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ABSTRACT OF THE DISSERTATION 

 

Investigating the Mechanism of Somatic Cell Reprogramming and Developing 

Methodologies in Bottom-up Proteomics 

 

by  

 

Weixian Deng 

 

Doctor of Philosophy in Molecular Biology  

University of California, Los Angeles, 2022 

Professor Kathrin Plath, Co-Chair  

Professor James A. Wohlschlegel, Co-Chair  

 

Ectopically expressing the transcription factors (TFs) Oct4, Sox2, Klf4, and c-Myc (OSKM) 

leads to the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs). 

iPSC reprogramming takes several weeks and yields pluripotent cells only at low 

frequencies indicating that the reprogramming factors need to overcome barriers 

established in somatic cells to preserve cell identity. Yet, the mechanisms driving the 

successful decommissioning of the starting somatic program and the activation of the 

target pluripotency program are currently unclear. A recent study from the Plath lab has 

begun to determine how OSKM induce the remodeling of enhancers and induce the 
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transition from somatic to pluripotency enhancers during the reprogramming of mouse 

embryonic fibroblasts (MEFs) to iPSCs. The key finding was that the collaborative binding 

of OSK is essential for the step-wise selection and activation of pluripotency enhancers 

(PEs) throughout reprogramming. Consequently, the target sites of OSKM gradually 

change during reprogramming to mediate the step-wise induction of pluripotency 

enhancers. Intriguingly, the reprogramming factors also act on MEF enhancers (MEs). 

Based on ChIP-seq results, it was suggested that OSK redirect somatic (endogenously 

expressed) TFs away from MEs to new sites opened by the reprogramming factors. 

Concomitantly, the active enhancer mark H3K27ac is decreasing at MEs, suggesting that 

the movement of somatic TFs is critical for the inactivation of MEs. The key questions in 

the field now are to understand how OSKM, at a mechanistic level, induce (i) the 

redistribution of somatic TFs and (ii) the decommissioning of MEs in the early stage of 

reprogramming. 

In my graduate work, I am addressing these questions by taking advantage of co-

mentorship in the Plath and Wohlschlegel labs. In Chapter 2, I hypothesize that both 

protein-protein interactions (PPIs) of the reprogramming factors with somatic TFs and the 

newly opened sites containing somatic TFs’ binding motifs are critical for the redistribution 

of somatic TFs binding and the following somatic enhancer decommissioning. 

Consequently, I am combining functional experiments with mass spectrometry (MS) 

methodologies to i) define co-binding between OSK and somatic TFs, ii) to distinguish 

mechanisms of somatic TFs redistribution through direct PPIs, cooperative binding, and 

open-sites free binding and iii) identify the mechanism of how active histone mark is 

removed from MEs. However, since TFs are often of low abundance in cells, MS 
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approaches with a large dynamic range are required for the identification and 

quantification. Therefore, another aspect of my graduate work is to develop and optimize 

cutting-edge bottom-up proteomics methodologies for the assessment of low abundance 

proteins. 

In Chapter 3, to achieve the better identification and quantification of lowly abundant 

proteins in complex protein mixtures, I developed a bead-based off-line peptide 

fractionation method termed: CMMB (Carboxylate Modified Magnetic Bead) -based 

isopropanol gradient peptide fractionation or ‘CIF’. CIF provides an effective but low 

material loss alternative to other fractionation methods.  

In Chapter 4, by combining optimized proteomics and cell biology approaches, we 

uncovered an understudied mechanism of nuclear proteome regulation: activity-

dependent proteasome-mediated degradation. We found that the tumor suppressor 

protein PDCD4 undergoes rapid stimulus-induced degradation in the nucleus of neurons. 

We demonstrate that degradation of PDCD4 is required for normal activity-dependent 

transcription and that PDCD4 target genes include those encoding proteins critical for 

synapse formation, remodeling, and transmission. 

In Chapter 5, for improving the quantification of proteins of interest, targeted proteomics 

assays are often used to pursue more accurate quantitation and better sensitivity. The 

recently launched High-field asymmetric waveform ion mobility spectrometry (FAIMS) 

device enables the possibility of improving conventional targeted proteomics assay data 

quality, while such improvement relies heavily on tuning the parameters of the FAIMS 

settings, in my thesis work, I investigated the molecular determinants underlying peptide 

separation by FAIMS and demonstrate that the machine learning model can be used to 
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predict optimized FAIMS settings for peptides which significantly improves targeted 

proteomics workflows. 
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Abstract 

Transcription factor (TF)-induced reprogramming of somatic cells across lineages and to 

induced pluripotent stem cells (iPSCs) has revealed a remarkable plasticity of 

differentiated cells and presents great opportunities for generating clinically-relevant cell 

types for disease modeling and regenerative medicine. The understanding of iPSC 

reprogramming provides insights into the mechanisms that safeguard somatic cell identity, 
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drive epigenetic reprogramming, and underlie cell fate specification in vivo. The 

combinatorial action of TFs has emerged as the key mechanism for the direct and indirect 

effects of reprogramming factors at enhancers. The interplay of TFs in iPSC 

reprogramming also yields trophectoderm- and extraembryonic endoderm-like cell 

populations, uncovering an intriguing plasticity of cell states and opening new avenues 

for exploring cell fate decisions during early embryogenesis. 

 

Introduction: overview of iPSC reprogramming 

TFs are master regulators of development that determine gene expression programs and 

understanding how they define gene expression programs is one of the central goals of 

developmental biology [1,2]. In 2006, Shinya Yamanaka’s laboratory stunned the 

developmental biology community by showing that ectopic expression of the TFs OCT4, 

SOX2, KLF4, and cMYC (OSKM) could reactivate the pluripotency gene network in 

terminally differentiated cells and establish iPSCs that carry the same features as 

embryonic stem cells [3-5]. Since then, iPSC reprogramming has offered a unique 

experimental system to explore the basic principles by which TFs drive cell fate 

specification. 

 

Landmark studies to uncover the features of the transition of somatic cells into iPSCs 

have integrated genomics approaches such as RNA-sequencing, mapping of chromatin 

accessibility, chromatin marks and TF binding, the isolation of reprogramming 

intermediates, and applied single cell transcriptomics [6-19]. These studies revealed that 

fibroblasts gradually progress through a continuum of states toward a mesenchymal-to-
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epithelial transition state from which a small proportion of cells continues to successfully 

reprogram to iPSCs. Many cells stall along this path or diverge from it to alternative cell 

states. Early in reprogramming, these alternative trajectories produce cells with a strong 

stromal identity characterized by increased expression of extracellular matrix genes, and 

later in the process trophectoderm-, extraembryonic endoderm-, and neural-like cells can 

arise in parallel to iPSCs [10,11,19,20] (Figure 1A). These findings indicate that cell fate 

specification is highly plastic during OSKM-induced somatic cell reprogramming, and that 

one reprogramming factor cocktail can result in numerous distinct gene expression 

programs. Along the iPSC path, cells lose the somatic gene expression program and 

activate the pluripotency expression program, which culminates in the hierarchical 

activation of pluripotency-related TFs (Figure 1B). These changes are accompanied by 

transient expression of genes from unrelated lineages [5,17,19] (Figure 1B). This pattern 

applies to iPSC reprogramming regardless of starting cell type and species [5,21]. In this 

review, we discuss the emerging general principles that allow the reprogramming factors 

to disassemble diverse somatic cell states and to activate the pluripotency program as 

well as alternative cell fates. 

 

OSK-mediated rewiring of the enhancer landscape 

Enhancers play a central role in cell type-specific gene expression as binding platforms 

that integrate the function of multiple TFs [2,22]. Therefore, understanding how the 

reprogramming factors act on enhancers is essential for deriving the logic of their action. 

The genome-wide reorganization of enhancer usage during reprogramming is 

predominantly driven by OSK, without cMYC, which predominantly acts at promoters 
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[18,23,24]. OSK action at enhancers leads to the inactivation of somatic enhancers, 

temporary activation of transient enhancers, and activation of pluripotency enhancers 

[6,7,16] (Figure 2A). During the earliest step of reprogramming, OSK predominantly bind 

somatic and transient enhancers, and engage only a small fraction of pluripotency 

enhancers [6] (Figure 2A). Over time, somatic and transient enhancers become silenced 

and no longer bound by OSK, concomitant with OSK binding to additional pluripotency 

enhancers [6,7,16] (Figure 2A). Thus, OSK bind to somatic, transient, and pluripotency 

enhancers, and produce different outcomes at these elements. As we discuss in detail 

below, OSK open chromatin by direct DNA binding and close chromatin active in somatic 

cells through indirect mechanisms, and both processes are linked through interactions 

with a small set of somatic TFs. 

 

Somatic enhancer inactivation 

How OSK repress somatic enhancers is not as well understood as pluripotency enhancer 

activation, yet extensive genomics approaches combined with loss- and gain-of-function 

experiments are beginning to shed light on this process [6-8,10,16,25]. A critical 

observation is that very early in reprogramming, somatic enhancers are perturbed 

genome-wide and display decreased levels of active enhancer marks (p300, H3K27ac), 

decreased chromatin accessibility, and decreased binding of somatic TFs [6-8]. These 

initial changes at somatic enhancers arise without a dramatic change in somatic TF 

expression levels and occur across most enhancers regardless of whether they are bound 

by OSK or not [6] (Figure 2A). Thus, global destabilization of somatic enhancers is not 

predominantly driven through their direct interaction with OSK. 
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Chronis et al found that the rapid loss of somatic TFs from somatic enhancers is 

accompanied by their redistribution to transient and early-engaged pluripotency 

enhancers [6] (Figures 2A/B). These new sites are bound by OSK and carry canonical 

motifs for OSK and somatic TFs [6-8,10]. The most parsimonious model explaining 

somatic enhancer inactivation therefore is that OSK redirect somatic TF binding by 

recruiting them to their target sites in newly opening enhancers and simultaneously 

removing them from somatic enhancers (Figures 2A/B), leading to widespread somatic 

gene silencing. Supporting the idea that the loss of somatic TFs is causal for somatic 

enhancer inactivation, the overexpression of somatic TFs that redistribute early in 

reprogramming (AP-1, CEBP, ETS, TEAD, RUNX family TFs, see below) blocks 

reprogramming whereas depletion enhances reprogramming [6,7,19,25]. A similar 

mechanism was later uncovered in T-cell development to explain a genome-wide gene 

expression switch of TFs guided by the master TF PU.1 [26], suggesting that the TF 

redistribution mechanism is broadly employed to induce cell fate transitions. Yet, many 

features of the redistribution process remain to be clarified. For instance, it is unknown 

whether redistribution of somatic TFs requires protein-protein interactions between 

somatic TFs and reprogramming factors, is critical for the opening of pluripotency 

enhancers together with OSK, or results from passive exploration of sites newly opened 

by OSK (Figure 2C). The subset of somatic enhancers bound by OSK may readily loose 

OSK during reprogramming because the reprogramming factors lack strong DNA binding 

motifs in those enhancers and may solely bind via interactions with somatic TFs or co-
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factors [6-8,10] (Figure 2A), enabling their disengagement upon loss of the somatic 

factors. 

 

OSKM can induce reprogramming across different somatic cell types and species [5,10]. 

The identity of somatic TF co-binding with OSK at transient and pluripotency enhancers 

is beginning to shed light on how OSK can universally disassemble different somatic 

networks. Although cells express hundreds of TFs, a relatively small set of somatic TF 

motifs are associated with sites closing and opening early in reprogramming, including 

AP-1, ETS, RUNX, TEAD, CEBP TF motifs, regardless of species, starting cell type, and 

reprogramming method [6-8,10] (Figure 2A). Intriguingly, these TFs are expressed in 

many cell types. For example, AP-1 family TFs are ubiquitous transcriptional effectors 

with a broad role in differentiation and proliferation [27]. They are critical for enhancer 

selection in many cell types and collaborate with cell-type specific TFs to activate 

respective cell-type-specific enhancers [21,28-31]. We hypothesize that broadly 

expressed TF that are critical for enhancer selection in vastly diverse cell types are 

exploited by OSK to shut off the starting cell program. Since somatic enhancer activation 

requires the collaborative action of AP-1 as well as somatic cell-specific TFs [1,21,26,28], 

OSK-mediated redeployment of a broadly acting somatic TF such as AP-1 may induce 

the loss of additional, somatic cell-specific TFs that depend on AP-1 co-occupancy 

(Figure 2B). Taken together, OSK may be highly effective reprogramming TFs because 

they can redistribute broadly acting somatic TFs. Although somatic TF redistribution 

appears to be the predominant mode of somatic enhancer destabilization, additional 

mechanisms are at play (Box1). 
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Pluripotency enhancer opening 

In contrast to somatic enhancers, OSK sites in pluripotency enhancers are strongly 

enriched for their cognate DNA motifs (Figure 2A), indicating that sequence-specific 

binding is critical for their selection. Some pluripotency enhancers become bound by the 

reprogramming factors early during reprogramming while others become bound only later 

(Figure 2A). Differences in chromatin accessibility are not responsible for this difference 

since both early and late-occupied pluripotency enhancers are embedded in 

nucleosomes in starting cells [6-8,10]. The recognition of nucleosomal binding sites and 

eviction of histone octamers are therefore required to establish the nucleosome-free 

region at pluripotency enhancers that is permissive for extensive TF binding and 

nucleation of transcriptional machinery observed in the pluripotent end state. Accessing 

pluripotency enhancers in closed chromatin appears to be a critical barrier, since most 

TFs cannot bind nucleosomal DNA [22]. Consistent with nucleosomes representing an 

obstacle, suppression of the histone chaperone CAF-1 enhances reprogramming by 

reducing the density of nucleosomes chromatin [32]. 

 

 A small number of TFs, called pioneer factors, are able to access DNA motifs 

wrapped in nucleosomes and to induce histone octamer displacement and to expose 

binding sites for additional TFs [33]. Early reports indicated that OSK are pioneer factors 

that can bind to nucleosomal DNA both in vivo and in vitro [24,34]. However, collaborative 

binding is required despite the pioneer factor activity of each reprogramming factor. 

Specifically, it was observed that early-engaged pluripotency enhancers are typically co-
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bound by OSK, and O, S, or K cannot access these sites when expressed alone in 

fibroblasts [6], indicating that OSK can compete with nucleosomes only when acting 

together. A distinguishing feature of early- and late-engaged pluripotency enhancers is 

that early sites are co-bound by O, S, and K, whereas late sites tend to be bound by only 

O and S, without K, which correlates with motif presence (Figure 2A). Thus, early in 

reprogramming, O and S are not sufficient to compete with nucleosomes at late 

pluripotency enhancers, implying that additional TFs are required for binding site selection. 

One such stage-specific TF is Esrrb, which only becomes expressed late in 

reprogramming and co-binds late pluripotency enhancers with O and S [6,8,35] (Figure 

2A). Similarly, since the opening of pluripotency (and transient) enhancers by OSK in 

early reprogramming coincides with somatic TF recruitment, somatic TFs may be required 

for the selection of these enhancers (Figure 2). During developmental cell fate decisions, 

selection of new enhancer elements also requires combinatorial TF action [1,21,26,28,36], 

confirming iPSC reprogramming as a useful model for understanding the general logic of 

TF-guided cell fate decisions. 

 

TFs can collaboratively bind nucleosomal DNA in multiple ways [37]. For instance, 

cooperativity can arise from protein-protein interactions between them, which can be 

enhanced by close spacing of binding sites or allosteric interactions on DNA. Consistent 

with this mechanism, OCT4 and SOX2 can dimerize on DNA, and this protein-protein 

interaction is required for reprogramming; furthermore, an Oct-Sox composite motif with 

juxtaposed binding sites is highly enriched in pluripotency enhancers [6-8,10,38,39] 

(Figure 2A). In an alternative mode, several TFs can compete with the histone octamer 
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without the need of direct protein interactions, when their motifs are contained within the 

DNA sequence that is covered by the nucleosome [40].  

 

 Recent studies uncovered a range of binding modes for O and S at target sites 

within nucleosome-covered DNA, increasing the complexity of how these TFs open 

chromatin. Imaging studies with O and S engaging with nucleosomal DNA showed that 

binding of one factor often precedes the other [41,42]. The order is debated, and the 

presence of one TF can have synergistic and antagonistic effects on the binding of the 

other, depending on motif arrangement and position along the nucleosome [41,42]. 

Exciting structural studies revealed that O and S induce local DNA distortions and the 

detachment of DNA from the histone octamer to increase the accessibility to DNA [43,44]. 

Interestingly, O harbors two DNA binding domains, POU-S and POU-HD, of which the 

POU-S domain is sufficient to engage nucleosomal targets together with S [44]. Upon 

displacement of the histone octamer, it is thought that the POU-HD domain can engage 

the other half of the Oct4 motif [44]. Partial motifs recognized by the POU-S domain of 

OCT4 are enriched within the sequences curated for reprogramming factor binding sites 

that maintain nucleosomes in reprogramming cells [34], confirming this mode of action. 

 

The maintenance of the open chromatin state by TFs is surprising given that TF 

occupancy at a binding site is intermittent with TFs cycling constantly on and off. 

Therefore, once the histone octamer is evicted, re-formation of nucleosomes may be 

inherently slow [36,41] or require other, active mechanisms, such as the action of ATP-

dependent chromatin remodelling complexes. Indeed, reprogramming requires the OSK-
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mediated recruitment of the BAF chromatin remodeling complex [6,45]. BAF is critical for 

maintaining a nucleosome-free enhancer site, reinforces the binding of OSK and 

promotes the removal of flanking nucleosomes to enable the binding of additional TFs 

nearby [46,47]. Intriguingly, O, S, and K can also bind methylated DNA and induce 

demethylation through passive mechanisms or the recruitment of Tet enzymes [48-50], 

highlighting those diverse mechanisms are exploited by the reprogramming factors to 

open closed chromatin. 

 

Alternative fates in reprogramming cultures 

The emergence of various cell fates is an intriguing feature of iPSC reprogramming 

(Figure 1). For example, endodermal genes, including those encoding the TFs Gata4 or 

Gata6, become upregulated in OSKM-induced mouse fibroblast reprogramming cultures, 

and extraembryonic endoderm stem cells (iXENs) can be obtained when supporting 

culture medium is added [17,20]. Depletion of these endodermal TFs reduced the number 

of iXEN colonies while increasing iPSC colony number, indicating that iXEN formation 

occurs in parallel and competes with the iPSC reprogramming branch [20] (Figure 3A). It 

is likely that endodermal TFs collaborate with the reprogramming factors to alter enhancer 

site selection and modulate the reprogramming outcome. In other studies, a small 

population of cells exhibiting a trophectoderm gene expression signature was detected 

during iPSC reprogramming of human fibroblasts [10,51]. Again, with a timely switch to 

appropriate culture conditions, this population can give rise to stable induced trophoblast 

stem cell (iTSC)-like cell lines [10,51]. However, continued reprogramming in fibroblast or 

iPSC medium extinguished the TSC-like identity [10,51]. Together, these results 



 12 

demonstrate that the signaling cues provided by the culture medium, and their 

downstream TFs, ultimately permit the stabilization and propagation of alternative cell 

fates such as iTSCs and iXENs. 

 

Although the rules underlying this cellular plasticity of reprogramming cells are still 

unknown, the levels and stoichiometry of the reprogramming factors and other TFs 

appear critical, which is consistent with the observation that SOX2 levels define the 

developmental potential of early embryonic cells [14,52]. Reprogramming experiments 

with a non-OSKM TF cocktail also support this idea. The TFs GATA3, EOMES, TFAP2C, 

cMYC, and ESRRB can reprogram three stable stem cell types from mouse fibroblasts: 

iPSCs, iTSCs, and iXENs [53]. The balance of these TFs is the predominant factor 

determining the cellular outcome, with high levels of Eomes inducing iTSC identity, and 

Esrrb favoring iPSC and iXEN reprogramming (Figure 3B). 

 

Conclusions 

iPSC reprogramming is a rich model for understanding the TF code underlying cell fate 

changes in general. The future development and application of single cell multi-omics 

technologies combined with new lineage recording methods will provide many 

opportunities to address open questions. It remains to be shown how OSK interact with 

somatic TFs to induce their redistribution away from somatic enhancers to pluripotency 

enhancers; what the role of transient enhancers and the transient gene expression 

program is; how transient enhancers, bound directly by both somatic TFs and OSK, are 

silenced to give rise to iPSCs; whether somatic TFs are critical for pluripotency enhancer 
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selection or, alternatively, may interfere with the full transcriptional activation of these 

sequences [31]. Similarly, whether comparable mechanisms for the decommissioning of 

the starting cell program also apply to direct reprogramming processes from one somatic 

cell into another, is an interesting question for the future. Finally, the derivation of human 

iPSCs, iXENs and iTSCs from one reprogramming culture has paved the way for the 

development of new cell models for the study of human embryogenesis [54], highlighting 

that insights gained from reprogramming studies will also be relevant for our 

understanding of early embryonic development. 

  

BOX1. Additional mechanisms of somatic program inactivation 

In addition to somatic TF redeployment, various other mechanisms are involved in 

controlling the activity of somatic enhancers. For instance, the recruitment of the histone 

deacetylase HDAC1 occurs specifically at OSK-bound somatic enhancers, which might 

shift the balance to co-factors towards repression [6]. Additionally, the co-repressor 

complex Sin3A is upregulated during reprogramming, required for iPSC induction, 

predominantly binds to promoters and contributes to the repression of critical somatic TFs 

[8]. In opposition, other mechanisms contribute to the maintenance of somatic enhancers 

and are barriers of reprogramming. A large number of somatic TFs, including AP-1, RUNX 

and CEBP, and the reprogramming factors, are modified by SUMO (small ubiquitin-like 

modifier). Since many TFs also contain SUMO-interacting domains, protein interaction 

networks are formed that stabilizes TF binding at somatic enhancers and secures somatic 

cell identity [55]. Accordingly, SUMO perturbation dramatically increases reprogramming 

efficiency [56,57]. Although the precise mechanism of how SUMO depletion enhances 
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reprogramming is still unknown, its depletion may promote the redistribution of somatic 

TFs. Somatic enhancers also require the continuous recruitment of chromatin modifiers 

to stay active. One example is that the inhibition of MLL1, a histone H3K4 

methyltransferase, results in efficient reprogramming via loss of the active histone 

H3K4me1 enhancer mark [58]. The loss of active chromatin modifiers and chromatin 

remodelers due to somatic TF redistribution may further destabilize somatic enhancers 

[28,46]. Regardless, these findings overall show that the inactivation of the somatic 

program is critical for iPSC induction and have highlighted mechanisms that maintain 

somatic cell identity. 

 

Figure Legends 

 

Figure 1: Cell state transitions and global gene expression changes in iPSC 

reprogramming 

A) Roadmap of iPSC induction from somatic cells. Upon expression of OSKM, a 

diminishing pool of cells transitions through sequential stages towards the iPSC state. In 

addition to cells stalling along the productive reprogramming path, the formation of 

alternative cell states explains the low efficiency of iPSC generation. The proportion of 

cell states at each stage is strongly influenced by the experimental reprogramming 

system and culture medium [10-12,15]. 

B) Key gene expression dynamics during OSKM-induced reprogramming. Regardless of 

the starting somatic cell type, three broad gene expression changes occur on the 

productive path to iPSCs: somatic program silencing, transient program expression, and 
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pluripotency program activation. Pluripotency program activation occurs gradually with 

the upregulation of cell cycle, biosynthesis, chromatin remodeling genes, and culminates 

in the activation of endogenous pluripotency-related TFs. Somatic gene repression and 

pluripotency gene activation, previously thought to be separated temporally, can overlap 

in individual cells [12]. It is still largely unclear how the expression of the transient program 

relates to the silencing of the somatic program and the activation of the pluripotency 

program. 

 

Figure 2: Enhancer reorganization during reprogramming is linked to distinct TF binding 

and motif patterns 

A) Key enhancer and associated TF binding changes during reprogramming. Very early 

in reprogramming, OSK bind a fraction of somatic enhancers as well as transient 

enhancers and a subset of pluripotency enhancers. At transient and early-engaged 

pluripotency enhancers, OSK co-bind with somatic TFs. Over time, early engaged 

pluripotency enhancers gain the binding of additional TFs throughout reprogramming 

(such as NANOG), which replaces the binding of somatic TFs. The majority of 

pluripotency enhancers is engaged later in the process (late-engaged) by O and S 

(without K) and requires additional TFs (for instance ESRRB) that are activated during 

the reprogramming process. In starting fibroblasts, both early and late-engaged 

pluripotency enhancers lack hypersensitivity (based on ATAC-seq) and reprogramming 

factor binding coincides with substantial nucleosome removal. Based on the presence 

and absence of DNA sequence motifs (as shown on the right), it is thought that OSK 
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engage transient and pluripotency enhancers through direct DNA binding and interact 

with somatic enhancers largely indirectly. 

B) Somatic TF redistribution model. Early in reprogramming, OSK recruit broadly 

expressed somatic TFs such as AP-1, CEBP, TEAD (orange symbols) to new sites in 

transient and pluripotency enhancers, depleting them from somatic enhancers. Since 

somatic cell-specific TF occupancy at somatic enhancers depends on the presence of 

broadly expressed somatic TFs, the binding of somatic cell-specific TFs (yellow symbols) 

is also decreased in this process. The redistribution of broad somatic TFs and the loss of 

somatic cell-specific TFs lead to the destabilization of fibroblast enhancers and the 

repression of the somatic gene program. In this model, OSK inactivate somatic enhancers 

indirectly, without the need for direct binding to somatic enhancers. 

C) Putative roles for somatic TF binding at early-engaged pluripotency enhancers. From 

left to right: broadly expressed somatic TFs may collaborate with OSK to remove 

nucleosomes if their binding sites are within one nucleosome length, and therefore be 

required for enhancer opening early in reprogramming; somatic TFs passively bind to 

DNA in regions opened by OSK; and somatic TFs indirectly bind through protein-protein 

interaction with OSK or co-factors. In the latter two cases, somatic TFs may not have a 

specific function or, alternatively, may block the activation of these enhancers. 

 

Figure 3: Strategies for producing iPSCs, iTSCs and iXENs 

A) The existence of cells expressing endodermal TFs such as GATA4 and GATA6 in 

OSKM-induced iPSC reprogramming cultures can be exploited to, in addition to iPSCs, 

derive iXENs by exposing the reprogramming culture to a culture medium that supports 



 17 

iXENs [20]. Gata6 expression is required for iXEN formation. Similarly, iTSCs and iPSCs 

can be derived from human OSKM reprogramming cultures [10] (not shown). 

B) iTSCs, iXENs and iPSCs can also be derived from a reprogramming culture upon 

expression of an alternative TF cocktail (GETMS), when appropriate media are supplied 

[53]. Whether XEN-like cells arise in parallel to or on the path to iPSCs remains unclear. 

The balance of EOMES and ESRRB influences which cell states are formed during 

reprogramming. High EOMES levels favor iTSC induction, whilst high ESRRB favors 

iXEN and iPSC induction. 
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Abstract 

Ectopically expressed Oct4, Sox2, Klf4 and c-Myc (OSKM), also known as Yamanaka 

factors, can reprogram terminally differentiated cells to pluripotency. Among them, Oct4, 

Sox2 and Klf4 are indispensable and mainly bind to distal regulatory regions. The 

cooperative binding of them leads to opening of somatically closed chromatin sites in 

early stage of reprogramming, and concomitantly, some somatic TFs are observed to 

switch their binding sites from mouse embryonic fibroblast (MEF) specific enhancers or 

MEs, to OSK bound, newly opened enhancer regions in the early stage of reprogramming. 

