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The cAMP-induced G protein subunits dissociation monitored in 
live Dictyostelium cells by BRET reveals two activation rates, a 
positive effect of caffeine and potential role of microtubules.
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Rappelb, and Pascale G. Charesta,*

aDepartment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, 
USA.

bDepartment of Physics, University of California−San Diego, La Jolla, CA, 92093, USA.

cPresent address: Division of Biology and Biological Engineering, Joint Center for Transitional 
Medicine, California Institute of Technology, Pasadena, CA, 91125.

Abstract

To study the dynamics and mechanisms controlling activation of the heterotrimeric G protein 

Gα2βγ in Dictyostelium in response to stimulation by the chemoattractant cyclic AMP (cAMP), 

we monitored the G protein subunit interaction in live cells using bioluminescence resonance 

energy transfer (BRET). We found that cAMP induces the cAR1-mediated dissociation of the G 

protein subunits to a similar extent in both undifferentiated and differentiated cells, suggesting that 

only a small number of cAR1 (as expressed in undifferentiated cells) is necessary to induce the 

full activation of Gα2βγ. In addition, we found that treating cells with caffeine increases the 

potency of cAMP-induced Gα2βγ activation; and that disrupting the microtubule network but not 

F-actin inhibits the cAMP-induced dissociation of Gα2βγ. Thus, microtubules are necessary for 

efficient cAR1-mediated activation of the heterotrimeric G protein. Finally, kinetics analyses of 

Gα2βγ subunit dissociation induced by different cAMP concentrations indicate that there are two 

distinct rates at which the heterotrimeric G protein subunits dissociate when cells are stimulated 

with cAMP concentrations above 500 nM versus only one rate at lower cAMP concentrations. 

Quantitative modeling suggests that the kinetics profile of Gα2βγ subunit dissociation results 

from the presence of both uncoupled and G protein pre-coupled cAR1 that have differential 

affinities for cAMP and, consequently, induce G protein subunit dissociation through different 

rates. We suggest that these different signaling kinetic profiles may play an important role in initial 

chemoattractant gradient sensing.
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1. Introduction

Chemotaxis, the ability of cells to sense gradients of chemicals (chemoattractants) and 

migrate towards their highest concentration, is a cellular behavior central to the embryonic 

development and immune response and that is deregulated in diseases such as cancer 

metastasis and inflammatory disorders. However, how cells detect and determine the 

direction of a chemoattractant gradient is not fully understood. Many chemoattractants are 

detected by seven transmembrane receptors that signal through heterotrimeric G proteins (G 

protein-coupled receptors; GPCRs), and studies with the chemotaxis experimental model 

Dictyostelium discoideum have provided important insight into chemoattractant GPCR 

signaling dynamics [1,2]. When food is abundant, Dictyostelium is in the growth (or 

vegetative) stage and grows as single undifferentiated cells [3]. Upon starvation, 

Dictyostelium enters a multicellular development/differentiation program going through 

aggregation (~4–8 h), mound (~12 h), slug (~16 h), and culmination (~18–24 h) stages that 

end with the formation of a fruiting body containing spores. Aggregation is mediated by the 

chemotaxis of cells towards cyclic AMP (cAMP). Dictyostelium has four cAMP receptors 

(cARs) [4,5]. cAR1 expression is maximal during aggregation and cAR3 levels rise towards 

the end of aggregation, whereas cAR2 and cAR4 are maximally expressed during the slug 

and culmination stages, respectively [6–9]. There is little cAR expressed in undifferentiated 

vegetative cells. cAR1 and cAR3 are most similar, with 56% amino acid identity, and they 

both mediate the response to cAMP through the heterotrimeric G protein Gα2βγ. Although 

the two receptors display similar cAMP binding affinities in phosphate buffer, cAR3 is ~100 

times less efficient than cAR1 in inducing cAMP-stimulated responses and cAR1 is essential 

for chemotaxis-driven aggregation through Gα2βγ [4,9,10]. Whereas there are twelve G 

alpha protein subunits in Dictyostelium, Gα2 (gene gpab) is the main G alpha subunit 

responsible for the chemotactic responses to cAMP and there is only one G beta (gene gpba) 

and gamma subunit (gene gpga) [11–16].
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The dynamics and mechanisms controlling cAR1-Gα2βγ coupling are not completely 

understood. The interaction between Gα2 and Gβγ in live cells has previously been studied 

using a molecular proximity assay based on Förster (or fluorescence) resonance energy 

transfer (FRET) and has shown that the G protein subunit dissociation reflects their 

activation [17]. To investigate the dynamics of cAMP-induced Gα2βγ activation, we have 

used a similar molecular proximity method, but based on bioluminescence resonance energy 

transfer (BRET), which we have recently adapted for use in Dictyostelium [18]. BRET is 

similar to FRET but functions with a bioluminescent enzyme (luciferase) as energy donor 

and, consequently, does not suffer from problems related to fluorescence excitation as in 

FRET [19]. Several BRET methods have been developed, which differ in the use of different 

luciferases, luciferase substrates, and fluorescent acceptor proteins [19,20]. We have used 

the BRET2 method with the Renilla luciferase variant 2 (Rluc2) and GFP variant 2 (GFP2) 

[21,22]. We show that Gα2GFP2 and Rluc2Gβ are functional, that the BRET2 signal 

detected in cells expressing both constructs reflects the interaction between the two G 

protein subunits, and that they behave as previously reported in experiments using FRET 

[17]. Our studies confirm that cAR1 is the main cAR mediating the cAMP-induced 

activation of Gα2βγ, with negligible role of cAR3, and show that cAR1 induces Gα2βγ 
subunit dissociation to a similar extent in both undifferentiated and 5.5 h-differentiated cells. 

Interestingly, we observed that caffeine, which is commonly used to inhibit cAMP 

production and autocrine stimulation of Dictyostelium cells, increases the potency of cAMP 

to induce G protein subunit dissociation. Moreover, we found that disturbing the microtubule 

network but not F-actin inhibits the cAMP-induced Gα2βγ subunit dissociation, suggesting 

that microtubules facilitate coupling of cAR1 to the heterotrimeric G protein. Finally, 

kinetics analyses of the cAMP-induced Gα2βγ subunit dissociation responses indicate that 

elevated cAMP concentrations induces cAR1-dependent G protein dissociation through two 

distinct rates. Coupled to quantitative modeling, our observations lead us to propose that the 

two rates come from the presence of both uncoupled and Gα2βγ-pre-coupled cAR1 in 

resting cells, which have differential affinities for cAMP, and contribute to the initial 

response of cells exposed to elevated cAMP concentrations through distinct kinetics.

