
UCLA
UCLA Previously Published Works

Title
Scanorama: integrating large and diverse single-cell transcriptomic datasets.

Permalink
https://escholarship.org/uc/item/90r3j0s9

Journal
Nature Protocols, 19(8)

Authors
Hie, Brian
Kim, Soochi
Rando, Thomas
et al.

Publication Date
2024-08-01

DOI
10.1038/s41596-024-00991-3
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/90r3j0s9
https://escholarship.org/uc/item/90r3j0s9#author
https://escholarship.org
http://www.cdlib.org/


Scanorama: Integrating large and diverse single-cell 
transcriptomic datasets

Brian Hie1,2,3,+,*, Soochi Kim4,5,+, Thomas, A. Rando4,5,6,7, Bryan Bryson8,9,*, Bonnie 
Berger10,11,*

1Department of Chemical Engineering, Stanford University School, Stanford, CA, USA.

2Stanford Data Science, Stanford University, Stanford, CA, USA.

3Arc Institute, Palo Alto, CA, USA.

4Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 
Stanford, CA, USA.

5Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, 
CA, USA.

6Department of Neurology, UCLA, Los Angeles, CA, USA.

7Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los 
Angeles, CA, USA.

8Department of Biological Engineering, MIT, Cambridge, MA, USA.

9Ragon Institute of Mass General, MIT, and Harvard, USA.

10Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.

11Department of Mathematics, MIT, Cambridge, MA, USA.

Abstract

*Correspondence: B. Hie (brianhie@stanford.edu), B. Bryson (bryand@mit.edu), B. Berger (bab@mit.edu).
Author contributions
B.H. and S.K. developed the protocol. B.H., and S.K. prepared a preliminary draft of the manuscript with guidance from T.A.R., B.Br., 
and B.Be. All authors read, edited and approved the final manuscript.
+Equal contribution

Code Availability
The code used in this protocol are available in Colab Notebooks: Colab notebook for small dataset (293T and 
Jurkat) example: https://colab.research.google.com/drive/12hNry9nlMgZRu-bGUiXbz0Veqeh2WhcU?usp=sharing; Colab notebook 
for large dataset 1 (26 datasets) example: https://colab.research.google.com/drive/1OZrdeT1ob2FSSgTSK8Qa3hijoW1bb9Y3?
usp=sharing; Colab notebook for large dataset 2 (Tabula Sapiens datasets) example: https://colab.research.google.com/
drive/1X6ssJI9jTzqRJ9QQ44YffSvUhnlv2kR7?usp=sharing; Colab notebook for Geosketch parameter sweep: https://
colab.research.google.com/drive/1YrcAGWTnj6FzfA-qtUD6P-0yq4Uymt2X?usp=sharing; Colab notebook for Geosketch scatter 
plot: https://colab.research.google.com/drive/1SSx-idz5c-bIY83vMHKSLsZCNIm3Y_-4?usp=drive_link; Colab notebook for 
parameter sweep: https://colab.research.google.com/drive/1Nm0WplUpHFgQxEDjlaultvRRWjEhGNvW?usp=sharing; Colab 
notebook for benchmarking small dataset (293T and Jurkat) example: https://colab.research.google.com/drive/
12SSQoag6Y7ojeQMk7xABQLPMPr3BVqTT?usp=sharing; Colab notebook for benchmarking large dataset 1 (26 datasets) example: 
https://colab.research.google.com/drive/1CebA3Ow4jXITK0dW5el320KVTX_szhxG?usp=sharing; Colab notebook for Scanorama 
scalability assessment: https://colab.research.google.com/drive/1orxCL0Mbqf3d3zBBOIwP-grK8GmDqbEW?usp=sharing.

Competing interests
The authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Protoc. Author manuscript; available in PMC 2024 August 30.

Published in final edited form as:
Nat Protoc. 2024 August ; 19(8): 2283–2297. doi:10.1038/s41596-024-00991-3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://colab.research.google.com/drive/12hNry9nlMgZRu-bGUiXbz0Veqeh2WhcU?usp=sharing
https://colab.research.google.com/drive/1OZrdeT1ob2FSSgTSK8Qa3hijoW1bb9Y3?usp=sharing
https://colab.research.google.com/drive/1OZrdeT1ob2FSSgTSK8Qa3hijoW1bb9Y3?usp=sharing
https://colab.research.google.com/drive/1X6ssJI9jTzqRJ9QQ44YffSvUhnlv2kR7?usp=sharing
https://colab.research.google.com/drive/1X6ssJI9jTzqRJ9QQ44YffSvUhnlv2kR7?usp=sharing
https://colab.research.google.com/drive/1YrcAGWTnj6FzfA-qtUD6P-0yq4Uymt2X?usp=sharing
https://colab.research.google.com/drive/1YrcAGWTnj6FzfA-qtUD6P-0yq4Uymt2X?usp=sharing
https://colab.research.google.com/drive/1SSx-idz5c-bIY83vMHKSLsZCNIm3Y_-4?usp=drive_link
https://colab.research.google.com/drive/1Nm0WplUpHFgQxEDjlaultvRRWjEhGNvW?usp=sharing
https://colab.research.google.com/drive/12SSQoag6Y7ojeQMk7xABQLPMPr3BVqTT?usp=sharing
https://colab.research.google.com/drive/12SSQoag6Y7ojeQMk7xABQLPMPr3BVqTT?usp=sharing
https://colab.research.google.com/drive/1CebA3Ow4jXITK0dW5el320KVTX_szhxG?usp=sharing
https://colab.research.google.com/drive/1orxCL0Mbqf3d3zBBOIwP-grK8GmDqbEW?usp=sharing


Merging diverse single-cell RNA sequencing (scRNA-seq) data from numerous experiments, 

laboratories, and technologies can uncover significant biological insights. Nonetheless, integrating 

scRNA-seq data encounters special challenges when the datasets are composed of diverse cell type 

compositions. Scanorama offers a robust solution for improving the quality and interpretation 

of heterogeneous scRNA-seq data by effectively merging information from diverse sources. 

