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Abstract. Due to its effects on the atmospheric lifetime of
methane, the burdens of tropospheric ozone and growth of
secondary organic aerosol, isoprene is central among the bio-
genic compounds that need to be taken into account for as-
sessment of anthropogenic air pollution-climate change in-
teractions. Lack of process-understanding regarding leaf iso-
prene production as well as of suitable observations to con-
strain and evaluate regional or global simulation results add
large uncertainties to past, present and future emissions es-
timates. Focusing on contemporary climate conditions, we
compare three global isoprene models that differ in their rep-
resentation of vegetation and isoprene emission algorithm.
We specifically aim to investigate the between- and within
model variation that is introduced by varying some of the
models’ main features, and to determine which spatial and/or
temporal features are robust between models and different
experimental set-ups. In their individual standard configu-
rations, the models broadly agree with respect to the chief
isoprene sources and emission seasonality, with maximum
monthly emission rates around 20–25 Tg C, when averaged
by 30-degree latitudinal bands. They also indicate relatively
small (approximately 5 to 10 % around the mean) interannual
variability of total global emissions. The models are sensitive
to changes in one or more of their main model components
and drivers (e.g., underlying vegetation fields, climate input)
which can yield increases or decreases in total annual emis-

Correspondence to:A. Arneth
(almut.arneth@nateko.lu.se)

sions of cumulatively by more than 30 %. Varying drivers
also strongly alters the seasonal emission pattern. The vari-
able response needs to be interpreted in view of the vegeta-
tion emission capacities, as well as diverging absolute and re-
gional distribution of light, radiation and temperature, but the
direction of the simulated emission changes was not as uni-
form as anticipated. Our results highlight the need for mod-
ellers to evaluate their implementations of isoprene emission
models carefully when performing simulations that use non-
standard emission model configurations.

1 Introduction

Isoprene emissions from terrestrial vegetation, mostly from
forests and shrublands, dominate the global total emission
source of biogenic volatile organic compounds (BVOCs). By
mass, between 30 and 50 % of the estimated total emission
strength of BVOCs is in the form of isoprene (Guenther et
al., 1995; Arneth et al., 2008a). Isoprene is a major precur-
sor to the formation of tropospheric ozone in NOx-polluted
air (Atkinson, 2000), and it affects the levels of the tropo-
sphere’s principal oxidant (the hydroxyl radical OH; Poisson
et al., 2000; Lelieveld et al., 2008) and hence the lifetime of
methane. It also interacts with the growth of secondary or-
ganic aerosol (SOA) in a complex manner, being a precursor
on the one hand (Claeys et al., 2004) while inhibiting SOA
growth from monoterpene oxidation on the other (Kiendler-
Scharr et al., 2009). Therefore, owing to its large source
strength, and to its manifold reactions in the troposphere,
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isoprene impacts on atmospheric burdens of substances that
are relevant to both climate and health.

Isoprene production takes place in the chloroplast (Licht-
enthaler, 1999), and emissions over the course of the day con-
sequently vary strongly with temperature and light (Guen-
ther et al., 1991). Models aiming to estimate global isoprene
emissions typically combine algorithms in a multiplicative
way to simulate this short-term variation as well as a more
medium-term emission response to environmental changes
(i.e., days to weeks; Guenther et al., 1995; Levis et al., 2003,
Naik et al., 2004; Guenther et al., 2006; Lathière et al., 2006;
Lathière et al., 2010). Some attempts have been made to link
global estimates to the biochemical processes of chloroplas-
tic isoprene production (Arneth et al., 2007a, b). In all cases,
the starting point is a prescribed emission capacity or some
analogue variable,E, that is defined for standard environ-
mental conditions and vegetation functional units (e.g., plant
functional types, PFTs), and that may be expressed on a leaf
or canopy basis. The need to assign fixed values of emis-
sion capacities to PFTs remains of particular concern for the
development of robust global models because of the known
large species-to-species variation that exists within similar
plant or vegetation functional groups. The determination of
isoprene emission capacities for the larger vegetation groups
via quantitative data assimilation techniques is further ham-
pered by the limited amount of available leaf or canopy-level
observations, and is confounded by the increasing number
of observations that indicate that even the interpretation of
individual emission capacity measurements in the field is
non-trivial. A critical review of the concepts underlying iso-
prene modelling has recently been presented by Niinemets et
al. (2010a, b).

Global-scale biogenic emissions cannot be constrained
directly from observations, although recent efforts to in-
fer emissions from satellite-based remote sensing represent
a noteworthy top-down modelling approach. These use
retrieved formaldehyde column data in combination with
chemistry transport models for regional (Palmer et al., 2006;
Barkley et al., 2008) and global (Shim et al., 2005; Stavrakou
et al., 2009) estimates. Studies that seek to interpret the col-
umn formaldehyde information highlight the importance of
not only the spatio-temporal patterns of emission but also of
the type of atmospheric oxidation mechanism used together
with the satellite-based or aircraft observations (Stavrakou et
al., 2009, 2010; Barkley et al., 2011). Most bottom-up model
simulations to date converge on a global isoprene emission
strength of around 500±100 Tg C a−1, despite not only large
differences in the values of the assigned emission capacities
and in the modelled processes, but also in how vegetation is
represented and which climatology is used in the experiments
(Arneth et al., 2008a; Ashworth et al., 2010). One recur-
ring issue in the modelling of atmospheric burdens of CO or
ozone in the troposphere has been that some chemistry trans-
port models do not reproduce observationally-constrained
values when using a biogenic source of isoprene on the or-

der of 500 Tg C a−1 (Prather et al., 2001). Whether or not
this is related to emission estimates that are too high, to an
incomplete understanding of isoprene oxidation pathways in
the boundary layer and free troposphere, or to both is still
not fully resolved. In today’s atmospheric chemistry models,
assumptions on the annual isoprene emission strength vary
between around 200 and 600 Tg C (Stevenson et al., 2006).

