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Abstract 

Teaching with evaluative feedback involves expectations 
about how a learner will interpret rewards and punishments. 
We formalize two hypotheses of how a teacher implicitly  
expects a learner to interpret feedback – a reward-maximizing 
model based on standard reinforcement learning and an 
action-feedback model based on research on  communicative 
intent – and describe a virtual animal-training task that 
distinguishes the two. The results of two experiments in 
which people gave learners feedback for isolated actions 
(Exp. 1) or while learning over time (Exp. 2) support the 
action-feedback model over the reward-maximizing model. 

Keywords: pedagogy; reward; punishment; reinforcement 
learning; feedback; evaluative feedback; communication 

Introduction 
Imagine Eve, a 4-year-old toddler, who uses the toilet for 

the first time. Her proud parents might give her a hug and 
some stickers for the accomplishment. Or consider Fido, the 
chocolate labrador puppy, who ignores the paved walkway 
leading to the house and tramples over a freshly planted bed 
of flowers. Fido’s owner, who spent the last two months 
tending to his lawn, scolds Fido harshly in a firm and 
imposing voice. In both cases, a teacher (Eve’s parents, 
Fido’s owner) attempts to modify another agent’s behavior 
(a child or a dog) using valenced stimuli (stickers, scolding). 
This type of interaction – teaching via evaluative feedback – 
occurs frequently between parents and their children (Owen 
et al., 2012) as well as between humans and other species 
such as dogs. 

Here, we explore how teachers implicitly expect a learner 
to interpret rewards and punishments intended to modify 
behavior. That is, we examine how teachers provide 
evaluative feedback in response to the actions of a learner. 

Reinforcement learning models of human and animal 
learning based on operant conditioning (Sutton & Barto, 
1998; Dayan & Niv, 2008) assume that learners are reward-
maximizing. Teachers might share this assumption, namely, 

that evaluative feedback will be treated as face value 
rewards and punishments. Positive responses are 
pleasurable, rewarding outcomes of behavior to be 
maximized, while negative responses are painful, punishing 
outcomes to be minimized. The learner is expected to 
interpret feedback like any other valenced stimulus that 
results from acting on the environment, such as a ripe apple 
having fallen from a shaken branch or a burnt finger having 
touched a hot stove. On this view, when Eve’s parents want 
to teach her about using the toilet and not the living room, 
they intend the sticker to serve as an incentive. “Eve loves 
stickers,” they reason, “so she will want to use the toilet 
again”. 

In contrast, peoples’ understanding of communicative 
intent when learning new concepts from examples (Sperber 
& Wilson, 1986; Csibra & Gergely, 2009; Shafto et al., 
2014) suggests an action-feedback model in which teachers 
expect learners to treat responses communicatively or as 
commentary about an action. Rewards signal to the learner 
that the action just performed was correct given the 
circumstances, whereas punishments signal that the action 
was wrong or incorrect. Teachers further expect such a 
learner to be motivated to perform correct actions and avoid 
incorrect ones in a given state. From this perspective, when 
toilet training Eve, her parents intend the sticker to serve as 
a signal that she is doing the right thing. “Eve knows we 
don’t give stickers out for nothing,” they might reason, “so 
she’ll learn that she should be using the toilet.” 

In this paper, we first formalize these two hypotheses of 
teaching via evaluative feedback in the framework of 
Markov Decision Processes. Teachers who teach according 
to a reward-maximizing model expect learners to treat 
positive feedback as desirable rewards to be maximized and 
negative feedback as undesirable punishments to be 
minimized. In contrast, those who teach based on an action-
feedback model expect learners to treat positive and 
negative stimuli as signals for correct or incorrect behavior. 
We then describe a novel teaching task that qualitatively 
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distinguishes these two models. Finally, we present results 
from two experiments that show the majority of people do 
not teach in accord with a reward-maximizing account, but 
instead broadly follow the predictions of the action-
feedback model. 

Model 
We first describe an interaction model of the teacher-learner 
dynamics during teaching with evaluative feedback. Second, 
we propose two learner models (reward-maximizing and 
action-feedback) that capture a teacher’s expectation of how 
the learner interprets feedback. Finally, we show how the 
models can be distinguished in a novel sequential-teaching 
paradigm. 

