absorbed,
resulting in overall attenuation and phase shift of the electric field. For now, we will assume
that any absorption is negligible, and can be ignored. Thus, the electric field is said to have
acquired a phase shift upon exiting the medium, Eout = Eine

iφ, where Ein = E0e
ikx.

In this technique, we measure the phase shift acquired by the outgoing light, φ, and
in measuring this phase shift we are able to characterize the spinor order parameter (density,
spin). However, the exact relation between φ and the properties of a spinor condensate is
not completely obvious and it is this relation that will be addressed in the following sections.

3.2 Dielectric properties of an F = 1 spinor gas

In order to understand how we are able to gather information about the spinor
order parameter, we must first review the dielectric properties of an F = 1 spinor gas. This
has been reviewed quite thoroughly in other theses [80, 79, 52, 91] and in the literature [92],
thus it will only be presented briefly here.

All materials have a refractive index that tells that us how light or any other
form of radiation propagates through the medium. The most common appearance of the
refractive index is in Snell’s law, which describes how light is bent as it crosses an interface
between two materials. In general a material can be described not only by its refractive
index, n, but also by its dielectric constant, ε,

ε = 1 + χ (3.1)

or, χ, the dielectric susceptibility, where both are related to the refractive index by,

n2 = 1 + χ = ε. (3.2)

Any one of these is sufficient describe the propagation of light in a medium, but
for now we will focus primarily on the dielectric susceptibility χ. (This choice will become
more clear in the following sections.) Thus, by characterizing the dielectric susceptibility,
we can obtain a complete description of the three-component spinor order parameter ψ.

3.2.1 Dielectric Constant

In the case of spin-1 atoms, the one-body density matrix, mij , is a useful repre-
sentation which encases the properties of a spin-1 object, consisting of a tensor product of
two spin-1 objects, ψ and its conjugate ψ†. As has been done with photons, we can then
represent this as a sum of irreducible tensor components with angular momenta 0, 1 and 2,
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with ρ, S, and N representing the density, spin vector, and nematicity. Their general form
is shown below:

ρ(x) =
∑
j

mjj = ψ†(x) · ψ(x) (3.3)

Sj(x) = −iεjklmkl(x) (3.4)

Nij(x) =
1
2

(mij(x) +mji(x))− ρ(x)
3

δij . (3.5)

Next we need to understand the relation between the elements of the one-body
density matrix and the dielectric susceptibility, and in this case this is a tensor. Now starting
with the Hamiltonian of an electromagnetic field in a homogeneous medium and taking a
few giant leaps, or following the formalism presented in [92], we can write the dielectric
susceptibility in terms of the irreducible tensor components of the one-body matrix with
appropriate scaling coefficients as:

χjk = c0〈ρ〉δjk − ic1εjkl〈Sl〉+ c2〈Njk〉 (3.6)

where the coefficients c0, c1, c2, correspond to the polarizability, optical activity, and the
birefringence of the medium, respectively. These coefficients are dependent on the internal
structure of the atom as well as the final excited state, F ′. Assuming we start in the ground
state with total angular momentum F = 1, the coefficients for F ′ = 1 are: c0 = 2a1/3,
c1 = −a1/2, and c2 = −a1, where a1 = −2|d11|2/ε0~δ, d11 is the dipole matrix element
between the F = 1 → F ′ = 1 state, and δ is the detuning from atomic resonance. These
can also be written for the excited state F ′ = 2 as follows: c0 = 5a2/9, c1 = 5a2/12, and
c2 = a2/6, where a2 = −2|d12|2/ε0~δ, and d12 is the dipole matrix element between the
F = 1→ F ′ = 2 state.

For our specific experimental setup, which will be discussed in more detail below,
we are detuned from the F = 1 → F ′ = 2 state of the D1 transition lines in 87Rb. Given
that there is not a single excited state within the 5p1/2 manifold, the dielectric susceptibility
has contributions from each state, χF ′=1,2, each weighted by their respective detunings,
1/δ. The differing numerical pre-factors for each χF ′=1,2 can be related using appropriate
Clebsch-Gordan coefficients and the reduced dipole matrix element,

a1 = η
1
12
〈J = 1/2‖er‖J ′ = 1/2〉 (3.7)

a2 = η
1
2
〈J = 1/2‖er‖J ′ = 1/2〉 (3.8)

where the reduced matrix elements are related to the dipole matrix elements dmn via Wigner
3(6)-j symbol and the proportionality constant η above can be rewritten in terms of more
convenient parameters. Putting these all together we can now write the dielectric suscepti-
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bility in terms of experimental parameters and the irreducible tensor components as,

χF ′=1 =
2
3
ρ

(
1 0
0 1

)
+

1
2

(
S11 S12

S21 S22

)
−
(
N11 N12

N21 N22

)
(3.9)

χF ′=2 =
5
9
ρ

(
1 0
0 1

)
− 5

12

(
S11 S12

S21 S22

)
+

1
6

(
N11 N12

N21 N22

)
(3.10)

χjk =
σ0nΓλ

4π

(
1
2
χF ′=2

δ
+

1
12

χF ′=1

δ + 800

)
(3.11)

where η is now expressed in terms of experimental parameters, δ is the detuning of the
probe field from the F = 1 → F ′ = 2 transition (measured in MHz), 800 is the energy
separation between the hyperfine levels in the 5p1/2 state, σ0 = 3λ2/2π is the resonant
cross-section, n is the condensate density, Γ = 6 MHz is the natural linewidth of the excited
state, and λ is the wavelength of the probe field. In writing the dielectic tensor in this
form, we have glossed over a few important details. One is that the dielectric susceptibility
is now represented by a 2 × 2 rather than a 3 × 3 matrix. This is because information is
gathered via the polarization of the probe field, which is perpendicular to the propagation
direction, thus only sensitive to the components of the dielectric susceptibility which are
also transverse to the direction propagation.

3.2.2 Spinor Order Parameter: Ferromagnetic vs Polar state

Now that we have presented the dielectric susceptibility in terms of the spin vector,
density, and nematicity, we can then fill in the elements of each matrix using the spinor
order parameter, ψ, using the relations discussed in Equations 3.3-3.5.

Opening an advanced quantum mechanics book, or referring to Professor Robert
Littlejohn’s quantum mechanics lecture notes (Notes 10: Rotations in quantum mechanics),
one will see that a spin-1/2 object pointing in the n̂ direction can be arbitrarily represented
using a series of rotations, U0 = U(α)U(β)U(γ), where α, β, γ are Euler rotation angles.
This can easily be extended to a spin-1 system.

In our experiments, there are two classes of spinors that we use to explore various
phenomena, those which are characterized by a macroscopic magnetization,

ψFS = U(α, β, γ)

1
0
0

 , (3.12)

also referred to as a ferromagnetic state, and those which are unmagnetized

ψPS = U(α, β, γ)

0
1
0

 , (3.13)

otherwise referred to as a polar state [27]. Using these representations (shown in the spher-
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ical basis), Sij and Nij for the ferromagnetic and polar states are,

SFS =
(

cosβ 0
0 − cosβ

)
(3.14)

NFS =
(

1
24(1 + 3 cos 2β) −1

4 sin2 β(cos 2α+ i sin 2α)
−1

4 sin2 β(cos 2α+ i sin 2α) 1
24(1 + 3 cos 2β)

)
(3.15)

SPS =
↔
0 (3.16)

NPS = −2NFS . (3.17)

Here, β defines the angle with respect to the imaging axis and α is the angle in the plane
transverse to the imaging axis.

Prior to making any measurements, it is typically a good idea to have a general
understanding of what parameters your measurement is sensitive to. From the matrices
above, some insight can be gained about each class of states. For instance, we can easily see
that for a ferromagnetic state, a measurement of the spin vector is dependent on the angle
β, and for a maximum signal, it is best for the spins to be aligned along the imaging axis.
In addition, information of the polar state can only be gained through measurements of the
nematic order, since its spin vector is zero. Thus, it is our job as clever experimentalists to
devise methods by which we are able extract this information.

3.3 Phase shift

Now comes the more interesting task of relating the phase shift to the dielectric
susceptibility. As an electric field traverses through a medium, two things occur, the electric
field is attenuated and undergoes a phase shift. Neglecting any attenuation in the electric
field (since we are far detuned from any atomic transition), we turn our attention to the
origin of the phase shift, eiφ.

An electric field traversing through a medium along the ŷ-axis with refractive index
n can be written as:

Eout = Eine
ik0

R
njkdy, (3.18)

where njk is the refractive index tensor. In order to further simplify this expression, we
make an approximation that the medium is very thin (thin-lens approximation) and that
that njk =

√
δjk + χjk is close to unity,

Eout = Eine
ik0

R
njkdy (3.19)

= Eine
ik0(2ry)njk (3.20)

≈ Eine
ik0(2ry)(δjk+χjk/2), (3.21)

where ry is the Thomas-Fermi radius of the condensate along the direction of integration
[93, 94]. We can now write the phase shift as:

φjk = φ0δjk + φ0χjk/2, (3.22)

where φ0 = 2k0ry is an overall phase shift acquired by the probe and χjk is the spin
dependent phase shift.
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3.4 Variations on Phase Sensitive Imaging

We’ve just seen how the phase shift is related to the spinor order parameter via
the susceptibility. There are a few different techniques to extract this information and the
primary focus of this section will be to review those which have been used in the lab: phase-
contrast imaging and polarization-contrast imaging. For a more extensive review on the
different variations of dispersive imaging, I refer the reader to James Higbie’s thesis [79].

3.4.1 Phase-Contrast Imaging (PCI): Phase dot and circularly polarized
light

In the early years of imaging spinor gases in the lab (E1), phase sensitive imaging
was conducted by interfering light that has traversed through the condensate with light that
has passed through a known dielectric medium, known as phase-contrast imaging [51, 3].
Specifically, circularly polarized light detuned by 500 MHz from the D1 transition lines
travels along the ŷ-axis (parallel to gravity) and passes through the condensate. The probe
beam used is approximately 2-3 mm in diameter and the spatial extent of the long axis of
the condensate is approximately 300 µm. Due to the radically different sizes between the
condensate the probe beam, the probe beam can be thought of as consisting of two parts,
the scattered and un-scattered parts, or the probe and the local oscillator. Having passed
through the condensate, the scattered part of the probe beam comes to a focus at a different
position compared to the un-scattered part. This is due to the spatially varying index of
refraction of the condensate which acts like a convex lens (see Equation 3.22 and 3.5). Now
having spatially separated the foci of the two beams, a thin circular dielectric (phase dot,
∅ 250 µm) is placed at the focus of the un-scattered beam (local oscillator), advancing its
phase by ≈ π/2. The scattered beam also passes through the phase dot (its focus occured
well before the location of the phase dot), but due to its fairly large angular extent at the
phase dot, this effect can be ignored. The two beams are then re-imaged at the imaging
plane (CCD camera) such that:

Eunscatt = Eine
iφpd (3.23)

Escatt = Ein(eiφatom) − 1) (3.24)
Eout = Eunscatt + Escatt (3.25)

= Ein(eiφpd + eiφatom − 1) (3.26)

where Ein is the incoming probe field. The signal measured at the camera is the normalized
intensity = |Eout|2/|Ein|2:

|Eout|2/|Ein|2 = 3 + 2 [cos(φpd − φatom)− cos(φpd)− cos(φatom)] . (3.27)

We can further simplify the expression by assuming that the phase shift acquired by the
atoms is small and substituting the π/2 phase advance introduced by the phase dot:

|Eout|2/|Ein|2 ≈ 1 + 2φatom. (3.28)

By introducing the phase dot, the signal now has a linear dependence on the phase shift,
which is ideal for the small phase shifts introduced by the spinor gas.
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Magnetization Sensitivity

So far, we have not considered the polarization of the incoming probe field, and
recall that the light polarization is a vital element in determining what component of the
dielectric susceptibility we are able to measure. Using the spherical basis, where σ+ light
has the form (1 0)†, we can rewrite the outgoing electric field, Eout, in matrix form as

Eout

Ein
= eiφpd

(
1
0

)
+ eiφ0χjk/2

(
1
0

)
−
(

1
0

)
(3.29)

where χjk is the spin-dependent phase shift acquired by the light, Ein is the amplitude of
the incoming probe field, φ0 is the overall phase shift acquired by the probe beam, and φpd
is the phase shift imposed by the phase dot. This expression can be further simplified by
substituting the value of the φpd and approximating eiφ0χjk/2 ≈ 1 + i(φ0χjk/2) (valid when
the spin-dependent phase shift is much smaller than unity), yielding

Eout

Ein
≈ i (δjk + φ0χjk/2)

(
1
0

)
. (3.30)

This, however, is not the signal we measure in the lab, and to get that we need the normalized
intensity distribution at the camera:

|Eout|2/|Ein|2 ≈ 1 + φ0〈χ11〉+O(2), (3.31)

where we have only kept terms up to first order in φ0. This can also be written as

|Eout|2/|Ein|2 ≈ (3.32)

1 + σ0ñγ

[
5
18

1
δ

+
1
18

1
δ + 800

+
(

1
24

1
δ + 800

− 5
24

1
δ

)
〈Fy〉

+
1
72

(
1
δ
− 1
δ + 800

)
〈F 2

y 〉
]

where we have made use of the relations specified in Equation 3.11. Thus, we see that by
using both the phase dot and circularly polarized light, we have a signal which is sensitive
to the density and spin of the condensate. The sensitivity to a spin-independent component
is very useful when extracting a measure of the condensate density which is independent of
the magnetization. The typical experimental parameters used for phase contrast imaging
are: δ = −400 MHz (blue-detuned), n ≈ 2× 1014, ry ≈ 1.8µm2 , and γ = 2π × 6 MHz.

3.4.2 Polarization Contrast Imaging

In the early developmental stages of E5 (the next generation of E1), a reasonable
phase-contrast signal was not easy to come by. There are many reasons for this, so I refer
the reader to Appendix E. Thus we sought out an alternative method, which forgoes the use
of a phase dot and instead uses the polarization of the probe field to obtain a measurement
of the magnetization, which we refer to as polarization contrast imaging. This is by no
means the first instance of this type of imaging nor is it a recently developed idea. This
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method is used across many disciplines with applications extending to geology, physics, and
biology, to name a few [90, 95, 96].

In this technique a measurement of the magnetizations comes about from the
rotation of probe polarization. Specifically, we illuminate the condensate with linearly
polarized light, detuned from the D1 transition lines. As it passes through the condensate,
the two circular components of the light field experience different phase shifts, due to the
circular birefringent properties of the sample. For instance σ+ having the larger Clebsch-
Gordan coefficients (larger refractive index), has the larger phase shift compared to σ−,
resulting in a rotation of the probe field polarization. The rotation angle is measured using
a linear polarizer with its axis oriented at 45◦ with respect to the initial probe polarization,
and subsequently imaged. This rotation of the light field polarization as it propagates
through a medium is analogous to the Faraday effect [97, 98, 99].

We can further understand how this rotation angle (phase shift) relates to the
spinor order parameter by computing the polarization contrast signal. By making a few
adjustments to the equations in the previous section, the outgoing electric field in matrix
form can be written as:

Eout

Ein
=

1
2

(
1 i
−i 1

)((
1
0

)
+ eiφ0χjk/2

(
1
0

)
−
(

1
0

))
(3.33)

where φpd = 0, and in the spherical basis notation, horizontally polarized light is written
as σH = (1 − 1)†/

√
2, and the linear polarizer oriented at 45◦ with respect to the probe

polarization is
1
2

(
1 i
−i 1

)
. (3.34)

Using the relations in Equation 3.11, the intensity distribution is

|Eout|2/|Ein|2 ≈
1
2

+
φ0

4
(〈χ22〉 − 〈χ11〉+ 〈χ12〉 − 〈χ21〉) +O(2), (3.35)

keeping only the terms which are linear in φ0 and χjk. Rewriting this in terms of experi-
mental parameters, the signal measured by the camera is

|Eout|2/|Ein|2 ≈
1
2

+
σ0ñγ

2

(
1
24

1
δ + 800

− 5
24

1
δ

)
〈Fy〉 (3.36)

where

χ11 = σ0ñγ

[
5
18

1
δ

+
1
18

1
δ + 800

+
(

1
24

1
δ + 800

− 5
24

1
δ

)
〈Fy〉

+
1
72

(
1
δ
− 1
δ + 800

)
〈F 2

y 〉
]

(3.37)

χ22 = σ0ñγ

[
5
18

1
δ

+
1
18

1
δ + 800

−
(

1
24

1
δ + 800

− 5
24

1
δ

)
〈Fy〉

+
1
72

(
1
δ
− 1
δ + 800

)
〈F 2

y 〉
]

(3.38)

χ12 = 0 (3.39)
χ21 = χ12. (3.40)
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The signal is only dependent on the spin, 〈Fy〉, lacking the spin-independent contribution
that occurs in the situation with a phase dot and circularly polarized light, as well as any
contamination from the nematic order, 〈F 2

y 〉. The drawback of this feature, however, is the
reduced signal. By using a linear polarizer, only half of the signal is being utilized. In our
particular setup, we used a half-waveplate in combination with a polarizing beam splitter,
which has the potential to allow us to use all of the imaging light. The difficulty comes
when attempting to combine both signals at the camera. To do this both beams must come
to a focus at the camera and have separation that can be easily tuned, especially if the
kinetics mode of the camera is to be used [79, 52].

3.5 Imaging the vector magnetization

The technique discussed in the previous section is a method to image one compo-
nent of the magnetization, but not the full vector magnetization. To do this, we need to
devise a way to project each magnetization component along the imaging axis. This is done
by utilizing the Larmor precession of the gas, where the precession of the magnetization
periodically aligns each transverse component of the magnetization along the imaging axis.
By taking a series of phase contrast images in rapid succession, we can obtain a complete
description of the vector magnetization within a single experimental cycle.

3.5.1 Larmor Precession Imaging

In Larmor precession imaging, the magnetization transverse to the magnetic field
precesses about the field, causing the projection of the transverse magnetization along the
probe axis to vary sinusoidally in time. This results in a phase contrast signal which oscil-
lates with an amplitude proportional to the magnitude of the magnetization. Additionally,
by knowing the frequency of the oscillation, we can obtain a measure of the phase variation
across the gas, where the phase is a measure of the orientation of the magnetization. Specif-
ically, we expect the functional form of the sinusoidally varying phase contrast signal to be
A sin(ωs + φ), and the transverse magnetization to be described by F⊥ = Aeiφ. Imaging
the longitudinal magnetization can be accomplished by applying a π/2 radio frequency (rf)
pulse midway through the sequence, causing the projection of the longitudinal magnetiza-
tion with respect to the imaging axis to oscillate in time, thus yielding a measure of the
vector magnetization [51, 79, 3, 80].

3.5.2 Spin-Echo Imaging

The principle of Lamor precession (LP) imaging relies on the ability to image the
temporal oscillation of the magnetization. The typical precession periods are ∼ µs, much
faster than the frame transfer time of the camera (1µs/row × 100 rows ≈ 100µs), and must
therefore be imaged at an aliased frequency, where this frequency is the difference between
the sampling rate of the camera (≈ 20 kHz) and the Larmor precession frequency. In fact,
by accurately measuring the aliased oscillation frequency, one has an instantaneous measure
of the ambient magnetic field [51].
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One of the drawbacks of this method, however, is its susceptibility to shot-to-shot
fluctuations in the ambient magnetic field. As the field fluctuates between experimental
repetitions, the sampling frequency necessary to ensure a few temporal oscillations of the
magnetization must also change. Altering the sampling frequency is very easy, but the
ease of determining when this must occur is dependent on whether there is a substantial
magnetization signal present to help determine if the LP frequency has drifted away from
optimal settings.

To alleviate the complications associated with the field fluctuations, we have de-
veloped a novel scheme which obtains a direct snapshot of the vector magnetization within
just three images by applying spin-echo rf pulses between images [100]. Specifically, we
apply the first imaging pulse which sends linearly along the ŷ axis. As the light propagates
throughout the atoms, the circular birefringence of the sample causes a rotation of the probe
polarization. Measuring the rotation angle of the light polarization resolves one transverse
component of the column-integrated magnetization, M̃(ρ). Following a precisely timed de-
lay, t0, a π rf pulse is applied to the sample, reversing the direction of Larmor precession.
A time delay of t0 following the π rf pulse results in the already transverse component of
the magnetization to be aligned along the imaging axis. A second imaging probe pulse is
applied to the sample after an additional delay of t = t0 + 1/4tLP , where tLP is the Larmor
precession period. This then records the second component of the transverse magnetiza-
tion. The longitudinal magnetization is measured by applying a third imaging pulse after
a properly timed π - π/2 - π rf pulse sequence. The appeal of this technique is that it is
insensitive to shot-to-shot fluctuations in the magnetic field and is able to function reliably
in the presence of > 10 kHz variations in the Larmor precession rate between experimental
runs.

Magnetic Field Fluctuations

The magnitude of the background magnetic field at the location of the atoms
fluctuates by ≈ 10 kHz throughout the peak work hours of the day. The lab is located
across from the hall from the primary source of the fluctuations, the elevator. The elevator
with its iron counterweight is capable of altering the DC magnetic field in the room, as seen
in Figure 3.1. To get a more quantifiable measure of these fluctuations, we used a three-axis
magnetometer from Honeywell (Part Number HMC2003), specifically aimed at measuring
small magnetic fields, with a dynamic range of 40 µG-2G. Using this magnetometer, we
monitored the DC magnetic field in our lab over the weekend. Dominating the measurement
are 5 − 10 mG fluctuations that occur during the peak working hours of Birge, mainly
between 8 am to 9 pm. Given the sporadic behavior of the magnetic field over the weekend
and in the late evenings, we were able to rule out other possible sources such as BART
(local subway system).

In order to apply accurate rf pulses, and accommodate the fluctuating magnetic
field, we decided to use rf pulses with a large Rabi frequency, ΩR, such that the ambient
magnetic field appears constant during the application of an rf pulse. This is accomplished
by an rf pulse with a short pulse duration and large amplitude. Our typical experimental
parameters include working at a magnetic field of 265 mG (187 kHz). The rf pulses are
generated using an Stanford Research System function generator (SRS DS345). To create
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π rf pulses, we operate the SRS in “Burst Mode” at the following settings: function, sine;
amplitude, -6.5 dBm; counts, 4. These settings yield an rf Rabi frequency of ΩR ≈ 25 kHz,
larger than the shot-shot magnetic field fluctuations we observe.
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Figure 3.1: Measurement of magnetic field over the weekend. The sensor used is a three-
axis magnetometer. Dominating the measurement are ∼ 5− 10 mG fluctuations that occur
during the peak working hours of Birge, mainly between 8 am to 9 pm. We attribute the
cause of these fluctuations to the elevator, located ≈7 m from the atoms/sensor.

Ramsey Sequence in Time-of-Flight

To test the validity of the spin-echo technique, we first performed a Ramsey
π/2− π/2 rf pulse sequence to characterize the influence of external magnetic fields on the
evolution of spinor condensates imaged in time-of-flight [101, 102, 103]. We begin with spin
polarized condensates in the ψmf = (ψ+, ψ0, ψ−) = (0, 0, 1) state. Next, we a apply a res-
onant π/2 rf pulse, creating a superposition state, (ψ+, ψ0, ψ−) = (−1/2, i/

√
2, 1/2) which

can then undergo Larmor precession about the background magnetic field. The immediate
application of another π/2 pulse will transfer all of the population to the (ψ+, ψ0, ψ−) =
(1, 0, 0) state. The addition of a delay time between the two pulses results in the spin-1
analog of the Ramsey experiment for spin-1/2 particles (Figure 3.2(a)), which is sensitive
to the phase evolution of the system [103]. The last π/2 pulse transforms the phase in-
formation into population information, which is then accessible for detection. We measure
the population within the magnetic sublevels by releasing the atoms from the optical trap,
applying a magnetic field gradient to spatially separate the atoms and then image them
using resonant light. The typical TOF time is 25 ms.

Following the initial π/2 pulse, the populations are allowed to evolve for times
up to 100 µs. This is shown in Figure 3.2(b-top). The resulting population in the |F =
1,mF = −1〉 state is random, showing no oscillatory dependence on the time between π/2
rf pulses. We attribute this random dependence on the evolution time to fluctuations in the
background magnetic field between experimental runs. The magnitude of these fluctuations,
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∼ 10 kHz, is approximately 5% of the Larmor precession frequency. To understand the
impact of these fluctuations on the Ramsey sequence, we can make a few simple estimates.
For instance, in one iteration of the experiment, during the time between rf pulses, the
atoms may undergo as many as 18.73 revolutions in 100µs, assuming an ambient magnetic
field of 267 mG. However, if the ambient magnetic field changes by 1-2%, increasing to 270
mG, the number of revolutions becomes 18.90 for the same time delay between rf pulses.
Since only the fractional part of the number of revolutions is relevant in determining the
populations with the Zeeman sublevels, in this particular example a 1% field uncertainty
in the magnetic field leads to a 25% error in the accrued phase. In general, small magnetic
field uncertainties can lead to random accrued phases, and hence random populations in
the Zeeman sublevels.

Here, the addition of a π rf pulse between the π/2 rf pulses is used as echo tech-
nique [100]. Similar to above, the first π/2 rf pulse rotates the magnetization into the
transverse plane, which then undergoes Larmor precession. After a time τ0, a π rf pulse is
applied, reversing the direction of precession of the magnetization. The final π/2 rf pulse
is subsequently applied τ1 after the π rf pulse, where the time between the π/2 rf pulses is
kept constant, τ0 + τ1 = 150µs. This allows for exact cancellation of the accrued phase up
to the difference in τ1 and τ0. The phase evolution of the system is now sensitive to τ0− τ1

which is ∼ 5µs, comparable to 2π/ΩL. The effect of this is shown in Figure 3.2 (b-bottom),
where coherent oscillation in the population of the |F = 1,mF = −1〉 state is observed.