In this work, we confirmed the co-binding of somatic TFs with O, S or K through several 

orthogonal approaches, identified somatic TFs co-bind with OSK through both direct 

protein-protein interaction (PPI) and other indirect manners. And lastly, we found the 

removal of active enhancer histone mark on MEs is not led by the binding of Oct4. 

Introduction 

Uncovering the mechanisms underlying cell fate changes is critical for understanding how 

cell identities are established and maintained and how they are destabilized or altered 

during disease processes. I am studying these mechanisms in the context of the 

reprogramming of somatic cells to induced pluripotent stem cells (iPSCs), which changed 



 32 

the way of how human diseases can be studied in the laboratory and is paving the way 

to personalized cell replacement therapies. The ectopic expression of the transcription 

factors (TFs) Oct4, Sox2, Klf4, and c-Myc (OSKM) in somatic cells leads to the induction 

of iPSCs[1,2]. iPSC reprogramming takes several weeks and occurs at low frequencies, 

indicating that the reprogramming factors need to overcome barriers established in 

somatic cells to preserve their identity. Thus, a mechanistic understanding of how OSKM 

induce the transcriptional changes that lead to pluripotency will reveal strategies to 

overcome these barriers and yield fundamental insights into basic principles by which cell 

identity can be manipulated. The Plath lab[3] previously found that the collaborative 

binding of OSK is essential for the selection and activation of pluripotency enhancers 

(PEs). Intriguingly, despite being transcriptional activators, OSK also have been 

suggested to mediate the silencing of the enhancers that are active in the starting somatic 

cell type, such as fibroblasts. The silencing of somatic enhancers correlates with the 

redistribution of somatic TFs to sites that are newly opened and bound by OSK early in 

reprogramming. Thus, OSK may achieve the decommissioning of somatic enhancers by 

redistributing somatic regulators, which represents a new paradigm of cell fate control. 

Yet, it remained unknown if OSK and somatic TFs indeed co-occupy these new sites. To 

address this question, I optimized and applied the ChIP-SICAP (chromatin 

immunoprecipitation combined with selective isolation of chromatin-associated proteins) 

method. I found TFs of the AP-1 family on the same chromatin fragment as O, S, and K, 

including the family members Jun, JunB and JunD, as well as other somatic TFs, such as 

Cebpa/b, and Runx2. Moreover, intriguingly, these TFs are expressed in most 

somatic/differentiated cell types. Since it is thought that all somatic cells can be 
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reprogrammed by OSK, the biochemical interaction of OSK with these TFs may underlie 

the ability to be universal reprogramming factors across species and cell types. The key 

question of this work is to understand how OSKM mechanistically induce this somatic TF 

redistribution. We hypothesized that protein-protein interactions (PPIs) of OSKM with 

somatic TFs are critical for this process. To test this idea, we leveraged dual-genetic 

background MEF cell line to test OSK binding dependency to somatic TFs in vivo to 

shorten the target list and followed by PAQMAN and in vitro pull-down assay to further 

unveil the interaction types between OSK and somatic TFs in the presence and absence 

of DNA/chromatin. 

Lastly, to assay if MEs are decommissioned by somatic TF redistribution or proactive 

recruitment of Hdac1 by OSK, we dissected the Oct4’s function by testing whether Oct4 

nucleosome binding mutant can remove H3K27ac from MEs through binding to MEs 

without opening new sites.  

Results 

ChIP-SICAP confirms the co-binding of somatic TFs and O/S/K 

From previous study[3], Chronis et. al. has demonstrated that the overexpression of 

OSKM in the early stage of reprogramming causes somatic TFs redistributing from their 

original binding sites mainly on MEs to OSK occupied newly opened transient enhancers 

(TEs) and pluripotency enhancers (PEs), and OSK’s binding sites are not restricted to 

newly opened sites but also found on MEs despite the low density of their binding motifs. 

These observations were obtained through chromatin immune-precipitation-Sequencing 

(ChIP-seq) techniques. Yet, the how OSK make somatic TFs’ redistribution is not unveiled.  
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Due to the low motif density of some somatic TFs including AP-1, CEBP, TEAD and 

RUNX family TFs on newly gained sites at 48hrs post-induction of OSKM expression and 

low motif density of OSK on MEs, we hypothesized that protein-protein interaction 

between somatic TFs and OSK may contribute to both somatic TFs’ binding to newly 

gained sites and OSK’s binding to MEs. To test this hypothesis, we first must confirm 

whether OSK and somatic TFs co-colocalized on the chromatin at the protein level. To 

confirm their co-existence on chromatin, we employed a proteomics approach named 

chromatin immnunoprecipitation- selective isolation of chromatin associated proteins 

(ChIP-SICAP)[4], through which we are able to find co-binding somatic TFs to OSK 

respectively.  

As shown in Figure 1A, we isolated MEF cells from tetO-OSKM stemcca mouse embryos 

and added doxycycline to induce the expression of OSKM for 48hrs, then crosslinked and 

harvested cells for ChIP-SICAP. Since streptavidin heavily contaminates bottom-up 

proteomics samples due to its excessive amount of signal masking peptide-of-interest’s 

signal in the mass spectrometer (MS), we optimized the published workflow by 

introducing nuclease elution (Figure 1B) to maximize the detection to TFs which are of 

low abundance in nature. 

Next, we performed ChIP-SICAP using O S and K antibodies respectively, and comparing 

to IgG negative control, we identified 1288, 808 and 1326 proteins co-bind with O S and 

K on the chromatin respectively. In accordance with Chronis et.al. ChIP-seq results, O S 

and K showed highly similar co-binding proteome (Figure 1C). Among all the OSK co-

binding proteins, there are 130 TFs, 74 of them showed decrease to slight increase RNA 

expression (ES:MEFs<=1.5) during the reprogramming process from MEFs to iPSCs, and 
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59 of them showed only decrease trend (ES:MEFs<=1). In the 59 somatic TFs, we found 

7 TFs belong to basic leucine zipper factors including Jun JunB JunD, Fosl2, Cebpb, 

Cebpd, 16 TFs from homeo domain factors including Hox-A13, 6 from C2H2 zinc finger 

factors including Klf4 and Mecom, and many others e.g. RUNX1 and 2 from Runt domain 

factors (Figure 1E). And according to STRING database[5], many of these identified 

proteins also have been reported having PPIs to each other (Figure 1F). Other than TFs, 

we have also identified chromatin remodeler complexes e.g. NurD, SWI/SNF, LSD1 and 

PRC2 and so on. In this section, we confirmed that O S and K co-bind to somatic TFs as 

well as chromatin remodelers on the chromatin suggesting there could be both direct and 

indirect PPIs between O S and K with somatic TFs. 

OSK have somatic TF motif binding dependency in early stage of reprogramming 

Moving forward, to test if O S and K bind to chromatin through somatic TFs in vivo, we 

decided to establish a dual-genetic background tetO-OSK MEFs system. The dual-

genetic background system has previously reported to be used for characterizing 

cooperative binding of TFs[6–8]. Having two sets of chromosomes from different genetic 

background introduces many natural single nucleotide polymorphism events (SNPs), 

these SNPs disrupt or weaken TF binding motifs in vivo, therefore, we can leverage these 

natural mutations to assess the effects of the loss of some TFs’ binding.  

We crossed wild-type (WT) PWK/PhJ mouse with homozygotic tetO-OSK in C57BL/6J 

background, therefore all the F1 offspring have tetO-OSK and each one of the two genetic 

backgrounds (Figure 2A). We took the isolated MEFs from F1 embryos and performed 

CUT&RUN and CUT&Tag to measure the binding of O S and K and characterized 

whether O, S or K lose their binding due to the disruption of any somatic TF’s motif. 



 36 

Additionally, we performed ATAC-seq and H3K27ac CUT&Tag assayed the chromatin 

status pre and post OSK induction. Moreover, since O S and K are all identified as pioneer 

factors[9,10], if O S and K’s binding upon a chromatin locus do not depend on any somatic 

TF, the chromatin accessibility should presumably be maintained by O S and K. 

First, we assessed motif scores of HOMER identified motifs in both alleles under all the 

O S and K binding peaks as long as at least a peak is identified from one of the two alleles. 

We found weakened and disrupted motifs tend to have a SNP at +1 position to the motif 

center suggesting that position is essential to maintain motif’s identity (Figure 2B). 

Next, we identified all the binding peaks of O S and K on both alleles and found Oct4 has 

22%, Sox2 has 24%, Klf4 has 23.5% peaks skewed to one of the two alleles with majority 

of peaks staying bi-allelic binding (Figure 2C). 

Furthermore, we examined what disrupted or weakened motifs are enriched in the 

skewed binding peaks to the other allele and calculated how much more binding signals 

are observed in the corresponding unchanged motif (Figure 2D). In the Oct4 binding 

assay dataset, we identified AP-1, Klf4, CEBP and Sox2 motifs’ disruption are enriched 

in the skewed peaks to the other allele in different chromatin regulatory regions and the 

binding signal fold change are all above 2 folds. Similarly, in Sox2, we identified Sox2 its 

own motif as well as AP-1 and CEBP, suggesting that Sox2’s binding relies on not only 

its own motif but AP-1 and CEBP. Lastly, Klf4 showed binding dependency to its own 

motif along with AP-1, TEAD and Oct4. And the signal change magnitudes are all more 

than 2 folds. These results suggesting, O S and K have binding dependency to motifs of 

each other and also motifs of CEBP, AP-1 and TEAD in vivo. 

Oct4 shapes the binding chromatin status in the early stage of reprogramming 
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Next, we assessed the chromatin accessibility and active histone mark H3K27ac 

skewness correlation with Oct4 binding skewness (Figure 3A). Since Oct4 is not 

expressed in 0hr, the number of shared peaks between ATAC/H3K27ac at 0hr and Oct4 

at 48hr are much less than ATAC/H3K27ac at 48hr, more importantly, the correlation of 

shared peaks between ATAC/H3K27ac at 48hrs and Oct4 at 48hrs is much than them in 

MEFs, this is suggesting that Oct4 has strong impact on its binding sites chromatin status. 

Oct4 binds to AP-1 motif without changing AP-1 proteins binding affinity to AP-1 

motif 

To assess if Oct4 can bind to somatic TF, specifically, the most influencing somatic TF 

family in reprogramming [11,12], AP-1 motif without its own motif in proximity, and in the 

meantime to measure if Oct4 influences AP-1 proteins binding to their own motif. We 

deployed Protein-nucleic acid affinity quantification by MAss spectrometry (PAQMAN)[13] 

to measure nuclear proteins’ binding affinity to DNA sequence of interest regardless of 

chromatin status. 

We immobilized biotinylated double stranded DNA probes containing AP-1 motif or 

negative control on streptavidin beads, and isolated nuclear extract from MEFs or 

stemcca MEFs +dox for 48hrs, then performed PAQMAN assay. As shown in Figure 3B, 

five of AP-1 family proteins are identified from both MEFs and stemcca MEFs 48hr post 

induction nuclear extract forming sigmoid curves as a function of increasing 

concentrations of the AP-1 motif probe (Figure 3B). Interestingly, even with this pure AP-

1 motif DNA sequence in the absence of Oct4 motif, Oct4 showed sigmoid binding curve 

to it but not the negative control DNA (Figure 3C). Then we checked AP-1 proteins’ 

binding curves to the AP-1 motif in the presence and absence of OSKM and found the 
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Kdapparent stay unchanged. Taken together, in this semi- in vitro system, Oct4 binds to the 

artificial AP-1 motif containing DNA sequence without negatively affecting AP-1 proteins 

binding affinity to the same probe, it is suggesting Oct4 binds to AP-1 motif through 

binding to AP-1 proteins. 

In the future, we will assess more complicated situations by using genomic sequences 

extracted from sequencing data. It will include Oct4 Cebpb co-bound peak sequences 

consisting following scenarios: i) peaks only contain Oct4 motif; ii) peaks contain both 

Oct4 and CEBP motifs, we will test if Cebp family proteins can bind to these genomic 

sequences in the presence and absence of OSKM and whether the presence of OSKM 

binding can influence CEBP proteins’ binding affinity to their own motif. 

Oct4 has direct interaction with somatic TFs 

After assessing OSK’s PPIs with somatic TFs in various DNA co-existing systems, we 

want to confirm if there’s DNA-free, direct PPIs between OSK and somatic TFs. Therefore, 

we used recombinant proteins of OSK, c-Jun, Fosl1, Tead1, Tead3, Cebpa, Cebpb 

purified from non-mammalian systems to perform in vitro pull-down assay. From current 

result, Oct4 as bait protein, as reported by others, has direct PPIs with Sox2 and Klf4, 

and interestingly, we found it also has direct PPIs with c-Jun, Cebp and b, but not Tead3 

and Fosl1 (Figure 4A). We concluded that Oct4 has physical PPIs with somatic TFs c-

Jun Cebpa/b but not with any Tead proteins. In accordance with this result, our Tead 

CUT&RUN only showed motif dependency to its own motif but not any of O S and K 

(Figure 4B). 

We will further assess S and K’s interaction with somatic TFs in the future with in vitro 

pull-down assay. 
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Oct4’s binding cannot remove H3K27ac from MEs 

Previously, Chronis et.al[3] has shown that Klf4 and Oct4-bound sites on MEs showed 

significantly higher Hdac1 binding signal when they are individually expressed in MEFs. 

We hypothesized that the recruitment of Hdac1 to MEs by Oct4 and Klf4 is the mechanism 

of ME decommissioning, the alternative hypothesis is that Oct4 and Klf4 open new sites 

and recruit somatic TFs away from MEs and leads to the loss of H3K27ac. To test this 

hypothesis, we started with Oct4. Recently, a Oct4 mutant Oct4del79, was identified to 

retain DNA binding but lose nucleosome binding ability by deleting five amino acids in the 

linker region between the two Oct4 DNA binding domains[14]. We decided to leverage its 

incapability of opening new sites to assay if the overexpression of this Oct4del79 can also 

lead to loss of H3K27ac.  

We first test if regular anti-Oct4 recognizing WT Oct4 could still detect Oct4del79 , we 

retrovirally infected MEFs with WT Oct4 or Oct4del79 and immunofluorescence staining 

showed that Oct4del79 is equally detectable by using this antibody (Figure 4C). Next, we 

performed ATAC-seq, H3K27ac and Oct4 CUT&RUN in WT or mutant expressed MEFs. 

As shown in Figure 4D, Oct4del79 failed to bind, open and establish enhancer activity on 

some sites as expected.  

Finally, we did meta-analysis for H3K27ac signal on MEs with the expression of WT and 

mutant form of Oct4 (Figure 4E), we found with the expression of Oct4del79 , the H3K27ac 

signal on MEs remains at the same level as it is in MEFs which is higher than the one 

with WT form Oct4 expressed MEFs. 
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Taken together, we concluded that Oct4’s binding doesn’t remove H3K27ac from MEs, 

but it is also suggesting the depletion of the active histone marks are likely caused by 

Oct4’s ability to open new sites. 

Discussion 

In this study, we first established O S and K’s co-binding proteome network through 

optimized ChIP-SICAP techniques in the early reprogramming stage MEFs. And through 

this approach, we confirmed that O S and K co-exist with many somatic TFs including 

bZIP TFs e.g. AP-1, CEBP, Homeo domain TFs e.g. HOX-A13 etc. A lot of these somatic 

TFs also interact with each other. However, these are not yet clear which one’s co-bind 

with OSK through direct or indirect PPIs. By leveraging dual-genetic background system, 

we established OSK binding dependency upon somatic TFs also including AP-1, CEBP 

and TEAD and therefore shortlisted the protein candidates which may have PPIs with 

OSK in vivo. Furthermore, we performed PAQMAN assay for AP-1 motifs in the presence 

or absence of OSKM and confirmed that Oct4 binds to AP-1 motifs without the co-

existence of its own motif and doesn’t affect AP-1 proteins’ binding affinity to the DNA. 

This is suggesting Oct4 binds to AP-1 motif containing DNA in vitro likely through an 

indirect manner. Next, we performed in vitro pull-down assay and demonstrated that Oct4 

has direct PPIs with c-Jun, Cebpa and b but not Tead proteins and Fosl1, and it showed 

that Oct4 can physically interact with some somatic TFs in the absence of DNA. Lastly, 

we tested that Oct4’s binding is not enough to remove H3K27ac and suggested that the 

opening of new sites and recruitment of somatic TFs to newly opened sites by pioneer 

factors like Oct4 could be the main mechanism of somatic enhancer decommissioning.  
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With current data, we haven’t been able to demonstrate that if OSK’s binding has 

synergistic effect to somatic TFs to their motifs, and we haven’t shown if the redistribution 

of somatic TFs through PPIs affects the progress of reprogramming. In the future work, 

we will perform PAQMAN assays with genomic sequences as probes to find whether OSK 

assists somatic TFs binding to newly opened sites when OSK’s motifs are sitting 

adjacently. And we will also screen for Oct4 PPI dysfunction mutant to evaluate if it has 

any influence on reprogramming progress rate or efficiency.  

Methods  

Cell culture 

The following cell line was used for the ChIP-SICAP of the reprogramming process at 

discrete stages: primary MEFs harboring a heterozygous R26-M2rtTA allele and a single 

dox-inducible polycistronic cassette coding for OSKM in the Col1A locus (tetO-OSKM)[15], 

derived from day 13.5 embryos of timed mouse pregnancies. 

Immunofluorescence staining 

Coverslips were rinsed twice with 1x PBS, and the cells were fixed in 2% PFA (Electron 

Microscopy Sciences) in 1x PBS for 10 min. After fixation, cells were permeabilized with 

0.5% Triton X-100 (Acros) in 1x PBS for 10-15 min, before transferring to blocking buffer 

solution (1x PBST containing 2% bovine serum albumin (BSA) and 0.5% fish skin gelatin) 

for 1 hour. Cells were then incubated with primary antibody for 45 min, washed 3 times 

with 1x PBST, followed by incubating with secondary antibody for 30 min and washing 3 

times with 1x PBST. Both antibody incubation steps were performed in a dark humidified 

chamber. Finally, cells were post-fixed with 4% PFA in 1x PBS for 10 min, stained with 

1:10000 dilution of DAPI (0.5mg/ml) and mounted with Vectashield (Vector Labs) on glass 
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slides, before sealing with Biotium Covergrip coverslip sealant (ThermoFisher). All 

procedures were performed at RT, and used reagents were disposed according to 

standard laboratory safety practices.  

CUT&Tag 

CUT&Tag experiments were performed as described[16]. Briefly, for each sample, 100K 

cells were harvested, washed, and immobilized on concanavalin-A bead. Primary 

antibodies were diluted in antibody buffer (20mM HEPES, 150mM NaCl, 0.5mM 

Spermidine, 0.05% Digitonin, 2mM EDTA and 0.1% BSA) at 1:100 ratio, and then 

incubated with cells for 2 hrs. Next, secondary antibodies were incubated with cells in 

Dig-wash buffer (20mM HEPES, 150mM NaCl, 0.5mM Spermidine, 0.05% Digitonin) at 

1:100 ratio for 1 hr and washed by Dig-wash buffer. pA-Tn5 was then diluted with Dig-

300 wash buffer (20mM HEPES, 300mM NaCl, 0.5mM Spermidine, 0.01% Digitonin) at 

1:250 ratio and incubated with cells for 1 hr. After washing cells by Dig300 wash buffer, 

Tagmentation reaction was activated by adding Tagmentation buffer (20mM HEPES, 

300mM NaCl, 0.5mM Spermidine, 0.01% Digitonin, 10mM MgCl2) to cells and incubated 

at 37C for 1 hr. Tagmentation reaction was terminated by adding EDTA to 16.7mM. Lastly, 

genomic DNA was extracted and proceeded to library amplification. 

Figure legend 

Figure 1: (A) Scheme of treatment for cells used in ChIP-SICAP experiment; (B)Scheme 

of optimized ChIP-SICAP workflow; (C) Proteins identified significantly enriched 

compared to IgG control in O/S/K ChIP-SICAP experiment; (D) Circle from outside to 

inside: total TF identified, TF with expression level (ES:MEF<1.5), TF with expression 
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level (ES:MEF<1); (E) Top 3 of most identified TF sub-families and representative motifs; 

(F) Known PPIs between identified TFs (ES:MEF<1.5) per SRING db. 

Figure 2: (A) Scheme of dual-genetic background experiment design; (B) SNP density 

distribution on disrupted, stable or weakened motif sequences; (C) Peaks identified on 

different alleles from O/S/K CUT&RUN, CUT&Tag combined data; (D) Enriched motif in 

the peaks of disruption of the motif on one allele and gain binding on the other allele. 

Figure 3: (A) PWK allele frequency in peaks shared between 0hr or 48hr post induction 

of OSK expression ATAC/H3K27ac and 48hr Oct4 CUT&RUN data; (B) AP-1 family 

proteins fraction bound change as a function of probe oligo concentration using nuclear 

extract from MEFs; (C) Oct4 fraction bound change as a function of probe oligo 

concentration using nuclear extract from 48hr post induction of OSKM MEFs; (D) Jun 

fraction bound change as a function of probe oligo concentration with nuclear extract pre 

and post induction of OSKM expression MEFs; (E) Cebpa and Cebpb binding sites in 

MEFs and 48hr post induction of OSKM expression, percentage represents proportion of 

sites also occupied by O/S/K; (F) Oct4 and Cebpb co-bound peaks’ peak summit distance 

distribution. 

Figure 4: (A) Oct4 bait in vitro pull-down assay blots; (B) Enriched motif in the peaks of 

disruption of the motif on one allele and gain binding on the other allele; (C) ⍺-Oct4 

immunofluorescence staining in WT or del79 mutant forms of Oct4 retro-virus infected 

MEF cells, 48hr post infection; (D) Genome browser view of WT Oct4 and Oct4del79  ATAC-

seq, Oct4 and H3K27ac CUT&RUN at Pou5f1 locus; (E) H3K27ac signal profiles on MEs 

in MEFs, WT Oct4 and Oct4del79 expressed MEFs; (F) Schematic model of somatic TF 

redistribution and ME decommissioning mechanism. 
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In Brief
We propose a novel method for
fractionating tryptic peptide
mixtures on carboxylate-coated
magnetic beads. It is an
extension of the previously
reported SP3 (single-pot solid
phase–enhanced sample
preparation) protein and peptide
cleanup method and provides an
effective but complementary
approach to other commonly
used fractionation methods
including strong cation exchange
(SCX) and reversed phase (RP)-
based chromatography.

Highlights

• CIF provides a new on-bead offline peptide fractionation method based on HILIC.

• CIF offers a complementary dimension to RP for peptide fractionation.

• CIF can be seamlessly integrated with SP3 protein sample desalting.

• A machine learning model is able to predict CIF peptide fractionation patterns based on its peptide
sequence.
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Carboxylate-Modified Magnetic Bead
(CMMB)-Based Isopropanol Gradient Peptide
Fractionation (CIF) Enables Rapid and Robust
Off-Line Peptide Mixture Fractionation in
Bottom-Up Proteomics
Weixian Deng1,2 , Jihui Sha1 , Kathrin Plath1 , and James A. Wohlschlegel1,*

Deep proteome coverage in bottom-up proteomics re-
quires peptide-level fractionation to simplify the complex
peptide mixture before analysis by tandem mass spec-
trometry. By decreasing the number of coeluting precur-
sor peptide ions, fractionation effectively reduces the
complexity of the sample leading to higher sample
coverage and reduced bias toward high-abundance pre-
cursors that are preferentially identified in data-dependent
acquisition strategies. To achieve this goal, we report a
bead-based off-line peptide fractionation method termed
CIF or carboxylate-modified magnetic bead–based iso-
propanol gradient peptide fractionation. CIF is an exten-
sion of the SP3 (single-pot solid phase–enhanced sample
preparation) strategy and provides an effective but com-
plementary approach to other commonly used fraction-
ation methods including strong cation exchange and
reversed phase–based chromatography. We demonstrate
that CIF is an effective offline separation strategy capable
of increasing the depth of peptide analyte coverage both
when used alone or as a second dimension of peptide
fractionation in conjunction with high pH reversed phase.
These features make it ideally suited for a wide range of
proteomic applications including the affinity purification of
low-abundance bait proteins.

Shotgun mass spectrometry has been the major strategy for
bottom-up proteomics for decades (1). This technique in-
volves analyzing a population of proteolytically digested
peptides that are eluted from the reversed-phase (RP) sepa-
ration into the mass spectrometer and then selecting the most
intense ones for fragmentation to generate sequence infor-
mation. Owing to limitations in scan speed, however, mass
spectrometers are unable to fragment and scan all of the
precursors eluting at a given time into the mass spectrometer,
resulting in undersampling of low-abundance peptides. This

problem becomes more severe as the peptide mixture be-
comes more complex and ultimately results in reduced pro-
teomic depth for the analysis of many complex biological
samples. In addition, the large number of coeluting peptide
precursors also leads to ion suppression, which further limits
the ability to identify and quantify low-abundance precursors
(2). These issues are typically addressed, at least in part, by
using chromatographic methods to reduce the complexity of
the mixture to enable the mass spectrometer to isolate and
fragment the majority of peptides coeluting at any given
retention time. Strong cation exchange (SCX) and high pH RP
chromatography have emerged as the two most common
strategies for reducing peptide complexity offline before
analysis by LC-MS/MS (2, 3). In addition, owing to lack of
accessibility to HPLC equipment, many laboratories use spin-
column, stage-tip, or solid-phase extraction cartridges filled
with matrix material (C18 for RP, benzenesulfonic acid bonded
sorbent for SCX) instead of an HPLC, in essence, sacrificing
some fractionation efficiency for speed and ease of use.
Although SCX fractionation methods have strong orthog-

onality to low pH RP chromatography (4), the use of salt in
the mobile phase for elution requires an extra desalting
procedure to make it compatible with LC-MS. Moreover,
SCX chromatography often suffers from inefficient peptide
recovery because of secondary interactions with the SCX
sorbents that reduce the recovery of hydrophobic peptides
(5). Compared with SCX, high pH RP fractionation requires
no additional cleanup steps for fractionated products that
limits sample loss. Like SCX, however, high pH RP suffers
from incomplete peptide recovery with this material loss
becoming more evident in samples with low amounts of
peptide (6). Considering both offline high-pH RP and online
low-pH RP utilize a similar peptide binding matrix and
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buffers (besides pH), the orthogonality of fractions for low-
pH RP is not ideal (7).
To circumvent the disadvantages of SCX and RP chroma-

tography, a rapid, robust fractionation method that is compat-
ible with low sample amounts and orthogonal to online low-pH
RP chromatography is needed. In a previous study, it was
shown that proteins and tryptic peptides can be immobilized on
the hydrophilic surface of carboxylate-modified magnetic
beads (CMMBs and also widely known as SP3) in an unbiased
manner using a high concentration of the organic solvent
(8–10). This method is derived from a mechanism similar to
hydrophilic interaction liquid chromatography (11) or electro-
static repulsion hydrophilic interaction chromatography (12). It
features high material recovery and high binding capacity and
can be easily integrated into a variety of proteomics applica-
tions. Using the CMMB/SP3 technology, peptides are eluted
from the beads when the acetonitrile (ACN) concentration is
decreased below 90% with no detectable retention. However,
owing to the narrow ACN concentration window over which
peptide elution occurred, only limited success was reported
when peptide fractionation was attempted using CMMB/SP3
(8). In this study, we describe a novel CMMB-based iso-
propanol gradient peptide fractionation method that we termed
CIF that allows the elution of peptides into fractions using a
step-wise isopropanol gradient. This strategy not only lever-
ages the high binding capacity and low material loss advan-
tages of CMMB but also achieves effective offline peptide-level
fractionation, thus facilitating deeper proteomic coverage and
improved analysis of high dynamic range samples.