Scanorama is designed to address the technical variation introduced by differences in sample 

preparation, sequencing depth, and experimental batches that can confound the analysis of 

multiple scRNA-seq datasets. Here, we provide a detailed protocol for using Scanorama within a 

Scanpy-based single cell analysis workflow coupled with Google Colaboratory, a cloud-based 

free Jupyter notebook environment service. The protocol involves Scanorama integration, a 

process that typically spans 0.5 to 3 hours. Scanorama integration requires a basic understanding 

of cellular biology, transcriptomic technologies, and bioinformatics. Our protocol and new 

Scanorama-Colab resource should make scRNA-seq integration more widely accessible to 

researchers.

Editorial summary:

Scanorama is an effective tool for combining multiple scRNA-seq datasets, addressing technical 

variation introduced by differences in sample preparation, sequencing depth, and experimental 

batches that can confound the analysis of diverse datasets.

Proposed tweet:

Scanorama: Integrating large and diverse single-cell transcriptomic datasets @brianhie 

@SoochiKim @Thomas_Rando @thebrysonlab @lab_berger

Proposed teaser:

Scanorama: Integrating scRNA-seq datasets

Introduction

There has been a substantial increase in both the quantity and scale of single-cell RNA 

sequencing (scRNA-seq) studies. Two global initiatives, the Tabula Sapiens Consortium1 

and the Human Cell Atlas2, have made significant contributions to understanding multiple 

organs and tissues at the single cell level. Researchers from diverse areas of expertise have 

dedicated considerable effort to collecting, profiling, and analyzing data from these organs 

and tissues, resulting in vast, comprehensive collections of scRNA-seq datasets that are 

freely accessible to the scientific community. scRNA-seq studies aim to map and understand 

the cellular landscape of multiple organs and tissues at a single-cell resolution. However, one 

of the major challenges of analyzing multiple scRNA-seq datasets is the presence of batch 

effects that stem from technical or biological factors (see Glossary in Box 1), making it 

difficult to distinguish biologically meaningful differences across datasets3.

Development of the Protocol

Accurate integration of heterogeneous collections of scRNA-seq data is the critical step for 

overcoming technical and biological challenges. To address this issue, many methods have 
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been developed to integrate and batch correct multiple scRNA-seq datasets4–8. Alongside 

several methods such as Batch-Balanced k-Nearest Neighbors (BBKNN)8 and deep learning 

models such as single-cell variational inference (scVI)9 and single-cell annotation using 

variational inference (scANVI)10, Scanorama has emerged as one of the leading tools for 

scRNA-seq data integration. Scanorama is highly efficient and accurate in removing batch 

effects, can handle multiple batches and dataset types, and is less prone to overcorrection, 

preserving biologically relevant differences across datasets3, 11, 12. Moreover, Scanorama 

can avoid overcorrection when a dataset has no overlapping cell types with any other 

dataset, making it a preferred choice for batch correction of heterogeneous and complex 

datasets11. In a previous study11, we presented Scanorama’s efficacy across diverse datasets. 

Here, present an updated and detailed protocol for Scanorama, integrating it into a Scanpy-

based single cell analysis workflow on Google Colaboratory, enhancing its accessibility and 

usability.

Our protocol was originally developed using the mutual-nearest-neighbors matching strategy 

proposed by Haghverdi et al.4 for aligning cell types across two datasets. We extended 

this to account for alignments across many datasets, alongside algorithmic and software 

optimizations to improve computational efficiency. We later developed an additional 

method, Geometric Sketching (Geosketch), which intelligently downsamples single-cell 

datasets and allows Scanorama to conduct its most resource-intensive alignment step on 

a small subsample of the dataset while still applying the integration to the full dataset, 

resulting in a substantial speed-up of the entire process.

Overview of the Procedure

Here we describe a protocol to integrate multiple scRNA-seq datasets, spanning from 

small to large-scale scenarios, using Scanorama in a Jupyter Notebook inside Google 

Colaboratory. This protocol enables researchers to remove batch effects and perform 

downstream analysis on integrated datasets, providing a valuable resource for understanding 

cellular processes at single-cell resolution.

Expected inputs

Scanorama takes in a single-cell dataset in which the cells belong to different batches. In our 

protocol, we use the AnnData format to store the dataset. AnnData also allows the user to 

specify a “batch_variable” that indicates which cells belong to which batch.

Expected outputs

Scanorama produces a low-dimensional embedding or representation of each cell, where the 

distances among the cells within this embedding space aim to better represent the biological 

diversity of the data without the confounding batch effects that may be present in the 

original data. This low dimensional embedding can be used as input to further downstream 

analysis such as visualization and clustering.
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Prepare Scanorama inputs (Steps 1–6)

The initial steps of the Scanorama integration protocol involves setting up a connection to 

a computer with internet access, launching a Jupyter notebook in Google Colaboratory, and 

connecting to the Colab’s run time. Following this, a user creates a directory and downloads 

datasets. Our protocol then details the essential packages to install and import, including 

Scanorama and Scanpy. The subsequent steps encompass loading Scanorama input datsets, 

as AnnData objects. In our protocol, we illustrate how different datasets can be processed by 

Scanorama by providing three datasets of different sizes as potential input. Users can also 

incorporate their own datasets by uploading or downloading AnnData objects of interest to 

the created directory.