2. Materials and methods

2.1. Reagents

cAMP sodium salt monohydrate, 2’-deoxyadenosine-5’-monophosphate (2’-dcAMP) 

disodium salt, caffeine powder and anti-Flag M2 were from Sigma-Aldrich (St. Louis, MO, 

USA). 8-Bromo-cAMP from Enzo Life Sciences (Farmingdale, NY, USA). Coelenterazine 

400a was purchased from Biotium (Fremont, CA, USA) and coelenterazine h was obtained 

from VWR (Radnor, PA, USA). Latrunculin A (Molecular Probes Invitrogen), Benomyl 

(Chem Service Inc) and Geneticin (GIBCO) were purchased from Thermo Fisher Scientific 

(Waltham, MA, USA). The Living Colors® GFP monoclonal antibody was purchased from 

Clontech (now Takara Bio USA Inc.; Mountain View, CA, USA) and the anti-Renilla 

luciferase antibody clone 5B11.2 was purchased from Millipore SIGMA (Darmstadt, 

Germany). HRP-conjugated secondary antibodies were purchased from Jackson 

ImmunoResearch Laboratories, Inc. (West Grove, PA, USA). The cAR1 antibody was a 

generous gift from Peter Devreotes (Johns Hopkins, Baltimore, MD) and is described 
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elsewhere [23]. GFP-Tubulin and the extra-chromosomal vector pDM304 and pDM344 were 

obtained through the Dicty Stock Center, deposited by Doug Robinson (Johns Hopkins, 

Baltimore, MD) and Douwe Veltman, respectively [24–26]. Gα2-CFP/pDM358 and Gβ 
cDNA were gifts from Chris Janetopoulos (University of the Sciences, Philadelphia, PA) and 

described elsewhere [17]. The Renilla luciferase variant 2 (Rluc2; [21]) and GFP variant 2 

(GFP2) were gifts from Michel Bouvier (Universite de Montréal, Montréal, Canada). The 

Lifeact-GFP construct was a gift from Rick Firtel (University of California−San Diego, La 

Jolla, CA) and was previously described [27–29].

2.2. Cell culture and strains used

Dictyostelium cells were grown attached to substrate in axenic HL5 medium including 

glucose (ForMedium, Hunstanton, Norfolk, UK) at 22°C and transformants were generated 

by electroporation. Transformed cells were selected in 20 µg/ml Geneticin and expression 

confirmed by immunoblot. Cells were differentiated by pulsing with 30 nM cAMP every 6 

min for 5.5 h in 12 mM Na/K phosphate pH 6.1 at a confluency of 5X106 cells/ml. The 

wild-type cells used are AX3. gα2 (gpaB), gβ (gpbA), and carC− mutant cells were obtained 

from the Dicty Stock Center where they were deposited by Peter Devreotes (Johns Hopkins, 

Baltimore, MD) and described elsewhere [6,25,30]. The carA− cells were generously 

provided by Alan Kimmel (NIH, Bethesda, MD) and the carA−carC− cells (clone RI9) were 

a gift from Chris Janetopoulos and were both previously described [31,32].

2.3. DNA constructs and validation

All DNA constructs were generated with standard molecular cloning techniques. To make 

Gα2GFP2-pDM304, CFP in Gα2CFP-pDM358 was replaced by GFP2 after residue 90 of 

the Gα2 cDNA, using the SpeI restriction sites, and the hygromycin resistance cassette of 

pDM358 was replaced with the neomycin cassette from pDM304 by subcloning using 

restriction sites BamHI and XhoI. To make Rluc2Gβ, Rluc2 was first cloned into the BglII 

restriction site of shuttle vector pDM344, eliminating the BglII site on the C-terminal end of 

Rluc2 by ligating to a compatible BamHI site. Gβ was then cloned in C-terminal of Rluc2 

with the addition of a 4 amino acid linker (GSGS) using restriction sites BglII and Spe1. The 

Rluc2Gβ-containing NgoMIV cassette of pDM344 was subcloned into pDM304 and 

Gα2GFP2-pDM304 at the NgoMIV site, to generate Rluc2Gβ-pDM304 and Rluc2Gβ-

Gα2GFP2-pDM304, respectively.

Primers sequences were as follows:

GFP2 forward, AAGTGACTAGTATGGTGAGCAAGGGCGAGGAGCTG;

GFP2 reverse, AAGTGACTAGTCTTGTACAGCTCGTCCATGC;

Rluc2 forward, 

AAGTGGGATCCAAAAAATGACAAGTAAAGTTTACGACCCCGAGCAGAGG

;

Rluc2 reverse, 

AAGTGAGATCTACCAGAACCACCCTGCTCGTTCTTCAGCACTCTC;
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Gβ forward, 

AAGTGAGATCTATGTCATCAGATATTTCAGAAAAAATTCAACAA 

GCAAGAAGAG;

Gβ reverse, AAGTGACTAGTTTAAGCCCAAATCTTGAGGAGAGAATCC.

The BRET constructs were verified by sequencing and validated as previously described 

[18]. Briefly, expression and integrity of the fusion constructs was verified by immunoblot 

using Rluc and GFP antibodies according to the manufacturer protocol; Rluc2 and GFP2 

functionality was verified by assessing luminescence with coelenterazine h at 480 nm and 

fluorescence at 510 nm, respectively, using a POLARstar Omega microplate reader (BMG 

Labtech, Ortenberg, Germany); and functionality of Gα2GFP2 and Rluc2Gβ was verified by 

assessing rescue of the aggregation defects of gα2− and gβ−, respectively, by plating 

Gα2GFP2/gα2− and Rluc2Gβ/gβ− cells on 12 mM Na/K phosphate agar plate and tracing 

the cells’ development using a dissection microscope.

2.4. BRET2 Assay and data analysis

The BRET2 assay was performed as previously described [18]. Briefly, 1.5 × 106 cells was 

mixed with 5 μM final Coelenterazine 400a in a 96-well white microplate. The BRET2 

signal was detected using a POLARstar Omega microplate reader (BMG Labtech, 

Ortenberg, Germany) by simultaneously measuring light through 370–450 nm and 500–530 

nm filters. BRET2 measurements were taken before and after injection of stimuli, where 

indicated, every 0.5 s at 22 °C. Injection of 12 mM Na/K phosphate buffer was used as 

control. For each measurement, the GFP2 fluorescence signal detected at 500–530 nm was 

divided by the Rluc2 emission signal detected at 370–450 nm to calculate the BRET2 ratio. 

The BRET2 ratio obtained with cells expressing only Rluc2Gβ (background control) was 

subtracted from that of cells expressing both Rluc2Gβ and Gα2GFP2 to calculate the “net 

BRET2”. BRET2 and net BRET2 were then multiplied by 1000 to express the data as milli-

BRET units (mBU). Where indicated, cells were pretreated with 5 μM Latrunculin A for 15 

min, or 50 μM Benomyl for 15 min before they were used in the BRET2 assay. The drugs 

were initially diluted in DMSO, which was at 0.5 % final concentration after dilution. 0.5 % 

DMSO in 12 mM Na/K phosphate buffer was then used as control. Cells were stimulated 

with the indicated final concentrations of cAMP in the presence of 10 mM DTT, diluted in 

12 mM Na/K phosphate buffer. DTT is used to inhibit cell-secreted phosphodiesterases and 

prevent cAMP degradation [33], which could significantly change the cAMP concentration 

cells are exposed to, especially when using low doses. Dose-responses and kinetics analyses 

were performed using Prism (GraphPad Software Inc.) and MATLAB (MathWorks), 

respectively.