EXPERIMENTAL PROCEDURES

Cell Culture and Tryptic Peptide Preparation

HEK293 cells were cultured in high glucose and glycine DMEM
containing 10% FBS and 1% penicillin-streptomycin and then tryp-
sinization for harvesting. Incubating cells in the lysis buffer (8 M urea,
0.1 M Tris HCl, pH 8.0) at 4 ◦C for 30 min followed by centrifugation to
clarify the sample. Two milligrams of protein were reduced and alky-
lated by sequentially incubating with 5-m ris(2-carboxyethyl)
phosphine and 10-mM iodoacetamide or 30 min at room tempera-
ture (RT) in the dark. The protein sample was then diluted fourfold with
0.1 M Tris HCl, pH 8.0, to reduce the final urea concentration to 2 M
before incubating overnight with at 37 ◦C with trypsin protease at ratio
of 1:100. SP3 was reported not suitable for cleanup of high quantity of
proteins (high microgram or milligram quantities) (9). So, peptide di-
gests were desalted using Pierce C18 tips (100-μl bed volume, cat.
87784), dried, and then reconstituted in water.

Peptide Recovery Assay

For each elution concentration tested, 1.7 μg of peptides were
reconstituted in 10 μl of water, mixed with 5 μl of CMMB (GE Healthcare:
65152105050250, GE Healthcare: 45152105050250, mixed at 1-to-1
ratio) followed by 300 μl of ACN, which raises the final ACN concen-
tration to 95% and allows peptide binding to CMMB. Peptides were
eluted from CMMB by incubation with 30 μl of the elution buffer con-
taining varying amounts of isopropanol (95%, 90%, 85%, 80% 75%,
70%, 0% of isopropanol) in a thermomixer for 15 min. Peptide

concentrations were determined for each sample by measuring their
absorbance at 205 nm on a NanoDrop 3000 spectrophotometer.

Optimization of Bead Amount for CIF

To optimize the ratio of beads required to fractionate 20 μg of
peptides using CIF, we tested the ability of 1 μl, 5 μl, 20 μl, and 50 μl of
50 μg/μl CMMB to fractionate 20 μg of peptides. Twenty microliter-
beads (~1000 μg) showed the greatest number of identified peptides
(supplemental Fig. 1, A and B), whereas 5 μl beads (~250 μg) showed
only marginally fewer identified peptides. We conclude that CIF is
effective over a broad range of peptide-to-bead mass ratios ranging
from 1:12.5 to 1:50.

CIF

For each experiment, a defined amount of digested peptide (7 μg for
the pH comparisons, 100 μg for comparisons between fractionation
methods, and 20 μg for modeling the CIF elution concentration exper-
iment) was bound to CMMB by incubating the peptide/CMMB mixture
in 95% ACN for 10 min at RT. Peptides were eluted by sequentially
incubating the CMMB with 30 μl of each elution buffer (90%, 85%, 80%
75%, 70%, 0% of isopropanol) and pipetting up and down 15 times
(pipetting up and down can be replaced by shaking on a shaker at
1200 rpm for 10 min). Each elution step was repeated once to ensure no
residual peptides were carried over into the next elution. Eluted peptides
were dried by vacuum centrifugation and reconstituted in 5% formic
acid for LC-MS/MS analysis (Fig. 1A). To test different pH conditions,
50-mM triethylamine bicarbonate was added to the isopropanol elution
to create high-pH conditions, whereas 5% formic acid was added to the
isopropanol elution to generate low-pH conditions.

High-pH RP Fractionation

High-pH RP fractionation was performed according to the manu-
facturer's instructions (Pierce High-pH Reversed-Phase Peptide
Fractionation Kit, catalog number: 84868). Essentially, 100-μg pep-
tides were bound to the resin in the spin column and then eluted by
stepwise incubations with 300 μl of increased ACN concentrations.
Fractions were then dried by vacuum centrifugation and reconstituted
in 5% formic acid for mass spectrometry analysis.

RP-CIF 2D Fractionation

For eight-fraction RP-CIF 2D fractionation, 100 μg of the peptide
mixture was bound to the resin in the spin column and then eluted
stepwise with 300 μl of increasing ACN concentrations. Subsequently,
eluate fractions 1 and 5, 2 and 6, 3 and 7, and 4 and 8 were combined
pairwise into four total fractions, dried by vacuum centrifugation, and
reconstituted in 30 μl of water. Each combined RP fraction was bound
to 10-μl CMMB and eluted in two steps (80% isopropanol and water)
as described in the CIF section. For 16-fraction RP-CIF 2D fraction-
ation, conditions were identical except RP fractions were not com-
bined before applying CIF.

APEX2-Based Proximity Labeling

The APEX2-Oct4 fusion protein coding sequence was cloned into the
pMX retro-viral packaging vector and then transiently transfected into
HEK293 cells with Lipofectamine 3000. Five hundred micro molar
biotin-phenol was added to the media 18 h after transfection and
incubated at 37 ◦C for 30 min. Then peroxidase reaction was activated
by adding H2O2 to 1 mM and incubating at RT for 1 min. The reaction
was quenched by washing cells three times with quencher containing
PBS (10-mM sodium azide, 5-mM Trolox, 10-mM sodium ascorbate).
Cells were harvested by trypsinization and then flash-frozen in liquid
nitrogen.

Peptide Fractionation Using Carboxylate-Modified Beads
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Streptavidin Pull-Down

Cells are lysed in RIPA buffer (50-mM Tris HCl, pH 7.5, 150-mM
NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100)
supplemented with protease inhibitor cocktail (Roche) and Benzonase
(1 μl of 250 U/μl) and incubated at 37 ◦C for 20 min. Lysates were
clarified by centrifugation, quantitated using the Pierce 660-nm pro-
tein assay, and 1 mg of protein was incubated with 300 μl of high-
capacity streptavidin (SA) beads (Thermo Fisher) for each sample at
RT for 1 h. SA beads were then washed three times with RIPA buffer,
once with 1 M KCl, once with 2 M urea in 25-mM Tris HCl, pH 8.0, and
three more times with RIPA buffer. Bound proteins were then reduced,
alkylated, and digested on beads with Lys-C and trypsin. The super-
natant from the on-bead digestion was then transferred to another
tube, bound to SP3/CMMB beads by the addition of ACN to a con-
centration of 95%, and either eluted from CMMB in water or frac-
tionated using the CIF protocol into three fractions (85%, 75%, and
0% isopropanol elution steps). Although it is difficult to measure the
protein abundance on beads in this type of analysis, we estimate that
there is less than 1 μg of protein (not including SA) based on other
experiments using comparable purification strategies.

LC-MS Data Acquisition

A 75-μm × 25-cm homemade C18 column was connected to a
nano-flow Dionex Ultimate 3000 UHPLC system. The 70-min gradient
of increasing ACN was delivered at a 200 nl/min flow rate as follows:
1% ACN phase from minutes 0 to 6, 6 to 25% ACN from minutes 6 to
55, 25 to 32% ACN from minutes 55 to 63.5, 32 to 80% ACN from
minutes 63.5 to 67, and then 1% ACN from minutes 68 to 70. An
Orbitrap Fusion Lumos Tri-brid mass spectrometer was used for data
acquisition. Full MS scans were acquired at 120 K resolution with the
automatic gain control target set to 2e5 and a maximum injection time
set to 100 ms. MS/MS scans were collected at 15K resolution after
isolating precursors with an isolation window of 1.6 m/z and HCD-
based fragmentation using 35% collision energy. For data-
dependent acquisition, a 3-s cycle time was used to acquire MS/MS
spectra corresponding to peptide targets from the preceding full MS
scan. Dynamic exclusion was set to 25 s.

Database Search

MS/MS database searching was performed using MaxQuant
(1.6.17.0) against the human reference proteome from EMBL
(UP000005640_9606 HUMAN Homo sapiens, 20600 entries, released
in 2020_04). The search included carbamidomethylation on cysteine
as a fixed modification and methionine oxidation and N-terminal
acetylation as variable modifications. The digestion mode was set to
trypsin and allowed a maximum of two missed cleavages. The pre-
cursor mass tolerances were to 20 and 4.5 ppm for the first and
second searches, respectively, whereas a 20-ppm mass tolerance
was used for fragment ions. Data sets were filtered at 1% false dis-
covery rate at both the peptide spectral match (PSM) and protein level.
Peptide quantitation was performed using MaxQuant's LFQ mode.

Modeling the CIF Elution Profile

We used peptide and elution information from the CIF data set to
identify the physicochemical properties of peptides that determine
their elution using CMMB. The R package, Peptides (v2.4.1), was used
to calculate the aliphatic index (13), peptide charge at given pH,
peptide isoelectric point (14), instability index (15), and hydrophobicity
(16) as well as 18 parameters related to amino acid composition
including the number and mole percentage of nine classes of amino
acids. These variables were normalized using the Max-Min normali-
zation method to ensure all the variables values were within (0,1). The
model was generated using all three replicates of the CIF data that

were combined by assigning the isopropanol elution concentration in
which the peptide displayed maximum LFQ intensity across all repli-
cates and concentrations. Peptides eluted in 0% isopropanol were
removed because it was not possible to determine a narrow range of
isopropanol over which those peptides were eluted. After combining
and preprocessing the data, we obtained a matrix with 39,225 peptide
sequences or rows, 23 columns of variables, and an observed elution
isopropanol concentration. We then separated the data set into two
parts by randomly assigning two-thirds of the rows to the training set
and one-third to the test set. Using the training set, we trained a Lasso
regression with tenfold cross-validation using the R package glmnet
(v3.0–2) (17). We selected the model where the lambda value provided
the most regularized model such that error was within one standard
error of the minimum and then removed features that contributed
minimally to the model (Table 1). An R script that generates peptide
properties and predicts the isopropanol elution concentration can be
found here: https://github.com/weixiandeng/CIFpredictor.

Calculation of the Distribution Index

The distribution index is calculated by the following equation for
which we partition the 70-min gradient into 70 equal bins and denote
the number of PSM counts in each bin as Pj.

Distribution index=∑70
i=1Pi∑70
j=1Pj

× 100%

Pj is PSM count with in each retention time bin,

Pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Pi = Pj ,Pi ≤

∑70

j=1Pj

70

Pi =
∑70

j=1Pj

70
,Pi >

∑70

j=1Pj

70

Experimental Design and Statistical Rationale

Peptide recovery experiments were performed in three technical
replicates. CIF experiments exploring different pH conditions (Fig. 1, C

TABLE 1
Peptide fractionation pattern multivariable linear model

Variables Coefficients

(Intercept) 76.62

Charged No. −21.05

Charge 11.87

Hydrophobicity 8.30

Polar No. −6.82

Acidic mole % −5.34

a-Index 5.27

Tiny mole % −3.83

Nonpolar mole % 0.85

Instability index −0.19

RMSE 3.82

R2 0.70

Physical chemistry peptide properties (gray) and peptide composi-
tion properties (green shaded) contribute to the model.
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and D) were single replicate-relative comparisons that were validated
in subsequent experiments. All comparisons between CIF, RP, and
RP-CIF-2D fractionation experiments (Figs. 2 and 3) were performed
using three technical replicates from the same HEK293 digested
lysate. Statistical comparison of peptides identified in Figure 2B were
conducted using an unpaired Student's t test. APEX2-based proximity
labeling experiment was performed using two technical replicates.
Nontransfected but otherwise identically treated cells served as the
negative control for the analysis. MSStats (3.10) was used to analyze
the MaxQuant LFQ data in the APEX2-Oct4 proximity labeling
experiment to statistically assess protein enrichment. Equalized me-
dians were used for normalization and the Tukey median polish
method was used for protein summarization. p-Values for t tests were
corrected for multiple hypothesis testing using the Benjamini-
Hochberg adjustment. For proteins absent in either condition, the
fold change was imputed based on its abundance in the detected
condition.

RESULTS

Isopropanol-Based Fractionation of Peptides on CMMB

According to Hughes et al. (8), the majority of bound pep-
tides are coeluted from CMMB/SP3 when the ACN concen-
tration drops below 87%, providing only a narrow useful range

for stepwise elution. To identify other solvents capable of
eluting peptides in a graded manner from CMMB, we tested
methanol, ethanol, and isopropanol as candidates to replace
ACN. For each solvent, we bound tryptic peptide digests from
HEK293 whole-cell lysates to CMMB in the presence of 95%
ACN (by volume). We then eluted the peptides from the
CMMB by incubating with stepwise decreases in the solvent
concentration (95%, 90%, 85%, 80%, 75%, 70%, and 0%)
(Fig. 1A). Peptide recovery for each solvent at each elution
condition was measured by peptide absorbance at 205 nm.
Methanol, ethanol, and ACN showed similar elution profiles in
which nearly all peptides were eluted across a narrow range of
solvent (data not shown). In contrast, peptides were strongly
bound to the beads in 95% ACN and eluted gradually from the
beads by decreasing isopropanol concentrations (Fig. 1B). We
also examined the ratio of beads to digested protein required
for optimal separation using CIF and determined a bead-to-
protein ratio of 1:12.5 to 1:50 resulted in optimal fraction-
ation and peptide identification (supplemental Fig. 1, A and B).
These characteristics suggested that isopropanol could be
useful as a solvent for offline peptide fractionation on CMMB

FIG. 1. Effective stepwise elution of peptides from CMMB using isopropanol at neutral pH. A, the schematic of CIF workflow. B, fraction
of peptides eluted from CMMB at different isopropanol concentrations, 95% (mean: 0, SD: 0.39), 90% (mean: 5.74, SD: 0.74), 85% (mean: 26.11,
SD: 3.35), 80% (mean: 59.13, SD: 2.32), 75% (mean: 81.61, SD: 1.05), 70% (mean: 92.32, SD: 5.83), 0% (mean: 99.88, SD: 0.64), (n = 3). C, the
number of unique peptides identified or the number of peptides quantified after LC-MS/MS analysis of peptides fractionated by CIF in acidic
(isopropanol solution with 5% formic acid), neutral (isopropanol solution with water) or basic (isopropanol solution with 50-mM triethylamine
bicarbonate) pH conditions. WL is the unfractionated control. (n = 1). D, the number of unique peptides identified by LC-MS/MS analysis in each
isopropanol fraction after fractionation by CIF under acidic, basic, and neutral pH conditions (n = 1). CIF, carboxylate-modified magnetic bead–
based isopropanol gradient peptide fractionation; CMMB, carboxylate-modified magnetic beads; WL, whole lysate.

Peptide Fractionation Using Carboxylate-Modified Beads

4 Mol Cell Proteomics (2021) 20 100039



 56  

FIG. 2. CIF effectively fractionates complex peptide mixtures leading to improved depth of proteome coverage. A, the number of unique
peptides identified or the number of peptides quantified by LC-MS/MS analysis of 100 μg of digested peptides either evenly split into six
fractions (WL, no replicate) or fractionated using CIF RP or eight-fraction RP-CIF-2D (n = 3). B, identical to (A), except the number of identified
peptides, the number of quantified peptides is normalized by the number of fractions analyzed. C, the heatmaps of quantified peptides in
different fractions from WL (replicates of unfractionated sample), CIF (six fractions), and RP (eight fractions) samples. Each heatmap is derived
from one representative sample. D, principal component analysis (PCA) of peptide intensities from each fraction for both CIF and RP experi-
ments including replicates (n = 3). Each dot represents one replicate LC-MS/MS while each shaded circle represents all of the replicates
corresponding to a specific fraction. CIFs are shaded in red, whereas RP fractions are shaded in blue. CIF, carboxylate-modified magnetic bead–
based isopropanol gradient peptide fractionation; RP, reversed phase; WL, whole lysate.
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before LC-MS analysis and that this fractionation worked over
a wide bead:protein ratio.
We also examined peptide elution from CMMB under

different pH environments because previous work on hydro-
philic interaction liquid chromatography (18) found that pH can
affect the binding affinity of peptides to a noncharged matrix.
We bound HEK293-derived tryptic peptide digests to CMMB
and then eluted peptides stepwise into six fractions using
decreasing concentrations of isopropanol (90%, 85%, 80%,
75%, 70%, 0%) across a range of pH levels. Fractionated
samples were subjected to LC-MS analysis and compared
with unfractionated peptide digests as a control. In Figure 1C,
we compared the number of unique peptides identified and
quantified peptides across different pH conditions relative to a
single LC-MS/MS run of the unfractionated control (whole
lysate). Both identified and quantified peptides are higher in
fractionated samples irrespective of pH. For pH comparisons,
neutral pH fractionation generated more peptide identifica-
tions relative to the acidic and basic fractions (Fig. 1C). In
addition, neutral pH showed the most even distribution of
peptides across the isopropanol steps, whereas both acidic
and basic fractionations resulted in the majority of the pep-
tides being eluted in the early elution steps (Fig. 1D). These
data suggest that the even distribution of peptides across
isopropanol fractions at neutral pH relative to low/high pH
explains its improved peptide identification rates. Overall,
these findings indicate that neutral pH elution using iso-
propanol effectively fractionates CMMB/SP3 bound peptides
across a broad concentration range and led us to explore its
utility in proteomic applications.

Peptide Fractionation by CIF Increases Proteome
Coverage

One of the main benefits of peptide fractionation is
improved analyte coverage. Figure 1 showed that CIF pro-
duced a higher number of identified peptides and quantifiable
peptides relative to an unfractionated sample. However, this
increase could have been attributed primarily to the length of
the analysis because data were collected for six 70-min gra-
dients for the fractionation experiment (six fractions × 70 min
per fraction) compared with only a single 70-min analysis of
the unfractionated sample. To distinguish whether the in-
crease in analyte coverage resulted from longer data acqui-
sition or reduced complexity due to the fractionation itself, we
compared peptide identifications between a sample in which
HEK293-derived tryptic peptides were partitioned into six
fractions using CIF and analyzed by LC-MS/MS (six
fractions × 70 min of LC-MS/MS per fraction) and compared
with a sample in which the tryptic peptides were evenly
divided into six unfractionated parts that were analyzed by
LC-MS/MS (six unfractionated samples × 70 min of LC-MS/
MS per sample). For the CIF method, we identified on
average 33,311 unique peptides per sample and could
quantify 29,452 of them (Fig. 2A). For the unfractionated

samples, we identified 19,723 unique peptides of which
16,637 were quantifiable (Fig. 2A). These data demonstrate
CIF collectively produces 69% more identified peptides and
77% more quantifiable peptides from the same amount of
input material and analysis time compared with unfractionated
samples. For analyses of individual fractions, we identified and
quantified on average 3287 and 2773 peptides, respectively,
from an unfractionated sample compared with 5815 and 4909
peptides on average, respectively, from a CIF (Fig. 2B). We
conclude that CIF is an effective method for peptide frac-
tionation and increases peptide coverage by reducing sample
complexity.
We next compared the effectiveness of CIF with high pH RP

fractionation, a widely used offline peptide fractionation
method. Using the Pierce High-pH Reversed-Phase Frac-
tionation Kit, we fractionated our digested peptide sample into
eight fractions following the manufacturer's recommenda-
tions. LC-MS/MS analysis of these eight fractions resulted in
the identification of 41,638 unique peptides and 36,583
quantifiable peptides compared with 33,311 and 29,452
peptides for the six-fraction CIF analysis (Fig. 2A). Although
high-pH RP outperforms CIF under these conditions (25% and
24% increase in unique peptides identified and quantified,
respectively), these increases likely result from the 33% longer
analysis time (eight fractions versus six fractions). Consistent
with this idea, if we normalize the number of identified and
quantified peptides per 70-min gradient, then CIF modestly
outperforms high-pH RP (5815 versus 5204 identified peptides
and 4909 peptides versus 4573 quantifiable peptides per 70-
min gradient). We conclude that CIF and high-pH RP have
comparable efficiency in peptide-level offline fractionation
experiments.
Next, we compared the peptide elution pattern across the

different fractions for unfractionated (whole lysate) versus CIF
versus high-pH RP. As expected, we find that a large number
of abundant peptides are reproducibly identified in replicate
analyses of unfractionated samples (Fig. 2C). However, CIF
and high-pH RP fractionation both produced peptides that are
predominantly enriched in only one fraction. Notably, this
trend is weaker in CIF than in RP with a significant number of
peptides also being enriched in two to three fractions, sug-
gesting that the RP separation has better resolution than CIF.
Nonetheless, both CIF and RP are effectively fractionating
peptides with discrete populations of peptides being eluted at
different concentrations of organic solvent. Importantly, both
are effective at simplifying complex peptide mixtures to in-
crease the depth of peptide coverage, making them well-
suited for standard proteomic workflows.
To assess fraction-to-fraction reproducibility of CIF relative

to high-pH RP, we performed the principal component anal-
ysis of the two methods. Consistent with the high degree of
reproducibility in peptide identifications between replicates
seen in Figure 2, A and B, the principal component analysis
plot shown in Figure 2D demonstrates that replicate fractions

Peptide Fractionation Using Carboxylate-Modified Beads

6 Mol Cell Proteomics (2021) 20 100039



 58  

generated using the same concentration of organic solvent
clustered well in both methods. We conclude that both
methods are highly reproducible. In summary, we demon-
strate that the CIF method is able to reproducibly increase
peptide coverage when conducting proteomic analyses on
complex peptide mixtures and is an effective alternative to
high-pH RP yielding comparable results.

Peptides from CIFs Are Evenly Distributed Across RP
Gradients

Distributing peptides across the entire chromatographic
gradient is essential for performing MS/MS on as many
different precursors as possible and thus maximize the effi-
ciency of data acquisition. To evaluate how peptides from
CIFs were distributed across the subsequent online RP
gradient, we plotted the number of PSMs across the gradient
for each fraction analyzed using 1-min bins. Figure 3A dis-
plays the PSM distribution across the LC gradient from each
of the fractions CIF (left) and RP (right) fractionation experi-
ment. As is shown in Figure 3A (left panel), all six fractions
have almost identical shape with PSMs evenly distributed on
the retention time space. In comparison, the fractions from an
offline high-pH RP separation Figure 3A (right panel) have a
more biased peptide elution pattern relative to CIF. Moreover,
the peptide identifications are biased such that the earlier
elution steps (F1 and F2) show more identifications in the early
portion of the LC RP gradient while late fractions (F7 and F8)
identify more peptides near the end of the gradient (Fig. 3B).
These data demonstrate that CIF displays better orthogonality
than high-pH RP to low-pH RP leading to a more even dis-
tribution of peptides across each gradient.
To analyze these chromatographic distributions in a more

quantitative manner, we defined the distribution index as a
metric for assessing the distribution of PSMs across the
chromatographic gradient. Ideally, if PSMs are distributed
evenly across the gradient, the PSM distribution would be flat
and could be represented as a rectangle in which every bin
has the same height (Fig. 3C, orange area). In practice, the
number of identified PSMs can vary significantly across the
chromatographic separation (Fig. 3C, blue area) and we can
calculate a distribution index (see Experimental Procedures)
that measures the extent to which the actual PSM distribution
falls into the ideal distribution (Fig. 3C, overlapped area).
In Figure 3D, we plot the distribution index for each fraction

from three replicate CIF or RP-based separations. This plot
supports what we observed visually in Figure 3A. All six CIFs
have a similar distribution index, whereas the distribution in-
dex for RP fractions was more variable—consistent with the
idea that there is not perfect orthogonality between high-pH
and low-pH RP chromatography. Figure 3D also shows a
higher distribution index for CIFs relative to RP fractions,
highlighting the even distribution of peptides across the RP
gradient. Together, these data indicate that PSMs in CIFs are
more evenly distributed on the ACN gradient axis of LC than

RP fractions, which may promote better LC-MS acquisition
efficiency.

CIF Serves as the Second Dimension to RP to Further
Increase Sequence Coverage in the Same Analysis Time

Based on the orthogonality between RP and CIF, we
posited CIF could be used in a multidimensional fractionation
strategy together with RP to further improve proteome
coverage. To examine this possibility, we took HEK293
digested lysates fractionated using Pierce high-pH RP spin
columns, combined them from eight into four fractions as
described above, and then used CIF to fractionate each into
two additional fractions using 80% isopropanol and water
(eight fractions total). These fractions were analyzed by LC-
MS/MS, and the peptide identifications were compared with
peptide identifications obtained from eight high-pH RP frac-
tions from the high-pH spin columns before they were com-
bined. As demonstrated in Figure 2A, the RP-CIF-2D
fractionation method identified and quantified on average
46,519 and 42,092 unique peptides, respectively, corre-
sponding to 11.7% more identified peptides and 15% more
quantified peptides compared with RP alone using the same
amount of analysis time (eight × 70 min). We also analyzed a
similar multidimensional fractionation experiment in which all
high-pH fractions were subsequently separated using CIF into
two additional fractions generating 16 fractions total. As
shown in supplemental Figure 2A, the 16-fraction RP-CIF-2D
fractionation identified and quantified 46.4% and 54% more
peptides, respectively, than RP alone, further highlighting the
improved depth of this approach.