Transverse Magnetization

Given the success of the rf pulse sequence measured in TOF, we would next like
to determine whether this technique can accurately and reliably extract each component
of the transverse magnetization. To do this we use the polarization contrast technique to
extract the transverse magnetization. In order to differentiate between between the two
transverse components, we test this technique using a helical spin texture described by
F= cos(κz + ωLt)x̂ + sin(κz + ωLt)ŷ where κ = (gFµB/~)(dBz/dz)τ ẑ is the wave vector.
Compared to a homogeneously magnetized gas, the helical spin texture has the advantage
that the two transverse magnetization components, Fx and Fy can be easily distinguished,
as they are π/2 out of phase.

To make the helical spin texture, we use a combination of rf pulses and a transitory
linear magnetic field gradient. Following the creation of a spin-polarized 87Rb condensate
of |F = 1,mF = −1〉 state [104], we prepare transversely magnetized condensates by the
application of a resonant π/2 rf pulse in a static magnetic field of B = 267 mG oriented
along the ẑ axis. The magnetization undergoes Larmor precession in the ŷ− x̂ plane at the
Lamor frequency ΩL = 2π × 187 kHz. Next a transitory magnetic field gradient, dBz/dz
is applied for 20 ms causing the magnitude of the magnetic field to vary spatially along
the long axis of the condensate. This causes atoms at different axial positions to precess
at different rates, resulting in a magnetization pattern that varies sinusoidally along the
condensate length.

We image the spin helix using a similar procedure to the spin-1 analog of the
Ramsey sequence discussed above. To do this, we replace each π/2 rf pulse with an imag-
ing probe pulse. The application of the first imaging pulse makes an instantaneous mea-
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Figure 3.2: (a)Time-of-flight Ramsey sequence to measure the coherent oscillation of the
Zeeman sublevel population as a function of the elapsed time. A resonant rf π/2 pulse
is applied to a spin polarized BEC, creating a superposition of the Zeeman sublevels at
τ = 0. Following a variable evolution time, during which the populations evolve freely, a
second resonant rf π/2 pulse is applied, projecting the evolution of the populations into a
population difference of the spin components from the initial spin composition. (b) Time-
of-flight Ramsey sequence with an addition resonant rf π pulse inserted between the two rf
π/2 pulses.

sure of one transverse magnetization density component, which we label as M̃x, where
M̃x,y = gFµBñFx,y, and ñ is the column-integrated density. Following a time τ0, a π rf
pulse is applied, reversing the direction of Lamor precession. Waiting an additional time
τ1 = τ0 after the π rf pulse returns the system to its original state where an image of
the magnetization would return an image identical to the first. However, by allowing for
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τ1 = τ0 + τLP /4, the second transverse component, M̃y will be imaged. Thus, by tuning
τ1 − τ0 = n × τLP /4, we are able to accurately determine which transverse magnetization
component we image, M̃x for n even and M̃y for n odd. This is shown in Figure 3.3.

Longitudinal Magnetization

To image the longitudinal magnetization (M̃z), we follow a slightly different pro-
cedure. Here we create a longitudinally magnetized gas, by omitting the first resonant π/2
pulse, thus leaving the gas in the |F = 1,mF = −1〉 state. Next, the gas is imaged using a
π − π rf pulse sequence as described above, but with an additional π/2 rf pulse, occurring
during the third probe pulse. To lessen the extent of losses due to scattering with the probe
field, the probe light is off during this third pulse (see Figure 3.4).

The application of the π/2 rf pulse during the imaging sequence corresponds to
a rotation of the spin ensemble, with the longitudinal and a component of the (former)
transverse magnetization now precessing about the magnetic field. Specifically,

F⊥ = cos(ωLt)Fx + i sin(ωLt)Fy, (3.41)

where as now the transverse magnetization is described by

F ′⊥ = cos(ωLt)Fx,y + i sin(ωLt)Fz, (3.42)

where the prime is used to distinguish the transverse magnetization before and after the
π/2 rf pulse, Fx,y = aFx + bFy is a component of the transverse magnetization before the
π/2 rf pulse, and Fz is the longitudinal component. Thus, by adjusting the timing of the
rf pulse, we can determine in which imaging frame we are sensitive to Fz. In Figure 3.4 we
measure the amplitude of the phase contrast signal as a function of the τ3, which determines
the start of the π/2 rf pulse. The signal follows the expected sinusoidal oscillation between
Fx,y, where the signal is at a minimum, having no initial transverse magnetization, and
Fz where the magnitude of the signal is at a maximum, with a frequency consistent with
τLP /2 ≈ 2.5µs. We fit this oscillation and extract the appropriate timing for the π/2 pulse.
In this specific case, the time we chose for the pulse occurred at 290.9µs.

Drawbacks

Although spin-echo imaging has many attractive features, it also has a few draw-
backs. In particular, this method is susceptible to interference fringes. These fringes are
due to the coherence of the laser beams used to image the atoms and mechanical vibrations
of the optical elements. For instance, each image is computed from

Signal(x, z) =
I(x, z)a − I(x, z)d
I(x, z)b − I(x, z)d

(3.43)

where I(x, z)a is the intensity of the probe field having passed through the atoms, I(x, z)d is
the background signal with no light on the detector, and I(x, z)b is the intensity of the probe
field with no toms. If there were no mechanical vibrations, then the fringes from I(x, z)a
and I(x, z)b would be identical and there would be no interference fringes in the signal
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Figure 3.3: a) Spin-echo sequence to measure the transverse magnetization profile. (b)
Sequential images of spin textures for different times between τ1 times. As τ1 is changed,
the phase difference between consecutive images for a single experimental run varies from
imaging Fx, Fx to Fx, Fy or Fx,−Fx. A one dimensional profile is shown to better illustrate
the π phase shift between image on the right. The solid lines are the fit and the dots are the
raw data. (c) Plotted phase difference between consecutive images for each τ1. The signal
oscillates between 0− π at a period that is consistent with τLP /2 = 2.5µs. The data is the
average of 5 consecutive images with one experimental run and error bars are statistical.
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Figure 3.4: Spin-echo sequence to measure longitudinal magnetization and the phase shift as
a function of the delay time between the π/2 and π rf pulse sequence. The signal oscillates
between 0− π at a period that is consistent with τLP /2 = 2.5µs.

(Signal). However, mechanical vibrations of the optical elements cause slight differences
in the interference fringes for I(x, z)a and I(x, z)b resulting in a signal contaminated with
interference fringes.

To reduce the effect of interference fringes in the signal, we have developed a
procedure for isolating and removing the fringe pattern from each image. We do this by
comparing nearly identical copies of Mz and Mx,y, where the distinguishing feature between
the copies is an overall reduction in the signal (due to light scattering). The repeated copies
of the magnetization is a fortunate consequence of spin-echo imaging. Simply, we create an
image copy with no fringe, INF , modeling it as

INF = Mz −Mz,2, (3.44)

where Mz,2 is the second occurrence of Mz. We then create a rescaled version of Mz that
we define as

M ′z = a× INF , (3.45)
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and a fringe image as
IF = Fz −M ′z. (3.46)

We use the difference between IF and Mz as a figure of merit (FOM) that we subsequently
minimize, the result of which should give the appropriate value of a. This is done by taking
the spatial Fourier transform of each and minimizing the spectral power at the spatial
frequency of the interference fringe pattern. The result of this subtraction routine is shown
in Figure 3.5. There, Mx, My, and Mz have significant interference fringes mostly likely due
to dust on an optic which has two different positions during the bright field and atom field,
but by subtracting the appropriate fringe pattern from each image, we are able to achieve
nearly fringe-free images. There is an overall reduction of Mz after we have removed the
fringes, partly due to improper scaling of the images. We are able to reduce this by using
the duplicate copies of Mx,y to determine a fringe image and combining this with the result
from Mz.

RF π Pulses The successful implementation of spin-echo imaging requires fine control
over the time sequence of the rf pulses as well as a well a carefully tuned π rf pulse. This is
necessary to ensure that we extract the vector magnetization profile, as opposed to a single
component of the magnetization.

We are able to determine the optimal parameters of the rf pulses by applying
several π rf pulses to the atoms and imaging the population decomposition within the
magnetic sublevels. The populations within the sublevels are resolved using Stern-Gerlach
analysis where an inhomogeneous magnetic field spatially separates the components within
the F = 1 manifold [79, 52]. An optimized image is shown in Figure 3.6 (right). After
the application of four π rf pulses, essentially all the population remains in the mF = −1
state. The careful tuning of the rf pulses is accomplished by adjusting the amplitude of the
rf pulse. However, if the amplitude is not optimized, a small amount of population will be
observed in the mF = 0, 1 state, as seen in the Figure 3.6 (left). When applying many π rf
pulses in a row, the population within the Zeeman sublevels becomes very sensitive to the
amplitude of the rf pulse. The difference in amplitude between the two images in Figure
3.6 is 0.3 dBm.

Future Prospects

The proof-of-principle demonstration of spin echo imaging as a technique to image
the vector magnetization has not been fully utilized. By extracting the vector magnetization
in just three imaging frames, we have the capability to implement dual-pulse imaging, where
we can image the vector magnetization as a function of time while using the same atomic
sample (within a single experimental cycle). This would give us the ability to trace the
dynamics of a single vortex, domain, or domain wall. Such a scheme would be sensitive to
atom loss during the imaging sequence, and steps would need to be taken to reduce this
effect.
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Figure 3.5: Magnetization images before and after removing interference contamination.



69

“optimized” π pulsenot optimized π pulse

mf +1 0 -1 mf +1 0 -1

Figure 3.6: Time-of-flight image of Zeeman sub level population after the application of 4
consecutive π rf pulses.
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Chapter 4

Design of a High Resolution
Imaging System

Presented in this chapter is the design, implementation and characterization of a
1 µm resolution imaging system.

4.1 Design of a high resolution imaging system

Since the observation of the first quantum degenerate gas, the field of ultra-
cold atomic gases has expanded rapidly, with their primary use as a tool for mimicking
condensed-matter phenomena [8, 9]. Necessary in these studies is a highly versatile toolbox
for observing these degenerate gases. The most popular technique for imaging ultracold
atomic gases has been time-of-flight (TOF) absorption imaging. While this method has
the advantage of its inherent simplicity, providing quantitative information about the mo-
mentum distribution of the sample, it is insensitive to the spatial profile of the sample.
Recently, however, in-situ imaging (“in position” imaging) with high spatial resolution has
become the imaging technique of choice in ultracold atomic physics, allowing for space- and
time-resolved measurements [41, 105, 43]. Presented in the following sections is the design
and characterization of a 1µm imaging system, followed by the use of spinor condensates
as an in-situ test pattern.

4.1.1 Design Criteria

The design criteria for this imaging system takes into account the future experi-
mental pursuits as well as spatial constraints due to the experimental apparatus. The design
criteria for the high resolution imaging system are listed below:

• Working distance of 13 mm, constrained by the 25 mm-sized glass cell.

• Additional optics to compensate for the optical properties of the glass cell.

• Large field of view capable of imaging the entire spinor gas (∼ 200µm) with few
aberrations.
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• Resolution comparable to the spin healing length (∼ 1.5µm) in order to distinguish
individual spin domains.

• Flexible imaging system. For instance, the ability to image the atoms in the trap as
well as after some free fall.

• Reproducibility when displacing the objective.

• Small optical chromatic shift. The experimental apparatus is also designed to make
ultracold samples of lithium. Thus, to be compatible with imaging lithium, which has
resonant absorption lines at 670 nm, a small chromatic shift is desirable.

Attempting to satisfy these criteria, a two element objective was designed with a theoretical
resolution of 1µm, consisting of an aspheric and meniscus lens.

4.1.2 Imaging Objective

Design Procedure

The design of the imaging system simplifies significantly when starting with a
high quality lens. Ideally, the lens should be free of spherical aberrations up to a fairly
high numerical aperture (i.e. NA ∼ 0.5), where NA is a measure of the light-gathering
ability of the lens, and a working distance which enables sufficient room for adjustment. As
a starting point, we began with the simplest setup, a commercially available aspheric lens
from Thorlabs and modeled it using OSLO, an optics design software program. According
to OSLO, the aspheric lens (see below) is diffraction limited over its entire diameter up to
a numerical aperture NA = 0.52.

Upon inserting the glass cell (Hellma Borosilicate) with a thickness of 2.5 mm and a
refractive index of n = 1.46 at 780 nm into OSLO, the aspheric lens is only diffraction limited
to NA≈ 0.2, approximately half the resolution without the glass cell. This is attributed to
aberrations introduced by the glass cell. To compensate these aberrations, a general second
lens is introduced into OSLO, parameterized by (Figure 4.1):

• two radii, r1 and r2

• thickness, t1

• two distances, d1 (asphere to lens) and d2 (lens to glass cell)

• lens material.

Since the exact specifications of the lens are unknown, an optimization routine in OSLO can
be used to determine these parameters. As a first overall simplification, the lens material
was set to BK7, in order to ensure a high probability of finding a likely candidate. Next, due
to the finite working distance of the asphere, a small value for d1 was necessary, thus d1 = 2
mm was fixed. Finally, t1 = 3 mm was set as an initial trial thickness. Once a satisfactory
solution is found by manually adjusting the lens parameters, OSLO can optimize the other
free parameters by minimizing the certain aberration coefficients. This is conveniently
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AsphereMeniscus

t1

d1

Figure 4.1: Imaging objective and mount. The aspheric lens is held in place with a retaining
ring. The meniscus is held with three set screws (not easily seen here). In this configuration,
the angle of the combination can be adjusted with respect to the glass cell and imaging axis
(defined by the propagation axis of the imaging light) and in addition, the set screws allow
for the angle between the meniscus and asphere to be tuned.

done using OSLO Premium edition and running the spot size/ wavefront error function. A
solution can always be found if one allows enough parameters to be varied. In principle,
this can be difficult given the constraints of the apparatus and aspheric lens. Fortunately,
the optimization routine returned reasonable suggestions for r2, with r1 ≈ r2 and a focal
length f = 1000 mm. Next, the task at hand was to filter the huge database of commercially
available lenses in search of a lens with similar specifications. A reasonably was good match
was quickly found at JML optical.

Asphere

The aspheric lens used is a large-diameter asphere from Thorlabs (Part# AL3026-
B). It is made using S-LAH54 glass, has an effective focal length of 26.0 mm, a NA= 0.52,
and a working distance of ≈ 20 mm.

Meniscus

The purpose of the meniscus lens is to compensate the distortion due to the glass
cell (Hellma Borosilicate). The meniscus used is from JML optical, part # CMN11258. It
is made using BK7 and has a focal length of f ≈ 1000 mm.

4.1.3 Imaging Resolution

Resolution is often defined as the separation at which two discrete objects can
be easily discerned or the frequency at which the modulation transfer function (see below)
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falls below some threshold [93, 94]. Using either definition, resolution is a single-number
performance specification, and as such, is more convenient but less precise than defining it
via a function, such as the modulation transfer function (see below).

Before we can discuss the performance of the imaging system used here, we briefly
review some terminology that will be used in the next few sections. For a more comprehen-
sive review of the concepts discussed below, I refer the reader to the following articles and
references [106, 94, 93, 107, 108, 109, 110].

Numerical Aperture The NA of an objective is defined as n sinα, where α is the half
angle of the maximal cone of light (with its tip on the image plane) that can enter or exit
the lens, and n is the refractive index of the medium between the objective front and the
object, which in most cases is typically air with n = 1.0.

The resolution of an objective is defined as the smallest distance between two
points on a specimen that can still be distinguished as two separate objects, also known as
the Rayleigh criterion. The relation between the imaging resolution, dres and NA is

dres =
0.61λ
n sinα

, (4.1)

where λ is the wavelength of light used. From this equation it is easy enough to see that
a small imaging resolution can be achieved by increasing the angle α (by increasing the
diameter of the lens while keeping the focal length fixed), decreasing λ, or increasing the
refractive index of the medium between the objective front and the object. In practice,
commercially available objectives that are reasonably priced are limited to NA. 0.6 and
the wavelength of light is limited by the atomic species used. However, increasing the
refractive index is an alternative route to a larger imaging resolution.

F-number F-number, like numerical aperture, is another term which describes the light-
gathering power of a lens system. It is defined as the ratio of the lens focal length to the
diameter of the entrance pupil and is related to the numerical aperture as follows,

NA = n sinα = n sin
[
arctan

(
D

2f

)]
(4.2)

≈ n D
2f

(4.3)

f/# =
f

D
(4.4)

≈ 1
2NA

, (4.5)

where D is the diameter of the entrance pupil (lens diameter commonly), f is the focal
length of the lens, and the refractive index is approximated as one.

Modulation Transfer Function The modulation transfer function (MTF) is a useful
measure for objectively characterizing the performance of optical systems. It is a measure
of an imaging systems’ frequency response, determining how faithfully a lens reproduces
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the detail of an object [107, 108, 109, 110]. Whereas NA and f/# are often used to specify
the performance of an imaging system, the MTF provides more complete performance
information, specifying not only resolution, but also the response to an entire spectrum
of length scales. As we will see below, knowledge of the performance at intermediate
spatial frequencies as well as the limiting resolution are imperative to our studies of spinor
condensates.

The MTF is defined as the magnitude of the response of an optical system to
sinusoids of different spatial frequencies, with values ranging between zero and one, and is
typically plotted versus spatial frequency. In practice, higher values of the MTF at a specific
spatial frequency equate to the ease at which that spatial frequency will be imaged by the
lens. It can be computed theoretically (assuming diffraction limited optics) by calculating
the autocorrelation function of the exit pupil, which in most situations is a circle the size
of the objective. For a circular aperture, the diffraction limited MTF is

MTF =
2
π

(
arccos(x)− x

√
1− x2

)
, (4.6)

where x is the normalized spatial frequency defined as

x = d/dres (4.7)

where d is the absolute spatial frequency and dres is the incoherent diffraction limited spatial
frequency defined in Eq. 4.1. This curve defines the upper limit to the performance of an
imaging system.

Point Spread Function The point spread function, like the MTF, is a measure of the
response of an imaging system, but to a point object. In other words, it is the Fourier
transform of the MTF, existing in the real space domain, as opposed to the frequency
domain. It parameterizes the blurring of the object in the image plane; the image is the
convolution of the PSF with the object. The narrower the PSF, the smaller the extent of
blurring or spreading of the object.

4.2 Characterizing the lens on the bench

Although numerous simulations can be conducted to test the response of an imag-
ing system, it is often good practice to also reproduce these results on a test bench, prior
to its insertion into the experimental apparatus.

Proper alignment is critical in high NA imaging systems. The order in which
optics are aligned is determined by their relative position to the camera, beginning with
the lens nearest to the camera and ending with the objective. A step-by-step procedure for
alignment of this imaging system is described in Appendix D.

4.2.1 Test Pattern

A 1951 USAF resolution test chart was used to characterize the performance of the
objective. The chart consists of square black bars of precisely defined width and spacing.
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The pattern is organized into groups, numbering between -2 to 9, where groups 8 and 9 are
available only on the high resolution test pattern. Within each group, there are between 3
to 6 elements, where within a single group increasing element number indicates increasing
spatial frequency. The spatial frequencies range from from 645 lp/mm to 0.25 lp/mm,
where lp (line-pairs) denotes the distance between adjacent black bars. An image of the
test pattern is shown in Figure 4.2.

Figure 4.2: 1951 USAF resolution test chart. The inner red box highlights the bars that
are used to test the asphere-menisicus imaging system.

4.2.2 Experimental MTF

Using the 1951 test pattern, light at 780 nm (generally an incoherent source is
ideal) was used to illuminate the test pattern and imaged using an AVT Guppy Firewire
camera (Edmund Optics Part #NT59-242). The MTF curve was obtained by measuring
the contrast for a range of spatial frequencies. The contrast is defined as

C(f) =
Vmax − Vmin
Vmax + Vmin

(4.8)

where Vmax is the maximum of the spatially varying signal and Vmin is the minimum value.
C(f) is extracted by fitting test pattern image to a model. Specifically, each pattern of bars
is fit to a two-dimensional sine wave,

f(x, y) = a+ b sin(c · x+ d · y + e). (4.9)

This form of the model allows for possible spatial tilts of the test pattern to be taken
into account, as well as allowing the information for each set of bars to contribute to the
contrast measurement as opposed to a single row or column of pixels. From this, the contrast
is redefined in terms of the fit function parameters,

C(f) =
Vmax − Vmin
Vmax + Vmin

= b/a. (4.10)
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The MTF, however is defined as the response to a sinusoidally varying signal, thus, we need
to convert the spatially varying square pattern into a sinusoid. The Fourier series for a
square wave function of length L is

f(x) =
π

4

∑
n

1
n

sin
(nπx
L

)
. (4.11)

Thus, by fitting the test pattern to a sine wave, the contrast is overestimated by a small
factor, so C(f) must be scaled by π/4 to compensate for this overestimate.

An MTF curve was extracted for three different configurations:

1. Aspheric lens in a commercial lens mount, with no glass cell, and no meniscus lens.
Doing this allowed us to eliminate possible sources of error from the glass cell and
meniscus. The commercial mount is less obstructive than the custom-built mount,
which limits the NA≈ 0.43 due to the 1” retaining ring. In this mount the full aperture
of the lens is available, and the NA≈ 0.52.

2. Aspheric lens in the custom-built mount, no glass cell, and no meniscus. The pur-
pose of this was to experimentally verify the reduced aperture of the lens due to the
retaining ring.

3. Aspheric lens, meniscus lens and glass cell. This duplicates our experimental setup.

In order to extract an MTF curve that could be compared with theory, the entire
spectrum of spatial frequencies needs to be imaged. The lowest spatial frequency provides a
reference for unity. As can be seen in Figure 4.3, imperfections in the image due to etaloning,
dust, or a noisy beam profile can reduce the overall contrast measured. Furthermore, the
position of the focus is most sensitive to the smallest test pattern markers, thus necessitating
the need to image both high and low spatial frequencies.

Here, a relatively high magnification (M∼ 25) is needed in order to resolve the
markers with the highest spatial frequency (elements within group 9). Given a CCD pixel
size of ≈18 µm and a spatial frequency of 645 cycles/mm (≈ 1.5µm), at a magnification of
10, a single pixel would correspond to 1.8 µm in the imaging plane. This means that a test
pattern cycle (black bar+no bar) would be mapped to one pixel, resulting in an inability to
measure contrast at these frequencies, due to pixelation. For the measurements made here,
each pixel corresponded to half of the theoretical imaging resolution, 1

2dres ' 0.5µm.

Lens Performance and Resolution

The MTF values for the aspheric lens in the un-obstructive commercial lens mount
are generally higher than the values where the aspheric lens is in the custom objective mount.
We attribute this degradation in the performance of the objective to the retaining ring in
the custom mount which slightly reduces the full aperture. Extrapolating the curve to an
MTF which is 10% of its initial value, yields a spatial frequency of ≈ 1µm, in agreement
with the Rayleigh criterion. The MTF of the asphere in the custom mount is comparable
to the objective and glass cell combination (asphere and meniscus), confirming that the
meniscus is compensating the presence of the glass cell. Extrapolating these curves to 10%
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Figure 4.3: Test pattern and extracted MTF curves for three configurations: (a) aspheric
lens in unobstructed mount, with NA≈ 0.5, (b) aspheric lens in custom-built mount with
NA≈ 0.43, and (c) aspheric-meniscus combination with glass cell with NA≈ 0.43. The bars
range from 250 cycles/mm (group 8 element 1) to 645 cyles/mm (group 9 element 3). Due
to the high magnification and relatively small sensor on the CCD, only groups 8 and 9 are
able to be seen. A area of the test pattern can be imaged by using a smaller magnification.
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of the initial MTF value results in a resolution of ≈ 1.2µm. This yields an NA ' 0.4.
Furthermore, there appears to be little to no astigmatism. The vertically and horizontally
oriented rectangular bars yield similar contrast values.

4.2.3 Extracting the PSF

Due to the limited number of spatial frequencies on the test pattern, we were
not able to fully characterize the objective at spatial frequencies higher than 645 lp/mm.
Because of this, the resolution was “measured” by extrapolating the MTF curve to higher
spatial frequencies, thus leaving room for error due to possible misalignments in the focal
position. To obtain a more quantitative measure of the resolution, an aperture smaller
than the resolution of the objective can be measured. This would yield a measure of the
PSF, which takes the form of an Airy pattern, consisting of a uniformly illuminated circular
region, surrounded with concentric bright rings. The resolution can be extracted by fitting
the PSF to a two-dimensional Airy pattern. Measuring the distance between the first
maximum and the first minimum of the Airy pattern would result in a measurement of the
diffraction limited resolution.

As a first attempt, we measured the PSF using a pinhole from Data Optics, with a
specified diameter of dpinhole = 0.5±0.3µm. The resulting images showed highly asymmetric
profiles, with an aspect ratio of 2:3. This unexpected measure led us to believe that there
may be a problem with the objective. Upon measuring the same aspect ratio using only
the aspheric lens, we speculated that the asymmetry may be related to the pinhole.

Pinhole ImageSTM Image STM Image 

Figure 4.4: STM images of the pinhole and image taken with the aspheric lens. With
dpinhole ≈ 1µ m, the pinhole is twice as large as ordered and provides only an upper bound
for the resolution. The deformation and tilt can be seen in the image which was taken
without meniscus lens and glass cell. The magnification was 25. One pixel in the image has
dimensions wx = 0.34µm and wy = 0.39µm.

Shown in Figure 4.4 is an image of the pinhole using an scanning tunneling micro-
scope (STM). The pinhole has a diameter of dpinhole & 1µm, twice the specification criteria,
and a tilt from the normal of ≈ 17◦.