Scanorama integration (Step 7 and 10)

Scanorama integration in the protocol is marked by two key processes. Firstly, AnnData 

objects are split by batch, generating a list of AnnData representing individual batches over 

which the user desires to apply integration. Choosing an appropriate batch key in Scanorama 

integration is crucial, as it significantly influences the grouping and processing of datasets. 

The selection of a batch key depends on various factors, including its biological relevance, 

representation of technical variations, and alignment with the experimental design. We 

highly recommend users to explore the dataset, visualize metadata features, and understand 

how well they correspond to expected batch variations. Secondly, the Scanorama-corrected 

matrix is incorporated into the original AnnData object. A new AnnData object (‘adata_sc’) 

is created as a copy of the initial dataset, and the corrected matrices obtained from individual 

batches are aggregated and added to the ‘Scanorama’ key in the object’s observation matrix 

(‘obsm’).

Optional steps to accelerate Scanorama integration (Steps 8–9 and 12–14)

We’ve also included the optional steps, which are designed for more complex and large 

dataset integration. First, highly variables genes are identified in the merged dataset, 

focusing on the specified ‘batch_key’ and ensuring selection of genes variable in at least 

two batches. Subsequently, the individual AnnData objects are subset to encompass only 

these variable genes, improving efficiency by reducing the number of genes to consider. The 

core integration process is then performed using Scanorama as in Scanorama integration 

step, with the integrated result stored back in the ‘adatas’ variable as ‘X_scanorama’. For 

those seeking to accelerate integration further, Scanorama introduces the ‘sketch_method’ 

parameter, particularly leveraging the Geosketch13 method for efficient integration of large 

datasets. Users are encouraged to explore the impact of Geosketch parameters via the 

provided Colab notebook, conducting tests with varying sketch sizes. We’ve also included a 

benchmarking analysis, assessing the impact of subsampling on Scanorama integration using 

10 metrics from scib-metrics3. The results are visualized in a comprehensive table, providing 

valuable insights into the integration performance.
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Visualize batch correction (Steps 15–17)

To assess the impact of batch correction on the structure of the scRNA-seq data, a series 

of steps, including computing the k-nearest-neighbors graph and performing dimensionality 

reductions such as t-SNE and UMAP, are conducted on the integrated dataset. This allows 

for clustering and visualization of the corrected data. Simultaneously, uncorrected data is 

prepared for comparison by applying similar dimensionality reduction steps.

Assess Scanorama integration quality (Steps 18–23)

In this last step, we aim to evaluate the quality of integration by assessing the consistency 

between Leiden cluster labels and various metadata label keys. The steps involve installing 

the necessary packages and running the Leiden algorithm for clustering analysis. Mutual 

information scores are then calculated between Leiden clusters and specified metadata label 

keys. We have also included optional steps to provide further insights into Scanorama’s 

performance, allowing users to optimize parameters, benchmark against other methods, and 

assess resource consumption.

Comparison with other methods

Batch correction methods for scRNA-seq data can be categorized into four broad 

categories: global models14, nearest-neighbor methods4–7, 11, graph-based methods8 and 

deep learning approaches9, 10, 15. However, these methods face common challenges, such as 

overcorrection, the use of latent space for integration, and difficulty in disentangling batch 

effects from the underlying biological signal of interest. Scanorama belongs to the category 

of nearest-neighbor methods, utilizing approximate nearest neighbor search techniques 

based on locality-sensitive hashing and random projection trees11, 16. Scanorama has been 

shown to perform well at integrating across heterogeneous datasets while still taking a more 

conservative approach to removing inter-dataset variation, which typically leads to better 

preservation of biological signal11.

Multiple benchmarks have been conducted to evaluate the performance of various batch 

correction and data integration methods3, 17,18. A recent comprehensive benchmark called 

scib-metrics, which also implements a usable software package for conducting comparisons 

of single-cell integration methods, highlighted that Scanorama is among the top-performing 

methods, along with deep learning approaches scANVI, scVI, and scGen, particularly 

for complex tasks that involve multiple datasets and high biological complexity3. When 

choosing a method, it is important to evaluate the integration performance using appropriate 

metrics and evaluation pipelines and to test multiple methods before selecting the most 

appropriate one. Scanorama’s ability to handle multiple batches and dataset types while 

efficiently and accurately removing batch effects and identifying biologically relevant 

differences across datasets make it a compelling option for scRNA-seq data integration.

Challenges and limitations

There are some limitations and challenges that are important to keep in mind when 

using Scanorama or performing data integration of scRNA-seq datasets more generally. 

Scanorama employs a few algorithm approximations to improve computational efficiency. 
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Scanorama compresses the gene expression profiles of cells into a low-dimensional 

embedding using an efficient randomized singular value decomposition (SVD)19. This step 

improves the robustness to noise, but results in a loss of information, and may inadvertently 

remove or blur genuine biological differences between batches. Scanorama also utilizes 

approximate nearest neighbor search techniques based on locality sensitive hashing and 

random projection trees16, 20. This assumes a shared subpopulation structure among the 

integrated datasets. While this reduces query time and makes batch correction feasible 

for large-scale datasets, it may lose accuracy compared to exact nearest neighbor search. 

