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ABSTRACT OF THE DISSERTATION 
 
 

Measuring the Succession, Functions and Resilience of Soil Microbes  
After a 

Chaparral Wildfire 
 
 

by 
 
 

Martha Fabiola Pulido-Chavez 
 

Doctor of Philosophy, Graduate Program in Plant Pathology 
University of California, Riverside, December 2023 

Dr. Sydney I. Glassman, Chairperson 
 
 
 
 

The increasing frequency and severity of wildfires worldwide have raised 

significant interest in understanding secondary successional and functional dynamics of 

post-fire microbes, bacteria, and fungi. It is well-known that wildfires alter microbial 

communities and the soil environments, resulting in a system dominated by pyrophilous 

“fire-loving” Ascomycetes and an environment rich in bioavailable nitrogen and 

chemically complex carbon (C), primarily in the form of highly aromatic pyrogenic 

organic matter (PyOM). Despite this knowledge, there is a gap in our understanding of 

microbial succession, their recovery rate, and whether post-fire microbes are equipped to 

degrade post-fire resources. To fill this knowledge gap, we performed the first fine-scale 

temporal study of post-fire soils, spanning 4.5 years from 17 days to 44 months, in a 

Southern California Chaparral ecosystem. We assessed biomass of bacteria with qPCR of 

16S and fungi with 18S and richness and composition with Illumina MiSeq sequencing of 



 

 ix 

16S and ITS2 amplicons. We found that 1) wildfire decreased bacterial and fungal 

biomass and richness. Moreover, we found that post-fire microbes experienced rapid 

secondary succession, mirroring plant successional dynamics. Whereby succession was 

driven by putative tradeoffs in thermotolerance, colonization, and competition among 

dominant pyrophilous bacteria, Massilia and Noviherbaspirillum, and fungal Aspergills, 

Pyronema, and Penicillium. 2) Genes for PyOM degradation and N cycling increased 

over time, mirroring the rise in bacterial and fungal taxa within the first post-fire. 

Moreover, Massilia and Noviherbaspirillium exhibit distinct PyOM and N processing 

pathways, suggesting that specific traits related to post-fire resource acquisition and 

wildfire adaptation drive microbial secondary succession. 3) Bacteria demonstrated 

higher resistance and resilience, returning to pre-fire levels within 4.5 years due to the 

influence of multiple abiotic factors and vegetation recovery. In contrast, fungi had still 

not recovered from the effects of wildfire. Lastly, our study revealed that bacterial and 

fungal richness is linked to recovering vegetation and soil biogeochemistry. Together, our 

findings highlight the adaptability of ecological theories to soil microbes and indicate that 

dominant microbes likely facilitate microbial recovery during secondary succession. Our 

research has essential implications, such as providing long term monitoring of post-fire 

bacterial and fungal species, vegetation, and soil geochemical variables, while providing 

a list of pyrophilous bacterial and fungal taxa that could help inform ecological 

restoration and post-fire management strategies in global fire-affected regions. 
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Chapter I 
 
 
 
 

General Introduction 

 

 

 

 

 

 

1.1 Wildfires   

 High-severity wildfires are an essential and natural component of chaparral 

ecosystems (Bond et al., 2005; Burkle et al., 2015) driving secondary succession (Hanes, 

1971; Vogl, 1981; Keeley et al., 2005) and maintaining ecosystem health. Historically, 

chaparral burns every 30-60 years (Hanes, 1971; Safford & Van de Water, 2014). 

However, changes in land-use patterns, previous management decisions, and climate 

change have altered the natural fire regime of this system, resulting in more frequent 

wildfires (10-20 years) (Hanes, 1971; Safford & Van de Water, 2014). Consequently, 

increased fire frequency alters the resilience (rate of recovery) of chaparral (Hanes, 1971; 

Safford & Van de Water, 2014)  and threatens type conversion from fire-resistant shrubs 

to flammable invasive grasses (Keeley & Brennan, 2012). Due to the coevolution of 
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chaparral with wildfires, the impact of fire on plants and their secondary succession 

(changes in abundance and composition over time) is relatively well understood (Hanes, 

1971; Vogl, 1981; Keeley et al., 2005). However, the effect of wildfires on soil microbes 

and their functions remains highly understudied especially in dryland ecosystems which 

cover 41% of the terrestrial Earth surface (Feng & Fu, 2013). In California, these 

drylands are exemplified by the iconic chaparral ecosystem, covering 70% of federal 

lands in Southern California (Underwood et al., 2018). However, despite extensive 

research on wildfire effects and ecosystem resilience in vegetation (Allen et al., 2018; 

Syphard et al., 2019), the dominant plant species in chaparral, such as manzanita 

(Arctostaphylos glandulosa) and chamise (Adenostoma fasciculatum), form mycorrhizal 

associations (Van der Heijden et al., 1998; Baldrian, 2016), yet we lack understanding of 

the microbial pos-fire resilience dynamics. Understanding microbial response to wildfire 

and microbial functions will be vital to predicting the impact of changing fire regimes on 

chaparral, its resilience, its impact on chaparral carbon (C) and nitrogen (N) storage , and 

greenhouse gas emissions (Goodridge et al., 2018).  

 

 

1.2 Importance of soil microbes 

 Soil bacteria and fungi are among the most critical components of terrestrial 

environments, essential for ecosystem functions such as decomposition, nutrient cycling, 

and post-disturbance ecosystem recovery via symbiotic associations with the dominant 

vegetation (Van der Heijden et al., 1998; Baldrian, 2016; Crowther et al., 2019). 
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However, wildfires can affect the subsequent structure of the microbial communities 

directly via heat-induced mortality (Hart et al., 2005) and indirectly via changes to the 

soil biogeochemical characteristics, such as increased soil temperature and soil pH, and 

decreased soil moisture and decomposition rates (Neary et al., 1999). Since both 

manzanita and chamise, form mycorrhizal associations (Allen et al., 2005), to properly 

understand vegetation succession, we must understand the response of the soil microbial 

community. Post-fire soil microbial research is historically biased toward pine forests, 

largely ignoring shrubland ecosystems (Dove & Hart, 2017). Moreover, microbial 

communities change rapidly, and determining microbial resilience (Allison & Martiny, 

2008) requires immediate post-fire sampling over multiple time points. Existing research 

on post-fire fungi is mainly based on single time point measurements that occur on 

average two years post-fire (Dove & Hart, 2017; Pressler et al., 2019), thereby missing 

fine-scale microbial succession, which may be critical for predicting post-fire plant and 

biogeochemical trajectories. Furthermore, bacteria are important members of the soil 

community, actively driving the soil N cycle. Yet, less than 3% of studies looking at 

wildfire effects on soil microbial communities have historically accounted for bacteria 

(Pressler et al., 2019), thus underestimating wildfire impacts.  

 

 

1.3 Effects of wildfire on soil microbes 

Wildfires have been shown to reduce microbial biomass and richness (Pressler et 

al., 2019), and chronosequence studies indicate that ectomycorrhizal resilience requires 
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15-18 years to return to unburned levels (Treseder et al., 2004; Kipfer et al., 2011). 

Although this information gives us a theoretical background to make predictions on the 

potential recovery rate of fungi in burned systems, the predictability is limited to 

ectomycorrhizal fungi in pine forests, thus missing a large portion of the fungal 

community and the entirety of the bacterial community. Furthermore, the absence of 

temporal soil sampling in post-fire systems has restricted our comprehension of microbial 

turnover rates. Additionally, we lack understanding about what environmental variables 

drive microbial community recovery. Given that chaparral is adapted to low frequency, 

high-severity wildfires, it is likely that their soil microbial communities evolved under 

similar selective pressures. Therefore, the loss of ecosystem resilience and type 

conversion may reflect post-fire changes to soil microbes. Thus, it is crucial to 

understand what environmental variables drive the post-fire changes in the microbial 

community and its resilience, allowing for a more holistic understanding of the drivers of 

vegetation regeneration and soil nutrient cycling.  

 

 

1.4 Wildfire effects on vegetation and soil nutrients 

 Soil C and N pools are recognized as fundamental to post-fire vegetation recovery 

(DeBano et al., 1979; Johnson & Curtis, 2001; Wan et al., 2001; Caon et al., 2014). Fires 

can have both negative and positive impacts on soil C storage. Fires cause immediate C 

losses through combustion (Certini, 2005), but the incomplete combustion of vegetation 

can lead to the formation of pyrogenic organic matter (PyOM), which is difficult for 
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microbes to decompose and may be a missing sink in the global C cycle (Santin et al., 

2015). Fires often lead to reduced decomposition rates by reducing microbial biomass 

and altering fungal composition (Semenova‐Nelsen et al., 2019). Finally, fires can cause 

a short-term enrichment of bioavailable N (Johnson & Curtis, 2001), which may amplify 

nitrous oxide emissions (N2O; a greenhouse gas with 200x the warming potential of CO2) 

(Niboyet et al., 2011). Given that both C and N cycles are closely coupled with microbial 

metabolism (Gougoulias et al., 2014), uncovering how fires and their interactions with 

shifting microbial communities influence C and N cycling is a significant knowledge gap 

critical for predicting climate change feedbacks and post-fire ecosystem regeneration. 

 

 

1.5 Overview of dissertation and objectives 

 While it is clear that fires reduce microbial biomass (Dooley & Treseder, 2012) 

and richness (Pressler et al., 2019), fire also selects for pyrophilous (fire loving) microbes 

that significantly increase in frequency post-fire (Whitman et al., 2019; Bruns et al., 

2020; Fox et al., 2022). These microbes can survive wildfires and thrive in a post-fire 

environment by various mechanisms, including thermotolerant spores, rapid colonization, 

and capitalizing on post-fire resources (Whitman et al., 2019; Enright et al., 2022). For 

example, researchers in Mediterranean oak woodlands in Spain found that genes 

necessary for N incorporation increased post-fire, showing that microbes can upregulate 

genes to process increased post-fire bioavailable N (Cobo-Díaz et al., 2015). Hence, it is 

possible that microbial secondary succession is driven by the taxa that survive and can 
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rapidly inhabit the sites (pyrophilous microbes) and can capitalize on the flush of 

bioavailable nutrients. This dissertation aims to comprehensively explore the temporal 

dynamics of pyrophilous microbes in high resolution after fires, examining their 

abundance shifts, their utilization of post-fire bioavailable N, and the intricate processing 

of chemically complex PyOM. Additionally, it aims to determine the factors driving 

microbial resilience and recovery. This research will increase our understanding of the 

biogeochemical impacts of fire, enable predictions of post-fire ecosystem recovery, and 

potentially enable us to select microbes to apply for desired ecosystem outcomes.  

 
 
 
1.6 Overarching goals  

 The aim of this dissertation is to address the following overarching objectives: 

Objective 1: Examine bacterial and fungal biomass, richness, and succession 

at high temporal resolution in the first year after a chaparral wildfire. 

 

Objective 2: Use metagenomics to determine the functions of pyrophilous 

microbes in C and N cycling and how they change over time in the first year 

post-fire.  

 

Objective 3: Determine the factors predicting bacterial and fungal resilience to 

chaparral wildfires and link them to changes in vegetation and soil nitrogen 

concentrations. 
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Chapter II 
 
 
 
 

Rapid bacterial and fungal successional dynamics in 
first year after chaparral wildfire 

 
 
 
 
 

 

 
2.1 Abstract 
 
 The rise in wildfire frequency and severity across the globe has increased interest 

in secondary succession. However, despite the role of soil microbial communities in 

controlling biogeochemical cycling and their role in the regeneration of post-fire 

vegetation, the lack of measurements immediately post-fire and at high temporal 

resolution has limited understanding of microbial secondary succession. To fill this 

knowledge gap, we sampled soils at 17, 25, 34, 67, 95, 131, 187, 286, and 376 days after 

a southern California wildfire in fire-adapted chaparral shrublands. We assessed bacterial 

and fungal biomass with qPCR of 16S and 18S and richness and composition with 

Illumina MiSeq sequencing of 16S and ITS2 amplicons. Fire severely reduced bacterial 

biomass by 47%, bacterial richness by 46%, fungal biomass by 86%, and fungal richness 

by 68%. The burned bacterial and fungal communities experienced rapid succession, with 
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5-6 compositional turnover periods. Analogous to plants, turnover was driven by "fire-

loving" pyrophilous microbes, many of which have been previously found in forests 

worldwide and changed markedly in abundance over time. Fungal secondary succession 

was initiated by the Basidiomycete yeast Geminibasidium, which traded off against the 

filamentous Ascomycetes Pyronema, Aspergillus, and Penicillium. For bacteria, the 

Proteobacteria Massilia dominated all year, but the Firmicute Bacillus and Proteobacteria 

Noviherbaspirillum increased in abundance over time. Our high-resolution temporal 

sampling allowed us to capture post-fire microbial secondary successional dynamics and 

suggest that putative tradeoffs in thermotolerance, colonization, and competition among 

dominant pyrophilous microbes control microbial succession with possible implications 

for ecosystem function. 