In the absence of global observational constraints on emis-
sions, intercomparison of simulation outputs from differ-
ent models can help to highlight critical patterns of emis-
sion estimates in which global models either converge or di-
verge. This can help to identify causes of large uncertainty
and/or model sensitivity. Here we compare three global iso-
prene models that differ in their representation of vegetation
and isoprene emission algorithm: MEGAN (Guenther et al.,
2006), LPJ-GUESS (Arneth et al., 2007b), and BVOCEM
(Lathière et al., 2010). These models have been evaluated
individually against available observations at canopy scale,
or satellite-sensing driven top-down modelling to ascertain
their performance and sensitivity (Guenther et al., 2006; Ar-
neth et al., 2007b; Lathière et al., 2010; Barkley et al., 2011).
But to date no systematic analysis of between-model differ-
ences and the underlying contributing factors has been made.
The chief objectives of this work are therefore to (i) highlight
large sources of uncertainties in simulations of global iso-
prene emissions and to determine the degree of between- vs.
within model variation that is introduced by varying some of
the models’ main features, and to (ii) determine which spa-
tial and/or temporal features were robust between models and
different experimental set-ups.

2 Methods

2.1 Isoprene emission models

LPJ-GUESS (Smith et al., 2001; Sitch et al., 2003) is a dy-
namic vegetation model that simulates global natural vege-
tation patterns and ecosystem carbon and water balance, as
well as BVOC and fire emissions in response to variation in
climate and atmospheric CO2 concentration. The model has
been evaluated successfully against a number of benchmarks
from the scale of the ecosystem to the globe (e.g., Smith et
al., 2001; Lucht et al., 2002; Gerten et al., 2004; Sitch et al.,
2003; Morales et al., 2005; Arneth et al., 2007b). In the work
presented here, LPJ-GUESS is used with vegetation repre-
sented by 10 plant functional types and vegetation dynamics
as in Sitch et al. (2003).

Isoprene production in LPJ is calculated by adopting the
process-based isoprene emission algorithm of Niinemets et
al. (1999) which infers the effects of temperature and light
on emissions from the electron requirement for isoprene pro-
duction. Here, we use a slightly updated version of the model
presented by Arneth et al. (2007b), with an improved repre-
sentation of the seasonality of emissions, as well as a simple
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energy balance to estimate canopy temperature from air tem-
perature (Schurgers et al., 2011). The model can be applied
for daily (Arneth et al., 2007b) to millennial (Schurgers et
al., 2009) simulations, including a response to varying atmo-
spheric CO2 levels that is linked to leaf internal CO2 con-
centration (Arneth et al., 2007b; Young et al., 2009), and a
response to varying vegetation composition (Arneth et al.,
2008b; Schurgers et al., 2009). In this study we assign static
emission capacities to each of the model’s globally applica-
ble PFTs, an approach that is typical for all global BVOC
models since no vegetation representation on species-level
is available on that scale (likewise, we do not know emission
capacities of most species in any case). For European forests,
taking advantage of tree species-level simulations when the
gap-model features of LPJ-GUESS are enabled (Smith et al.,
2001), detailed simulations have demonstrated a more di-
verse spatial and temporal emission distribution compared to
the use of global PFTs (Arneth et al., 2008b; Schurgers et al.,
2009).

The starting point for calculating isoprene emissions with
LPJ-GUESS is an analogue for a leaf-level emission ca-
pacity: the amount of electrons used for isoprene pro-
duction (Niinemets et al., 1999; Arneth et al., 2007a)
which has to be prescribed for each PFT and is speci-
fied for an air temperature of 30◦C and light conditions
equivalent to a photosynthetically-active radiation flux of
1000 µmol m−2 s−1. Input of spatially gridded, area-based
emission capacities that take into account the vegetation mix
at a given location (see MEGAN, BVOCEM, below) is there-
fore not necessary in this model. Being a dynamic global
vegetation model (DGVM) that internally combines a canopy
light-transfer model with the computation of a dynamically-
changing mix of vegetation, a canopy-based emission factor
would be an output of the model, rather than an input. In
fact, applying canopy-based emission factors that were cal-
culated with a given canopy model using a prescribed vegeta-
tion product to models that use different canopy transfer and
vegetation models would be, strictly speaking, incorrect, and
introduces a large source of uncertainty. A similar argument
applies when using leaf-level emission factors together with
different leaf emission algorithms if the values of the emis-
sion factors are based on measurements that were performed
under non-standard conditions (Niinemets et al., 2010b).

The Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN; Guenther et al., 2006) is a model framework
that provides a variety of options including explicit or pa-
rameterized algorithms for representing isoprene response to
environmental variables and landcover that can be based on
remotely-sensed vegetation products, ground observations
or output of dynamic vegetation models. MEGAN can be
driven by gridded maps of emission capacities or by PFT-
based emission capacities that are combined with mapped
PFT distributions. For this comparison we have estimated
hourly emission rates using the parameterized canopy model
and isoprene response algorithms, the gridded isoprene emis-

sion capacity maps, and remotely-sensed vegetation cover
and leaf area indices derived from MODIS products (in-
cluding crop fraction cover), based on Zhang et al. (2004)
and Hansen et al. (2003), and as described by Guenther et
al. (2006).

Isoprene emission calculations in MEGAN are based on
the algorithms from Guenther et al. (1995). In the pub-
lished version (Guenther et al., 2006) these are extended to
account for effects of short- to medium term weather his-
tory, within-canopy variation in light and temperature, leaf
age, soil moisture and CO2 concentration; soil moisture and
direct CO2 effects are not included here. MEGAN uses em-
pirical algorithms that simulate the processes controlling iso-
prene emissions, including a temperature response that simu-
lates isoprene synthase activity; a light response that follows
electron transport; a CO2 response that reflects competition
for PEP substrate; and a soil moisture response that shuts
down isoprene emission when water availability is too low
to support physiological activity. The implementation of the
MEGAN CO2 response algorithm is described by Heald et
al. (2009) and all other algorithms are described by Guenther
et al. (2006). The gridded, canopy-based emission capacities
used for these simulations are a model product that varies
between grid cells based on the mix of vegetation in each
location. That is, the emission capacities are not only cal-
culated for standard light and temperature but also leaf area
index (LAI), canopy age, sun angle, windspeed, humidity,
soil moisture, CO2 concentration and weather history.