Imaging a new pinhole proved to be more successful. The new pinhole was both
smaller in diameter and more symmetric. An image of the pinhole using the objective
is shown in Figure 4.5. Fitting the image to an Airy pattern proved difficult due to the
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limited signal to noise. As a way to circumvent this issue, we instead modeled the image
as two-dimensional Gaussian. This is only an approximation, so in order to relate this to
the actual resolution, the extracted 1/e2 radius of the fit must be scaled accordingly. The
scaling factor between the first maximum to minimum of the Airy pattern and 1/e2 radius is
2.44/1.83 ≈ 1.33 [106]. Fitting the new pinhole using this model we obtained the following
resolutions:

dx = 2.95 pixels× 8.4
µm

pixel
1
25
× 2.44

1.83
= 1.32µm (4.12)

dy = 2.6 pixels× 9.8
µm

pixel
1
25
× 2.44

1.83
= 1.35µm. (4.13)

These values are consistent with the diffraction limited value of 1.33µm, assuming an NA
of approximately 0.37, which is slightly less than the 0.4 value extracted from the MTF
curves.

Pinhole Image Model/Fit

Figure 4.5: Image of the new pinhole taken with objective lens system in combination with
the glass cell and the corresponding fit to a two-dimensional Gaussian. The new pinhole
has a diameter of dpinhole ' 0.5µm . One pixel in the image has dimensions wx = 0.34µm
and wy = 0.39µm.

However, one may ask whether an image of the pinhole is a faithful representation
of the PSF, given that it his roughly half the imaging resolution. To get at rough under-
standing of this system, we modeled this in one dimension, approximating the pinhole as a
top-hat function and the PSF as a Gaussian with a FWHM that is twice that width of the
top-hat. Comparing the computed image, which is the convolution of the pinhole and the
PSF, to the PSF, we found that there is a ∼ 5% overestimate of the resolution using an
object of finite size as opposed to a delta function. Thus, the finite-sized pinhole is a fair
test image for extracting a measure of the imaging resolution.

4.2.4 Astigmatism

The astigmatism of this objective was characterized by placing the pinhole at the
same location with respect to the optical axis as the condensate is presumed to be. Then
the size of the pinhole as a function of the objective focal position was measured. An
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astigmatism would result in an asymmetry between the measured vertical and horizontal
widths of the pinhole as a function of this position. Figure 4.6 shows the measured pinhole
widths as a function of the objective position. The data are fit to a parabola, where
the minimum of the fit indicates the location of the objective focus. The horizontal and
vertical widths are nearly identical (when taking into account the rectangular nature of
the pixels), and the focal minima occur at essentially the same position, indicating that
any astigmatism present in the imaging system is beyond our measurement capabilities and
most likely insignificant.
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Figure 4.6: Measured horizontal and vertical widths of the pinhole as a function of the
objective focal position. Using a linear translation stage, the objective position was scanned
through the focus and for each position the horizontal and vertical widths of the pinhole
were measured. The solid lines are fits to the data assuming a model which is parabolic.
The similar minima of the fits and lack of asymmetry between the widths is an indication
that the objective is stigmatic.

4.3 In-situ Characterization

In this section, we show how we use in-situ measurements of spinor condensates
to characterize an imaging system via the modulation transfer function, determining how
faithfully the imaging system is able to reproduce the spatial detail within the profile of our
spinor condensate. There have been other approaches to measure the MTF, typically based
on the imaging of individual atoms or non-interacting thermal gases [111, 112]. While both
approaches use density fluctuations inherent in ultracold atomic gases to characterize their
respective imaging system, neither has controllably simulated a test pattern using a spin
texture to directly measure the MTF.
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4.3.1 Imaging Test Pattern

For our experiments here, we produce optically trapped, spin-polarized 87Rb con-
densates of 3× 106 atoms in the |F = 1,mF = −1〉 state in a manner similar to Ref. [113],
at a temperature 70 nK and trap frequencies of (ωx, ωy, ωz) = 2π × (25, 480, 7.3) Hz in
a focused, linearly polarized light beam with a wavelength of 1064 nm. We next prepare
transversely magnetized condensates by applying a resonant π/2 radio frequency (rf) pulse
in the presence of a static magnetic field of B = 267 mG, applied along the x̂ axis. The
applied magnetic field causes the magnetization in the ŷ − ẑ plane to precess with respect
to the x̂ axis at the Larmor frequency of ΩL = 2π × 187 kHz. The magnetic field inho-
mogeneity is reduced to below 1 µG across the extent of the gas, resulting in a negligible
spatial variation of less than 1 Hz in the Larmor precession frequency

A sinusoidal spin texture was then created by rotating the orientation of the bias
field to be pointed along ẑ and applying a transient magnetic field gradient dBz/dz for
times ranging between τ = 0 − 30 ms. Larmor precession of the atomic spins in this field
resulted in a gradient spin pattern with spin F= cos(κz + ωLt)x̂ + sin(κz + ωLt)ŷ, where
~κ = (gFµB/~)(dBz/dz)τ ẑ is the wave vector. Similar to the experiment in [113], we ignore
the time evolution of the spin due to the rapid Lamor precession, as we are probing the gas
at a particular instant in time. By varying the time of the applied magnetic field gradient,
the pitch of the sinusoidal spin texture ranged between 4-50 µm.

Following a given evolution time, the magnetization profile was imaged using a
sequence of polarization contrast images (see Chapter 3). In particular, the magnetization
was imaged using 200-ns-long imaging pulses of linearly polarized light propagating along
the ŷ-direction. After traversing through the condensate, the resulting optical rotation
of the probe polarization was measured, yielding a spatially resolved signal of the trans-
verse magnetization, M⊥ = (gFµB)ñF⊥, where ñ is the two-dimensional column-integrated
condensate density.

Tuning κ

Necessary to the measurement of the MTF is a test pattern with a wide range of
frequency components. In optical test patterns such as the 1951 USAF test chart, a grid
of rectangular bars, ranging in sizes from 0.25 to 645 line pairs/mm, is used to measure
the MTF. Here, we are able to create a sinusoidal test pattern using our spinor Bose gas
by applying an inhomogeneous magnetic field, using a pair of quadrupole coils, with their
symmetry axis oriented along the long axis of the condensate (ẑ-axis). The effect of this is
to cause a local change in the magnetic field, whereby each spin in the condensate will then
precess at a rate that proportional to the magnetic field in that region. Thus, atoms at
opposite ends of the condensate will precess at different rates. These differing rates result
in a accrued phase shift across the extent of the gas, resulting in a spatial oscillation of the
magnetization along the “direction” of the field gradient, where “direction” here specifies
the axis over which the magnitude of the magnetic field varies.

In order to vary the magnitude of the wave vector, κ, we use two control knobs: the
pulse duration, τ , and the strength of the magnetic field gradient, B′, where the quantity
which determines the pitch is ∝ B′× τ . By scanning these two knobs, we are able to create
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Figure 4.7: Schematic of texture preparation. The system is initialized with a transversely
magnetized condensate, where the magnetic field is oriented along the x̂-axis and the spins
are in the ŷ − ẑ plane. Next, the orientation of the magnetic field is rotated such that
it is aligned along ẑ-axis and a magnetic field gradient is applied, dBz/dz, causing the
magnitude of the magnetic field to vary as a function of the position along the long axis of
the condensate (ẑ-axis), resulting a helical spin pattern.

a spin texture of a well defined wave vector, which scales linearly with τ and B′ = dBz/dz.
Shown in Figure 4.8 are a series of polarization contrast images of sinusoidal spin textures.
The application of a magnetic field gradient, dBz/dz, causes a spatial variation of the
magnetization along the ẑ-axis. Repeating this for increasing pulse durations results in a
helical spin pattern with a larger spatial frequency.

We verify that κ/2π scales linearly with the pulse duration. To do this, we take
the spatial Fourier transform of the magnetization spatial profile, M⊥. Then using the
Fourier spectra, we extract the magnitude of κ/2π and plot this as a function of the pulse
duration. At a magnetic field gradient of dBz/dz ≈ 140 mG/cm, the resulting wave vectors
range from ≈ 0.01− .2 pixels−1. In order convert this to more experimentally friendly units,
we convert the pitch, in units of 1/pixels, to microns, where λ = 2π/κ× 0.62µm/pixel, and
0.62µm/pixel is the effective pixel size in the imaging plane. This yields length scales which
range from 50 − 4µm. The dependence of λ and pulse duration is shown in the bottom
right plot of Figure 4.8.
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Figure 4.8: Unprocessed polarization contrast images of helical test patterns. As a function
of the applied magnetic field gradient, the pitch of the test pattern increases. Here the pulse
duration, τ , ranges from 1 ms to 30 ms, yielding a pitch that ranges from 50 µm (left) to
4 µm (right). The reproducibility and control is shown in the plots of the frequency and
wavelength versus time. The spatial frequency of the texture is related to the wavelength
by the pixel size in the imaging plane, which is ' 0.6 pixels/µm.
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Limitations on κ

The range over which we are able to vary the pitch appears to be limited. The
condensate size determines the largest values of λ, while the smallest length scales appear
to be ∼ 4µm. Despite using longer pulse durations or larger magnetic field gradients, the
largest wave vector measured saturates at 4µm. The reason for this is unclear. There are a
few possible explanations, one of which is related to the previous experimental work in this
group investigating the temporal evolution of helical spin textures [113]. In that work, a
helical spin texture with pitch λ = 60µm was created. After just ∼ 50 ms of free evolution,
the spin texture spontaneously dissolved into a highly corrugated spin pattern. The forma-
tion of the modulated spin structure was ascribed to magnetic dipolar interactions, which
energetically favor short-wavelength domains over the long-wavelength helix. Furthermore,
this dissolution was found to occur so long as λ < 2rz, where rz = 80µm is the Thomas-
Fermi radius along the long axis of the condensate. For the helical spin patterns studied
here, λ ' rz for τ < 3 ms. In order to prevent the condensate from forming this modulated
magnetic phase, the pulse durations were kept shorter than the free evolution times used in
the previous work. The pulse durations used here were < 30 ms and the field gradient was
∼ 100 kHz/cm.

Another potential culprit is the alignment of the imaging system. The smallest
features depend more critically on the position of the objective focus and small misalign-
ments in this position would yield an overall reduced contrast of the sinusoid. For a well
aligned imaging system, the contrast at the smallest pitches is expected to be much smaller
than unity, and a misalignment in the focal position of the objective could make it impos-
sible to image. Thus, despite exploring a wide range of pulse durations and field gradients,
λ was still limited to 4µm, possibly limited by misalignments in the imaging system or the
dissolution of the spin texture.

4.3.2 Extracting the MTF

We extract the MTF of our imaging system by measuring the contrast of the
modulation pattern from the helical spin texture and repeat this measurement for different
wave vectors. As described above, we imprint a helical spin texture by applying an inho-
mogeneous magnetic field. By applying the field gradient for various times, we are able to
carefully control the pitch of the helix (see Figure 4.8). Shown in Figure 4.9 is data from
several experimental runs, where we vary the time of the applied magnetic field gradient.
We create helices where 2π/κ are comparable to the length of the condensate (' 50µm)
down to a few microns, where the smallest observable helix pitch is on the order of the spin
healing length of our condensate, ξs = (8π∆an)−1/2 ∼ 2 µm.

We measure the contrast of the helix by integrating along the direction which is
orthogonal to the modulation direction, creating a one-dimensional profile. The resulting
profile has a Thomas-Fermi envelope, and within the envelope a sinusoidal modulation. For
simplicity, we approximate the Thomas-Fermi profile as a Gaussian, and fit the profile to a
sinusoid times a Gaussian. We model the profile as:

f(x) = A× e((x−x0)/xw)2 × sin(κx+ φ) + offset, (4.14)
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Figure 4.9: Polarization contrast images of a helical test pattern with a 20µm wavelength.
To the right of the test pattern is the corresponding one-dimensional profile (black dots).
The contrast is extracted by fitting the one-dimensional profile to a modified sine curve
(green solid curve). The measured contrast versus pitch is plotted and compared to a
theory curve assuming an NA∼ 0.31.

where κ is the pitch of the texture, φ is an overall phase offset, A is the amplitude, x0 is
the offset from zero, and xw is the width of the gas. Using the fit parameters of the model,
we extract a measurement of the maximum contrast,

C(f) = (Amax −Amin)/(Amax +Amin), (4.15)

where Amax = A/2 + offset and Amin = A/2 − offset. Thus the contrast measurement
reduces to C(f) = A. We next normalize this measurement to the phase contrast signal of
a fully transversally magnetized gas. The result is shown in Figure 4.9. Initially at low κ,
the data are near unity and with increasing κ, the contrast decreases smoothly, reaching a
minimum contrast of ≈ 0.5 at λ−1 ≈ 0.25µm−1.

Resolution

As discussed in the previous section, test patterns with λ < 4µm are difficult to
produce, reducing the number of contrast measurements at the higher spatial frequencies.
Thus, to circumvent this we compare the contrast measurement to a diffraction limited
theory curve with one free parameter. Fitting the data while allowing the NA to vary, we
extract a value of the NA≈ 0.31, approximately 30% lower than the expected value in the
custom mount, NAideal ≈ 0.43, but close to the value obtained from the PSF measurement,
NA∼ 0.37 (see Figure 4.9).

We ascribe the lower NA to a slight tilt in the glass cell with respect to the objective
mount. The glass cell is attached to the vacuum chamber on a non rotatable Conflat flange,
with a tilt of ≈ 10◦ with respect to gravity. To reduce this angle, the objective mount was
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also tilted such that the remaining angle was reduced to ≈ 1−3◦. Compensating this further
is hindered by the objective mount, the mount holding the bias coils, and the water-cooling
mount of the transportation coils.

Pitch vs angle

In addition to the test pattern discussed above, which had a modulation purely
along ẑ, we were also able to create a modulation along any direction in the x̂ − ẑ plane.
This was accomplished by rotating the orientation of the applied bias field, using two pairs
of Helmholtz coils, with their axes oriented along the x̂ and ẑ directions. Thus by changing
the orientation of the bias field, we are able to easily tune the axis of the modulation.

Using this capability, our first goal was to determine the severity of any astigma-
tisms in our imaging system. Ideally, this would involve the tedious process of measuring
the contrast for a range of wave vectors and bias field orientations. Instead, as a quick
check, we scanned the orientation of the bias field for a specific modulation wave vector,
κ/2π ≈ 0.12µm−1 (Figure 4.10). Magnetization maps for each orientation of the mag-
netic field were recorded, where the orientation of the bias field was scanned starting along
B = B0 ẑ (0◦) to B = B0(−ẑ) (−180◦), with 15◦ increments. For each bias field orientation,
the axis of the modulation rotates and the contrast appears to remain fairly constant.

To quantify this behavior, we considered the spatial Fourier transform of the mag-
netization shown in Figure 4.10. The spectrum contained a concentration at ±κ/2π, rep-
resenting the applied modulation. We integrated the spectral power at the frequency cor-
responding to the spatial frequency of the helix and defined this as the Fourier transform
intensity (FT Intensity), indicated in Figure 4.10. For each orientation of the magnetic
field, the spectral weight at κ/2π ≈ 0.12µm−1 remains relatively constant, indicating that
the effect of any astigmatism is either negligible or smaller than the noise in the images
between experimental iterations.

Objective misalignments

A potential error that can come about with regards to an imaging system are
misalignments with the objective focus which can lead to detrimental imaging aberrations.
Below we investigate such effects by purposely misaligning the position of the objective
focus and characterize the resulting aberrations using helical spin textures of varying pitch.
Following this, we also study the effect of an out-of-focus imaging system on the modulated
magnetic phases emanating from the breakup of helical spin textures (see Chapter 5).

To systematically study an out-of-focus imaging system, we displaced the position
of the objective along the imaging axis (ŷ−axis) by ' 0.3 mm and characterized the imaging
system using a helical spin texture. When the objective is positioned at a distance equivalent
to its focal length away from the atoms, referred to as “in-focus,” the MTF curve smoothly
decreases to zero. However, when “out-of-focus,” the objective is no longer able to image
certain spatial frequencies and the exhibits an oscillation in the contrast measurements
versus spatial frequency (see Figure 4.11). In particular, the contrast decreases from its
value near unity at κ ≤ 0.2, to zero at κ ' 0.3, and increases again at κ ' 0.4. Other
oscillations are visible in the contrast measurements. This is due to the larger PSF for an
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Figure 4.10: Spatial Fourier transforms of magnetization maps. The sinusoidal tex-
ture results in a spectrum with a signal concentration at the modulation wave vector,
±κ/2π ≈ 0.12. A magnetization map for each orientation of the bias field is recorded,
starting with the field aligned along ẑ (0◦) and increasing in 15◦ increments to -ẑ (180◦).
The integrated spectral power of each Fourier transform is recorded and plotted for each
bias field orientation. The absence of any dependence between the intensity and orientation
angle indicates a stigmatic imaging system.

out-of-focus imaging system. For instance, when the center of the PSF coincides with a
dark region of the helical test pattern, it also acquires information from adjacent regions
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that may be brighter. This results in a slightly brighter signal. The opposite is also true
when the PSF is located over a bright region of the test pattern. This net effect of the
enlarged PSF due to an out-of-focus imaging system results in the oscillating contrast seen
in the MTF and the overall reduction of the MTF at higher spatial frequencies.
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Figure 4.11: MTF for objective when displaced from the “in-focus” position by ∼ 0.3 mm.

We also examined the effect of an out-of-focus imaging system and its ability to
adequately image the breakup of helical spin textures as studied in previous experiments
[113]. To do this created a helical spin texture with a 30µm pitch and imaged it after 100
ms of free evolution, the details of which are described in reference [113]. The resulting
magnetization profile from what we believed to be an “in-focus” imaging system showed
a magnetization pattern described by a two-wave vector spatial modulation, with a length
scale of 10µm (Figure 4.12 (2.59)). However, upon changing the position of the objective
with respect to the in-trap location of the atoms, a different spatial pattern was observed.
The magnetization pattern at each position of the objective focus was consistent between
experimental iterations, thus any differences are not due to random fluctuations. As a func-
tion of the objective position, the observed magnetization pattern varied from an annulus at
roughly 10µm at an objective position of 2.57 mm, to a two-wave vector modulation, then to
a single wave vector at an objective position of 2.61 mm. Thus it seems that we can enhance
certain spatial features by adjusting the position of the objective focus. Furthermore, the
orientation of the modulation axis varies with the position of the objective focus. Previous
observations found that the axis of the two-wave vector modulation remained unchanged
between experimental iterations and under different experimental conditions. These obser-
vation leads us to doubt previous interpretations that a helical spin texture dissolves into a
two-wave vector modulation pattern in the magnetization profile.
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Figure 4.12: Two-dimensional spatial Fourier transform of the transverse magnetization pro-
file for different positions of the objective focus. Following the application of a 100 kHz/cm
magnetic field gradient and an evolution time of 100 ms, the transverse magnetization was
imaged using phase contrast imaging. Each image is derived from a single experimental
iteration. Multiple images taken at each focus is meant to show the fluctuations in the
spatial Fourier transforms between experimental iterations. Also included are the spatial
phase and amplitude profiles of the condensate magnetization. The “phase and amplitude”
map incorporates the data from the two spatial profiles (phase and amplitude), where the
brightness is indicative of the strength of the magnetization and the color determines the
orientation of the magnetization.
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Chapter 5

Equilibrium Properties of Spinor
Condensates

This chapter presents work related to the equilibrium properties of spinor gases.
This work was presented in the following publications:

• M. Vengalattore, J. Guzman, S. R. Leslie, F. Serwane, and D. M. Stamper-Kurn.
”Periodic spin textures in a degenerate F = 1 87Rb spinor Bose gas” Physical Review
A 81, 053612 (2010).

• J. Guzman, G. -B. Jo, A. N. Wenz, K. W. Murch, C. K. Thomas, and D. M. Stamper-
Kurn. ”Long-time-scale dynamics of spin textures in a degenerate F = 1 87Rb spinor
Bose gas” Physical Review A 84, 063625 (2010).

The general understanding of non-equilibrium dynamics and their approach to
equilibrium has remained an elusive topic in ultracold and condensed-matter systems. The
strong interactions in solid state systems make observing quantum dynamics nearly impos-
sible, as most systems reside at or near the thermal equilibrium state. In contrast, the
relatively slow evolution of weak interactions associated with ultracold atomic systems en-
ables the study of quantum dynamics on experimentally accessible timescales. While many
research groups have extensively studied the dynamics of spin-mixing collisions in spinor
condensates [83, 51, 52, 114, 115, 116, 117, 118, 119], less work has been dedicated to the
experimental pursuit of equilibrium in these systems. In fact, given the limited lifetime of
the samples, the question of whether ultracold atomic systems are able to reach equilibrium
has remained unanswered.

In the next few sections, we discuss a few experiments where we systematically
study the evolution of spin textures in a spin-1 Bose gas and address the question of whether
a cold atom system is able to reach equilibrium by experimentally verifying the equilibrium
phase diagram for an F = 1 spinor gas.

5.1 Spinor Basics

Spinor condensates are distinguished from their scalar counterparts by the intro-
duction of a vector order parameter, well described within mean-field theory. This sec-
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tion will present a short introduction to the theoretical treatment of spinor condensates.
A more detailed treatment can be found in the following review article [82] and theses
[27, 120, 79, 52, 80]. In particular, this section will focus on the spin dependent mean-field
interaction and the quadratic Zeeman effect which contribute to the rich landscape of com-
peting magnetic phases that are studied here. For more information regarding this topic, I
refer the reader to the following theoretical [121, 122, 123, 124, 125, 126, 127, 128, 129] and
experimental [115, 114, 81, 83] publications.

5.1.1 Theoretical description of a spinor BEC

The F = 1 spinor Bose gas can be represented by a three-component order pa-
rameter

Ψ(x) =
√
n(x)ψ(x) (5.1)

=
√
n(x)

ψ+1(x)
ψ0(x)
ψ−1(x)

 (5.2)

where the spinor ψ(x) is normalized as ψ(x)†ψ(x) = 1 and the subscripts reflect the three
magnetic Zeeman sublevels, mF = 0, −1, +1. For simplicity, we first determine the ground
magnetic phase while ignoring effects from a magnetic field. The energy functional at zero
magnetic field is described by

E =
∫
d3x

(
~2

2m
|∇Ψ|2 + n(x)(U(x)− µ) +

n2

2
(
c0 + c2〈F 2〉

))
(5.3)

where F = ψ†(x)Jψ(x) is the dimensionless magnetization, m is the mass, and Ji are the
standard spin-1 matrices. The first term in the energy functional describes the kinetic
energy and the second term describes the externally applied trapping potential. The last
term describes the spin independent and dependent contact interaction. These interaction
terms are characterized by the coefficients c0 and c2, which are determined by the s-wave
scattering lengths with total angular momentum 0 or 2,

c0 =
4π~2

3m
(2a2 + a0) (5.4)

c2 =
4π~2

3m
(a2 − a0). (5.5)

For 87Rb, the scattering lengths are a0 = 101.8aB and a2 = 100.4aB, where aB is the
Bohr radius [130]. Note c2 is negative since a2 < a0, in contrast to F = 1 23Na spinor
condensates, where c2 > 0 [27].

The ground state structure of the spinor can be determined by minimizing the
spin-dependent part of the energy functional, n2c2〈F 2〉/2 [27]. In doing so, considering
only the spin-dependent contact interaction, we see that the energy is minimized when
〈F〉2 = 1. Thus, the spin-dependent contact interaction prefers the condensate to be in a
magnetized state (ferromagnetic state).
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Zeeman shift

The addition of an external homogeneous magnetic field, B = B0ẑ, results in an
additional term to the spin-dependent part of the energy functional described by

EB = ELZ + EQZ (5.6)

=
∫
d3xn

(
gFµBB0〈Fz〉+ q〈F 2

z 〉
)

(5.7)

which includes contributions from both the linear and quadratic Zeeman shift. We discuss
the influence of each shift below. The net effect of the linear Zeeman shift is just to induce
Larmor precession of the transverse magnetization. We can compensate this by choosing a
rotating frame of reference at the Larmor precession frequency, where there the shift due
to the linear Zeeman effect is zero. The reasoning behind this lies in the conservation of
magnetization, derived from the rotational symmetry of the spin interactions. However,
spatial magnetic field inhomogeneities could have a substantial influence on the spinor
ground state [131]. In the experiments discussed here, great care is taken to ensure that
the magnitude of these inhomogeneities are far smaller than the spin-dependent contact
interaction and the quadratic Zeeman shift.

The quadratic Zeeman shift, however, does have a strong influence on the spinor
ground state properties. For an F = 1 gas of 87Rb atoms, the applied magnetic field induces
a shift proportional to ∝ m2

FB
2, characterized by

q =
E+1 + E−1 − 2E0

2
, (5.8)

where EmF is the shift of the magnetic sublevel in the presence of a magnetic field. This
corresponds to a shift of q/h = 70.6 × B2 Hz/G2, computed from the Breit-Rabi formula.
We can see that for large magnetic fields, the effect of the quadratic Zeeman shift is to
increase the energy of the mF = ±1 levels with respect to the mF = 0 level, resulting in a
preference for a state which is unmagnetized, often referred to as a polar state. We note
that the phase transition from a polar to ferromagnetic state is q = 2|c2|n [81]. However,
for q < 0, the mF = ±1 are now lower in energy, and once again a magnetized state is
preferred. The energy functional in this scenario is minimized when the magnetization is
oriented parallel or antiparallel to the magnetic field.