Interaction Model 
To model the interaction between a teacher and a learner, 
we use the Markov Decision Process formalism (Bellman, 
1957). On each timestep , the teacher observes a learner 
interacting with an environment composed of states ( ) 
by performing any one of the actions available in a state 
( ). Each action is generated from a learner’s 
behavioral repertoire at a given time step, represented as a 
policy, , where  is a mapping from states to available 
actions ( ).1  

After observing the agent’s current state, action, and 
subsequent state ( ), the teacher responds to the 
learner with a positive or negative feedback signal of a finite 
magnitude ( ). The function that takes an 
observation of the learner and returns feedback we call the 
feedback function: 
 

 
 

The pattern of rewards and punishments that constitute this 
feedback function is determined by the target policy ( ) 
that the teacher wants the learner to acquire. The interaction 
then continues into the next timestep (Figure 1).  

                                                             
1 For simplicity, we assume that state transitions and policies are 

deterministic (e.g. ), however, this can be 
generalized to stochastic environments and policies. 

Learner Models 
Learning consists of changes in an agent’s policy over time, 

, resulting in a learned policy, .  
When teaching by evaluative feedback, a teacher expects a 
learner to learn from the feedback signal produced by . 
Thus, each of our models characterizes the functional 
relationship between a learned policy, , and feedback 
function, . 

The reward-maximizing agent treats teacher-feedback 
from a feedback function as a face value reward to be 
maximized over the long term – exactly like the reward 
signal found in standard reinforcement learning (RL) 
(Sutton & Barto, 1998). That is, a reward-maximizing agent 
calculates the cumulative long-term value of each available 
action  in the current state , under the current policy . 
Call this the action-value, , from a state with a 
policy: 

 

 
 
Importantly, future rewards may be treated as less rewarding 
than immediate ones, so we include a discount parameter 

 As its name suggests, the reward-maximizing 
agent is interested in eventually learning a policy, , that 
maximizes the action-value in all states. Thus, such an agent 
learns the policy: 
 

 
 
for all . Note that the model is agnostic about the 
precise learning mechanism that updates  as long as it 
converges on the reward-maximizing policy . For 
instance,  could be learned via explicit planning or 
trial-and-error learning – e.g. model-based learning vs. 
model-free Q-learning (Dayan & Niv, 2008). 

The action-feedback agent treats feedback as a direct 
signal for the correctness or incorrrectness of an action. A 
positive teacher response indicates that the action matches 
the corresponding action in the target policy, while a 
negative response indicates it does not match.  Thus, teacher 
responses map directly onto whether an action should or 
should not be done, and we can define the action-
correctness, , from the present state as: 

 
 

 
Then for all , the action-feedback agent will learn the 
policy: 
 

 

Figure 1: Teacher-learner interaction model. The learner’s 
current policy, , takes in the current state  and returns 
an action , leading to the next state . A feedback 
function, , observes this and gives feedback  to the 
learner, resulting in the modified policy . 
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How do teachers teach? 
When do the two models diverge? That is, when does 

 for a feedback function ? Furthermore, when 
does a reward-maximizing learner or an action-feedback 
learner acquire the target policy, ? 

For the learner models, the reward-maximizing discount 
parameter, , must be sufficiently large. Otherwise, the 
learner’s estimate of an action’s correctness and its value 
coincide , and . 
This means the two can only diverge when the reward-
maximizing learner cares about future feedback.    

For feedback functions, the learned policies of the models 
can diverge given positive cycles:  state-action-feedback 
sequences where the learner returns to an initial state, 
( ), but receives a net positive 
reward,  
(Ng, Harada, & Russell, 1999). 

For example, consider what happens if Fido is punished 
for going into the garden but rewarded for getting on the 
path or heading towards the house. Suppose Fido heads 
towards the house along the path, gains rewards, and stops 
at the door. At this point, Fido could enter the house and get 
a final, perhaps large, reward. But, if Fido is a reward-
maximizing learner who values future rewards, he could 
double back through the garden, take the punishments, 
follow the path to the house again, and gain even more 
rewards. If the tradeoff between punishments and rewards is 
a net gain, this is a positive cycle. Figure 2 illustrates the 
predicament of Fido’s owner in a simplified gridworld. 