BVOCEM (Biogenic Volatile Organic Compound Emis-
sion Model; Lathìere et al., 2010) is the third emission model
used in this study, and is largely based on the parameterisa-
tions of Guenther et al. (2006). As with LPJ-GUESS and
MEGAN, the model can in principle account for the effects
of varying CO2 levels in the atmosphere on isoprene pro-
duction (see Sect. 2.2), but applies the empirical function
from Possell et al. (2005). Here, the vegetation distributions
are calculated from the Sheffield Dynamic Vegetation Model
(SDGVM; Woodward et al., 1995; Beerling and Woodward,
2001) but could also be provided by any model or satellite-
derived data and for any number of plant functional types;
like for LPJ-GUESS, the calculated potential natural vegeta-
tion could be corrected for fractional crop cover (Lathière et
al., 2010) but this feature was not applied in the present ex-
periments. Lathiere et al. (2010) found a reduction of 12 % of
present-day isoprene emissions when taking anthropogenic
land cover into consideration. The BVOCEM is driven with
monthly inputs of air temperature, downward radiation flux,
leaf area index and vegetation fraction for each PFT consid-
ered. For emission factors, expressed on a canopy area ba-
sis, BVOCEM adopts for each PFT the average value of the
global gridded products supplied by MEGAN. The possibil-
ity to use the global maps from Guenther et al. (2006) is also
available but was not used for the present study.

www.atmos-chem-phys.net/11/8037/2011/ Atmos. Chem. Phys., 11, 8037–8052, 2011
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2.2 Experimental set-up

A number of experiments were performed to examine the
between-model spatial and temporal variability in global
and regional emissions, focussing on the 1981–2002 pe-
riod. For the dynamic vegetation models LPJ-GUESS and
SDGVM/BVOCEM, runs were performed with the vegeta-
tion dynamic features enabled, following the standard proce-
dure described in e.g., Sitch et al. (2003) and Woodward et
al. (1995) while other experiments required that these models
be run using prescribed vegetation (see below). The direct
impacts of varying soil moisture, leaf age, or atmospheric
CO2 concentrations on leaf isoprene emissions were not con-
sidered. The spatial resolution of each simulation experiment
was 0.5◦ by 0.5◦.

Four simulation experiments are compared here based on
the following set-up (for summary, see also Table 1):

1. A simulation using each model’s standard published
climatology, vegetation, and isoprene algorithm and
emission factors

2. A simulation using different climate input compared to
(1), but with each model’s standard vegetation and emis-
sion factors. The DGVMs were run with either dynamic
vegetation responding to the different climate (indicated
by subscript “d”; LPJ-GUESS, SDGVM) or with vege-
tation fixed, with the fixed vegetation derived from the
standard run (indicated by subscript “f”; LPJ-GUESS)

3. A simulation using different vegetation and emission
factor input compared to (1), but each model’s standard
climate

4. A simulation using different vegetation, emission factor
and climate input compared to (1).

2.3 Climate

Three different climate products are used by the three mod-
els for their standard simulations. These are from the Cli-
matic Research Unit (CRU) of the University of East Anglia
(Mitchell and Jones, 2005), which is the standard climate
used for LPJ-GUESS; the National Center for Environmental
Prediction (NCEP) reanalysis product (Kistler et al., 2001),
used in the standard MEGAN simulation; and climate model
output from the UK Met Office Unified Model (UM) (Stain-
forth et al., 2005), used for the standard BVOCEM simula-
tion. BVOCEM has been globally applied and evaluated both
with CRU and UM climate (Lathìere et al., 2010).

Climate input data for the years 1981 to 2002 were used
for the simulations, consisting of monthly radiation and tem-
perature (both mean and diurnal amplitude). In the case of
the BVOCEM standard simulations using UM climate, cli-
mate data was only available for one year (Lathière et al.,

2010). For LPJ-GUESS, the simulations of dynamic veg-
etation require monthly precipitation input since soil mois-
ture patterns derived from the model’s water balance calcu-
lations are necessary to drive photosynthesis. Simulations
with fixed vegetation were based on prescribing soil mois-
ture directly, the soil moisture patterns were taken from the
dynamic simulations with CRU or NCEP as forcing. For
the BVOCEM standard simulation, vegetation distribution
and fraction were provided from SDGVM run with the UM
monthly temperature, precipitation and relative humidity. In
the following analysis, when comparing effects of changing
climate on model output, we concentrate on CRU and NCEP
products.

2.4 Vegetation

Following Sitch et al. (2003), LPJ-GUESS dynamically cal-
culates potential natural vegetation as a mix of 10 plant func-
tional types (PFTs). In brief, the PFT mix at a given loca-
tion is the result of assigned PFT-specific bioclimatic lim-
its, which constrain successful vegetation establishment and
survival; the models’ carbon and water balance calculations;
and dynamical algorithms for carbon allocation, growth and
mortality. The model thus calculates a seasonally- and
interannually-varying leaf area index, and, in response to
climate change, varying mixture of plant functional types.
The Sheffield Dynamic Vegetation Model (Woodward et al.,
1995), from which vegetation patterns were taken when run-
ning the BVOCEM standard run, simulates the global distri-
bution of six plant function types in a similar dynamic man-
ner. Crop functional types are not yet fully implemented into
either DGVM, but effects of areas converted to agriculture
or pastures on regional or global isoprene emissions can be
estimated in a simplified manner by decreasing the fraction
of potential natural vegetation per grid-cell based on present-
day landcover products (Arneth et al., 2008b; Lathière et al.,
2010). In the simulations shown here, both models were
applied without crop correction; in future it is to be ex-
pected that crop biogeochemical cycles (including the trace
gas emissions) will be accounted for in a way that is con-
sistent with the carbon, water and nitrogen cycles already
represented in the models (Arneth et al., 2010). In case of
MEGAN, vegetation distribution and seasonal variation in
leaf area index is fixed, and prescribed as a remotely-sensed
product based on MODIS, and therefore includes representa-
tion of crop and natural vegetation (Guenther et al., 2006).

2.5 Enabling transfer of input data between models

Limits of standardising experiments between models are of-
ten reached rather quickly due to the inherent structural de-
sign of the individual models. This is particularly relevant
when passing vegetation fields between models, which may
require mapping of vegetation classes to PFTs and vice versa,
and resultant adjustment of emission factors. In case of
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Table 1. List of simulations, described as “Model-climate-vegetation” (for example, MEGAN-CRU-LPJV is MEGAN model, run with CRU
climate data and LPJ vegetation (and emission factors) and MEGAN algorithm) and MEGAN algorithm. Subscripts “d” and “f” indicate
whether the DGVMs had dynamic vegetation enabled, or were driven by fixed vegetation fields.