Scanorama’s computational requirements can also be reduced by limiting the number 

of batch-corrected genes by targeting analysis only to highly variable genes or through 

downsampling the number of cells used to perform mutual-nearest-neighbors matches 

among datasets13.

When large differences exist between batches or datasets, Scanorama employs a 

conservative mutual-nearest-neighbors matching algorithm and may not completely separate 

these effects, potentially leading to incomplete integration. On the other hand, Scanorama 

does transform the underlying data and may also therefore remove biologically meaningful 

differences. One approach to assessing problems of under- or overcorrection is to use 

ground-truth standards (for example, cells that are known to be of the same or different 

cell types) across datasets. Assessing the accuracy of batch correction methods can be 

challenging in the absence of a ground truth. While Scanorama and other methods can 

improve alignment between datasets, the true underlying biological heterogeneity and the 

extent of batch effects may remain uncertain. Researchers should consider these limitations, 

evaluate the suitability of Scanorama or alternative methods based on their specific scRNA-

seq dataset and research question, and leverage comparative evaluations, benchmarking 

studies, and validation on gold standard datasets to assess performance and appropriateness 

of batch correction methods in different scenarios.

Experimental Design

The use of single-cell integration requires several important considerations. As detailed in 

the previous section, proper integration should consider the use of positive and negative 

controls to assess the impact of under- or over-correction. Another important consideration 

is the selection of the batch variable, as Scanorama is encouraged to remove differences 

between cells with different batch labels.

Our Scanorama protocol is designed to be generally applicable to different collections of 

scRNA-seq datasets. We build off of the commonly used AnnData format and the user needs 

only to provide Scanorama with a single AnnData object that contains the data and the 

user-specified batch variable.

Users with large datasets and limited computational resources should consider running 

Scanorama integration with sketch-based acceleration, which is described in our protocol. 

Using sketching with Scanorama simply requires providing a parameter to Scanorama that 

turns on this functionality, as well as a parameter specifying the desired sketch size (smaller 

values will result in faster integration but will also potentially lead to decreased sensitivity to 

biological variation and therefore poorer performance).
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Materials

Equipment

• A computer with internet connection.

• Google Colab account; this workflow has been tested on Colab Pro+ account. 

Colab Pro or Colab Pro+ options are recommended for large dataset integration. 

For more information, please refer to https://colab.research.google.com/.

Software

• Scanorama11 installation: Installation instruction can be found at https://

github.com/brianhie/scanorama

• Scanpy21 installation: Installation instructions can be found at https://github.com/

scverse/scanpy

• Pandas installation: Installation instructions can be found at https://github.com/

pandas-dev/pandas

• Numpy22 installation: Installation instructions can be found at https://

github.com/numpy/numpy

• Matplotlib installation: Installation instructions can be found at https://

github.com/matplotlib/matplotlib

• Anndata23 installation: Installation instructions can be found at https://

github.com/scverse/anndata

Datasets

• Small dataset example: 293T cells, Jurkat cells, and a 50:50 293T:Jurkat mixture.

• Large dataset 1 example: 26 datasets from 9 different technologies. Both of these 

datasets (Small dataset and Large dataset 1) are used in original study11 and are 

available from:

• https://zenodo.org/record/7968485

• Large dataset 2 example: Tabula Sapiens1 transcriptomic cell atlas individual 

organ datasets from human fat, muscle and blood. In total, there are 46 cell 

ontology classes represented in these datasets, with only 2 overlapping cell 

ontology classes across all three objects, and each tissue object has unique cell 

ontology classes, with 19 in blood, 5 in fat, and 11 in muscle. All processed 

datasets used in this example and other organs are available from:

https://figshare.com/articles/dataset/Tabula_Sapiens_release_1_0/14267219
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Procedures

Prepare example Scanorama inputs.

1. [1 minute] To get started, establish a connection to a computer that has 

an internet connection and launch a new Jupyter notebook using Google 

Colaboratory (Colab) or open example notebook using the links below. Make 

sure to connect to the runtime and, if have a Colab Pro/Pro+ subscription, enable 

high memory (High-RAM) as needed to accelerate the integration processes and 

minimize the risk of hitting usage limits when working with large datasets. ?

TROUBLESHOOTING

Below, we use prepared example datasets as input to Scanorama. Users can 

use their own datasets by creating an AnnData object (adata) that includes a 

“batch_key” in the AnnData’s observation metadata (adata.obs)

• Colab notebook for small dataset (293T and Jurkat) 

example: https://colab.research.google.com/drive/12hNry9nlMgZRu-

bGUiXbz0Veqeh2WhcU?usp=sharing

• Colab notebook for large dataset 1 

(26 datasets) example: https://colab.research.google.com/drive/

1OZrdeT1ob2FSSgTSK8Qa3hijoW1bb9Y3?usp=sharing

• Colab notebook for large dataset 2 (Tabula 

Sapiens datasets) example: https://colab.research.google.com/drive/

1X6ssJI9jTzqRJ9QQ44YffSvUhnlv2kR7?usp=sharing

2. [1 minute] Create a directory for downloading and unpacking datasets. Enter the 

following command in the Jupyter notebook to make a directory.

!mkdir –p /content/drive/MyDrive/<directory name>

3. [5–15 minutes] Download and unpack datasets for Scanorama integration.