We designed a dog-training paradigm, the Garden-Path 
task, reminiscent of the one faced by Fido’s owner  (Figure 
3) to determine whether people produce positive cycles, the 

presence of which would indicate that people expect action-
feedback but not reward-maximizing learners. Dogs were 
chosen because people are unlikely to attribute sophisticated 
cognitive capacities to them (unlike with human children) 
but are likely to be familiar with them (unlike robots). 
Experiment 1 investigated peoples’ teaching patterns for 
isolated actions taken by a learner. Experiment 2 
investigated how people teach a single learning agent over 
time. 

Experiment 1: Teaching Isolated Actions 
In Experiment 1, participants provided feedback to learners 
who performed isolated actions in the Garden-Path task, 
allowing us to map out their feedback functions over the 
entire state-action space. 

Figure 2: The task faced by Fido’s owner. Tiles enclosed by double lines are the garden; unenclosed tiles are the path. The 
owner wants to teach Fido . The two rows show two possible feedback functions  and  (solid blue arrows are 
rewards, dotted red arrows are punishments) as well as the policies learned by the two models. A reward-maximizing 
learner will not learn the target policy under  because of the positive cycle (big grey arrows). Note that a feedback 
function may not yield a unique an action-feedback policy. 

Figure 3: Fido’s Garden-Path task. On each trial, a dog 
moves and then participants give their feedback. (Demo at: 
http://research.clps.brown.edu/mkho/gardenpath/task.html)  
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Method 
Participants and materials Thirty-nine people from 
MTurk participated. On each trial the dog starts at a tile, 
rotates to face one of the four cardinal directions, and then 
walks onto the adjacent tile (3000ms).  After viewing the 
dog’s movement, participants provide feedback ranging 
continuously from highly negative to highly positive: “a 
mild but uncomfortable shock” to scolding the dog (“Bad 
Dog”) to “doing nothing” to praising the dog (“Good dog!”) 
to “a few delicious treats”. The instructions explicitly stated 
that the scale should be seen as ‘balanced’ such that 
distances from the midpoint of the scale were equivalently 
positive or negative. 
 
Procedure We told participants that they would help train a 
school of 24 distinct dogs to “go into the house by staying 
along the path and staying out of the garden” and that the 
goal of training is for each dog to be able to do this 
independently. The entire task consisted of 24 trials that 
covered all possible initial locations, actions, and final 
locations. Trial order was randomized under the constraint 
that no trial began where the previous trial had ended. We 
told participants to imagine they had placed the dog in that 
location at the beginning of the trial. They had to answer 
several comprehension questions completely correctly to 
start the task.  

To evaluate participants’ perceptions of whether the dogs 
value future rewards, we asked several questions about dog 
preferences after the task. For example, one question asked 

whether a dog would prefer 2 scoldings followed by 4 
praises or prefer receiving nothing at all.  

Results 
Positive Cycles We first analyzed whether participants’ 
stationary feedback functions had positive cycles that could 
be discovered by a reward-maximizing learner. Figure 4a 
graphs the average feedback function, where the response 
scale was coded as between -1 and +1. The aggregated 
pattern of feedback reveals that starting from the lower left-
hand corner and performing the action sequence <up, up, 
right, down, down, left> yields a net positive feedback. This 
positive cycle had an average value of +1.20, SE=0.20 (t(38) 
= 5.99, p < .001). Furthermore, individual-level responses 
had positive cycles. Figure 4b is a histogram of net cycle 
values and clearly demonstrates that 36 out of 39 
participants delivered a net positive reward along this route. 
 
Feedback Function Types Previous work has shown that 
people adopt different ‘training strategies’ when giving RL 
agents rewards and punishments (Loftin et al., 2014). To 
identify individual differences in feedback functions, we 
performed a hierarchical clustering analysis. Individual 
feedback functions were represented as 22-dimensional 
vectors of responses between -1 and 1 (actions from the 
terminal state were not included), and we calculated a 
Euclidean-distance dissimilarity matrix. Clusters were 
identified using a complete linkage method.  