LPJ MEGAN BVOCEM Simulation

L1. LPJ-CRU-LPJVd M1. MEGAN-NCEP-MEGANV B1. BVOCEM-UM-SDGVMVd Standard model version
L2. LPJ-NCEP-LPJVd,f M2. MEGAN-CRU-MEGANV B2. BVOCEM-CRU-SDGVMVd Change climate

compared to standard
L3. LPJ-CRU-MEGANV M3. MEGAN-NCEP-LPJV B3a. BVOCEM-CRU-MEGANV

B3b: BVOCEM-NCEP-MEGANV
Change vegetation
compared to standard

L4. LPJ-NCEP-MEGANV M4. MEGAN-CRU-LPJV B4. BVOCEM-CRU-LPJV Change climate and
vegetation compared to
standard.

SDGVM and LPJ-GUESS, vegetation dynamics, PFT dis-
tribution composition, and isoprene emissions are linked be-
cause each of these processes respond dynamically to cli-
mate. For LPJ-GUESS, experiments 2 to 4 either included
prescribing vegetation cover from MODIS/MEGAN, or run-
ning with NCEP climate but keeping PFT distribution fixed
from the CRU standard runs. This required the use of a
version of LPJ-GUESS with its standard fast-exchange pro-
cesses (photosynthesis, BVOC) enabled but with applying
prescribed vegetation characteristics and soil, as well as
adopting the MEGAN vegetation classes for use in LPJ-
GUESS (Table A1). Since isoprene emissions are directly
coupled to the model’s carbon cycle simulations, parame-
ters for the photosynthesis calculations were adopted for the
MEGAN vegetation, primarily by applying the photosynthe-
sis temperature limits from LPJ-GUESS’s equivalent PFTs.
Additionally, the average area-based emission factors applied
in MEGAN (Guenther et al., 2006) had to be converted into
leaf-based values used in LPJ-GUESS, taking into account
the modelled specific leaf area (SLA, m2

leaf kg C−1) and the
standard LAI used in MEGAN (5.0). This was based on
the simple relationshipELPJ /SLA·LAI(5) ·0.42= EMEGAN;
0.42 is an empirical factor derived using a canopy environ-
ment model and represents the ratio of leaf- to canopy-scale
emission factors for a canopy with an LAI of 5. The in-
verse equation was used to convert the LPJ leaf-level emis-
sion factors to canopy-scale emission factors. When running
the BVOCEM with different vegetation classes, the emission
factors had to be adapted to ensure consistency across the
various PFTs and the units. For the experiments using either
the SDGVM or the MEGAN vegetation patterns, globally-
averaged emission factors from Guenther et al. (2006) were
used. When using vegetation input provided by LPJ, the LPJ
emission factors were converted to the appropriate unit using
the equation above.

3 Results

3.1 Annual totals and geographical/seasonal patterns

In their standard settings (LPJ-CRU-LPJV, MEGAN-NCEP-
MEGANV and BVOCEM-UM-SDGVMV) between-model
variation in average global isoprene emissions was small,
378 to 496 Tg C a−1 (Figs. 1, 2). Emissions for LPJ-GUESS
were somewhat higher than reported in Arneth et al. (2007a;
463 vs. 410 Tg C a−1), arising from the slightly different av-
eraging period, small adjustments to the way seasonally-
changing emission factors were calculated, and a newly in-
troduced leaf-energy balance calculation (Schurgers et al.,
2011). Likewise, for the BVOCEM simulations we removed
the assumed 4 % loss associated with within-canopy reac-
tions in the reported 471 Tg C a−1 (Lathière et al., 2010). The
22-yr averaged emissions for MEGAN (378 Tg C a−1) were
lower than reported by Guenther et al. (2006) for the year
2003 (ca. 530 Tg C a−1). These, too, reflected the longer
simulation period with a slightly cooler average tempera-
ture compared to 2003 alone as well as the exclusion of the
soil moisture activity factor and differences in the version of
NCEP temperature and solar radiation data used to drive the
simulations shown here.

Figure 1 shows that all three models place the dominant
emission source in tropical regions, especially South Amer-
ica and Africa, reflecting the year-long warm temperatures,
high levels of radiation and relatively high emission poten-
tials assigned to tropical vegetation (Guenther et al., 1995;
Arneth et al., 2008a). Regional differences emerge clearly
from the Figure, for instance in South America and Aus-
tralia. Over the course of the year (Fig. 2a, e, i), emissions
in the two latitudinal bands from the equator to 30 degrees
north and south varied relatively little, in response to small
seasonal changes in temperature and precipitation. Overall,
BVOCEM simulations showed the largest seasonal variation
in these regions, as well as the largest difference between
Southern and Northern Hemisphere – irrespective of the cli-
mate used or the number of years averaged (Fig. 2i, j) – a
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Fig. 1. Average annual global isoprene emissions for the period
1981–2002 from three different emission models. Averages are
from the “standard” model setups in the case of LPJ-GUESS and
MEGAN (see Table 1, Fig. 2, panelsa, e), and with CRU climate in
the case of BVOCEM (Fig. 2, paneli).

feature that was reduced when MEGAN vegetation was ap-
plied (Fig. 2k). By contrast, in MEGAN and LPJ-GUESS,
magnitude and seasonal variation in the northern and south-
ern tropics (0 to 30 degrees) were very similar, the average
sums for−30◦ to +30◦ differed by less than 20 % between
the two models. All three models simulate maximum emis-
sions from the northern temperate zones (30 to 60◦ N) dur-
ing the Northern Hemisphere summer months to be equal to
emissions from either the northern or southern tropical re-
gions.

3.2 Effects of varying climate input

In MEGAN and BVOCEM, changing climate affects emis-
sions directly via the temperature- and light-driven emission
algorithms, in the case of LPJ-GUESS the effects operate
mainly via the temperature and light effects on electron trans-
port rates, and the difference between the temperature opti-
mum of electron transport and isoprene production. As seen

in Fig. 2, in the two DGVMs, changing climate inputs also
affected calculated emissions indirectly, by altering the dis-
tribution of PFTs, total leaf area and the seasonality of leaf
growth (subscripts “d” in Fig. 2b, j). With dynamic vege-
tation enabled, applying a different climate changed annual
emissions by 3 % (LPG-GUESS; CRU to NCEP) and 10 %
(BVOCEM, UM to CRU).