2.5. Imaging

Contrast images of developing cells were taken with a Motic digital dissecting microscope. 

DIC and fluorescence images were acquired using a Marianas Spinning Disk Confocal 

Workstation (Intelligent Imaging Innovations, In., Denver, CO, USA) equipped with an 

Evolve™ 512 EMCCD camera (Photometrics, Tucson, AZ, USA), and image analysis was 

performed using the Slidebook software (Intelligent Imaging Innovations, Denver, CO, 
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USA). Where indicated, cells were treated with 5 μM Latrunculin A for 15 min or 50 μM 

Benomyl for 15 min before imaging.

2.6. Kinetics analyses

The net BRET2 data was normalized using the average basal net BRET2 measured before 

stimulation for each condition, which was set to 1. The net BRET2 data were then fitted 

using the single exponential function: BRET2 = 1 + a(e−rt – 1) or double exponential 

function:BRET2 = 1 + a1 e
−r1t

− 1 + a2 e
−r2t

− 1 . Residuals of fitting are calculated by 

subtracting the data from the predicted values of the fit. To quantitatively determine the best 

fit, the error difference between single and double exponential fit was calculated as

ΔE =
RMSE1 − RMSE2

RMSE2
, where RMSE1 is the root mean squared error of the single exponential 

fit and RMSE2 is that of the double exponential fit. From our analyses, we determined that a 

∆E < 0.05 indicates that the data can be fitted with a single exponential and a ∆E > 0.1 

indicates a double exponential function provides the best fit. A ∆E between 0.05 and 0.1 is 

ambiguous, meaning that the data could be fitted as well using a single or double 

exponential function. Every time curve obtained for different cAMP concentration was fitted 

using this standard, generating corresponding rates r (single rate) or r1 and r2 (two rates).

2.7. Computational modeling

Six reactions were considered to model the cAMP receptor coupling to and activation of 

heterotrimeric G protein Gα2βγ. The first reaction is the basal level of receptor (R) pre-

coupled to the inactive, GDP-bound heterotrimeric G-protein (GD) in the absence of cAMP 

ligand (L), with rates k1 and k−1. The equation for pre-coupled receptor (RGD) without 

cAMP is defined as:

d RGD
dt = k1 R GD − k−1 RGD

Without ligand, [R] = Rtot − [RGB] and [GD] = Gtot − [RGB]. Consequently, the stable 

value of [RGD] before adding L is obtained by settingd RGD
dt = 0, and this is also the initial 

value for [RGD] after L is added:

RGD initial =
Rtot + Gtot + K1 − Rtot + Gtot + K1

2 − 4GtotRtot

2

K1 =
k−1
k1

is the equilibrium dissociation constant and its reciprocal 1
K1

 represents the binding 

affinity between R and GD. The second reaction is where L binds RGD to form LRGD, with 

rates k2 and k−2. The third reaction is where L binds R to form LR, with rates k3 and k−3. 

The fourth reaction is where LR then binds GD to form LRGD, with rates k4 and k−4. The 

fifth reaction is where the heterotrimeric G protein becomes active, GTP-bound (GT, with 

Gα2 and Gβγ subunits dissociated) and dissociates from the receptor to form LR + GT. In 
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Dictyostelium cells exposed to cAMP, because heterotrimeric G protein subunits don’t adapt 

and display a steady state of activation as long as the stimulus is present (this study and 

[17]), we assume that this reaction is irreversible in the conditions used, with rate k5. The 

sixth reaction is considering the cycling of GT back to GD with re-association of the Gα2 

and Gβγ subunits upon GTP hydrolysis, which can then bind R or LR again, with rate k6. To 

quantitatively explain the observed dissociation kinetics and represent the whole activation/

deactivation cycle of the heterotrimeric G protein, the following 4 ordinary differential 

equations were used:

d RGD
dt = k1 Rtot − RGD − LR − LRGD Gtot − RGD − LRGD − GT

+ k−2 LRGD − k2 RGD L − k−1 RGD

d LR
dt = k3 L Rtot − RGD − LR − LRGD + k−4 LRGD + k5 LRGD − k−3 LR

− k4 LR Gtot − RGD − LRGD − GT

d LRGD
dt = k2 RGD L + k4 LR Gtot − RGD − LRGD − GT − k−2 LRGD

− k−4 LRGD − k5 LRGD

d GT
dt = k5 LRGD − k6 GT

These equations were normalized for Rtot = 1, leaving 11 independent parameters. For every 

value of [L], the equations were solved and the value Gtot − GT

Gtot  are compared to the 

normalized experimental data. The same procedure and standard as those for fitting the 

experimental data with single and double exponential functions were then used to obtain the 

exponential rates (r or r1 and r2) and amplitude of the response (a or a1 +a2) for the 

simulation results. These rates and amplitudes for different [L] are then fitted to 

experimental data to identify proper values for the 11 parameters. This fitting was carried by 

employing a simulated annealing method, using the simulannealbnd function in 

MATLAB(R2015b) with default settings, as we previously reported [34,35]. First, an error 

function was defined as:

Error = ∑iW1 r1i
s − r1i

e 2 + W2 r2i
s − r2i

e 2 + W3 a1i
s + a2i

s − a1i
e − a2i

e 2

r1, r2, a1, and a2 are the exponential rates and response amplitudes obtained from a double 

exponential fit. When a single exponential fit is good, we set r1 = r2 = r anda1 = a2 = a
2 , 

where r and a are obtained from a single exponential fit. Subscript “i” represents the ith 
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group with [L] = [L]i. W is the weight of different terms that can be tuned. Superscript “s” 

means simulation results and “e”, experimental results. The simulated annealing prevents 

trapping the fit in a local minimum by accepting a trial step with some probability dependent 

on an artificial temperature T, even when this step does not improve the fit. The initial 

temperature was set to be high to allow for a larger searching area. Then, the temperature 

was gradually decreased, leading to more selective sampling towards the error decreasing 

direction. The position in the parameter space where the error function is minimal for each 

of the 11 parameters in the model was then determined: k1 = 0.002; K1 = 0.962; k2 = 0.007; 

K2 = 1.24; k3 = 0.502; K3 = 78.4; k4 = 0.214; K4 = 1.04; k5 = 0.905; k6 = 0.075; Gtot = 

0.989. To simulate the heterotrimeric G protein subunit dissociation rates in the absence of 

pre-coupled receptors (RGD), the initial value for RGD was set to zero in the ODEs 

indicated above.

2.8. Statistics

Results are expressed as the mean of at least three independent experiments. Error bars 

represent SD for bar graphs and SE for dose-response curves. Statistical analysis was 

performed using the one-way ANOVA test.

3. Results and discussion

3.1. Gα2 and Gβ subunits dissociation monitored by BRET2

To study heterotrimeric G protein activation in Dictyostelium by monitoring the interaction 

between the Gα2 and Gβγ subunits using BRET2, we used the Renilla reniformis luciferase 

variant 2 (Rluc2) and the BRET2 energy acceptor GFP2 [21,22]. We fused the luciferase in 

frame at the N-terminus of Gβ and inserted GFP2 into the first loop of the helical domain of 

Gα2, based on previously reported and validated fluorescent protein constructs of Gα2 [17]. 