Results (Figure 4c) reveal two large, homogeneous 
clusters (n=17 each) and a single small, heterogenous 

 

Figure 4: Results of Experiment 1. (a) Average teaching function of all participants. (b) Net value of responses on cycle 
trials by individual. (c) Results of hierarchical clustering of participants’ responses with the average teaching function of the 
two largest clusters. These correspond to an action-feedback function and a “state-training” function (see text). 
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cluster (n=5). The first large cluster (left) closely matches 
the action-feedback model that rewards correct actions and 
punishes incorrect ones. The two subclusters in this cluster 
reflect response magnitude differences. The second large 
cluster (right), reveals a feedback pattern distinct from either 
the reward-maximizing or action-feedback model. 
Participants gave rewarding responses based on the general 
permissibility/impermissibility of state-types, even if they 
were not correct for the specific task being trained. For 
example, if the dog stayed on the path but walked away 
from the door, a “state training” teacher would still give a 
reward. This leads to even worse positive cycles that could 
be exploited by a reward-maximizing agent who simply 
walks back and forth along the path. Importantly, only 5 of 
the 17 state training participants did not mention ‘going to 
the house’ in a pre-task free-response question, suggesting it 
is not due to a misunderstanding of the task. Noticably, only 
one participant (found in the small ‘other’ cluster) showed a 
‘reward-maximizing’ pattern of feedback. 
 
Feedback Value Participants perceived that the dog would 
assign a positive net value to the future expected rewards in 
the positive cycle (i.e.  is sufficiently large). 92% of 
participants responded that the dog would prefer 2 scoldings 
(-.5 twice) followed by 4 praisings (.5 four times) to nothing 
(0), indicating that  

 (i.e. ). Most participants (85%) 
used rewards greater than or equal to punishments on cycle 
trials, indicating that most would expect a reward-
maximizing agent to prefer the identified cycle at measured 
values. Additional questions confirmed that the scale itself 
was interpreted symmetrically, however, we will not discuss 
them due to space limitations. 

Experiment 2: Teaching Over Time 
Experiment 1 examined responses to isolated actions. 
Experiment 2 had participants teach a single dog over time. 
This allows us to test whether positive cycles still arise and 
whether teachers can properly track a learner’s policy. 

Method 
Participants and materials The same interface was used. 
Thirty-seven people trained a single dog over 8 game days. 
Each day, the dog began in the lower left corner and 
movements on each day were predetermined. Apparent 
performance improved over the course of the first 5 days, 
were optimal on the 6th and 7th days, and on the 8th day the 
dog proceeded on the positive cycle steps identified in 
Experiment 1. Except for the final day, the dog’s behavior 
on days 1 through 7 was generated by choosing the optimal 
action in a given state with a probability  or any of the 
actions with a probability .  was 1.0, 1.0, 
0.45, 0.1, 0.1, 0.0, and 0.0 for days 1 to 7 respectively. 
Unless the dog made it to the door, at which point that day 
ended, each day was 6 steps long. We showed all 
participants the same pre-determined set of actions. 
 
Procedure We told participants that they would train a 
single dog over the course of 8 game days and that at the 
end of the experiment, we would test the dog, on its own, 3 
times at the beginning of the path. A bonus was contingent 
on the dog’s performance (but everyone won). Between 
each game day, participants answered questions regarding 
the dog’s current ability and its improvement since the last 
day (only after days 2-8). After the task, we asked 
participants about the responsiveness of the dog to feedback 
on a 1-5 scale. All other details of the task, including post-
task questions, were otherwise the same as in Experiment 1. 

Results 
All participants rated dog responsiveness above 1 = not 
responsive at all (mean=3.45, SE=.11). Additionally, 
preference judgments were similar to those in Experiment 1. 
 
Positive Cycles and Diminishing Rewards When teaching 
a single learner over time, most participants’ feedback 
functions showed positive cycles. The final day in the dog 
training task had the dog take the 6 steps corresponding to 
the positive cycle identified in Experiment 1. Although 
smaller, the average total reward for these 6 steps was still a 
positive value: +0.67, SE=0.19 (one-sided t-test: t(36)=3.53, 
p < .001). As compared to Experiment 1, however, 
fewer participants had a net positive cycle value on day 8 
(24 out of 37, Figure 5a). 

