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and Technology, University of California, Davis, Davis, CA, United States, 3 School of Electrical and Computer Engineering,

Cornell University, Ithaca, NY, United States

The past decade witnessed rapid development in the measurement and monitoring

technologies for food science. Among these technologies, spectroscopy has been

widely used for the analysis of food quality, safety, and nutritional properties. Due to

the complexity of food systems and the lack of comprehensive predictive models, rapid

and simple measurements to predict complex properties in food systems are largely

missing. Machine Learning (ML) has shown great potential to improve the classification

and prediction of these properties. However, the barriers to collecting large datasets

for ML applications still persists. In this paper, we explore different approaches of

data annotation and model training to improve data efficiency for ML applications.

Specifically, we leverage Active Learning (AL) and Semi-Supervised Learning (SSL) and

investigate four approaches: baseline passive learning, AL, SSL, and a hybrid of AL and

SSL. To evaluate these approaches, we collect two spectroscopy datasets: predicting

plasma dosage and detecting foodborne pathogen. Our experimental results show that,

compared to the de facto passive learning approach, advanced approaches (AL, SSL,

and the hybrid) can greatly reduce the number of labeled samples, with some cases

decreasing the number of labeled samples by more than half.

Keywords: food science, spectroscopy analysis, machine learning, data efficiency, active learning, semi-

supervised learning

1. INTRODUCTION

Rapid measurement and monitoring technologies are being developed for diverse applications in
food science. The goal of these technologies is to develop predictive relationships that can be used
to better monitor and enhance the quality, safety and nutritional properties of food. Among these
measurement approaches, spectroscopic analysis has been widely used to analyze food properties.
To fully realize the great potential of these technologies, several key barriers need to be overcome
before their transfer to industrial applications. The discovery of predictive relationships between
the measurements and properties of food systems is one of the key limitations. This limitation
results from the complexity of food systems and the lack of comprehensive predictive models
that can use rapid and simple measurements to predict complex properties in food systems.
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ML has shown significant potential to improve the classification
and prediction of these properties. However, the barriers to
collecting large datasets for ML applications persists.

With the advances in computational capabilities and big data
technologies, ML has been applied to a variety of agriculture
and food-related fields (Liakos et al., 2018; Tsakanikas et al.,
2020; Khullar and Singh, 2021). A prevailing approach is to train
an ML model using labeled samples. While unlabeled samples
can often be collected at relatively low cost, annotating each
sample to create its label is expensive and time-consuming, as it
often involves human inspection and in-field experiments. For
example, to predict the vineyard yield, robot carrying cameras
can be used to collect a large number of unlabeled images, but
practitioners still need to manually process each image in order
to assign appropriate labels to the images (Ballesteros et al.,
2020). The prevailing practice is to randomly select samples and
label them via costly in-field experiments and human annotation
processes, and the ML model is trained only using the labeled
samples. This approach results in poor data efficiency (Chapelle
et al., 2006; Settles, 2012).

1.1. AL and SSL for Data-Efficient Model
Training
To improve data efficiency, we explore two advanced model
training techniques: AL (Settles, 2012) and SSL (Chapelle et al.,
2006). Instead of randomly selecting unlabeled samples for
annotation, AL selects samples for annotation based on how
informative these samples are to the currently trained MLmodel.

FIGURE 1 | Four approaches of data annotation and model training. (A) Passive learning. (B) Active learning. (C) Semi-supervised learning. (D) Hybrid of active

learning and semi-supervised learning.

In comparison, SSL exploits unlabeled samples by assigning
pseudo-labels to them and trains the ML model using both
labeled and pseudo-labeled samples.

In this paper, we study four approaches of data annotation
and model training as illustrated in Figure 1. (A) In the baseline
passive learning approach, samples are randomly selected from
the pool of unlabeled samples for annotation, and the ML
model is trained only on the labeled samples. (B) In the AL
approach (details in Section 2.1), the selection of unlabeled
samples is dependent on the currently trained ML model.
Specifically, AL selects the unlabeled samples most useful for
training the ML model. Various sampling strategies are explored,
which quantify the usefulness of unlabeled samples based on
different criteria. The ML model is trained only using the
labeled samples. (C) In the SSL approach (details in Section 2.2),
unlabeled samples are randomly selected for annotation. Instead
of training the ML model using only the labeled samples, SSL
assigns pseudo-labels to the unlabeled samples. The ML model
is trained using both the labeled and pseudo-labeled samples.
Therefore, the number of training samples in SSL equals the total
number of samples. The methods of assigning pseudo-labels can
be either related to the currently trained ML model (e.g., self-
training) or rely only on the relationship among samples (e.g.,
label spreading). (D) In the hybrid approach that integrates AL
and SSL, AL selects an unlabeled sample for annotation, and
SSL assigns pseudo-labels to the remaining unlabeled samples
in each iteration. The ML model is trained using both labeled
and pseudo-labeled samples. In this hybrid approach, AL and
SSL interact with each other in the following manner. The
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sampling strategy in AL is dependent on the ML model, which
is trained using labeled samples from human annotation and
pseudo-labeled samples from SSL. Meanwhile, labeled samples
from AL affect SSL regarding which samples are required for
pseudo-annotation.