To first determine if the Gα2GFP2 and Rluc2Gβ constructs are functional, we expressed 

them individually in Dictyostelium cells lacking Gα2 (gα2− cells) and Gβ (gβ− cells), 

respectively. gα2− and gβ− cells are unable to aggregate and undergo development but 

expression of exogenous Gα2 or Gβ can rescue the developmental defects [14,16], which 

can then be used as a readout to determine if Gα2 or Gβ constructs are functional. We 

observed that expression of Gα2GFP2 and Rluc2Gβ in their respective null mutant strains 

rescues the ability of these cells to aggregate and develop into fruiting bodies, although not 

as numerous and large as those produced by wild-type cells (Fig. 1A). This is likely due to 

the fact that not all the cells express the constructs. Nonetheless, because expression of 

Gα2GFP2 and Rluc2Gβ in their respective null mutant strain generates cells that are able to 

aggregate and develop indicates that the constructs are at least partly functional. Because we 

planned on using gα2− cells for the BRET assays, we then expressed Gα2GFP2 and 

Rluc2Gβ constructs together or Rluc2Gβ alone, which will serve as the background BRET 

control, in gα2− cells. The co-expression of Gα2GFP2 with Rluc2Gβ rescues the gα2− cells 

developmental defects similarly to Gα2GFP2 expression alone, indicating recovery of G 

protein signaling in these cells (Fig. 1A). Immunoblotting of cell lysates revealed proteins 

with apparent molecular weights of ~ 70 kDa for Gα2GFP2 [calculated 71.9 kDa (Gα2, 43.6 

kDa and GFP2, 28.3 kDa)] and ~ 75 kDa for Rluc2Gβ [calculated 78.7 kDa (Gβ, 40.9 kDa, 

and Rluc2, 37.8 kDa)], respectively, indicating the successful expression of the expected 
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fusion proteins in both gα2− and wild-type cells (Fig. 1B, S1A). In addition, cells expressing 

Gα2GFP2 or Rluc2Gβ produce significant, above background fluorescence and 

luminescence signals, respectively, indicating properly folded and functional GFP2 and 

luciferase moieties (Fig. 1C). Of note, we observed that the background luminescence and 

fluorescence signals in non-transformed WT and gα2− cells are considerably different in 

undifferentiated and 5.5 h-differentiated cells. The decrease in background fluorescence in 

5.5 h-differentiated cells is actually consistent with a previous report showing that 

incubation of cells in phosphate buffer decreases autofluorescence that comes from vitamins 

in the growth medium [36]. However, we also observed an unexpected increase in the 

background luminescence signal in 5.5 h-differentiated cells compared to undifferentiated 

cells. This increase in luminescence indicates an increase in basal coelenterazine oxidation, 

in the absence of luciferase, and we believe that this is due to elevated superoxide production 

in developing Dictyostelium cells [37]. Nonetheless, altogether, our results indicate that the 

Gα2GFP2 and Rluc2Gβ fusion constructs are functional.

To monitor the interaction between the two G protein subunits by BRET2, we used 5.5 h-

differentiated Gα2GFP2/Rluc2Gβ-expressing gα2− cells and gα2− cells expressing only 

Rluc2Gβ, to levels equivalent to those of cells expressing both constructs, to determine the 

background BRET2 signal. When the two proteins were co-expressed, we detected a specific 

BRET2 signal (62.6 ± 0.3 mBU) of ~ 3 fold over background detected in Rluc2Gβ/gα2− 

cells (22.8 ± 0.4 mBU), indicative of the interaction between Gα2GFP2 and Rluc2Gβ (Fig. 

2A). To assess the effect of cAMP stimulation on the G protein subunit interaction, we 

injected a saturating dose of cAMP (10 μM) while monitoring the BRET2 signal in real-time 

before, during and after cAMP injection. We observed that cAMP stimulation leads to a 

rapid loss in the BRET2 signal detected in Gα2GFP2/Rluc2Gβ/gα2− cells, up to ~30–40 

decrease in total BRET2 signal (63 to 36 mBU; Fig. 2A) reaching a steady state 

approximately 20 s after stimulation (Fig. 2B). cAMP stimulation of cells expressing 

Rluc2Gβ alone (Fig. 2A) or the injection of buffer to Gα2GFP2/Rluc2Gβ-expressing cells 

(Fig. 2B) has no effect, suggesting that the observed cAMP-induced decrease in BRET2 

signal in Gα2GFP2/Rluc2Gβ/gα2− cells reflects the cAMP-induced activation and 

dissociation of the heterotrimeric G protein subunits.

To further confirm that the Gα2GFP2 and Rluc2Gβ can be used to study heterotrimeric G 

protein activation, we assessed their dissociation in response to different concentrations of 

cAMP. We observed a dose-dependent decrease in BRET2 signal between Gα2GFP2 and 

Rluc2Gβ, with a measured EC50 of ~29 nM (Fig. 2C). This EC50 is similar to the Kd of the 

high affinity binding site of cAMP on cAR1 (~30 nM) for cells in a phosphate buffer similar 

to that we used in our experiments [4]. This is interesting because the cAR1 high affinity site 

was reported to represent only ~5–10% of the cAR1 population expressed during 

aggregation, with the remaining 90–95% having lower affinity (Kd of ~300 nM) [4,39]. It is 

possible, though, that the overexpression of the heterotrimeric G protein subunits affects this 

proportion and that there are more high affinity binding sites in the transformed cells. 

Nonetheless, the observation that the cAMP-induced G protein dissociation EC50 is ~29 nM 

while stimulation with 250 nM cAMP almost inducing a full response, and 500 nM inducing 

the full response, suggests that the high affinity cAR1 sites (Kd ~30 nM) are the main 

mediators of cAMP-induced G protein subunits dissociation.
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Of note, this cAMP-induced G protein dissociation EC50 is slightly greater than what we 

previously reported in our recent BRET method article [18] as well as what was previously 

found for the G protein dissociation detected by FRET (~10 nM) [17]. The difference is that 

we and the other authors had previously pretreated the cells with caffeine to inhibit the 

production of cAMP and its autocrine stimulation of cells. To then directly assess if caffeine 

affects the cAMP-induced G protein dissociation, we treated our cells with 5 mM caffeine 

before measuring the change in BRET2 upon cAMP stimulation. Interestingly, we observed 

that, in cells treated with caffeine analyzed in parallel to untreated cells, cAMP induces 

Gα2βγ subunits dissociation to a similar extent but with a significantly increased potency, 

with a measured half maximal effective concentration (EC50) of ~4 nM (Fig. 2C). 

Therefore, our observation suggests that caffeine increases the potency of cAMP to induce 

Gα2βγ dissociation We do not know the mechanism underlying the effect of caffeine on G 

protein dissociation, but a previous study of cAMP binding on whole cells showed that 10 

mM caffeine leads to a conversion of most binding sites to the low affinity conformation 

[40]. Therefore, although we used a little less caffeine (5 mM) in our assay, it is unlikely that 

caffeine increases the potency of cAMP-induced Gα2βγ subunit dissociation by increasing 

the cAMP binding affinity. Caffeine inhibits cAMP production in Dictyostelium [41]. 