5.1.2 Mean-Field Phase Diagram

Summarizing the contributing factors to the spin-dependent energy functional, we
have

Espin =
∫
d3xn

(nc2

2
〈F 2〉+ q〈F 2

z 〉
)
, (5.9)

where we see that we have a set of competing interactions, each favoring a different magnetic
ground state. The effect of these competing interactions has yielded a versatile playground
for studies of magnetism, resulting in many experimental [81, 83, 132, 119] and theoretical
[125, 126, 133, 134, 122] pursuits.
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Figure 5.1: Ground state phase diagram for F = 1 spinor condensate as predicted by
mean-field theory in presence of magnetic field from Mukerjee et al [134].

The resulting magnetic phases of the ground state structure as predicted by a mean
field theory for a uniform condensate are summarized in Figure 5.1. The lower part of the
phase diagram corresponds to the ferromagnetic case where c2 < 0; such is the case for 87Rb.
The lower left quadrant corresponds to large negative quadratic shift, where a uniformly
magnetized state is energetically favorable, F||, and the magnetization is likened to an easy-
axis (Ising) magnet [134, 125]. Physically, this means that the condensate magnetization
prefers to be aligned or anti-aligned with respect to the magnetic field. The lower right
quadrant is divided into two parts by a straight line described by q = −2|c2|. To the right
of this line, it is energetically favorable for the system to be in an unmagnetized (polar) state,
P||. To the left of this line, at intermediate values of the quadratic shift (0 < q < 2|c2|n)
the energetically preferred state is one which is a linear combination of a polar phase, P||,
and a ferromagnetic phase F⊥, where this ferromagnetic phase is one which prefers in-plane
magnetization, likened to an easy-plane (XY) model.
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5.2 Why study the magnetic phases of an F = 1 spinor gas?

During the course of fairly routine experimental procedures, we observed the mag-
netization of our F = 1 spinor gas to behave unexpectedly. After reducing the spatial
inhomogeneities in the magnetic field, where there was roughly a ∆B ≈ 15µG difference
across the spatial extent of the condensate, we observed the magnetization profile dissolve
into a pattern of modulated spin domains. Believing this to be a one-time occurrence and
noting this puzzling observation, we naively attributed this phenomena to improper gra-
dient cancellation. However, our incomplete understanding of why spatial inhomogeneities
in the magnetic field would lead to such unusual behavior motivated us to pursue a new
experiment; one that would systematically study the temporal evolution of the spinor mag-
netization profile in the presence of a spatially inhomogeneous magnetic field [113].
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Figure 5.2: Dissolution of helical spin textures. On the left is the transverse magnetization
of an initially prepared helical spin texture and the corresponding spatial Fourier transform.
On the right is the temporal evolution of the texture after a couple ∼ 100 ms evolution time.
As can be seen in the Fourier transform and the in-situ magnetization map, the spin texture
consists of corrugated pattern of spin domains, characterized by ≈ 10µm modulation.

In that study we performed a time-resolved study of the spinor magnetization after
imprinting a helical spin pattern with a ∼ 30µm pitch. Following evolution times as short
as 50 ms, we observed the transverse magnetization break up into a regularly occurring
pattern of spin domains (Figure 5.2), not unlike a checkerboard lattice, persisting for times
up to ∼300 ms, where this evolution time was limited by the lifetime of the gas in the
optical trap.

The persistence of the “crystalline” phase led us to question whether this was
indeed the equilibrium ground state, or a long-lived non-equilibrium magnetic phase. A
careful look at the magnetic phases predicted for an F = 1 spinor gas indicated that a
homogeneous transversely magnetized condensate minimized the local contact interaction.
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Thus, having prepared a helical spin texture, the evolution towards a spatially modulated
pattern was highly unexpected, leading us to question whether there are effects beyond the
local contact interaction that must be included to obtain a complete description of a spinor
condensate, such as magnetic dipole-dipole interactions.

Thus, to resolve whether interactions not included in the spin-dependent energy
functional play a significant role in the behavior of spinor gases, we investigated whether
the equilibrium phase of F = 1 spinor condensates included additional magnetic phases not
included in the phase diagram described above.

Discussed in the following sections are two separate experiments. Each using two
different experimental apparatuses to probe the equilibrium properties of an F = 1 spinor
condensate. First, we will discuss our initial results reported in [135], which explored the
evolution of unmagnetized spin mixtures at different final temperatures. Such studies ob-
served the emergence of a modulated magnetic phase, but were unsuccessful in determining
whether this was an equilibrium property of the system. This was due to finite evolution
times of up to 300 ms, limited by the lifetime of the atoms in the optical trap. Following this
we will discuss the results reported in [104], where a new experimental apparatus enabled
longer evolution times, upward of 3− 4 s. There we observed the equilibrium properties of
the F = 1 spinor gas within a small range of quadratic Zeeman shifts.

5.3 Experimental Tools

To explore the equilibrium properties of spinor condensates, a few experimental
elements are necessary: precise control of the spatial profile of the magnetic field, control
of the quadratic Zeeman shift, as well as a fine tune control of the initial spin composition.
By having these tools available, a thorough exploration of the magnetic phases of a F = 1
spinor gas can be achieved.

5.3.1 Magnetic Fields

Our study of the magnetic phases of a spinor condensate required precise control
of the magnetic field, specifically the orientation, spatial variation, and its magnitude. This
was be done by using three orthogonal pairs of coils, arranged in a Helmholtz configuration
outside the glass cell (see Chapter 2). Using such coils, we were able to achieve reproducible
magnetic fields one the order of∼ 1 mG, limited by the dc field fluctuations from the elevator
which caused the background bias field to fluctuate by approximately 5−10 mG. Using these
coils, the typical field we operated at was 110 kHz or equivalently 167 mG along ẑ-direction
for the experiment in [135], referred to as Experiment 1, and 187 kHz or equivalently 267
mG along x̂-direction for the experiment reported in [104], referred to as Experiment 2.

Magnetic Field Gradients

Additional coils, however, were required due to spatial inhomogeneities in the
magnetic field at the location of the condensate, presumably due to imperfections in the
coils as well as contributions from various components of the experimental apparatus, such
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as translation stages or ball-drivers. The magnetic fields gradients along the x̂- and ẑ-
directions were controlled using using three pairs of coils arranged in an anti-Helmholtz
configuration, located outside the glass cell. The coils were arranged such that we were able
to control the magnetic field gradients along dBx/dz, dBz/dz, and dBx/dx. Using these
coils, the magnetic field gradients were compensated such that the spatial variation in the
magnetic field was < 0.1µG/cm at the condensate, resulting in a . 1µG difference across
the extent of the gas.

5.3.2 Modulated magnetic fields

The noise sources in the magnetic field environment were characterized by rf fre-
quencies up to 100 kHz, with intermittent sources between 100 kHz and 130 kHz, which
greatly limiting the study of spin dynamics at low magnetic fields. Thus, to prevent their
influence on our studies of spin-mixing dynamics, we first operated at a magnetic field where
the noise in the magnetic field environment had no frequency component resonant with the
energy scales in our system, and second, introduced the use of modulated magnetic fields.

Quadratic Zeeman shift

Modulated magnetic fields were introduced into our system through a linearly
polarized microwave field, detuned from the |F = 1,mF = 0〉 to |F = 2,mF = 0〉 hyperfine
transition. The applied microwave field induces an ac quadratic Zeeman shift, which is
either positive or negative, depending on the sign of the detuning from resonance. The
resulting ac field-induced quadratic Zeeman shift is

qµ = −~Ω2
R/4δ, (5.10)

where ΩR is the Rabi frequency and δ is the detuning from the |F = 1,mF = 0〉 to
|F = 2,mF = 0〉 hyperfine transition. Using the microwaves, the quadratic shift of qµ was
used to tune the total quadratic shift

q = qB + qµ (5.11)

= qB − ~Ω2
R/4δ, (5.12)

by varying the Rabi frequency ΩR and by choosing the sign of δ, enabling the necessary
control to explore the F = 1 spinor phase diagram (Figure 5.1). In practice, the typical
detuning was δ = ±2π × 40 kHz from the |F = 1,mF = 0〉 to |F = 2,mF = 0〉 hyperfine
transition and the maximum Rabi frequency was ΩRmax = 2π × 5 kHz. At this detuning,
we expected an insignificant admixture of atoms from the F = 2 hyperfine state (< 3%).

5.3.3 Spin Mixtures

To probe the equilibrium magnetic phases of an F = 1 spinor gas, we examined the
magnetic order of gases produced by gradually cooling unmagnetized thermal spin mixtures
into the regime of quantum degeneracy. These unmagnetized gases, characterized by zero
vector spin, were prepared with zero longitudinal magnetization (ζ1 = ζ−1) and zero trans-
verse magnetization (no coherences among the Zeeman sublevels). Under these constraints,
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we studied the equilibrium magnetic phases of our spinor gas using three different initial
spin compositions: η = 0, η = 1/4, η = 1, where η is defined as η = ζ0 − ζ1 and (ζ1, ζ0, ζ−1)
denote the fractional populations within the three Zeeman sublevels (eigenstates of Fz).
By performing the experiment under different initial conditions, we were able to determine
whether the magnetic phases observed are independent of the initial condition.

The η = 0 thermal spin mixture requires equal population within the Zeeman
sublevels, ζthmF = (1/3, 1/3, 1/3). To obtain this spin composition which is both thermal
and has zero transverse magnetization, we started with a thermal gas (T > Tc) and applied a
sequence of approximately 10 π/2 rf pulses while in the presence of a magnetic field gradient
(≈ 50 mG/cm). The combination of an inhomogeneous magnetic field, the rapid Larmor
precession about the magnetic field, and the rf pulse sequence, served to decohere the sample
from diffusion [51], but also caused a random sampling of the Bloch sphere, resulting in
an equal distribution of atoms within the Zeeman sublevels. To determine the population
within the sublevels, we used Stern-Gerlach analysis, where a magnetic field gradient was
applied to the atoms and was used to spatially separate the Zeeman sublevels before being
illuminated with resonant imaging light. We also verified the absence of longitudinal and
transverse magnetization by using phase contrast imaging [51].

To create the η = 1/4 thermal spin mixture, a single resonant π/2 rf pulse was
applied, rotating the magnetization in a plane perpendicular to the magnetic field. Following
the π/2 rf pulse, a transient magnetic field gradient of 50 mG/cm was applied to the atoms
for times up to 400 ms to decohere the gas. This resulted in an incoherent thermal spin
mixture with fractional populations within the Zeeman sublevels, characterized by ζthmF =
(1/4, 1/2, 1/4). The initial populations and magnetization of the gas were characterized
using Stern-Gerlach time-of-flight (TOF) analysis and phase contrast imaging.

To create the η = 0 thermal spin mixture, we applied a single π/2 rf pulse, followed
by a large transient magnetic field gradient (≈ 30 G/cm), expelling atoms in the mF = ±1
Zeeman sublevels. Using this technique was less efficient than a series of microwaves sweeps,
but ultimately more reproducible. To verify the spin composition, we used Stern-Gerlach
analysis at high quadratic shift. This was to avoid any confusion due to population within
the mF = ±1 states that occur via spin-mixing collisions.

5.4 Experiment 1

In this experiment, we began with 4×107 magnetically trapped 87Rb atoms in the
|F = 1,mF = −1〉 state at a temperature of 1.5µK. The sample was then transferred to an
optical dipole trap, characterized by initial trap frequencies of (ωx, ωy, ωz) = 2π×(80, 800, 9)
Hz, using linearly polarized light, derived from a free-running diode laser at 825 nm. By
applying resonant rf pulses as described above, unmagnetized thermal spin mixtures were
created. Following this procedure, the spin mixtures were evaporatively cooled by decreasing
the intensity of the optical trap over a time scale of 200 ms. Upon reaching the desired trap
depth, the samples were then allowed to equilibrate for an additional 200 ms.

Throughout the equilibration and evaporation periods, a static magnetic field of
B = 167 mG was applied along the ẑ axis, where the coordinate system is defined with
respect to the optical trap, with the long axis of the trap defined as the ẑ axis, and the
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most tightly confined direction, (parallel to gravity) the ŷ axis. The magnetic field caused
the magnetization in the ŷ − x̂ plane to precess about the ẑ axis at a Larmor precession
frequency of ΩL = 2π × 110 kHz. In addition to the rapid precession, this magnetic field
also induced a quadratic Zeeman shift of qB/h ' 2 Hz, which reduced the relative energy
of the |mF = 0〉 to the |mF = ±1〉 states.

To quantify the evolution of these spin mixtures, we imaged them using two meth-
ods: TOF absorption imaging and phase contrast imaging. The first method is used to
extract the bulk properties of the spin mixtures, mainly the atom number, condensate
fraction, and temperature within each Zeeman sublevel. Phase contrast imaging is used
to obtain a detailed image of the spatial vector magnetization profile. This was done by
taking a sequence of phase-contrast images using 1.5µs-long imaging pulses with circularly
polarized light propagating along the ŷ direction. As described in Chapter 3, a temporally
evolving precession signal was then recorded, where the amplitude and phase of this signal
was used to extract the transverse magnetization density M̃⊥ = (gFµB)ñF⊥, where ñ is
the integrated column density [51, 3]. The results of these analyses are discussed in detail
in [135], but will be briefly reviewed here for clarity.

5.4.1 η = 0 spin mixture results

From measurements made in TOF, we observed a few classic hallmarks of a three-
dimensional Bose gas. At the highest temperatures, well above the condensation tempera-
ture, the density profile imaged in TOF most closely resembled a Gaussian profile. Upon
cooling the gas below the condensation temperature, a bimodal profile was observed. To
quantify these observations, the TOF density profiles were fitted to the sum of a Gaus-
sian and parabolic distribution, with the fitted number within the Gaussian and parabolic
profiles associated with the thermal (Nth) and condensate number (Nc). From these mea-
surements, we were able to extract the condensation temperature, Tc,N0 , where the density
profile first becomes bimodal. This is consistent with the theoretical prediction for a scalar
Bose gas, where Tc,N0 is defined as

Tc,N0 = ~ω̄(N0/1.21)1/3 (5.13)

and N0 is defined as the number in the |mF = 0〉 state. We also obtained a measure of the
condensate fraction, derived from the following equation

Nc

Nth +Nc
= 1−

(
T

Tc

)3

, (5.14)

and observed fairly good agreement with this theoretical prediction (see Figure 5.3). We
also note that the populations within each Zeeman sublevel remained roughly equal for each
iteration of the experiment, independent of the final temperature.

Given the striking similarities of the bulk properties observed in TOF between to
those of a scalar Bose condensate, we expected no new features when imaging the vector
magnetization profiles. Above the condensation temperature, the magnetization remained
roughly zero, evident by the lack of Larmor precession in the images. This expected ob-
servation is due to the reduced cross-section for the spin-mixing collision rate in a thermal
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Figure 5.3: Condensate fraction as a function of the final temperature for an η = 1/4 spin
mixture. Similar results were also observed for an η = 0 spin mixture.

gas, where these collisions are necessary to establish the long-range ferromagnetic order.
However, upon cooling the spin mixtures below Tc,N0 , the spin mixture spontaneously
magnetized. The strength of the magnetization, as indicated by the brightness in each
image of Figure 5.4, was equally distributed between the transverse and longitudinal com-
ponents. Surprisingly, the magnetization profile was not homogenous, but showed a myriad
of short-ranged modulations, appearing in both the transverse and longitudinal magnetiza-
tion profiles. Qualitatively, the spin modulations appeared to occur in a somewhat regularly
occurring “crystalline” pattern, with a characteristic spatial length scale of ' 10µm.

5.4.2 η = 1/4 spin mixture results

For η = 1/4, we observed qualitatively different features. From TOF analysis,
the distribution of atoms within the Zeeman sublevels remained roughly close to the initial
composition for temperatures above Tc,N0 . This was quite surprising since we naively ex-
pected the population within the Zeeman sublevels to quickly redistribute to an equilibrium
configuration, with the thermal populations equally distributed between each level. This
unexpected result is attributed to the reduced cross-section for the spin-mixing collision rate
in the thermal gas, preventing the populations within the Zeeman sublevels from becoming
equally distributed within the accessible experimental timescales explored here. However,
upon lowering the temperature below Tc,N0 , we observed the onset of condensation in the
|mF = 0〉 state, evident in the bimodal distributions in the TOF images. Accompany-
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Figure 5.4: TOF density profile and in-situ transverse magnetization profile of spin textures
at various temperatures for an initial thermal spin mixture with η = 0

ing this onset, we observed the thermal component of the gas rapidly equilibrate to equal
populations within the three Zeeman sublevels, likely due to the strong enhancement of
spin mixing collisions driven by the large density of the condensate in the |mF = 0〉 state.
The condensed portion of the gas, however, remained fairly close to the initial composition,
evident in images of the TOF momentum distributions.

Imaging the gas using magnetization imaging, we observed two magnetic phases
in the magnetization profiles, in contrast to the single magnetic phase observed in the η = 0
spin mixture. Upon lowering the temperature just below Tc,N0 , we observed the abrupt
onset of magnetization, characterized by a fairly uniform spin texture and with a length
scale of roughly 50-100 µm. This phase persisted as the temperature was decreased and it
is only when we decreased the temperature of the gas below 0.75Tc,N0 that we observed a
periodic modulation in the magnetization. The magnetization at this point was character-
ized by a short wavelength modulation superimposed with the long wavelength modulation,
predominantly oriented predominately in the x̂− ŷ plane (see Figure 5.5). We attribute the
spin-space asymmetry in the vector magnetization to the population composition of con-
densed atoms within the Zeeman sublevels. We can understand this if we think of atoms in
|mF = 0〉 state as superposition of atoms with spins oriented along ±x̂. From this perspec-
tive, the |mF = 0〉 condensate atoms act like a transverse magnetization reservoir, where for
low values of the quadratic shift, q, the condensate is dynamically unstable to the formation
of transverse magnetization [52, 83, 136]. Thus, the initial composition of the η = 1/4 spin
mixture has a natural inclination towards towards magnetization oriented in the transverse
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Figure 5.5: In-situ transverse magnetization profile of spin textures at various temperatures
for an initial thermal spin mixture with η = 1/4.

5.4.3 Characterizing the magnetic order

To quantitatively describe these magnetic phases, we make use of the spatial
Fourier transform of the vector magnetization, M̃(kx, ky). In particular, we extract the
spectral power of the condensate magnetization, |M̃(kx, ky)|2, for each transverse mag-
netization component. We take the average of the two spectral powers and use this to
characterize the short- and long-range magnetic order. For the η = 0 initial spin mixture,
spectral peaks become visible immediately below Tc,N0 and are primarily concentrated at
an inverse length scale of λ−1 ' 10µm−1. The orientation of the modulations is charac-
terized by two wave vectors which are pinned to the optical trap axis. This was verified
by observing a rotation of the modulation orientation when rotating the optical trap about
the ŷ axis. The absence of a spectral peak at zero wave vector is an indication of the lack
of long-range ferromagnetic order in the η = 0 mixture.

The η = 1/4 mixture, however, shows no short-range order immediately below
Tc,N0 . In fact, we find that the all of the spectral power is concentrated at zero wave
vector, where the anisotropic profile of this component reflects the aspect ratio of the
trap. As observed in the magnetization profile, for T ≤ 0.75 × Tc,N0 , the spin modulation
pattern reveals itself in the form of short-range magnetic order in the spectral power. These
modulation components are characterized by two wave vectors, as seen in the η = 0 images,
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showing a similar orientation. Decreasing the temperature further, we observe that the
spectral weight at the two wave vectors increases until approximately 50% of the total power
is concentrated in the short-range modulation, occurring at the lowest attained temperatures
and confirming our qualitative analysis of the in-situ magnetization images.
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Figure 5.6: Power spectra for η = 0 and η = 1/4 spin mixtures. Shown are two sets
of images for each spin mixture for two different temperatures. For T > Tc,N0 , the spin
mixtures show no magnetic order, but for lower temperatures, magnetic order in the form
of short- and long-range modulations appear, occurring at two distinct wave vectors. The
orientation of the modulations coincides with an angle of ≈ 20◦ with respect to the trap
axis.

Dipole-Dipole interactions

The “crystalline” magnetic phase observed for the η = 1/4 mixture appears in the
magnetization profile at a temperature that is roughly 0.75Tc,N0 . The fact that this phase
occurs at a temperature different from the theoretical prediction for Bose condensation
suggests that it is perhaps mediated by some interaction other than the coherent spin mixing
which establishes the long-range magnetic order observed at temperatures immediately
below Tc,N0 . Fine measurement and control of the temperature enabled us to pinpoint the
exact location of this magnetic phase, occurring at T ' 130 nK. Using this temperature as
an estimate for the strength of the mediating interaction, we find close agreement to the
dipolar interaction energy between two spins. To understand this, we compute the potential
energy between one spin and the magnetic field generated by an adjacent spin as

|Udd| = µ ·B (5.15)

∼ µ0

4π
1
l3
µ2, (5.16)

where µ = µBgF is the magnetic moment, µB is the Bohr magneton, µ0 is the magnetic per-
meability, and l is the separation between the spin domains. Taking the magnetic moment
of the spins to be

µ ' NgFµB, (5.17)
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where the total number is N = ñl2, ñ is the integrated column density, and l is the distance
between spin domains (∼ 10µm), we arrive at an estimate for the dipolar energy,

|Udd| ∼ µ0(gFµBñl2)2/l3. (5.18)

Using typical experimental parameters, we estimate the dipolar energy to be ∼ 100 nK,
where we have assumed a condensate density n = 2 × 1014 cm−3 and N ' 106. From this
simple calculation, we find very good agreement between this estimate of the dipolar energy
and the energy equivalent occurrence of the “crystalline” phase.

5.4.4 Equilibrium Properties?

The differences in the magnetic phases for each spin mixture is attributed to the
dynamics that give rise to the ferromagnetic order below Tc,N0 . For η = 0, Bose conden-
sation occurs simultaneously in all three Zeeman sublevels, from which each level is able
to spontaneously magnetize. In contrast, for the η = 1/4 spin mixture, Bose condensation
occurs first in the predominately occupied |mF = 0〉 state, with a condensate forming on
the time scale determined by the collision rate, 1/τBEC ∼ kHz. Following this, coherent
spin mixing then mediates the formation of transverse magnetization, taking the form of
the long-range ferromagnetic order, occurring on a time scale τSM ∼ ~/c2〈n〉 � τBEC . To
verify this understanding, using the same experimental sequence described above, we pre-
pared an η = 1/4 spin mixture at large quadratic shifts where a polar state is dynamically
stable. Indeed the absence of spin mixing collisions was apparent in both the magnetiza-
tion profiles and the TOF momentum distributions, where no transverse magnetization or
bimodal distributions in the |mF = ±1〉 states were observed.

The consistency of the “crystalline” phase raises the question as to whether this
is an equilibrium phenomenon or a long-lived metastable phase. To address this question,
we temporally resolved the evolution of these mixtures for different evolution times. First,
we measured the equilibration timescale for the thermal components within each Zeeman
sublevel to become equally distributed for η 6= 0 spin mixtures. This was done for η = 1/4
and η = 1 spin mixtures, which present an out-of-equilibrium composition for the ther-
mal atoms. Immediately below Tc,N0 , the thermal population becomes equally distributed
among the sublevels within 100-150 ms of reaching the final trap depth. This timescale was
observed for both the η = 1/4 and η = 1 spin mixtures. Additionally, we also observed
similar magnetic phases beginning with an η = 1 spin mixture. Below Tc,N0 long-range fer-
romagnetic order appears, followed by a modulated magnetic phase for lower temperatures,
as seen in the η = 1/4 spin mixture (Figure 5.7). Furthermore, altering the evaporation
trajectory by decreasing cooling rate or doubling the evolution times showed no quantitative
difference in the TOF distributions or the observed magnetic phases. The consistent obser-
vation of the short-range ferromagnetic order, which seems to be independent of the initial
conditions, equilibration time, and evaporation trajectory, suggests that this is potentially
an equilibrium property of an F = 1 spinor gas [135].
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Figure 5.7: Images of the transverse magnetization profile for an initial η = 1 spin mixture,
probed 150 ms after reaching the final optical trap depth. Similar to the η = 1/4 spin mix-
ture, below Tc,N0 , the gas shows fairly uniform regions of transverse magnetization. Cooling
the sample further, we observe the emergence of short wavelength modulation, characterized
by a length scale of ≈ 10µm. This is easily seen in the spatial Fourier transform, composed
from a single image of the magnetization profile (not averaged). Evident in these images is
the long-range ferromagnetic order near Tc,N0 and the appearance of short-range magnetic
order at lower temperatures. In addition, there is an asymmetry in the distribution spectral
power, with the modulation primarily along one axis.

5.5 Equilibrium Properties: Attempt 2

The results reported in [135] provide a very convincing argument that dipolar in-
teractions may be important in determining the ground state structure for spinor Bose gases.
However, such studies were limited to short evolution times (< 300 ms), due to condensate
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lifetimes of ∼ 1 s. Thus, we repeated the studies discussed above with a new experimental
chamber to verify, or at least to provide some clarity for the surprising results on a new
modulated magnetic phase [135, 113]. In particular, we probed the phase diagram for the
F = 1 spinor gas by performing measurements on the temporal evolution of unmagnetized
spin mixtures at a variable quadratic Zeeman shift.

5.5.1 Apparatus Improvements

Before performing these studies, we had a major overhaul of the experiment. The
apparatus used in [135, 83, 113, 52, 51] was replaced in the spring of 2009. The experimental
apparatus is thoroughly reviewed in Chapter 2, but will be briefly reviewed here.

• The atoms are magnetically transported 200 mm to a glass cell yielding improved
optical access.

• Increased magnetic bias and gradient control along with improved vacuum has allowed
for evolution times as along as several seconds.

• The vector magnetization profile is measured using spin-echo imaging.