CIF Improves Coverage Depth in AP-MS Workflows

Having demonstrated that CIF is a reliable method for
peptide-level fractionation in standard proteomics workflows,
we next explored applications that might specifically benefit
from it. We and others have reported low sample loss as a
major strength of CMMB peptide cleanup, leading us to
examine whether CIF was suitable for fractionating low-
abundance affinity-purified samples to increase depth and
data quality. Here, we test CIF's utility in this regard using an
APEX proximity labeling experiment. APEX is an engineered
ascorbate peroxidase that can label nearby proteins with biotin
in the presence of peroxide (19). Leveraging its proximity la-
beling capacity, researchers fuse it to their protein of interest or
to specific localization signal for a cellular compartment to
capture protein interactomes or compartment-specific pro-
teomes, respectively. Although the high binding affinity be-
tween biotin and SA enables robust capture of labeled proteins
and stringent washing conditions during the purification, the
SA–biotin interaction creates technical challenges due to (1) the
presence of endogenously biotinylated proteins that are
captured by the immobilized SA and (2) the high affinity of the
interaction often requires denaturation or tryptic digestion to
efficiently elute captured proteins, which introduces highly
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FIG. 3. Peptides from CIFs are more evenly distributed than peptides from basic RP fractions across the LC-MS/MS online RP
gradient. A, the violin plot of PSM number distribution at corresponding retention time in each fraction of CIF (left) or RP (right) fractionation
method. B, the histogram overlay of identified PSMs at the corresponding retention time divided into 1-min bins for the first two (blue and red)
and last two (green and purple) fractions of the CIF-based (left) or RP-based (right) fractionation. These data are derived from one representative
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abundant SA into the sample for LC-MS analysis. Both
endogenously biotinylated proteins and SA can significantly
suppress signal from the less-abundant but physiologically
relevant proteins in the sample making efficient fractionation a
potential solution for improving the effectiveness of these ap-
proaches. However, owing to the low yield that is typical of
affinity purification (AP) experiments, commonly used frac-
tionation methods are not generally applied to AP-MS samples.
To examine the utility of CIF for APEX-based AP experiments,
we examined the proximal interaction of Oct4, one of the
Yamanaka transcription factors involved in somatic cell
reprogramming (20). Oct4 is a transcription factor that localizes
strictly in the nucleus. We expressed APEX2-Oct4 in HEK293
cells and performed proximity labeling while using the parental
HEK293 cells as negative control. After labeling, we performed
SA AP, on-bead tryptic digestion and then bound the digested
peptides to CMMB where peptides were sequentially eluted
using three different isopropanol concentrations (85%, 75%,
and 0%). In parallel, we conducted a control experiment using

CMMB to desalt the samples but without fractionation. Both
samples were analyzed by LC-MS. Figure 4A shows that only
six proteins were enriched in APEX2-Oct4 samples over the no
APEX2 control (nontransfected HEK293 cells) (adjusted p-
value ≤ 0.05, Log2 fold change ≥ 1) for the nonfractionated
sample. Of these six proteins, one of them was Oct4 itself and
four are localized in the nucleus, making them putative Oct4-
proximal proteins. In the fractionated samples, 446 proteins
were enriched in APEX2-Oct4 over the no APEX2 control that
included Oct4 and 263 nuclear proteins (Fig. 4B). These results
demonstrate that CIF is effective at fractionating low peptide
amounts leading to major increases in sensitivity in proximity
labeling experiments.

CIF Peptide Elution Properties Can Be Predicted by a
Multi-Variable Linear Model

Figure 2, C and D show that CIF displays a distinct peptide
fractionation pattern from RP. We next explored the

replicate out of three total replicates per condition. C, the schematic representing the distribution index where red indicated the idealized
distribution if peptides elute evenly across the entire gradient, blue indicating a typical peptide elution distribution, and the area of the overlap
representing the distribution index. D, the distribution index of replicate fractions from the CIF (blue) and RP (red) separations (n = 3). CIF,
carboxylate-modified magnetic bead–based isopropanol gradient peptide fractionation; RP, reversed phase.

FIG. 4. CIF improves proteome coverage of AP-MS samples. A, the volcano plot of proteins enriched in APEX2-Oct4 (Pouf51) proximity
labeling experiments. APEX labeling was performed in HEK293 cells expressing APEX2-Oct4 followed by streptavidin purification and LC-MS/
MS analysis. Samples were analyzed without prefractionation (left) or with CIF (right). B, Gene ontology analysis (cellular component) of proteins
identified as negatively enriched (left) or positively enriched (right) in APEX-Oct4 experiments CIF (right) samples. The samples in (A) and (B) are
from two biological replicates. AP, affinity purification; CIF, carboxylate-modified magnetic bead–based isopropanol gradient peptide
fractionation.
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determinants of this peptide elution pattern and assessed
whether we could predict the peptide elution profile based on
peptide sequence alone. To address this question, we
attempted to model the elution profile based on peptide
sequence. We used the R package Peptides to calculate five
physical chemistry properties including aliphatic index, peptide
charge at given pH, peptide isoelectric point, instability index,
and hydrophobicity as well as 18 amino acid composition pa-
rameters that include the number and mole percentage of nine
classes of amino acids for a training set of peptides with known
elution properties for CIF. We then built a model to describe the
relationship between the isopropanol concentration at which a
peptide eluted from CMMB and 23 total peptide property vari-
ables to assess their relative contribution to the elution profiles
(Fig. 5A). The model generated has nine variables that
contribute significantly to the elution profile (Table 1). The R
square for the training set equals 0.70 and the RMSE when
cross-validated using a test set of peptides is 3.82, suggesting
that the model describes the elution pattern very well. In
Figure 5B, we plot the predicted isopropanol elution

concentration for each peptide in each fraction and considered
the prediction correct if the predicted value fell within ± 5% of
the observed isopropanol elution concentration. The final pre-
diction accuracies for all fractions ranged from 60.05% to
92.98%, with an average of 81.03%.
Taken together, we built a multivariable linear model that

predicts the concentration of isopropanol needed to elute a
given peptide based on its sequence and identified the major
physiochemical properties that determine this binding. The
model indicates that the number of charged amino acids in the
peptide sequence, the charge state of the peptide under
neutral conditions, and the peptide's hydrophobicity are the
key drivers determining which peptides are eluted at what
isopropanol concentration.

DISCUSSION

In this study, we describe a CMMB-based peptide frac-
tionation method that offers several features that provide
significant utility in proteomics applications. First, desalting

FIG. 5. Peptide elution by isopropanol from CMMB is determined primarily by nine physicochemical properties of the peptides. A, the
Lasso regression model mean-squared error changes with change of the number of features (top axis) and regularization parameter (λ) (bottom
axis). B, the violin plot of the predicted isopropanol concentration necessary to elute peptides from the test set compared with their experi-
mentally determined elution profile from CIF. Test set data points (n = 13,075), the percentage of accurately predicted peptides in each
experimentally measured fraction (on the top of each column). CIF, carboxylate-modified magnetic bead–based isopropanol gradient peptide
fractionation; CMMB, carboxylate-modified magnetic beads.

Peptide Fractionation Using Carboxylate-Modified Beads

10 Mol Cell Proteomics (2021) 20 100039



 62  

and fractionation are performed in the same tube that mini-
mizes sample loss and facilitates potential automation. Sec-
ond, the binding capacity of CMMB is high, enabling small
beads volumes and hence small elution volumes that also
enhances sensitivity and limits losses. Third, CIF is orthogonal
to SCX and high-pH RP allowing it to be easily integrated into
multidimensional chromatographic schemes. Although we
believe that high-pH RP chromatography is likely to remain the
superior method for applications for requiring deep proteome
coverage, the advantages of CIF outlined here support a
strong complementary role for CIF in other common work-
flows that require high sample throughput or low amounts of
starting material (e.g., APs).
One major advantage to CIF is its orthogonality to the acidic

online RP separations that are standard in themajority of LC-MS/
MS workflows. Considering how evenly peptides are distributed
across the LC gradient determines how efficiently data-
dependent MS/MS acquisition occurs, the orthogonality of off-
line separations becomes a determining factor for the effective-
ness of the analysis. Based on data in Figure 3, A and C, we
demonstrate that CIF displays excellent orthogonality to RP
chromatography in LC-MS/MS applications and is likely the
reason for improved peptide identification and quantitation in
CIFs. In addition, we take advantage of this orthogonality by
demonstrating that CIF and high-pH RP can be used in 2D frac-
tionation experiments to sequentially fractionate peptides offline
before LC-MS/MS analysis to further increase peptide coverage.
Another major advantage of CIF is its scalability in terms of

peptide input. Standard spin column-based high-pH RP kits
typically used for offline fractionation separate input peptides
ranging in amount from 10 to 100 μg. However, in the two
applications we reported here, CIF is compatible with the
fractionation of low-input affinity-purified samples. Specifically,
for low-input samples that are particularly sensitive to material
loss during processing and which limits fractionation options,
we demonstrate CIF retains the ability to efficiency fractionate
samples and can improve data quality at those peptide con-
centration regimes. Based on our experience, fractionation of
affinity-purified samples at the level of either cell compartment
or peptide significantly improves acquisition of reproducible
and biologically meaningful data (data not shown here).
Finally, we built a linear model that predicts the elution prop-

erties of a peptide based on its sequence. This model not only
sheds light on the mechanism of underlying CMMB peptide-
protein binding but also provides a tool for enriching peptides
with particular properties. Because the current model assigns
very highweights to the number of charged amino acid residuals
and peptides that are charged under pH7,we speculate that CIF
might have utility for fractionation of phosphopeptides.
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Supplemental Figure 1
1A 1B

Supplemental Figure 1: (A) Total number of identified peptides in 20 µg CIF 
fractionated samples using 1 µl, 5 µl, 20 µl and 50 µl CMMB (n=1). (B) Number of 
peptides identified by each fraction of each bead amount CIF experiment.
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Supplemental Figure 2

Supplemental Figure 2: Total number of identified peptides fractionated by RP, 8-
fraction RP-CIF-2D, and 16-fraction RP-CIF-2D experiments (n=1). 
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ARTICLE

Neuronal activity regulates the nuclear proteome to
promote activity-dependent transcription
Wendy A. Herbst1,2, Weixian Deng2, James A. Wohlschlegel2, Jennifer M. Achiro2, and Kelsey C. Martin2

The formation and plasticity of neuronal circuits relies on dynamic activity-dependent gene expression. Although recent work
has revealed the identity of important transcriptional regulators and of genes that are transcribed and translated in response to
activity, relatively little is known about the cell biological mechanisms by which activity alters the nuclear proteome of
neurons to link neuronal stimulation to transcription. Using nucleus-specific proteomic mapping in silenced and stimulated
neurons, we uncovered an understudied mechanism of nuclear proteome regulation: activity-dependent proteasome-mediated
degradation. We found that the tumor suppressor protein PDCD4 undergoes rapid stimulus-induced degradation in the
nucleus of neurons. We demonstrate that degradation of PDCD4 is required for normal activity-dependent transcription and
that PDCD4 target genes include those encoding proteins critical for synapse formation, remodeling, and transmission. Our
findings highlight the importance of the nuclear proteasome in regulating the activity-dependent nuclear proteome and
point to a specific role for PDCD4 as a regulator of activity-dependent transcription in neurons.

Introduction
Stimulus-induced gene expression allows neurons to adapt their
structure and function in response to a dynamically changing
external environment (Yap and Greenberg, 2018; Holt et al.,
2019; Gallegos et al., 2018). Activity-dependent transcription is
critical to neural circuit function, from synapse formation dur-
ing development (West and Greenberg, 2011; Flavell et al., 2006;
Wayman et al., 2006; Polleux et al., 2007; Lin et al., 2008) to
synaptic plasticity in the mature brain (Bloodgood et al., 2013;
Chen et al., 2017; Ramanan et al., 2005; Tyssowski et al., 2018;
Yap and Greenberg, 2018). Neuronal activity can regulate gene
expression in the nucleus through chromatin modification and
transcriptional regulation and in the cytoplasm through regu-
lation of RNA localization, stability, and translation (Martin and
Ephrussi, 2009). The extreme morphological polarity and com-
partmentalization of neurons pose a cell biological challenge to
the activity-dependent regulation of gene expression: how are
stimuli received at one site coupled to changes in gene expres-
sion within specific subcellular compartments? To produce
activity-dependent changes in transcription, signals must be
relayed from the site where the signal is received, at the synapse,
to the nucleus. To better understand how neuronal activity is
coupled with changes in transcription, we developed an assay to
systematically identify activity-dependent changes in the nu-
clear proteome of neurons and thereby elucidate novel mecha-
nisms by which neuronal activity alters the concentration of

specific proteins in the nucleus. To our knowledge, this study
provides the first activity-dependent characterization of the
nuclear proteome of neurons.

Neuronal activity can change the concentration of nuclear
proteins via a variety of mechanisms, from nucleocytoplasmic
shuttling of signaling proteins to synthesis and degradation of
nuclear proteins (Ch’ng et al., 2012; Dieterich et al., 2008; Ma
et al., 2014; Lin et al., 2008; Bayraktar et al., 2020; Upadhya
et al., 2004). Although the activity-dependent transcriptome
and translatome of neurons have been extensively characterized
(Brigidi et al., 2019; Chen et al., 2017; Dörrbaum et al., 2020;
Fernandez-Albert et al., 2019; Hrvatin et al., 2018; Lacar et al.,
2016; Tyssowski et al., 2018), less work has been focused on
the upstream changes that occur in the nucleus, specifically
identifying the population of proteins that undergo activity-
dependent changes in nuclear abundance due to regulated
transport or stability, which can in turn influence transcription.
In this study, we used nucleus-specific proteomic mapping to
identify preexisting proteins that undergo activity-dependent
changes in concentration in the nucleus. By characterizing
stimulus-induced changes in the nuclear proteome, these data
provide insight into how activity-dependent transcription is
regulated.

Through our screen of nuclear proteins with activity-dependent
changes in abundance, we discovered that programmed cell
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death 4 (PDCD4) undergoes a significant reduction in nuclear
concentration following neuronal stimulation. PDCD4 has been
studied primarily in the context of cancer, where it has been
found to function as a tumor suppressor and translational in-
hibitor in the cytoplasm (Matsuhashi et al., 2019; Wang and
Yang, 2018; Yang et al., 2003). These studies have revealed
that the abundance of PDCD4 protein is regulated at multiple
levels, including via translation (Asangani et al., 2008; Frankel
et al., 2008; Ning et al., 2014), proteasome-mediated degrada-
tion (Dorrello et al., 2006), and nucleocytoplasmic trafficking
(Böhm et al., 2003), with decreases in PDCD4 correlating with
invasion, proliferation, and metastasis of many types of cancer
(Allgayer, 2010; Chen et al., 2003; Wang and Yang, 2018; Wei
et al., 2012).

Despite being expressed at significant levels in the brain,
especially in the hippocampus and cortex (Lein et al., 2007; Li
et al., 2021), few studies have addressed the role of PDCD4 in the
nervous system. PDCD4 expression in neurons is altered by in-
jury and stress (Jiang et al., 2017; Narasimhan et al., 2013; Li
et al., 2021), and recent work has shown that, as in cancer
cells, PDCD4 may act as a translational repressor in neurons (Li
et al., 2021; Di Paolo et al., 2020). However, the impact of neu-
ronal activity on PDCD4 concentration and the function of nu-
clear, as opposed to cytoplasmic, PDCD4 remains unknown.
Here, we show that neuronal activity stimulates PKC- and
proteasome-mediated degradation of PDCD4 in the nucleus of
neurons and that PDCD4 degradation is necessary for activity-
dependent transcription.

In this study, we describe an assay that represents the first, to
our knowledge, to identify activity-dependent changes in the
nuclear proteome of neurons, and it does so in a manner that is
independent of translation. Our results not only elucidate a novel
mechanism by which activity can regulate the nuclear proteome
but also support a role for the tumor suppressor protein PDCD4
during activity-dependent transcription in neurons.

Results
Identification of the nuclear proteome from silenced and
stimulated neurons using APEX2 proximity biotinylation and
mass spectrometry (MS)
To identify proteins that undergo activity-dependent changes in
nuclear localization or abundance, we analyzed the nuclear
proteomes of silenced and stimulated cultured rat forebrain
neurons. In developing this assay, we used cAMP-response el-
ement binding protein–regulated transcriptional coactivator
1 (CRTC1) as a positive control because we have previously
shown that glutamatergic activity drives the synapse-to-nucleus
import of CRTC1 and that neuronal silencing decreases CRTC1
nuclear abundance (Ch’ng et al., 2012, 2015). We initially used
nuclear fractionation to capture the nuclear proteins but dis-
covered that CRTC1 leaked out of the nucleus during the assay.
This suggested that nuclear fractionation was not a suitable
method and led us to instead use ascorbate peroxidase 2 (APEX2)
proximity biotinylation (Hung et al., 2016), an in situ proximity
ligation assay, to identify activity-dependent changes in the
nuclear proteome. To specifically label the nuclear proteome, we

fused APEX2 to two SV40 NLSs (Kalderon et al., 1984; Fig. 1 A).
APEX2 proximity ligation was advantageous for these experi-
ments for the following reasons: (1) APEX2 biotinylated proteins
can be captured directly by streptavidin pulldown, avoiding the
need for subcellular fractionation; (2) biotinylation occurs rap-
idly (1-min labeling period); and (3) APEX2 can be expressed in a
specific cell type of interest. We designed a neuron-specific
nuclear-localized APEX2 construct (Fig. 1 A) and transduced
cultured rat forebrain neurons with adeno-associated virus
(AAV) expressing APEX2-NLS. Immunofluorescence of trans-
duced neurons revealed that APEX2-NLS was expressed spe-
cifically in the nucleus (Fig. 1 B). We optimized the MOI of AAV
to achieve high transduction efficiency without overexpression
of the construct (important because higher doses of AAV led to
APEX2-NLS expression in the cytoplasm). When all three com-
ponents of the labeling reaction were supplied (APEX2-NLS,
biotin-phenol, and H2O2), proteins were biotinylated specifically
in neuronal nuclei (Fig. 1 B). No labeling was detected in the
absence of APEX2-NLS, biotin-phenol, or H2O2.

To identify proteins that undergo activity-dependent changes
in nuclear abundance, we silenced neurons for 1 h with the
voltage-gated sodium channel antagonist tetrodotoxin (TTX) or
stimulated neurons for 1 h with bicuculline (Bic), which inhibits
GABAA receptors and drives glutamatergic transmission. We
also inhibited protein synthesis using cycloheximide (CHX) in
these experiments because many of the genes that are rapidly
transcribed and translated in response to activity encode nuclear
proteins (Yap and Greenberg, 2018; Heinz and Bloodgood, 2020;
Alberini, 2009). We were concerned that the translation of
activity-dependent genes would overshadow, and thereby hin-
der the detection of, the upstream changes that occur in the
nuclear proteome resulting from alterations in nuclear protein
localization or stability. We confirmed that the CHX treatment
used throughout this study impairs protein translation, as de-
tected by the strong reduction of new protein synthesis using
L-azidohomoalanine (AHA) labeling (Fig. S1, A and B) as well as
the complete inhibition of activity-dependent FOS induction
(Fig. S1, C and D).

After the neurons were silenced or stimulated for 1 h and the
1-min labeling reaction was performed (Fig. 1 C), protein lysates
were collected for analysis by Western blotting and MS. In
neurons expressing APEX2-NLS, many proteins at a variety of
molecular weights were biotinylated in both TTX and Bic con-
ditions, whereas very few proteins were biotinylated in the no-
APEX control, as detected byWestern blot analysis (Fig. 1 D). The
bands detected in the no-APEX control were at molecular
weights of known endogenously biotinylated proteins (Hung
et al., 2016). For all experiments, we also confirmed by immu-
nocytochemistry (ICC) that the APEX2-NLS construct was lo-
calized to the nucleus during both experimental conditions (Fig.
S1, E and F). For MS, biotinylated proteins were captured using
streptavidin pulldown, and the nuclear proteomes were char-
acterized using the tandem mass tag–MS/MS/MS–synchronous
precursor selection (TMT-MS3-SPS) acquisition method (Ting
et al., 2011) through liquid chromatography–MS. We detected
4,407 proteins, and, of those, 2,860 proteins were significantly
enriched above the no-APEX negative control with log2 fold
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Figure 1. Identification of the nuclear proteomes from silenced and stimulated neurons using APEX2 proximity biotinylation. (A) Design of APEX2-
NLS construct. hSyn, human synapsin promoter; NLS, SV40 NLS; WPRE, woodchuck hepatitis virus posttranscriptional regulatory element; hGH poly(A),
human growth hormone polyadenylation sequence. (B) ICC of cultured rat forebrain neurons after APEX2 proximity biotinylation labeling. Nuclear proteins
were biotinylated (streptavidin; red) by the combined presence of APEX2-NLS (GFP; green), biotin-phenol (BP), and H2O2. Scale bar, 10 µm. (C)Workflow for
labeling nuclear proteins from silenced and stimulated neurons. APEX2 labeling diagram based on Hung et al. (2016). (D) Western blot of cultured neuron
protein lysates from no-APEX, APEX+TTX, or APEX+Bic conditions, stained with streptavidin. (E) The top five proteins enriched in the nucleus of Bic-stimulated
neurons, as ranked by Bic versus TTX log2 FC. (F) The top five proteins enriched in the nucleus of TTX-silenced neurons, as ranked by Bic versus TTX log2 FC.
(G) CRTC1 ICC of basal, TTX-silenced, and Bic-stimulated neurons. Scale bar, 10 µm. (H) Violin plots of normalized nuclear CRTC1 ICC intensity. Basal, n = 28;
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change (FC) >3 and adjusted P value <0.05 (Table S1). To assess
nuclear enrichment of the samples, we performed gene ontology
(GO) cellular component analysis on the list of 2,860 proteins
that were enriched above no-APEX (which could be matched to
2,615 unique gene identifiers). Approximately 80% of the top
100 most abundant proteins detected in the study contained the
GO term “nucleus,” and >60% of the entire list of 2,615 proteins
contained the GO term nucleus (Fig. S1 G). We performed GO
cellular component enrichment analysis and found that most of
the top enriched terms were components of the nucleus (Fig.
S1 H and Table S2).

When comparing the Bic and TTX conditions, 23 proteins
were differentially expressed in the nucleus with log2 FC >0.5 or
log2 FC less than −0.5 and P value <0.05 (Table S1). The highest-
ranked protein by log2 FC enriched in the Bic versus TTX nuclear
proteome was the synapse-to-nucleus signaling protein, CRTC1
(Ch’ng et al., 2015; Nonaka et al., 2014; Ch’ng et al., 2012; Sekeres
et al., 2012; Fig. 1 E). The highest-ranked proteins enriched in the
TTX versus Bic nuclear proteome were histone deacetylase 4
(HDAC4) and HDAC5, both of which have been reported to
undergo nuclear export following neuronal stimulation (Chawla
et al., 2003; Schlumm et al., 2013; Fig. 1 F). Using ICC, we con-
firmed that CRTC1 increased in the nucleus and HDAC4 decreased
in the nucleus following Bic stimulation (Fig. 1, G–J). These find-
ings demonstrate that the nucleus-specific APEX2 proximity li-
gation assay successfully captured activity-dependent changes in
the nuclear proteome of neurons.

Neuronal stimulation decreases PDCD4 protein concentration
in the nucleus and cytoplasm of neurons
Among the proteins that underwent activity-dependent changes
in nuclear concentration, the PDCD4 protein was significantly
enriched in the TTX-treated nuclear proteome compared with
the Bic-treated nuclear proteome. To validate this finding, we
characterized the expression of PDCD4 protein in cultured
neurons using ICC, and found that PDCD4 was present in both
the nucleus and cytoplasm of neurons (Fig. 2 A and Fig. S2 A).
Bic stimulation significantly decreased PDCD4 protein expres-
sion in the nucleus by ∼50% (Fig. 2, A and B), with a smaller
decrease of ∼20% in the cytoplasm (Fig. 2 C). The decrease of
PDCD4 occurred within 15 min of Bic stimulation, and PDCD4
protein levels continued to decrease further with longer in-
cubations of Bic up to 3 h (Fig. 2 D). After washout of a 1-h Bic
stimulation, PDCD4 protein expression gradually returned to-
ward baseline levels, although PDCD4 protein concentration was
still below baseline 24 h after washout (Fig. 2 E).

In complementary experiments, we transduced neurons with
AAV expressing C-terminal HA-tagged PDCD4 (Fig. S2 B) and
characterized PDCD4-HA expression by Western blot analysis
(Fig. 2 F) and ICC (Fig. S2, C and D). ByWestern blot analysis, we
found that total PDCD4-HA protein levels decreased by ∼50%

following Bic stimulation (Fig. 2 F). By ICC, both nuclear and
cytoplasmic PDCD4-HA decreased by∼40% (Fig. S2, C and D). To
further validate the Bic-induced decrease in PDCD4, we also
created an N-terminal V5-tagged PDCD4 plasmid (Fig. S2 B) and
transfected the construct in neurons. Consistent with the results
from endogenous PDCD4 and transduced C-terminally HA-
tagged PDCD4, both nuclear and cytoplasmic V5-PDCD4 de-
creased by ∼40% with Bic stimulation (Fig. S2, E and F). These
results show that exogenously expressed PDCD4 concentration
in neurons is regulated by activity and that the decrease in
PDCD4 represents a decrease in the protein rather than cleavage
into multiple fragments.

We also found that depolarization of neurons with 40 mM
KCl for 5 min significantly decreased PDCD4 protein concen-
tration by ∼40% in the nucleus (Fig. 2 G) and ∼30% in the cy-
toplasm (Fig. 2 H), as detected immediately after the 5-min
treatment. Altogether, these results indicate that increases in
glutamatergic transmission and depolarization lead to a rapid
and long-lasting reduction in PDCD4 abundance in the nucleus
and, to a lesser extent, the cytoplasm of neurons.

PDCD4 undergoes proteasome-mediated degradation
following neuronal stimulation
In nonneuronal cells, PDCD4 has been reported to undergo
miRNA-mediated translational repression (Asangani et al.,
2008; Frankel et al., 2008; Ning et al., 2014), stimulus-induced
nuclear export (Böhm et al., 2003), and stimulus-induced
proteasome-mediated degradation (Dorrello et al., 2006). We
sought to investigate the mechanisms of the neuronal activity-
dependent decrease of PDCD4 (Fig. 3 and Fig. S3). Because the
assay we used to detect activity-dependent changes in the nuclear
proteome was conducted in the presence of the protein synthesis
inhibitor CHX, we considered it unlikely that the Bic-induced
decrease in PDCD4 was due to miRNA-mediated translational re-
pression. To confirm this, we conducted PDCD4 ICC of TTX-
silenced and Bic-stimulated neurons in the presence or absence
of CHX and found that CHX did not block the Bic-induced decrease
in PDCD4 (Fig. S3, A and B), thereby ruling out a role for activity-
dependent miRNA-mediated translational regulation.

To investigate the mechanism underlying the decrease in
nuclear PDCD4, we tested if the decrease in nuclear abundance
was due to activity-dependent increases in nuclear export. Nu-
clear export of PDCD4 is mediated by the nuclear export protein,
CRM1, and sensitive to the nuclear export inhibitor, leptomycin
B (LMB; Böhm et al., 2003). Long incubation with LMB suc-
cessfully caused nuclear accumulation of PDCD4 in unstimulated
neurons (Fig. S3 C); however, LMB was unable to prevent the
activity-dependent decrease of nuclear PDCD4 following stim-
ulation (Fig. 3 A and Fig. S3 D). This result demonstrates that
regulated nuclear export is not required for the activity-
dependent decrease of PDCD4.