 

 

2.2 Introduction  

 The rapid increase in wildfire frequency, severity, and extent in the western 

United States (Riley & Loehman, 2016) and around the globe (Abatzoglou et al., 2019) 

has renewed interest in secondary succession. Secondary succession, or the trajectory 

along which an ecosystem develops following a disturbance, such as a wildfire, has been 

extensively studied for plants (Derroire et al., 2016; Donato et al., 2012), but 

belowground microbial communities have been comparatively overlooked. 

Understanding how wildfires alter soil microbial succession may be necessary to predict 

post-fire effects on ecosystem recovery and function since soil microbes drive post-fire 
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organic matter decomposition (Semenova‐Nelsen et al., 2019), nutrient cycling (Pérez-

Valera et al., 2020), and plant regeneration (Dove & Hart, 2017).  

 Plant succession is a major process affecting the health and function of 

ecosystems. During succession, the dominant species may change in an orderly and 

predictable manner (Shugart, 2013). For example, early colonizers (fast-growing, short-

lived species) are often replaced by late colonizers (slow-growing, long-lived species). 

However, wildfire can reset the successional clock, shifting the course away from 

stability (Reilly & Spies, 2016) and initiating secondary succession. Plant secondary 

succession is often contingent on the surviving vegetation and seedbanks present in the 

heterogeneous post-fire landscape (Jain et al., 2008). While early plant establishment 

often happens in low competition and nutrient-rich environments (Dalling, 2008), 

succession is often mediated by the quantity and identity of early colonizers (i.e., 

dispersal limitations and priority effects) (Kennedy et al., 2009), and their tradeoffs for 

space and resources (Tilman, 1990).  Indeed, the trajectory of species replacement 

suggests that early colonizers with similar resource use (i.e., overlapping niches) will 

dominate open space but will inevitably be replaced by late-stage species with 

differentiation in resource use (i.e., complementarity), allowing for species coexistence 

(Pacala et al., 1996; Turnbull et al., 2013). This later-stage community is often considered 

stable, characterized by small fluctuations in community composition. However, whether 

the patterns recognized in plant successional theory translate to belowground soil 

microbes remains unclear.  
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Research on post-fire soil microbiomes suggests that fires can reset microbial 

successional trajectories via fire-induced mortality (Hart et al., 2005), changes in 

microbial richness and biomass (Dooley & Treseder, 2012; Pressler et al., 2019), and the 

replacement of fungal basidiomycetes and symbiotic mycorrhizal fungi with ascomycetes 

and saprobic fungi (Cairney & Bastias, 2007; Fox et al., 2022).  For over a century, 

pyrophilous or “fire-loving” fungi have been consistently found in post-fire mushroom 

surveys (McMullan-Fisher et al., 2011; Seaver, 1909). More recently, next-generation 

sequencing indicates that the pyrophilous Ascomycete Pyronema can increase 100-fold 

after prescribed fires (Reazin et al., 2016) and dominate over 60% of the sequences in 

experimental pyrocosms (Bruns et al., 2020). Furthermore, there is increasing evidence of 

pyrophilous bacteria, such as the Proteobacteria Massilia (Enright et al., 2022; Whitman 

et al., 2019). This evidence suggests that pyrophilous microbes in systems that have 

evolved with wildfire (Dove et al., 2021) might have fire adaptations analogous to plants 

(Rundel, 2018) and, thus, likely follow successional dynamics akin to plants. Pyrophilous 

microbes have traits that allow them to survive fires (e.g., heat resistant spores, sclerotia) 

(Day et al., 2020; Petersen, 1970) and the post-fire environment (e.g., xerotolerance, 

affinity for nitrogen mineralization, and affinity for aromatic hydrocarbon degradation) 

(Fischer et al., 2021; Nelson et al., 2022; Steindorff et al., 2021). Moreover, since heat 

from fire often penetrates only the top few cm of soil (Neary et al., 1999; Pingree & 

Kobziar, 2019), like plants, secondary succession may be initiated by surviving microbes 

that make up the spore bank (Baar et al., 1999; Glassman et al., 2016). Currently, most 

research evaluating post-fire microbiomes is based on single timepoint sampling (Dove & 
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Hart, 2017; Pressler et al., 2019); thus, the succession of pyrophilous microbes is nearly 

unknown. However, recent research consisting of 2-3 sampling time points suggests that 

bacteria and fungi experience rapid post-fire community changes (Ferrenberg et al., 2013; 

Qin & Liu, 2021; Whitman et al., 2022), indicating that higher temporal resolution 

sampling is needed to understand bacterial and fungal successional trajectories. 

Predicting soil microbial succession can be complicated by direct and indirect 

wildfire effects (Neary et al., 1999). Whereas soil burn severity controls direct fire 

impacts (Reazin et al., 2016; Whitman et al., 2019), changes in soil moisture can 

indirectly impact post-fire microbes (Placella et al., 2012; Yang et al., 2021), potentially 

driving succession, especially in arid environments where precipitation is limited.  

Previous research has established that bacteria rapidly respond to soil wet-up (Barnard et 

al., 2013; Placella et al., 2012), whereas fungi are less responsive to soil moisture 

changes (Barnard et al., 2013; Evans & Wallenstein, 2012). Furthermore, microbial life 

strategies can determine microbial response to fire. Research shows that fire decreases 

the richness of ectomycorrhizal fungi (EMF) (Cowan et al., 2016; Glassman et al., 2016; 

Pulido-Chavez et al., 2021) and arbuscular fungi (AMF) (Xiang et al., 2015), but can 

temporarily increase saprobic richness (Enright et al., 2022; Semenova‐Nelsen et al., 

2019). Yet, the limited studies on how fires affect multiple microbial guilds (Certini et al 

2021) lack the resolution to identify the direct effect of wildfire and the length of time 

that mycorrhizal fungi survive after a wildfire, a question essential for post-fire 

ecosystem recovery. 
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We propose that microbial ecological succession theory can be developed and 

tested in nature by focusing on California chaparral. Chaparral is a shrubland adapted to 

high-severity fire and a biodiversity hotspot distributed in Mediterranean climates 

worldwide (Barro & Conard, 1991; Rundel, 2018). Chaparral plant secondary succession 

is relatively well understood and typically initiated by fire (Keeley et al., 2005). Yet, 

although the dominant chaparral vegetation forms mycorrhizal associations required for 

their establishment and survival (Allen et al., 2005), little is known about chaparral 

microbial succession. Indeed, only 13% of post-fire microbiome research occurs in 

shrublands (Pressler et al., 2019). With drylands covering nearly 41% of Earth’s land 

surface and expanding with climate change (Feng & Fu, 2013), understanding secondary 

successional dynamics in dryland systems such as chaparral is critical (Osborne et al., 

2022). While our focus is on chaparral, which is likely to have fire-adapted microbes due 

to chaparrals' evolutionary history with fire (Hanes, 1971), we expect that successional 

patterns will be broadly generalizable to other biomes since pyrophilous bacteria and 

fungi appear to be phylogenetically conserved (Enright et al., 2022). Indeed, fungal taxa 

within the Ascomycota family Pyronemataceae and a few Basidiomycota genera appear 

to be globally distributed in fire-disturbed Spanish shrublands (Pérez‐Valera et al., 2018) 

and Pinaceae (Reazin et al., 2016; Whitman et al., 2019; Xiang et al., 2014), Eucalyptus 

(Ammitzboll et al., 2022; McMullan-Fisher et al., 2011), and redwood-tanoak forests 

(Enright et al., 2022).  

 Here, we performed the highest-resolution temporal sampling of post-fire 

microbiomes to date. We sampled soils at nine timepoints over one year following a 
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chaparral wildfire, allowing us to identify immediate and temporal effects of wildfire on 

microbial successional dynamics and test the following hypotheses: (H1) wildfire will 

decrease bacterial and fungal biomass and richness, leading to a shift in the community 

composition one year post-fire; (H2) wildfire will have a distinct impact on fungal guilds 

with symbiotic mycorrhizal fungi experiencing the largest declines; (H3) higher soil burn 

severity will lead to larger reductions in both bacteria and fungi while precipitation will 

impose a larger impact on bacterial than fungal succession; (H4) succession will be 

initiated by pyrophilous microbes, which like plants, will change in abundance over time 

based on differences in ecophysiological traits such as growth and nutrient acquisition. 

 

 

2.3 Methods  

2.3.1 Study Area, plot design, and soil collection 

 The Holy Fire burned 94 km2 in the Cleveland National Forest in Southern 

California from August 6 to September 13, 2018. On September 30, 2018, we selected 

nine plots (6 burned and 3 unburned) (Fig. 2.1a). Plots were selected for similarity in 

aspect, slope, elevation, and pre-fire vegetation dominance by manzanita (Arctostaphylos 

glandulosa), an ectomycorrhizal host, and chamise (Adenostoma fasciculatum), an 

arbuscular and ectomycorrhizal host (Allen et al., 2005). Plots were placed on average 25 

m from forest access roads (10-40 m) to avoid edge effects, and each contained four 1 m2 

subplots located 5 m from the center in each cardinal direction (Fig. 2.1b). Our study site 

experiences a Mediterranean-type climate with hot, dry summers and cool, wet winters, 
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with an average yearly temperature of 17˚C and total precipitation of 668 mm (average 

51.39 mm). Precipitation data, based on monthly summaries, was gathered from the El 

Cariso weather station (raws.dri.edu). Soils are mapped in the Cieneba and Friant series 

and are classified as Typic Xerorthents and Lithic Haploxerolls. They are sandy and 

gravelly loams with an average pH of 6.8 for the burned plots and 6.2 for the unburned 

plots (additional plot information in Table S1). Although soil types differ, soil type did 

not affect bacterial or fungal biomass or richness (glmer.nb; p > 0.05). 

We used BAER soil burn severity maps created within seven days after fire 

containment (https://burnseverity.cr.usgs.gov) to locate plots within moderate burn 

severity (Fig. 2.1a). Notably, the BAER coarse-scale measurement (30 m) does not 

coincide well with the spatial distribution and turnover rate of soil microbial communities 

(Bahram et al., 2013). Since ash depth increases with soil heating (Parson et al., 2010) 

and fire severity (Bodí et al., 2014), we used ash depth as a proxy for soil burn severity 

by averaging three separate measurements of ash depth (cm) per each 1 m2 subplot (Fig. 

2.1c). Since ash can be rapidly redistributed via post-fire wind and rain (Bodí et al., 

2014), we measured ash before any precipitation event (first rains occurred on Oct 3) or 

high wind events (average wind Sept 3 -Sept 17 was 2.7 m/s). Hence, our measure of soil 

burn severity refers to initial ash depth.  

We sampled soils at 17, 25, 34, 67, 95, 131, 187, 286, and 376 days, 

corresponding to approximately 2 and 3 weeks, and 1, 2, 3, 4, 6, 9, and 12 months post-

fire. At each of the nine time points, we collected the top 10 cm of mineral soil (A 

horizons) beneath the ash layer from each burned subplot. Since wildfire results in the 
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combustion of the organic layer, to ensure homogeneity in sampling and direct 

comparison between treatments in the unburned plots, we removed the litter layer before 

sampling A horizons (Pulido-Chavez et al., 2021). Soils were collected with a ~250 mL 

releasable bulb planter cleaned with ethanol after each use to prevent cross-

contamination, resulting in 36 soil samples (9 plots x 4 subplots) per sampling time point. 

Soils were transported in individual Whirl-Paks in a cooler to the University of 

California-Riverside (UCR) within hours of sampling, stored overnight at 4˚C, and sieved 

(2mm) at room temperature in ethanol cleaned sieves within 24 hours of sampling to 

minimize microbial community turnover (Phillips, 2021). A subsample was frozen at -

80°C for future DNA extraction. While soils were stored at -80°C from 1 month to 1 year 

before DNA extractions were performed, differences in storage time at -80°C do not 

affect DNA quantity and integrity (Lauber et al., 2010; Pavlovska et al., 2021). 

 

2.3.2 DNA extraction, amplification, and sequencing  

DNA extractions for all nine timepoints were performed in the summer of 2019. 

Soils were weighed (0.25 g) using ethanol-cleaned spatulas and processed using Qiagen 

DNeasy PowerSoil Kits following the manufacturer's protocol, with an increase in 

centrifugation time to 1.5 min after adding the C3 solution (a solution used to precipitate 

the organic and inorganic matter) due to large amounts of precipitate still in the solution, 

then stored at -20˚C. Extracted DNA was amplified using the primer pair ITS4-fun and 

5.8s to amplify the ITS2 region for fungi (Taylor et al., 2016) and the primer pair 515F-

806R to amplify the V4 region of the 16S rRNA gene for archaea and bacteria (Caporaso 
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et al., 2011) using the Dual-Index Sequencing Strategy (DIP) (Kozich et al., 2013). 