#####- Small datasets -#####

!wget -P /content/drive/MyDrive/<directory name>

https://zenodo.org/record/7968485/files/small_dataset.zip

!unzip /content/drive/MyDrive/<directory name>/small_dataset.zip 

-d /content/drive/MyDrive/<directory name>

#####- Large dataset 1 -#####

!wget -P /content/drive/MyDrive/<directory name>

https://zenodo.org/record/7968485/files/large_dataset.zip

!unzip /content/drive/MyDrive/<directory name>/large_dataset.zip 

-d /content/drive/MyDrive/<directory name>

#####- Large dataset 2: Fat, Muscle and Blood AnnData objects 

-#####
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!wget -O /content/drive/MyDrive/<directory name>/TS_Fat.h5ad.zip 

https://figshare.com/ndownloader/files/34701973

!wget -O /content/drive/MyDrive/<directory name>/

TS_Muscle.h5ad.zip https://figshare.com/ndownloader/files/34702000

!wget -O /content/drive/MyDrive/<directory name>/TS_Blood.h5ad.zip 

https://figshare.com/ndownloader/files/34701964

!unzip /content/drive/MyDrive/<directory name>/TS_Fat.h5ad.zip -d /

content/drive/MyDrive/<directory name>

!unzip /content/drive/MyDrive/<directory name>/TS_Muscle.h5ad.zip 

-d /content/drive/MyDrive/<directory name>

!unzip /content/drive/MyDrive/<directory name>/TS_Blood.h5ad.zip 

-d /content/drive/MyDrive/<directory name>

4. [1 minute] Install and load required packages.

!pip install scanorama

!pip install scanpy

import scanorama

import scanpy as sc

import anndata as ad

import scanpy.external as sce

import matplotlib.pyplot as plt

import numpy as np

Load Scanorama inputs:

5. [1 minute] Load AnnData objects to integrate using the ‘read_h5ad’ function 

from the Scanpy package.

• Load small dataset example:

adata = sc.read_h5ad(‘/content/drive/MyDrive/<directory 

name>/small_dataset/small_data_293T_Jurkat.h5ad’)

• Load large dataset 1 example

adata = sc.read_h5ad(‘/content/drive/MyDrive/<directory 

name>/large_dataset/large_data_26dataset.h5ad’)

• Load large dataset 2 example

adata1 = sc.read_h5ad(‘/content/drive/MyDrive/<directory 

name>/TS_Fat.h5ad’)

adata2 = sc.read_h5ad(‘/content/drive/MyDrive/<directory 
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name>/TS_Muscle.h5ad’)

adata3 = sc.read_h5ad(‘/content/drive/MyDrive/<directory 

name>/TS_Blood.h5ad’)

6. For any dataset that spans multiple AnnData objects such as large dataset 2, 

merge and preprocess AnnData objects for integration.

• [1 minute] First merge AnnData objects using the ‘concatenate’ 

function from the AnnData package.

Adata_concat = adata1.concatenate([adata1, adata2], 

batch_key=‘organ_tissue’, batch_categories=[‘Fat’, 

‘Muscle’, ‘Blood’], join=‘outer’)

• [1 minute] Then preprocess the merged objects for integration: extract 

raw gene expression, normalize total counts to 10,000, and apply 

natural logarithm transformation to the count matrix.

adata = sc.AnnData(X=adata_concat.raw.X, 

var=adata_concat.raw.var, obs = adata_concat.obs)

sc.pp.normalize_per_cell(adata, counts_per_cell_after=1e4)

sc.pp.log1p(adata)

Scanorama integration.

7. [1 minute] Split AnnData object by batch and create a list of AnnData.

batch_key = <NAME of BATCH KEY>

adatas = [adata[adata.obs[batch_key] == batch_value].copy() for 

batch_value in adata.obs[batch_key].unique()]

Optional steps for large dataset integration [Steps 8–9].

8. [1 minute] Identify highly variable genes in the merged dataset, based on 

the ‘batch_key’ and select the genes that are variable in at least 2 batches. 

Adjust the code by replacing ‘<NAME of BATCH KEY>‘, ‘<NAME of LABEL 

KEY>‘ with the actual names of your metadata batch and label keys.

batch_key = <NAME of BATCH KEY>

label_key = <NAME of LABEL KEY>

sc.pp.highly_variable_genes(adata, batch_key = batch_key)

# Select all genes that are variable in at least 2 batches

var_select = adata.var.highly_variable_nbatches > 2

var_genes = var_select.index[var_select]
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9. [1 minute] Subset the individual AnnData object to contain only the same 

variable genes.

adatas = [adata[adata.obs[batch_key] == batch_value][:, 

var_genes].copy() for batch_value in adata.obs[batch_key].unique()]

10. [1–10 minutes] Perform batch correction and integration using Scanorama. The 

integrated result is stored back in the ‘adatas’ variable as ‘X_scanorama’.

scanorama.integrate_scanpy(adatas, dimred = 100)

?TROUBLESHOOTING

11. [1 minute] Add Scanorama corrected matrix to the AnnData object.

adata_sc = adata.copy()

scanorama_int = [ad.obsm[‘X_scanorama’] for ad in adatas]

all_s = np.concatenate(scanorama_int)

adata_sc.obsm[‘Scanorama’] = all_s

Optional parameters for accelerating integration with Geosketch13 [Step 12–14].

Scanorama provides an optional parameter called ‘sketch_method’, which is designed to 

leverage sketching methods for obtaining a compressed representation of a large dataset. 

This feature is particularly useful to accelerate integration time.

To explore and understand the impact of the Geosketch parameters in Scanorama, please 

refer to the extensive testing conducted in the provided Colab notebook.

https://colab.research.google.com/drive/1YrcAGWTnj6FzfA-qtUD6P-0yq4Uymt2X?

usp=sharing

12. [1–10 minutes] Instead of performing mutual-nearest-neighbors matching over 

all cells, which may be computationally expensive, Scanorama supports the 

ability to find alignments over only a subsample (or a sketch) and then apply 

the results to all cells. This is useful when datasets are very large (for example, 

~100k cells or more).