To evaluate different approaches for spectroscopic analysis in
the food science field, we collect two datasets: plasma dosage
classification and foodborne pathogen detection. Atmospheric
plasma technologies are being developed as a non-thermal
processing technology to improve food safety, reduce the impact
on food quality, and improve the sustainability of food processing
operations. One of the key challenges in plasma technology
applications is the rapid assessment of its efficacy in the sanitation
of food contact surfaces and food products. With this motivation,
we are developing infra-red spectroscopy methods to aid in
assessing the dosimetry of plasma treatment. Similarly, rapid
detection of foodborne pathogens is a critical unmet need in
food systems. In this direction, we are developing fluorescence
spectroscopic methods based on molecular interactions between
bacteriophages and their target bacteria to enable specific
detection of bacteria.

We apply differentMLmodels for themulti-class classification
tasks. Representative methods are considered for AL and SSL.
In the experiments, we adopt five-fold cross-validation for both
datasets. Our experimental results show that compared to the
baseline passive learning approach, the numbers of labeled
samples for the plasma dosage classification dataset and the
pathogen detection dataset are reduced by more than 50% using
the hybrid approach. The promising results demonstrate that
AL and SSL based approaches of data annotation and model
training effectively improve data efficiency for spectroscopy-
based ML applications.

1.2. Related Work of Applying AL and SSL
in Food Systems
Both AL and SSL have been successfully applied to many
domains, such as drug discovery (Naik et al., 2013; Liu
et al., 2020), material science (Lookman et al., 2019; Ma
et al., 2019), and systems biology (Tamposis et al., 2019;
Wang et al., 2020). Research in food systems has adopted
AL (a.k.a. optimal experimental design) to optimize non-ML
model parameters, with the goal of reducing the number of
experiments. It shows promising results of applying AL to
applications such as determining partition coefficient in freeze
concentration (Munson-McGee, 2014a), tuningmicro-extraction
in beer (Leca et al., 2015), identifying a rice drying model (Goujot
et al., 2012), and developing uniaxial expression of extracting
oil from seeds (Munson-McGee, 2014b). This paper differs from
existing AL works in food science as we target general MLmodels
while previous works are designed for specific and analytical
models of few parameters. Similarly, SSL have successfully been
used in food science problems such as determining tomato
maturity (Jiang et al., 2021) and tomato-juice freshness (Hong
et al., 2015). To the best of our knowledge, this paper is the first
work that extensively evaluates different AL and SSL approaches
for the ML models with applications in food systems.

TABLE 1 | Notations used in this paper.

Notation Meaning

U The set of unlabeled samples

L The set of labeled samples

θ The currently trained ML model

θ
+ An updated ML model by adding a new training sample

C The number of classes for classification

x A sample

y The label of the sample x

x∗ The sample that has the maximum utility measure

y∗ The label of the sample x∗

Pθ (y|x) The probability that the sample x belongs to the label y under the

model θ

ŷ The most likely label for the sample x, i.e., ŷ = argmax y Pθ (y|x)

2. MATERIALS AND METHODS

In this section, we first provide preliminaries for AL in Section 2.1
and SSL in Section 2.2. Then, we explain our two datasets in
detail in Section 2.3. Last, our experimental setup is presented in
Section 2.4. Table 1 tabulates the notations that are used in this
paper for quick reference.

2.1. Active Learning: A Primer
AL, also known as query learning/optimal experimental design,
is a sub-field of machine learning, which studies ML models that
improve with experience and training (Settles, 2012). Compared
with passive learning, AL considers the “usefulness” of unlabeled
samples for the current ML model. It strategically selects
unlabeled samples for annotation to improve data efficiency for
ML model training.

Algorithm 1 shows the workflow of the AL-based data
annotation. U and L is the set of unlabeled samples and labeled
samples, respectively (line 1–2). The ML model, denoted by θ ,
is trained on the labeled sample set L (line 4). The following
unlabeled sample, denoted by x∗, is selected that has the highest
utility measure according to the currently trained model θ (line
5). Then, the experiment is conducted for x∗ to obtain its ground-
truth label, denoted by y∗ (line 6). Since the label for x∗ is
obtained, x∗ is removed from the pool of unlabeled samples U ,
and the sample x∗ along with its label y∗ is added to the set of
labeled samples L (line 7). The process repeats until the trained
model θ has a satisfactory accuracy or does not improve with
more labeled samples.