Although our 16S primers amplify archaea and bacteria, for simplicity, we refer to 16S 

methods and results simply as bacteria since archaea only contributed <1% of sequencing 

reads. We conducted polymerase chain reaction (PCR) in two steps. The first PCR 

amplified gene-specific primers, and the second PCR ligated the DIP barcodes and 

adaptors for Illumina sequencing. For bacteria, we combined 1 μL of 1:10 diluted DNA, 

10.5 μL of Ultra-Pure Sterile Molecular Biology Grade water (Genesee Scientific, San 

Diego, CA, USA), 12.5 μL of AccuStart ToughMix (2x concentration; Quantabio, 

Beverly, MA, USA), and 0.5 μL each of the 10 μM 515F and 806R primers. 

Thermocycler conditions for PCR1 were: 94°C for 2 min followed by 29 cycles of 94°C 

for 30 s, 55°C for 30 s, 68°C for 1 min, followed by a 2 min extension at 68°C.  For 

fungi, we combined 5 μL of undiluted DNA, 6.5 μL of ultra-pure water, 12.5 μL of 

AccuStart ToughMix, and 0.5 μL each of the 10 μM ITS4-fun and 5.8s primers. 

Thermocycler conditions for PCR1 were: 94 °C for 2 min, followed by 30 cycles of 94 

°C for 30 s, 55 °C for 30 s, 68 °C for 2 min, followed by a 10 min extension at 68°C. 

PCR1 products were cleaned with AMPure XP magnetic beads (Beckman Coulter Inc., 

Brea, CA), following the manufacturer's protocols. The DIP PCR2 primers containing the 

barcodes and adaptors for Illumina sequencing were ligated to the amplicons during the 

second PCR step in a 25 μL reaction containing 2.5 μL of the 10 μM DIP PCR2 primers, 

6.5 μL of ultra-pure water, 12.5 μL of Accustart ToughMix, and 1 μL of PCR1 product. 

Thermocycler conditions for PCR2 for bacteria and fungi were: 94°C for 2 min followed 

by 10 cycles of 94°C for 30 s, 60°C for 30 s, and 72°C for 1 min.  Bacterial and fungal 
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PCR products for the 324 samples (9 plots x 4 subplots x 9 timepoints) were then 

separately pooled based on gel electrophoresis band strength and cleaned with AMPure 

following established methods (Glassman et al., 2018). Each pool contained 2-3 

timepoints from burned and unburned plots and was checked for quality and quantity 

with the Agilent Bioanalyzer 2100 before combining bacteria and fungi at a 2:3 ratio (0.4 

units for bacteria to 0.6 units for fungi). Since each library only fit 2-3 timepoints for both 

bacteria and fungi, we sequenced the nine timepoints across four libraries with Illumina 

MiSeq 2x300bp at the UCR Institute for Integrative Genome Biology. In addition to our 

324 experimental samples, we added negative DNA extractions and PCR controls from 

each time point and mock communities (ZymoBIOMICS microbial community standard, 

Zymo, Irvine, CA) to each library for additional quality control and inference. 

 

2.3.4 Bacterial and fungal biomass 

We estimated bacterial and fungal gene copy numbers with quantitative (q) PCR 

as a proxy for biomass using the Eub338/Eub518 primers for bacteria (Fierer et al., 2005) 

and FungiQuant-F/FungiQuant-R primers for fungi (Liu et al., 2012). For fungi, we used 

the small subunit since it is more conserved and has less length variation making it better 

suited for qPCR than the ITS2 region (Mayer et al., 2021), which is better at species-level 

identification (Schoch et al., 2012). We generated standard curves using a 10-fold serial 

dilution of the standards by cloning the 18S region of the fungus Saccharomyces 

cerevisiae or the 16S region of the bacteria Escherichia coli into puc57 plasmid vectors 

constructed by GENEWIZ, Inc. (NJ, USA) as previously established (Averill & Hawkes, 
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2016). The 10 μL qPCR reactions were performed in triplicate. Reactions contained 1 μL 

undiluted DNA, 1 μL of 0.05M Tris-HCl ph8.3, 1 μL of 2.5mM MgCl2 (New England 

BioLabs (NEB); Ipswich, MA), 0.5 μL of 0.5mg/ml BSA, 0.5 μL of 0.25mM dNTP 

(NEB), 0.4 μL of both primers at 0.4μM, 0.5 μL of 20X Evagreen Dye (VWR 

International; Radnor, PA), 0.1 μL of Taq DNA polymerase (NEB) and 4.6 μL ultra-pure 

water. We employed the CFX384 Touch Real-Time PCR Detection System with the 

following conditions: 94˚C for 5 min, followed by 40 cycles of 94˚C for 20 seconds, 

52˚C (for bacteria) or 50˚C (for fungi) for 30 seconds, followed by an extension at 72˚C 

for 30 seconds. Gene copy numbers were generated using the equation 10^ (Cq-b)/m), 

using the quantification cycle (Cq), calculated as the average Cq value per sample in 

relation to the known/calculated copies in the Cq/threshold cycles, the y-intercept (b) and 

the slope (m) generated with CFX Maestro software. Values with an R2 > 0.994 were 

considered acceptable. Gene copy numbers were normalized per gram of dry soil (Tatti et 

al., 2016). Notably, all methods of estimating microbial biomass have limitations (Gao et 

al., 2022), including qPCR, due to variation in target copy number (Lofgren et al., 2019; 

Song et al., 2014). However, the high sensitivity (Tellenbach et al., 2010) of qPCR for 

quantifying the selected marker gene (Smith & Osborn, 2009) makes it ideal for 

estimating microbial biomass from environmental samples when interest is not in species 

specificity but in estimates of total microbial biomass. Moreover, common biomass 

quantification methods for fungi are correlated (Cheeke et al., 2017). 
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2.3.5 Bioinformatics 

 Illumina data was processed with Qiime2 version 2020.8 (Bolyen et al., 2019). 

The demultiplexed fastQ files from the four Illumina sequencing runs were processed 

individually using cutadapt (Martin, 2011) to remove the primers and ran through 

DADA2 version 2020.8 with the defaults parameters to filter out and remove chimeric 

sequences and low-quality regions and to produce Amplicon Sequence Variants (ASVs) 

(Callahan et al., 2017). Reads were trimmed to a global quality control threshold (Q30), the 

benchmark for next-generation Illumina sequencing (Illumina, 2011). Bacteria forward 

reads were trimmed to 170 bp and reverse to 163 bp, while fungal forward reads were 

trimmed to 209 bp and the reverse reads to 201 bp. On average, 72% of forward and 

reverse sequences merged for bacteria, and 61% merged for fungi. DADA2 outputs from 

each library were combined into one library for downstream processing, including the 

removal of singletons and taxonomic assignments. We used SILVA version 132 for 

bacterial (Yilmaz et al., 2014) and UNITE version 8.2 for fungal (Abarenkov et al., 2020) 

taxonomic assignment using Qiime2 Naïve Bayes Blast+ classifier. Bacterial sequences 

assigned to mitochondria and chloroplasts and fungal sequences not assigned to Kingdom 

Fungi were removed. Fungal ASV tables were exported and parsed through FUNGuild 

(Nguyen et al., 2016) to assign functional ecological guilds, including only highly 

probable confidence rankings for AMF, EMF, saprotrophs, and pathogens. Moreover, 

negative and mock controls were inspected to ensure that sequences and/or ASVs in 

negative controls were negligible and that mock taxonomy correlated with known 
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communities. Sequences were submitted to the National Center for Biotechnology 

 Information Sequence Read Archive under BioProject accession number PRJNA761539. 

 

2.3.6 Statistical analysis 

 Acknowledging minor sequencing reads and a low number of ASVs across negative 

controls (Table S2),  we took the conservative step of rarefying bacteria to a sequences/sample 

depth of 7,115 for bacteria and 11,480 for fungi, thus retaining the largest number of 

samples and sequencing depth within the dataset. Rarefaction removed all negative 

samples/controls. The four Illumina MiSeq runs resulted in 9.8 M bacterial and 24.6 M 

fungal sequences for an average of 31,052 bacterial and 78,202 fungal sequences/sample 

for downstream analysis. Fungal and bacterial alpha diversity was estimated using 

BiodiversityR version 2.14-2 (Kindt & Coe, 2005) with the following metrics: observed 

species richness, Simpson, Shannon, Chao1, ACE, Simpson’s evenness, and Inverse 

Shannon.  Although estimating richness from diverse soil communities has limitations 

(Willis et al., 2017), wildfire-affected soil constitutes low diversity communities, and 

patterns of species richness were similar across metrics (Fig. A.1.1). Thus, we focused on 

richness estimated as the number of observed ASVs after rarefaction for all downstream 

analyses. To test if wildfire decreased biomass and richness and if biomass and richness 

increased with time since fire (H1), if wildfire will have a distinct impact on fungal guilds 

(H2), and to determine if changes in biomass and richness are associated with 

precipitation and soil burn severity (H3), for both bacteria and fungi, we performed 

backward model selection and fitted nine statistical models with treatment (burned vs. 
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unburned), time (measured as days since fire), ash depth (cm), total monthly precipitation 

(mm), and second order interactions as predictors. We used generalized mixed effect 

models (glmer) with a negative binomial distribution in the MASS package version 7.3-

57 (Venables & Ripley, 2002) to account for the over-dispersion of the data and the fact 

that the conditional variance was higher than the conditional mean (Bliss, 1953; Ross & 

Preece, 1985). Time since fire and precipitation were scaled and centered. The level of 

nestedness for all models was tested by running a null model with different nested levels 

(plot, subplot, and time since fire) and no predictors. Model selection was made using 

Akaike Information Criterion (AICc) in the MuMIN package version 1.46.0 (Barton, 

2020). All richness models contained plot, subplot, and time since fire as random effects, 

and all biomass models included plot and time since fire as random effects. The subplot 

was not included for biomass analysis as it was not determined to be the best model (AIC 

selection). Pseudo R2, or the variance explained (marginal and conditional) for all models, 

was calculated using the r.squaredGLMM function in the MuMIn Package.  

 We compared beta diversity by generating distance matrices with the vegan 

Avgdist function, calculating the square-root transformed median Bray-Curtis 

dissimilarity per 100 iterations. We used permutational multivariate analysis of variance 

(PERMANOVA) (Anderson, 2017) as implemented with the adonis function in vegan 

version 2.6-2 (Oksanen et al., 2018) to test for the significant effects of wildfire, time 

since fire, precipitation, ash depth, and second order interactions, on bacterial and fungal 

community composition overall. Moreover, we tested the significance of wildfire at each 
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independent time point (H1). Results were visualized using Non-Metric 

Multidimensional Scaling (NMDS) ordinations.  

We employed several methods to quantify succession (H4). First, we visualized 

succession by characterizing community composition patterns at the genus level using 

phyloseq version 1.38.0 (McMurdie & Holmes, 2013) and grouping the relative 

abundance of the dominant ASVs (> 3% sequence abundance used for plot legibility) for 

each time point in burned and unburned communities independently. Second, we used the 

vegan mantel function to determine the correlation between temporal distance and 

community composition to determine how turnover varies in the presence or absence of 

fire, similar to a study examining Sorghum microbial succession (Gao et al., 2020). 

Third, to visualize spatial species turnover (Baselga, 2010), we took advantage of the fact 

that early successional periods display large variability (Collins, 1990; Pandolfi, 2008). 

Thus, we tested the homogeneity of the bacterial and fungal communities during 

succession using the vegan betadisper function to calculate the multivariate dispersion of 

Bray-Curtis dissimilarities and visualized the results using principal coordinates analysis 

(PCoA).  Finally, we employed the codyn package version 2.0.5 (Hallett et al., 2016) to 

identify the patterns of community dynamics over successional time, including the rate of 

directional change, stability, and synchrony (Collins et al., 2000). Succession involves 

directional change via the replacement of early to late successional species (Clements, 

1916; Platt & Connell, 2003); thus, we calculated the rate of directional change using the 

Euclidian distance of each microbial community. Then we measured species turnover to 

determine if species appearances or disappearances drive succession. Since stability 
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increases as diversity increases (diversity-stability hypothesis), we independently 

measured community stability in the burned and unburned plots as the mean abundance 

divided by the standard deviation at each temporal time point (Lehman & Tilman, 2000). 

However, community stability depends on species covariance over time; thus, we 

measured synchrony (Loreau & de Mazancourt, 2008), where perfect species synchrony 

is a value of 1 and 0 equals asynchrony (Valencia et al., 2020). Asynchrony can result in 

covariance in species populations, where tradeoffs among species can contribute to 

overall community stability.  

All statistical analyses were conducted in R 4.1.1 (R Core Team, 2021), and plots 

were created with ggplot2 version 3.3.6 (Wickham, 2016). All statistical codes are 

available on GitHub https://github.com/pulidofabs/SecondarySuccession-Chaparral.  