TTX, n = 21; and Bic, n = 22 cells from 1 set of cultures. Basal median = 1.00; TTXmedian = 0.33; Bic median = 2.64. Basal versus Bic, P < 0.0001; TTX versus Bic,
P < 0.0001. (I) HDAC4 ICC of basal, TTX-silenced, and Bic-stimulated neurons. Scale bar, 10 µm. (J) Violin plots of normalized nuclear HDAC4 ICC intensity.
Basal, n = 28; TTX, n = 24; and Bic n = 26 cells from 1 set of cultures. Basal median = 1.00; TTX median = 1.79; Bic median = 0.61. Basal versus Bic, P = 0.0006;
TTX versus Bic, P < 0.0001. ***, P < 0.001; ****, P < 0.0001; Mann-Whitney U test with Bonferroni correction.
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Figure 2. Neuronal stimulation decreases PDCD4 protein concentration in the nucleus and cytoplasm of neurons. (A) PDCD4 ICC of basal, TTX-
silenced, and Bic-stimulated neurons. Scale bar, 10 µm. (B) Violin plots of normalized nuclear PDCD4 ICC intensity. Basal, n = 226; TTX n = 227; and Bic n = 218
cells from 6 sets of cultures. Basal median = 1.00; TTX median = 1.00; Bic median = 0.55. Basal versus Bic, P < 0.0001; TTX versus Bic, P < 0.0001. (C) Violin
plots of normalized cytoplasmic PDCD4 ICC intensity in the same cells as in B. Basal median = 1.00; TTX median = 1.07; Bic median = 0.81. Basal versus Bic, P <
0.0001; TTX versus Bic, P < 0.0001. (D) Violin plots of normalized nuclear PDCD4 ICC intensity after varying durations of Bic stimulation. Basal, n = 115; Bic 15
min, n = 111; Bic 30 min, n = 102; Bic 1 h, n = 97; Bic 3 h, n = 92; and Bic 6 h, n = 91 cells from three sets of cultures. Basal median = 1.00; Bic 15min median = 0.71;
Bic 30 min median = 0.63; Bic 1 h median = 0.52; Bic 3 h median = 0.45; Bic 6 h median = 0.46. Basal versus Bic 15 min, P < 0.0001; basal versus Bic 30 min, P <
0.0001; basal versus Bic 1 h, P < 0.0001; basal versus Bic 3 h, P < 0.0001; basal versus Bic 6 h, P < 0.0001. (E) Violin plots of normalized nuclear PDCD4 ICC
intensity at various time points after removal of a 1-h Bic stimulation. Basal, n = 124; washout 0 h, n = 94; washout 1 h, n = 111; washout 4 h, n = 104; and
washout 24 h, n = 99 cells from 3 sets of cultures. Basal median = 1.00; washout 0 h median = 0.51; washout 1 h median = 0.57; washout 4 h median = 0.73;
washout 24 h median = 0.75. Basal versus 0 h, P < 0.0001; basal versus 1 h, P < 0.0001; basal versus 4 h, P < 0.0001; basal versus 24 h, P < 0.0001. (F) Top:
Western blot of protein lysates from basal, TTX-silenced, and Bic-stimulated neurons transduced with PDCD4-HA AAV. The PDCD4-HA band is indicated with
an arrow. We observed a faint nonspecific band above the HA band. Bottom: Quantification of Western blot from four sets of cultures. HA intensity was
normalized to TUJ1 intensity. Within each experiment, all samples were normalized to the basal sample. TTX/basal median = 1.57; Bic/basal median = 0.54. TTX
versus Bic, P = 0.0286. (G) Violin plots of normalized nuclear PDCD4 ICC intensity. Control n = 118 and KCl n = 110 cells from three sets of cultures. Control
median = 1.00; KCl median = 0.63. Control versus KCl, P < 0.0001. (H) Violin plots of normalized cytoplasmic PDCD4 ICC intensity in the same cells as in G.
Control median = 1.00; KCl median = 0.70. Control versus KCl, P < 0.0001. *, P < 0.05; ****, P < 0.0001; Mann-Whitney U test with Bonferroni correction.
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We next hypothesized that regulated ubiquitin proteasome-
mediated degradation may explain the Bic-induced decrease of
PDCD4. To test this idea, we incubated TTX-silenced and Bic-
stimulated neurons with the proteasome inhibitors epoxomicin
(Epox) or bortezomib (Bort). The proteasome inhibitors im-
paired Bic-induced decreases of PDCD4 in both the nucleus and
cytoplasm of neurons (Fig. 3, B and C; and Fig. S3, E and F),
indicating that neuronal activity decreases PDCD4 concen-
trations via proteasome-mediated degradation. The finding that
the nuclear export inhibitor LMB did not block the Bic-induced
decrease of PDCD4 in the nucleus (Fig. 3 A) indicates that ac-
tivity regulates proteasome-mediated degradation of nuclear
PDCD4 directly in the nucleus, rather than by nuclear export of
PDCD4 followed by degradation in the cytoplasm.

The E3 ubiquitin ligases β-transducin repeat-containing
protein 1/2 (βTRCP1/2) have been shown to be required for
the proteasome-mediated degradation of PDCD4 in the T98G
glioblastoma cell line (Dorrello et al., 2006). βTRCP1/2 belong to

the family of Cullin-RING E3 ubiquitin ligases, which require
neddylation in order to be activated (Merlet et al., 2009). To
determine if this family of ligases is involved in the activity-
dependent decrease of PDCD4 in neurons, we used the neddy-
lation inhibitor MLN4924 (MLN) and found that it blocked the
Bic-induced decrease of PDCD4 in the nucleus (Fig. 3 D) and
cytoplasm (Fig. S3 G) of neurons. This result further supports
the finding that PDCD4 undergoes proteasome-mediated deg-
radation following Bic stimulation, likely through ubiquitination
by βTRCP1/2.

PDCD4 S71A mutation and PKC inhibition prevent the activity-
dependent decrease of PDCD4
To understand how neuronal activity at synapses leads to
proteasome-mediated degradation of PDCD4 in the nucleus, we
focused on PDCD4’s βTRCP-binding motif. Previous work in
T98G glioblastoma cells has shown that phosphorylation of
Ser67, Ser71, and/or Ser76 in the βTRCP-binding region of

Figure 3. PDCD4 undergoes proteasome-mediated degradation, not nuclear export, following neuronal stimulation. (A) Top: Schematic of CRM1-
mediated nuclear export inhibitor LMB experiments. Bottom: Violin plots of normalized nuclear PDCD4 ICC intensity. Basal, n = 109; TTX, n = 109; Bic, n = 109;
LMB-basal, n = 106; LMB-TTX, n = 100; and LMB-Bic, n = 86 cells from 3 sets of cultures. Basal median = 1.00; TTXmedian = 1.08; Bic median = 0.59; LMB-basal
median = 1.30; LMB-TTX median = 1.16; LMB-Bic median = 0.52. Basal versus Bic, P < 0.0001; TTX versus Bic, P < 0.0001; LMB-basal versus LMB-Bic, P <
0.0001; LMB-TTX versus LMB-Bic, P < 0.0001. (B) Top: Schematic of proteasome inhibitor Epox experiments. Bottom: Violin plots of normalized nuclear
PDCD4 ICC intensity. Basal, n = 113; TTX, n = 106; Bic, n = 103; Epox-basal, n = 107; Epox-TTX, n = 94; and Epox-Bic, n = 86 cells from 3 sets of cultures. Basal
median = 1.00; TTX median = 1.18; Bic median = 0.62; Epox-basal median = 0.97; Epox-TTX median = 0.99; Epox-Bic median = 0.88. Basal versus Bic, P <
0.0001; TTX versus Bic, P < 0.0001; Epox-basal versus Epox-Bic, P = 0.1662; Epox-TTX versus Epox-Bic, P = 0.0174. (C) Top: Schematic of proteasome inhibitor
Bort experiments. Bottom: Violin plots of normalized nuclear PDCD4 ICC intensity. Basal, n = 131; TTX, n = 111; Bic, n = 120; Bort-basal, n = 100; Bort-TTX, n =
98; and Bort-Bic, n = 116 cells from three sets of cultures. Basal median = 1.00; TTX median = 1.09; Bic median = 0.60; Bort-basal median = 1.00; Bort-TTX
median = 1.04; Bort-Bic median = 0.94. Basal versus Bic, P < 0.0001; TTX versus Bic, P < 0.0001; Bort-basal versus Bort-Bic, P = 0.6224; Bort-TTX versus Bort-
Bic, P = 0.2648. (D) Top: Schematic of MLN experiments. MLN inhibits neddylation, preventing the activation of Cullin-RING E3 ubiquitin ligases. Bottom: Violin
plots of normalized nuclear PDCD4 ICC intensity. Basal, n = 130; TTX, n = 120; Bic, n = 120; MLN-basal, n = 115; MLN-TTX, n = 108; and MLN-Bic, n = 97 cells
from three sets of cultures. Basal median = 1.00; TTX median = 1.11; Bic median = 0.64; MLN-basal median = 1.05; MLN-TTX median = 0.93; MLN-Bic median =
0.95. Basal versus Bic, P < 0.0001; TTX versus Bic, P < 0.0001; MLN-basal versus MLN-Bic, P = 0.329; MLN-TTX versus MLN-Bic, P = 1. *, P < 0.05; ****, P <
0.0001; Mann-Whitney U test with Bonferroni correction.
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PDCD4 is necessary for βTRCP binding and subsequent
proteasome-mediated degradation of PDCD4 (Dorrello et al.,
2006). To test if a mutation in PDCD4 at one of these sites
would prevent the activity-dependent decrease of PDCD4 in
neurons, we expressed WT and mutant (S71A) PDCD4-HA in
cultured neurons using AAV (Fig. 4, A and B). Similar to en-
dogenous PDCD4, we found that WT PDCD4-HA decreased fol-
lowing Bic stimulation, with an ∼30% decrease in nuclear HA
intensity and an ∼15% decrease in cytoplasmic intensity, as de-
tected by ICC (Fig. 4 C and Fig. S3 H). In contrast, the PDCD4-HA
S71A mutant did not undergo an activity-dependent decrease in
either the nucleus or cytoplasm, but showed a slight activity-
dependent increase in nuclear intensity (Fig. 4 C). In comple-
mentary experiments, we found that Bic stimulation resulted in
an ∼40% decrease of WT PDCD4-HA signal by Western blot
analysis, whereas PDCD4-HA S71A did not decrease after stim-
ulation (Fig. 4 D). These results suggest that phosphorylation of
S71 in PDCD4’s βTRCP-binding motif is necessary for its activity-
dependent degradation in neurons.

The βTRCP-binding region in PDCD4 contains canonical
phosphorylation consensus sites for the kinases S6K1 and PKC
(Fig. 4 B); Ser71 is a consensus site for PKC, and Ser67 and Ser76
are consensus sites for S6K1 (Dorrello et al., 2006; Matsuhashi
et al., 2014, 2019; Nakashima et al., 2010). To test which kinase
phosphorylates PDCD4 with neuronal activity, we incubated
cultures in the S6K inhibitor LY2584702 or the PKC inhibitor
Ro-31-8425. We found that the S6K inhibitor LY2584702 did not
prevent the Bic-induced decrease of PDCD4 (Fig. 4 E and Fig. S3
I), despite its ability to potently inhibit the phosphorylation of a
known S6K target, ribosomal protein S6 (Fig. S3 J). In contrast,
the pan-PKC inhibitor Ro-31-8425 completely prevented the
activity-dependent decrease (and slightly increased nuclear in-
tensity) of PDCD4 (Fig. 4 F and Fig. S3 K). These results suggest
that in response to glutamatergic activity, PKC phosphorylates
PDCD4 at Ser71, which enables the ubiquitin ligase βTRCP1/
2 to bind and promote the proteasome-mediated degradation
of PDCD4.

Stimulus-induced degradation of PDCD4 regulates the
expression of neuronal activity-dependent genes
The finding that synaptic activity dynamically regulates PDCD4
protein concentration in the nucleus in response to synaptic
activity points to a nuclear function for PDCD4 in coupling
neuronal activity with changes in transcription. To investi-
gate a role for PDCD4 in the regulation of activity-dependent
transcription, we performed RNA sequencing (RNA-seq)
of forebrain cultures transduced with either WT PDCD4 or
degradation-resistant PDCD4 (S71A) following neuronal silenc-
ing with TTX or stimulation with Bic for 1 h (Fig. 5 and Table S3).
Given that PDCD4 has a well-known role in regulating transla-
tion, we sought to distinguish between direct PDCD4-mediated
transcriptional changes in the nucleus and the changes in ex-
pression that are downstream of PDCD4-mediated translational
changes in the cytoplasm by performing the experiments in ei-
ther the presence or absence of CHX. We detected robust Bic-
induced increases in normalized read counts of transcripts for
canonical immediate early genes such as Npas4, Rgs2, and Egr4 in

all biological replicates (WT Bic versus TTX: Npas4 log2 FC = 6.5;
Rgs2 log2 FC = 2.4; Egr4 log2 FC = 3.1; Fig. 5 A and Table S3). We
identified 912 activity-dependent genes, defined as genes with
significant differential expression between Bic and TTX for
PDCD4 WT samples (459 up-regulated, 453 down-regulated;
adjusted P value <0.05 for WT no CHX; Fig. 5, B–D). Clustering
of activity-dependent genes by FC across sample types revealed
that most activity-dependent genes showed similar FCs between
PDCD4 WT and PDCD4 S71A samples (Fig. 5 B), especially for
genes with relatively high activity-dependent FCs (Fig. 5 C).
However, Fig. 5 B also shows that PDCD4 S71A altered activity-
dependent changes in gene expression for a subset of genes.
Specifically, we found that PDCD4 S71A led to a decrease in
activity-induced differential expression for a substantial pro-
portion of genes: 43% of activity-dependent up-regulated
genes (198 genes) and 57% of activity-dependent down-regulated
genes (260 genes) were not significantly up-regulated or down-
regulated, respectively, in the PDCD4 S71A samples (Fig. 5 D).
These results suggest that regulated degradation of PDCD4 is
important for the expression of activity-dependent genes in
neurons.

This inhibition of activity-dependent gene expression could
be due to both a potential role for PDCD4 in transcriptional
processes and secondary effects from PDCD4’s regulation of
translation of specific transcripts (Matsuhashi et al., 2019; Wang
and Yang, 2018). To isolate effects at the transcription level, we
focused on CHX-insensitive activity-dependent genes, that is,
genes that showed activity-dependent differential expression in
both the presence and absence of CHX (in WT, 459 genes after
excluding 3 genes that showed differential expression in different
directions with or without CHX; Fig. 6). We ranked CHX-
insensitive genes by their change in activity-dependent FC
between PDCD4 WT and PDCD4 S71A samples and identified 91
putative PDCD4 target genes that showed large differences in
activity-dependent gene expression betweenWT and degradation-
resistant PDCD4 samples (see Materials andmethods; Fig. 6 A). We
validated the effect of PDCD4 on activity-dependent gene expres-
sionwith quantitative RT-PCR (RT-qPCR) for two of the geneswith
the largest change between PDCD4 WT and PDCD4 S71A (Scd1 and
Thrsp; Fig. S4 A). To confirm a role for PDCD4 in regulating gene
expression, we tested the effect of PDCD4 knockdown and over-
expression on the transcript abundance of these putative PDCD4
target genes. We found that PDCD4 siRNA knockdown of endog-
enous PDCD4 significantly up-regulated the expression of Scd1 and
Thrsp (Fig. S4 B), demonstrating that endogenous PDCD4 represses
the expression of these target genes. Overexpression of PDCD4
using PDCD4 AAV had a smaller effect on the target genes, sig-
nificantly down-regulating Thrsp but only slightly and nonsignifi-
cantly down-regulating Scd1 (Fig. S4 C). These findings support a
role for PDCD4 in gene expression regulation and demonstrate that
endogenous levels of PDCD4 are sufficient to repress the expres-
sion of target genes.

We performed motif analysis of promoter sequences of the
putative PDCD4 target genes and foundmotifs similar to those in
promoters of other CHX-insensitive activity-dependent genes
(e.g., AP-1/TRE, ATF/CRE, Sp1/Klf motifs; Fig. S5), suggesting
that there was not a specific transcription factormotif associated
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Figure 4. PDCD4 S71A mutation and PKC inhibition prevent the activity-dependent decrease of PDCD4. (A) HA ICC of basal, TTX-silenced, and Bic-
stimulated neurons transduced with PDCD4-HA WT, PDCD4-HA S71A AAV, or no AAV (negative control). Scale bar, 10 µm. (B) PDCD4 protein sequence (aa
62–76). PKC and S6K1 phosphorylation sites are indicated in purple. Adapted from Matsuhashi et al. (2019). (C) Violin plots of normalized nuclear HA ICC
intensity. WT-basal, n = 144; WT-TTX, n = 136; WT-Bic, n = 147; S71A-basal, n = 158; S71A-TTX, n = 140; and S71A-Bic, n = 122 cells from four sets of cultures.
WT-basal median = 1.00; WT-TTX median = 1.13; WT-Bic median = 0.67; S71A-basal median = 1.05; S71A-TTX median = 1.21; S71A-Bic median = 1.27. WT-basal
versusWT-Bic, P < 0.0001; WT-TTX versusWT-Bic, P < 0.0001; S71A-basal versus S71A-Bic, P = 0.0034; S71A-TTX versus S71A-Bic, P = 0.14. (D) Top:Western
blot of protein lysates from basal and Bic-stimulated neurons transduced with PDCD4-HA WT or PDCD4-HA S71A. The PDCD4-HA band is indicated with an
arrow. We observed a nonspecific band above the HA band. Bottom: Quantification of Western blot from four sets of cultures. HA intensity was normalized to
TUJ1 intensity. Within each experiment, each Bic sample was normalized to its respective basal sample. WT Bic/Basal median = 0.59; S71A Bic/basal median =
0.90. WT versus S71A, P = 0.0286. (E) Left: Schematic of S6K inhibitor Ly2584702 (LY) experiments. Right: Violin plots of normalized nuclear PDCD4 ICC
intensity. Basal, n = 138; TTX, n = 104; Bic, n = 122, LY-basal, n = 112; LY-TTX, n = 112; and LY-Bic, n = 107 cells from 3 sets of cultures. Basal median = 1.00; TTX
median = 1.11; Bic median = 0.74; LY-basal median = 1.07; LY-TTX median = 1.04; LY-Bic median = 0.62. Basal versus Bic, P < 0.0001; TTX versus Bic, P <
0.0001; LY-basal versus LY-Bic, P < 0.0001; LY-TTX versus LY-Bic, P < 0.0001. (F) Left: Schematic of PKC inhibitor Ro-31-8425 (Ro) experiments. Right: Violin
plots of normalized nuclear PDCD4 ICC intensity. Basal, n = 101; TTX, n = 101; Bic, n = 96; Ro-basal, n = 81; Ro-TTX, n = 95; and Ro-Bic, n = 87 cells from three
sets of cultures. Basal median = 1.00; TTXmedian = 1.08; Bic median = 0.71; Ro-basal median = 0.87; Ro-TTXmedian = 0.93; Ro-Bic median = 0.97. Basal versus
Bic, P < 0.0001; TTX versus Bic, P < 0.0001; Ro-basal versus Ro-Bic, P = 0.0114; Ro-TTX versus Ro-Bic, P = 0.3892. *, P < 0.05; **, P < 0.01; and ****, P <
0.0001; Mann-Whitney U test with Bonferroni correction.
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with putative PDCD4 target genes. GO analysis of the putative
PDCD4 target genes showed enrichment for neuronal signaling
terms, such as “nervous system development” (GO:0007399; 28
genes; false discovery rate [FDR] = 9.28E-04) and “synapse” (GO:
0045202; 18 genes; FDR = 6.54E-03), whereas, for comparison,

other CHX-insensitive activity-dependent genes showed en-
richment for terms related to transcription, such as “regulation
of gene expression” (GO:0010468; 169 genes; FDR = 3.11E-25) and
“nuclear chromosome” (GO:0000228; 51 genes; FDR = 2.88E-09;
Fig. 6 B and Table S4). Putative PDCD4 targets included genes

Figure 5. Stimulus-induced degradation of PDCD4 regulates the expression of neuronal activity–dependent genes. (A) For each biological replicate,
normalized read counts (from DESeq2) divided by transcript length are shown for the top 20 activity-dependent genes, ranked by adjusted P value for PDCD4
WT no-CHX samples. Each row represents a gene, and each column represents a biological replicate. The color of each box indicates transcript abundance
(note: color is not scaled linearly in order to display full range of read counts; see Table S3 for full dataset). (B) Stimulation-induced log2 FC for all 912 activity-
dependent genes, clustered by FC across sample type. Each row represents a gene, and each column represents a sample type. The color legend represents Bic
versus TTX log2 FC, with red representing up-regulation, blue representing down-regulation, and white indicating log2 FC of 0. (C) For each activity-dependent
gene, Bic versus TTX log2 FC is plotted against −log10 of adjusted P value from PDCD4WT samples (black) and PDCD4 S71A samples (red). Gene names for the
top five activity-dependent genes by adjusted P value are labeled. For both PDCD4WT and PDCD4 S71A samples, Npas4 Bic versus TTX adjusted P value was 0
(−log10 of 0 is not defined); therefore, for display, the −log10 adjusted P value for Npas4 was set to 250 for both samples. (D) Activity-dependent up-regulated
genes (left bar) and activity-dependent down-regulated genes (right bar) were categorized by the activity-dependent differential expression in PDCD4 S71A
samples. The colors in each bar show the percentage of activity-dependent genes showing activity-dependent up-regulation (red), no change (gray), or down-
regulation (blue) in PDCD4 S71A samples.
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encoding proteins critical for synapse formation, remodeling,
and transmission such as Shank1, p35, Abhd17b, Gap43, cofilin,
spectrin-β2, myosin-Va, dendrin, Jacob, SNAP-β, voltage-
dependent calcium channel-α2/δ1, α-tubulin, and β-actin (Fig. 6
C). Together, these results suggest that PDCD4 functions in the

nucleus to regulate the expression of a subset of genes and
that inhibiting the stimulation-induced degradation of nu-
clear PDCD4 results in suppression of the transcription of
many activity-dependent genes important for neuronal synaptic
function (Fig. 7).

Figure 6. Degradation-resistant PDCD4 suppresses activity-dependent changes in expression of synaptic genes. (A) Bic versus TTX log2 FC for all 91
putative PDCD4 transcriptional regulation target genes, clustered by FC across sample type. Each row represents a gene, and each column represents a sample
type. The color legend represents Bic versus TTX log2 FC, with red representing up-regulation, blue representing down-regulation, and white indicating a log2
FC of 0. (B) GO analysis −log10 FDR (circles) and percentage of genes (bars) in terms from biological process (top four terms) and cellular compartment (bottom
four terms) analyses (Ashburner et al., 2000; Mi et al., 2019, The Gene Ontology Consortium, 2019). Data from putative PDCD4 target genes (91 genes) are
shown in orange and, for comparison, data from other CHX-insensitive activity-dependent genes (368 genes) are shown in purple. Select GO terms are shown
for simplicity (see Table S4 for top 15 GO terms by FDR for both groups of genes). (C) Diagram depicting a generic synapse and synaptic proteins. The labeled
synaptic proteins are encoded by putative PDCD4 target genes (gene name indicated in parentheses alongside protein). The activity-dependent changes in
expression of these genes are inhibited by degradation-resistant PDCD4. The presynaptic terminal is shown above with neurotransmitter-loaded synaptic
vesicles, and the post-synaptic terminal is shown below with neurotransmitter receptors in the post-synaptic membrane (one receptor is shown anchored to
an unlabeled gray PSD-95 protein). Arrow next to gene name illustrates the direction of activity-dependent differential expression, and dashed line with bar
illustrates the suppression of this activity-dependent change in the PDCD4 S71A samples. DE, differential expression.
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Discussion
In this study, we sought to test how neuronal activity at the
synapse changes the nuclear proteome to regulate activity-
dependent transcription. While advances in transcriptomic
technologies have enabled the identification of genes that un-
dergo activity-dependent changes in expression (Brigidi et al.,
2019; Chen et al., 2017; Fernandez-Albert et al., 2019; Tyssowski
et al., 2018), the systematic identification of proteins that un-
dergo changes in subcellular localization and/or stability has
been more challenging. We implemented a new proximity li-
gation approach to characterize changes in the nuclear proteome
triggered by neuronal stimulation. Our results provide the first,
to our knowledge, unbiased characterization of the population of
proteins that undergo changes in nuclear abundance following
neuronal silencing and/or glutamatergic stimulation, and they
do so in a manner that is independent of translation or tran-
scription. We detected activity-dependent changes in the known
nucleocytoplasmic shuttling proteins, CRTC1 and HDAC4/5
(Ch’ng et al., 2012; Chawla et al., 2003), demonstrating the
validity of this neuron-specific, subcellular compartment–
specific assay. In addition, our results highlight an understudied
mechanism of transcriptional regulation in neurons: activity-
dependent nuclear proteasome-mediated degradation.

We found that synaptic activity led to proteasome-mediated
degradation of the tumor suppressor protein PDCD4 in the nu-
cleus and, to a lesser extent, in the cytoplasm. Given that the
nuclear export inhibitor LMB did not block the activity-
dependent decrease of nuclear PDCD4, we demonstrated that
nuclear PDCD4 is degraded without leaving the nucleus. Many
examples of activity-dependent degradation of proteins within
the cytoplasm have been reported in neurons (Hegde et al., 1993;
Banerjee et al., 2009; Jarome et al., 2011), but fewer cases of
activity-dependent degradation of proteins within the nucleus
have been described (Upadhya et al., 2004; Bayraktar et al.,
2020; Kravchick et al., 2016). Nonetheless, the nucleus con-
tains machinery for proteasome-mediated degradation, and
there are numerous examples of proteins that are degraded by
the nuclear proteasome in nonneuronal cells, including tran-
scriptional regulators and cell-cycle proteins (von Mikecz,
2006). Neuronal nuclei have also been shown to contain ma-
chinery for proteasome-mediated degradation (Mengual et al.,
1996) and exhibit proteasomal activity, albeit with less activity

than is present in the cytoplasm (Upadhya et al., 2006; Tydlacka
et al., 2008). Activity-dependent nuclear proteasome–mediated
degradation of transcriptional regulators represents an im-
portant mechanism by which synaptic activity regulates gene
expression.

In neurons, synaptic activity leads to an increase in the ac-
tivity of many kinases, including S6K and PKC (Callender and
Newton, 2017; Biever et al., 2015). We found that a phospho-
incompetent serine-to-alanine mutation at Ser71 prevented the
activity-dependent degradation of PDCD4 and that phosphoryl-
ation by PKC, but not S6K, was required for this activity-
dependent degradation. This result is consistent with previous
studies in other cell types, demonstrating that either S6K or PKC
is required for PDCD4 phosphorylation, depending on the sig-
naling pathway (Matsuhashi et al., 2019, 2014; Dorrello et al.,
2006; Nakashima et al., 2010; Schmid et al., 2008). The
stimulus-specific requirement of either S6K or PKC for PDCD4
degradation raises the interesting possibility that different types
of neuronal stimulation could trigger PDCD4 degradation via
distinct signaling pathways. Supporting this idea, two studies in
neurons have suggested that PDCD4 degradation may be regu-
lated by S6K in response to injury and stress (Li et al., 2021; Di
Paolo et al., 2020), whereas our study demonstrated that PDCD4
degradation was mediated by PKC. PKC is typically activated at
the cell surface (Gould and Newton, 2008); however, it can
translocate from the cytoplasm to the nucleus after activation
and can be activated directly in the nucleus (Lim et al., 2015;
Martelli et al., 2006), where it phosphorylates nuclear targets,
including histones and transcription factors (Lim et al., 2015;
Martelli et al., 2006).