The utility measure is essential for AL algorithms. There are
various utilitymeasures to estimate the usefulness of an unlabeled
sample to the ML model. They mostly leverage the probability of
the current ML model classifying an unlabeled sample x to class
y, i.e., Pθ (y|x). We introduce two categories of utility measure
methods of AL: uncertainty-based sampling (Sharma and Bilgic,
2017) and minimizing expected errors (Long et al., 2015).

2.1.1. Uncertainty Sampling Based Active Learning
The premise of uncertainty sampling is that we can avoid
annotating samples that the ML model is confident about and
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Algorithm 1: Selection of unlabeled samples for annotation
in active learning.

1 U : set of unlabeled samples {x(u)}Uu=1

2 L: set of labeled samples {〈x, y〉(l)}L
l=1

3 for t = 1, 2, . . . do
4 θ = train(L)
5 select x∗ ∈ U , the unlabeled sample of the highest utility

measure according to the model θ
6 conduct experiment for x∗, which obtains its label y∗

7 remove x∗ from U , and add 〈x∗, y∗〉 to L

8 end

focus instead on the unlabeled samples that confuse the ML
model. Least confident and entropy are the most-used metrics for
measuring the uncertainty of unlabeled samples.

• Least Confident. For an unlabeled sample x, we can apply
the currently trained ML model on it, which outputs the
probability of the sample belonging to class y, i.e., Pθ (y|x),
where y = 1, 2, . . . ,C and C is the total number of classes
for classification. Let’s denote by ŷ, the class that is most likely
for the unlabeled sample x, i.e., ŷ = argmax y Pθ (y|x). The

confidence of the current model for the sample x is thus
Pθ (ŷ|x). The unlabeled sample with the least confidence is
selected for annotation, that is,

x∗LC = argmax
x

1− Pθ (ŷ|x) (1)

• Entropy. Entropy is an often-used metric for quantifying the
uncertainty of a distribution. For an unlabeled sample x, its
entropy is calculated as −

∑

y Pθ (y|x) · log Pθ (y|x), which is

over the distribution of classes y for x. The entropy-based
uncertainty sampling method selects the sample with the
maximum entropy, i.e.,

x∗E = argmax
x

−
∑

y

Pθ (y|x) · log Pθ (y|x) (2)

2.1.2. Minimizing Expected Error Based Active

Learning
This category of AL algorithms aims to select samples to directly
increase the model accuracy without relying on the assumption
between the sampling strategy and the model performance (e.g.,
the ML model can avoid annotating confident samples as in
the uncertainty sampling). Since the ground-truth label of an
unlabeled sample x is not available without experiment and
annotation, the model accuracy by adding the sample x and its
label to the training set is unknown. Nonetheless, we can estimate
the expected model accuracy when the sample x is added for
training, thus selecting a sample that minimizes the expected
error of the current ML model.

Assume that the unlabeled sample x belongs to the class y.
Let θ

+ denote the updated ML model by adding the sample x
and its imaginary label y to the training set. Then, the expected

prediction error of the model θ
+ can be estimated by applying

θ
+ to all unlabeled samples in U , i.e.,

∑

x′∈ U
1 − Pθ+ (ŷ|x

′),
where 1 − Pθ+ (ŷ|x

′) is the prediction error for the unlabeled
sample x′. Since the probability that x belongs to class y is
Pθ (y|x), the expected prediction error of selecting the unlabeled
sample x for annotation is

∑

y Pθ (y|x)
[
∑

x′∈ U
1− pθ+ (ŷ|x

′)
]

.

Correspondingly, Equation (3) formulates the sampling strategy
that minimizes the expected prediction error.

x∗EPR = argmin
x

∑

y

Pθ (y|x)

[

∑

x′∈ U

1− pθ+ (ŷ|x
′)

]

(3)

An alternative to minimizing the expected prediction error
is to minimize the expected log-loss error. Log-loss error is
the de facto loss function for training classification models.
Therefore, minimizing the expected log-loss error has a strong
connection with ML model training. By replacing the prediction
error 1− pθ+ (ŷ|x

′) in Equation (3) with the log-loss error
−

∑

y′ Pθ+ (y
′|x′) · log Pθ+ (y

′|x′), Equation (4) formulates the

sampling strategy of minimizing the expected log-loss error.

x∗ELR = argmin
x

−
∑

y

Pθ (y|x)





∑

x′∈ U

∑

y′

Pθ+ (y
′|x′) · log Pθ+ (y

′|x′)





(4)

2.2. Semi-supervised Learning: A Primer
SSL can be applied to exploit unlabeled samples. Typically, an SSL
algorithm converts unlabeled samples to pseudo-labeled samples
and then fine-trains the ML model using both labeled and
pseudo-labeled samples. SSL can be categorized into inductive
methods and transductive methods (van Engelen and Hoos,
2020). We introduce self-training (Triguero et al., 2015) and label
spreading (Liu et al., 2012), which are representative methods
from these two categories.