 

 

2.4 Results 

2.4.1 Sequencing data 

The four Illumina MiSeq runs resulted in 33,078 bacterial and 11,480 fungal 

ASVs. Compared to the experimental samples, bacterial negative controls, on average, 

had 10 ASVs, while fungal negative controls had 8 ASVs  (Table S2). Rarefaction 

resulted in a total of 24,874 bacterial and 7,445 fungal ASVs, and the removal of all 

control samples. Extracting the fungal guilds from the rarefied fungal ASV table resulted 

in 208 EMF, 70 saprobic, 65 AMF, and 26 pathogenic fungal ASVs.  

 

https://github.com/pulidofabs/SecondarySuccession-Chaparral


 

 27 

2.4.2 Wildfire effects on bacterial and fungal biomass and richness 

 Fire significantly reduced bacterial and fungal biomass and richness during the 

first post-fire year (Table S3). Fire had a larger effect on biomass than richness for both 

bacteria and fungi and larger effects on fungi than bacteria overall (Fig. 2.2). On average, 

across the year, fire reduced bacterial richness by 46% (Fig. A.1.1) and biomass by 47% 

(Fig. A.1.2a) and fungal richness by 68% (Fig. S1A) and biomass by 86% (Fig. A.1.2b). 

The direct, immediate effect of wildfire at 17 days post-fire was stronger for biomass 

than richness, with bacterial biomass decreasing by 84% (Fig. 2.2a) and fungal biomass 

by 97% (Fig. 2.2b; Table A.2.2). In contrast, at 17 days post-fire, fungal richness 

declined by 45% (Fig. 2.2d), but bacterial richness temporarily increased by 31% but 

declined by 29% at 25 days post-fire (Fig. 2.2c; Table A.2.2). While the differences in 

biomass and richness between the burned and unburned plots lessened with time since 

fire, one year was insufficient for bacterial and fungal biomass or richness to recover to 

unburned levels (Fig. 2.2). The effects of fire across time remained larger for fungi than 

for bacteria, with fungal biomass remaining 80% and richness 61% lower and bacterial 

biomass remaining 43% and richness 23% lower in the burned plots at 1-year post-fire 

(Fig. 2.2; Table A.2.2). 

 

2.4.3 Fire directly and indirectly affects biomass and richness 

 Fire had direct, negative effects on bacterial and fungal biomass and richness. 

These direct effects were modified over time by positive interactions with fire for fungal 

biomass and with soil burn severity for fungal richness and bacterial biomass (Fig. 2.2; 
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Table A.2.4). Time since fire also directly positively impacted fungal richness (Table 

A.2.4). Soil burn severity had significant adverse direct effects on bacterial and fungal 

richness but no significant direct effects on biomass, meaning that biomass was equally 

reduced by fire regardless of severity (Figs. 2.2c,d; Table A.2.3). While precipitation had 

no significant direct effects, precipitation interacted with fire to positively impact 

bacterial biomass and fungal richness (Fig. 2.2a, d) but negatively affect bacterial 

richness (Fig. 2.2c; Table A.2.3).  

 

2.4.4 Wildfire effects on the richness of different fungal guilds 

 Wildfire led to large and significant reductions in species richness for all fungal 

guilds (Fig. A.1.3; Table A.2.4), with the largest initial declines for AMF. On average, 

across time points, EMF decreased by 68%, pathogens by 71%, saprobes by 86%, and 

AMF by 98% in burned compared to unburned plots (Fig. A.1.3), and one year was 

insufficient for any guild to return to unburned levels (Fig. A.1.4). In fact, at 376 days, 

EMF were on average 91%, AMF 89%, pathogens 69%, and saprobes 61% lower in the 

burned plots (Fig. A.1.4). Ectomycorrhizal richness declined with soil burn severity and 

due to a fire and time interaction, whereas time since fire had a direct, negative effect on 

saprobic richness, which declined over time (Table A.2.4). Finally, an interaction 

between fire and precipitation negatively affected both EMF and pathogen richness 

(Table A.2.4).  
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2.4.5 Wildfire changes microbial community composition 

 Fire significantly affected bacterial and fungal community structure, explaining 

13% of the compositional variation for bacteria and 10% for fungi (Fig. A.1.5). Time 

since fire had smaller impacts on community composition, explaining 4% of the variation 

for bacteria and 1% for fungi. Ash depth equally affected bacterial and fungal 

composition explaining 2% of the variance for both, whereas precipitation had slightly 

larger impacts on bacteria than fungi, explaining 3% of bacterial and 1% of the fungal 

variation (Table A.1.5). There were also small but significant interaction effects for both 

bacteria and fungi (Table A.1.5). Furthermore, community composition between burned 

and unburned plots significantly varied at all 9-time points for both bacteria (Fig. A.1.5) 

and fungi (Fig. A.1.6), with differences in community composition increasing over time 

from 12% to 21% for bacteria (Fig. A.1.5) and 9% to 13% for fungi (Fig. A.1.6) from day 

17 to 376 post-fire. The overall changes in burned bacterial (Fig. A.1.4) and fungal 

composition (Fig. A.1.4a) were driven by the previously rare taxa, which increased in 

abundance over time (Fig. A.1.4b,d). Unlike fungi, burned bacterial communities were 

consistently dominated over time (57% average sequence abundance) by a single genus, 

the Proteobacteria Massilia (Fig. 4.4b). However, three Firmicutes quickly rose in 

dominance, with Bacillus (13%), an uncultured Clostridiales (26%), and Paenibacillus 

(4%) dominating at 34- and 67-days post-fire. Yet these Firmicutes rapidly declined as 

the Proteobacteria Noviherbaspirillum increased in abundance over time, from 1% at 34 

days to 24% by the end of the year (Fig. 2.4b). For burned fungi, two Basidiomycetes that 

dominated at 17 days post-fire, the yeast Geminibasidium (45%) and the EMF Inocybe 



 

 30 

(16%), rapidly declined while filamentous Ascomycetes increased over time (Fig. 2.4d). 

The genera Pyronema increased as Geminibasidium decreased and dominated from 25 to 

95 days post-fire, peaking at 67 days post-fire with 67% sequence abundance. In addition, 

the Ascomycetes Aspergillus increased from 2% to 22% and Penicillium from 36% to 

49% from 17 to 376 days post-fire (Fig. 2.4d). 

 

2.4.6 Bacterial successional dynamics 

 Burned bacterial communities experienced rapid and distinct successional 

trajectories (Fig. 2.5a) at roughly double the rate of fungi (Fig. 2.5c,d) and were driven by 

six major compositional turnover points at 25, 34, 95, 131, 187, and 286 days (Fig. 2.5e). 

In contrast, the unburned bacterial communities experienced low dominance and 

remained stable over time (Fig. 2.6a) with no succession (Figs. 2,6c) or compositional 

turnover (Figs. 2.6e). These patterns are also reflected in the measures of successional 

dynamics (Table A.1.7). For example, burned bacterial communities experienced 

temporal changes in species composition that were directional and higher (0.16) than in 

the unburned communities (0.12; Table A.1.7). Burned bacterial communities also 

exhibited lower synchrony (0.03) than unburned communities (0.22), resulting in higher 

stability in burned (8.35) compared to unburned bacterial communities (5.36; Table 

A.1.7).  

 

2.4.7 Fungal successional dynamics 

 Burned fungal communities experienced rapid and distinct successional  
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trajectories (Fig. 5B; Fig. 5D) that were driven by five major compositional turnover 

points at 25, 34, 67, 95, and 131 days post-fire (Fig. 2.5f). In contrast, the unburned 

fungal communities experienced low dominance (Fig. 2.6b) and remained stable over 

time with no succession (Fig. 2.6d) or compositional turnover (Fig. 2.6f). Like bacteria, 

these patterns were similarly reflected in the measures of successional dynamics (Table 

A.1.7) such that burned fungal communities had higher directional change (0.49) than the 

unburned communities (0.08), reflecting stronger patterns of succession as more species 

were introduced into the burned system. Burned fungal communities exhibited slightly 

lower synchrony (0.04) than unburned communities (0.05) but much lower community 

stability (6.42) than unburned communities (8.58), indicating higher susceptibility to 

change in burned fungal communities (Table A.1.7).  

 

2.4.8 Taxa driving microbial succession   

Bacterial and fungal succession was driven by taxa that traded off in abundance 

based on physiological traits, such as thermotolerance and fast colonization (Table 2.1). 

Early turnover events for bacteria (Fig. 2.5a) and fungi (Fig. 2.5b) in burned plots were 

driven by the disappearance of taxa, more so for bacteria (days 17-95) than fungi (days 

17-25; Table A.2.6). Indeed, increased dominance by a few taxa, including the Firmicutes 

Bacillus at 25 days post-fire, Paenibacillus and Domibacillus (34-67 days), and the 

Proteobacteria Noviherbaspirillum (95 days), and the constant dominance of Massilia 

(34-286 days post-fire) resulted in the disappearance of early bacterial species, including 

RB41, Conexibacter, Candidatus Udaeobacter, and Bacillus over time (Fig. 2.5a; Table 
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A.2.6). In contrast, fungal succession was initiated by the rapid dominance of 

Geminibasidium and EMF genera that dominated the unburned communities, including 

Inocybe, Cortinarius, and Tomentella in the Basidiomycota and Balsamia in the 

Ascomycota and one previously rare Basidiomycete EMF genus Mallocybe, a subgenus 

of Inocybe (Fig. 2.5b, 2.6b). Interestingly, most species of EMF rapidly disappeared from 

the community at 25 days post-fire and were replaced by the constant dominance of 

Pyronema, Penicillium, and Aspergillus (Fig. 2.5b). However, as succession ensued, 

species appearance drove late-year successional turnover for bacteria (187-376 days; Fig. 

2.5a) and mid-year successional turnover for fungi (67-187 days; 2.5b; Table A.2.6). For 

bacteria, the appearance of two Bacteroidetes, Pedobacter and Adhaeribacter, and the 

Actinobacteria Blastococcus shaped late-year (days 187-376) bacterial succession (Fig. 

2.5a). For fungi, mid-year succession (days 95-187) was driven by the appearance of 

filamentous fungal Ascomycetes in the Pyronemataceae and the Sordariaceae genus 

Gelasinospora, and Basidiomycota mushroom-forming taxa (Fig. 2.5b). For example, the 

previously dominant EMF genus Inocybe remained in the community, but at a much 

lower abundance, declining with time since fire from 16% at 17 days to 0.1% at 376 days 

(Fig. 2.4d). In contrast, the pyrophilous Basidiomycete saprobes Coprinellus and 

Tephrocybe, which were rare in the unburned communities (<0.01% sequence 

abundance), appeared in the community later in the year (Fig. 2.5b). Late-year fungal 

succession (days 286-376) was driven by the increased dominance of Tephrocybe and 

Aspergillus and the Ascomycota Rasamsonia, and the decreased abundance of Pyronema 

(Fig. 2.5b). 
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2.5 Discussion 

 Here, we present the highest resolution temporal sampling of post-fire 

microbiomes to date, enabling us to show for the first time that bacteria and fungi 

experience rapid succession driven by the dominance of pyrophilous taxa that traded off 

in abundance over time (H4). Although our study was in California chaparral, many of 

the dominant pyrophilous taxa identified here also dominate other burned environments, 

including Spanish shrublands (Pérez‐Valera et al., 2018) and pine (Bruns et al., 2020; 

Reazin et al., 2016), spruce (Whitman et al., 2019), Eucalyptus (Ammitzboll et al., 2022; 

McMullan-Fisher et al., 2011), and redwood-tanoak forests (Enright et al., 2022), 

indicating the generality of our results to wildfire-affected ecosystems. We found that 

wildfire decreased bacterial and fungal biomass and richness, leading to community 

composition shifts that persisted the entire year (H1). Fungal guilds were differentially 

affected by fire and time, with AMF and saprobes experiencing the largest immediate fire 

impacts, but over time, EMF experienced the largest declines (H2). Moreover, microbial 

richness and biomass changes were driven by multiple abiotic interactions, including 

interactions between time since fire, precipitation, and soil burn severity (H3).  

 

2.5.1 Wildfire decreased bacterial and fungal biomass and richness 

 Fire decreased soil bacterial and fungal biomass and richness, corroborating 

 previous post-fire studies in Mediterranean shrublands (Pérez‐Valera et al., 2018) and 

forests (Dooley & Treseder, 2012). We noted a larger fire effect on fungal biomass and 

richness relative to bacteria, consistent with previous research showing that bacteria are 
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more resistant to fire than fungi (Certini et al., 2021; Glassman et al., 2021; Pourreza et 

al., 2014; Pressler et al., 2019). Although richness and biomass increased over time for 

both microbial groups, one year was insufficient for either group to recover to unburned 

levels, consistent with previous studies indicating that in shrublands, microbial biomass 

and richness recovery could take over two decades (Pérez‐Valera et al., 2018). 