Consequently, the treatment of cells with caffeine became a popular method of preventing 

the autocrine stimulation of cells and, thereby, reducing the basal levels of biochemical 

activities in cells to facilitate their measurement in response to acute cAMP stimulation. 

Whereas the mechanism of action of caffeine in Dictyostelium remains to be defined, our 

observation suggests that it affects more than just the autocrine stimulation of cells.

We also assessed G protein dissociation in response to the two well-characterized cAMP 

analogs, 2’-deoxy cAMP (2’-dcAMP) and 8-bromo cAMP (8-Br-cAMP) in the presence of 

caffeine as previously reported [17]. We measured EC50s of ~17 nM for 2’-dcAMP and ~3 

μM for 8-Br-cAMP, similar to the previously reported values (Fig. 2C). Therefore, these 

results, together with the cAMP-induced dissociation of Gα2βγ subunits, are consistent 

with previous observations of Gα2βγ subunit dissociation monitored by FRET [17]. In this 

study, Janetopoulos et al. also demonstrated that the cAMP-induced activation and 

dissociation of the Gα2βγ subunits does not adapt to continuous stimulation. Instead, the G 

protein subunits reach a steady state of dissociation/activation as long as the stimulus is 

present, and after clearing of the cAMP the heterotrimeric G protein can be re-stimulated. 

Consistent with these previous findings, we observed that the loss of BRET2 signal between 

Gα2GFP2 and Rluc2Gβ upon stimulation of the cells with a saturating dose of cAMP 

persists as long as the stimulus is present (Fig. 2D). The BRET2 signal is fully recovered 

when the stimulus is washed away, and the cells then respond to a re-stimulation with an 

equally effective loss of BRET2 signal, indicating that the heterotrimeric G protein subunits 

re-associated upon removal of cAMP and re-dissociated upon application of the second 

stimulus. Altogether, our results indicate that the Gα2GFP2 and Rluc2Gβ constructs are 

functional and, when expressed together, the resulting BRET2 signal serves as readout of 

their interaction in live cells, which can then be used to study Gα2βγ activation.
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3.2. cAR1 mediates the cAMP-induced activation of Gα2βγ in undifferentiated and 
differentiated cells.

Previous observations suggest that cAMP induces activation of some chemotactic pathways 

in undifferentiated cells as efficiently as in aggregation-competent cells [42]. To further 

investigate this, we compared the cAMP-induced activation of Gα2βγ in undifferentiated 

and 5.5 h-differentiated, aggregation-competent cells. We detected similar basal net BRET2 

signals in both undifferentiated and 5.5 h-differentiated Gα2GFP2/Rluc2Gβ/gα2− cells, 

suggesting that a comparable proportion of Gα and βγ subunits are interacting in resting 

conditions, independently of the cells’ developmental stage (Fig. 3A). Interestingly, we 

observed that cAMP stimulation of undifferentiated cells induces G protein subunits 

dissociation to similar extent and potency as that observed in 5.5 h-differentiated cells, with 

the same effect of caffeine on the EC50 (Fig. 3A and B). In addition, we observed similar 

cAMP-induced G protein subunits dissociations when expressing Gα2GFP2 and Rluc2Gβ in 

wild-type cells, although the basal net BRET2 signal in 5.5 h-differentiated wild-type cells 

was lower compared to undifferentiated wild-type cells (Fig. 3C).

The difference in basal net BRET2 signal between undifferentiated and 5.5 h-differentiated 

wild-type cells could partly be due to the considerable reduction in Gα2GFP2 expression in 

differentiated wild-type cells compared to the undifferentiated cells, as detected by the 

decrease in fluorescence (Fig. 1C). This could also be due to the much increased cAR1 

expression in differentiated wild-type cells, leading to increased basal Gα2βγ activity and 

dissociated subunits, which is not observed in the gα2− cells possibly because they have 

reduced cAR1 expression [14] (Fig. S2). In addition, the finding that cAMP stimulation of 

undifferentiated cells induces G protein subunit dissociation and, thus, activation, to the 

same extent as to that in 5.5 h-differentiated cells was unexpected. Although it is possible 

that overexpressing the G protein subunits disrupts the relative expression levels of other 

signaling components, cAR1 expression in undifferentiated cells is not increased as a result 

of Gα2GFP2 and Rluc2Gβ expression (Fig. S2). As expected, we observed that cAR1 

expression is equally very low in undifferentiated cells expressing or not Gα2GFP2 and 

Rluc2Gβ, whereas cAR1 is strongly increased in 5.5 h-differentiated wild-type cells. As 

previously reported, we observed that gα2− cells express much less cAR1 than wild-type 

cells, even after cAMP pulsing for 5.5 h, [43] and that expression of Gα2GFP2 and Rluc2Gβ 
restores some of the cAR1 expression in differentiated gα2− cells, but to levels that remain 

considerably low. Therefore, our observations suggest that the low cAR1 expression levels in 

undifferentiated cells, and in gα2− cells expressing Gα2GFP2 and Rluc2Gβ, are sufficient to 

fully activate Gα2βγ in response to cAMP. Consequently, it is intriguing why cAR1 

expression levels increase so much during aggregation (according to reported cAR1 mRNA 

levels: ~100 times more for cells growing on bacteria and developed on filters and ~1000 

times more for axenic cells developed by cAMP pulsing) [6,44], which is believed to be 

essential for efficient chemotaxis to cAMP.

Since both cAR1 and cAR3 couple to Gα2βγ, we assessed the contribution of both of these 

receptors to the measured cAMP-induced dissociation of Gα2βγ in undifferentiated versus 

differentiated cells. We expressed Gα2GFP2 and Rluc2Gβ in cells lacking cAR1 (carA− 

cells) and/or cAR3 (carC− and carA−carC− cells), as well as in wild-type cells to use as 
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control, and assessed the effect of cAMP stimulation on the BRET2 signal. We observed that 

stimulation with a saturating cAMP concentration (10 μM) of cells lacking cAR1 fails to 

induce considerable G protein subunit dissociation, whereas cells lacking only cAR3 display 

G protein subunit dissociation comparable to that in wild-type cells in both extent and 

potency (Fig. 3C and 3D). These results indicate that, in both undifferentiated and 5.5 h-

differentiated cells, the detected cAMP-induced dissociation of Gα2βγ results from cAR1 

stimulation, and that cAR3 must be expressed at levels too low to significantly contribute to 

the this response in the conditions used.