2.2.1. Self-Training Based Semi-supervised Learning
In the self-training based method, the currently trained
ML model is applied to pseudo-annotate the unlabeled
samples (Triguero et al., 2015). Self-training methods assume
that the prediction of the current model tends to be correct, and
thus the model can be further fine-trained by leveraging more
training samples.

Algorithm 2 shows the workflow of self-training based SSL. It
differs from the AL workflow (Algorithm 1) in two main parts.
(1) The unlabeled sample x is pseudo-labeled by the model itself,
i.e., θ(x∗), in self-training, whereas it is human-annotated, i.e.,
the ground-truth label y∗, in AL (line 6 in Algorithm 2 vs. line
6 in Algorithm 1). (2) The most confident unlabeled sample is
selected in self-training. In contrast, themost uncertain unlabeled
sample is chosen in AL (line 5 in Algorithm 2 vs. line 5 in
Algorithm 1). Self-training selects the most confident unlabeled
sample to mitigate the error propagation of pseudo-annotation
since the model θ is consecutively trained on the pseudo-labeled
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Algorithm 2: Self-training based semi-supervised learning.

1 U : set of unlabeled samples {x(u)}Uu=1

2 L: set of labeled samples {〈x, y〉(l)}L
l=1

3 while U is not empty do
4 θ = train(L)
5 select x∗ ∈ U , the most confident sample according to

model θ
6 obtain the pseudo-label of x∗ by applying the current

model θ to it, i.e., θ(x∗)
7 remove x∗ from U and add 〈x∗, θ(x∗)〉 to L

8 end

samples. In contrast, AL selects the model’s most confusing
unlabeled sample for human annotation so that the model can
correctly classify misleading samples. The process of unlabeled
sample selection, pseudo-annotation, and model training repeats
until all the unlabeled samples are pseudo-annotated (line 3).
At that time, the model has been trained on all labeled and
pseudo-labeled samples.

2.2.2. Label Spreading Based Semi-supervised

Learning
Label spreading based SSL typically adopts a graph structure,
where the vertices are the samples (both labeled and unlabeled)
and edges exist between neighbor vertices (Liu et al., 2012).
The edge weight between two vertices represents the similarity
of the corresponding two samples. The goal of label spreading
is to assign pseudo-labels to the vertices of unlabeled samples.
The labels of xi and xj are likely to be the same if
the edge weight wij between them is large. There are two
mainstream methods to define the graph structure and the
edge weights:

• Fully Connected Graph (de Sousa et al., 2013). In this graph, all
vertices are connected with other vertices, and the edge weight
wij between xi and xj is calculated as

wij = exp (−
||xi − xj||

2

2σ 2
) (5)

where ||xi − xj|| is the Euclidean distance between sample
xi and sample xj, and σ controls the decreasing rate of the
weight over the distance. The edge weight wij is 1 when xi =
xj, and approximately 0 when xi is far from xj. This weight
representation is also called Radial Base Function (RBF) kernel
or Gaussian kernel.

• k-Nearest-Neighbor (kNN) Graph (de Sousa et al., 2013). In the
kNN graph, each vertex is connected to its k nearest vertices.
If sample xi and sample xj are connected, the edge weight wij

is 1; otherwise, wij is 0. The kNN graph automatically adapts
to the density of samples: in dense regions, the radius of the
kNN neighborhood is small, while in sparse regions, the radius
is large.

The probability of the label for each unlabeled sample is obtained
once the graph converges (Zhou et al., 2003). Then, each

unlabeled sample is assigned to the label of the highest probability
at once. Afterward, the ML model is re-trained using all samples
(labeled and pseudo-labeled).

2.3. Dataset
We collect two spectroscopy datasets in food science. One dataset
predicts the plasma dosage, and the other detects the foodborne
pathogen. Our datasets have representative data structures (1D
and 2D spectroscopy), and we use different ML models for these
two datasets. Our chosen datasets are representative of food
safety research and thus our experimental results are applicable
to other food safety applications/datasets. We do not present the
details of the data collection process, which is not the focus of
this paper.