Interestingly, we observed a transient increase in bacterial richness directly post-fire, 

which may result from taxa such as the Actinobacteria genera Soliribrobacter and 

Conexibacter (Albuquerque & da Costa, 2014) that may be favored by the increase in soil 

pH observed here (Table S1) and in other studies (Neary et al., 1999) or by post-fire 

increases in nitrogen and phosphorus availability (Certini et al., 2021).  

 

2.5.2 Wildfire impacts on fungal guilds 

Fire-induced mortality was rapid for AMF and saprobes. Yet, EMF were most 

affected by fire over time, corroborating studies across ecosystems that point to the 

negative impact of fire on mycorrhizal richness, primarily driven by host mortality (Dove 

& Hart, 2017; Pulido-Chavez et al., 2021). Indeed, post-fire, all subplots were devoid of 

vegetation (0% vegetation cover) compared to 97% vegetation cover in unburned plots. 

However, we note that the rapid decline in AMF could be due to primer bias, as the ITS2 

primer does not properly detect all AMF taxa (Lekberg et al., 2018). Moreover, we show 

that surviving ectomycorrhizal Basidiomycetes Cortinarius, Inocybe, and Tomentella, 

previously found in burned temperate pine forests (Owen et al., 2019; Pulido-Chavez et 

al., 2021) and pine-dominated Mediterranean systems (Gassibe et al., 2011; Hernández-
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Rodríguez et al., 2013) also dominated early chaparral fungal succession and remained in 

the community for 1-2 months. Since EMF largely disappeared after two months, this 

potentially answers the question of how long it takes mycorrhizal fungi to perish after 

their hosts' death. Although it is possible that the EMF signal detected could be relic 

DNA (Carini et al., 2016), high soil temperatures typical of post-fire systems (Amacher et 

al., 2001; Neary et al., 1999) are likely to have degraded relic DNA (Sirois & Buckley, 

2019; Torti et al., 2015), suggesting that these EMF could have survived the fire and 

clung to a dying host for at least two months. The survival of some EMF genera over 

others may be attributable to exploration type and specificity for current versus stored 

photosynthates (Gray & Kernaghan, 2020; Pena et al., 2010). For example, Cortinarius, a 

long/medium exploration type, which requires more carbon (C) for maintenance, only 

survived for 17 days post-fire. In contrast, Inocybe, a short-contact type (Agerer, 2001; 

Koide et al., 2014), survived at very low abundance for the entire year, perhaps because it 

may be less C demanding or adapted to warming (Fernandez et al., 2017). Our results 

indicate that early EMF could have survived on their hosts' stored photosynthates or the 

lower resources provided by the surviving and resprouting manzanita and chamise 

shrubs, while the vast majority of EMF experienced fire-induced mortality. 

 

2.5.3 Pyrophilous fungi dominate the burned communities  

Previously detected pyrophilous fungi across several ecosystems also dominated 

California chaparral, indicating that pyrophilous microbes are not biome-specific. 

Instead, these fungi may be activated by temperature thresholds reached during high-
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severity fires, which are common in chaparral and some Pinaceae forests (Agee, 1993; 

Keeley & Zedler, 2009; Neary et al., 1999). Specifically, our burned communities were 

dominated by Ascomycota in the genera Pyronema, Penicillium, and Aspergillus, similar 

to dominant post-fire fungal species in Mediterranean shrublands (Livne-Luzon et al., 

2021), boreal spruce (Whitman et al., 2019), and montane pine forests (Bruns et al., 2020; 

Pulido-Chavez et al., 2021). Both Pyronema (P. omphalodes) and Aspergillus (A. 

fumigatus) are known pyrophilous fungi of California chaparral (Dunn et al., 1982), and 

we identified additional species, including P. domesticum, A. udagawae, and A. 

elsenburgensis. These fungi are adapted to wildfire and produce fire-resistant structures, 

including dormant spores, sclerotia, and conidia, which are heat-activated (Gottlieb, 

1950; Moore, 1962; Rhodes, 2006; Warcup & Baker, 1963). The rapid and efficient 

germination of Aspergillus (in the subgenus Fumigati, including A. udagawae) induced 

by high temperatures (Rhodes, 2006) and its ability to use various C and nitrogen 

sources, including NH4+ and NO3- (Krappmann & Braus, 2005), may position Aspergillus 

to rapidly dominate post-fire. Furthermore, Pyronema domesticum can mineralize 

pyrogenic organic matter ((Fischer et al., 2021), an abundant substrate in post-fire 

environments. Moreover, Geminibasidium, a recently described thermotolerant 

Basidiomycete yeast (Nguyen et al., 2013), dominated at 17 days post-fire. While not 

typically described as pyrophilous, presumably because most pyrophilous fungi are 

described from mushrooms (McMullan-Fisher et al., 2011), two other studies have found 

Geminibasidium to increase post-fire in pine forests (Pulido-Chavez et al., 2021; Yang et 

al., 2020), suggesting that Geminibasidium is an underrepresented pyrophilous fungus. 
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Together, these results indicate that dominant pyrophilous fungi are more widespread 

than expected and that their response to fire is likely due to fire adaptive traits and 

temperature thresholds. 

 

2.5.4 Pyrophilous fungi drive fungal secondary succession  

 Although pyrophilous fungi are widespread across ecosystems, we lacked an 

understanding of how soon these pyrophilous fungi appear, their turnover rates, and if 

they change in abundance over time (Fox et al., 2022). Successional theory states that 

early successional stages are dominated by fast-growing or ruderal (R) organisms (Kinzig 

& Pacala, 2013) that tradeoff between stress tolerance (S) and competitive (C) life-

history strategies over time (Grime, 1977; Zhang et al., 2018). Recent adaptations of 

Grime’s C-S-R to microbiomes suggest that pyrophilous microbes survive and thrive 

post-fire with traits analogous to plants, including post-fire resource acquisition (C), 

thermotolerant structures (S), and fast growth (R) (Enright et al., 2022; Whitman et al., 

2019). Our data suggest that chaparral pyrophilous microbes fit into these trait categories 

(Table 2.1) and that tradeoffs among these traits might drive microbial succession.  

Early post-fire succession was driven by surviving thermotolerant fungi  

 (i.e., Geminibasidium and Pyronema), followed by fast-colonizers (i.e., Penicillium 

 and Aspergillus), which were overtaken by competitive fungi capable of exploiting post-

fire resources. (i.e., Coprinellus and Tephrocybe). Whereas Geminibasidium is thermo- 

and xero-tolerant (Nguyen et al., 2013), Pyronema produces thermotolerant sclerotia 
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(Moore, 1962), enabling wildfire survival. Although both species are thermotolerant, 

differences in the morphological growth characteristics between the yeast 

Geminibasidium and the filamentous Pyronema may explain the tradeoff in dominance. 

For example, unicellular proliferation allowed Geminibasidium to dominate instantly, but 

the ability to forage for nutrients and rapidly increase surface colonization may allow the 

filamentous Pyronema to better dominate the open space. Interestingly, Gelasinospora 

heterospora, a fungus closely related to heat-activated Neurospora crassa (Dettman et 

al., 2001; Emerson, 1948), produces pigmented mycelia, and is known to require heat or 

chemical treatment for germination (Alexopoulous & Mims, 1952), was highly abundant 

at 25, 34, and 95 days post-fire,  suggesting it is also pyrophilous. The decline of 

thermotolerators coincided with the dominance of fast-growing Ascomycete fungi in the 

genera Penicillium and Aspergillus (Dix & Webster, 1995; McGee et al., 2006), which 

both produce copious asexual conidia (Crow, 1992), allowing for rapid colonization of 

the open niche, analogous to early dominant post-fire plants, which are also often asexual 

(James, 1984). Lastly, like plants, competition appears to drive later successional 

dynamics (Tilman, 1990; Zhang et al., 2018), as suggested by the emergence of 

pyrophilous fungal decomposers, such as Coprinellus and Tephrocybe at 9-12 months, 

corroborating findings from Eucalyptus forests (Ammitzboll et al., 2022; McMullan-

Fisher et al., 2011). Evidence suggests that Coprinellus can degrade aromatic 

hydrocarbons (Steindorff et al., 2021), supporting the idea that it is outcompeting earlier 

fungal taxa for this abundant and complex C source. Moreover, Tephrocybe 

anthracophila has a high affinity for ammonium-nitrogen (Legg, 1992; Suzuki, 2017), 
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allowing access to this abundant post-fire resource. In conclusion, our results indicate that 

tradeoffs among fire-adapted traits analogous to those in plants might drive post-fire 

microbial succession. 

 

2.5.5 Pyrophilous bacteria dominate and initiate bacterial secondary succession  

Our high temporal sampling enabled us to demonstrate that bacteria experience 

rapid succession and community turnover initiated by possible aerobic, heterotrophic 

bacteria that form endospores and produce antibiotics, which may improve their 

competitive abilities in the post-fire environment. Moreover, we show that previously 

detected putative pyrophilous bacteria from Canadian (Whitman et al., 2019), Chinese 

boreal (Xiang et al., 2014), and California redwood-tanoak forests (Enright et al., 2022) 

and Spanish shrublands also dominated California chaparral, suggesting that these 

pyrophilous bacteria might be widely distributed. Specifically, our burned communities 

favored taxa in the phyla Actinobacteria, Acidobacteria, Firmicutes, and Proteobacteria, 

similar to previous studies (Ammitzboll et al., 2022; Enright et al., 2022; Sáenz de Miera 

et al., 2020; Whitman et al., 2019; Xiang et al., 2014).  

Bacterial successional dynamics differed from fungi in that the first few weeks 

were characterized by high diversity and a lack of dominance, mimicking the 

distributions observed in the unburned communities. In complex resource environments, 

such as those created by wildfire, niche complementarity is more important than 

competition because diverse communities can better exploit resources (Eisenhauer et al., 

2013), further contributing to community stability.  Our results support this idea, as the 
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dominant taxa in our study are likely to use different resources. For example, members of 

the genus Paenibacillus can fix nitrogen (Monciardini et al., 2003; Slepecky & Hemphill, 

2006), Bacillus and Conexibacter can reduce nitrogen, and Bacillus can further solubilize 

phosphate (Espinosa-de-los-Monteros et al., 2001; Kalayu, 2019). However, at 25 days, 

bacteria experienced a large compositional turnover, which allowed for the dominance of 

pyrophilous bacteria with fire-adapted traits. While tradeoffs in abundance were not as 

stark for bacteria as for fungi, as indicated by the constant dominance of the 

Proteobacteria Massilia, the following most abundant bacteria did experience tradeoffs in 

dominance against other bacterial genera, possibly driven by physiological traits, such as 

thermotolerance and fast colonization (Table 1).  

Firmicutes contain some of the most resistant, thermotolerant endospore-

producing bacteria (Grady et al., 2016; Kaur et al., 2018; Mandic-Mulec et al., 2015), 

including members of the genera Bacillus, Paenibacillus, and Clostridiales which 

decreased in abundance as fast-colonizing genera in the Phylum Proteobacteria that may 

be capable of exploiting post-fire substrates (e.g., Novihersparillium and Massilia) 

increased in dominance. Moreover,  members of the Firmicute order Clostridiales can 

trigger sporulation in response to stress (Paredes-Sabja et al., 2011), potentially allowing 

for increased proliferation post-fire. While thermotolerance is crucial for fire survival, 

rapidly dominating the open niche and using post-fire resources may ensure post-fire 

growth. Massilia is a fast-reproducing bacteria that associates with the rhizosphere (Li et 

al., 2014) and colonizes AMF hyphae (Iffis et al., 2014) and the roots of various plants 

(Ofek et al., 2012). Thus, the dominance of Massilia in our study and other post-fire 
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environments (Enright et al., 2022; Whitman et al., 2019) suggests that its diverse 

ecology and rapid reproduction rate promote its proliferation within the soil (Toljander et 

al., 2005). Moreover, our results, coupled with current knowledge in the field, show that 

the continued dominance of Massilia and Noviherbaspirillium might be due to their 

ability to exploit post-fire resources. For example, the genera Massilia contains species 

that can degrade long-chain hydrocarbons (Ren et al., 2018) and reduce NO3- (Bailey et 

al., 2014). In contrast, Noviherbaspirillium, a mid-to late-year dominant bacterial genus, 

may degrade polycyclic aromatic hydrocarbon (Baldani et al., 2014; Grady et al., 2016; 

Woolet & Whitman, 2020). We conclude that although tradeoffs are not as distinctive for 

bacteria as they are for fungi, potentially due to interaction among traits such as fast 

growth under high resources and resource acquisition under low resources, our results 

provide evidence that pyrophilous bacteria have mechanisms to survive the fire that may 

drive them to trade off in abundance from early to late dominant taxa over time. 