3.3. Disrupting microtubules inhibits G protein subunit dissociation

A previous study showed that disrupting the actin cytoskeleton increases the mobility of 

cAR1 at the plasma membrane, whereas microtubule disruption inhibits cAR1’s mobility 

and its mediated production of phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3] in 

response to cAMP stimulation [45]. These observations suggested that the potential 

anchoring of cAR1 to microtubules is important for proper cAR1 signaling. To assess the 

effect of disrupting actin and microtubules on the cAR1-induced activation and dissociation 

of Gα2βγ, we treated cells with the actin polymerization inhibitor Latrunculin A (LatA) 

[46] and the microtubule destabilizer Benomyl as previously reported [45]. Benomyl is a 

bioactive benzimidazole that, like nocodazole, specifically inhibits microtubule assembly by 

binding to tubulin subunits [47], but its effects on Dictyostelium were shown to be less 

severe than other microtubule destabilizers [48]. As expected, LatA and Benomyl treatment 

of cells leads to a loss of morphological cell polarity due to the disruption of F-actin and 

microtubule network, as observed using the F-actin reporter Lifeact-GFP and γ-tubulin-GFP, 

respectively (Fig. 4A and B). Disrupting actin or microtubules did not affect the interaction 

of Gα2 with βγ in resting cells, as observed by similar basal BRET2 signals (Fig. 4C). 

Interestingly, whereas the LatA-mediated disruption of F-actin did not significantly affect 

the extent and potency of cAMP-induced G protein subunit dissociation, compared to 

vehicle (0.5% DMSO)-treated control cells, the Benomyl-mediated disruption of 

microtubules considerably inhibited G protein subunit dissociation (Fig. 4C and D). Note 

that treatment of cells with 0.5% DMSO produced a left-shift in the dose-response curve 

compared to non-treated cells, similar to the effect of caffeine. We don’t know how DMSO 

affects G protein dissociation. Nonetheless, although additional studies will be necessary to 

properly define the role of the cytoskeleton in G protein activation, our observations suggest 

that microtubules, and not actin, are important for the cAR1-induced activation of Gα2βγ. 

These observations are consistent with previous work suggesting that F-actin does not play a 

significant role in the cAR1 coupling to and activation of Gα2βγ [45,49–51]. Moreover, the 

observation that intact microtubules are necessary for optimal cAR1-induced Gα2βγ 
activation provides a possible explanation for the reported dependency of cAMP-induced 

PI(3,4,5)P3 production on an intact microtubule network [45].

3.4. Analysis of the cAR1-promoted Gα2βγ dissociation kinetics

To investigate the dynamics of cAMP-induced Gα2βγ activation, we measured G protein 

subunit dissociation in real-time in response to different cAMP concentrations and compared 

wild-type to carC− cells to determine if cAR3 may contribute to the observed kinetics (Fig. 

5, S3). Each time curve was fitted using single and double exponential decay and the 
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goodness of fit was determined as described in the Materials and methods section (Table 

S1). Interestingly, we found that G protein subunits dissociation induced by cAMP 

concentrations of ~500 nM and below can be fitted with a single exponential whereas that 

induced by cAMP concentrations above 500 nM are best fitted with double exponentials 

with two rates (Fig. 5, S3, Table S1). Similar kinetics were observed using wild-type and 

carC- cells, supporting our previous observation that the detected cAMP-induced Gα2βγ 
dissociation is mainly due to cAR1 and that the appearance of a second rate at higher cAMP 

concentrations is not due to cAR3 signaling (Fig. 5). Kinetics analyses of data obtained with 

Gα2GFP2/Rluc2Gβ-expressing gα2− cells also show similar results (Fig. S4).

Interestingly, the cAMP concentration at which the presence of a second G protein 

dissociation rate becomes obvious correlates with cAMP concentrations at which most of 

the low affinity cAR1 binding sites (Kd ~300 nM versus high affinity sites Kd ~30 nM) 

should be occupied [4]. Evidence suggest that the high affinity cAR1 binding sites in 

Dictyostelium are receptors already in complex with the G protein, as is the case for many 

mammalian GPCRs [16,52–58]. However, whether G protein pre-coupled cAR1 contributes 

to cAMP signaling is debated [51,59]. To investigate the cAMP-induced Gα2βγ 
dissociation kinetics profile, we considered a simple model of receptor-G protein coupling, 

in which both free cAR1 (R) and cAR1 pre-coupled to inactive Gα2βγ (RGD) potentially 

exist in an equilibrium in resting cells (Fig. 6A). In our model, we postulate that upon 

stimulation with cAMP ligand (L), the latter can bind to R or RGD to generate LR and 

LRGD, respectively. In turn, LR then recruits GD to also lead to LRGD. Formation of 

LRGD stimulates exchange of GDP for GTP on the G protein, thereby activating it leading 

to LR + GT. In Dictyostelium, evidence suggest that the Gα2βγ subunits dissociate upon 

activation, so we consider that GT = Gα2 + Gβγ [17,49–51]. Upon GTP hydrolysis on 

Gα2, the subunits then re-associate to form GD that can be activated again as long as cAMP 

is present. Six reactions total are considered, as shown in Fig. 6A and described under 

Materials and methods. In our scheme, the appearance of two rates of G protein dissociation 

for higher cAMP concentrations is due to increased cAMP binding to uncoupled receptors to 

which it has lower affinity. Our scheme also incorporated that cAMP binding to lower 

affinity, uncoupled receptors produces a slower G protein activation response due to the 

additional G protein recruitment step. We generated a quantitative model of this scenario 

including both uncoupled (R) and pre-coupled receptors (RGD) that can simulate the 

kinetics data very well (Model R + RGD; Fig. 6B). Using this model, when we simulate the 

responses in the absence of pre-coupled receptors (Model R), we obtain only one rate 

throughout the range of cAMP concentrations used, supporting the hypothesis that one of 

the rates comes from binding to pre-coupled receptors (Model R; Fig. 6B).

In a previous study, Xu et al. considered the role of three possible cAR1 coupling 

mechanisms during chemotaxis: (1) R+GD→RGD+L→LRGD→LR+GT (with receptor 

pre-coupling); (2) L+R→LR+GD→LRGD→LR+GT (no pre-coupling); and (3) the 

previous two mechanisms combined (co-existence of uncoupled and pre-coupled receptors) 

[51]. As their results show that persistent ligand stimulation results in steady-state G protein 

activation, coupling mechanism (1) was ruled out, as it cannot allow a persistent cycle. 

However, the model of Xu et al. did not allow quantitatively discriminating between 

mechanisms (2) and (3) and, thus, did not determine whether pre-coupled receptors 
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contribute to G protein activation during chemotaxis to cAMP. Compared to the model by 

Xu et al., our model uses fewer intermediate steps, parameters and variables, and does not 

have any spatial dynamics, which makes it easier to quantitatively fit our experimental data 

and provide insight into potential coupling mechanisms underlying the two G protein 

subunits dissociation rates that we observe. Our results suggest that pre-coupled receptors 

play a role in the rapid activation of the heterotrimeric G protein upon cAMP stimulation. 

Consequently, our results suggest that mechanism (3) described above, which includes 

contribution of both uncoupled and pre-coupled receptors, is likely the mechanism for 

cAMP-induced activation of heterotrimeric G proteins.