PDCD4 has been well characterized as a translational re-
pressor in the cytoplasm of cancer cells (Wang et al., 2017;
Wedeken et al., 2011; Yang et al., 2004). Low concentrations of
PDCD4 have been reported to correlate with invasion, prolifer-
ation, and metastasis of many types of cancers (Allgayer, 2010;
Chen et al., 2003; Wang and Yang, 2018; Wei et al., 2012).
However, the role of PDCD4 in the nucleus is less well charac-
terized, even though the protein is predominantly localized in
the nucleus of many cells (Böhm et al., 2003). Despite being
highly expressed in neurons, few studies have examined the
neuronal function of PDCD4 (Di Paolo et al., 2020; Li et al., 2021;
Narasimhan et al., 2013), and, as far as we are aware, no

Figure 7. Summary diagram of the activity-
dependent proteasome-mediated degradation of
PDCD4. In silenced neurons (left), PDCD4 is highly
expressed and suppresses the expression of specific
genes. In stimulated neurons (right), PDCD4 is phos-
phorylated by PKC and undergoes proteasome-mediated
degradation, thereby facilitating the expression of
specific genes important for neuron synaptic func-
tion. ub, ubiquitin.
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previous study has identified a role for PDCD4 in activity-
dependent transcription in neurons. In our study, we detected
a larger activity-dependent decrease of PDCD4 in the nucleus
than in the cytoplasm, and we found that blocking PDCD4 deg-
radation suppressed activity-dependent gene expression. These
findings suggest that the proteasome-mediated degradation of
PDCD4 is important for regulating activity-dependent tran-
scription following neuronal stimulation. Previous studies in
nonneuronal cells have indicated that PDCD4 can inhibit
AP-1–dependent transcription, although it is unclear whether
this is a direct role in the nucleus (Bitomsky et al., 2004) or an
indirect role regulating the translation of signaling proteins in
the cytoplasm (Yang et al., 2006). PDCD4 has also been shown
to bind to the transcription factors CSL (Jo et al., 2016) and
TWIST1 (Shiota et al., 2009) and inhibit their transcriptional
activity. Although activity-dependent degradation of cytoplas-
mic PDCD4 was weaker and less consistent than that of nuclear
PDCD4, we cannot rule out the possibility that PDCD4 has a
translation-independent role in the cytoplasm (such as binding
to signaling proteins) that could indirectly regulate transcrip-
tion. However, we propose that PDCD4 has a direct role in
regulating activity-dependent transcription in the nucleus, in
addition to its well-characterized role as a translational re-
pressor in the cytoplasm.

We identified 91 genes that are putative activity-dependent
targets of PDCD4, including genes encoding proteins that are
important for synaptic function. The activity-dependent down-
regulation of PDCD4 in neurons is reminiscent of the concept of
“memory suppressor genes” (Abel and Kandel, 1998), genes that
act as inhibitory constraints on activity-dependent neuronal
plasticity. By analogy to PDCD4 function during cancer metas-
tases, decreases in PDCD4 in neurons would function to enable
experience-dependent neuronal growth and remodeling. Dys-
regulated PDCD4 concentrations have also been reported to
underlie a variety of metabolic disorders, including polycystic
ovary syndrome, obesity, diabetes, and atherosclerosis, high-
lighting the critical role PDCD4 plays in regulating gene ex-
pression in multiple cell types (Lu et al., 2020). Our study
provides the first transcriptomic profile of PDCD4 that is inde-
pendent of PDCD4’s role in translation. These results provides
insight into the transcriptional targets of PDCD4, which is of
relevance not only to neuroscience but also to the study of
PDCD4 in cancer.

Taken together, our findings illustrate the utility of prox-
imity ligation assays in identifying activity-dependent changes
in the proteome of subcellular neuronal compartments and point
to the array of cell biological mechanisms by which activity can
regulate the neuronal proteome. They also focus attention on the
tumor suppressor protein PDCD4 as a critical regulator of
activity-dependent gene expression in neurons, highlighting a
role for PDCD4 in regulating the transcription of genes involved
in synapse formation, remodeling, and transmission. This new
role is in addition to PDCD4’s well-characterized role as a
translational inhibitor (Wang and Yang, 2018), and future in-
vestigation of the mechanisms by which PDCD4 regulates
transcription of these genes will provide further insight into the
understudied role of PDCD4 as a transcriptional regulator. Such

studies also promise to deepen our understanding of the specific
cell and molecular biological mechanisms by which experience
alters gene expression in neurons to enable the formation and
function of neural circuits.

Materials and methods
Experimental model details
Primary neuronal cultures
All experiments were performed using approaches approved by
the University of California, Los Angeles, Animal Research
Committee. Forebrains from postnatal day 0 Sprague-Dawley
rats (Charles River) were dissected in cold HBSS (Thermo
Fisher Scientific) supplemented with 10 mM Hepes buffer and
1 mM sodium pyruvate. Sex was not determined, and tissues
frommale and female pups were pooled. The tissuewas chopped
finely and digested in 1× trypsin solution (Thermo Fisher Scien-
tific) in HBSS (supplemented with 120 µg/ml DNase and 1.2 mM
CaCl2) for 15 min at 37°C. The tissue was washed and triturated in
DMEM (Thermo Fisher Scientific) + 10% FBS (Omega Scientific)
before plating on polyDL-lysine (PDLL)-coated (0.1 mg/ml; Sigma)
10-cm dishes or 24-well plates containing acid-etched PDLL-
coated coverslips (Carolina Biologicals). Neurons were plated at
a density of one forebrain per 10-cm dish (for MS experiments) or
one-half forebrain per entire 24-well plate (for ICC, RNA-seq, and
Western blot experiments). Neurons were cultured in Neurobasal-A
medium (Thermo Fisher Scientific) supplemented with 1× B-27
(Thermo Fisher Scientific), 0.5 mM GlutaMAX (Thermo Fisher
Scientific), 25 µM monosodium glutamate (Sigma), and 25 µM
β-mercaptoethanol (Sigma) and incubated at 37°C, 5% CO2.
When applicable, neurons were transfected with plasmids using
Lipofectamine 2000 (Thermo Fisher Scientific) according to the
manufacturer’s instructions at day in vitro (DIV) 2, transduced
with AAV at DIV 13, or treated with 1 µM control Accell siRNA
(D-001910-10-20; Horizon Discovery) or 1 µM PDCD4 Accell
siRNA (E-097927-00-0020; Horizon Discovery) at DIV 15. All
experiments were performed at DIV 20.

Detailed methods
Generation of plasmids and AAV
To create human synapsin promoter (hSyn) NLS-APEX2-EGFP-
NLS, APEX2 was amplified from the pcDNA3 APEX2-NES plas-
mid (gift from Alice Ting, Stanford University, Stanford, CA;
Addgene plasmid 49386) with three sequential sets of primers to
add SV40 NLS to both the N-terminus and C-terminus of APEX2
(primer sets 1–3; Table S5). The design of using NLS on both
sides of APEX2 was based on the design of Cas9-NLS (Swiech
et al., 2015). NLS-APEX2-NLS was then inserted into the pAAV-
hSyn-EGFP plasmid (gift from Bryan Roth, University of North
Carolina, Chapel Hill, NC; Addgene plasmid 50465) between the
BamHI and EcoRI sites, replacing the EGFP insert. The final hSyn
NLS-APEX2-EGFP-NLS construct was created by amplifying
hSyn NLS-APEX2-NLS (primer set 4; Table S5) and EGFP
(primer set 5; Table S5) and joining the two products at NheI
and SacI.

To create hSyn PDCD4-HA, rat PDCD4 was amplified from
cultured neuron cDNA (primer set 6; Table S5) with a C-terminal
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HA tag and then inserted into the pAAV-hSyn-EGFP plasmid
between NcoI and EcoRI, replacing the EGFP insert. The S71A
mutation was created using site-directed mutagenesis (services
by GENEWIZ) to mutate serine 71 (TCT) to alanine (GCT). The
hSyn V5-PDCD4-HA construct was created by adding a V5 tag
to the N-terminus of PDCD4-HA using PCR-based mutagenesis
(services by GENEWIZ).

AAV9 was generated for APEX2-NLS, PDCD4-HA WT, and
PDCD4-HA S71A at the Penn Vector Core.

Pharmacological treatments
Neurons were preincubated with CHX (60 µM; Sigma) for
15 min; LMB (10 nM; Sigma) for 30 min; LY2584702 (1 µM;
Cayman Chemical) or Ro-31-8425 (5 µM; Sigma) for 1 h; or Epox
(5 µM; Enzo Life Sciences), Bort (10 µM; APExBIO), or MLN
(50 nM; APExBIO) for 2 h. Inhibitors remained in the media
throughout the duration of each respective experiment, incu-
bated at 37°C. For neurons treated with inhibitors dissolved in
DMSO (Epox, Bort, MLN, LY2584702, and Ro-31-8425), the final
DMSO concentration in the media was 0.1% or less. For neurons
treated with LMB, the final methanol concentration in the media
was 0.08%. All control groups received an equivalent concentra-
tion of vehicle (DMSO or methanol). To silence the neurons, 1 µM
TTX (Tocris Bioscience) was applied to the neurons for 1 h. To
stimulate the neurons, 40 µM (−)-Bic methiodide (Tocris Biosci-
ence) was applied to the neurons for 1 h unless otherwise stated.

For KCl stimulations, neurons were preincubated with
standard Tyrode’s solution (140 mM NaCl, 10 mM Hepes, 5 mM
KCl, 3 mM CaCl2, 1 mM MgCl2, and 20 mM glucose, pH 7.4)
containing 1 µM TTX for 15 min at RT and then stimulated for
5 min with 40 mM KCl isotonic Tyrode’s solution containing
TTX. Control cells remained in the standard Tyrode’s solution
containing TTX throughout the experiment.

Control data from LMB (Fig. 3 A and Fig. S3 D) and CHX (Fig.
S3, A and B) experiments were combined to generate the data
shown in Fig. 2, B and C. Two of the Bort experiments were
performed concurrently with two of the MLN experiments, so
these experiments partially share control data in Fig. 3, C and D;
and Fig. S3, F and G. One of the LY2584702 experiments was
performed concurrently with one of the Bort experiments, so
Fig. 4 E and Fig. S3 I partially share control data with Fig. 3 C and
Fig. S3 F.

APEX2 proximity biotinylation, streptavidin pulldown, and on-bead
tryptic digestion
For APEX2 MS experiments, three biological replicates (sets of
cultures) were prepared with three samples in each replicate
(APEX + Bic, APEX + TTX, and no APEX). Neurons were TTX
silenced or Bic stimulated for 1 h in the presence of CHX (as
above). During the final 30 min of the treatment, neurons were
incubated with 500 µM biotin-phenol (APExBIO) at 37°C. Dur-
ing the final 1 min, labeling was performed by adding H2O2 to a
final concentration of 1 mM. To stop the labeling reaction,
neurons were washed three times in large volumes of quencher
solution (PBS with 10 mM sodium azide, 10 mM sodium ascor-
bate, and 5 mMTrolox [6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid]).

Neurons were lysed with radioimmunoprecipitation assay
(RIPA) buffer (50 mM Tris, 150 mM NaCl, 0.1% SDS, 0.5% so-
dium deoxycholate, and 1% Triton X-100, pH 7.5) containing
protease inhibitor cocktail (Sigma), phosphatase inhibitor
cocktail (Sigma), and quenchers. Lysates were treated with
benzonase (200 U/mg protein; Sigma) for 5 min and then clar-
ified by centrifugation at 15,000 g for 10 min. Samples were
concentrated with Amicon centrifugal filter tubes (3K NMWL;
Millipore) to at least 1.5 mg/ml protein and quantified using a
Pierce 660-nm protein assay kit (Thermo Fisher Scientific).

For each sample, 2 mg lysate was incubated with 220 µl
Pierce streptavidin magnetic beads (Thermo Fisher Scientific)
for 60 min at RT. Samples were washed twice with RIPA buffer;
once with 1 M KCl; once with 0.1 M sodium carbonate; once with
2 M urea, and 10 mM Tris-HCl, pH 8.0; and twice with RIPA
buffer according to Hung et al. (2016).

The streptavidin beads bound by biotinylated proteins were
then washed three times with 8 M urea and 100 mM Tris-HCl,
pH 8.5, and three times with pure water, and then the samples
were resuspended in 100 µl 50 mM tetraethylammonium bro-
mide. Samples were reduced and alkylated by sequentially
incubating them with 5 mM tris(2-carboxyethyl)phosphine
and 10 mM iodoacetamide for 30 min at RT in the dark on a
shaker set to 1,000 rpm. The samples were incubated over-
night with 0.4 µg Lys-C and 0.8 µg trypsin protease at 37°C on
a shaker set to 1,000 rpm. Streptavidin beads were removed
from peptide digests, and peptide digests were desalted using
Pierce C18 tips (100-µl bead volume), dried, and then recon-
stituted in water.

TMT labeling
The desalted peptide digests were labeled by the TMT10plex
Isobaric Label Reagent Set (Thermo Fisher Scientific) according
to the manufacturer’s instructions. In brief, peptides were in-
cubated with acetonitrile (ACN)-reconstituted TMT labeling
reagent for 1 h and then quenched by adding hydroxyla-
mine. Sample-label matches were no-APEX replicate 1 labeled
with TMT126, APEX+Bic replicate 1 labeled with TMT127N,
APEX+TTX replicate 1 labeled with TMT127C, APEX+TTX rep-
licate 2 labeled with TMT128N, no-APEX replicate 2 labeled
with TMT128C, no-APEX replicate 3 labeled with TMT129N,
APEX+Bic replicate 2 labeled with TMT129C, APEX+Bic repli-
cate 3 labeled with TMT130N, and APEX+TTX replicate 3 la-
beled with TMT130C. Labeled samples were then combined,
dried, and reconstituted in 0.1% trifluoroacetic acid for high pH
reversed-phase fractionation.

High pH reversed-phase fractionation
High pH reversed-phase fractionation was performed using the
Pierce High pH Reversed-Phase Peptide Fractionation Kit
(Thermo Fisher Scientific) according to the manufacturer’s in-
structions. In brief, peptides were bound to the resin in the spin
column and then eluted by stepwise incubations with 300 µl of
increasing ACN concentrations. The eight fractions were com-
bined into four fractions (fractions 1 and 5, 2 and 6, 3 and 7, and 4
and 8). Fractions were then dried by vacuum centrifugation and
reconstituted in 5% formic acid for MS analysis.
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Liquid chromatography–MS data acquisition
A 75-µm × 25-cm custom-made C18 column was connected to
a nanoflow Dionex Ultimate 3000 ultra-high-pressure liquid
chromatography system. A 140-min gradient of increasing ACN
was delivered at a 200 nl/min flow rate as follows: 1–5.5% ACN
phase from minutes 0 to 5, 5.5–27.5% ACN from minutes 5 to
128, 27.5–35% ACN from minutes 128 to 135, 35–80% ACN from
minutes 135 to 136, 80% ACN hold from minutes 136 to 138,
and then down to 1% ACN fromminutes 138 to 140. An Orbitrap
Fusion Lumos Tribrid mass spectrometer TMT-MS3-SPS
method was used for data acquisition. Full MS scans were ac-
quired at 120K resolution in the Orbitrap device with the au-
tomatic gain control target set to 2e5 and a maximum injection
time set to 50 ms. MS2 scans were collected in ion trap with
turbo scan rate after isolating precursors with an isolation
window of 0.7 mass-to-charge ratio and collision-induced dis-
sociation fragmentation using 35% collision energy. MS3 scans
were acquired in the Orbitrap spectrometer at 50K resolution,
and 10 synchronized selected precursor ions were pooled for
each scan using 65% higher-energy C-trap dissociation energy
for fragmentation. For data-dependent acquisition, a 3-s cycle
time was used to acquire MS/MS spectra corresponding to
peptide targets from the preceding full MS scan. Dynamic ex-
clusion was set to 30 s.

MS/MS database search
MS/MS database searching was performed using MaxQuant
(1.6.10.43; Cox and Mann, 2008) against the rat reference
proteome from the European Molecular Biology Laboratory
(UP000002494-10116 RAT, Rattus norvegicus, 21,649 entries).
The search included carbamidomethylation as a fixed modifi-
cation and methionine oxidation and N-terminal acetylation as
variable modifications. The digestion mode was set to trypsin
and allowed a maximum of two missed cleavages. The precursor
mass tolerances were set to 20 and 4.5 ppm for the first and
second searches, respectively, whereas a 20-ppmmass tolerance
was used for fragment ions. Datasets were filtered at 1% FDR at
both the peptide spectrum match and protein levels. Quantifi-
cation type was set to reporter ion MS3 with 10-plex TMT
option.

Statistical inference in MS data
MSStatsTMT (1.4.1; Huang et al., 2020) was used to analyze the
MaxQuant TMT-MS3 data in the APEX2 proximity labeling
experiment to statistically assess protein enrichment. TTX
channels were used for MS run-level normalization. The
“msstats” method was then used for protein summarization. P
values for t tests were corrected for multiple hypothesis testing
using the Benjamini-Hochberg adjustment. We identified pro-
teins that were enriched above the no-APEX negative control
using a log2 FC >3 and adjusted P value <0.05 cutoff above the
no-APEX condition. Using this protein list, we then identified
proteins that were differentially expressed when comparing
between Bic and TTX conditions using log2 FC >0.5 or log2 FC
less than −0.5 and P value <0.05. It is important to note that we
used a nonadjusted P value cutoff when identifying candidate
proteins that were differentially expressed between the TTX-

silenced and Bic-stimulated conditions, because only HDAC4
and six other proteins had a significant adjusted P value when
using these cutoffs. Even CRTC1, a protein that has been shown
to undergo activity-dependent changes in multiple studies
(Ch’ng et al., 2012, 2015; Nonaka et al., 2014) and confirmed
again in the present study, did not reach adjusted P value sig-
nificance, suggesting that we did not have the statistical power
to detect certain activity-dependent changes. Because we used
nonadjusted P values to identify candidate proteins, it is espe-
cially important to experimentally validate any potential can-
didate protein.

Protein extraction and Western blot analysis
Neurons were washed in Tyrode’s solution (140 mM NaCl,
10 mMHepes, 5 mM KCl, 3 mM CaCl2, 1 mMMgCl2, and 20 mM
glucose, pH 7.4) and lysed with RIPA buffer (50 mM Tris,
150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, and 1%
Triton X-100, pH 7.5) containing protease and phosphatase in-
hibitor cocktails (Sigma). Samples were clarified by centrifu-
gation at 10,000 g for 10 min. Protein concentration was
determined using the Pierce bicinchoninic acid protein assay kit
(Thermo Fisher Scientific).

Protein lysates were boiled in loading buffer (10% glycerol,
1% SDS, 60 mM Tris-HCl, pH 7.0, 0.1 M DTT, and 0.02% bro-
mophenol blue) for 10 min at 95°C and run on an 8% polyac-
rylamide gel for 90 min at 120 V. Samples were wet transferred
onto a 0.2-µm nitrocellulose membrane for 16 h at 40 mA. The
membrane was blocked with Odyssey Blocking Buffer (LI-COR
Biosciences) and incubated with the following primary anti-
bodies: mouse HA (901513, 1:1,000; BioLegend), mouse TUJ1
(801201, 1:1,000; BioLegend), mouse S6 (2317, 1:1,000; Cell Sig-
naling Technology), and rabbit phospho-S6 Ser235/236 (4858, 1:
2,000; Cell Signaling Technology) for 3–4 h at RT or overnight at
4°C. The membrane was washed with TBS with Tween 20 and
incubated with the following secondary antibodies: anti-rabbit
IRDye 800CW (1:10,000), anti-mouse IRDye 800CW (1:10,000),
anti-mouse IRDye 680CW (1:10,000), and IRDye 800CW strep-
tavidin (1:1,000) for 1 h at RT. The membrane was imaged using
the Odyssey infrared imaging system (LI-COR Biosciences).
Western blots were quantified using the Image Studio (LI-COR
Biosciences) rectangle tool. The relative intensity of each band
was calculated by normalizing to a loading control (TUJ1).
Within each experiment, all values were normalized to the
control (basal) sample.

ICC
Neurons were fixed with 4% PFA in PBS for 10 min, per-
meabilized in 0.1% Triton X-100 in PBS for 5 min, and blocked in
10% goat serum in PBS for 1 h. Neurons were incubated with the
following primary antibodies: chicken microtubule-associated
protein 2 (MAP2; 1100-MAP2, 1:1,000; PhosphoSolutions), rab-
bit PDCD4 (9535, 1:600; Cell Signaling Technology), mouse HA
(901513, 1:1,000; BioLegend), mouse V5 (R960-25, 1:250; Thermo
Fisher Scientific), rabbit CRTC1 (A300-769, 1:1,000; Bethyl
Laboratories), rabbit HDAC4 (7628, 1:100; Cell Signaling Tech-
nology), and rabbit FOS (2250, 1:500; Cell Signaling Technology)
for 3–4 h at RT or overnight at 4°C. Neurons were washed with
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PBS and incubated at 1:1,000 with the following secondary an-
tibodies: anti-chicken Alexa Fluor 647, anti-rabbit Alexa Fluor
555, anti-mouse Alexa Fluor 555, streptavidin Alexa Fluor 555,
and Hoechst 33342 stain for 1 h at RT. Neurons were washed
with PBS and mounted on slides with Aqua-Poly/Mount (Poly-
sciences) for confocal imaging.

Protein synthesis assay (AHA labeling)
Neurons were washed once in warm Tyrode’s solution and then
incubated in methionine-free Hibernate A (BrainBits) supple-
mented with 1× B-27 for 30 min at 37°C, 0% CO2 (due to the
buffering conditions of Hibernate A). Neurons were then incu-
bated in 4 mM AHA (Thermo Fisher Scientific) or the non-
labeling control 4mMmethionine (Sigma) for 2 h inHibernate A
at 37°C, 0% CO2. When applicable, 60 µm CHXwas preincubated
for 15 min before the start of the AHA labeling and remained in
the media throughout the duration of the experiment. Neurons
were washed twice in cold Tyrode’s solution, fixed with 4% PFA
in PBS for 10 min, permeabilized in 0.1% Triton X-100 in PBS for
5 min, and washed three times in 3% BSA in PBS. The Click-IT
reaction was performed using the Click-iT Cell Reaction Buffer
Kit (Thermo Fisher Scientific) and Alexa Fluor 488 alkyne
(Thermo Fisher Scientific) according to the manufacturer’s in-
structions, with a 30-min reaction at RT using 5 µM Alexa Fluor
488 alkyne. Neurons were washed three times in 3% BSA in PBS
and then proceeded to the normal ICC protocol above, starting at
the goat serum blocking step.

Confocal imaging
Samples were imaged using a Zeiss LSM 700 confocal micro-
scope with a 40×/1.3 NA oil objective and a 63×/1.4 NA oil ob-
jective at RT and 405-nm, 488-nm, 555-nm, and 639-nm lasers,
using ZENmicroscopy software. All images were acquired using
the 40× objective, except for the AHA incorporation protein
synthesis experiments, which were imaged using the 63× ob-
jective. Identical image acquisition settings were used for all
images within an experiment. For each image acquisition, the
experimenter viewed theMAP2 and Hoechst channels to select a
field of view and was blind to the experimental channel (e.g.,
HA, PDCD4). For each coverslip, images were taken at multiple
regions throughout the coverslip, and two or three coverslips
were imaged per condition. Images were collected from at least
three experimental replicates (sets of cultures), unless otherwise
stated.

Image analysis
ICC images were processed using ImageJ (Schindelin et al.,
2012). An ImageJ macro was used to create regions of interest
(ROIs) for neuronal nuclei. In brief, the Hoechst signal was used
to outline the nucleus, and the MAP2 signal was used to select
neurons and exclude nonneuronal cells. To create ROIs for
neuronal cytoplasm, the cell body of each neuron was manually
outlined using the MAP2 signal, and then the nuclear ROI was
subtracted from the total cell body ROI. The ROIs were used to
calculate the mean intensity in the channel of interest (e.g., HA,
PDCD4) for the nucleus and cytoplasm of each neuron. Within
each ICC experimental replicate, the measured values from all

ROIs were normalized to the median value of the control con-
dition (basal). For experiments using transfected cells (V5 ex-
periments), the measured intensity of each ROI was normalized to
the cotransfection marker (nuclear GFP intensity) in order to
normalize for differences in transfection efficiency between cells.

RNA extraction, library preparation, RNA-seq, and data analysis
Samples were prepared from three biological replicates (sets of
cultures), with eight samples in each replicate (WT Bic,WT TTX,
S71A Bic, S71A TTX, CHX WT Bic, CHX WT TTX, CHX S71A Bic,
CHX S71A TTX). RNA was extracted from neuronal cultures
using the RNeasy Micro Kit (Qiagen) according to the manu-
facturer’s instructions. Libraries for RNA-seq were prepared
with the NuGEN Universal Plus mRNA-Seq Kit (NuGEN) to
generate strand-specific RNA-seq libraries. Samples were mul-
tiplexed, and sequencing was performed on an Illumina HiSeq
3000 system to a depth of 25 million reads per sample with
single-end 65-bp reads. Demultiplexing was performed using
Illumina Bcl2fastq v2.19.1.403 software. The RNA-seq data dis-
cussed in this publication have been deposited in the National
Center for Biotechnology Information Gene Expression Omnibus
(Edgar et al., 2002) and are accessible through Gene Expression
Omnibus accession no. GSE163127. Reads were aligned to Rattus
norvegicus reference genome version Rnor_6.0 (rn6), and reads
per gene were quantified by STAR 2.27a (Dobin et al., 2013)
using an Rnor_6.0 gtf file. We used DESeq2 (Love et al., 2014) to
obtain normalized read counts and perform differential ex-
pression analysis, including batch correction for replicate
number (Table S3). Putative PDCD4 target genes were identi-
fied by first focusing on genes that showed activity-dependent
differential expression in both the presence and absence of
CHX (CHX-insensitive activity-dependent genes; 459 genes
after excluding 3 genes that showed differential expression in
different directions with or without CHX). We then calculated
the PDCD4 activity-dependent change by taking the difference
between the activity-dependent FC of PDCD4 WT and PDCD4
S71A samples and normalizing:

PDCD4 change index ! abs(S −W)/abs(W),
where S is the PDCD4 S71A no-CHX Bic versus TTX log2 FC and
W is the PDCD4 WT no-CHX Bic versus TTX log2 FC. We defined
putative PDCD4 target genes as those with a PDCD4 change in-
dex >0.75. Motif analysis was performed using the findMo-
tifsGenome command in HOMER (Heinz et al., 2010), using
sequences from the transcription start site and upstream 500 bp
as the promoter sequences for each gene. GO analysis was per-
formed using the GO resource (Ashburner et al., 2000, The
Gene Ontology Consortium, 2019) and PANTHER enrichment
tools (Mi et al., 2019). A cartoon of putative PDCD4 targets was
generated using BioRender.com.

RT-qPCR
As above, RNA was extracted from neuronal cultures using the
RNeasy Micro Kit (Qiagen). cDNA was synthesized from RNA
using the SuperScript III First-Strand Synthesis System
(Thermo Fisher Scientific) with random hexamers. A no–
reverse transcriptase sample was also prepared as a negative
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control. RT-qPCR was performed on the CFX Connect Real-Time
System (Bio-Rad Laboratories) using PowerUp SYBR Green
Master Mix (Applied Biosystems). Primer pairs were designed
for two housekeeping genes (Hprt, Gapdh), two candidate genes
(Scd1, Thrsp), and Pdcd4 using Primer3Plus (Untergasser et al.,
2012) and National Center for Biotechnology Information
Primer-BLAST (Ye et al., 2012; Table S5). RT-qPCR was per-
formed on six or seven sets of cultures, with technical triplicate
reactions for each sample. For each gene, relative quantity was
calculated using the formula: EΔCt, where E was calculated from
the primer efficiencies (E ≈ 2). Relative gene expression was
calculated by normalizing the relative quantity of the gene of
interest to the relative quantity of the housekeeping genes Hprt
and Gapdh: (E gene)ΔCt gene/GeoMean[(E HPRT)ΔCt HPRT, (E GAPDH)Δ
Ct GAPDH] (for Fig. S4 A) or Gapdh only (for Fig. S4, B and C;
E gene)ΔCt gene/(E GAPDH)ΔCt GAPDH.