To explore the impact of Geosketch size on Scanorama integration, we will 

conduct a series of tests with sketch sizes ranging from 50 to 10,000 cells.

• Set the variable ‘GEOSKETCH’ to control the size of the Geosketch.

GEOSKETCH = <Sketch Variable>

• Split AnnData object by batch and create a list of AnnData.
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adata_sc = adata.copy()

batch_cats = adata.obs.batch.cat.categories

adatas = [adata[adata.obs.batch == b].copy() for b in batch 

cats]

• Perform batch correction and integration using Scanorama and add 

Scanorama corrected matrix to the AnnData object as “Scanorama”.

scanorama.integrate_scanpy(adatas, dimred = 100, sketch = 

True, sketch_method = ‘geosketch’, sketch_max = GEOSKETCH)

adata_sc.obsm[<“Scanorama”>] = 

np.zeros((adata_sc.shape[0],adata[0].obsm[“X_scanorama”].sha

pe[1]))

for i, b in enumerate(batch_cats):

 adata_sc.obsm[<“Scanorama”>][adata_sc.obs.batch == b] = 

adata[i].obsm[“X_scanorama”]

13. [1–2 hours] Benchmark subsampling impact on Scanorama integration using 10 

metrics from scib-metrics3.

sc_bm = Benchmarker(adata_sc,

batch_key = batch_key,

label_key = label_key,

embedding_obsm_keys = [NEW NAMES, NEW_NAMES2, NEW NAMES3],

n_jobs =8

)

14. [1 minute] Visualize the results table.

sc_bm.plot_results_table(min_max_scale=False)

Visualize batch correction.

15. [5–60 minutes] Perform a series of operations: 1) compute the k-nearest-

neighbors graph of the cells for clustering 2) perform additional dimensionality 

reductions: t-SNE and UMAP for visualization.

sc.pp.neighbors(adata_sc, use_rep=‘X_scanorama’)

sc.tl.tsne(adata_sc, use_rep=‘X_scanorama’, perplexity = 1200)

sc.tl.umap(adata_sc)

16. [5–60 minutes] Prepare uncorrected data for comparison.
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adata_raw = adata.copy

sc.tl.pca(adata_raw)

sc.pp.neighbors(adata_raw)  

sc.tl.tsne(adata_raw, perplexity = 1200)

sc.tl.umap(adata_raw)

17. [1 minute] t-SNE and UMAP plotting.

sc.pl.embedding(adata_sc, basis=‘tsne’, color= batch_key, 

title=‘Scanorama corrected batch t-SNE’, show=False)

sc.pl.embedding(adata_sc, basis=‘umap’, color= batch_key, 

title=‘Scanorama corrected batch UMAP’, show=False)

?TROUBLESHOOTING

Mutual information analysis.

To assess Scanorama integration quality, we employ mutual information assessment analysis 

between Leiden cluster labels obtained from the clustering analysis and various metadata 

label keys. Follow the steps 18–20 below to install the required package, perform Leiden 

clustering, and calculate mutual information scores for each specified label key.

18. [1 minute] Install and load required package.

pip install leidenalg

from sklearn.metrics import mutual_info_score

19. [1 minute] Perform the Leiden algorithm for clustering analysis

sc.tl.leiden(adata_sc, key_added = ‘leiden_1.0’) 

20. [1 minute] Calculate the mutual information scores between the Leiden cluster 

labels and different metadata label keys. Adjust the code by replacing ‘<NAME 

of LABEL KEY>‘, ‘<NAME of LABEL KEY2>‘, ‘<NAME of LABEL 

KEY3>‘ with the actual names of your metadata label keys.

leiden_labels = adata_sc.obs[‘leiden_1.0’]

label_key1 = adata_sc.obs[<NAME of LABEL KEY>]

label_key2 = adata_sc.obs[<NAME of LABEL KEY2>]

label_key3 = adata_sc.obs[<NAME of LABEL KEY3>]

mutual_info = mutual_info_score(leiden_labels, label_key1)

mutual_info2 = mutual_info_score(leiden_labels, label_key2)

mutual_info3 = mutual_info_score(leiden_labels, label_key3)
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print(‘Mutual Information between Leiden and label 1:’, 

mutual_info)

print(‘Mutual Information between Leiden and label 2:’, 

mutual_info2)

print(‘Mutual Information between Leiden and label 3:’, 

mutual_info3)

Optional steps to assess Scanorama integration performance [Steps 21–23]

Explore these optional steps to gain insights into Scanorama’s performance, optimize 

parameters, and benchmark against other integration methods.

21. [2 hours] Optimizing Scanorama integration performance by exploring 

parameters.

While the default parameters of Scanorama generally perform well, consider 

exploring parameter optimization in cases where further enhancement of 

integration performance is desired. A range of the knn (5 to 50), sigma (1 to 

100), and dimred (10 to 1000) parameters within the Scanorama integration 

process were tested and their effect on integration quality were assessed using 

scib-metrics. An example Colab notebook is provided in the link below.

https://colab.research.google.com/drive/

1Nm0WplUpHFgQxEDjlaultvRRWjEhGNvW?usp=sharing

22. [2 hours] Benchmarking integration methods.