When run with non-standard climate but unchanged vege-
tation as compared to standard runs, emissions increased no-
tably in LPJ-GUESS (Fig. 2a, b) and decreased in MEGAN
(Fig. 2e, f). The relative response when swapping NCEP and
CRU in MEGAN and LPJ-GUESS, respectively, yielded an
increase of close to 30 % in LPJ-GUESS and a decrease by
a little more than 10 % in MEGAN. In both cases, apply-
ing the CRU climate resulted in lower emissions compared
to runs that applied NCEP climate. By contrast, a simula-
tion with BVOCEM and fixed vegetation (from MEGAN)
yielded emissions higher by approximately 10 % in the CRU
compared to the NCEP simulation (269 vs. 244 Tg C a−1; not
shown).

Regionally, differences caused by change in climate in-
put were even larger than indicated by the global sums, and
more varied. Figure 3 shows the direct effects of differ-
ing climate datasets only (i.e. using fixed vegetation in all
cases), BVOCEM exhibited uniformly higher rates of emis-
sions for the CRU simulations compared to NCEP in large
parts of the tropics, especially the rainforest regions, and
slightly lower rates in savannas and some parts of the tem-
perate forest regions. For LPJ-GUESS and MEGAN, emis-
sions using NCEP versus CRU climate tended to be higher
in a large part of the Northern Hemisphere temperate and bo-
real biome. Emissions were also enhanced in some parts of
the tropical areas, but in other tropical regions this pattern
was reversed especially in case of MEGAN. In LPJ-GUESS,
lower emissions in the NCEP case were, for instance, calcu-
lated in northeastern and eastern South America, and parts of
tropical Africa.

3.3 Effects of a change in vegetation

Alternating between the standard and an alternate vegeta-
tion dataset yielded substantially higher emissions in LPJ-
GUESS (Fig. 2, panel c) and lower emissions in MEGAN
(panel g). For BVOCEM, a change from MEGAN to LPJ
vegetation reduced emissions, but to a much smaller degree
compared to the other two models (panels k and l in Fig. 2).
In the case of LPJ-GUESS, the change in vegetation led to a
more pronounced seasonality in emissions in tropical regions
of the Southern Hemisphere, whereas in MEGAN, this sea-
sonality was substantially dampened compared to the stan-
dard model setup (panels e, g).

Changing vegetation affects emissions in several ways; the
vegetation fields differ in their total LAI and seasonal phenol-
ogy, and emission factors also need to be adjusted compared
to the standard runs. Accordingly, Figure 4 shows a complex
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Fig. 2. Seasonal isoprene emissions from the different model experiments, separated by latitudinal bands (deg.: degrees). The naming
convention for each simulation was “Model-climate-vegetation” (see Table 1). Panels(a), (e) and(i) are equivalent to the models published
and evaluated standard settings (e.g., Arneth et al., 2007a, Guenther et al., 2006, Lathière et al., 2010). Shown are averages for the period
1981–2002, except for panel(i) as the UM climate was only available for one year. Numbers in the top right corner of each panel are annual
sums, in Tg C a−1. In panels(a, b) and(i,j) , For the two DGVMs, subscribed “d” or “f” indicates whether the dynamic vegetation core in
the model responds to the climate in the given simulation (dash-dotted line in panel(b)), or whether vegetation prescribed from the standard
run was used (straight line in panel(b)).

pattern when the simulation results are plotted in their geo-
spatial and temporal distribution. Only few responses were
uniform in all three models when switching from MEGAN
to LPJ vegetation. Simulations with MEGAN vegetation ap-
pear to generally yield higher emissions in large parts of Aus-
tralia, southern Africa, tropical rain forest regions and, dur-
ing the Northern Hemisphere summer months, large parts of
the boreal biome. In contrast, lower emissions are simulated
from the South American savanna (cerrado) regions and parts
of the African savannas, and in LPJ-GUESS and BVOCEM,
temperate regions in Europe, Asia and the US. For most other
regions the model response was varied with no obvious simi-
larities with respect to the direction of the change introduced
by vegetation.

3.4 Combination of effects

As seen in Fig. 1, the effects of combined climate and veg-
etation changes compared to the standard run were larger
than for single changes for all models. For MEGAN, when
applying the CRU climate together with LPJ-GUESS veg-
etation, emissions were reduced to 70 % of its standard set-
up, whereas in LPJ-GUESS the combined NCEP climate and
MEGAN vegetation increased emissions by more than a fac-
tor of two (Fig. 1, panels d, h). For BVOCEM, the change
from using UM to CRU climate increased annual totals by
10 %, but with the combination of CRU climate along with
MEGAN and LPJ fixed vegetation, emissions decreased to
approximately 50 and 40 % of the SDGVM-vegetation sim-
ulation, respectively (Fig. 1, panels j–l). Particularly notable
are the much enhanced seasonal amplitudes in the southern
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Fig. 3. Difference in isoprene emissions (mg C m−2 month−1) for simulations performed with NCEP climate minus simulations with CRU
climate (top: M1–M2; middle: B3b-B3a; bottom: L2–L1; see Table 1). In the case of the dynamic vegetation models, the differences shown
are those with fixed vegetation (L2: LPJVf ); and in case of BVOCEM, MEGAN vegetation was applied. Panels show monthly averages
over three-month periods December to February (DJF); March to May (MAM); June to August (JJA); September to November (SON).

tropics when using LPJ together with MEGAN vegetation
as well as NCEP climate. For BVOCEM-CRU runs, apply-
ing fixed vegetation greatly dampened the seasonality both in
southern and northern tropics compared to runs where vege-
tation responded dynamically to seasonal climate.

3.5 Interannual variability

In their dynamic vegetation configuration, interannual vari-
ability of normalised and detrended annual isoprene emis-
sions was found for both LPJ-GUESS and BVOCEM to be
larger in the high northern latitudes than in any other of the
latitude bands, varying by up to 15 % (Fig. 5). In the other
regions, maximum between-year variability in emission rates
was around 5 % in LPJ-GUESS, and around 10 % in BVO-
CEM. A clear linear relationship between the annual iso-
prene emission rate output of the two models emerged, but

with a distinctly different slope for the latitudinal band 60–
90◦ N (1.06) and the other regions (c. 0.4, Fig. 5, inset). The
close relationship between the two models, occurring despite
different isoprene algorithms, emission capacities and simu-
lated vegetation patterns suggests on a decadal perspective a
mostly climate-driven variability in isoprene emissions from
one year to the next, since the models were driven by the
same climate in these experiments (CRU).