Quantification and statistical analysis
For ICC experiments, the quantification of signal intensity is
displayed in violin plots created using GraphPad Prism. The
medians are indicated with thick lines, and the quartiles are
indicated with thin lines. n refers to the number of neurons in
each condition, and all individual data points were plotted on the
graphs. Our sample sizes were not predetermined. A nonpara-
metric statistical test (Mann-Whitney U test) was used to cal-
culate statistical significance because our data were not normally
distributed, as indicated by the violin plots. A Bonferroni cor-
rection was used to adjust for multiple hypothesis testing. The
sample sizes, statistical tests, medians, and P values are indi-
cated in the figure legends.

For RT-qPCR and Western blot experiments, all data points
were displayed using GraphPad Prism, with solid lines indicat-
ing the median values. n refers to the biological replicates (sets
of cultures), and all data points were plotted on the graphs. The
Mann-Whitney U test (Prism) was used to calculate statistical
significance. The sample size, statistical tests, medians, and P
values are indicated in the figure legends.

Online supplemental material
Fig. S1 accompanies Fig. 1 and provides verification of the pro-
tein synthesis inhibitor CHX, examines the nuclear localization
of APEX2-NLS, and provides GO analysis results. Fig. S2 ac-
companies Fig. 2 and provides ICC data of PDCD4 using an-
tibodies against the endogenous protein and epitope-tagged
PDCD4. Fig. S3 accompanies Figs. 3 and 4 and provides verifi-
cation of the nuclear export inhibitor LMB and S6K inhibitor
Ly2584702, as well as quantification of cytoplasmic PDCD4. Fig.
S4 accompanies Fig. 6 and provides RT-qPCR validation of
candidate genes from RNA-seq. Fig. S5 accompanies Fig. 6 and
provides motif analysis of promoters of putative PDCD4 target
genes. Table S1 contains theMS data from the nuclear proteomes
of silenced and stimulated neurons. Table S2 lists the GO
analysis of the APEX2-NLS MS. Table S3 contains the RNA-seq
data from silenced and stimulated neurons, with PDCD4 WT or
S71A. Table S4 lists the GO analysis for putative PDCD4 target
genes. Table S5 lists the primer sequences used for cloning and
RT-qPCR.

Data availability
Further information and requests for resources and reagents
should be directed to and will be fulfilled by the lead contact
author, K.C. Martin (kcmartin@mednet.ucla.edu). Plasmids
generated in this study are available upon request from the lead
contact author. This published article includes the MS data
generated during this study. The full RNA-seq data are available
online (Gene Expression Omnibus accession no. GSE163127).
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Chen, Y., T. Knösel, G. Kristiansen, A. Pietas, M.E. Garber, S. Matsuhashi, I.
Ozaki, and I. Petersen. 2003. Loss of PDCD4 expression in human lung
cancer correlates with tumour progression and prognosis. J. Pathol. 200:
640–646. https://doi.org/10.1002/path.1378

Chen, P.B., R. Kawaguchi, C. Blum, J.M. Achiro, G. Coppola, T.J. O’Dell, and
K.C. Martin. 2017. Mapping gene expression in excitatory neurons
during hippocampal late-phase long-term potentiation. Front. Mol.
Neurosci. 10:39. https://doi.org/10.3389/fnmol.2017.00039

Cox, J., and M. Mann. 2008. MaxQuant enables high peptide identification
rates, individualized p.p.b.-range mass accuracies and proteome-wide
protein quantification. Nat. Biotechnol. 26:1367–1372. https://doi.org/10
.1038/nbt.1511

Di Paolo, A., G. Eastman, R. Mesquita-Ribeiro, J. Farias, A. Macklin, T. Ki-
slinger, N. Colburn, D. Munroe, J.R. Sotelo Sosa, F. Dajas-Bailador, and
J.R. Sotelo-Silveira. 2020. PDCD4 regulates axonal growth by transla-
tional repression of neurite growth-related genes and is modulated
during nerve injury responses. RNA. 26:1637–1653. https://doi.org/10
.1261/rna.075424.120

Dieterich, D.C., A. Karpova, M. Mikhaylova, I. Zdobnova, I. König, M.
Landwehr, M. Kreutz, K.H. Smalla, K. Richter, P. Landgraf, et al. 2008.
Caldendrin-Jacob: a protein liaison that couples NMDA receptor sig-
nalling to the nucleus. PLoS Biol. 6:e34. https://doi.org/10.1371/journal
.pbio.0060034

Dobin, A., C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M.
Chaisson, and T.R. Gingeras. 2013. STAR: ultrafast universal RNA-seq
aligner. Bioinformatics. 29:15–21. https://doi.org/10.1093/bioinformatics/
bts635
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Figure S1. Identification of the nuclear proteomes from silenced and stimulated neurons using APEX2 proximity biotinylation. Related to Fig. 1.
(A) Metabolic labeling and ICC of control, CHX-treated, and nonlabeled cells. Protein synthesis was measured by AHA incorporation and Click-IT Alexa Fluor
488 alkyne reaction. The Alexa Fluor 488 signal intensity is displayed using a lookup table. Scale bar, 10 µm. (B) Violin plots of normalized somatic Click-IT
intensity. Control, n = 90 cells; CHX, n = 63 cells; and no label, n = 7 cells from two sets of cultures. Control median = 1.00; CHX median = 0.32; no-label median =
0.05. Control versus CHX, P < 0.0001. (C) FOS ICC of basal and Bic-stimulated neurons in the presence or absence of CHX. Scale bar, 10 µm. (D) Violin plots
of normalized nuclear FOS ICC intensity. Basal, n = 28; Bic, n = 40 cells; CHX-basal, n = 32; and CHX-Bic, n = 26 cells from one set of cultures. Basal median =
1.00; Bic median = 4.484; CHX-basal median = 0.8941; CHX-Bic median = 0.8307. Basal versus Bic, P < 0.0001; CHX-basal versus CHX-Bic, P = 0.3064.
(E) Localization of APEX2-NLS GFP in TTX-silenced and Bic-stimulated neurons in the presence of CHX. Scale bar, 30 µm. (F) Violin plots of APEX2-NLS GFP
nucleocytoplasmic localization (nuclear [Nuc]/cytoplasmic [Cyto] ratio) in TTX-silenced and Bic-stimulated neurons in the presence of CHX. TTX, n = 116 cells;
and Bic, n = 120 cells from nine sets of cultures. TTX median = 4.31; Bic median = 4.00. TTX versus Bic, P = 0.0562. (G) Bar graph displaying the percentage of
proteins containing the GO term nucleus (GO:0005634) from the list of proteins detected by APEX2-NLS MS. The list of proteins detected by MS was ranked
according to MS/MS count abundance, and separate bars are displayed for the top 50 proteins, top 100 proteins, and so forth. (H) Cellular component GO
analysis of the APEX2-NLS MS, with the top 18 terms listed in order of fold enrichment. Nuclear cellular components are listed in blue. ****, P < 0.0001; Mann-
Whitney U test.
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Figure S2. Neuronal stimulation decreases PDCD4 protein concentration in the nucleus and cytoplasm of neurons. Related to Fig. 2. (A) Top: ICC of
endogenous PDCD4 protein. Bottom: Negative control (no primary PDCD4 antibody). Scale bar, 10 µm. (B) Schematic of PDCD4 protein, with locations of V5
tag, HA tag, and PDCD4 (D29C6) epitope (recognized by the PDCD4 Cell Signaling Technology antibody used in this study). (C) Violin plots of normalized
nuclear HA ICC intensity in neurons transduced with PDCD4-HA AAV. Basal, n = 107 cells; TTX, n = 88 cells; Bic, n = 102 cells from three sets of cultures. Basal
median = 1.00; TTX median = 1.116; Bic median = 0.5972. Basal versus Bic, P < 0.0001; TTX versus Bic, P < 0.0001. (D) Violin plots of normalized cytoplasmic
HA ICC intensity in the same cells as in C. Basal median = 1.00; TTX median = 1.203; Bic median = 0.5983. Basal versus Bic, P < 0.0001; TTX versus Bic, P <
0.0001. (E) Violin plots of normalized nuclear V5 ICC intensity in neurons transfected with V5-PDCD4 plasmid and cotransfected with GFP plasmid as a
transfection marker. Basal, n = 36 cells; TTX, n = 36 cells; and Bic, n = 36 cells from two sets of cultures. For each cell, the nuclear V5 intensity was normalized
to the nuclear GFP intensity in order to normalize for differences in transfection efficiency between cells. Basal median = 1.00; TTX median = 0.9810; Bic
median = 0.5760. Basal versus Bic, P < 0.0001; TTX versus Bic, P < 0.0001. (F) Violin plots of normalized cytoplasmic V5 ICC intensity in the same cells as in E.
For each cell, the cytoplasmic V5 intensity was normalized to the nuclear GFP intensity in order to normalize for differences in transfection efficiency between
cells. Basal median = 1.00; TTX median = 1.237; Bic median = 0.6167. Basal versus Bic, P = 0.0002; TTX versus Bic, P < 0.0001. ***, P < 0.001; ****, P < 0.0001;
Mann-Whitney U test with Bonferroni correction.
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Figure S3. Verification of nuclear export inhibitor LMB and S6K inhibitor Ly2584702 and quantification of cytoplasmic PDCD4. Related to Figs. 3 and
4. (A) Violin plots of normalized nuclear PDCD4 ICC intensity. Basal, n = 117 cells; TTX, n = 118 cells; Bic, n = 109 cells; CHX-basal, n = 123 cells; CHX-TTX, n = 120
cells; and CHX-Bic, n = 104 cells from 3 sets of cultures. Basal median = 1.00; TTXmedian = 0.9119; Bic median = 0.4924; CHX-basal median = 0.8890; CHX-TTX
median = 1.033; CHX-Bic median = 0.5375. Basal versus Bic, P < 0.0001; TTX versus Bic, P < 0.0001; CHX-basal versus CHX-Bic, P < 0.0001; CHX-TTX versus
CHX-Bic, P < 0.0001. (B) Violin plots of normalized cytoplasmic PDCD4 ICC intensity in the same cells as in A. Basal median = 1.00; TTX median = 0.9501; Bic
median = 0.7138; CHX-basal median = 1.112; CHX-TTXmedian = 1.191; CHX-Bic median = 0.8626. Basal versus Bic, P < 0.0001; TTX versus Bic, P < 0.0001; CHX-
basal versus CHX-Bic, P < 0.0001; CHX-TTX versus CHX-Bic, P < 0.0001. (C) Violin plots of normalized nuclear PDCD4 ICC intensity. Control, n = 137 cells; and
LMB, n = 122 cells from three sets of cultures. Control median = 1.00; LMB median = 1.513. Control versus LMB, P < 0.0001. (D) Violin plots of normalized
cytoplasmic PDCD4 ICC intensity in the same cells as in Fig. 3 A. Basal median = 1.00; TTX median = 1.158; Bic median = 0.9127; LMB-basal median = 1.031;
LMB-TTX median = 1.005; LMB-Bic median = 0.7122. Basal versus Bic, P = 0.034; TTX versus Bic, P < 0.0001; LMB-basal versus LMB-Bic, P < 0.0001; LMB-TTX
versus LMB-Bic, P < 0.0001. (E) Violin plots of normalized cytoplasmic PDCD4 ICC intensity in the same cells as in Fig. 3 B. Basal median = 1.00; TTX median =
1.174; Bic median = 0.8439; Epox-basal median = 0.8789; Epox-TTX median = 0.9596; Epox-Bic median = 0.9077. Basal versus Bic, P = 0.001; TTX versus Bic,
P < 0.0001; Epox-basal versus Epox-Bic, P = 1; Epox-TTX versus Epox-Bic, P = 0.8258. (F) Violin plots of normalized cytoplasmic PDCD4 ICC intensity in the
same cells as in Fig. 3 C. Basal median = 1.00; TTX median = 1.093; Bic median = 0.9226; Bort-basal median = 0.9229; Bort-TTX median = 0.8904; Bort-Bic
median = 0.9472. Basal versus Bic, P = 0.0156; TTX versus Bic, P < 0.0001; Bort-basal versus Bort-Bic, P = 1; Bort-TTX versus Bort-Bic, P = 0.3544. (G) Violin
plots of normalized cytoplasmic PDCD4 ICC intensity in the same cells as in Fig. 3 D. Basal median = 1.00; TTX median = 1.173; Bic median = 0.8955; MLN-basal
median = 0.8940; MLN-TTX median = 0.9603; MLN-Bic median = 0.8633. Basal versus Bic, P = 0.0324; TTX versus Bic, P < 0.0001; MLN-basal versus MLN-Bic,
P = 0.6294; MLN-TTX versus MLN-Bic, P = 0.11. (H) Violin plots of normalized cytoplasmic HA ICC intensity in the same cells as in Fig. 4 C. WT-basal median =
1.00; WT-TTX median = 1.161; WT-Bic median = 0.8621; S71A-basal median = 0.9676; S71A-TTX median = 1.209; S71A-Bic median = 1.063. WT-basal versus
WT-Bic, P = 0.0012; WT-TTX versus WT-Bic, P < 0.0001; S71A-basal versus S71A-Bic, P = 0.6704; S71A-TTX versus S71A-Bic, P = 0.2012. (I) Violin plots of
normalized cytoplasmic PDCD4 ICC intensity in the same cells as in Fig. 4 E. Basal median = 1.00; TTXmedian = 1.14; Bic median = 0.95; LY-basal median = 1.05;
LY-TTX median = 1.04; LY-Bic median = 0.76. Basal versus Bic, P = 0.4742; TTX versus Bic, P = 0.0088; LY-basal versus LY-Bic, P < 0.0001; LY-TTX versus LY-
Bic, P < 0.0001. Note that, in these experiments, the basal versus Bic-induced decrease in cytoplasmic PDCD4 is not statistically significant for the untreated
(no inhibitor) cells. The Bic-induced cytoplasmic decrease is smaller and less consistent than the nuclear decrease, with statistical significance in the control
cells of Fig. S3, E–G, but not Fig. S3, I and K. Nonetheless, there is a significant Bic-induced decrease of cytoplasmic PDCD4 in the treated (LY2584702) cells,
demonstrating that S6K is not required for the Bic-induced decrease of PDCD4. (J) Western blot of protein lysates from neurons treated with or without
LY2584702. Western blot was stained with antibodies for phospho-S6 (Ser235/236) and total S6 to confirm that LY2584702 inhibits S6K activity. (K) Violin
plots of normalized cytoplasmic PDCD4 ICC intensity in the same cells as in Fig. 4 F. Basal median = 1.00; TTXmedian = 1.114; Bic median = 0.9326; Ro-31-8425
(Ro)-basal median = 1.059; Ro-TTX median = 1.172; Ro-Bic median = 1.195. Basal versus Bic, P = 0.2592; TTX versus Bic, P = 0.0008; Ro-basal versus Ro-Bic, P =
0.0118; Ro-TTX versus Ro-Bic, P = 0.9892. *, P < 0.05; **, P < 0.01; ***, P < 0.001; and ****, P < 0.0001; Mann-Whitney U test with Bonferroni correction.
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Figure S4. RT-qPCR of putative PDCD4 target genes. Relating to Fig. 6. (A) RT-qPCR of putative PDCD4 target genes, Scd1 and Thrsp, from TTX-silenced
and Bic-stimulated neurons that were transduced with PDCD4WT or S71A from six sets of cultures. Samples were normalized using two housekeeping genes,
Hprt and Gapdh. The abundance of the target gene in each Bic sample was normalized to its respective TTX sample. Scd1WT CHX median = 1.702; Scd1 S71A
CHX median = 0.5776; Scd1WT median = 2.401; Scd1 S71A median = 0.7672; ThrspWT CHX median = 1.826; Thrsp S71A CHX median = 0.9080; ThrspWTmedian =
1.522; Thrsp S71A median = 0.5995. Scd1 CHX WT versus CHX S71A, P = 0.0022; Scd1 WT versus S71A, P = 0.0260; Thrsp CHX WT versus CHX S71A, P =
0.0043; ThrspWT versus S71A, P = 0.0043. (B) RT-qPCR of Pdcd4, Scd1, and Thrsp from PDCD4 knockdown experiments in TTX-silenced neurons from seven
sets of cultures. Samples were normalized to the housekeeping gene Gapdh. All values were normalized to the median value of the control condition (control
siRNA). Pdcd4 control siRNAmedian = 1.00; Pdcd4 PDCD4 siRNAmedian = 0.51. Pdcd4 control versus PDCD4 siRNA, P = 0.0006. Scd1 control siRNAmedian =
1.00; Scd1 PDCD4 siRNA median = 3.77. Scd1 control versus PDCD4 siRNA, P = 0.0111. Thrsp control siRNA median = 1.00; Thrsp PDCD4 siRNA median = 2.08.
Thrsp control versus PDCD4 siRNA, P = 0.0023. (C) RT-qPCR of Pdcd4, Scd1, and Thrsp from PDCD4 overexpression experiments in TTX-silenced neurons from
seven sets of cultures. Samples were normalized to the housekeeping gene Gapdh. All values were normalized to the median value of the control condition (no
AAV). Pdcd4 no AAV median = 1.00; Pdcd4 PDCD4 AAV median = 11.93. Pdcd4 no AAV versus PDCD4 AAV, P = 0.0006. Scd1 no AAV median = 1.00; Scd1 PDCD4
AAV median = 0.80. Scd1 No AAV versus PDCD4 AAV, P = 0.3176. Thrsp no AAV median = 1.00; Thrsp PDCD4 AAV median = 0.57. Thrsp no AAV versus PDCD4
AAV, P = 0.0262. *, P < 0.05; **, P < 0.01; ***, P < 0.001; Mann-Whitney U test.
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Provided online are five tables in Excel files. Table S1 contains the MS data from the nuclear proteomes of silenced and stimulated
neurons. Table S2 lists the GO analysis of the APEX2-NLS MS. Table S3 contains the RNA-seq data from silenced and stimulated
neurons, with PDCD4 WT or S71A. Table S4 lists the GO analysis for putative PDCD4 target genes. Table S5 lists the primer
sequences used for cloning and RT-qPCR.

Figure S5. Motif analysis of promoters of putative PDCD4 target genes. Related to Fig. 6. Motif analyses of promoters of putative PDCD4 target genes
(left column) and, for comparison, other CHX-insensitive activity-dependent genes (right column) using HOMER software. The top panel shows the motif image
logos, enrichment, and P values for the top 10 motifs by P value for activity-dependent up-regulated genes, and the bottom panel shows the same but for
activity-dependent down-regulated genes (only 8 motifs were significant for down-regulated genes).
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Abstract. (80–250 words)  

High-field asymmetric waveform ion mobility spectrometry (FAIMS) enables gas phase 

separations on a chromatographic timescale and has become a useful tool for proteomic 

applications. Despite its emerging utility, however, the molecular determinants underlying 

peptide separation by FAIMS have not been systematically investigated. Here, we 

characterize peptide transmission in a FAIMS device across a broad range of 

compensation voltages (CV) and used machine learning to identify charge state and 3D 

electrostatic peptide potential as major contributors to peptide intensity at a given CV. We 

also demonstrate that the machine learning model can be used to predict optimized CV 

values for peptides which significantly improves parallel reaction monitoring workflows. 

Together these data provide insight into peptide separation by FAIMS and highlight its 

utility in targeted proteomic applications. 

Introduction 

FAIMS differential ion mobility devices typically function as an ion filter placed between 

the electrospray ionization (ESI) ion source and the mass spectrometer (MS)1–3. As ions 
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move through high and low electric fields of opposite polarity generated by an asymmetric 

waveform, a small compensation voltage (CV) can be applied to the waveform that 

enables a subset of ions to travel through the device based on their physicochemical 

properties while effectively filtering out other ions4. By applying different CVs, FAIMS 

devices are thereby able to fractionate analytes such as peptides. Gas phase 

fractionation by FAIMS is dictated primarily by the ion charge state of the analyte and 

allows it to effectively remove singly charged interference ions from the desired peptide 

analytes and simplify the overall analyte composition entering the mass analyzer5. The 

current commercial FAIMSpro interface being marketed by Thermo Fisher can change 

CV values in as little as 50 ms enabling its use on a chromatographic timescale but also 

requires the development of optimized strategies for alternating CVs and maximizing 

peptide identification5–7.  

Despite the advantages of FAIMS, alternating between CVs slows the duty cycle; 

therefore, only a limited number of CVs can be used in a given experiment without 

negatively impacting the number of peptide identifications8. This limitation on the number 

of CVs that can be effectively used in an experiment can lead to peptides being 

characterized using suboptimal CV settings resulting in compromised sensitivity or a 

complete failure to detect peptides of interest. A detailed understanding of the 

determinants that dictate peptide detectability as a function of CV in a FAIMS-based 

fractionation is still largely lacking but considered essential for maximizing the utility of 

these analyses. In this study, we analyzed peptide intensity distributions derived from 

proteomic characterization of the human proteome carried out over a range of different 
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CVs. These analyses identified 3D electrostatic descriptors as determinants of peptide 

isoform detectability on FAIMS instruments. 

Targeted proteomic methods such as parallel reaction monitoring (PRM) also depend on 

the selection of optimal CV settings to maximize sensitivity and the lower limit of 

quantitation (LLOQ) for each target. However, in many cases the optimal CV for a given 

peptide target is not empirically known as its selection was based on datasets collected 

on instruments using generally applied CV settings or not equipped with FAIMS. This 

uncertainty regarding the ideal CV settings for a given panel of peptides has the potential 

to greatly diminish the effectiveness of the analysis. In this study, we built a machine 

learning model to predict a peptide’s peak intensity given its sequence and charge state 

as a function of CV values and demonstrate its utility in a series of proteomics analyses. 

Experimental Section  

Sample preparation 

HEK293 cells were cultured in high glucose and glycine DMEM containing 10% FBS and 

1% penicillin-streptomycin and then harvested by trypsinization. Cells were lysed by 

incubation in lysis buffer (8M Urea, 0.1M Tris-HCl pH 8.0) at 4°C for 30 minutes followed 

by centrifugation to clarify the sample. Two milligrams of protein were reduced and 

alkylated by sequentially incubating with 5mM TCEP and 10mM iodoacetamide for 30 

minutes at room temperature in the dark. The protein sample was then diluted 4-fold with 

0.1M Tris-HCl pH8.0 to reduce the final urea concentration to 2M before incubating 
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overnight at 37° C with 50 µg trypsin protease. Peptide digests were desalted using Pierce 

C18 tips (100ul bed volume), dried, and then reconstituted in water. 

LC-MS/MS 

Liquid Chromatography Settings 

Short gradient.  800 ng of a tryptic peptide digest prepared from whole cell lysates of 

HEK293 cells was loaded onto a 25-cm long, 75 μm inner diameter fused-silica capillary, 

packed in-house with bulk 1.9 μM ReproSil-Pur C18 beads. Peptides were delivered by 

using a Thermo Scientific™ EASY-nLC™ 1200 HPLC system. The mobile phase buffers 

are buffer A (water solution with 3% DMSO and 0.1% formic acid) and buffer B (80% 

acetonitrile solution with 3% DMSO and 0.1% formic acid). The 70-min short gradient is 

delivered as follows: 1-6% buffer B from minutes 0-6 at a flowrate of 300 nL/min, 6-28% 

buffer B from minutes 6-54 at a flowrate of 220 nL/min, 28-32% buffer B from minutes 54-

62 at a flowrate of 220 nL/min, and 85% buffer B from 62-70 minutes at a flowrate of 220 

nL/min. 

Long gradient. Same amount of lysate digest was loaded to the same column. Then 

peptide analyte was eluted using a 140-min gradient of increasing acetonitrile (ACN) as 

follows: 350 nL/min 2% buffer B from 0 min, 2-6% buffer B 300 nL/min from minutes 0 to 

2, 2-35% buffer B from minutes 2 to 116, 35-42% buffer B from minutes 116 to 136, 42-

85% buffer B from minutes 136-138, 85-95% buffer B from minutes 138-140 and switch 

the flow rate to 350nL/min. 

Data Acquisition Settings 
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Data-dependent Acquisition. The eluted peptides were ionized using a Thermo 

Scientific™ Nanospray Flex™ ion source and injected into a Thermo Scientific™ Orbitrap 

Eclipse™ Tribrid™ mass spectrometer operated in positive mode equipped with a 

FAIMSpro interface. Spectra were acquired using data-dependent acquisition mode 

where a 120k resolution full MS1 scan was followed by sequential MS2 scans at a 

resolution of 15,000 to utilize the remainder of the 3 second cycle time. MS/MS spectra 

were collected using a 1.5 m/z window for precursor ion quadrupole isolation and 

normalized HCD collision energy of 30% with dynamic exclusion of 10s and monoisotopic 

peak determination set to peptide. The “auto” maximum injection time was selected to 

allow the orbitrap to calculate the maximum injection time available to maximize sensitivity 

while maintaining maximum scan rate. FAIMS separations were performed using FAIMS 

mode on standard resolution set to static gas mode with nitrogen carrier gas flow of 0 

L/min and inner and outer electrodes temperature of 100°C with asymmetric dispersion 

voltage (DV) of −5000 V. In order to selectively filter ions that enter the mass spectrometer, 

individual compensation voltages (CVs) between the range of −25 V and −70 V were 

applied to sequential survey scans and MS/MS cycles.  

Parallel Reaction Monitoring. LC method is set the same as DDA experiments. Target 

precursor ions for different experiments are shown in Supplemental Table 1. Precursors 

are fragmented by HCD at 30% collision energy and then analyzed using the targeted 

MS2 mode in Xcalibur at 15000 resolution on a Orbitrap mass analyzer. PRM 

experiments were analyzed with Skyline using mProphet models9 trained using the 

second best peak. 
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Data Analysis 

Machine learning. Features for building machine learning models were obtained from the 

Peptides package. Machine learning models including the linear and stacked ensemble 

models are built through H2O-AI (3.36.0.1). The empirical constraints used for the 

stacked ensemble model 2 are generated by +/- 5V centered by the prediction reported 

from stacked ensemble model 1. 

Database searching. MS/MS database searching was performed using MaxQuant 

(1.6.10.43) against the human reference proteome from EMBL (UP000005640_9606 

HUMAN Homo sapiens, 20874 entries). The search included carbamidomethylation on 

cysteine as a fixed modification and methionine oxidation and N-terminal acetylation as 

variable modifications. The digestion mode was set to trypsin and allowed a maximum of 

2 missed cleavages. The precursor mass tolerances were to 20 and 4.5 ppm for the first 

and second searches, respectively, while a 20-ppm mass tolerance was used for 

fragment ions. Datasets were filtered at 1% FDR at both the PSM and protein-level. 

Peptide quantitation was performed using MaxQuant’s LFQ mode. 