To assess and compare the performance of Scanorama against other integration 

methods, make use of the provided example Colab notebooks designed for 

benchmarking. These notebooks are created for benchmarking with both small 

datasets (e.g. 293T and Jurkat) and a larger dataset consisting of 26 datasets. 

Access the benchmarking notebooks through the link below.

Colab notebook for benchmarking small dataset (293T and Jurkat) example:

https://colab.research.google.com/drive/

12SSQoag6Y7ojeQMk7xABQLPMPr3BVqTT?usp=sharing

Colab notebook for benchmarking large dataset 1 (26 datasets) example:

https://colab.research.google.com/drive/

1CebA3Ow4jXITK0dW5el320KVTX_szhxG?usp=sharing

23. [2 min] Optional steps to assess Scanorama integration performance and resource 

consumption.

To conduct an optional assessment of Scanorama integration performance and 

resource consumption, follow the step-by-step Colab notebook below, designed 

for scalability testing. This notebook evaluates Scanorama’s scalability under 

different scenarios.

Colab notebook for Scanorama scalability assessment:
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https://colab.research.google.com/drive/1orxCL0Mbqf3d3zBBOIwP-

grK8GmDqbEW?usp=sharing

Troubleshooting

Troubleshooting advice can be found in Table 1.

Timing

Steps 1–6, Prepare Scanorama inputs, 9–21 min

Steps 7 and 10–11, Scanorama integration, 3–12 min (this may be longer for larger datasets)

Steps 8–9 and 12–14, Optional steps to improve Scanorama integration, 1 –2 hr

Steps 15–17, Visualize batch correction, 11 min-2 hr

Steps 18–23, Assess Scanorama integration quality, 4 hr

Anticipated Results

To demonstrate the outputs of our protocol, we employed Scanorama within a Scanpy-based 

single-cell analysis workflow on Google Colaboratory to replicate the key findings from our 

previous publication11 and to reanalyze a large Tabula Sapiens dataset1 to demonstrate the 

effectiveness of our approach (Fig. 1a). For the small-scale dataset, we used 293T cells, 

Jurkat cells and a 50:50 mixture of 293T and Jurkat cells from a previous study24. This 

dataset consisted of 9,530 cells and 32,639 genes. By following a step-by-step protocol, we 

show that Scanorama can successfully separate 293T cells from Jurkat cells and merge the 

same cell types across datasets (Fig. 1b). This was made possible through the utilization of 

the ‘scanorama.integrate_scanpy()’ function in step 10 of our analysis pipeline. This 

function played a pivotal role in generating a low-dimensional matrix containing integrated 

single-cell RNA-seq data. The integration process aligned transcriptomic embeddings from 

various batches into a shared space, where cells of similar types are placed closer together.

Furthermore, we expanded our protocol to include larger datasets. We combined 26 scRNA-

seq datasets from nine different technologies, totaling 105,476 cells and 5,216 common 

genes. These datasets were obtained from 11 different studies24–35. Consistent with our 

previous findings11, Scanorama effectively identified datasets with similar cell types and 

integrated them, enabling clustering by cell type rather than by experimental batch (Fig. 1c).

Importantly, by incorporating optional steps such as sketching (step 12), parameter 

adjustments (step 21), and benchmarking integration methods (step 22), along with a 

comprehensive integration quality assessment using scib-metrics3, we observed that batch 

correction remained robust even up to a sketch size of 2500 cells (Supp. Fig 1). Adjustments 

in knn, sigma, and dimred parameters within the Scanorama integration process, outlined 

in our optional Step 21 and Supp. Fig 2, improved integration metrics related to biological 

conservation (KMeans NMI, KMeans ARI, Silhouette labels) without compromising batch 
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correction efficacy (Silhouette batch, kBET metrics). This approach allowed us to determine 

parameters that balance noise reduction with the preservation of biological signal.

We also compare Scanorama to alternative methods for single-cell integration and show 

that Scanorama has competitive performance. The performance of Scanorama against the 

clustering-based model Harmony and deep learning-based integration approaches, scANVI 

and scVI showed that method performance varied based on integration task complexity. In 

agreement with original report by Luecken et al., we also found that Harmony performed 

well in simple tasks (Small dataset 1) but poorly in complex tasks (Large dataset 1). 

Conversely, Scanorama, scANVI, and scVI excelled in complex integration tasks (Supp. Fig 

3).

Finally, we demonstrated the scalability of Scanorama using the Tabula Sapiens datasets, 

which represented three different organs and two different sequencing technologies. This 

dataset encompassed a total of 101,124 cells and 58,870 genes from seven donors. By 

utilizing ‘organ_tissue’ as a batch key, Scanorama successfully merged common immune 

cell types across the three organs and enabled clustering by cell type rather than by 

experimental batch, donor, or sequencing method (Fig. 2a–d). We can quantify this result by 

showing that the mutual information between labels obtained by unsupervised clustering on 

the integrated data and cell type labels (obtained by analyzing each tissue individually) is 

much higher than for labels corresponding to batch, donor, or method (Fig. 2e). In summary, 

this protocol demonstrates the robustness and scalability of Scanorama in integrating and 

analyzing scRNA-seq datasets, highlighting its ability to identify and merge similar cell 

types across different experimental conditions or technologies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points:

• Scanorama is an effective tool for combining multiple scRNA-seq 

datasets, addressing technical variation introduced by differences in sample 

preparation, sequencing depth, and experimental batches that can confound 

the analysis diverse datasets.