2.3.1. Dataset 1: Plasma Dosage Classification
As an emerging nonthermal processing technology, plasma
is highly effective in inactivating various types of food
pathogens in solutions as well as on food contact surfaces
(Liao et al., 2017). One of the main goals of our plasma dosage
classification dataset is to evaluate whether the plasma dosage
can be predicated using the Fourier-Transform Infrared
Spectroscopy (FTIR) spectral response of the DNA sample
exposed to the plasma treatment. The dataset was obtained
by subjecting the substrate to plasma treatment at various
dosage levels and characterizing biochemical changes of
the substrate with FTIR. The data comprise absorbance
intensities at various IR wavenumbers of the substrate under
plasma treatment.

Our 1D dosage classification dataset categorizes the plasma
dosage into four classes, where classes 1, 2, 3, and 4 represent
plasma injection of 0, 2, 5, and 10 min, respectively. In total, we
collect 114 samples, where classes 1, 2, 3, and 4 have 27, 27, 30,
30 samples, respectively. To study the sample distribution over
the feature domain, we apply K-Means (Arthur and Vassilvitskii,
2007) to group samples into 4 clusters. Figure 2A shows the
clustering result. It indicates that the class 2 and the class 3
samples are well clustered, while many of the class 4 samples
are located within cluster 2 and cluster 3 (a PCA visualization is
given in Figure 3). Figure 2B illustrates a sample for each class.
Each sample contains 1,868 values representing the intensity of
the IR frequency reflectance in the range of 400–4,000 Hz with a
step of 2Hz.

2.3.2. Dataset 2: Foodborne Pathogen Detection
Detection of the bacterial foodborne pathogen is one of the
critical processes in the food and agricultural industry (Velusamy
et al., 2010). It ensures the safety of food products before
distribution and reduces the risk of a foodborne illness outbreak.
Among various types of bacteria, E. coli has been used as an
indicator of the fecal contamination and poor sanitary quality
of food and water (Krumperman, 1983). T7 bacteriophage or
T7 phage has been used as a tool for E. coli detection as it
infects explicitly E. coli cells results in bacteria cell lysis and
release of the cell components along with the amplified T7 phage
progenies (Yang et al., 2020). Therefore, bacterial cell lysis and
T7 phage amplification can indicate E. coli contamination in
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FIGURE 2 | Two datasets are used in our experiments. The top row shows the plasma dosage classification dataset where (A) is the clustering result and (B)

illustrates a sample for each class. The bottom row shows the pathogen detection dataset where (C) is the clustering result and (D) depicts a sample for each class.

the samples. Fluorescence EEM spectroscopy is an analytical
technique providing multi-dimensional information (Li et al.,
2020) that has been used to detect organic materials, including
bacterial cells (Nakar et al., 2020).

We explore whether 2D EEM spectroscopy can detect the
change of the physical and chemical properties of the samples
due to the phage infection of E. coli. We use classes 1, 2, 3,
and 4 to represent phage infected E. coli, E. coli only, phage
only, and Listeria solutions, respectively. The EEM spectra of
the resuspended samples were collected with the wavelength
range of 250–400 nm for excitation and 260–450 nm for
emission with 5-nm increments. Figure 2C shows the result
of grouping the samples into 4 clusters using K-Means. It
indicates that most E. coli only and the phage only samples
are wrongly categorized. Figure 2D visualizes one sample for
each class. In the heat maps, we take the logarithm of the
frequency intensity at each frequency pair of the excitation
and emission wavelength. In total, we collect 160 samples, and
each class has 40 samples. Each sample includes 744 numbers
representing the fluorescence response for the excitation-
emission pairs.

2.4. Experimental Setup
Given the same number of labeled samples, we compare the
ML model accuracy when different data annotation and model
training approaches are applied. We use the LightGBM multi-
class classification model (Ke et al., 2017) for the plasma dosage
dataset, and the logistic regression classifier (Dreiseitl and Ohno-
Machado, 2002) for the pathogen detection dataset. We select
these ML models because they show promising results in our
related projects. We adopt five-fold cross-validation for both
datasets. Specifically, at each cross-validation round, the training
and validation sets comprise the four-fold samples and the
remaining one-fold samples, respectively. We use the training
set for annotating a given number of samples and apply the
trained ML model to predict the validation set. Note that the
training set is assumed to be unlabeled at the beginning of
each cross-validation, and the model is trained with different
approaches (refer to Figure 1). The predictions for all samples
are obtained by aggregating the predictions of the ML model for
each validation set from the five cross-validations.