5.5.2 Experimental Sequence

For these studies, we collected spin-polarized atomic samples of 87Rb atoms in
the |F = 1,mF = −1〉 state at a temperature of 30 µK in an optical dipole trap (ODT)
derived from a free-running linearly polarized Ytterbium fiber laser, characterized by trap
frequencies of (ωx, ωy, ωz) = 2π(220, 4150, 63) Hz. The spin mixtures were created by the
application of resonant π/2 rf pulses in the presence of a magnetic field gradient (see above).
The spin mixtures were then cooled by lowering the power of the optical trap over 2.4 s
to final trap frequencies of (ωx, ωy, ωz) = 2π(25, 380, 7.3) Hz. At the final trap depth, the
mixtures, typically containing 3 × 106 atoms with a peak density np = 1.3 × 1014 cm−3,
were allowed to equilibrate for timescales up to 4 s.

Throughout the evaporation process, both static and modulated magnetic fields
were applied. A uniform magnetic field of B=267 mG, oriented along the x̂ axis was applied,
where the spatial coordinates are referenced with respect to the optical trap axes. Using
this convention, ŷ is parallel to gravity and ẑ is along the more weakly confined direction
of the optical trap. The magnetic field gradients were reduced to 0.1 mG/cm, resulting in
a spatial inhomogeneity of less than 1 µG across the extent of the gas. This magnetic field
gave rise to a quadratic Zeeman energy shift of qB = h(70.6 Hz/G2)B2 ≈ h × 5 Hz. In
addition, a linearly polarized microwave field, with Rabi frequency Ω and a detunning of
δ/2π = ±40 kHz from the |F = 1,mF = 0〉 to |F = 2,mF = 0〉 hyperfine transition was
applied. By tuning the Rabi frequency and the sign of the detuning, we were able to tune
the total quadratic shift, q = qB + qµ [83, 137]. For this study, the polar to ferromagnetic
phase transition is q0 = 2|c2|np = h× 10 Hz.
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5.5.3 Temporal Evolution

To first verify that we are observing the equilibrium tendencies within the acces-
sible experimental time scales of the experiment, we made time resolved measurements of
the fractional populations within the Zeeman sublevels imaged in TOF.

TOF Results

Beginning with an η = 0 thermal spin mixture, we perform time-resolve measure-
ments of the gas and repeated this for different quadratic shifts. We characterize these
measurements by fitting the data to a bimodal distribution and extract the condensate
fraction within each Zeeman sublevel. Shown in Figure 5.9 is the fractional population of
atoms within the |mF = ±1〉 states, defined as

ζ±1 =
1
2
× ζ+1 + ζ−1

Ntotal
, (5.19)

where Ntotal is the total atom number. At short equilibration times, we observe the emer-
gence of a bimodal distribution, within each Zeeman sublevel, appearing as early as t ' −50
ms, where t denotes the evolution time after reaching the final optical trap depth. Following
this and for the next ∼ 300 ms, the distribution of atoms within the Zeeman sublevels re-
mains close to its initial spin composition. For t > 300 ms, however, we observe three clear
trends in the data. First, the fractional population shows a dependence on the quadratic
Zeeman shift. For negative values of q, the populations tends toward ζ±1 = 0.5, for positive
values it tends toward zero, and for q ≈ 0, ζ±1 = 1/3. Second, the populations appear to
reach steady-state values within 1-2 seconds, thus ensuring that the measurements made are
representative of the equilibrium properties of the system. Third, the observed tendencies
are independent of the initial spin composition, as similar results were observed starting
with an η = 1/4 thermal spin mixture (Figure 5.9 (bottom)). Thus it appears that the
within a 1− 2 s evolution window, we are able to achieve equilibrium.

At large quadratic Zeeman shifts, however, we do not observe steady-state behav-
ior. This is seen by comparing the population distribution among the Zeeman sublevels
for large and small quadratic Zeeman shifts. Plotted in Figure 5.10 is a time-resolved scan
for an η = 1/4 spin mixture for quadratic shifts that range from -66 Hz to 4 Hz. From
this scan we note a few interesting features. First, within the range −6 < q/h < 0 Hz, the
fractional populations tend towards ζ±1 = 0.5, with the fractional populations in ζ±1 in-
creasing with decreasing values of the quadratic shift. Decreasing the quadratic shift further
(−15 . q/h < −6), we do not observe a corresponding increase in the fractional population,
ζ±1, as the fractional population remains close to the values measured at q/h = −6. Beyond
q/h ≈ −15 Hz, however, ζ±1 decreases with increasing quadratic shifts, evident in the data
taken at q/h = −26 Hz and q/h = −66 Hz. While these spin mixtures do show evolution
towards the presumed equilibrium distribution, the timescales appear to be far slower than
those observed for |q/h| ≤ 10 Hz. Thus, it appears that within these experimental accessible
timescales, equilibrium can only be achieved for a narrow range of quadratic Zeeman shifts,
|q/h| ≤ 10 Hz.
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Figure 5.8: Sample TOF images for an η = 0 spin mixture for different applied quadratic
Zeeman shifts and different evolution times. Samples are heated by being over-repumped
for 6-10 ms and the number of atoms is estimated using a fit to a Gaussian profile.
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Figure 5.9: Temporal evolution of condensate fractions within the |mF = ±1〉 states for
different applied quadratic Zeeman shifts for η = 0 (top) and η = 1/4 spin mixtures
(bottom). For the η = 0 initial spin mixture, the condensate fraction evolves from the
initial spin composition, and evolves toward a distribution that depends on q. This fraction
evolves toward 1/2 for q/h < 0, 1/3 for q/h = 0, and 0 for q/h > 0 within 1.5−2 s evolution
time, after which it ceases to change. These same tendencies and equilibration timescales
are also observed starting with η = 1/4 spin mixture shown in the bottom plot.
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Figure 5.10: Temporal evolution of condensate fraction for and η = 1/4 thermal spin
mixture for quadratic shifts ranging from −66 Hz to +4 Hz. The condensate fraction
continues to evolve towards ζ±1 = 0.5 for quadratic Zeeman shifts near |q/h| < 10 Hz, after
which the evolution is stalled. The condensate fraction for |q/h| ≥ 10 Hz remains close to
its initial spin composition, despite seconds long evolution time, easily seen in the fractional
population taken at q/h = −66 Hz.

In-situ Results

While the TOF populations measurements are useful in determining the timescales
for equilibration, they do not contain information regarding the magnetization of the gas
or the spatial composition of spin domains.

To measure the vector magnetization of the condensate, we made use of a sequence
of non-destructive phase contrast images as described in Chapter 3. After a specified evo-
lution time, a sequence of phase-contrast images was taken using ∼ 200 ns-long imaging
probe pulses using linearly polarized light propagating along the thin axis of the conden-
sate (ŷ axis). The vector magnetization of the condensate was then acquired by employing
spin-echo-imaging, where accurately timed probe pulses were used to obtain a direct snap-
shot of the magnetization density, M̃ = gFµBñF, where ñ is the column number density
[51, 3, 104].

Focusing our studies to small quadratic Zeeman shifts (|q/h| . 10), we conducted
a time-resolved scan of the vector magnetization starting with an η = 0 spin mixture.
Representative images are shown in Figure 5.11 for evolution times ranging from 250 ms to 3
s, at q/h = 0. For short evolution times, t < 200 ms, the observed condensate magnetization
profile was fairly homogeneous, lacking any pronounced spatial features. We attribute this to
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Figure 5.11: Transverse (top) and longitudinal magnetization (bottom) for an initial η = 0
thermal spin mixture after a variable evolution time at q/h = 0 Hz. Here the magnetization
strength and orientation are indicated by the brightness and color. At short evolution times,
the spatial magnetization profile is dominated by small domains, randomly oriented. At
late times, the small domains are replaced by larger domains, with length scales that are
comparable to the long axis of the condensate. The data included here have been blurred
using a 3× 3 Gaussian filter and have been cropped to include only the condensate.

two possibilities. One possibility is that the measured magnetization variance is equivalent
or smaller than the noise floor of our imaging system. Another possibility is the size of the
domains present are smaller than the resolution of our imaging objective, < 2µm.

For longer evolution times, the magnetization profile is comprised of a spatially
inhomogeneous pattern of spin domains. Within a few hundred milliseconds, the longitudi-
nal and transverse magnetization profiles are comprised of a mix of domains and domains
walls, oriented isotropically in space. The domains are characterized by ∼ 8− 10µm length
scales, in agreement with previous results discussed above, but show no obvious preferred
modulation axis (see power spectrum below).

However, probing the spin mixture for longer evolution times (t > 500 ms), we
observed distinct change in both the composition and the spatial arrangement of the spin
domains. The magnetization which previously had no preferential orientation, has now
developed a quadratic shift-dependent spin-space anisotropy, evident in the magnetization
amplitudes for different quadratic shifts (Figure 2 of [104]). For q < 0 the magnetization is
predominantly concentrated in the longitudinal component, while for q > 0 the magnetiza-
tion is mostly transverse, and for q ' 0, the magnetization is evenly distributed among the
transverse and longitudinal components. Additionally, we also observed the development
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of larger domains of common magnetization. At the shortest evolution times, the magneti-
zation texture is comprised of small randomly oriented domains, but within t ' 2-3 s, the
magnetization profile is characterized by a more homogenous spin texture, composed of just
a few domains that span the entire length of the condensate, each separated by domains
walls.

Magnetization correlation function

A good probe to characterize the observed changes in the magnetization profile is
the dimensionless correlation function of the i component of the magnetization vector,

Gi(δr) =
∑

r M̃i(r + δr)M̃i(r)
µ2
∑

r ñ(r + δr) · ñ(r)
, (5.20)

where µ = gFµB is the atomic magnetic moment, and ñ is the ŷ-integrated column density
This correlation function is evaluated over the central 50 × 160 µm2 area of the condensate.
Using the correlation function, we are able obtain a quantifiable measure of the spin-space
anisotropy and the characteristic domain size.

Magnetization Variance To quantify the observed spin-space anisotropy, we make use
of the magnetization variance, G(0), which measures the ferromagnetic tendency of a con-
densate, yielding a value of one, when fully magnetized, and zero when unmagnetized. This
is accomplished by setting δr = 0 in Equation 5.20. We characterize any trends in the lon-
gitudinal and transverse magnetization by computing the magnetization variance for each
magnetization component, M̃x,y,z and evaluate this over the central region of the conden-
sate. We denote the longitudinal variance as GL(0) = Gx(0), and the transverse variance
as GT (0), where GT (0) is the arithmetic mean of Gy(0) and Gz(0).

To resolve any trends, we extract the magnetization variance from the time-
resolved studies of the magnetization profile at quadratic shifts of 0,−5, 5 Hz. For short
equilibration times, t < 500 ms, the magnetization variance grows monotonically, with equal
amplitude in the longitudinal and transverse components. However, at intermediate evolu-
tion times, 500 < t < 1000 ms, we observe a distinct difference in the variances between
GT (0) and GL(0) which has a clear dependence on the quadratic Zeeman shift. For q/h < 0,
a preference for longitudinal magnetization is observed. This is indicated by the brightness
in the longitudinal magnetization images (see Figure 2 of [104]) and in the magnetization
variance, where GL(0) > GT (0). For q/h > 0, the opposite is true, as a preference for
magnetization oriented in the transverse plane is observed, GL(0) < GT (0). Lastly, for
q/h = 0, we see an isotropic distribution of domains, with GL(0) = GT (0). These trends
are also observed when starting with an η = 1/4 spin mixture and persist for the 2-3-second
long evolution times accessible in the experiment.

Using the magnetization variance, G(0), we also observe that the vector magneti-
zation of our sample saturates within ∼ 2 s evolution time. The total variance is computed
from the sum of Gx(0), Gy(0), and Gz(0) for an η = 0 spin mixture at q/h = 0 (Figure
5.12). At short evolution times, the variance is approximately zero. We can understand
this as being an indication of zero total magnetization or a magnetization signal which is
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below or equivalent to our noise floor. However, for intermediate evolution times, t . 1500
ms, the magnetization variance increases monotonically with time, after which it saturates
at a total variance of approximately one, where a variance of one is expected for a fully
polarized gas. However, for much larger quadratic Zeeman shifts, q/h = 70 Hz, we find
that the variance increases more slowly, never appearing to approach a steady-state value,
in agreement with our preliminary findings from the bulk measurements in TOF.
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Figure 5.12: Temporal evolution of magnetization variance starting with an η = 0 spin
mixture at q/h = 0 Hz and q/h = 70 Hz. For q/h = 0, the magnetization variance
approaches the expected value for a fully polarized gas near t ' 2000 ms. At larger values
of the quadratic shift, q/h = 70 Hz, the variance does not appear to reach any steady-state
value within the experimentally accessible timescales.

Computing the normalization for G(0) In practice, our variance measurements are
subject to noise and to reduce such effects, δr is evaluated over a 3.5 × 3.5µm2 region
centered at δr = 0. Additionally, each measure of the variance at a specific evolution time
is the average over many repetitions of the experiment, typically 7-8.

In addition, appropriate steps must be taken to ensure proper normalization of the
variance. The normalization factor for G(0), corresponding to the amplitude of the variance
for a fully magnetized cloud, is typically determined from the magnetization amplitude in
the data. That is, assuming we have a fully magnetized sample, we normalize the correlation
map of each magnetization component to the amplitude of the correlation map derived from
the full vector magnetization near δr = 0. However, for shortest evolution times (t . 700
ms), the vector magnetization amplitude of the spin texture is a only a fraction of the
amplitude for a fully polarized sample, and thus provides the wrong normalization.

We determine the appropriate normalization both empirically and theoretically.
For the same total condensate number and temperature as the η = 0 spin mixture, we pre-
pared a transversely magnetized condensate and measured magnetization amplitude after a
given evolution time. As expected, over the course of a few seconds, the amplitude of preces-
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sion diminished due to atom loss. We also compute the magnetization signal and compare
this to our measurements. To compute the theoretical normalization, we use condensate
number measured in TOF absorption imaging and the functional form of the polarization
contrast signal presented in Chapter 3. The two normalizations are shown below (see Fig-
ure 5.13) and are in fairly good agreement. Thus, to obtain the correct normalization for
the variance measurements presented here, we typically rely on measurements of the atom
number measured in TOF and compute the corresponding normalization factor.
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Figure 5.13: Phase contrast amplitudes for a fully polarized gas. The green circles are
computed from atom number measured in TOF with absorption imaging and the blue
triangles represent the measured amplitude using polarization contrast imaging.

Lastly, necessary in the normalization is an accurate determination of the depletion
of the magnetization signal during the imaging process. When taking the sequence of
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images to obtain a measure of the vector magnetization, there is undoubtedly losses due
to scattering with the probe beam, resulting in atom loss, scaling as 1/∆2, where ∆ is
the detuning of the probe beam from atomic resonance. To account for these losses and
to obtain an accurate measure of the magnetization and variance, we model the depletion
of the condensate as an exponential decay of the phase contrast signal, e−fn/τ , where fn
is the camera frame number, and τ is the decay constant of the probe-induced depletion.
A fortunate consequence of spin-echo imaging is the sampling redundancy. In particular,
multiple snapshots of M̃x are imaged within the last few camera frames. Using these
repeated images, we can obtain a measure of τ . To do this, we extract the magnetization
signal from the central region of the condensate, roughly a 50× 100 pixel2 region. Next we
bin over a 3×3 pixel2 region in an effort to reduce noise and fit this data to an exponential.
For our typical light intensity and detuning, we find that roughly 50% of the signal has
decayed by the time we image the longitudinal magnetization. This decay may seem quite
large, especially in comparison to phase contrast imaging when using a phase dot. But recall
that the imaging of choice here is polarization contrast imaging, and that when detecting
the phase shift, we are only measuring half of the photons. Improvements could definitely
be made by devising an imaging setup to measure all of the probe light (see Chapter 3).

Domain size The correlation function can also be used to quantify the typical domain
size in the spatial profile of our spin mixtures. The characteristic domain area is taken
as the central area, A, of positive correlation. We define the area, A, to be the region of
correlation located at the origin (defined to be positive) extending to where the correlation
acquires its first zero.

To measure the domain size, we implemented a routine which counts the number
of pixels within the central area A for each correlation map. Essentially, the routine counts
the number of pixels within each domain in an image. Next, the routine determines if
any of these domains are connected and thus part of the same domain, the latter being
the more challenging aspect of the code. For this particular analysis, we take the central
area of positive correlation to define the typical domain area, but in generalizing this code,
we can potentially use the amplitude and phase of the magnetization profile to determine
the number of domains and their corresponding size, rather than restricting ourselves to
correlation maps. Upon successfully counting the number of domains, we now have a
measure of the domain size corresponding to regions of common orientation. This process
does not yet discriminate between different types of domains, such as those where the
orientation of the spin slowly meanders across the gas, also referred to as a spin wave. To

characterize these types of domains, the magnetization amplitude,
√
M̃2
y + M̃2

z , and the

magnetization phase, arctan(M̃y/M̃x) would be more appropriate.
Using this analysis, the characteristic domain was found to grow in size with

increasing evolution time. At the shortest evolution times, t ∼ 200 ms, the typical domain
size started around 8µm. Increasing the evolution time, we observed the domain size to
grow monotonically, saturating at ∼ 40µm by 2 s evolution time (see Figure 5.14)

Coarsening The observed coarsening dynamics is an indication that our spin mixture is
far from equilibrium. The evolution towards an equilibrium phase occurs by increasing the
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Figure 5.14: Temporal evolution of the domain size. Also shown is a magnetization profile,
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magnetization at t = 300 ms and at quadratic shift of q/h = 0 Hz.
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characteristic domain size, where the system can thus lower its free energy by decreasing
the interfacial area between different domain walls. Such systems are statistically similar
to themselves at a later time except for an overall rescaling of the domain length scale, l(t)
[138]. The temporal evolution of these length scales follow a power law, l(t) ∝ tb, where
the exponent, b, depends on the order parameter of the system. The two most commonly
studied systems involving coarsening are those with a scalar order parameter that is either
conserved or not conserved. If the order parameter is conserved, the exponent is known
to be 1/3, and if it is not conserved, the exponent is 1/2 [139, 138]. The existence of
the conservation law severely limits the way an interface between two domains can move.
While the mechanism of domain coarsening involves the reduction of the local curvature,
such evolution has to be accompanied by a global rearrangement of domain interfaces in
order to ensure that the order parameter is conserved, resulting in a slower rate of domain
growth.

Extending such theories to the coarsening of spin textures in our spinor conden-
sates, we expect the dynamics to be governed by a conserved order parameter, where the
order parameter is synonymous with the magnetization [140, 141, 139, 134]. The order
parameter (i.e. magnetization) of the spinor condensate is determined by the mean-field
phase diagram and depends on the sign and magnitude of the quadratic Zeeman shift. For
q/h < 0, the equilibrium phase is one where the magnetization is oriented parallel to the
magnetic field. In this case, the magnetization is well described by an Ising model and the
order parameter is a scalar. However, for q/h = 0, the the magnetization is well described
by a Heisenberg ferromagnetic, with magnetization that is isotropically oriented, and for
0 < q/h < q0, we have a planar ferromagnet (easy-plane), with magnetization confined to
the plane transverse to the magnetic field. Thus for 0 ≤ q/h < q0, the order parameters is
a vector, confined to a sphere or plane. The exponent for these systems is 1/3 for the scalar
order parameter and 1/4 for the vector order parameter [142, 143, 141]. Thus for q/h > 0 we
expect similar domain coarsening dynamics to the behavior observed for q/h = 0, whereas
for q/h < 0, the rate of domain growth is expected to be slightly faster.

In order to make a comparison with domain coarsening theory, we compare the
temporal evolution of spin domains for two values of the quadratic shift: -5 Hz and 0 Hz.
For each value of the quadratic shift, we extract the characteristic domain size from time-
resolved measurements of the vector magnetization. From these measurements, we observe
the domain size to increase monotonically in time, where at the longest evolution times the
size is comparable the condensate size along the x̂-dimension, ∼ 40µm. In order to compare
with the theory of phase-ordering kinetics, we fit the data to a power law growth, shown in
Figure 5.15. For t < 1000 ms, the data follows a power law growth, while for t > 1000 ms
the growth follows a more complicated trajectory, which we attribute to the finite size of
the condensate. At t = 1000 ms, the domain size is comparable to the Thomas-Fermi radius
RTF , which may be the reason for the modified growth rate. To reduce potential effects
from the finite size of the condensate, we limit the fit to times where the corresponding
domain size is � RTF , thus limiting the fit to times t < 1000 ms. We fit the data to the
following model,

l(t) = A× tb, (5.21)

where A is the amplitude and b is the exponent which depends on the order parameter.



117

The fits to the data result in the following values for b: 0.36 for q = −5 Hz, and 0.27 for
q = 0. The values for b that we extract from the fits are in good agreement with the theory
for the scalar and vector order parameters.
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Figure 5.15: Temporal evolution of domain sizes at q = −5 Hz and q = 0 Hz. We fit the
data to a power law function with two free parameters: amplitude and exponent. Using
only data for t < 1000 ms, we extract the value of the exponent. We find good agreement
with the expected values predicted from phase-ordering kinetics: 1/3 for a scalar order
parameter and 1/4 for a vector order parameter.
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The observed agreement with theory is somewhat surprising. Most theories of
phase ordering kinetics assume an infinite system, anticipating that the predicted growth
laws will only be realized for l(t → ∞) → ∞. In our particular experiment, however, we
use data that is much smaller than the size of the condensate. This means that we are not
fitting to the late-stage, late-time coarsening dynamics, where the growth laws are expected
to have the best agreement with theory.

Despite the good agreement with theory, limitations to our specific experiment
limit the reliability of an accurate comparison with theory. In particular, the finite size of the
condensate inhibits a valid comparison with phase-ordering kinetics. A better comparison
could be made with a physically larger condensate, where the domain size at the longest
evolution times is at least an order of magnitude larger than the initial domain size. An
alternative technique could be to seed the system with domains roughly 1 − 2µm in size
in a condensate with Thomas-Fermi radii similar to those in this experiment. Nonetheless,
domain coarsening in spinor condensates is a lucrative avenue for experimental pursuits
which has yet to be fully appreciated.

Power Spectrum

In addition to the magnetization correlation function, we also characterize the
spatial modulation of the magnetization profile using the spatial two-dimensional Fourier
transform, where we compute the power spectra, similar to the previously discussed exper-
iment. We do this for the longitudinal and transverse magnetization, where the transverse
power spectra is the arithmetic mean of the two transverse components.

For an η = 0 spin mixture, we extract the spatial modulation of the magnetization
from time-resolved measurements of the vector magnetization at q/h = 0 Hz. At short
evolution times, t < 50 ms, the power spectra is fairly isotropic, with a uniform distri-
bution of power at all wave vectors. However, at slightly longer evolution times, t ' 200
ms, modulations at short wavelengths appear, characterized by a radially symmetric dis-
tribution of spectral weight, with inverse length scales ranging from λ−1 ' 6 − 10µm−1.
This modulation persists for several hundred milliseconds. Near t ' 700 ms evolution time,
a more pronounced modulation appears, indicated by a concentration of spectral weight
at an inverse wavelength λ−1 ' 25µm−1. The axis of this modulation is not as precisely
pinned as was observed in the previous experiment [135], evident in the un-averaged power
spectra, and appears to have slightly larger concentration of spectral power along the ẑ-axis
(top-down on the page). This is presumably due to the aspect ratio of the condensate,
which permits the formation of more domains along the ẑ-axis. At the longest evolution
times, t > 1200 ms, the power spectra is well described by an ellipse located near zero wave
vector, where this asymmetry is due to the aspect ratio of the condensate, with the major
axis of the ellipse coinciding with the narrow axis of the condensate, x̂-axis. We observe
no distinguishing features between the power spectral for the longitudinal and transverse
magnetization components. This is shown in Figure 5.16.

For q 6= 0, however, we observe a q-dependent imbalance of total spectral power
between the longitudinal and transverse power spectra. At short evolution times the power
spectrum has a fairly uniform distribution of spectral power, which is evenly distributed
between the transverse and longitudinal components, similar to the q/h = 0 data. At in-
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Figure 5.16: Temporal evolution of the power spectrum at q/h = 0 Hz. The spectra are
derived from the transverse and longitudinal magnetization for an η = 0 spin mixture.
Averaged and un-averaged spectra are shown to give the reader an idea of the type of
fluctuations observed in the experiment. Unlike the previous experiment [135], there is no
dominant two-wave vector modulation. Here, the axis of the modulation is random, easily
seen in the single-short power spectra.

termediate evolutions times, however, near t ' 700 ms, we not only observe a pronounced
concentration of power at specific wave vectors, but also an imbalance of spectral weight
between the transverse and longitudinal components. The imbalance between the magne-
tization components is dependent on the quadratic shift; for q/h < 0 more power is found
in the longitudinal power spectra, and for q/h > 0, the opposite is true. This asymmetry is
clearly visible in the Fourier spectra in Figure 5.17 and Figure 5.18. In addition, the axis
of the modulation is strongest along the ẑ axis. This is understandable since the ẑ-axis
coincides with the long axis of the condensate, allowing for potentially more domains to
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form along the ẑ-axis than the x̂-axis. These observations are in a agreement with our
in-situ spatial magnetization measurements [104].
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Figure 5.17: Temporal evolution of the power spectrum at q/h = +5 Hz. The spectra
are derived from the transverse and longitudinal magnetization for an η = 0 spin mixture.
The un-averaged power spectra are meant to illustrate the type of fluctuations we observed
from different experimental iterations. The main contrasting feature here is that the power
spectra is not characterized by two wave vectors. The axis of the modulation is random.