• Scanorama can handle multiple batches and dataset types while efficiently 

and accurately removing batch effects and identifying biologically relevant 

differences across datasets, making it a compelling option for scRNA-seq data 

integration.
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Box 1:

Glossary

Sequencing depth: The number of sequencing reads obtained from a sample during 

an RNA sequencing experiment. It indicates how many times a specific region of the 

transcriptome is sequenced, providing an estimate of the abundance or expression level of 

the corresponding genetic elements.

Latent space: A lower-dimensional representation of the data that captures its underlying 

structure or patterns36. Scanorama utilizes a dimensionality reduction technique that 

leverages the singular value decomposition to compress the gene expression profiles of 

each cell.

Technical variation: The variability in experimental measurements that arises from 

technical sources rather than biological sources. This includes, sample processing, library 

preparation, sequencing, and data acquisition.

Batch effect: The systematic variation in experimental measurements that arises from 

technical or non-biological sources due to differences in sample processing, experimental 

conditions, or the result of handling cells in distinct groups or ‘batches’.

Integration: The process of combining or merging multiple scRNA-seq datasets 

obtained from different experimental conditions, tissues, or platforms into a unified 

representation.

Batch correction: A data preprocessing technique used in multi-sample or multi-batch 

experiments to remove or minimize unwanted systematic variations introduced by 

technical factors or batches in scRNA-seq analysis.

Overcorrection: When the batch correction method removes meaningful biological 

signal.

Nearest neighbors: A technique used to identify the closest data points to a given data 

point based on a specified distance metric.

Mutual nearest neighbors: A technique that matches a pair of cells between two 

datasets if both cells in the pair are within the neighborhood of closest cells when 

considering the other dataset. This technique is used in the context of comparing and 

aligning datasets to find similar or corresponding points across datasets.

Dimensionality reduction: The process of reducing the number of variables or features 

in a dataset to improve computational efficiency and enhance data visualization.
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Figure 1. The Scanorama-Colab workflow.
a, Integrating multiple single-cell RNA sequencing (scRNA-seq) datasets in a Colaboratory 

Python environment. Input datasets can be from public sources or user data. Scanorama 

conducts integration and batch correction, identifying shared cell types among batches by 

searching for nearest neighbors and aligns them into a shared space. b, Small dataset 

example: three datasets consisting of Jurkat cells, 293T cells, and a mixed population of 

these two cell types were used as the inputs and visualized using t-distributed stochastic 

neighbor embedding (t-SNE) before and after Scanorama correction. (ii-iii) Scanorama was 

able to accurately distinguish between Jurkat cells and 293T cells, originating from different 

batches (indicated by orange, green and blue) as distinct clusters (indicated by orange and 
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blue). c, Large dataset 1 example: the Scanorama-integrated 26 single-cell datasets from 9 

different technologies are visualized using t-SNE and clustered by cell types.
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Figure 2. Panoramic integration of three organ single-cell datasets across seven donors and two 
different technologies.
a–d, The scRNA-seq datasets of three organs (a), seven donors (b), and two 

different technologies (c) from Tabula Sapiens were visualized using uniform manifold 

approximation and projection (UMAP), both before and after Scanorama correction. Cell 

clusters were grouped by cell type instead of batch factors such as organ, donor, and 

methods (d). e, Mutual information score between Leiden cluster labels and metadata 

(organ, donor, method, and cell types) after Scanorama correction.
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Table 1.

Troubleshooting

Step Problem Description Possible reason Solutions

10 IndexError/no attribute “X” 
Error Message

1) Observation data not 
transposed.

1) Transpose data matrix (cell x genes).

Mismatched gene list 
length.

Ensure gene list matches matrix dimensions.

Non-unique gene names. Verify gene names are unique.

10 Memory and Run Time Error Out of computing power Use sketch parameter to the ‘integrate()’ function. Set the 
‘sketch_max’ parameter to downsample (refer to Steps 11–13).

10 “Illegal instruction” or 
“Segfault” Error Message

Errors with Annoy Package Use annoy version 1.11.5 on Ubuntu 18.04. If errors persist, pass 
‘approx=False’ for scikit-learn’s nearest neighbors matching.

17 Suboptimal Scanorama 
Integration

Suboptimal Parameters Optimize performance by exploring parameters. Run the optional 
notebook provided in Step 21.

All Resource limitations Insufficient server resources 1) Upgrade server capacity (Colab pro or Colab pro+).
2) Optimize resource usage. Use sketch parameter to downsample 
(refer to Steps 11–13).

Nat Protoc. Author manuscript; available in PMC 2024 August 30.


	Abstract
	Editorial summary:
	Proposed tweet:
	Proposed teaser:
	Introduction
	Development of the Protocol
	Overview of the Procedure

	Expected inputs
	Expected outputs
	Prepare Scanorama inputs (Steps 1–6)
	Scanorama integration (Step 7 and 10)
	Optional steps to accelerate Scanorama integration (Steps 8–9 and 12–14)
	Visualize batch correction (Steps 15–17)
	Assess Scanorama integration quality (Steps 18–23)
	Comparison with other methods
	Challenges and limitations
	Experimental Design

	Materials
	Equipment
	Software
	Datasets

	Procedures
	Prepare example Scanorama inputs.
	Load Scanorama inputs:
	Scanorama integration.
	Optional steps for large dataset integration [Steps 8–9].
	Optional parameters for accelerating integration with Geosketch13 [Step 12–14].
	Visualize batch correction.
	Mutual information analysis.
	Optional steps to assess Scanorama integration performance [Steps 21–23]

	Troubleshooting
	Timing
	Anticipated Results
	References
	Figure 1.
	Figure 2.
	Table 1.