To determine the hyper-parameters (e.g., learning rate,
regularization) of ML models for a given number of labeled
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FIGURE 3 | Demonstration of the samples selected in the passive learning approach and the active learning approach for the plasma dosage classification dataset.

(A) Passive learning approach. (B) Active learning approach with the entropy-based uncertainty sampling. The 40 randomly selected samples for training an initial ML

model are marked with “*”. The next 10 samples are tagged with the order number.

samples, we apply Optuna (Akiba et al., 2019) to the passive
learning approach and adopt the same hyper-parameters for all
approaches. Therefore, the hyper-parameters favor the passive
learning approach in our experiments. Using Optuna, we only
need to provide reasonable ranges for hyper-parameters, and
Optuna can identify the optimal hyper-parameters. We find
that hyper-parameters from Optuna tend to have higher model
accuracy than the default hyper-parameters.

3. RESULTS

We evaluate the four approaches of data annotation and model
training using our two datasets. We warm-start a LightGBM
model using 40 randomly selected labeled samples for the
plasma dosage dataset and then apply different approaches.
Likewise, we first train a logistic regression classification model
using 25 randomly selected labeled samples for the pathogen
detection dataset before applying different approaches. We run
10 experiments to average the results. Since we adopt the five-fold
cross-validation, themaximumnumber of samples for training in
each cross-validation is 90 for the plasma dosage task and 127 for
the pathogen detection task.

3.1. Results of the Active Learning
Approach
We first demonstrate the order of samples selected for annotation
in the passive learning and AL approaches. Principal Component
Analysis (PCA) (Wold et al., 1987) is applied to project the high-
dimensional samples into two components for visualization.
Figure 3 illustrates a trace for the passive learning approach
and the AL approach for the dosage classification dataset,
respectively. As Figure 3A illustrates, the selected samples in the
passive learning can be close to each other and also near the

center of the class (e.g., samples 2, 3, and 7), which are less
likely to improve the ML model accuracy. In comparison, as
Figure 3B shows, the selected samples in the AL approach are
close to the boundaries of different classes. In these boundary
areas, the ML model is difficult to classify. Thus, training with
the samples in the boundary areas is more likely to increase the
ML model accuracy.

In the rest of the experiments for the AL approach, we
consider (1) uncertainty sampling methods based on least
confident and maximum entropy, and (2) minimizing the
expected prediction error and the expected log-loss error.
Figure 4 plots the ML model accuracy vs. the number of
labeled samples. The first row and the second row show
the model performance for the dosage classification and the
pathogen detection datasets, respectively. We show the standard
deviation in shaded colors. We can see that AL approach
achieves better performance than the passive learning approach,
especially for the foodborne pathogen dataset. For example, the
uncertainty-based AL approach reduces the number of labeled
to only 40 for the pathogen detection dataset, compared to
80 in the passive learning approach, achieving 50% label data
reduction. The sampling strategies of minimizing expected errors
depend on the current ML model accuracy to calculate the
expected errors, which does not perform well if the current ML
model has low prediction accuracy (e.g., for the plasma dosage
classification dataset). Nonetheless, we do not see degradation of
data efficiency.

3.2. Results of the Semi-supervised
Learning Approach
SSL exploits unlabeled samples by assigning pseudo-labels to
them and then trains the ML model using both labeled and
pseudo-labeled samples. In the evaluation of the SSL approach,
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FIGURE 4 | The ML model performance vs. the number of labeled samples in the AL approach. The first row and the second row show the results for the dosage

classification dataset and the pathogen detection dataset, respectively. (A,C) Uncertainty sampling based on least confident and entropy; (B,D) minimizing expected

prediction error and expected log-loss error based sampling.

we consider self-training and label spreading. We set the number
of neighbors in the kNN kernel to 7 and the σ in the RBF kernel
to 0.1 for both datasets.

Figure 5 plots the ML model accuracy vs. the number of
labeled samples in the SSL approach. The first row and the second
row show the model performance for the plasma and pathogen
datasets. We visualize the standard deviation in shaded colors.
We can see that the SSL approach can improve data efficiency in
most experiment scenarios. The exception is the label-spreading
for the pathogen detection dataset, which shows much-degraded
performance. It is probably because the pathogen detection
dataset is poorly clustered (see Figure 2C), and thus the pseudo-
labels from label-spreading are mostly incorrect. In the cases of
label spreading for the plasma dataset and self-training for the
pathogen dataset, SSL approach improves the model accuracy by
about 10% when the label samples are few.

3.3. Results of the Hybrid Approach
We measure the performance of the hybrid approach using two
combinations: random sampling based self-training and RBF-
based self-labeling for SSL, both with entropy-based uncertainty
sampling for AL. The σ value in the label spreading is set to 0.01
for both datasets.