Consistent with smaller and fewer positive cycle values 
on the final day, rewards for correct steps declined but 
remained positive over days 3 to 8. A repeated measures 
ANOVA of responses with Day and Action as factors 
showed both main effects (Day: F(1,36) = 15.69, p < 0.001; 
Action: F(3, 108) = 47.0, p < 0.001) and an interaction (Day 

Figure 5: Experiment 2 (a) Responses on final game day still 
have positive cycles (b) Rewards for correct actions decrease 
but stay positive even when the learner is trained (days 6-7). 
rewards delivered for each correct along the path on days 3 to 
8. 
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x Action: F(3, 108) = 4.78, p < 0.01). This suggests that 
although people do produce positive cycles consistent with 
action-feedback expectations, some teachers attempt to 
‘wean’ the learner off of rewards (Figure 5b). 

 
Tracking Learner Ability and Improvement  Participants 
only have access to the learner’s interactions with the 
environment, and so can only infer its policy indirectly. 
Despite this, judgments of the dog’s ability at the task 
following each day tracked the value of  extremely 
closely (mean Pearson correlation = 0.93, SE=0.008; 
t(36)=119.67, p < .001). Similarly, judgments of the dog’s 
improvement tracked day-to-day changes in  (mean 
Pearson correlation = 0.85, SE=0.014; t(36) = 62.39, p < 
0.001). Thus, when teaching via evaluative feedback, 
teachers infer the current state of the learner’s policy and 
track changes to that policy over time as our interaction 
model assumes. 

Discussion 
Teachers often use reward and punishment to modify the 

behavior of other agents such as children and animals. In 
two experiments, we examined how teachers expect learners 
to interpret evaluative feedback. Our results demonstrate 
that when giving feedback for isolated actions (Exp. 1) and 
when training a single learner over time (Exp. 2), people’s 
patterns of reward and punishment produce positive cycles. 
That is, people deliver rewards in a manner that a reward-
maximizing agent (of the variety found in standard RL) 
would discover and capitalize on (Dayan & Niv, 2008; 
Sutton & Barto, 1998). 

These results can be explained by the action-feedback 
model, which is based on work on communicative intent 
(Sperber & Wilson, 1986; Csibra & Gergely, 2009; Shafto 
et al. 2014).2 On this view, teacher feedback is not just a 
face value reward but instead a signal about an action’s 
correctness. This allows an action-feedback learner to learn 
the desired policy even in the presence of positive cycles. 

At the same time, our current action-feedback model does 
not completely account for teachers’ communicative use of 
rewards and punishments. For instance, it does not entirely 
explain state-training teaching functions (Exp. 1) or 
diminishing rewards (Exp. 2). State training could reflect 
teachers’ attempts to teach intermediate policies, while 
diminishing rewards may involve consideration of the 
history of the learner. Our model could be extended to 
include teacher’s inferences about what the learner has 
learned so far. 

Relatedly, the domains considered here are simple 
gridworlds, and we do not assume that learners generalize 
information learned about one tile token to another of the 
same type (e.g. two path tiles). The presence of state-
training suggests teachers may not make this assumption 
and instead expect shared knowledge of state types. 

                                                             
2 Note that whereas Shafto et al. (2014) look at using examples 

to teach concepts, we examine using feedback to teach behavior.  

Additionally, we mainly looked at teacher expectations in 
light of learning outcomes and bracketed the question of 
how specific learning mechanisms interact with patterns of 
feedback online. Since these studies deliberately hold 
learner behavior constant, we will compare how different 
teaching strategies interact with different algorithms (e.g. 
model-based RL, model-free RL, or online action-feedback) 
during learning. 

More broadly, if human teachers do not naturally expect 
to interact with reward-maximizers but rather something 
akin to an action-feedback learner, one question is whether 
human learners (or other agents) meet those expectations. If 
so, this may suggest that rewards and punishments delivered 
communicatively from another agent are processed 
distinctly from those delivered otherwise or from the 
environment. Future work should investigate mechanisms of 
teaching with and learning from reward and punishment, as 
well as their interaction.  
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