Results and Discussion 

Systematic investigation of peptide detectability across different CV values 

Previous studies have shown that peptide identification can vary widely based on the CV 

values employed in the analysis5–7. However, peptide detectability has not been 

systematically investigated as a function of CV. To address this gap, we examined 

peptide detectability across a range of CVs using two commonly used LC-MS settings. 
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We analyzed HEK293 whole cell lysate peptide digests by LC-MS/MS using data-

dependent analysis and label free quantification with (1) 70 minute LC gradients across 

9 CV values (-20V to -70V in -5V increment) with a single CV per injection and (2) 140 

minute LC gradients across 18 CV values (-20V to -76V in -3V increments) with three 

alternating CVs per injection (Table 1). To examine the peptide intensity distributions, we 

first filtered the two datasets to only include peptides detected in at least 3 different CV 

values which included 56.02% of the peptides identified in the short gradient dataset and 

57.43% of peptides in the long gradient dataset. Peptide intensities were standardized by 

transforming to the proportion of the corresponding highest intensities across the CV 

range, classified by the CV value where maximum intensity was observed, and then 

plotted (Figure 1A). For this analysis, we considered different charge state isoforms of a 

given peptide e states as separate peptides. Excluding both ends of the CV range (-25V 

and -76V), the peptide intensities of individual CV values appear as relatively narrow, 

well-defined bell-shaped distributions.  

From these data, we observe several key features related to how peptide detectability is 

influenced by CV. First, we find that almost all peptides are detectable in an approximately 

20V span of CV values centered around the CV value that corresponds to their maximum 

intensity. (94.26% of peptides under 20V in the short gradient data and 95.74% peptides 

in the long gradient data) (Figure 1B). Second, we explored the correlation between a 

peptide’s maximum intensity and its detectable CV span (Figure 1C) and observed a clear 

trend in which peptides with a higher detectable intensity exhibit wider CV spans. Finally, 

we asked how necessary it is to know a peptide’s ideal CV to detect it at its highest 

intensity. Therefore, we measured the percentage of the intensity for each peptide found 
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in its most intense CV bin relative to its total intensity across all CV values. As shown in 

Figure 1D, peptide intensity in the most intense CV bin accounts for over 50% of total 

detectable intensity for a large fraction of identified peptides (47.1% for the long gradient, 

66.1% for short gradient) suggesting that maximizing the sensitivity of detection for any 

given peptide will require sampling of that peptide at its optimized CV value. From these 

data, we conclude that many of the peptides observed in a standard proteomic analysis 

are detectable only in a relatively narrow CV range and that approaches to maximizing 

sensitivity will require integration of this knowledge into data acquisition strategies.  

Linear model suggests main determination factors for peptide’s peak intensity CV 

Previous reports5 have shown that a peptide isoform’s ability to pass through the FAIMS 

device at a given CV value can be weakly correlated with charge state. However, other 

physicochemical properties displaying a clear correlation with FAIMS transmission have 

not been reported. Using a machine learning approach, we attempted to identify 

additional determinants that govern peptide transmission by FAIMS. We built a linear 

regression model to identify factors that impact peptide detectability and then used Lasso 

regression to minimize the number of factors in the model. 

The goal of the model was to use peptide sequence and charge state to predict the CV 

value where a given peptide can be detected at maximum intensity. We first built a pool 

of parameters for each peptide isoform. In addition to the observed charge state from MS, 

we calculated 76 different parameters for each peptide comprised of 18 peptide amino 

acid composition features, 7 basic physicochemical properties10–12, 10 Quantitative 

Structure-Activity Relationship (QSAR)13–19 descriptors based on50 peptide sequence 
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features for a total of 76 parameters for each peptide (Figure 2A). Since the data used to 

build the model was acquired under discrete CV values and could potentially miss the CV 

corresponding to maximal intensity using our approach, we calculated the weighted 

average CV values for the peak in addition to the observed CV value of the peak intensity. 

For peptides detected at only a single CV value, we tested the effects of excluding or 

including them in the model. We then trained the Lasso regression using either the 

weighted average CV or the observed CV corresponding to highest peak intensity with or 

without inclusion of the single observation data using the two datasets quantified under 

different LC gradients (Figure 2A) for a total of 8 different trained linear models (Table 2). 

As shown in Figure 2B, models trained from both short and long gradient datasets show 

a linear correlation between peptide parameters and weighted average CV of peak 

intensity/observed peak intensity CV with the short gradient data showing overall better 

linearity. For the mean absolute error (MAE) of training sets (randomly selected 80% of 

data), the short gradient showed lower error than the long gradient data. Additionally, 

filtering out single observation data resulted in slightly better prediction accuracy across 

training sets. The model showing the highest R2 (0.56) and the lowest MAE (5.89) was 

trained with the short gradient dataset and lacking the single observation data (Figure 

2C). From this model, we observed that charge state is the highest contributor across all 

used parameters consistent with previous studies. Interestingly, we see MS-WHIM1 and 

MS-WHIM3, which are both descriptors for the 3D molecule surface electrostatic 

potential20,21, ranked second and third suggesting that charge distribution across the 3D 

structure of peptides significantly contributes to efficient FAIMS transmission. In addition, 

PP3, peptide predicted charge when pH=7, the Cruciani property H-bonding descriptor, 



 101 

and other QSAR features also contributed to the model. The top contributors found across 

all 8 models are shown in Supplemental Table 1. 

Next, we evaluated the quality of the model’s prediction by examining peak peptide 

intensities observed at different CV values. As shown in Figure 2D, we determined the 

predicted weighted average peak intensity CV values for all peptides from the short 

gradient dataset lacking the single observation data and then calculated the absolute 

difference between the CV values corresponding to the observed and predicted weighted 

average peak intensity from the model. These data were used to build an accumulation 

curve to determine the proportion of peptides that exist below a given difference in CV 

values. Peak intensities determined for CV settings higher than -55V are generally of high 

quality with ~90% of peptide isoforms having an absoluteerror of less than 10V. However, 

when the peak intensity CV was below -55V, the linear model prediction quality 

diminished quickly, suggesting that other as of yet unaccounted for factors influence 

FAIMS transmission at the low end of the CV range.  

Deep learning model predicts peptide’s best CV value for improving PRM 

performance 

Targeted proteomic techniques such as parallel reaction monitoring have emerged as 

powerful analytical tools for monitoring the abundance of discrete sets of peptides in a 

high throughput and sensitive manner. Although the utility of FAIMS in targeted proteomic 

workflows may offer significant advantages with respect to sensitivity, the integration of 

these technologies has not been widely reported. Based on our observation that peptide 

intensity peaks within a relatively narrow CV range, we hypothesized that targeted 
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proteomic assays would require accurate prediction of a peptide’s optimal CV value in 

order to maximize the benefit from FAIMS-based analyses. However, the 5.89V MAE 

obtained from linear model built above may not be sufficient. Therefore, we trained two 

additional machine learning models that can provide higher accuracy at the expense of 

knowing the relative contribution from different determinants.  

We first trained a stacked ensemble model (model 1) with the same 76 features 

mentioned above which resulting in an overall MAE of 3.81V n the test set data (Figure 

3B, left). However, we noticed that for peptides with a weighted average peak intensity 

CV lower than -55V, the prediction error increased significantly (Figure 3C, left). Therefore, 

we examined whether prediction could be improved by the inclusion of an additional 

constraint where we included an empirical determined CV value at which the given 

peptide was detected irrespective of whether this was the CV where the maximum 

intensity is observed. Essentially, based on the prediction error in model 1, we take one 

of possible 3 CV values (the predicted CV from model 1 and 5V above and below it) 

corresponding to the CV closest to the observed peak intensity and use it as an empirical 

constraint to train model 2.  As shown in Figure 3C right, this approach generated a more 

accurate model with lower prediction errors but similar performance in all observed peak 

intensity CV bins.  

To optimize CV usage in the context of PRM experiments, we propose to integrate these 

two machine learning models into a single workflow (Figure 3A). Researchers commonly 

select peptides for inclusion in a PRM target list based on experimental data (DDA or 

PRM/SRM) collected on instruments not equipped with FAIMS or predicted peptide 
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sequences lacking any empirical data supporting their identification.  For these peptides, 

we utilize the peptide sequence and charge state (either measured or predicted) to model 

1. Model 1 will generate a low precision CV prediction that can either (1) be used directly 

in a targeted assay or (2) used as a starting point for additional experiments to narrow 

down its optimal CV.  In the latter case, a 3-alternating-CV run (DDA with inclusion list or 

PRM) using the predicted CV value as well CV values shifted 5V in either direction to 

determine the detectability of the peptide of interest. If the peptide is detected, then its 

empirically determined CV value (even if not optimized) can be used as a constraint in 

model 2 to predict higher precision CV values for future targeted assays. We simulated 

the process on the short gradient data where over 92% of peptides can be covered by 

the 3 CV values used in the pilot experiment and the overall MAE for the high precision 

prediction is 1.48V. The precision for each predicting in a given observed peak intensity 

CV bin is shown in Figure 3C while Figure 3D shows the prediction error for the whole 

short gradient dataset.  

FAIMS improves PRM performance 

We next examined the significance of FAIMS-based separations on targeted PRM 

experiments as well as test the utility of our CV prediction models. First, we tested the 

performance of PRMs in the presence and absence of a FAIMS device using a Orbitrap 

(OT) mass analyzer as implemented on the Thermofisher Fusion Eclipse mass 

spectrometer to explore the extent to which FAIMS might improve PRM analyses. We 

selected 85 peptide isoforms whose maximal peak intensity occurred at a range of 

different CV values as targets for the experiment. Representative extracted ion 
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chromatograms are shown in Figure 4A and demonstrate that FAIMS can significantly 

improve PRM data quality. To quantify the performance improvement provided by FAIMS, 

we built mProphet models and compared q-values for target peptides between FAIMS 

and no FAIMS datasets. The use of a FAIMS device significantly boosted q-values 

highlighting the improved data quality (p-value = 0.018) (Figure 4B). To further 

characterize this improvement, we examined individual mProphet features at the 

fragment ion transition level and found that peak shape and signal to noise ratio are 

significantly higher for FAIMS vs no FAIMS with p-values of 0.0019 and 2.2e-16, 

respectively (Figure 4C). These data suggest that the use of a FAIMS device significantly 

improves PRM analyses.  

We next explored the importance of selecting accurate CVs in a PRM analysis. To this 

end, we utilized our machine learning model to build a predictor for peptide CV based on 

its CV and applied it to the peptide panel described in Figure 3. Figure 4D shows a 

comparison between the empirically determined and predicted CV values for these 

peptides.  These data validate the predictor and demonstrate its ability to accurately 

predict CV values based on peptide sequence. Next, we performed a parallel reaction 

monitoring experiment targeting this peptide panel using FAIMS with both the predicted 

CV and a CV value shifted by 10V. We reasoned that if accurate CV settings were 

necessary for an optimized PRM experiment, then the dataset with the predicted CV 

values should be significantly better than the dataset with the shifted less optimal CV 

values. The mProphet Q value distribution for both the predicted CV and shifted CV 

datasets are shown in Figure 4E and shows that the data quality of target peptides is 

significantly increased when data is acquired using the predicted CV values. This 
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observation is also clearly observed in scatterplots comparing the intensity of individual 

peptide fragment ion transitions between predicted and shifted CV experiments (Fig. 4E).  

Together these data emphasize the importance of acquiring data using optimized CV 

values and that this process can be facilitated using the CV predictor developed based 

on our machine learning model. 

Conclusions 

In this study, we systematically profiled the intensity distribution of peptides during FAIMS 

separation across different CV settings and found that the majority of peptides is 

efficiently transmitted through relatively narrow CV windows. Using machine learning 

approaches, we showed that the charge state together with 3D descriptors such as MS-

WHIM scores are the top determinants for dictating peptide isoform transmission across 

CV space and that this information can be used to accurately predict optimal peptide CV 

from a peptide’s sequence. Furthermore, we find that the proper selection of CV values 

is essential for PRM assay data quality with optimized CV setting leading to significant 

improvements in detection and quantitation.  
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Figure Legends 

 

Figure 1: Systematic investigation of peptides’ detectability across different CV 

values. (A) Normalized intensity distributions for peptides detected at least 3 different CV 

values. Peptide intensities are normalized to the maximum observed intensity to ensure 

all intensity values are between 0 to 1. Peptides are binned by observed peak intensity 

CV with with a red line connecting the median intensities of the detected peptides across 

CV values. (B) Accumulation curve of the percentage of peptides identified in a given CV 

span for both the short gradient (red) and long gradient (blue) datasets. (C) Log2-

transformed Intensity distribution of peptides identified at different CV values. The green 

line indicates the trend. (D) Histogram of the number of peptides binned by the fraction of 

the peptide intensity of the most intense CV bin compared to the total intensity of that 

peptide across all bins for the long gradient (blue) and short gradient (red) datasets.  

 

Figure 2: Linear model suggests main determination factors for peptide’s peak 

intensity CV. (A) Schematic of the machine learning approach for building the linear 

model. (B) R2 of the 8 different linear models built with (1) different datasets, (2) filtered 

by only observed under one CV value or not, and (3) either the observed intensity or 

weighted average peak intensity CV. (C) Standardized coefficients for the top 15 

parameters of the model built by short gradient dataset after filtering out single 

observations and using the weighted average peak intensity CV. (D) Accumulation curves 

of the percentage of peptides with increasing absolute prediction error. Each line is binned 

by peptide’s observed peak intensity CV. 
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Figure 3: Higher order machine learning models predict CV corresponding to 

maximum peptide peak intensity. (A) Scheme for using stacked ensemble models to 

predict peptide peak intensity at different CV values. (B) Correlation of model 1 and 2’s 

predicted peak intensity CV with the observed weighted average peak intensity CV. (C) 

Accumulation curves of the percentage of peptide with increasing absolute prediction 

error for weighted average peak intensity CV values predicted by model 1 (left) and model 

2 (right). Each line is binned by observed peptide peak intensity CV. (D) Prediction error 

histogram for all peptides in the short gradient dataset. 

Figure 4: FAIMS and suitable CV settings improve PRM performance. (A) XIC of the 

peptide: TLFPGTDHIDQLK acquired with and without FAIMS enabled. (B) mProphet Q 

value distribution (-Log10 transformed) for all of the target peptides analyzed using 

parallel reaction monitoring without and without FAIMS. (C) Distribution of peak shape 

scores (left) and signal to noise ratio score (right) for all extracted fragment ion transitions 

from PRM data acquired with (blue) and without (red) FAIMS. (D) Observed CV vs. 

predicted weighted average peak intensity CV for PRM target peptides. (E) Distribution 

of the -log10 (mProphet q-values) for PRM target peptides using the CV values either 

predicted by machine learning model (red) or offset by +10V from the predicted CV (blue). 

(F) Scatter plot of the mean area of fragment ion transitions from PRM target peptides 

where data was acquired using the predicted CV (x-axis) and the predicted CV offset by 

+10V (y-axis).  
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Model Dataset Single observation 
filtered Weighted average Measured

1 Short gradient + +

2 Short gradient + +

3 Short gradient +

4 Short gradient + +

5 Long gradient + +

6 Long gradient + +

7 Long gradient +

8 Long gradient + +

Table 1

Table 2

Injection No. Single CV, 70 min/run (V) 3 CV, 140 min/run    (V)

1 -25 -25, -28, -31

2 -30 -34, -37, -40

3 -35 -43, -46, -49

4 -40 -53, -55, -58

5 -45 -61, -64, -67

6 -50 -70, -73, -76

7 -55

8 -65

9 -70
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Figure 1: Systematic investigation of peptides’ detectability across different CV values. 
(A) Normalized intensity distributions for peptides detected at least 3 different CV values. 
Peptide intensities are normalized to the maximum observed intensity to ensure all intensity 
values are between 0 to 1. Peptides are binned by observed peak intensity CV with with a red 
line connecting the median intensities of the detected peptides across CV values. (B) 
Accumulation curve of the percentage of peptides identified in a given CV span for both the 
short gradient (red) and long gradient (blue) datasets. (C) Log2-transformed Intensity 
distribution of peptides identified at different CV values. The green line indicates the trend. (D) 
Histogram of the number of peptides binned by the fraction of the peptide intensity of the most 
intense CV bin compared to the total intensity of that peptide across all bins for the long gradient 
(blue) and short gradient (red) datasets. 

Figure 1
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Figure 2: Linear model suggests main determination factors for peptide’s peak 
intensity CV. (A) Schematic of the machine learning approach for building the linear 
model. (B) R2 of the 8 different linear models built with (1) different datasets, (2) 
filtered by only observed under one CV value or not, and (3) either the observed 
intensity or weighted average peak intensity CV. (C) Standardized coefficients for the 
top 15 parameters of the model built by short gradient dataset after filtering out single 
observations and using the weighted average peak intensity CV. (D) Accumulation 
curves of the percentage of peptides with increasing absolute prediction error. Each 
line is binned by peptide’s observed peak intensity CV.

Figure 2
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Figure 3: Higher order machine learning models predict CV corresponding to
maximum peptide peak intensity. (A) Scheme for using stacked ensemble
models to predict peptide peak intensity at different CV values. (B) Correlation of
model 1 and 2’s predicted peak intensity CV with the observed weighted average
peak intensity CV. (C) Accumulation curves of the percentage of peptide with
increasing absolute prediction error for weighted average peak intensity CV values
predicted by model 1 (left) and model 2 (right). Each line is binned by observed
peptide peak intensity CV. (D) Prediction error histogram for all peptides in the
short gradient dataset.

Figure 3
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Figure 4: FAIMS and suitable CV settings improve PRM performance. (A) XIC of 
the peptide: TLFPGTDHIDQLK acquired with and without FAIMS enabled. (B) 
mProphet Q value distribution (-Log10 transformed) for all of the target peptides 
analyzed using parallel reaction monitoring without and without FAIMS. (C) 
Distribution of peak shape scores (left) and signal to noise ratio score (right) for all 
extracted fragment ion transitions from PRM data acquired with (blue) and without 
(red) FAIMS. (D) Observed CV vs. predicted weighted average peak intensity CV for 

PRM target peptides. (E) Distribution of the -log10 (mProphet q-values) for PRM 
target peptides using the CV values either predicted by machine learning model 
(red) or offset by +10V from the predicted CV (blue). (F) Scatter plot of the mean 
area of fragment ion transitions from PRM target peptides where data was acquired 
using the predicted CV (x-axis) and the predicted CV offset by +10V (y-axis).

Figure 4
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Chapter 6 

Conclusion 
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The mechanism of cell fate determination has long been a question being studied by 

developmental biologists. Since 2006[1,2], Yamanaka and his colleagues published the 

first iPSC paper inducing terminally differentiated cells to pluripotency stage by 

expressing a cocktail of transcriptional factors (TFs), as a reverse process to 

differentiation led by developmental clues, the mechanism of how OSKM, just four TFs, 

can make this artificial cell fate transition happen has raised a lot of attention[3–6]. By 

combining genomics, proteomics, cell biology and molecular biology approaches, we are 

able to create some new insights to answer this question. Another aspect of my thesis 

work is towards developing and optimizing bottom-up proteomics approaches to address 

biological question by increasing sensitivity and quantitation accuracy of existing 

workflows.  

Essential Reprogramming Factors Redistribute Somatic Transcription Factors in 

Early Reprogramming through Multiple Molecular Mechanisms 

In Chapter 2, we first leveraged the optimized ChIP-SICAP workflow [7] confirmed that O 

S and K co-bind with many somatic TFs on the chromatin in the early stage of 

reprogramming. Next, an in vivo validation is conducted by inducing expression of OSK 

combo under a Bl6 and PWK crossed genetic background. Under this background, SNPs 

between both alleles disrupt TF binding motifs and cause loss of binding of TFs from one 

of the alleles but not the other. Then, through testing O S and K binding sites difference 

between alleles, we can correlate somatic TF motif disruption with the OSK binding 

difference between alleles, and we found OSK’s binding skewness towards one of the 

two alleles is depending on the motif disruption of a subset of somatic TFs including AP-

1, CEBP and TEAD family members. Furthermore, to test if such binding dependency is 
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caused by direct protein-protein interactions (PPIs) between OSK and somatic TFs, we 

used purified recombinant proteins and performed pairwise in vitro pull-down assay 

between O and somatic TFs obtained from the allelic specific binding analysis and 

confirmed that Oct4 can directly interact with Jun, Cebpa/b but not TEAD3 and Fosl1, 

suggesting that Oct4’s binding motif dependency on somatic TF motifs is determined by 

both direct and indirect PPIs.  

With the direct PPIs between Oct4 and Cebpa/b proved by in vitro pull-down assay, it 

doesn’t rule out the possibility of having both Oct4 and Cebps synergistically bind to their 

motifs on the opened chromatin. To test it, we designed PAQMAN[8] assay to test the 

binding affinity (Kdapparent) in the presence and absence of Oct4’s expression as well as 

Cebps’ motif. Having this result will help us to answer if Oct4-Cebps PPI or Oct4’s co-

binding to Cebps’ motif increases Cebps’ binding affinity to chromatin. 

Moving forward, previously, Chronis et.al. [4]suggested that Oct4 and Klf4 bind to MEF 

specific enhancers (MEs) and remove the active histone mark H3K27ac by recruiting 

HDAC1 to MEs. We overexpressed an Oct4 nucleosome binding mutant Oct4del79 [9] in 

MEFs and found Oct4del79 cannot open new sites but maintain majority of its binding sites 

on MEs. By checking H3K27ac binding signal on these ME sites, intriguingly, the 

decreasing signal caused by wild-type Oct4 on MEs is not reproduced by Oct4del79. This 

is suggesting that without opening new sites Oct4del79 cannot remove H3K27ac from MEs 

and we further hypothesized that it is because ME-bound somatic TFs cannot be 

redistributed to Oct4 opened new sites and hence H3K27ac is maintained. This 

hypothesis still requires functional experiment to test it. 
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Lastly, to test how essential Oct4’s direct PPI for redistributing somatic TFs in the 

reprogramming process for silencing MEs, we designed an Oct4 mutant screen 

experiment to find a Oct4 mutant lacking PPI ability to somatic TFs including Cebps and 

AP-1 TFs, and we will overexpress the Oct4DPPI alone or along with wild-type SKM, to test 

H3K27ac signal on MEs and reprogramming efficiency difference. 

CMMB (Carboxylate Modified Magnetic Bead) -based isopropanol gradient peptide 

fractionation (CIF) enables rapid and robust off-line peptide mixture fractionation 

in bottom-up proteomics 

In Chapter 3, we describe a CMMB-based peptide fractionation method that offers several 

features that provide significant utility in proteomics applications. First, desalting and 

fractionation are done in the same tube which minimizes sample loss and facilitates 

potential automation. Second, the binding capacity of CMMB is high enabling small beads 

volumes and hence small elution volumes which also enhances sensitivity and limits 

losses.  Third, CIF fractionation is orthogonal to SCX and high pH reversed phase 

allowing it to be easily integrated into multidimensional chromatographic schemes.  

One major advantage to CIF is its orthogonality to the acidic online reversed phase 

separations which are standard in the majority of LC-MS/MS workflows. Considering how 

evenly peptides are distributed across the LC gradient determines how efficiently data-

dependent MS/MS acquisition occurs, the orthogonality of offline separations becomes a 

determining factor for the effectiveness of the analysis. Based on data in Fig. 3A and Fig. 

3C, we demonstrate that CIF displays excellent orthogonality to reversed phase 

chromatography in LC-MS/MS applications and is likely the reason for improved peptide 

identification and quantitation in CIF fractions.  Additionally, we take advantage of this 
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orthogonality by demonstrating that CIF and high pH RP can be used in 2-D fractionation 

experiments to sequentially fractionate peptides offline before LC-MS/MS analysis to 

further increase peptide coverage.  

Another major advantage of CIF is its scalability in terms of peptide input. Standard spin 

column-based high pH reversed phase kits typically used for offline fractionation separate 

input peptides ranging in amount from 10-100ug. However, in the two applications we 

reported here, CIF is compatible with the fractionation of low input affinity purified samples. 

Specifically, for low input samples that are particularly sensitive to material loss during 

processing and which limits fractionation options, we demonstrate CIF retains the ability 

to efficiency fractionate samples and can improve data quality at those peptide 

concentration regimes. Based on our experience, fractionation of affinity purified samples 

at the level of either cell compartment or peptide significantly improves acquisition of 

reproducible and biologically meaningful data (data not shown here). 

Lastly, we built a linear model that predicts the elution properties of a peptide based on 

its sequence. This model not only sheds light on the mechanism of underlying CMMB 

peptide-protein binding but also provides a tool for enriching peptides with particular 

properties. Since the current model assigns very high weights to the number of charged 

amino acid residuals and peptides that are charged under pH 7, we speculate that CIF 

might have utility for fractionation of phospho-peptides. 

Neuronal activity regulates the nuclear proteome to promote activity-dependent 

transcription 

In Chapter 4, by using optimized APEX2-based proximity labeling technology[10], we 

identified 91 genes that are putative activity-dependent targets of PDCD4, including 
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genes encoding proteins that are important for synaptic function. The activity-dependent 

downregulation of PDCD4 in neurons is reminiscent of the concept of “memory 

suppressor genes” [11] genes that act as inhibitory constraints on activity-dependent 

neuronal plasticity. By analogy to PDCD4 function during cancer metastases, decreases 

in PDCD4 in neurons would function to enable experience-dependent neuronal growth 

and remodeling. Dysregulated PDCD4 concentrations have also been reported to 

underlie a variety of metabolic disorders, including polycystic ovary syndrome, obesity, 

diabetes, and atherosclerosis, highlighting the critical role PDCD4 plays in regulating 

gene expression in multiple cell types[12]. Our study provides the first transcriptomic 

profile of PDCD4 that is independent of PDCD4’s role in translation. These results 

provides insight into the transcriptional targets of PDCD4, which is of relevance not only 

to neuroscience but also to the study of PDCD4 in cancer. Taken together, our findings 

illustrate the utility of proximity ligation assays in identifying activity-dependent changes 

in the proteome of subcellular neuronal compartments and point to the array of cell 

biological mechanisms by which activity can regulate the neuronal proteome. They also 

focus attention on the tumor suppressor protein PDCD4 as a critical regulator of activity-

dependent gene expression in neurons, highlighting a role for PDCD4 in regulating the 

transcription of genes involved in synapse formation, remodeling, and transmission. This 

new role is in addition to PDCD4’s well-characterized role as a translational inhibitor [13] 

and future investigation of the mechanisms by which PDCD4 regulates transcription of 

these genes will provide further insight into the understudied role of PDCD4 as a 

transcriptional regulator. Such studies also promise to deepen our understanding of the 
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specific cell and molecular biological mechanisms by which experience alters gene 

expression in neurons to enable the formation and function of neural circuits. 

High-field asymmetric waveform ion mobility spectrometry interface enhances 

parallel reaction monitoring on an Orbitrap mass spectrometer 

In Chapter 5, we systematically profiled the intensity distribution of peptides during FAIMS 

separation across different CV settings and found that the majority of peptides is 

efficiently transmitted through relatively narrow CV windows. Using machine learning 

approaches, we showed that the charge state together with 3D descriptors such as MS-

WHIM scores are the top determinants for dictating peptide iso-form transmission across 

CV space and that this information can be used to accurately predict optimal peptide CV 

from a peptide’s sequence. Furthermore, we find that the proper selection of CV values 

is essential for PRM assay data quality with optimized CV setting leading to significant 

improvements in detection and quantitation. 
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