When investigating single climatic drivers for the regions
in the bands from 30◦ S to 60◦ N, relatively weak linear re-
lationships were found with temperature in the period June-
July-August, withr2 values of a linear regression ranging
from 0.3 to 0.6 (not shown); similarly neither temperatures in
December- February nor annual precipitation had any predic-
tive strength. Variability in weather affects emission rates not
only directly but also via changes in rates of photosynthesis
and the amount of emitting green tissues. For LPJ-GUESS,
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Fig. 4. Difference in isoprene emissions (mg C m−2 month−1) for simulations performed with MEGAN vegetation minus LPJ-GUESS
vegetation. Panels show monthly averages over three-month periods, the same as those in Fig. 3 (top: M1–M3; middle: B3a–B4; bottom:
L3–L1, see Table 1).

where isoprene production is closely linked to photosyn-
thesis, interannual variability in gross primary productivity
(GPP) was somewhat larger (standard deviation around the
mean was up to∼10 %, for the normalised and detrended
data) than for isoprene, and with the exception of the north-
ernmost band, no common patterns emerged between vari-
ability in isoprene and that in GPP. For BVOCEM, where
emissions scale directly with leaf area index, rather than with
primary productivity, interannual variability in LAI of the
chief emitting PFTs was of the same magnitude than for iso-
prene, but here, too, a relationship between variation in LAI
and that in isoprene was only notable for the 60 to 90◦ N
band, as well as (but weaker) for the regions between 30 and
60◦ N (not shown).

4 Discussion

Comparing the three models in their published standard ver-
sions confirms previous global simulations in that the global
isoprene source is clearly dominated by the tropical regions
(see Guenther et al., 1995; Arneth et al., 2008a, and refer-
ences therein). The standard versions monthly emission rates
varied between ca. 10 and 25 Tg C in the two bands bound by
30 degrees latitude north and south of the equator. The three
models also simulated seasonal maxima in northern temper-
ate regions that were of the same magnitude as in the trop-
ics. Annual global emission totals were within the range of
previously published studies, with MEGAN being somewhat
lower than what is typically found in bottom-up global mod-
els (Arneth et al., 2008a).

Between-model discrepancies emerged regarding the mag-
nitude of the seasonal cycle in the southern and northern trop-
ics. Seasonal variation by a factor of approximately 2 for a
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Fig. 5. Annual total emissions from LPJ-GUESS (top panel) and
BVOCEM (bottom panel), separated by latitudinal band, over the
22-yr simulation period. Simulations were performed by apply-
ing the CRU climate and with dynamic vegetation features enabled.
CO2 concentration affected vegetation productivity, but the direct
effects of CO2 on isoprene production were disabled. Data were
normalised to unity by the average emission rate over the simula-
tion period, and a linear trend was removed. The inset shows the
correlation between the two models, with a separate regression for
the northernmost latitudinal band (60–90◦ N, grey).

tropical gridcell located in the Amazon has also been found
in a simulation by Levis et al. (2003), who simulated the sea-
sonal emission maximum around February–March and a sec-
ond, smaller peak around July-August. Emission minima oc-
curred around months 6 and 11. Satellite-retrieved formalde-
hyde (HCHO) concentrations indicated minima in HCHO
concentrations above the Amazon from April to June, corre-
sponding with the transition period between the wet and the
dry season (Barkley et al., 2008, 2009). As HCHO is a prin-
cipal atmospheric isoprene oxidation product, these patterns
have been interpreted as a seasonal isoprene emission low,
arising from a lag between substantial new leaf area growth
(which takes place during that period of the year and con-
tinues well into the dry season; Huete et al., 2006; Myneni
et al., 2007) and the delayed onset of isoprene emission in
newly-developed leaves. However, in warm growth environ-
ments, the period between onset of photosynthesis and iso-
prene emissions in newly-emerging foliage has been found
to be short (Kuhn et al., 2004; Wiberley et al., 2005), lags
on the order of weeks may thus be difficult to fully reconcile
with the process of leaf growth alone.
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Fig. 6. Leaf-level response of isoprene emissions to varying CO2
growth environment. Symbols represent observations from a num-
ber of studies and plant species, and are normalised to be unity
at growth CO2 concentration (Ca) of c 370 ppm. Data shown are
only from emission measurements that were undertaken at the CO2
growth concentration. The lines represent three different algorithms
that are currently being applied to represent the observed response
in global models: (i) the empirical function proposed by Possell et
al. (2005), used e.g., for BVOCEM in (Lathière et al., 2010); (ii)
a function representing the ratio of change in (non water-stressed)
leaf-internal CO2 concentration (Ci ) toCi at 370 ppm, used e.g., for
LPJ-GUESS in (Ci /Ci−370; Arneth et al., 2007a), which can be in-
terpreted as reflecting the varying leaf-internal competition for CO2
(Rosenstiel et al., 2004) – this line is by chance nearly identical to
the empirical function in (i); (iii) a “Hill”-type function proposed
by Wilkinson et al. (2009), withCi estimated as 0.7×Ca in anal-
ogy to the same assumption applied in LPJ-GUESS (Arneth et al.,
2007b). Approach (iii) has been adopted for MEGAN e.g., in Heald
et al. (2009). The Figure is adapted from Young et al. (2009), and
updated with latest published observations.

In Fig. 2, latitudinal and longitudinal averaging blurs some
features that may be typical for the Amazon with that of other
tropical regions, and the simulated patterns thus do not show
clearly-defined emission maxima during the dry season in the
Southern Hemisphere tropics (Barkley et al., 2009). Still, the
calculated seasonal variation appears reasonable when com-
pared to the limited number of canopy-scale measurements
from the tropical regions which have demonstrated similar or
even much larger differences between emission minima and
maxima throughout the year (Karl et al., 2004, 2007; Muller
et al., 2008), and is, in the model simulations, related to com-
bination of variation in leaf area index, incident radiation and
air temperature.

The observed response to changing some of the main
driver components of the models was complex, and points
to substantial uncertainty in modelled biogenic emission pat-
terns that can be introduced solely by applying different
present-day global climate or vegetation products. Moreover,
the direction of the simulated emission changes was not as
uniform as anticipated. The CRU climate, for instance, tends
to be warmer compared to the NCEP reanalysis, with a global
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temperature difference of approximately 0.8 K averaged over
our simulation period, especially in the tropical regions. This
gives rise to expectations that emissions would decrease in
experiments that move from CRU to NCEP climate, and vice
versa. But this response was only observed in the BVOCEM
(using fixed MEGAN vegetation) simulation.