Figure 6 shows the ML model accuracy for the hybrid
approach, where the top row is for the plasma dosage dataset
and the bottom row is for the pathogen detection dataset. As
we can see, the hybrid approach dramatically improves the data
efficiency for ML model training. For example, Figure 6B shows
that the hybrid approach reaches the maximum model accuracy

with only 45 labeled samples, in comparison to 85 in the baseline,
and thus reduces the amount of labeled data by about 50%.
The pathogen detection dataset performs even better with the
hybrid approach: 50 labeled samples achieve the same maximum
model accuracy as 120 labeled samples in the baseline, reducing
the number of labeled samples by about 60%. Even though the
self-labeling based SSL works poorly for the pathogen dataset
(Figure 5D), the hybrid approach still works better than the
baseline: 70 labeled samples vs. 90 labeled samples. Overall, the
hybrid approach is promising in improving data efficiency.

4. DISCUSSION

We explore different approaches of data annotation and model
training to improve data efficiency for ML applications. Our
datasets are general in food safety research. Therefore, our
approaches can be applied to general food safety research. In
this section, we discuss practical considerations in applying these
advanced approaches.

4.1. Practicability of Advanced Approaches
The passive learning approach has been adopted for the majority
of projects. An essential question is whether more advanced
approaches can be effectively and efficiently applied for new
projects, considering the overheads of implementing these
approaches. We argue that when the annotation process is costly,
the benefits of the reduced number of labeled samples overweigh
the implementation overheads. In fact, AL and SSL have been
successfully applied to many domains (Lookman et al., 2019; Ma
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FIGURE 5 | The ML model accuracy vs. the number of labeled samples in the semi-supervised learning approach. The first row and the second row show the results

for the dosage classification dataset and the pathogen detection dataset, respectively. (A,C) Self-training based on maximum confident and minimum entropy; (B,D)

label spreading based on kNN kernel and RBF kernel.

et al., 2019; Tamposis et al., 2019; Liu et al., 2020; Wang et al.,
2020). For example, the medicine industry applies AL to discover
antagonists for dopamine D4 (Reutlinger et al., 2014) and CXC-
chemokine (Reker et al., 2016), among the estimated range of
1030-1060 drug-like molecules (Naik et al., 2013). In food systems,
development of AL and SSL methods can help address challenges
of obtaining labeled samples for ML models as labeling in many
food safety applications is time-consuming and labor-intensive.

4.2. Determining the Optimal Approach
We introduce three advanced data annotation and model
training approaches and compare their performance with the
passive learning approach. Our evaluation results show that
the hybrid approach can dramatically improve data efficiency.
Therefore, we suggest the hybrid approach that leverages both
AL and SSL. However, the sampling strategy in AL and the
pseudo-labeling method in SSL are crucial for the hybrid
approach’s performance.

4.3. Determining the Optimal Sampling
Strategy in Active Learning
There are a great variety of sampling strategies available in
AL (Settles, 2012). Although it is not possible to obtain a
universally good AL sampling strategy (Dasgupta, 2004), we have
demonstrated that by using simple sampling strategies such as
uncertainty-based sampling, we achieve better data efficiency
than the passive learning approach. Simple sampling strategies

based on uncertainty and disagreement are recommended if
the domain knowledge about the samples and the problems are
not available (Settles, 2012). On the other hand, incorporating
domain knowledge into AL can further improve data efficiency.
For example, Liang et al. (2020) proposes an expert-in-the-loop
AL framework that utilizes language explanations from domain
experts to iteratively distinguish misleading breeds of birds,
which outperform baseline models that are trained with 40–
100% more training samples. Automatic selection of sampling
strategies has also been extensively studied, (e.g., Hsu and Lin,
2015; Konyushkova et al., 2017).

In our experiments, we warm-start the initial ML model
by randomly selecting and training 40 samples for the dosage
classification dataset and 25 samples for the pathogen detection
dataset. Another common practice is to switch between random
sampling (for exploration) and AL sampling strategy (for
exploitation). For example, Wang et al. (2020) train a predictive
MLmodel of gene expression with 44% fewer data by consecutive
switching between random sampling and mutual information
based AL sampling strategy.

4.4. Determining the Optimal
Pseudo-Labeling Method in
Semi-supervised Learning
In addition to the self-training and the label-spreading methods,
semi-supervised learning includes many other methods such as
co-training, boosting, and perturbation-based (van Engelen and
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FIGURE 6 | The ML model accuracy vs. the number of labeled samples in the hybrid approach. The top row and the bottom row show the results for the plasma

dosage dataset and the foodborne pathogen detection dataset. (A,C) Uncertainty-based AL with self-training based SSL. (B,D) Uncertainty-based AL with

self-labeling based SSL.