5.5.4 Comparing to the F = 1 Phase diagram as predicted by Mean-Field
Theory

From the data taken in TOF and in-situ, we find that the steady-state properties of
our spin mixtures occur within two seconds evolution time. To confirm that the equilibrium
properties we observe are consistent with those predicted in the mean-field phase diagram,
we scan the quadratic Zeeman shift, q. Similar to the time-resolved scan, we take a series
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Figure 5.18: Temporal evolution of the power spectrum at q/h = −5 Hz. The spectra are
derived from the transverse and longitudinal magnetization for an η = 0 spin mixture.

of data scans at two seconds evolution time, where for each iteration of the experiment we
vary the quadratic shift from −40 to 40 Hz. We do this for data taken in TOF where we
measure the populations within the Zeeman sublevels, and data taken in-situ, where we
measure the magnetic properties of our spin mixture.

TOF Results

As a function of the quadratic shift, we observe a q-dependent effect on the popu-
lation within the Zeeman sublevels for three different initial spin mixtures: η = 0, η = 1/4,
and η = 1. This data is shown in Figure 2 of [104]. Restricting ourselves to small quadratic
shifts, where we are more likely to observe the equilibrium properties of the system, we
find consistent results between the various mixtures. For q/h . 0, there is an imbalance of
the atom population within the Zeeman sublevels, with the majority of the atoms in the
|mF = ±1〉 states. However, for 0 ≤ q/h < q0, the majority of the population is in the
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|mF = 0〉 state, and for q/h = 0 the atoms are equally distributed amongst the Zeeman
sublevels.

Comparing the measured Zeeman populations to mean-field predictions, we find
good agreement with our measurements. For q < 0, the spin-dependent contact interaction
is minimized by a longitudinally magnetized condensate, resulting in ζ1(−1) = 1. This is in
contrast to our observations, where ζ1(−1) ≈ 0.5. However, in these experiments, the initial
magnetization is zero and given this constraint, we expect the fractional populations within
the Zeeman sublevels to be evenly distributed among the |mF = ±1〉 states, resulting in
ζ±1 = 0.5. For 0 < q < 2c2n, the spin-dependent contact interaction is minimized for a
condensate with domains transversely magnetized, for which ζ±1 linearly diminishes from
0.25 to zero. To see this, we minimized the spin-dependent energy functional assuming
constant magnetization. We modeled the spinor order parameter as

ζ =

 √
a√

1− 2a√
a

 (5.22)

where ζ is normalized as ζ†ζ = 1, while the elements of ζ are given the constraint of no
net magnetization (ζ+1 = ζ−1), and a is the variational parameter. We next computed the
spin-dependent interaction energy,

ESM =
1
2
〈F 〉2 − ε〈F 2

z 〉, (5.23)

where ε = −q/c2n, which ranges from ε = 0 at q = 0 to ε = 2 at q = c2n, 〈F 〉 = ζ†F ζ, and
〈F 2

z 〉 = ζ†F 2
z ζ, and F = (Fx, Fy, Fz) are spin-1 rotation matrices. Minimizing this energy,

we find that the population in the |mF = ±1〉 states are

a =
2− ε

8
. (5.24)

Finally, for q = 0, there is no preferred orientation of the condensate magnetization, result-
ing in an equal distribution of atoms within the Zeeman sublevels, ζmF = 1/3.

For larger quadratic shifts |q/h| > 10 Hz, however, we observe very different
results for each of the different spin mixtures. Specifically, for an η = 1 initial spin mixture
at q/h < −10 Hz, the distribution remains remarkably close to its initial composition.
Similarly, for an η = 0 and η = 1/4 spin mixture, we observe the populations to remain
unchanged for |q/h| > 10 Hz. These results are consistent with the data from our time-
resolved scans, indicating that equilibrium is possible in these spinor condensate systems,
but for a narrow range of parameters.

In-situ Results

Although the TOF results are consistent with the phases predicted by the mean-
field phase diagram, we do not know the nature of the magnetization at each value of the
quadratic shift. To determine if these observations are consistent with theory, we extract the
magnetization vector profile at two seconds evolution time while varying the quadratic shift.
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To determine the degree to which the spin mixture has evolved to a ferromagnetic state, we
use extract the magnetization variance, GL(0) and GT (0) for each value of the quadratic
shift. The results are summarized in Figure 3 of [104]. For q/h . 0, the amplitude of the
longitudinal variance is larger, nearly approaching a value of one within the two-second
long evolution. At q/h = 0, the transverse and longitudinal variances are equal, and for
0 < q/h < q0, the transverse variance approaches its maximum, nearly reaching half the
value expected for a fully magnetized condensate. These results are in excellent agreement
with the ground state magnetic phases for an F = 1 spinor gas.

Mx

-Mx
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My,z
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-15 11q/h: -11 -5 1 5 15 Hz

Figure 5.19: Instantaneous snapshot of the vector magnetization profile at 2 s evolution
time for an η = 0 spin thermal spin mixture at different quadratic Zeeman shifts. The
brightness, indicative of the strength of the magnetization, has a strong dependence with
quadratic shift. For q < 0, M̃x stronger, while for q > 0, M̃y,z is stronger.

5.5.5 Remaining Questions

The results from both experiments have answered a few questions and have un-
earthed a few more. From the two experiments we can confirm that the short wavelength
spin modulation observed is a transitory phase and not due to dipolar interactions. Numer-
ous theoretical discussions have shown that such low energy interactions would result in a
magnetization modulation with a ∼ 30 − 40µm wavelength [144, 145, 146, 147, 148]. In
fact, the presence of dipolar interactions would alter the mean-field phase diagram, causing
a preference for longitudinal magnetization for small positive values of the quadratic Zee-
man shift [125]. The observed ferromagnetic phases in this experiment show a dependence
on the quadratic shift in a manner that is consistent with mean field theoretical predictions.

However, the observed “crystalline” magnetic phase, characterized by a two wave
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vector modulation that is pinned to the optical trap axis, is likely due to an imaging artifact.
This was confirmed from experiments investigating the influence of an out-of-focus imaging
system on the observed spatial structure in the magnetization profile (see Chapter 4). To
do this, a helical spin texture after 100 ms evolution time was imaged using phase contrast
imaging. The helix was observed to breakup in a similar manner as observed in [113],
with the exception that the spatial structure depended on the position of the objective
focus. Tuning the focus, the observed modulation was characterized by either a two wave
vector modulation, single wave vector, or an annulus. Based on these observations, we have
concluded that the “crystalline” magnetic phase is due to an imaging aberration.

The TOF analysis from the two experiments confirm the seconds-long timescales
for the populations to redistribute to an equilibrium composition. Recent experiments
probing the equilibrium phase diagram in sodium spinor condensates have also observed
seconds-long equilibration times [149]. However, what determines these seconds-long dy-
namical timescales is still unknown. Additionally, why is equilibrium isolated to a narrow
range of quadratic Zeeman shifts? Furthermore, why does the fractional population within
the |mF = ±1〉 state remain close to its initial spin composition for an η = 1 spin mixture
at negative quadratic shifts, when clearly this a composition far from equilibrium?
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Chapter 6

Exploration of long-range order in
F = 1 87Rb spin textures

This chapter describes measurements of the coherence length of spin texture. In
particular, we discuss the use of spatial heterodyne atom interferometry to probe the long
range order of the system via the first-order correlation function.

6.1 Why explore long-range order in a magnetic spin tex-
ture?

During our exploratory measurements of the equilibrium magnetic phases in F = 1
spinor condensates, we observed the formation of a “crystalline” pattern in the magnetiza-
tion profile [135, 113]. In these experiments we cooled unmagnetized thermal spin mixtures
in an attempt to observe and verify the equilibrium properties of F = 1 spinor gases as pre-
dicted by mean-field theory [27, 125]. Upon cooling the samples, the time-of-flight (TOF)
momentum distributions displayed several of the classic hallmarks of three-dimensional Bose
condensation: bimodal distribution, a value of Tc consistent with the theoretical prediction
for a scalar Bose gas, and a condensate fraction which scales as 1 − (T/Tc)3, which is the
expected scaling for scalar condensates. However, in-situ imaging of the magnetization
revealed a slew of unexpected magnetic phases. In particular, a modulated spin pattern
was evident in the images, characterized by ∼ 10µm domains of alternating magnetization
orientation. This result was quite surprising given the similarities between the bulk fea-
tures measured in TOF of the scalar and spinor condensates. This led us to investigate the
origin of the “crystalline” magnetic phase. In particular, given that we have a magnetic
phase which resembles a crystal, with domains spatially arranged in an orderly fashion, one
natural question to ask is whether the system is also coherent across the extent of the gas.
A simultaneous confirmation of coherence and “solidity” would hint at a potentially new
and exotic phase of matter: a supersolid [150, 151, 152, 153, 154].

The experiment discussed below describes the experimental pursuit to measure the
coherence length in unmagnetized spin mixtures. This is done by measuring the first order
correlation function of the condensate. The topic of coherence in Bose-Einstein condensates
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has received a tremendous amount of interest. For a thorough review of the topic and salient
features, I refer to the reader to the following theoretical [155, 156, 15] and experimental
publications [157, 158, 88, 159, 160, 161, 162].

6.2 Experimental Sequence

We measure the spatial coherence of our spinor condensates by creating two co-
herent and spatially displaced copies of the original condensate in the same momentum
state and let them interfere using two Ramsey-like pulses [103]. An optical standing wave
is used to diffract a small fraction of atoms, transferring 2b~k1 units of photon momentum
to the atoms, where k1 is the wave vector of the standing wave [163, 164, 165]. A second
light pulse, with wave vector k2, creates a second copy of the atoms, displaced from the
first by ∆r = 2~kτ/m, where τ is the time between pulses, m is the mass of rubidium,
b is the order of the diffracted sample, and |k| = |k1(2)| = 2π/λ, where λ = 780 nm and
k1 and k2 are equal in magnitude but differ by a small angle, θ ' 0.016 radians. The net
effect of the two pulses is create a phase gradient across the gas. The two copies of the gas
then interfere where their wave functions spatially overlap. By imaging the contrast of the
spatial interference, we can extract the coherence length.

In order to describe the interference, we examine the condensate wave function
after each standing wave pulse. The two applied pulses were ∼ 6µs in length, sufficiently
short to assume that the atoms do not move during the pulse, and can therefore be described
as Kapita-Dirac scattering [164, 166]. The first pulse out-couples a fraction of atoms into
the momentum states | ± 2b~k1〉, where the population in the bth momentum state is given
by Pb = J2

b (θ), where θ = (ΩRtp)/(2δ), ΩR is the Rabi frequency, and tp is the length of the
light pulse. For the current experiment, we tuned the amplitude and the duration of the
light pulse in order to transfer a non-negligible population into only the b = 2 momentum
state. Thus we will restrict our discussion to the | ± 4~k1〉 momentum states. Immediately
after the first light pulse, the wavefunction of the | ± 4~k1〉 momentum states are described
by

Ψ4~k1 ∼ a1Ψ0(r)ei2k1·r (6.1)

where |a1|2 is the fraction of atoms in momentum state | ± 4~k1〉, and Ψ0 is the wave
function of the |0~k1〉 momentum state. After a delay of τ , a second pulse is applied to
the atoms, which predominately out-couples atoms to the | ± 4~k2〉 momentum states. The
wavefunction of this momentum state is given by

Ψ4~k2 ∼ a2Ψ0(r + ∆r)ei2k2·r, (6.2)

where |a2|2 is the fraction of atoms in momentum state | ± 4~k2〉. The combined effect of
these two pulses is to create two copies of the condensate which can then interfere. The
interference pattern is captured in the density pattern for the b = 2 momentum states, nb=2,
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given by:

nb=2 ∼ |Ψ4~k1 + Ψ4~k2 |2 (6.3)
= |a1Ψ0(r)ei2k1·r + a2Ψ0(r + ∆r)ei2k2·r‘|2
= a2

1Ψ∗0(r)Ψ0(r) + a2
2Ψ∗0(r + ∆r)Ψ0(r + ∆r) (6.4)

+
(
a1a2Ψ∗0(r)Ψ0(r + ∆r)ei∆k·r + c.c.

)
.

The first two terms in Equation 6.4 describe the atomic density distributions in the b = 2
momentum states. The quantity of interest is contained in the third term, which describes
the interference [158, 161]. This is essentially the first-order correlation function, which
describes the degree of spatial coherence. Neglecting the offset terms from the density
contributions in Equation 6.4, the normalized correlation function is:

g(1)(∆r) =
〈Ψ∗0(r)Ψ0(r + ∆r)

n0
(6.5)

where n0 is the initial density distribution in the F = 1 state. By measuring the average
spatial contrast of the interference fringes in an image, while varying the spatial overlap,
∆r, we can then extract the normalized first order correlation function [88, 161, 158].

6.2.1 Measurement of the coherence length

Using the first order correlation function, we extract the coherence length of gases
produced by gradually cooling unmagnetized thermal spin mixtures into the regime of quan-
tum degeneracy. The coherence length is measured using three different initial spin compo-
sitions: η = 0, η = 1/4, η = 1, where η is defined as η = ζ0 − ζ1 and (ζ1, ζ0, ζ−1) denote the
fractional populations within the three Zeeman sublevels (eigenstates of Fz). These initial
spin compositions are identical to those discussed in Chapter 5.

To create these spin mixtures, we use an experimental sequence similar to the ex-
periment discussed in reference [135] and Chapter 5. Briefly, we prepared a thermal sample
of atoms in the |F = 1,mF = −1〉 state in an optical dipole trap, characterized by initial
trapping frequencies (ωx, ωy, ωz) = 2π× (80, 800, 9) Hz, using linearly polarized light at 825
nm. Next, we create unmagnetized thermal spin mixtures by applying a series of rf pulses
in an inhomogeneous magnetic field (see Chapter 5). These mixtures are characterized
by zero longitudinal and transverse magnetization. Following this, the spin mixtures were
evaporatively cooled by gradually decreasing the optical trap power over a time scale of
200 ms. Upon reaching the final trap depth, the samples were then allowed to equilibrate
for an additional 200-500 ms.

To image the spatial coherence length, we employed a two-pulse Ramsey-like se-
quence. After allowing the sample to equilibrate in the optical trap, the trapping potential
was suddenly switched off and following this the two-pulse Ramsey sequence was initiated.
The purpose of this turnoff was to reduce the effect of interactions between atoms by re-
ducing the condensate density. In order to image the different spin components, we use
Stern-Gerlach analysis [52, 79], where a magnetic field gradient is applied to the atoms and
is used to spatially separate atoms with differing magnetic moments. After 12 ms of free
expansion, the atoms were imaged using resonant light.
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Figure 6.1: Experimental setup of two pulse Ramsey-like method. The effect of the first
pulse is to out-couple a small fraction of atoms into the | ± 4~k1〉 momentum state. After
a variable delay, a second pulse is applied which out-couples atoms into the | ± 4~k2〉
momentum state. The net effect is to create two copies of the condensate which interfere.
By repeating this for different delay times between the two pulses, τ , we can obtain a
measurement of the coherence length.

The resulting TOF momentum distribution consists of an interference between two
copies of the condensate in the same momentum state. The two pulses of light out-couple
atoms into momentum states |2b~k1,2〉, with b = 0,±1,±2,±3. After sufficient TOF, the
only condensate copies with sufficient spatial overlap are those with identical b, resulting
in an interference between condensate copies in the same momentum state and a spatial
modulation along δk = k1 − k2, which is mostly parallel to the ẑ−axis.
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6.3 Analysis and Results

6.3.1 Scalar BEC

As an initial verification of the technique, we use this spatial heterodyne method to
extract the coherence length for a scalar condensate. The preparation procedure is identical
the scheme described above but forgoes the application of rf pulses and the magnetic field
gradient to decohere the sample.

The correlation function is acquired by taking a sequence of interference images
with different separations, varied by changing the time between pulses, τ , between 200µs
and 1200µs. Figure 6.2 shows the interference pattern for a scalar condensate for a few
values of τ . The contrast is determined by measuring the amplitude of the Fourier com-
ponent of the image at the spatial frequency of the fringes relative to the peak density of
the fringes. This is repeated for different spatial separations. For small separations, we
observe a maximum contrast of ∼ 0.8. The less than unity contrast is attributed to residual
phase defects in the condensate during formation. These are seen as density holes in the
time-of-flight images in Figure 6.2. For the maximum values of τ = 1200µs, the contrast
is reduced such that the fringes are no longer discernible above the background noise. The
signal decay is mainly due to the reduced geometrical overlap of the condensate copies with
increasing ∆r [158]. The interference contrast as a function of the pulse separation, τ , is
shown in Figure 6.3.

In addition to the reduced contrast as a function of the spatial overlap, we also
observe a rotation in the fringe pattern. For short value of τ ' 200µs, the interference
pattern is mostly oriented along the long axis of the condensate. However, for larger pulse
separations, we observe a rotation in the fringe pattern where at the largest value of τ ,
the fringe pattern is oriented at 45◦ in the x̂ − ẑ plane. This rotation is easily seen in the
Fourier spectra of the TOF images in Figure 6.2. This rotation is attributed to a velocity
chirp during the TOF expansion of the condensate. After the atoms are released in TOF,
the condensate expands as the atom are no longer confined. The differing velocities in
the atomic sample result in a velocity chirp across the gas relative to the pulsed standing
wave, resulting in a fringe pattern which rotates as a function of the time between the pulse
separation.

6.3.2 Spinor BEC

For the η = 0 and η = 1/4 spin mixtures, the coherence length is acquired by
measuring the spatial contrast of interference fringes for different spatial separations, ∆r,
and for each Zeeman sublevel, mF . Similar to the contrast measurement for the scalar
condensate, we make use of the two-dimensional Fourier transform to extract the contrast of
the interference fringes. For each magnetic sublevel, mF , we compute the Fourier transform.
The contrast is determined from the amplitude of the Fourier component at the spatial
frequency of the fringes relative to the peak density of the fringes for each magnetic sublevel
and summed. The total contrast for each spin mixture is shown in Figure 6.4.

In general, the coherence measurements for each spin mixture closely resemble
those of the scalar condensate. The maximum contrast at the smallest time τ is consistent
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Figure 6.2: Interference of scalar condensate. On the left are TOF images of a scalar
condensate after 13 ms of free expansion. The corresponding two-dimensional spatial Fourier
transform are shown on the right. As a function of the pulse duration, the relative overlap
is smaller, leading to a decrease in the contrast of the interference fringes, evident in the
TOF pattern and the spatial Fourier transform.
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Figure 6.3: Measured contrast of the interference fringes as a function of the separation of
the two clouds in the heterodyne interferometer. The contrast is measured by making use
of the spatial Fourier transform. The amplitude of the Fourier component at the spatial
frequency of the fringes is measured and plotted versus the delay time between pulses, τ ,
where the delay time determines the spatial separation between the two cloud copies. The
spatial separation, ∆r is computed assuming ∆r = 2vrτ

with a value of 0.8, as seen for the scalar condensate. Increasing τ (and hence increasing
the separation between the clouds) causes the contrast to smoothly decreases to zero at
τ ∼ 1000µs. However, unlike the scalar case, the coherence for these spin mixtures is
distributed between the different F = 1 components. For instance, the coherence is shared
equally between the three magnetic sublevels for the η = 0 spin mixture. This is seen in
the equal amplitudes of the contrast measurements for each sublevel. In contrast, for the
η = 1/4 spin mixture, the mF = 0 component has the largest interference contrast and
coincidentally the largest number of atoms. Furthermore, we do not observe evidence of the
“crystalline” magnetic phase. Such a phase would appear as an increase in the amplitude
of the contrast measurement at a cloud separation of 10µm (see Figure 6.4). However, the
data only show a monotonic decrease in the contrast, with no experimental indication of a
magnetization modulation at 10µm or any other length scale.

Notable features in the data are the differences with and without Stern-Gerlach
analysis. Without Stern-Gerlach analysis, where the individual spin components are spa-
tially overlapped, the TOF pattern is otherwise uniform, except for the interference pattern.
This is true for both the η = 0 and η = 1/4 spin mixtures. However, imaging the clouds
after spatially separating the spin components reveals a slew of density fluctuations in all
three spin components. The density fluctuations are most noticeable in the mF = 0 com-
ponent for the η = 1/4 spin mixture, which has the majority of the atoms and equally
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Figure 6.4: First order correlation function for η = 0 and η = 1/4 spin mixtures. The
contrast is measured using the spatial Fourier transform for each magnetic sublevel. The
contrast shown in the combined sum of the contributions from each sublevel. For each
mixture, the contrast decreases smoothly to zero, with no striking differences between the
two. Also shown is the experimental signature of a “crystalline” phase with a ' 10µm
spatial modulation. This would result in an increase in the amplitude of the first order
correlation function at a separation consistent with the spatial modulation of the phase.
The spatial separation, ∆r is computed assuming l = 2vrτ .
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apparent in all three components for the η = 0 spin mixture. The most striking observation
is how density fluctuations in one spin component are compensated by those in another,
yielding a fairly smooth profile when spatially overlapped. Interestingly, the spin degree
of freedom appears to reduce the entropy associated with thermal fluctuations; when the
TOF profiles of the spin components are spatially overlapped, the profile is more spatially
uniform than the single component case.
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Figure 6.5: Interference of spinor condensates for η = 0 and η = 1/4 initial spin mixtures.
To resolve the individual spin components, a magnetic field gradient is used to spatially
separate each spin component.

6.3.3 Coherence Length

We approximate the overlap of the two interfering clouds, and hence the correlation
function, as a Gaussian, characterized by,

Ae
τ2

τ2
w + constant (6.6)
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where the width, τw, is defined as the time where the amplitude of the fringe contrast falls
to 1/e of its initial value. This is related to the size of the condensate, τw ≈ 0.75 rTF /vr,
where rTF is the Thomas-Fermi radius along the x̂−axis and vr = ~k/mRB ≈ 5µm/ms
is the recoil velocity [167, 168]. For our experimental parameters, rTF ≈ 20µm, giving a
“coherence time” of 1000µs assuming 4× vr or 4k.

In practice, we determine the coherence length by fitting the data to a Gaussian
function. We convert the measured width to a measure of the coherence length by using
the recoil velocity of the atoms. As a first test of this technique, we extract the coherence
length for the scalar condensate. From a fit, the “coherence time” is ∼ 800µs, resulting
in a coherence length of 16µm. This is close agreement with the size of the condensate.
The slightly faster decay is attributed to the finite resolution of the imaging system, which
reduces the signal contrast at the largest values of ∆r.

Unfortunately, impeding the interpretation of these measurements is an incomplete
understanding of the spatial frequency of the fringe pattern. For each experimental iteration,
the TOF distribution has momentum components at±2b~k, for b = 0,±1,±2 and±3, where
the signal is comprised of an interference between condensate copies in the same diffracted
order, b. This results in an interference pattern with a spatial periodicity that scales as
2bk. However, close inspection of the components at ±2~k and ±4~k reveals interference
patterns with the same modulation frequency. Assuming that the interference pattern at
b = ±2 is predominantly due to interference of 2~k1 and 2~k2, we would expect the spatial
frequency of the interference pattern to be proportional to 2k, while those at b = ±4,
to be at twice this spatial frequency. Thus, if we instead assume that the modulation
periodicity is at 2k, then the coherence length is 8µm, much smaller than the condensate
size. The confusion associated with the spatial periodicity between the different momentum
components is just one complication preventing the measurement of long-range coherence
in these spin mixtures.

Furthermore, the imaging resolution of the objective prevents a measurement of
long-range phase coherence. At the largest values of ∆r, we observe a reduction in the
contrast of the interference fringes that is not completely explained by the reduced geomet-
rical overlap of the condensates. This is primarily attributed to our finite imaging resolu-
tion of ' 2.5µm, which reduces our sensitivity to coherence length measurements beyond
τ = 1000µs. The resulting TOF measurement is a convolution of the first order correlation
function with the modulation transfer function of the imaging system. It is possible to
extract the first order correlation function from these measurements by deconvolving the
data with the modulation transfer function. This would accentuate the coherence length
measurements at the highest spatial frequencies but with the added expense of increased
noise, making this not the best viable option for extracting the coherence length at large
spatial separations (∆r).

Lastly, further analysis of the data in presentesd in [113, 135] led us to question the
existence of the “crystalline” magnetic phase. In those studies, the position of the objective
focus was finely tuned using the “crystalline” magnetic phase. The optimal position of the
objective was determined by out ability to resolve the modulated magnetic phase. At the
time it was assumed that these features were a reliable test pattern to finely adjust the
focal position of the objective. Unfortunately, as discussed in Chapter 4, misalignments
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associated with the position of the objective focus can artificially enhance certain spatial
features, leading us to question if the original observation of a “crystalline” magnetic phase
was do to an imaging aberration.

Unfortunately, we were not able to duplicate the data under the exact same ex-
perimental parameters. Soon after these data were taken, the experimental apparatus was
disassembled and replaced with the chamber discussed in Chapter 2. Thus, without the
ability to revisit the conditions under which these data were taken, we were unable to
definitively extract the coherence length of these spin mixtures. Further experimental pur-
suits of the correlation function in the new chamber were not pursued do to our assumption
that the “crystalline” phase was due to an imaging aberration.
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Chapter 7

Realization of an optical kagome
lattice

Presented in this section is an overview of the changes in the apparatus for the
implementation of the kagome optical lattice experiment, followed by a discussion of the
kagome potential and how we are able to engineer different lattice geometries using the
bi-chromatic lattice. Also included is work related to the following publication:

• Gyu-Boong Jo, Jennie Guzman, Claire Thomas, Pavan Hosur, Ashvin Vishwanath,
and D. M. Stamper-Kurn. ”Ultracold Atoms in a Tunable Optical Kagome Lattice”
Physical Review Letters 108, 045305 (2012).