The NCEP climate product tends to be wetter in some re-
gions when compared with CRU. In LPJ-GUESS, increased
precipitation in dry regions would stimulate rates of photo-
synthesis (Schaphoff et al., 2006) and hence isoprene produc-
tion, which could contribute to enhanced emissions. When
vegetation responds dynamically to the NCEP climate, an
additional influence is via changes in the PFT distribution,
which in the tropical areas was shifted towards the evergreen
type in the NCEP simulations, with lower emission capaci-
ties compared to raingreen vegetation (not shown). Such a
vegetation shift compensates for the climate effects to some
degree, since the evergreen PFT has a lower emission capac-
ity compared to tropical raingreen vegetation (Arneth et al.,
2007a).

Finally, a third confounding factor could be radiation lev-
els. In the CRU product, radiation is given as percent cloudi-
ness, which can be transformed into incident solar radiation
as a function of solar angle, shortwave albedo and clear sky
atmospheric transmissivity (Monteith and Unsworth, 1990).
The resulting insolation was lower than in the NCEP product
(not shown) and is probably a chief driver behind the increase
of emissions in LPJ-GUESS + NCEP, as well as the lower an-
nual emissions in MEGAN+CRU compared to their respec-
tive standard cases. Previous calculations using the MEGAN
standard case but with CRU climate also led to reductions of
approximately similar magnitude than here (−11 %; Guen-
ther et al., 2006). This smaller sensitivity was caused by
taking a different approach to convert CRU cloud cover into
irradiance levels, based on the BEIS inventory-model algo-
rithms (Pierce et al. 1998), as well as from different time av-
eraging for the comparison which was based on a single year
(2003). Overall, the multifaceted interactions between vary-
ing temperatures, radiation and precipitation highlight why a
simple extrapolation to expected emission changes under fu-
ture or past climate changes, based on the models’ responses
for present-day, would be problematic.

LPJ-GUESS tends to simulate lower LAI in most parts of
Australia and southern Africa compared to the MODIS prod-
uct used in MEGAN (see e.g., Sitch et al., 2003; Guenther
et al., 2006), which can explain the model-to-model differ-
ences in these regions seen in Fig. 4. Moreover, changing
from MEGAN vegetation to LPJ vegetation also meant a
change from accounting for crops to potential natural veg-
etation, hence the lower emission rates in parts of Europe,
Asia and the U.S. calculated by LPJ GUESS and BVOCEM
when applying MEGAN vegetation. Lathière et al. (2010)
found global crop area to cause a 15 % reduction of emis-
sions in late 20th century isoprene emissions compared to a
simulation with potential natural vegetation, and by ca. 30

to 40 % in northern America and Europe, respectively. In an
LPJ-GUESS simulation for Europe, emissions after account-
ing for crop area were reduced by more than a factor of three
(Arneth et al., 2008b). At the same time, changes in PFT dis-
tribution and emission factors also play an important role in
the interpretation of the observed between-model responses
to variable vegetation. For instance, MEGAN assigns large
parts of Australia to be covered by shrubs with high emission
potentials (Guenther et al., 2006), while LPJ-GUESS simu-
lates these areas to be dominated by grassland rather than
woody vegetation (Sitch et al., 2003) that has a much lower
emission potential.

The boreal forest regions, where all models respond with
a decrease in emissions when applying LPJ vegetation com-
pared to MEGAN vegetation have a large component of fine-
leaf evergreen and shrub vegetation in MEGAN, and a mix
of broadleaf deciduous and evergreen conifers as well as (in
Eastern Siberia) deciduous conifers in LPJ-GUESS. The de-
crease is hence mainly to be interpreted in view of the emis-
sion capacities since, after conversion to common units, only
the boreal broadleaf summergreen PFTs had higher emis-
sion factors compared to shrubs and fineleaf PFTs. Pfister et
al. (2008) examined the sensitivity of MEGAN to land cover
inputs using three different sets of satellite-derived LAI and
PFT datasets and reported a factor of 2 or more difference on
global to regional scales. This analysis highlights the uncer-
tainties in land-cover estimates, affecting emission capacities
as well as also canopy structural properties, and continued
improvements in these data will eventually lead to more ac-
curate emission estimates.

Interannual variability in emission rates was found to be
small, except for the northernmost latitudinal band, where
emissions are very low in absolute terms. Although some of
the anomalies (i.e., the low rates in 1992) corresponded to
climate fluctuations (i.e., cool summer temperatures follow-
ing the Mount Pinatubo eruption, and subsequent effects on
emissions; (Lucht et al., 2002; Telford et al., 2010)) the vari-
ation in precipitation and temperature for regions between 60
to 90◦ N were not substantially larger than in the other lati-
tude bands, and the magnitude of the interannual variation
hence cannot be directly attributed to larger climate fluctua-
tions in that region. Considering both regional and interan-
nual variability, fluctuations of typically not more than 5 and
(exceptional) 10 % around the mean have also been found
for simulated isoprene emissions when applying the DGVM
ORCHIDEE for the period 1983 to 1995 (Lathière et al.,
2006).

Correlations between simulated emission rates and LAI,
GPP and weather are to be expected since these are main
drivers of the underlying algorithms and affect emissions on
time-scales of minutes to weeks, and hence should also hold
over the course of a few years. For the two dynamic veg-
etation models in our study, no single factor emerged as a
clear driver of interannual variation, suggesting compensat-
ing processes that modify the overall response. This may
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initially seem counterintuitive, as for instance warm weather
conditions that foster isoprene emissions should also enhance
GPP and LAI – by lengthening growing season or by be-
ing closer to the temperature-optimum for photosynthesis.
But warm temperatures can also coincide with soil-water
deficit, thereby reducing GPP and LAI, or, especially in trop-
ical and subtropical regions, exceeding optimal photosyn-
thetic temperatures. Moreover, computing annual averages
across latitudinal bands can hide regionally-variable patterns
that might otherwise reveal how weather and emissions co-
vary (Lathìere et al., 2006). Better understanding of how the
various environmental factors and the associated vegetation
growth responses interact would require flux sites where iso-
prene fluxes are measured over a number of years alongside
ecosystem-atmosphere CO2 exchange measurements, but we
are only aware of one such data set (Pressley et al., 2005)
with four years of measurements. Interannual variability re-
ported at this site, an aspen- and red oak-dominated hard-
wood forest, was less than 10 %.