 

2.5.6 Microbial successional dynamics differ for bacteria and fungi 

Chaparral vegetation successional patterns result from the self-replacement of the 

dominant pre-fire species (i.e., auto-succession), meaning the pre-fire dominant species 

establish early post-fire due to resprouting individuals, and these species gradually 

dominate the system (Hanes, 1971). However, this was not the case for bacterial or 

fungal succession. Most post-fire dominant genera were rare or absent pre-fire, and these 

initial colonizers experienced directional change over time via species replacement. Our 

results are consistent with successional concepts of non-catastrophic disturbances, which 
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show that species that survive a disturbance or recover quickly will dominate early 

successional dynamics but will inevitably be replaced by late-stage species via directional 

replacement mechanisms (Platt & Connell, 2003). Similar directional replacement 

patterns have been revealed after primary succession of fungi in a glacier foreland (Dong 

et al., 2016). Although a few genera dominated burned microbial communities, bacteria 

and fungi displayed different successional patterns. Bacterial burned communities 

exhibited lower synchrony and higher stability compared to unburned communities. The 

low synchrony indicates that stability may be conferred due to compensatory dynamics 

driven by tradeoffs in the abundance of cooccurring competitors (Tilman, 1999). 

Conversely, the lower stability in the unburned communities could be due to the increase 

in species synchrony reducing compensatory dynamics. In systems with high 

environmental variability, compensatory dynamics mediated by species asynchrony often 

contribute to stability (Yachi & Loreau, 1999). In contrast, burned fungal communities 

displayed lower community stability than unburned communities, while synchrony was 

similarly low in both. This lower stability may indicate that there was an overall increase 

in the variation of fungal taxa potentially due to the large loss of species observed in the 

fungal community (Tilman et al., 2014), resulting in priority effects and alternate 

communities with different dominant genera (Connell & Slatyer, 1977; Fukami, 2015). 

However, further research is needed to explore these microbial successional dynamics, as 

microbial communities are a vital driver of post-fire ecosystem recovery. 
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2.5.7 Precipitation and burn severity differentially affected bacterial and fungal 

communities 

 Although fire was the most influential driver of microbial change, we found that 

interactions between time and precipitation also drove successional dynamics by 

differentially affecting microbial biomass and richness. Precipitation interacted with time 

since fire resulting in a negative correlation with bacterial richness and a positive 

correlation with fungal richness, with bacterial richness declining but fungal richness 

increasing after rain events. At least one study that performed a three-year precipitation 

manipulation experiment showed that increased precipitation decreased bacterial richness 

(Yang et al., 2021). In contrast to richness, precipitation interacted with fire to positively 

affect bacterial biomass, while fungal biomass remained unaffected by rainfall. The 

distinct responses to precipitation could be due to microbial physiological and 

morphological differences (Blazewicz et al., 2014; Placella et al., 2012; Selbmann et al., 

2013). For example, fungi have high morphological plasticity, including the ability to 

alternate growth forms based on environmental conditions, such as hyphal growth in low 

nutrient conditions versus unicellular form in rich nutrient conditions (Selbmann et al., 

2013), which may allow fungi to survive small changes in moisture content, allowing for 

continued growth over time. Moreover, fungi can also activate or enhance resistance to 

drought (Evans & Wallenstein, 2012; Guhr & Kircher, 2020), allowing them to maintain 

a constant reproduction rate regardless of the external environmental conditions, thus 

explaining the positive impact on fungal richness. In contrast, bacteria can experience cell 

death due to rapid wet-up, while other bacterial groups enter a dormant state, inhibiting 
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growth  (Schimel, 2018). Thus, to be evolutionarily successful, some bacteria may 

respond rapidly to favorable conditions (e.g., rain) (Leizeaga et al., 2022) and rapidly 

replicate to outcompete other microbes for the pulse of nutrients released during the rain 

event (Homyak et al., 2014), thus potentially explaining the peaks in richness observed 

after significant rainfall at day 131.   

 Previous research shows that ash depth correlates with fire intensity (Rice, 1993) 

and severity (Bodí et al., 2014; Parson et al., 2010). Here, we measured ash depth before 

the first rains or significant wind events could remove ash from the site, and we found 

that ash depth can serve as a proxy of soil burn severity on a scale relevant to soil 

microbes. Unlike the BAER maps, which classified all plots as moderate burn severity, 

we identified large variations in soil burn severity across our subplots (Fig. S7). It is well 

known that wildfires result in a heterogeneous landscape (Jain et al., 2008); thus, the 

discrepancy in soil burn severity in the BAER maps could be due to the lack of ground 

verification. Since our severity effects were similar to those found in other studies, we 

feel confident that ash depth can serve as a proxy for soil burn severity. We found that 

severity negatively affected bacterial and fungal richness but not biomass. Similar to 

studies in boreal (Whitman et al., 2019), oak (Pourreza et al., 2014), and Mediterranean 

forests (Lucas-Borja et al., 2019), bacterial and fungal richness decreased with soil burn 

severity. However, contrary to a meta-analysis (Dooley & Treseder, 2012), neither 

bacterial nor fungal biomass was directly impacted by soil burn severity, probably due to 

microbial adaptations to the natural high-severity fire regime of chaparral. However, 

since we observed an interaction effect of time since fire and severity on microbial 
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richness, it is possible that previously observed severity effects, derived from 

chronosequence studies where space is substituted for time and which, on average, occur 

two years post-fire (Pressler et al., 2019), may represent an interaction effect of time and 

severity and not a direct effect of soil burn severity. 

 
 
 
2.6 Conclusion 
 
 Our high-resolution temporal sampling allowed us to detect rapid secondary 

succession in bacterial and fungal communities and marked tradeoffs in abundance 

among pyrophilous microbes over time. We found that the same pyrophilous bacteria and 

fungi that respond to fires in temperate and boreal forests and Mediterranean shrublands 

also dominate in California chaparral, allowing us to generalize knowledge of post-fire 

microbiomes to dryland habitats that are rapidly increasing with climate change (Feng & 

Fu, 2013). While pyrophilous microbes have been described in other systems, their 

turnover rates were unknown due to limited post-fire sampling (Fox et al., 2022). We 

hypothesize that tradeoffs among fire-adapted traits, with thermotolerators dominating 

first, followed by fast colonizers, and finally by competitors capable of capitalizing on 

post-fire resource acquisition, drive post-fire microbial successional dynamics. It appears 

likely that pyrophilous microbes share many analogous traits to plants, enabling us to 

adapt successional theory developed for plants to microbes while acknowledging that 

bacteria and fungi differ in how they respond to fire according to their physiology. We 

conclude that post-fire bacteria and fungi experience rapid successional changes after 

fire, suggesting that these dynamics can help increase our ability to predict if and how 
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ecosystems recover after a wildfire, an increasingly widespread disturbance with climate 

change.  
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Figure 2.1. A) Location of the study area and plots (6 burned; 3 unburned) within the 
Holy Fire burn scar in the Cleveland National Forest in southern California. Soil burn 
severity is based on the USDA BAER classifications made at seven days within fire 
containment. B) Plot experimental design, each with four 1m2 subplots placed 5m from 
the center in each cardinal direction. C) Collection of the top 10 cm of soil beneath the 
ash with a releasable bulb planter within the 1 m2 subplots at 17 days post-fire.  
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Figure 2.2. Change between burned (brown) and unburned communities (blue-green) for 
A) bacterial and B) fungal estimated biomass per gram of soil and C) bacterial and D) 
fungal species richness at each of the nine timepoints in the first post-fire year. Points 
represent the mean biomass (A, B) and richness (C, D), and bars represent the standard 
error of the mean for burned versus unburned plots at each timepoint. Note that gene copy 
number and species richness are displayed on a daily scale, whereas precipitation is on a 
monthly scale representing total precipitation for the month in which each soil sample 
was collected. Note, we sampled twice in Oct. The significance of burned versus 
unburned plots per timepoint is denoted with an asterisk and is based on a negative 
binomial regression.  
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Figure 2.3. Change in estimated biomass and richness with soil burn severity measured 
as ash depth at 17 days post-fire for A) bacterial and B) fungal biomass per gram of soil 
and C) bacterial and D) fungal richness. The significance of biomass and species richness 
against soil burn severity (SBS) and its interaction with time since (TSF) is based on a 
negative binomial regression (Table S4). The blue line represents the model’s prediction, 
and the gray represents the standard error.  
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Figure 2.4. NMDS plot of A) bacterial and C) fungal community composition with 
colors denoting treatment and shape indicating time since fire. The NMDS is based on 3-
dimensions and has a stress value of 0.11 for bacteria and 0.12 for fungi. Change in 
relative sequence abundance of the five most abundant B) bacterial and D) fungal genera 
in the burned plots over time. Note that the dominance of the top 5 bacterial genera began 
34 days post-fire since there was no clear dominance on days 17 and 25 due to the lag in 
post-fire bacterial declines. 
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Figure 2.5. Relative sequence abundance of A) bacterial and B) fungal genera 
(ectomycorrhizal fungi denoted with an asterisk) in burned plots at all 9 timepoints. 
Mantel correlation between Bray-Curtis dissimilarity and Euclidean temporal distances in 
C) bacterial and D) fungal community composition in burned plots. Principal components 
analysis (PcoA) of the mean and standard error Bray-Curtis community dissimilarity at 
each timepoint for the burned E) bacterial and F) fungal communities. Note that 
timepoints farther apart with non-overlapping standard error bars indicate a community 
turnover, whereas overlapping standard error bars represent a lack of compositional 
turnover. Note that 17 days represents the base level. Thus, the first turnover was initiated 
at 25 days. Gray bars represent multiple genera of bacteria (A) and fungi (B) that have 
relative sequence abundance under 3% at each timepoint per treatment. Note that 47% of 
the bacterial and 20% of the fungal sequences comprise genera <3%  relative abundance. 
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Figure 2.6. Relative sequence abundance of A) bacterial and B) fungal genera 
(ectomycorrhizal fungi denoted with an asterisk) in unburned plots at all 9-time points. 
Mantel correlation between Bray-Curtis dissimilarity and Euclidean temporal distances in 
C) bacterial and D) fungal community composition in unburned plots displaying no 
significant succession. Principal components analysis (PcoA) of the mean and standard 
error Bray-Curtis community dissimilarity at each time point for E) bacteria and F) fungi 
in the unburned plots. In unburned plots, overlapping standard error bars indicate no 
community turnover across time. Gray bars represent multiple genera of bacteria (A) and 
fungi (B) that have relative sequence abundance under 3% at each timepoint per 
treatment. Note the lack of dominance as denoted by the fact that 79% of the bacterial 
and  51% of the fungal sequences comprise genera <3%  relative abundance. 
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Table 2.1. Pyrophilous bacterial and fungal taxa hypothesized position within Grime’s C-
S-R succession theory (per traits at the genera level, based on current literature). 

 
Kingdom 

 
Phylum 

 
Genus 

Grimmes Traits 
(CSR) 

 
 Trait description 

 
      Citation 

 
 
Bacteria 

 
 
 
Firmicute 
(Bacillota) 

 
 
 
Bacillus 

 
 
 
Survival 

Aerobic, Heterotrophic, 
Antibiotic‐producing,  
thermotolerant; 
endospore; reduces 
nitrogen; solubilizes 
phosphate 

Grady et al., 2016; 
Kaur et al., 2018; 
Mandic-Mulec et al., 
2015; J. et al., 2001; 
Kalayu, 2019; 
Slepecky and Hemphill 
in the Prokaryotes; 
Espinosa-de-los-
Monteros et al., 2001 

 
 
Bacteria 

 
Firmicute 
(Bacillota) 

 
 
Clostridiales 

 
 
Survival,   
Fast growth 

Thermotolerant; 
endospore; trigger 
sporulation in response 
to stress, reduces 
nitrogen 

Grady et al., 2016; 
Kaur et al., 2018; 
Mandic-Mulec et al., 
2015; Paredes-Sabja et 
al., 2011; Kalayu, 2019 

 
 
Bacteria 

 
 
Firmicute 
(Bacillota) 

 
 
Paenibacillus 

 
 
Survival 

Aerobic, Heterotrophic, 
antibiotic 
producing (Bacteriocins
), thermotolerant; 
endospore; fixes 
nitrogen 

Grady et al., 2016; 
Kaur et al., 2018; 
Mandic-Mulec et al., 
2015; Monciardini et 
al., 2003; Slepecky & 
Hemphill, 2006 

 
Bacteria 

 
Actinobacteria 
(Actinomyceto
ta) 

 
Conexibacter 

 
Competition 

Aerobic, Heterotrophic, 
Antibiotic‐producing, 
reduces nitrogen 

Espinosa-de-los-
Monteros et al., 2001; 
Kalayu, 2019 

 
Bacteria 

 
  
Proteobacteria 
(Pseudomonad
ot) 

 
Massilia 

 
Fast Growth;  
Competition 

Aerobic, fast 
reproduction, diverse 
ecology, exploit 
resources 

Li et al., 
2014;Toljander et al., 
2005 

 
Bacteria 

 
Proteobacteria 
(Pseudomonad
ot) 