The kagome pattern borrows its name from the Japanese bamboo-woven baskets
such as the one in Figure 7.1, consisting of a planar lattice with corner sharing triangles.
Recently, however, physicists have found a way to promote this pattern into interesting
and challenging condensed-matter problems, making this lattice geometry one of the most
highly studied strongly correlated system. In particular, the kagome geometry has a large
degree of geometric frustration. Competing exchange interactions between spin 1/2 parti-
cles at each vertex of this kagome pattern can not be simultaneously satisfied, leading to
a macroscopic ground-state degeneracy. It is this intrinsic ground-state degeneracy in the
S = 1/2 kagome lattice geometry that makes it a promising candidate for realizing un-
conventional quantum phases such as the elusive quantum spin liquid at low temperatures
[44, 45, 46]. However, despite decades of theoretical work, the ground state of the kagome
quantum anti-ferromagnet remains uncertain [169, 170, 44].

Attempts to resolve this uncertainty using solid-state kagome magnets, such as her-
bertsmithite (ZnCu3(OH)6Cl2) or volvorthite, have been hampered by significant anisotropies
and disorder [171]. An elaborate and sensitive process is needed to synthesize these mag-
netic materials making it difficult to achieve very high purities. For example, during the
Zn-doping process in herbertsmithite, non-magnetic impurities may appear in the kagome
planes, which may result in the material not reflecting the intrinsic physics of the kagome
anti-ferromagnet. For these reasons, more faithful realizations of the kagome lattice are
needed. The technology of cold-atom systems has provided a means for studying the physics
of condensed-matter systems in a well controlled environment [8, 169, 9]. Using a tunable
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Figure 7.1: Picture of a kagome basket.

bi-chromatic optical lattice, we are able to realize an ideal kagome lattice with ultracold
samples of 87Rb [38], free of defects and anisotropies.

In the following sections, a description of the bi-chromatic lattice is presented
along with the realization of the kagome optical lattice and the possible lattice geometries,
which include the 1D stripe and the decorated triangular lattice.

7.1 Changes to the experimental apparatus

In order to accommodate the many optics necessary to make an optical lattice
potential, a few changes to the experimental apparatus were needed.

• Optical Access To increase the amount of optical access available for the kagome
experiment, the optics around the glass cell were redistributed and the separation
between the Feshbach coils was increased from 30 mm to 50 mm. Additionally, the
magnetic field coils surrounding the glass cell were removed.

• Common breadboard One large aluminum breadboard, 5’ x 1.5’, was used for the
lattice optics. The breadboard consists of two aluminum 1/2” breadboards, glued
together. The hope was that this thicker breadboard would be more rigid than the
use of a single 1/2” breadboard. The goal of using a common breadboard for all of the
lattice optics was to prevent instabilities in the lattice potential caused by differential
movements of the lattice optics from being on multiple breadboards.

• New optics table In order to accommodate the extra lasers, a new optics table was
needed.

7.1.1 Coordinate system

In comparison to the spinor experiments, the coordinate system has been slightly
altered. For the lattice experiment, the ẑ axis is along gravity and the x̂ and ŷ axes are
oriented in the horizontal plane, with ŷ oriented along the long-axis of the condensate.
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7.2 Kagome Lattice Geometry

The two-dimensional kagome optical lattice employed in our experiment is created
by overlaying two commensurate triangular lattices. The light used to generate the optical
lattice consists of two wavelengths of light; light at 532 nm, blue-detuned of atomic resonance
and light at 1064 nm, red-detuned from atomic resonace. The short wavelength (SW) lattice
derived from the 532 nm light creates a triangular lattice of intensity nodes, which acts to
attract the atoms. The long wavelength lattice (LW) derived from the 1064 nm light, also
creates a triangular lattice of intensity nodes, but in this example, acts to repel atoms from
these sites. By carefully overlapping these two potentials, where the intensity nodes of the
SW lattice overlap with the intensity nodes of the LW lattice, we are able to engineer a
lattice which selectively removes atoms from specific sites of the SW triangular lattice (see
Figure 7.2).

Atoms are attracted to intensity nodes Atoms are repelled from intensity nodes
SW Lattice LW Lattice kagome Lattice

Figure 7.2: Illustration of intensity nodes for the SW and LW triangular lattice. For light
blue-detuned of atomic resonance, the atoms are attracted to the intensity nodes, where
the potential energy is minimized. In contrast, for light red-detuned of atomic resonance
the intensity nodes corresponds to an potential maximum. By overlaying the SW and LW
lattice where the intensity nodes coincide, the minimum of the lattice potential takes the
form of a kagome geometry.

Typically, the explanation of this lattice setup generates an atmosphere of confu-
sion. The fact that the blue detuned lattice is the attractive potential and the red-detuned
lattice is the repulsive potential is somewhat counterintuitive. Most optical lattice ex-
periments trap atoms at the intensity maxima, where the potential energy is minimized
[41, 30, 37, 32, 172]. However, here we trap the atoms at the intensity minima, which
makes the blue detuned lattice the attractive potential and the red detuned lattice the
repulsive potential. In the following sections, an explanation of the lattice is broken down
into the two triangular lattices. From there we show how the kagome lattice geometry
engineered.

7.2.1 Triangular lattice

Each triangular lattice is created by three linearly polarized laser beams of equal
intensity, intersecting at 120◦ in the horizontal (x̂ − ŷ) plane, with the polarization of the
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light in the horizontal plane. The corresponding lattice wave vectors are defined as

k(θ) = k (− sin(θ), cos(θ)) (7.1)
k1 = k(0) = k(0, 1), (7.2)

k2 = k(2π/3) = k(−
√

3/2,−1/2), (7.3)

k3 = k(4π/3) = k(
√

3/2,−1/2), (7.4)

where θ defines the mutually enclosed angle for each pair of laser beams, and k is the wave
vector of the light used to generate the lattice. For this particular coordinate system, k1

refers to a laser beam propagating South, along the glass cell axis, k2 refers to one that is
propagating along the North-East, and k3 refers to the laser beam propagating along the
North-West direction.

The general form of the lattice potential is computed from summing the electric
field for each lattice beam. For one lattice beam, the electric field takes the form of E(x, y) =
E0e

ik·(x,y)ε̂, where ε̂ defines the polarization of the electric field. If we add up the electric
field of the individual beams of a triangular lattice, using one wavelength of light, we arrive
at

E(x, y) =
3∑
i=1

E0,ie
iki·(x,y)ε̂i. (7.5)

For the case where the polarizations are perpendicular to the plane spanned by the laser
beams, ε̂is are the same. However, for the triangular lattices employed here, the polariza-
tions are in the plane spanned by the laser beams. The corresponding polarization for each
lattice beam is

ε̂1 = (1, 0) (7.6)

ε̂2 = (−1/2,
√

3/2) (7.7)

ε̂3 = (−1/2,
√

3/2), (7.8)

where the polarization ε̂1 corresponds to the k1 lattice wave vector. In order to get to the
lattice potential, we need to compute the intensity, I = |E · E∗|. The resulting intensity
profile is

I(x, y) = E2
0

(
eik1·(x,y)ε̂1 + eik2·(x,y)ε̂2 + eik3·(x,y)ε̂3

)
· (7.9)(

eik1·(x,y)ε̂1 + eik2·(x,y)ε̂2 + eik3·(x,y)ε̂3

)∗
. (7.10)

(7.11)

After simplifying the above expression, the lattice potential for a triangular lattice consisting
of a single wavelength of light simplifies to the following form,

V (x, y) = V0 [3− cos(b1 · (x , y))− cos((b1 − b2) · (x, y))− cos(b2 · (x, y))] , (7.12)

where V0 is proportional to the potential depth of two counter-propagating lattice beams and
bi are the reciprocal lattice vectors, related to the lattice wave vectors by bi = εijk(kj − kk).
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A contour plot of a triangular lattice potential is shown in Figure 7.3. Here, the locations
of zero intensity form a triangular lattice. In addition to the triangular lattice of intensity
minima, there also arises a honeycomb lattice of maximum intensity. The intensity at these
locations is 4.5I0, where I0 is the intensity of a single plane wave. Surrounding each of these
intensity maxima are saddle point with intensity 4I0. These subtleties in the triangular
lattice potential landscape are illustrated in Figure 7.3.

min

max
Intensity

triangular lattice of zero intensity
honeycomb lattice of maximum intensity 4.5 I0

saddle points of maximum intensity 4.0 I0

Figure 7.3: Contour map of triangular lattice intensity profile. The darker colors represent
lower intensities. Also illustrated is the intensity maxima in a honeycomb configuration and
saddle points surrounding each point of zero intensity.

7.2.2 Bi-chromatic optical lattice

To create the kagome potential, we overlay the optical lattice potentials from the
SW and LW triangular lattices, such that their intensity minima overlap. The time-averaged
optical potential for the 2D superlattice is

I(x, y) =

∣∣∣∣∣∑
i

ELW0,i e
iki·(x,y)ε̂i +

∑
i

ESW0,i e
i(2ki·(x,y)+φi)ε̂i

∣∣∣∣∣
2

(7.13)

where φi is the phase for each lattice beam which will be used to tune the lattice geometry
(see below). The resulting lattice potential when φ = 0 is shown in Figure 7.4. Here, the
SW lattice forms a triangular lattice of intensity minima while the LW lattice creates a
similar lattice, but with twice the lattice spacing. Realizing that the attractive lattice in
this case is the SW lattice, generated from 532 nm light, may seen counterintuitive. We can
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better understand the lattice potential by determining the location of the potential minima,
which coincides with the location of the atoms. We can determine this by considering the
shift of the ground state energy, Udip, arising from the ac Stark effect,

Udip(x, y) = −3πc2γ

2ω3
0

∑
j

c2
i,j

(
1

ωj − ωL
+

1
ωj + ωL

)
× I(x, y), (7.14)

where ωL is the frequency of the light field, ω0 is the electronic transition frequency, and
ci,j is the Clebsch-Gordan coefficient between the ground state |i〉 and the excited state,
|j〉. Thus for blue detuned light, ωj < ωL, the shift of the ground state is positive, Udip > 0
for any nonzero intensity, while for red detuned light, ωj > ωL, the ground state is shifted
towards negative energies, Udip < 0. Applying this logic to our bi-chromatic superlattice, we
see that the SW triangular lattice of intensity minima is a potential energy minimum, and
is thus attractive, while the LW lattice of intensity minima is a potential energy maximum,
and is thus repulsive.

min

max

Figure 7.4: Contour map of the kagome lattice potential. The potential is made by over-
laying the SW and LW triangular lattice potentials.

7.2.3 Unit Cell

The unit cell of the LW lattice is a rhombus, containing one site of the LW lattice
or four sites of the SW lattice, which we refer to as sites A,B,C and D for simplicity.
When the intensity node of the LW lattice overlaps with the intensity node of the SW
lattice, for instance site D, the potential energies at this sites A,B,C are reduced equally.
This reduction is defined as ∆V = VD − VABC = 8

9VLW , where VLW is the energy shift of
the ground state due to the LW lattice. Then as ∆V is increased, the atoms are ultimately
expelled from site D. The three occupied sites within the unit cell represent the unit cell
of the kagome lattice. An illustration of the kaomge unit cell is shown in Figure 7.5.
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kagome Lattice

Unit Cell

akagome = 709.2 nm

LW SW 

Kagome 

+

ΔV
AB

C D

Figure 7.5: The unit cell of the kagome lattice. For simplicity, we label each site within the
unit cell alphabetically, where sites A,B,C are identical for the kagome potential, and site
D is the site that is removed using the repulsive LW lattice. A 1D profile of the combined
potential of the LW and SW is also shown. When the depth of the LW is large enough,
atoms from site D are excluded.

7.3 Tuning the lattice geometry

One important aspect of the experiment is to stabilize the relative position of the
intensity nodes with respect to each other. This is accomplished by means of a two-color
Mach-Zehnder interferometer, where the optical phase of the lattice beams are controlled
and stabilized.

Two independent Mach-Zehnder interferometers are used to stabilize the phases
of the light beams of the SW lattice to the those of the LW lattice. This is accomplished
by first monitoring the phase difference between the lattice beams for the SW and LW
lattice and then stabilizing the phase difference using piezo-electric transducers on a path
common to both lattices, which then synchronizes their phases (see Figure 7.6). Specifically,
after propagating through the atoms and glass cell, a small fraction of light from Beam 1
and 2 is picked off (see Section 7.7.1 for lattice beam orientations). The light from Beams
1 and 2, consisting of light at 1064 and 532 nm, is then combined using a broadband
polarization beam-splitter. Beam 2, however, passes through a dispersive element, in this
case a glass wedge, before combining with Beam 1. The combined light passes through a
dichroic mirror, which separates the two colors of light, before being sent to a photodiode.
The resulting signal is fed back to two sets of piezo-electric transducers, where each piezo-
electric transducer is used to stabilize Beam 2 to Beam 1 of the SW and LW lattice, and the
piezo-electric transducer common to both beams synchronizes the relative phases of the LW
to the SW lattice. In the experiment, the outputs of the photodetectors are demodulated,
having been modulated using EOM’s located before the glass cell. This error signal is then
fed back to the two sets of piezo-electric transducers. A similar setup exists to stabilize
Beam 3 to Beam 1 and to synchronize the SW to the LW lattice.

The glass wedge in the Mach-Zehnder interferometer is used to tune the lattice
geometry. The dispersive nature of the glass wedge introduces a relative phase shift between
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PD

B1,2

B1,3

mirror +piezo

B3

PD

PD PDB2

B1

mirror +piezo
532 nm detector 1064 nm detector

glass wedge

glass wedge

B3=Beam 3
B2=Beam 2
B1=Beam 1

B1,3 (532 nm) B1,3 (1064nm)

SW mirror +piezo

Figure 7.6: Illustration of two-color Mach-Zehnder interferometer. A small fraction of
light is picked off from each lattice beam. The beams are combined using polarizing beam
splitters, where “B1,3” refers to the beam splitter which combines Beam 1 and 3. Before
being combined one beam from each interferometer arm is sent through a glass wedge which
adds a tunable phase shift to that lattice beam. The beams are interfered at a photodiode.
The beat-note is used fed back to the PZT’s in the SW and LW lattice path for Beams 2
and 3 which is used to stabilize the relative path lengths.

the SW and LW lattices which scales linearly with the total length traveled d as φ ∼ ∆nkt,
where d is the thickness of the dispersive medium, ∆n = n532 − n1064 is the difference in
the refractive indices for the two wavelengths of light (532 nm and 1064 nm), and k is the
wave vector of the light. We can vary the phase difference by tuning the angle of the wedge
with respect to the light beam, thus changing the total length traveled. The thickness of
the glass that each beam traverses is determined by the refraction angle,

d532 = d0 sec[θ − arcsin(sin(θ/n532))] (7.15)
d1064 = d0 sec[θ − arcsin(sin(θ/n1064))], (7.16)

where d0 = 60 mm is the glass thickness, the refractive index n532 and n1064 is 1.521947 and
1.50663, and θ is the tilt angle. The total phase difference for each is φλ = nλkλt, where k
is the wave vector of the lattice. To determine the relative displacement between the SW
and LW lattices, we compute the relative phase shift for each color of light and take the
sine of the difference,

sin
[(

φ532

k532
− φ1064

k1064

)
× k532

]
, (7.17)



144

where the displacement is represented in units of k532, the wave vector for the 532 nm
lattice. A plot of the relative displacement is shown in Figure 7.7
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Figure 7.7: Displacement of 532 nm intensity nodes with respect to the 1064 nm intensity
nodes. By tilting the wedge we are able to tune the relative displacement between the SW
and LW lattice, thus tuning the lattice geometry.

7.4 Other lattice geometries

Since we have the ability to move and stabilize the relative locations of the intensity
nodes, we can also access different lattice geometries. The bi-chromatic optical lattice can
be tuned to create the following lattice geometries: kagome, 1D stripe, or the decorated
triangular lattice.

Tuning the lattice geometry is accomplished by adjusting the relative overlap of
the intensity nodes of the SW and LW optical lattice via the dispersive wedge in the in-
terferometer setup. An illustration of the possible lattice geometries is shown in Figure
7.8. For instance, placing the intensity node of the LW triangular lattice such that it is
located halfway between two nodes of the SW triangular lattice, we are able to create a
set of 1D coupled chains. This can be understood through use of the unit cell (see Figure
7.8). By placing the repulsive LW intensity node between sites A and D of the unit cell, we
increase the potential energy at these sites relative to the other two sites, and at sufficiently
high power atoms are expelled from these two sites. The unit cell in this case contains two
occupied and unoccupied sites, leading to the observed stripe pattern. However, if the LW
intensity node is placed at an equal distance from all three nodes of the SW lattice, for
instance sites A,B, and D, then the potential energies of these three sites is raised relative
to site C. Thus, the atoms are expelled from these sites, leaving one site per unit cell which
is allowed to be occupied. The resulting potential is a triangular lattice with twice the
lattice spacing.
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AB

C D

Unit Cell Intensity Nodes Atoms after TOF

1D Stripe

Decorated Triangle

Potential Minimum

AB

C D

Figure 7.8: Illustration of other accessible lattice geometries in this bi-chromatic lattice.
These include the 1D stripe (top row) and decorated triangular lattice (bottom row). As
a visual guide, the unit cell, spatial distribution of intensity nodes, and the momentum
distribution in TOF are shown. The green circles indicate a minimum in the potential
energy.

7.5 Calibrating the lattice potential

The depth of the lattice potential is measured using Kapitza-dirac scattering [166].
Kapitza-Dirac scattering is the diffraction of a particle beam by a standing wave light field
when the particle motion can be neglected (Raman-Nath approximation). This effect is
fairly well known and there are many review articles on the topic [173, 174, 166, 175],
so it won’t be covered in much detail here. The result of Kaptiza-Dirac scattering is a
coherent transfer of momentum to the atoms in units of 2N~k, where k is wave vector of
the standing wave. The probability of populating these momentum states is linearly related
to the integral of the pulse duration. Thus, by determining this exact relation, we can
obtain a measure of the lattice depth at the location of the atoms.

The application of a pulsed standing wave field acts to imprint a phase on the
condensate wave function, |Ψ0〉. Immediately after the application of the pulse, the wave
function can be described as:

|Ψ〉 = |Ψ0〉e−i
R
dtU(z,t) (7.18)

= |Ψ0〉e−i
Ω2
R

2δ
τe−i

Ω2
R

2δ
τf2(t) cos(2kz), (7.19)

where τ =
∫
dtf2(t) is the integral over the pulse duration, f(t) is the temporal envelope
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function, and the potential of the standing wave is

U(z, t) = ~Ω2
Rf

2(t) sin2(kz) (7.20)

= ~Ω2
Rf

2(t)
1− cos(2kz)

2
. (7.21)

We can simplify this expression through use of the relation for Bessel functions of the first
kind,

eiα cos(β) =
∞∑

n=−∞
inJn(α)einβ. (7.22)

The wave function can thus be rewritten in the following form

|Ψ〉 = |Ψ0〉
∞∑

n=−∞
inJn(

Ω2
R

2δ
τ)ei2nkz, (7.23)

where we have absorbed the overall phase into the initial wave function. Thus, a state with
momentum 2N~k has a probability

PN = J2
N (

Ω2
R

2δ
τ) (7.24)

for N = 0,±1,±2, .... To obtain a measure of the lattice depth, which is proportional to
the Rabi frequency, we can rewrite the probability as

PN = J2
N (ηP∆τ) (7.25)

where ∆τ is the pulse duration, η is the calibration factor which relates the lattice depth
to the lattice beam power (i.e. Rabi frequency) in units of Hz/mW, and P is the lattice
power.

In practice, we obtain a measure of the lattice potential by measuring the number
of atoms in the 0th order and the 1st order. As the power in the pulse is increased, the
number of atoms scattered into higher momentum states increases. We fit the fraction of
atoms in a given momentum state to a Bessel function as PN = J2

N (ηP∆τ). From the fit
we obtain a measure of the lattice calibration. An example of calibration curve is shown in
Figure 7.9. This is procedure is repeated for each pair of lattice beams.

7.6 Measurement Techniques

In order to demonstrate the tunability of the bi-chromatic lattice, we used two
different techniques: Kapitza-dirac diffraction and momentum-space analysis. For these
measurements, we begin with a BEC of ∼ 3×105 atoms in the |F = 1,mF = −1〉 state at a
temperature of 80 nK. The condensate is held in a crossed optical dipole trap using linearly
polarized light at 1064 nm, characterized by trap frequencies (ωx, ωy, ωz) = 2π×(60, 50, 350)
Hz. The relative position of the LW and SW lattices was measured using the two-color
Mach-Zehnder interferometer discussed above and actively stabilized by using actuator on
mirrors in the relevant optical paths. The lattice geometry was then varied by tuning the
phase shift between the two lattices in the interferometer [38].
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Figure 7.9: Calibration curve for SW lattice depth for Beam 1 and Beam 2. The SW lattice
light is controlled using an SRS pulse generator. A short pulse duration of 8µs is used
which is about an order of magnitude shorter than one over the recoil frequency, ensuring
that the Raman-Nath approximation is still valid.

7.6.1 Kaptiza-Dirac

One method used to demonstrate the how the bi-chromatic lattice is tuned between
different lattice geometries is Kaptiza-dirac diffraction [164, 166, 163, 174] (see Section 7.5).
In this technique, the condensate is released from the optical trap and immediately following
this release, the lattice potential is pulsed on then off. The pulse duration, τ , is sufficiently
short to ensure that the atoms were not moving during the pulse, and can therefore be
described as Kaptiza-Dirac scattering. The effect of this sudden turn on then off is to
imprint a phase shift, V (r)τ/~, onto the condensate wavefunction which is proportional to
the lattice potential, V (r).

The momentum-space distribution after the pulse of the lattice potential is sensi-
tive to the relative displacement of the LW and SW lattices. For simplicity, we consider a
one dimensional superlattice formed by two bi-chromatic lattice beams intersecting at 120◦.
The potential energy of this lattice configuration is

V (x) = VLW sin2 (q(x+ δx)/2)− VSW sin2(qx), (7.26)

where 2π/q = 614 nm is the one-dimensional lattice spacing and δx is the distance between
the intensity nodes of the LW and SW lattices. We can determine the effect of the pulse by
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considering the phase imprinted onto the condensate wavefunction, |Ψ0〉, described as,

|Ψ0〉 = |Ψ0〉e−i
R
dtV (x) (7.27)

|Ψ0〉 = ei(VLW sin2(q(x+δx)/2)−VSW sin2(qx)) (7.28)

|Ψ0〉 =

[∑
m

(i)mJLWm (VLW )e2mq(x+δx)
∑
m

(i)mJSWm (VSW )e4mqx

]
, (7.29)

where Jm is the mth order Bessel function. Considering diffraction up to second order in
the phase modulation depth, the populations at wave vectors ±q are given as P±q,

P±q ∝
∣∣∣±iJ±1J

SW
0 + JLW∓1 JSW±1 e∓i2qδx

∣∣∣2 , (7.30)

where the Bessel function is evaluated at VLW,SW τ/2~, according to the superscript. Thus,
from Equation 7.30 the exponential phase factor shows up in the diffraction pattern as a
left-right asymmetry in the TOF momentum distribution. An example of the left-right
asymmetry is seen in Figure 7.10. Thus, varying the displacement between the intensity
nodes of the LW and SW lattices will result in a corresponding change in the left/right
asymmetry in the momentum distribution imaged in TOF. A scan of the displacement, δx
and the corresponding Kaptiza-Dirac diffraction is shown in Figure 2 of [38]

-q

+q

Figure 7.10: Kapitza-Dirac scattering from a one-dimensional bi-chromatic lattice. The
peaks at ±q show a left/right asymmetry. This asymmetry varies as the displacement δx
between the LW and SW lattice intensity nodes is varied.
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7.6.2 Momentum-space analysis

In order to demonstrate the tunability of this optical superlattice, we also moni-
tored the characteristic momentum distribution of the atoms for different relative displace-
ments of the SW and LW triangular lattices. For this analysis, the optical lattice potential
depth was ramped up exponentially over 90 ms. The atoms were held in the lattice for an
additional 100 ms, after which the optical traps were switched off. Imaging after 15 ms of
free expansion revealed coherent momentum peaks at the reciprocal lattice vectors of the
LW lattice.

TOF Momentum Distribution for a multi-atom basis

The TOF momentum distribution can be computed form the atom field operator,
φk [48, 49]. To do this we must obtain the functional form for the atom field operator in a
four-atom basis. Extending the case of the single atom basis to a four-atom basis is done
by summing over the basis sites within the unit cell, bi. The atom field operator takes the
following form,

φk = ˜w(k)
4∑
p=1

∑
Ri

âRi+bpe
−ik·(Ri+bp). (7.31)

Here w̃(k) is the Fourier transform of the Wannier wavefunction, where the Wannier wave-
function, w(k) is a localized wavefunction at individual lattice sites, Ri denotes the primitive
lattice vectors of the LW lattice, âRi+bp is the annihilation operator at position Ri + bp,
and the atom field operator, φk(r), destroys a particle at position r [176, 14]. The TOF
momentum distribution is obtained from the expectation value of φ†kφk,

〈Ψ|φ†kφk|Ψ〉 = nk (7.32)

= |w̃(k)|2
4∑
p=1

∑
Ri,Rj

e−ik·(Ri−Rj)〈a†Ri+bpaRj+bp〉

+ |w̃(k)|2
4∑

p,q=1

∑
Ri,Rj

e−ik·[(Ri−Rj)+(bp−bq)]〈a†Ri+bpaRj+bq〉. (7.33)

Momentum Ratio

From the momentum distribution we can compute the momentum peak ratio be-
tween k = 0 and k = 2G, n2G/n0 and obtain a characteristic signal for each lattice
geometry. For the kagome geometry, a symmetric TOF interference pattern results in a
symmetric momentum peak ratio, nG/n0

= 1/9. In contrast, a LW triangular lattice, with
one atom per unit cell, has a value of n2G/n0

= 1 and n2G/n0
= 0 for the SW triangular lat-

tice. For a 1D stripe lattice geometry, two sites are occupied and two sites are unoccupied,
resulting in an asymmetric momentum distribution, with one axis at k = 2G1 enhanced
and the remaining two axes, k = 2G2,3, suppressed.