To test the prediction that the two cAMP-induced G protein dissociation rates are related to 

the high and low affinity cAR1 binding sites, we performed an experiment in which we 

stimulated the cells with two sequential cAMP concentrations. For the first stimuli, we used 

sub-saturating cAMP concentrations of 10, 20, and 50 nM, and we used a saturating cAMP 

concentration of 10 μM for the second stimuli (Fig. 6C). We postulated that lower doses of 

cAMP would preferentially bind and activate high affinity cAR1 sites, reducing the number 

of high affinity sites available for the second stimulus. Consequently, the double exponential 

in the G protein dissociation profile from stimulation with 10 μM cAMP would become 

gradually less obvious as the strength of the first stimulus increases. As an additional 

control, we also stimulated cells with 10 nM cAMP followed by a second stimulus with sub-

saturating cAMP concentration of 300 nM. We analyzed the kinetics of the response after 

the second stimulus and compared to that obtained with cells directly stimulated with 10 μM 

cAMP. To determine the best fit for the data, we calculated the error difference ( E) between 

single and double exponential fit. We found that the 10 μM cAMP-induced response has 

decreasing E as the concentration of the first cAMP stimulus increases (Fig. 6D). On the 

other hand, the 300 nM cAMP-induced response, following the first 10 nM cAMP 

stimulation, is fitted equally well with single and double exponentials (Fig. S5). Therefore, 

these results support the hypothesis that, in resting cells, two cAR1 sites of differential 

affinities for cAMP underlie the two rates observed when cells are stimulated with elevated, 

saturating cAMP concentrations.

cAR1 expressing cells have high and low affinity binding sites for cAMP with Kd of ~30 

and 300 nM, respectively [4]. Previous observations suggest that the high affinity cAMP 

binding sites are G protein-dependent [16,57,58]. The cAMP concentrations inducing G 

protein subunit dissociation through two distinct rates correlate with cAMP concentrations at 

which both high and low affinity binding sites would be occupied. Therefore, we propose 

that the kinetics of cAMP/cAR1-induced G protein subunit dissociation that we observe 

result from the co-existence, in resting cells, of both uncoupled and pre-coupled cAR1 that 

have differential affinities for cAMP. At cAMP concentrations of ~500 nM and below, 

mostly high affinity pre-coupled cAR1 sites are occupied and promote Gα2βγ activation, 

reflected by only one rate of G protein subunit dissociation. However, at cAMP 

concentrations above 500 nM, both high affinity pre-coupled cAR1 and low affinity 

uncoupled cAR1 sites are occupied. In this case, pre-coupled cAR1 leads to rapid G protein 

activation while uncoupled cAR1 first needs to recruit Gα2βγ before activating it, which we 

propose results in two distinct rates of G protein subunit dissociation.
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Although cAMP binding affinities and cAR1 pre-coupling can explain the G protein 

dissociation rates, other factors may also contribute to the observed kinetics. Previous 

studies showed the presence of an intracellular pool of G proteins that undergo regulated 

translocation to the plasma membrane of Dictyostelium cells upon stimulation with higher 

cAMP concentrations [49,60]. The cAR1 recruitment and activation of this translocated pool 

of G proteins at high cAMP concentrations likely plays a role in the observed second rate of 

G protein dissociation. Furthermore, although cAR1 has bee extensively studied, both the 

pharmacology and G protein coupling of cAR1 may be more complicated than what we 

currently know. For instance, many mammalian GPCRs are known to form homo- or hetero-

oligomers, which can affect GPCR function in different ways, including modulating ligand 

binding and G protein coupling [61–63]. Whether cAR1 forms dimers or higher oligomers 

remains to be determined but it is possible that cAMP stimulation actually alters cAR1’s 

oligomeric state, which could then lead to inducing G protein dissociation through distinct 

rates. Nonetheless, our findings indicate that initial cAMP stimulation of resting 

Dictyostelium cells occurs through two distinct rates that correlate with the high and low 

affinity cAR1 sites. Consequently, we propose that these different signaling dynamics may 

play a role in initial gradient sensing. On the other hand, during chemotaxis, when cells are 

constantly exposed to a cAMP gradient and the heterotrimeric G protein is predicted to 

continuously and rapidly cycle between active and inactive states, it is possible that only 

uncoupled cAMP-bound cAR1 (LR) exists in this situation, cycling between LR and LRGD 

forms as previously proposed by Xu et al. [51].

4. Conclusion

We used BRET2 to investigate the dynamics and regulation of heterotrimeric G protein 

Gα2βγ activation in response to cAMP stimulation in Dictyostelium by monitoring the 

dissociation of Gα2 and Gβ. Our findings indicate that cAR1 is the main receptor promoting 

Gα2βγ activation in both undifferentiated and 5.5 h-differentiated cells, that only very low 

levels of cAR1 expression are necessary to induce full activation of Gα2βγ, and suggest that 

caffeine increases the potency of cAMP-induced G protein subunit dissociation, although the 

mechanism remains unknown. In addition, our findings suggest that F-actin does not affect 

the coupling of cAR1 to Gα2βγ but that an intact microtubule network is necessary for 

efficient cAMP-induced G protein subunit activation. Finally, our kinetics analyses and 

receptor-G protein coupling modeling studies reveal two rates of cAMP-induced G protein 

subunits dislocation that highly correlate with cAR1 binding sites, leading us to propose that 

both uncoupled, low affinity, and Gα2βγ-coupled, high affinity, cAR1 exist in resting cells 

leading to the observed two rates of G protein subunit dissociation when cells are exposed to 

elevated cAMP concentrations. Although the study of protein-protein interactions by BRET 

is currently limited to measuring responses to acute stimulations, the information gained 

from these studies provide insights into how cells initially respond to chemoattractant 

exposure and into mechanisms possibly involved in sensing gradients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

BRET bioluminescence resonance energy transfer

cAMP cyclic adenosine monophosphate

cAR cAMP receptor

2’-dcAMP 2’-deoxyadenosine-5’-monophosphate

EC50 half maximal effective concentration

FRET Förster resonance energy transfer

GD GDP-bound heterotrimeric G protein

GFP green fluorescent protein

GPCR G protein-coupled receptor

GT GTP-bound heterotrimeric G protein

L ligand

R receptor

Rluc Renilla luciferase

RMSE root mean squared error
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Article highlights

• cAMP induces cAR1-mediated G protein activation to a similar extent in both 

undifferentiated and 5.5 h-differentiated Dictyostelium cells.

• Caffeine increases the potency of cAMP-induced Gα2βγ activation.

• An intact microtubule network and not F-actin is necessary for efficient 

cAMP-induced Gα2βγ activation.