 
Novihersparil
lium 

 
Fast Growth; 
Competition 

Fast reproduction, 
exploit resources; likely 
PyOM degrader  

Baldani et al., 2014; 
Grady et al., 2016; 
Woolet & Whitman, 
2020  

      
 
Fungi 
 

 
Basidiomycota 

 
Geminibasidi
um 

 
Survival 

 
73hermos- and xero-
tolerant yeast 

Alexopoulous & 
Mims, 1952 

 
Fungi 

 
Ascomycota 

 
Pyronema  

     Survival 
Fast Growth 

thermotolerant sclerotia; 
likely PyOM degrader, 
filamentous,  

Moore, 1962; Fisher et 
al., 2022 

 
Fungi 

 
Ascomycota 

 
Gelasinospor
a heterospora 

 
Survival 

Requires heat or 
chemical treatment for 
germination, pigmented 
mycelia 

Alexopoulous & 
Mims, 1952 

 
Fungi 

 
Ascomycota 

  
Penicillium 

 
Fast Growth 

copious asexual conidia, 
fast growth, filamentous 

Dix & Webster, 1995; 
McGee et al., 
2006;Crow, 1992 

 
Fungi 

 
Ascomycota 

 
Aspergillus 

 
Fast Growth 

copious asexual conidia, 
fast growth, filamentous 

Dix & Webster, 1995; 
McGee et al., 
2006;Crow, 1992 
 

 
Fungi 

 
Basidiomycota 

 
Coprinellus 

 
Competition 

Likely PyOM degrader, 
filamentous 

Steindorff et al., 2021 

 
Fungi 

 
Basidiomycota 

Tephrocybe 
anthrocophila 

 
Competition 

Affinity for ammonium 
or nitrogen, filamentous 

Suzuki, 2017; Legg, 
1992  
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Chapter III 
 
 
 
 

Microbial-Mediated Pyrogenic Organic Matter 
and Nitrogen Cycling genes increase over time after 

a Chaparral wildfire 
 
 

 
 
 
 
 
 
 
 
3.1 Abstract 
 

Wildfires alter soil chemistry and microbial communities, opening niche space for 

pyrophilous or "fire-loving" microbes to initiate secondary succession. However, 

wildfires also increase soil nitrogen and transform woody vegetation into difficult-to-

decompose pyrogenic organic matter (PyOM), a potential carbon source for pyrophilous 

microbes. Whether pyrophilous microbes can degrade these post-fire resources has 

significant implications for global carbon and nitrogen cycling, including carbon 

sequestration and greenhouse gas emissions. To determine temporal patterns in the 

functional potential for PyOM degradation and nitrogen cycling, we performed shotgun 

metagenomics on 30 burned and unburned soils collected at 17, 25, 34, 131, and 376 days 

after a Southern California chaparral wildfire. In contrast to unburned plots, where 

relative abundances of genes associated with PyOM degradation and nitrogen cycling 
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remained stable over time, complementary profiles in burned plots revealed immediate 

decreases in the relative abundances of PyOM and N genes, followed by dramatic 

increases over the first post-fire year (167% for PyOM, 117% for N). Genes encoding the 

degradation pathways for two PyOM degradation intermediates, catechol and 

protocatechuate, revealed that the easier-to-degrade ortho-cleavage pathways dominated 

all time points in the burned plots, while genes encoding nitrogen retention pathways 

(assimilatory and dissimilatory NO3- reduction) dominated nitrogen cycling pathways for 

the entire year. Finally, the dominant pyrophilous bacterial taxa Massilia and 

Noviherbaspirillium encoded different PyOM and N processing pathways, suggesting 

that traits enabling adaptation to wildfires, like post-fire resource acquisition, drive 

microbial secondary succession.  

 

 

3.2 Introduction 

Soil microbial communities support fundamental post-fire soil processes such as 

nitrogen (N) immobilization and, thus, storage (Turner et al., 2007) and carbon (C) 

cycling via decomposition and thus C loss as CO2 (Liu et al., 2023) or sequestration 

(Raza et al., 2023). However, understanding the complex functional dynamics of the 

post-fire soil microbiome remains challenging. With shifting fire regimes resulting in 

increased fire frequency and severity (Riley & Loehman, 2016), understanding the early 

functional dynamics of post-fire soil microbial communities is necessary to understand 
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how species drive secondary successional dynamics and alter important ecosystem 

functions such as those that affect C sequestration and greenhouse gas emissions. 

Wildfires often cause reductions in microbial richness, shifting community 

composition and allowing pyrophilous or “fire-loving” microbes such as fungal 

Ascomycetes (Fox et al., 2022; Pulido-Chavez et al., 2023) and bacterial Firmicutes and 

Actinobacteria (Whitman et al., 2019; Enright et al., 2022; Pulido-Chavez et al., 2023) to 

initiate secondary succession. However, post-fire secondary succession can trigger a 

change in resource use that can affect microbial successional dynamics, including 

successional directionality and community metabolism (Luo et al., 2020). We previously 

hypothesized that the succession of post-fire microbes is such that initial thermotolerant 

microbes are succeeded by fast-growing pyrophilous taxa, which are supplemented, later 

in time, by fungal Basidiomycetes in the genera Coprinellus, Lyophyllum, Pholiota, and 

Tephrocybe and bacterial Noviherbaspirillium (Pulido-Chavez et al., 2023). These later 

arrivals might be better suited for the post-fire environment, possibly due their ability to 

use post-fire resources such as PyOM and N (Fox et al., 2022; Pulido-Chavez et al., 

2023).  This implies that early post-fire taxa might perform metabolic functions that 

prime the system for colonization by higher fungal and bacterial taxa, potentially 

resulting in a new microbial equilibrium. However, whether these simultaneous 

functional changes are occurring and subsequently affecting microbial successional 

dynamics is unknown.  

Fires alter the C cycle primarily through the combustion of vegetation (Nave et 

al., 2011) and the abundant formation of Pyrogenic Organic Matter (PyOM), an aromatic 
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chemically complex C source that is difficult to degrade and thus has a long residence 

time (Knicker, 2011; Bird et al., 2015). The aromaticity of PyOM requires microbes to 

encode the genes to cleave the aromatic rings and thus metabolize and attain C (Haddock, 

2010). Current evidence from metagenome-assembled genomes (MAGs) shows that 

Pyronema domesticum has a high genomic potential for PyOM degradation (Dove et al., 

2022),  and lab studies prove that P. domesticum indeed can utilize PyOM as its sole C 

source (Fischer et al., 2021). Moreover, the bacteria Massilia and Noviherbaspirillium 

are considered putative PyOM degraders (Perez-Pantoja et al., 2012), suggesting that 

other pyrophilous microbes might have the genomic potential to use the abundant C 

sources available after high-severity chaparral wildfires. However, wildfires can also 

increase the abundance of short-chain alkanes (González-Pérez et al., 2004; Kuhn et al., 

2010; Thomas et al., 2012; Badía et al., 2014), such as propane, which are easier to 

degrade C sources preferentially selected by microbes for consumption (Moucawi et al., 

1981; Abbasian et al., 2015; Thomas et al., 2021). However, whether early post-fire 

microbes have the functional potential to degrade PyOM over alkanes or whether C 

source selection changes with succession is currently unknown.  

 In addition to altering the C cycle, fires alter the N cycle through losses via 

volatilization, reduction of urea hydrolysis (Goberna et al., 2012), and a short-term 

enrichment of bioavailable N (Neary et al., 1999; Johnson & Curtis, 2001; Dannenmann 

et al., 2018). However, indirect wildfire effects, such as removal of the vegetation, can 

increase soil temperature and decrease soil moisture (Neary et al., 1999; Ayiti & 

Babalola, 2022), resulting in increased aerobic conditions that reduce nitrification (Neary 
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et al., 1999; Ayiti & Babalola, 2022), but can increase denitrification rates (Stephens & 

Homyak, 2023). Microbial immobilization can decrease denitrification and thus NO2 

emissions (Chen et al., 2021; Hoang et al., 2022). Conversely, microbial denitrification 

and urea hydrolysis can increase N2O emissions (Thomson et al., 2012; Singh et al., 

2013; Yoon et al., 2019; Chen et al., 2021; Hoang et al., 2022). Consequently, 

understanding how post-fire microbes treat this bioavailable N has strong implications for 

post-fire greenhouse gas emissions. Research in Spanish shrublands showed increases in 

the relative abundance of genes associated with N incorporation into the ecosytem three 

years post-fire (Cobo-Díaz et al., 2015). Similarly, in forested ecosystems, the genomic 

potential for nitrification increased, and denitrification decreased during the first post-fire 

decade (Dove & Hart, 2017). Thus, although there is evidence that the enrichment of 

pyrophilous microbes can be associated with concurrent increases in the relative 

abundances of genes to process increased post-fire bioavailable N, temporal changes in 

these dynamics following fire are unknown.  

 We previously showed that microbial successional dynamics began with 

thermotolerant taxa (Firmicutes and fungal genera Pyronema and Geminibasidium) that 

were replaced by fast colonizers (i.e., fungal Penicillium and Aspergillus and bacterial 

Massilia) followed by taxa with putative N and PyOM degradation capabilities such as 

Massilia, Novihersbaspirillum and fungal Basidiomycetes Tephrocybe  and Coprinellus 

(Pulido-Chavez et al., 2023). Moreover, we observed five bacterial and  six fungal 

compositional turnover events during post-fire year one (Pulido-Chavez et al., 2023) that 

suggest underlying community metabolic changes might be driving secondary 
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succession. Thus, we used a high-resolution temporal sampling of soil microbiomes after 

a chaparral wildfire and performed a gene-centric metagenomic analysis to determine 

how dynamic changes in pyrophilous communities relate to post-fire microbial functions 

and successional dynamics. We selected 5 time points (17, 25, 34, 131, and 376 days 

post-fire) corresponding to observed microbial compositional turnover events to identify 

how wildfires affect the diversity and relative abundance of genes driving PyOM 

degradation and N cycling over time. We tested the hypotheses that the genes encoding 

potential for H1) degradation of wildfire-induced C sources like PyOM and alkane and 

H2) processing of abundant bioavailable N will increase over time in burned plots 

corresponding to microbial community successional dynamics and the increased relative 

abundance of pyrophilous taxa with the putative abilities to use high post-fire abundances 

of PyOM and N.  

 

 

3.3  Methods  

3.3.1  Sampling  

In 2018, the Holy Fire burned 94 km2 of Chaparral shrublands in the Cleveland 

National Forest in Southern California. Seventeen days post-fire, we established nine 

plots (6 burned and 3 unburned), selecting for similarity in pre-fire vegetation, elevation, 

and aspect.  Each plot contained four 1 m2 subplots in each cardinal direction for 

temporal soil sampling of the top 10 cm of mineral soil beneath the ash or the duff (Fig. 

B.1.1). Soil samples were collected at nine time points within the first year post-fire (i.e., 
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17, 25, 34, 67, 95, 131, 187, 286, and 376 days). DNA was extracted from 0.25g of 2 mm 

sieved soil with Qiagen DNeasy PowerSoil kits, then samples were sequenced with 

Illumina MiSeq to identify 16S and ITS2 amplicons (Pulido-Chavez et al., 2023). 

 

3.3.2 Metagenomic sequencing  

We used the 16S and ITS2 microbiome analysis to select 5 time points (17, 25, 

34, 131, and 376 days post-fire) with the most extreme microbial compositional turnover 

events for metagenomic analyses (Pulido-Chavez et al., 2023). From each of the five 

timepoints, we selected 3 burned and 3 unburned subplots for a total of 30 metagenomes 

(15 burned and 15 unburned). Samples were chosen by selecting the DNA samples with 

the following criteria, 2.5 ng/µl and 230/260 above 1.8, from unburned plot 8 (Fig. 

B.1.1a) and from two closely situated burned plots with the most similar microbial 

richness and biomass (plots 2 and 3; Fig. B.1.1a). Metagenomic library preparation and 

sequencing were performed at the Department of Energy Joint Genome Institute (JGI) in 

Berkeley, California for 17 samples and at the University of California, Irvine (UCI) 

Genomics High-Throughput Facility for 13 samples. Libraries were prepared from the 

frozen DNA extractions using the Kapa Biosystems library preparation kit at JGI and the 

Illumina Nextera Flex library preparation kit at UCI and were sequenced on the Illumina 

NovaSeq 6000 platform on an S4 flow cell (151 bp paired-end reads and a depth of 25 

Gb/sample). See supplementary data 1 for additional information regarding metagenomic 

sequencing. 
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3.3.3 Metagenomics binning 

Sequence adapters were removed from the raw reads using BBduk-v38.89 

(sourceforge.net/projects/bbmap/) with the following parameters (ktrim=r, k=23, 

mink=11, hdist=1). Raw reads were trimmed with Sickle – v1.33, and the quality of 

trimmed reads was assessed with FastQC – v0.11.2 (Andrews, 2010). Trimmed reads 

were assembled into contiguous sequences (contigs) with the de novo de Bruijn 

assembler  MEGAHIT – v1.2.9 (Li et al., 2014) with the following parameters (min kmer 

of 27, max of 127, and increment of 10). Per-contig coverage per sample was calculated 

using CoverM contig version v0.6.0 (Woodcroft, 2007) with the trimmed mean method 

to retain only mappings >95% identity and minimum alignment of 75% (Parks et al., 

2015). Assembled contigs (>2,500 bp) were binned using MetaBAT2 v2.12.1 with 

default parameters (Kang et al., 2015) to assemble bacterial metagenome-assembled 

genomes (MAGs). MAG quality was estimated using checkM v1.1.2 (Parks et al., 2015), 

and taxonomy was assigned using GTDB-Tk  v2.1.1 (Chaumeil et al., 2019) and 

dereplicated using dRep v3.0.0 (Olm et al., 2017) to remove low-quality MAGs (<50% 

completion and >10% contamination). See supplementary data 1 for additional 

information regarding metagenomic assemblies and MAGs.  