4.1 Short-term vs. long-term emission patterns

The strong temperature-sensitivity of leaf emissions and an-
ticipated warmer temperatures in a high-CO2 world have
been the chief argument for assuming a greatly enhanced fu-
ture isoprene source in simulations of future trace gas com-
position (e.g., Sanderson et al., 2003; Hauglustaine et al.,
2005; Young et al., 2009). Increased atmospheric CO2 lev-
els also enhance rates of leaf photosynthesis. It is expected
that this CO2 fertilisation will sustain an enhanced vegetation
productivity, even though acclimation processes on leaf- and
canopy-scales, as well as nutrient or water limitations, may
reduce the overall vegetation growth effects to below what
is extrapolated from short-term leaf-level observations alone
(Körner, 2006; Finzi et al., 2007; Hickler et al., 2008). The
concomitant LAI increase would foster heightened isoprene
emissions compared to present-day in addition to a direct
temperature effect. However, an increasing number of stud-
ies have also shown a direct CO2- effect on isoprene emis-
sions, such that leaf emissions decline at above-ambient CO2
levels, possibly due to leaf-internal competition for some iso-
prene precursor substances (Rosenstiel et al., 2003; Possell
et al., 2005; Wilkinson et al., 2009). Here, too, some com-
pensatory effects can be detected, such that the response to
varying CO2 differs depending on whether leaf area or mass
is used as the reference, or whether leaf or whole plant emis-
sions are being considered (Possell et al., 2005; Possell and
Hewitt, 2010).

Global isoprene models are beginning to include a direct
CO2-leaf emission response, adopting different algorithms
that are summarised in Fig. 6 (Arneth et al., 2007a; Heald et
al., 2009; Lathìere et al., 2010; Pacifico et al., 2011). In fu-
ture scenarios, accounting for CO2 inhibition has been shown
to decrease emissions notably (several 10s of a percent com-
pared to present-day) in simulations that kept vegetation

fixed. The overall reduction depends on both the choice of
the CO2 scenario and the magnitude of temperature increase
(Heald et al., 2009; Arneth et al., 2007a). Including the ad-
ditional effects of a dynamic vegetation response combines
effects of altered productivity as well as changing vegetation
PFT mixtures on global emissions, which makes between-
study comparisons difficult. After accounting for the addi-
tional direct CO2 inhibition effect, the projected emission
increase in response to warmer temperatures and enhanced
leaf area was either reduced (applying MEGAN in the Com-
munity Land Model, and for the IPCC SRES scenario A1B;
Heald et al., 2009), or emissions were close to present-day
rates (range of SRES and climate models; Arneth et al.,
2007a). In these two studies, global average LAI was mod-
elled to increase more than three-fold (Heald et al., 2009), vs.
by between 2 and 27 % (Arneth et al., 2007a). Though LAI
is not the sole factor explaining the diverging between-model
responses to climate and CO2 change, these differences in
LAI highlight the equal importance of developing robust pro-
jections of vegetation response to environmental changes in
addition to improving process-based leaf-level isoprene al-
gorithms. Assessments of future levels of air pollution and
climate change respond sensitively to variation in future iso-
prene emissions (Sanderson et al., 2003; Hauglustaine et al.,
2005; Young et al., 2009). A full and internally-consistent
accounting of the suite of environmental and direct (i.e., land
use/land cover change; Arneth et al., 2008b; Lathière et al.,
2006, 2010) anthropogenic drivers that affect biogenic emis-
sions, together with an accurate understanding of the mani-
fold interactions and impacts caused by each of these drivers
hence is necessary.

5 Conclusion

When applied in their standard setup, today’s global iso-
prene emission models agree on important features regard-
ing global emission totals, spatial distribution, seasonality
and interannual variability. However, the simulated annual
total emissions react sensitively to changes in one or more of
the main model drivers, like vegetation fields or climate in-
puts. Moreover, “swapping” standard inputs introduces large
changes in the simulated seasonality of emission patterns
which can lead to either a strong dampening or substantial
exaggeration of the observed seasonal cycles, especially in
the tropics. Based on the limited published studies to date
that examined seasonal emissions in tropical regions neither
the absence of seasonally-varying emissions nor a hugely
pronounced amplitude seem realistic. When incorporating
isoprene emission modules into coupled chemistry-climate
models it is thus advisable to check not only for annual total
emission patterns but also for seasonal patterns – the uncriti-
cal incorporation of individual model components into larger
framework should be avoided.
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Appendix A

Table A1. Use of plant functional types and isoprene emission factors for simulations in this study (dm: dry matter).

LPJ-GUESS
PFTs

Abbrev. Emission factor
(µg C g−1

leafdm h−1)

Emission factor
(mg C m−2

ground h−1)
for the BVOCEM
running with LPJ
vegetation

MEGAN
PFTs

Abbrev. LPJ assigned BVOCEM–
SDGVM PFTs

Emission factor
(mg C m−2

ground h−1)
for the BVO-
CEM
running with
SDGVM
vegetation

1. Tropical
Broadleaved
Evergreen

TrBE 24.0 4.6 1. Broadleaf
trees

btr 1, 2, 4, 5 and 8 1. C3 grass 0.4

2. Tropical
Broadleaved
Raingreen

TrBR 45.0 4.6 2. Fineleaf
trees

ftr 3, 6 and 7 2. C4 grass 0.4

3. Temperate
Needleleaved
Evergreen

TeNE 16.0 3.1 3. Grass and
herbaceous

grs 9 and10 3. Evergreen
broadleaf trees

11.1

4. Temperate
Broadleaved
Evergreen

TeBE 24.0 3.4 4. Shrubs shr Adapted from
1, 2, 4, 5 and 8

4. Evergreen
Needleleaf trees

1.8

5. Temperate
Broadleaved
Summergreen

TeBS 45.0 4.6 5. Herbaceous
and shrubby crops

crp Adapted from
9 and 10

5. Deciduous
broadleaf trees

11.1

6. Boreal
Needleleaved
Evergreen

BNE 8.0 1.5 6. Deciduous
needleleaf trees

0.6

7. Boreal
Needleleaved
Summergreen

BNS 8.0 0.8

8. Boreal
Broadleaved
Summergreen

BBS 45.0 4.6

9. C3 herbaceous C3 16.0 1.6
10. C4 herbaceous C4 8.0 0.82
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