• Kinetic analyses and quantitative modeling suggest that both uncoupled and 

pre-coupled cAR1-Gα2βγ contribute to the response of cells stimulated by 

elevated cAMP concentrations through different kinetics.
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Fig. 1. Validation of Rluc2Gβ and Gα2GFP2 fusion constructs.
A, Pictures show the morphological phenotype of developing cells at 24 h after initial 

plating on non-nutrient agar. B, Expression of Rluc2Gβ and Gα2GFP2 in cells lacking Gα2 

(gα2−). Immunoblots (IB) using anti-GFP and anti-Renilla Luciferase (Luc) antibodies are 

shown. Wild-type (WT) cells and gα2− cells were used as control. C, Measurements of 

luminescence at 370–450 nm, produced upon addition of coelenterazine h, and fluorescence 

at 500–530 nm, produced upon excitation of the samples at 450–470 nm. Luminescence and 

fluorescence are reported in relative light units (RLU) for WT and gα2− cells (background 

levels), and cells expressing Rluc2Gβ alone or together with Gα2GFP2. The errors represent 

standard deviation. Results are expressed as the mean or are representative of at least three 

independent experiments.
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Fig. 2. Gα2βγ subunits dissociation detected by BRET2 reflects activation.
A, BRET2 measurements obtained from gα2− cells expressing Rluc2Gβ alone or together 

with Gα2GFP2 before and after 1 min stimulation with 10 μM cAMP. Error bars represent 

the standard deviation. B, Representative net BRET2 values obtained from measurements 

taken continuously every 0.5 s before, during and after injection of either buffer as control or 

10 μM cAMP to Gα2GFP2/Rluc2Gβ/gα2− cells. Solid arrow indicates stimulus injection. C, 

Net BRET2 values for Gα2GFP2/Rluc2Gβ/gα2− cells stimulated with different 

concentrations of the indicated cAR1 ligands, expressed as % of the net BRET2 levels in 

non-stimulated cells. cAMP dose-responses were measured in the presence (+caff) and 

absence of 5 mM caffeine. LogEC50 (effective concentration of ligand producing 50% of 

the maximal stimulation) values are indicated with their standard errors, and EC50 values 

are indicated in parentheses, for each ligand and condition. Error bars represent the standard 

error. * p < 0.0001. D, Net BRET2 values before and after a first stimulation of Gα2GFP2/

Rluc2Gβ/gα2− cells with 5 μM cAMP are indicated under 1° stimulus. One min after the 

first stimulus, cells were washed twice with 12 mM Na/K phosphate buffer and the net 

BRET2 of the same cells was measured again before and after stimulation with 10 nM or 10 
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μM cAMP (2° stimulus). Error bars represent the standard deviation. mBU, milli BRET2 

units. Results are expressed as the mean of at least three independent experiments.
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Fig. 3. cAR1-induced Gα2βγ subunits dissociation in undifferentiated and 5.5 h-differentiated 
cells.
A, Net BRET2 values for measurements obtained before and after 10 μM cAMP stimulation 

of undifferentiated and 5.5 h-differentiated Gα2GFP2/Rluc2Gβ/gα2− cells. B, Net BRET2 

values for measurements obtained of Gα2GFP2/Rluc2Gβ/gα2− cells stimulated with 

different cAMP concentrations, expressed as % of the net BRET2 levels in non-stimulated 

cells. LogEC50 values are indicated with their standard errors, EC50 values are indicated in 

parentheses. * p < 0.001. C, Net BRET2 values for measurements obtained of 

undifferentiated and 5.5 h-differentiated wild-type (WT) cells and cells lacking cAR1 (carA
−), cAR3 (carC−) or both cAR1 and cAR3 (carA−carC−), expressing Gα2GFP2 and 

Rluc2Gβ before and after stimulation with 10 μM cAMP. D, Net BRET2 values for 

measurements obtained of WT and carC− cells expressing Gα2GFP2 and Rluc2Gβ 
stimulated with different cAMP concentrations, expressed as % of the net BRET2 levels in 

non-stimulated cells. LogEC50 values are indicated with their standard errors, EC50 values 
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are indicated in parentheses. * p < 0.05. Results are expressed as the mean of at least three 

independent experiments. Error bars represent the standard deviation in bar graphs and 

standard error in dose-response curves.
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Fig. 4. The role of F-actin and microtubules in cAMP-induced Gα2βγ subunits dissociation.
A, Differential interference contrast (DIC) and Lifeact-GFP fluorescence confocal images of 

5.5 h-differentiated wild-type cells treated either with 0.5 % DMSO (vehicle control) or 5 

μM Latrunculin A (LatA) for 15 min. B, DIC and Tubulin-GFP fluorescence confocal 

images of 5.5 h-differentiated wild-type cells treated either with 0.5 % DMSO (vehicle 

control) or 50 μM Benomyl for 15 min. C, Net BRET2 values for measurements obtained 

before and after 10 μM cAMP stimulation of 5.5 h-differentiated Gα2GFP2/Rluc2Gβ/gα2− 

cells pretreated with 0.5 % DMSO as control, 5 μM LatA or 50 μM Benomyl for 15 min. D, 

Net BRET2 values for measurements obtained with Gα2GFP2/Rluc2Gβ/gα2− cells 

pretreated with 0.5 % DMSO as control, 5 μM LatA or 50 μM Benomyl for 15 min, and 

stimulated with different cAMP concentrations. Data are expressed as % of the net BRET2 

levels in non-stimulated cells. LogEC50 values are indicated with their standard errors, 

EC50 values are indicated in parentheses. * p < 0.001. Results are expressed as the mean or 

are representative of at least three independent experiments. Error bars represent the 

standard deviation for the bar graph and standard error for the dose-response curves.
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Fig. 5. Kinetics analyses of cAMP-induced Gα2βγ subunits dissociation.
A, Net BRET2 values for measurements taken every 0.5 s after stimulation of wild-type 

(WT) cells and carC− cells expressing Gα2GFP2 and Rluc2Gβ with 10 nM or 10 μM cAMP, 

normalized to net BRET2 levels before stimulation. The curves were fitted using single and 

double exponential functions. For the 10 nM data, the fits are identical and overlap. B, 

Residuals for single and double exponential fittings for the 10 μM cAMP-stimulated 

conditions shown in A were calculated by subtracting the measured values from the fitted 

values. C, Rates of Gα2βγ subunits dissociation determined from the time curve fittings 
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obtained for 10 nM, 100 nM, 500 nM, 1 μM, 10 μM, and 50 μM cAMP stimulations of WT 

and carC− cells. Results represent the mean or the analyses of at least three independent 

experiments.
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Fig. 6. Quantitative modeling of the observed Gα2βγ subunits dissociation kinetics.
A, Conceptual model of cAR1-Gα2βγ coupling. The constants are defined in the Materials 

and Methods section. B, Rates of Gα2βγ subunits dissociation induced by different 

concentrations of cAMP obtained from analyzing the experimental data for wild-type cells 

from Fig. 5C (red circles) and from quantitatively modeling the responses where both 

uncoupled (R) and pre-coupled (RGD) cAR1 bind the cAMP ligand (L) or where only 

uncoupled cAR1 is present and mediates the response to cAMP (black curves). C, 

Representative net BRET2 values obtained from measurements taken continuously every 0.5 
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s before, during and after injection of a first cAMP stimulus of 10, 20, or 50 nM at 10 s, and 

of a second cAMP stimulus of 10 μM at 60 s of Gα2GFP2/Rluc2Gβ/gα2− cells. Solid 

arrows indicate when the cAMP stimuli were injected. D, Calculated error differences ( E) 

for single and double exponential fittings of the Gα2βγ subunits dissociation kinetics 

induced by 10 μM cAMP stimulation alone (from data presented in Fig. 5A) or after the first 

stimuli indicated in C. E calculations and interpretations are described in the Materials and 

Methods section and main text. Results represent the mean or the analyses of at least three 

independent experiments.
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