To demonstrate our control of the lattice geometry, we extract the momentum
population ratio as we scan the lattice geometry from the one-dimensional stripe to the
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kagome geometry. We start in the kagome configuration and then vary the angle of the
dispersive window which serves to displace the LW lattice with respect to the SW lattice.
The change in the lattice geometry is seen by monitoring the expansion out of the lattice.
We quantify these changes using the momentum population ratio for each position of the
LW lattice. An example of this is shown in Figure 3 of [38] and a calculation is shown in
Figure 7.11.
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Figure 7.11: TOF calculations of the momentum population ratio as a function of the LW
lattice position. By tuning the angle of the dispersive glass in the interferometer setup,
we can accurately tune the geometry of the superlattice. In this particular instance, the
intensity node of the LW lattice is scanned from midway between sites D and A to D, thus
varying the lattice geometry from 1D stripe to kagome. The green line is the momentum
ratio corresponding to the horizontal axis in the TOF images, while the red lines are the
other two axes, which have equal ratios.

Unit Cell populations

We can also extract the fractional populations within the unit cell using the form of
the momentum distribution discussed above. We can express these fractional populations,
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PA, ...PD, in terms of the momentum peaks at 0, 2G and 4G, where G is the reciprocal lattice
vector of the LW lattice. Considering a uniform superfluid in the lattice, the fractional
population within the unit cell is given by aRi+bu |Ψ〉 = eiφSF

√
Pu|Ψ〉, where we define

φSF = 0. For k = 0, the momentum distribution is

nk=0 = M2|w̃(0)|2
 4∑
p=1

Pp +
∑
p,q

√
PpPq

 (7.34)

(7.35)

where M denotes the number of plaquettes, with 4 ×M being the total number of lattice
sites. For k = ±4~Gi, where Gi is the reciprocal lattice vector of the LW lattice, nk=±4~G1

is

nk=±4~G1 = M2|w̃(4~G1)|2
 4∑
p=1

Pp +
∑
p,q

√
PpPq

 . (7.36)

(7.37)

A similar result is achieved for k = ±4~G2 and k = ±4~G3. Finally for k = ±2~Gi, the
peak density is:

nk=±2~G1 = M2|w̃(2~G1)|2
 4∑
p=1

Pp −
∑
p,q

√
PpPq + 4

(√
P1P3 +

√
P2P4

) (7.38)

nk=±2~G2 = M2|w̃(2~G2)|2
 4∑
p=1

Pp −
∑
p,q

√
PpPq + 4

(√
P1P2 +

√
P3P4

) (7.39)

nk=±2~G3 = M2|w̃(2~G2)|2
 4∑
p=1

Pp −
∑
p,q

√
PpPq + 4

(√
P1P4 +

√
P3P2

) . (7.40)

In order to determine the fractional populations within the unit cell, we combine the results
from Equations (6.21-6.27). This leads to a system of four equations that are needed to
solve for Pp:

ñk=0,±4G =
(√

PA +
√
PB +

√
PC +

√
PD

)2
(7.41)

ñk=±2G1 =
(√

PA −
√
PB −

√
PC +

√
PD

)2
(7.42)

ñk=±2G2 =
(√

PA −
√
PB +

√
PC −

√
PD

)2
(7.43)

ñk=±2G3 =
(
−
√
PA −

√
PB +

√
PC +

√
PD

)2
, (7.44)

where ñk = nk/|w̃(k)|2 is defined as the normalized density distribution and we have
switched to the convention defined earlier with letters defining the different sites within the
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unit cell. Assuming a normalization of the fractional populations equal to unity,
∑
Pp = 1

and that the approximation of the Wannier function as a Gaussian function is valid, we can
invert these nonlinear equations to determine the atomic distribution within the unit cell.

In practice, we use the measured fractional populations within the unit cell as a
tool for lattice alignment. Since each of the lattice geometries described above have either
1, 2, 3, or 4 occupied sites within the unit cell, we can use the fractional populations to
more precisely align the lattice in a specific geometric configuration. For instance, when
the intensity node of the LW lattice is located midway between sites C and D (3 and 4),
the fractional populations within the unit cell are (P1, P2, P3, P4) = 0.5, 0.5, 0, 0, where the
population difference is determined by both the position and intensity of the LW inten-
sity node. An example of different alignments between the LW and SW lattices and the
corresponding fractional populations is shown in Figure 7.12.

In the experiment discussed in [38], we use the set of coupled equations to extract
the unit cell population for the kagome geometry as we convert the lattice geometry from
a SW triangular to kagome lattice [38]. To do this, we begin with the lattice geometry
in the kagome configuration, where the intensity nodes of the SW and LW overlap. Then
as a function of the LW lattice depth, we take images of the corresponding momentum
distribution (see Figure 4 of [38]). At zero LW lattice depth, the geometry of the lattice is
represented by the SW triangular lattice, with the population of atoms equally distributed
amount the sites within the unit cell. As the LW lattice depth is increased, the potential
depth at sites A,B,C is reduced, causing atoms to be expelled form site D. This results
in a decrease in the the fractional population with the unit cell at site D. The population
smoothly decreases from its initial value of 1/4 to zero, while the population fraction in the
remaining sites increases form 1/4 to 1/3.

Table 7.1: Summary of momentum distribution and corresponding unit cell populations for
the different lattice geometries.

Lattice Geometry Momentum Population ratio Unit Cell Population
Triangular (SW) 0 1/4, 1/4, 1/4, 1/4

kagome 1/9 1/3, 1/3, 1/3, 0
1D Stripe 1 0, 0, 1/2, 1/2

Decorated Triangular 1 1, 0, 0, 0
Honeycomb 1/4

7.7 Lattice Optics

7.7.1 Lattice optics layout

To construct the bi-chromatic optical lattice, we use light at 1064 nm and light
at 532 nm. An illustration of the lattice optics is shown in Figure 7.13. The 532 nm light
is derived from an 18 W Verdi laser from Coherent Inc. located on the science table, since
we were unable to find high-power fibers for 532 nm light. The 18 W of power is divided
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into two paths, one which directs approximately 5-6 W for construction of the lattice while
the remaining unused laser light power is sent to a beam dump. The light used for the
lattice is sent through a high-power AOM from IntraAction (Part Number AFM802A1 -
rated to a maximum power of 6-7 W) used for intensity stabilization of the beam, after
which a small fraction of the diffracted light is picked off to monitor and stabilize the beam
intensity. Approximately 70% of the light is diffracted into the first-order beam which is
then split into three separate paths with equal power, which we refer to as Beam 1, Beam
2, and Beam 3 (see Figure 7.13). Next, Beams 2 and 3 are sent through EOMs from Linos
(Part Number 8450-204-900-0) oriented to produce mostly phase modulation of the beam
and little polarization modulation. These EOMs are specifically designed to compensate
phase drifts due to temperature fluctuations. After traversing through the EOMs, Beams
2 and 3 along with Beam 1 are then sent to the atoms using long-wave pass dichroics and
come to a focus at the approximate location of the atoms using achromat lenses with a focal
length of 250 mm from Melles Griot.

The 1064 nm light is directed towards the atoms in a similar manner as the 532 nm
light. Here the approximately 2.0 W of laser light is delivered to the science table using one
single-mode fiber. A small fraction of light is picked off and used for intensity stabilization
of an AOM, located on the 1064 laser table. The remaining light is split into three paths
with the power distributed equally among them. The light is then combined with the 532
nm light using the long-wave pass dichroics and sent to the glass cell.

The use of a single AOM for intensity stabilizing the 532 nm light is limits the
amount of power we can have in the lattice beams. Currently, the AOM from IntraAction
specifies the maximum laser power to be ∼ 6 W, which equates to 1 W per beam at the
atoms, after taking into account the loss of power on all of the optics. Exceeding 6 W into
the AOM will lead to thermal lensing effects in the crystal, which can have a detrimental
effect on the lattice potential. In practice, we see some thermal lensing at powers as low as 5
W. A few possible alternatives would be to use multiple AOMs or an EOM. These options,
however, are also accompanied with problems of their own, where frequency noise arises
from the use of multiple AOMs and EOMs are often not rated to extremely high powers.

7.7.2 Lattice Alignment

For the more roughest alignment of the optical lattice, the BEC was first imaged
along the lattice direction by transmitting imaging light through the lattice beam path.
The image of the BEC was focused onto the imaging CCD (Guppy Firewire camera) using
a lens located just before the camera. The pixel position of the focused condensate was
then marked and the lattice beam was aligned and focused to the same spot. Next, to fine
tune the alignment, we monitor the effect of the lattice beams on the atoms themselves, so
as to be sure that all the beams are overlapped at the condensate. For example, the lattice
beams of the SW lattice create a repulsive barrier in the condensate, creating a double well
potential. An example of this is shown in Figure 7.14. The final mirror or dichroic is used
to center the lattice beam on the condensate. This process is roughly repeated for all lattice
beams. The last stage of alignment is done by using Kaptiza-Dirac diffraction (see below).
Each pair of lattice beams is pulsed on for 8µs (13µs) for the SW (LW) lattice. The final
mirrors are used to maximize the diffraction pattern.
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7.7.3 Laser table optics

The 1064 nm light is generated on a separate optics table. The 1064 nm light is
derived from a grating-stabilized laser (ECDL) and amplified using a 15 W fiber amplifier
from Nufern. The fiber amplifier is equipped with an optical isolator. However, a series of
unfortunate events involving bad optical isolators and three damaged Nuferm amplifiers has
led us to install an additional high-power optical isolator. We measure approximately 80%
transmission through the isolator, leaving us with about 12 W of laser light at our disposal.
The output of the optical isolator is split into four paths: one for the optical dipole trap,
one for the triangular lattice, one for the dimple beam, and one for the vertical lattice.
Each path is directed towards an AOM used to intensity stabilize the beam and to ensure
that the frequency of each beam is distinct enough to prevent interference between them.
Following this, the beams are delivered to the science table using hollow core single-mode
fibers.

7.7.4 New optical trap

In addition to the structural changes around the experimental apparatus, a new
optical trap beam was added to the myriad of optical beams used in the experiment. The
new optical trap, referred to as the dimple beam, is used to compensate the repulsive
envelope of the SW triangular lattice. Without the dimple beam, the weak axial confinement
of the surfboard ODT, with a trapping frequency of ωy = 2π × 8 Hz, was insufficient
to compensate the repulsion due to the SW lattice potential, characterized by trapping
frequencies ωx,y = 2π × 30 Hz.

The dimple beam consists of a cylindrically symmetric beam using light at 1064
nm, propagating along the ẑ direction. The beam is characterized by trapping frequencies
ωx,y = 2π × 50 Hz, which are large enough to compensate the repulsive 532 nm light.
The light for the beam is delivered to the science table via a single mode polarization
maintaining optical fiber. After exiting the fiber, a small fraction of light is picked off and
used for intensity stabilization, while the remaining light is sent through a 500 mm lens
before traversing to the glass cell. Because this lens is not on a translation stage, adjusting
the location of the focus is nearly impossible without completely misaligning the beam.
Instead, the position of the focus is adjusted using the output collimator of the optical
fiber. The collimator used is from Schäfter-Kirchhoff and allows for easy adjustment of the
beam collimation. In practice, the beam is slightly diverging after exiting the collimator.

One complication associated with the dimple beam is the dichroic used to combine
it with resonant imaging light. At the time of construction, we did not anticipate the number
of specialty optics needed and some compromises had to be made. The use of a dichroic
meant for light at 780 and 850 nm is one example. At this interface, only 70 % of the 1064
nm light is transmitted. A potential improvement would be to switch this dichroic with one
specified for the appropriate wavelengths of light in order to transmit a larger fraction of
power.

.
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Figure 7.12: TOF calculations for misaligned lattices. The density profiles along the cuts A
and B are shown in the second and third column. (a) and (e) show expected TOF images for
an ideal triangular and kagome lattice. (b)-(d) show TOF patterns for misaligned lattices.
bi here represents the relative population at site i in the unit cell, as shown in the inset.
The blue hexagon denotes the intensity node of the LW lattice and the orange green circles
denote the SW intensity node.
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Figure 7.13: Layout of lattice optics on science table. This is not meant to be an identical
replica of the exact setup. Doing so would be too cluttered and complicated.

Figure 7.14: Position of Beam 2 of the SW lattice. At high power the lattice beam creates a
repulsive barrier in the condensate, splitting it into two. The lattice beam is aligned to the
condensate center. A green arrow denotes the propagation direction of the lattice beam.
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Figure 7.16: Schematic of dimple optics used to steer the beam to the glass cell. Because the
optics for the dimple beam are located on the optics table below the lattice breadboard, the
optics are purposefully positioned near the table edge so that they are not too inaccessible.
The dimple beam is combined with the top/down imaging beam using a long-wave pass
dichroic. The dichroic is meant for light at 850 nm and light at 780 nm, thus there is some
power lost on this element. After being combined on the dichroic the atoms are directed to
the glass cell suing a 2 inch gold mirror, located directly below the glass cell.
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Appendix A

Operation of the Ti-sub pump

A.1 Operating Procedure

To run the Ti-sub, the filaments must be lowered into the chamber using the trans-
lation stage, an water must flow through the 4-way cross before running current through
the filaments. The filaments are in close proximity to the vacuum flanges and to prevent
significant temperature gradients which may cause a small vacuum leak, tap water is used
to cool the chamber. Typically, currents of 25-30 A were applied to the filaments for 2-3
minutes. The cooling water was left to run for 20 additional minutes. While hot, the fil-
aments have expanded from their original size, and to prevent coming in contact with the
vacuum chamber, the filaments were left in their lowered position overnight.

In order to prevent the deposition of titanium onto the slower viewport, we inserted
a Viton O-ring sealed gate valve. When running the Ti-sub, the gave valve is closed, thus
preventing any titanium from reaching the viewport.

A.2 Pumping Area

In order to determine the optimal location of the Ti-sub, we considered its prox-
imity to viewports as well as the potential vacuum surface area that would be covered with
titanium. In its current location, there is no direct line-of-sight for the titanium and the
MOT chamber viewports or glass cells. Furthermore, a conservative estimate of the surface
area to be covered is fairly substantial, ≈ 844 cm2. This number takes into account only
the five- and four-way cross, and the conical reducer, without including the surface area of
the Zeeman slower tube. Based on this very conservative area estimate, pumping due to
the Ti-sub is:

ACR = 90 cm2 (A.1)

A4WC = 340 cm2 (A.2)

A5WC = 415 cm2 (A.3)
Pumping ≈ 2500 L/s (A.4)
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where ACR, A4WC , A5WC refers to the interior surface ares of the conical reducer, the
four-way cross and the 5-way cross, and the pumping speed for molecular hydrogen at room
temperature is 3 L/s/cm2.

Running the Ti-sub in the spring of 2009 enabled us to reach pressures in the main
chamber near 2× 10−11 Torr. Since then, the Ti-sub has not been used.
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Appendix B

Initial installment of an ODT

Aligning an optical trap with no reference point is nearly impossible unless you
have a few helpful suggestions when starting such a process.

1. Image a thermal gas along the ODT direction by transmitting light through the ODT
beam path. Focus the BEC onto the camera using a lens added right before the
camera. This is typically easies if imaging light is sent along the ODT optical fiber.

2. Mark the atom location onto the camera.

3. Repeat this procedure with a physically smaller thermal sample to ensure that the
position and focus are correct.

4. Now send repump light along this path and without adjusting any optics and image the
atoms along an orthogonal direction. For our particular experiment, we this imaging
axis is oriented along gravity.

5. If there is no image of atoms on the camera, repeat the previous steps.

6. Adjust the focus of the final ODT lens.

7. In order to determine the correct location of the final lens, the interaction of the
repump and the atoms has a distinct signature. When correctly aligned, the strength
of the atom-signal will appear weakest at the cloud center and strongest at the edge.
This is because the spatial profile of the repump beam is largest at the cloud edge
and smallest at the cloud center, if properly aligned. Note that adjusting the focus
may steer the beam slightly.
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Appendix C

Generating the rf-pulse sequence

Many of the details pertaining to the generation of the rf pulse sequence are de-
scribed below. To generate the series of π/n pulses and have them be synchronized with the
probe pulses as well as the shifting frames of the camera, we have developed an elaborate
scheme, which most likely could have been accomplished and simplified greatly with a few
micro-controllers. It is here for the sake of documentation, nonetheless.

We use a single TTL (camera trig.) from the word generator (WG) to trigger the
imaging sequence. The TTL is divided into two paths; one path goes to the camera and
probe, while the other path goes to generate the series of π/n rf pulses (see Fig. C.1).

Focusing on the first path, the TTL from the computer triggers a Stanford Re-
search System function generator (SRS DS345). The SRS is configured in “Burst Mode”
to generate a series of square pulses at its output. The output is directed into the trigger
port of an SRS 4 Channel digital delay generator (DG535), the output of which goes to
the camera and the image probe. Specifically, output AB is sent to the imaging probe rf
switch. By controlling the delay timing between A and B, we are able to accurately control
the probe pulse duration. In the experiments pertaining to spin-echo imaging, B=A+200
ns. Output CD is sent to the trigger input of the Princeton Instruments camera which
is configured in kinetics mode. Thus, for every trigger the 4 Channel SRS receives (from
the initial SRS), imaging light is directed onto the camera followed by the camera shifting
frames, where one cycle time (probe light plus camera shifting frames) is determined by
the frequency of the function generator, which we operated at 14.4 kHz (2.5 Vpp and 2.5
V offset).

Essentially, for path one of the setup, all that is required is that; (i) there is imaging
light when the camera is not shifting frames, (ii) the camera has enough time to shift the
required number of frames (maximum shift rate is 1 row/µs), and (iii) that the probe light
only illuminate the atoms for less than ≤ τLP /4 [79].

For path two, the TTL from the WG is directed to a second 4 Channel digital
delay generator. Output AB triggers the series of π rf pulses and output CD triggers the
π/2 rf pulse for imaging the longitudinal magnetization. Focusing on output AB; the output
triggers an SRS function generator (SRS Trig1), configured in “Burst Mode” and this output
triggers the second SRS function generator (SRS π). The output of SRS π is directed to
the DC+RF port of a Bias-T (part number) to eliminate any DC offset, most likely due to
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ground loops. Finally, the RF port of the Bias T is sent to an rf switch, followed by an rf
amplifier and then to the atoms via a coil. For this aspect of path two, SRS Trig1 sends a
train of square pulses which then create a series of π rf pulses occurring at a rate of 14.4
kHz, identical to the imaging SRS generator frequency, ensuring that the π rf pulses, probe,
and camera shifting occur with the proper timing. The typical delay values used are:

T = A + 40µs (C.1)
B = C + 260µs, (C.2)

where the delay time between A and B as well as C and D are not important as they are
only serving as a trigger for devices (configured for rising edge TTL).

Output CD is identical to output AB except that only one π/2 rf pulse is generated.
The elaborate setup for this one rf pulse is to ensure its proper timing with respect to the
π rf pulse and imaging pulse. Additionally, for π/2 rf pulse, we use identical parameters as
the π rf pulse, but control the amplitude externally.
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Figure C.1: Schematic of pulse generators used to create rf-pulse sequence for spin-echo
imaging.
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Appendix D

Alignment of an imaging system

Proper alignment is critical in high NA imaging systems. The order in which optics
are aligned is determined by their relative position to the camera, beginning with the lens
nearest to the camera and ending with the objective. The main alignment tool will be to
use the back reflection of each lens.

Below is a general procedure for the alignment used to test the objective, consisting
of the objective, a glass cell, and a 750 mm lens.

1. Determine the desired imaging path using HeNe light. This path will be the imaging
axis and the axis with which you will align each lens within the imaging system. It
is usually easiest if the path is level with the optics table or breadboard. The use
of HeNe is optional since it is easy to see and will produce a fairly substantial back
reflection by each optical element (assuming their antireflection (AR) coating does not
cover HeNe). However, with the high power Verdi in the room, that would probably
also suffice.

2. Position the camera such that it is centered about the imaging axis, located along the
imaging axis where you anticipate the final image location. It is usually best to use a
translation stage as you will undoubtedly need to adjust this position with respect to
the final lens.

3. Position the f = 750 mm lens (final lens) approximately f away from the camera.
This can be done rather coarsely. Next, place an iris between the light source and
the 750 mm lens, concentric with the light source. Aperture down the iris until the
clearance hole is the size of the imaging light. This will be used as a target to see the
back reflections from the lens.

4. Identify the back reflections from each surface of the 750 mm lens (there should be
two) which should appear near the face of the iris if the lens is not too far misaligned.
By translating and rotating the lens the two back reflections should overlap with each
other and coincide with the imaging axis. Translating the lens in the plane transverse
to the imaging axis, the two back reflections should overlap, but this is not necessarily
concentric with the imaging axis. Then by rotating the lens, it should be possible to
move the two back reflections such that they overlap with the imaging axis.
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5. Once the back reflections and imaging beam overlap, check if the distance between
the camera and the lens is correct. This can be done by trying to image an object
(or a face shown here in Fig. D.1) far from the lens; essentially something that is at
“infinity.” Using the translation stage, move the camera until the image is in focus.
This will almost certainly guarantee that the distance between the lens and camera
is correct.

6. Position the glass cell. To do this, using a similar procedure as above, we centered
the glass cell on the imaging beam and adjusted the tilt of the cell to overlap the back
reflections.

7. Position the objective. This was a more difficult given the high NA. To translate the
objective, we used short range nonmagnetic translation stages and adjusted the tilt
using a mirror mount, resulting a finer control of the angle and position. There are
approximately 3 back reflections to overlap; two from each surface of the meniscus
and one from the flat side of the aspheric lens. The reflection from the curved surface
of the aspheric lens has a significant divergence making it difficult to see and align to.

8. Next, position a test pattern inside the glass cell and while adjusting the focus of the
objective, the test pattern should come into focus.

Typically, to check the overlap of the back reflections and to ensure a well aligned imaging
system, a path length of at least 1 m is useful.
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Figure D.1: Image of Andre Wenz while trying to align final lens with respect to the
imaging camera. For this image, a 300 mm lens was being aligned. In order to place the
lens a position f away from the camera, the objects needs to be located distance away that
is � f . Here that distance was between 3-4 m.
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Appendix E

Phase contrast imaging 101

This appendix includes a general outline for obtaining a phase contrast signal.

E.1 Phase contrast signal with no phase dot

In the early developmental stages of E5 (the next generation of E1), a reasonable
phase-contrast signal was not easy to come by. There could be many reasons for this, some
of which include:

• misaligned phase dot

• wrong probe detuning

• low density

• imaging -〈Fy〉, where the Clebsch-Gordan coefficients are smaller

The list can go on and on and during those first few months, any one of those reasons could
be the culprit. Thus, we came up with a full proof plan to obtain a signal, which could
later be optimized. The plan is as follows:

• Remove the phase dot - half the time your aligning to dust or to a scratch which is
located near (within 1 mm) the ever tiny 250µm dot. Just to be clear, only one of
the two phase dots in the lab have a scratch, so you have a 50/50 chance at picking
the better one.

• Park your probe detuning close to resonance, ≈ 80 MHz, blue/red detuned, it doesn’t
matter. Yes you will lose lots of atoms due to absorption, but this can be changed
once a reasonable signal has been achieved

• Use linearly polarized light (reason to follow)

• Find a linear polarizer (half wave plate and a PBS works too) and place it anywhere
after the atoms. Near the camera works fairly well since this is where you likely have
the most room on the optics table.
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• Rotate the polarizer such that it is at 45◦ with respect to the probe polarization; this
occurs when roughly half the light is transmitted.

• Orient the spins of the condensate to be parallel to the imaging axis. This is typically
done by rotating the magnetic field to be parallel to the imaging axis.
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Appendix F

Lattice Alignment

F.1 Alignment Procedure

A total of eight optical beams need to overlap at the location of the atoms to make
this lattice successful. To make the alignment process efficient and relatively quick, we have
developed a systematic procedure for the aligning each beam.

1. Dimple Beam This should be centered on the in-trap surfboard ODT location.
Being slightly off center axially would suffice as well. As stated above, the alignment
of the dimple can be quite challenging and very sensitive to slight adjustments to the
mirrors.

2. Misaligned Dimple Beam If the dimple beam is very misaligned, the top/down
imaging camera can be used to image the dimple beam. After recording the in-trap
surfboard position, run the camera in video mode and turn on the dimple beam. The
beam should appear on the camera, despite the filters used to block out the 1064 nm
light. Now the dimple beam and be coarsely tuned to the in-trap position of the ODT.

3. SW: Beam 1 and Beam 2 After aligning the dimple beam and recording the
position of the combined dimple/ODT potential, block all of the SW lattice beams
except for Beam 1 or Beam 2. Then when running the sequence with the dimple beam
OFF, align the 532 nm beam until it is splitting the condensate into two parts at the
recorded location of the dimple/ODT. Continue to adjust the position with less power
to ensure proper alignment and repeat this for the other beam.

4. LW: Beam 1 and Beam 2 Follow a similar procedure for the 1064 nm beams. The
exception here is that proper alignment is seen when the axial extent of the condensate
profile is minimized, since the 1064 nm light is attractive.

5. Kaptiza-Dirac The alignment of each lattice can be independently optimized using
Kapitza-Dirac. This is typically done for each pair of beams for each wavelength of
light, though optimizing all three beams for each lattice can also be done.