Hoos, 2020). Similar to AL, SSL does not guarantee better data
efficiency than the passive learning approach (Li and Zhou, 2011).
Nonetheless, our experiments demonstrate that simple pseudo-
labeling methods such as self-training can greatly improve the
model accuracy when the underlying samples can be well-
clustered and the number of labeled samples are small. Recent
advances in SSL show promising results of the perturbation-
based semi-supervised neural networks, which empirically and
consistently outperforms the passive learning approach (van
Engelen and Hoos, 2020). We leave it as future work to evaluate
the perturbation-based methods.

4.5. Complexity Analysis
The computation capability is also a factor in deciding the
approach of data annotation and model training. We formulate
the computation complexity as the number of ML model
training and ML model inference, as they are more computation
demanding than other operations (e.g., graph construction in
label-spreading). We denote the total number of samples by T,
the number of the initial labeled samples by B, and the number
of final labeled samples by F. Table 2 tabulates the overheads
in different approaches, whereas we ignore the model validation
overheads as they are the same for all approaches. If the model
is heavy and slow to execute, then the computation-intensive
methods, e.g., minimizing expected errors, should be avoided.

4.6. Extension to Regression Problems
In this paper, we use classification to illustrate different
approaches of data annotation and model training. We expect

our main conclusion to remain valid for regression problems;
that is, advanced approaches can help improve data efficiency
for model training compared to the passive learning approach.
There are many existing works solving regression problems in AL
and/or SSL (Georgios et al., 2018; Wu et al., 2019), which we will
explore in our future work.

4.7. Applicability for Diverse Applications in
Food Quality, Traceability, and Safety
The spectroscopy measurement approaches selected for this
study represent two distinct spectral methods, namely IR
spectroscopy and fluorescence spectroscopy. IR spectroscopy has
been proposed for diverse applications in food quality (van de
Voort, 1992), traceability (Hennessy et al., 2009) and food
safety (Bagcioglu et al., 2019). These diversity of applications
are enabled by the unique ability of IR spectroscopy to
detect molecular composition of food materials using non-
destructive sampling and rapid data collection. ML approaches
can complement the current chemometric methods used for
the analysis of IR spectroscopy data. Complementary to IR
spectroscopy, fluorescence spectroscopy approaches rely on
the photo-active properties of fluorophores in food systems
and their relationship with changes in food quality and
traceability (Hassoun et al., 2019). Similarly, fluorescence
properties have also been used to monitor the presence
of bacteria in water samples (Cumberland et al., 2012).
However, due to significant interference between the food
materials and bacterial components there has been limited
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TABLE 2 | Computation overheads of different approaches of data annotation and model training.

Approach Method No of model training No of model inference

Passive - F − B 0

AL
Uncertainty-based F − B (F−B)×(2T−F−B+1)

2

Minimize expected errors C×(F−B)×(2T−F−B+1)
2 ≈ 3C×(F−B)2×(T−B)2+(F−B)3

3

SSL
Self-training 2×(F−B)+(T−B)×(T−B+1)

2
(T−B)×(T−B+1)

2

Label-spreading F − B 0

Hybrid
Uncertainty + Self-training 2×(F−B)+(T−B)×(T−B+1)

2
(F−B)×(2T−F−B+1)+(T−B)×(T−B+1)

2

Uncertainty + Label-spreading F − B (F−B)×(2T−F−B+1)
2

C is the number of classes for classification; T is the total number of samples, B is the initial labeled samples, and F is the number of final labeled labels.

applications of fluorescence spectroscopy in food safety. To
address some of these limitations, this study evaluated the
applications of Fluorescence EEM spectroscopy for food safety.
EEM is a technique that allows for the complete, quantitative
determination of the fluorescence profile of a given material
and has been used for biomedical and material characterization
applications (Ramsay et al., 2018). Application of EEM
spectroscopy including their integration with ML methods can
address some of the key challenges in application of fluorescence
spectroscopy for food applications. In addition, our approaches
of active learning, semi-supervised learning, and hybrid are
general, and thus are expected to be applicable to other
research domains.

5. CONCLUSION

In this paper, we target data efficiency of ML applications
for spectroscopy analysis in food science. To mitigate the
annotation cost by reducing the number of labeled samples,
we explore different approaches of data annotation and model
training: passive learning, active learning, semi-supervised
learning, and the hybrid of active learning and semi-supervised
learning. We evaluate these approaches in two spectroscopy
datasets and find that advanced approaches can greatly improve
data efficiency for ML model training. These approaches are

general and thus can be applied to various ML-based food
science research.
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