 

3.3.4 Contig annotation   

To assess the degradation of aromatic hydrocarbons, such as PyOM, we focused 

our PyOM contig annotation on catechol and protocatechuate, two intermediate aerobic 

degradation pathways (Fuchs et al., 2011) and short-chain alkane C. To improve 

http://sourceforge.net/projects/bbmap/
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retention and annotation of the samples in a comprehensive manner, all assembled 

contigs were annotated using three different databases. First, contigs were annotated 

using HMMER (Eddy, 2011), with hidden Markov models (HMMs) against Kofamscan 

HMMs (Aramaki et al., 2020) to identify specific genes related to aromatic compound 

degradation (i.e., catechol and protocatechuate and inorganic N cycling) according to 

previously established methods (Nelson et al., 2022). Furthermore, we used the Calgary 

approach to AnnoTating HYDrocarbon (CANT-HYD) degradation genes, which uses 

HMMs for annotating marker genes involved in aerobic and anaerobic hydrocarbon 

degradation pathways (Khot et al., 2022). Lastly, we employed the Distilled and Refined 

Annotation of Metabolism, DRAM (Shaffer et al., 2020) to profile our contigs through 

multiple databases (i.e., KEGG (Kanehisa & Goto, 2000), UniRef90 (Suzek et al., 2007), 

MEROPS (Rawlings et al., 2014), and Mmseqs2 (Steinegger & Söding, 2017) with the 

best hits (based on a bit score of 60) reported for each database. The contig dataset was 

normalized by calculating the contig length corrected trimmed mean (geTMM) of M 

values (Smid et al., 2018) using EdgeR (Robinson et al., 2010), normalizing by library 

depth and gene length as has been previously used for metagenomics data (Capo et al., 

2021; Leleiwi et al., 2023; Santos-Medellin et al., 2023). The results from all three 

annotations were concatenated into one large file, and genes related to aromatic 

hydrocarbons (PyOM), alkane degradation, N, and urea cycling were selected for all 

downstream analyses. In the case where contigs contained duplicated annotations, the 

annotations were manually curated, and the best functional annotation was determined by 

selecting the annotation with the lowest e-value. 
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We used results from a DESeq analysis (see details below) to identify genes of 

interest, then used NCBI BLAST (Bethesda, 2008) to link the MAG catalog to these 

dominant genes. We filtered the BLAST matches to include only hits with 100% identity 

and a bit score of at least 100. Therefore, we identified the specific taxa that encoded key 

genes, including those related to PyOM and N cycling pathways. For a comprehensive 

computational map illustrating the bioinformatic procedures employed, please refer to the 

supplementary figure B.1.2. 

 

3.3.5  Statistical analysis 

All statistical analyses were performed, and figures were made in R version 4.2.3 

(RCoreTeam, 2023; Team, 2023). First, we determine how fire, time, and their 

interaction impacted the overall composition of genes for  PyOM or N cycling with 

Permutational Multivariate Analysis of Variance (PERMANOVA;(Anderson, 2017) as 

implemented in the adonis2 function of the vegan package (Oksanen et al., 2022) with 

9999 permutations with plot as random effect. Results were visualized using nonmetric 

multidimensional scaling (NMDS). Ordinations were based on Bray–Curtis distance 

matrixes using the ordinate function in the phyloseq package (McMurdie & Holmes, 

2013). Since alkanes increase post-fire and are preferentially selected by microbes as a C 

source, we separated alkanes from the PyOM genes for all downstream analyses, 

allowing us to determine if this preferential uptake also occurs in post-fire systems. 

Moreover, since urease is vital to hydrolyze urea into ammonia (NH3+) (Fernández-

García et al., 2020), an essential process that makes N readily available for plant uptake, 
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we further separated the urea pathway from the N cycling processes, allowing us to 

determine the effect of fire on these important ureases and thus helping us understand if 

the post-fire microbes possess ureases which can help us better understand post-fire 

ecosystem restoration and N cycling.  

Second, to determine if microbial functional changes mirrored the rapid 

compositional changes we previously observed at 17, 25, 34, 131, and 376 days post-fire 

(Pulido-Chavez et al., 2023), we calculated the homogeneity of variance for burned and 

unburned communities independently. Furthermore, we used permutest with 9999 

permutations and plot as random effect to determine which time points differed for 

burned and unburned pathways. We used principal coordinates analysis (PCoA) to 

visualize the differences in the homogeneity of variance of each functional pathway with 

the vegan package (Oksanen et al., 2022) using Bray-Curtis dissimilarities.  

Third, we independently performed generalized negative binomial regression on 

burned and unburned plots for each pathway to test how the number of PyOM, alkane, N, 

and urea cycling genes changed over time. The nestedness level was tested using null 

model and Akaike criteria. Burned PyOM, alkaline, and urea models retained plot, and 

unburned models retained subplot as random effect. Burned N models required plot, 

subplot, and time, and unburned N models required time and subplot as random effects. 

For all models, time was scaled and centered. To visualize how the microbial functional 

potential changes over time; we visualized the sum geTMM of each PyOM, alkane, N, 

and urea pathway over time using the phyloseq version 1.42.0 (McMurdie & Holmes, 

2013) for each time point in burned and unburned communities independently.  
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 Lastly, to identify the PyOM, alkane, N, and urea genes that were differentially 

overrepresented in the burned versus the unburned plots at each sampling time point, we 

employed DESeq2 v1.38.3 (Love et al., 2014). Five separate models in DESeq2 were 

defined, one per timepoint, to assess the response of functional gene potential and 

independently identify the difference in response to fire over time for each pathway. 

Results are based on the DESeq Wald test (adjusted p-value < 0.05 and absolute log2 

fold-change >0). The total count of differentially abundant genes was visualized as a bar 

plot for each independent pathway over time. Moreover, we used the differentially 

abundant genes at each time point in the burned communities (padj<0.05) to create a 

metabolic map for PyOM and N degradation pathways. Furthermore,  to link the most 

abundant genes to their taxonomy, we first selected the genes of interest (most abundant 

genes based on DESeq results at each time point, log2fold change >0 and p < 0.05) and 

linked them to their respective taxonomy using our MAG created database (Bethesda, 

2008). Taxonomy and functional annotation of the selected group of genes were plotted 

using ggplot2 (Wickham, 2016). All statistical scripts (R scripts) are publicly available on 

GitHub: https://github.com/pulidofabs/Chaparral-Metagenomes. 

 

 

3.4 Results 

A total of 2,034 contigs were binned to assemble MAGs, resulting in 455 

medium- and high-quality MAGs. Identified taxa represented across all MAGs belonged 

to the phyla Acidobacteriota, Proteobacteria, and Verrucomicrobiota, with a few 

https://github.com/pulidofabs/Chaparral-Metagenomes
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pyrophilous bacteria in the genera Massilia and Noviherbaspirillium (Supplementary 

Data 1C). Additional contig information, MAG quality and taxonomy information, and 

contig taxonomy information for the dominant selected genes are available in 

Supplementary Data 1C.  Metagenomes and MAGs are deposited at NCBI.  

 

3.4.1 Wildfire altered the profile of functional genes for PyOM and N 

Fire significantly impacted the profile of functional genes implicated in N and 

PyOM cycling, leading to significant changes over time (Fig. 3.1; Table B.1.1). Wildfire 

was the strongest driver of differences in functional potential, explaining 15% of the 

variation for PyOM (p = 0.001; Fig. 3,1a; Table B.1.1) and urea (Fig. 3.1d) and 16% for 

alkanes (p = 0.001; Fig. 3.1b; Table B.1.1) and the remaining N cycling genes (Fig. 3.1c; 

Table B.1.1). Time had smaller but significant impacts on the functional profiles of these 

genes, explaining 5% of the variance in PyOM, N, and urea cycling genes and 6% for 

alkane genes (Table B.1.1). A significant fire-by-time interaction explained 5% of the 

variation for PyOM and urea and 6% for N, but it had no significant impact on alkanes 

(Table B.1.1).  

While there was no change in the turnover or community-level alterations of the 

profile of functional genes in the unburned plots (Fig.3.2; betadisper p>0.05), the burned 

plots experienced multiple functional profile turnover periods (Fig.3.2; Table B.1.2). 

Overall, genes associated with urea processing displayed greater turnover than those 

associated with the degradation of PyOM, alkanes, and N (Fig.3.2h). Functional genes 

associated with urea cycling experienced functional turnover at 25, 34, and 131 days 
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post-fire (Fig.3.2h), while PyOM cycling (Fig.3.2b) and N cycling genes (Fig.3.2f) both 

experienced two turnover events at days 34 and 131. Finally, genes encoding the 

functional potential for processing alkanes displayed turnover events at days 25 and 131 

post-fire (Fig.3.2d).  

 

3.4.2 Time differentially affected PyOM degradation pathways 

While the geTMM normalized gene values associated with PyOM or alkane 

processing were not affected by wildfire (Table B.1.3, B.1.4), a significant and positive 

treatment-by-time interaction was observed for PyOM and alkane cycling pathways 

(p<0.0001; Table B.1.3, B.1.4), increasing geTMM values over time compared to 17 days 

post-fire (Fig 3.3; p<0.004; Table B.1.4). This increase is attributed to the increasing 

number of PyOM genes (Fig. B.1.4), which correlates with the increase microbial 

diversity and abundance over time (Fig. B.1.4). Moreover, time differentially affected the 

different steps of PyOM and alkane cycling pathways (Fig. 3.3b, d; Fig. B.1.5; Table 

B.1.5). Specifically, we detected temporal increases in geTMM values associated with 

catechol and protocatechuate cycling (Fig. 3.3b, Fig. B.1.5; Table B.1.5). However, the β-

ketoadipate (Fig. 3.3b; Fig. B.1.5; Table B.1.5) and all alkane cycling pathways (i.e., 

methane, alkane, and propane) remained unchanged over time (Fig. 3.3d; Fig. B.1.5; 

Table B.1.6).   

 

3.4.3 Time differentially affected N degradation pathways 

Similarly, wildfire did not directly affect the geTMM values for N or urea cycling 
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(Table B.1.3), but a treatment-by-time interaction for N and urea increased geTMM 

values over time when compared to 17 days post-fire, more so for urea (Fig. 3.4c, d) than 

N (p<0.02; Fig. 3.4a, b; Table B.1.3; B.1.4). This increase in geTMM values could be 

due to increases in diversity and relative abundance over time (Fig. B.1.6).  Moreover, 

time differentially affected the different steps of the N and urea cycling pathways (Fig 

3.4; Fig. B.1.7; Table B.1.7, B.1.8). For N cycling, geTMM values for NO3- assimilation 

(assimilatory and dissimilatory) and nitrification significantly increased with time when 

compared to 17 days post-fire (p<0.04; Fig. 3.4b; Fig. B.1.7, Table B.1.7), but time did 

not affect denitrification or urea cycling geTMM values (Fig. 3.4b,d; Fig. B.1.7, Table 

B.1.7). However, unburned denitrification geTMM values were significantly and 

negatively affected by time (p=0.004; Fig. 3.4a, Fig. B.1.7, Table B.1.7). For urea, both 

urea and ornithine geTMM values significantly increased over time (p<0.004; Fig 3.4d, 

Table B.1.8).  

 

3.4.4 Wildfire selects for ortho-cleavage aromatic degradation pathways 

Wildfire resulted in a higher number of PyOM degradation genes being 

significantly differentially abundant within the burned communities as compared to the 

unburned communities (692 vs 258; padj <0.05; Fig. 3.5,3.8). The functional potential for 

PyOM degradation genes also differed across the burned plots over time (padj <0.05; Fig. 

3.5a, 3.7). Overall, the ortho-cleavage pathway for the protocatechuate and catechol 

pathways and the β-ketoadipate pathway were differentially abundant in the burned plots 

throughout the year (17-131d; padj <0.05; Fig. 3.5a, 3.7). In contrast, the meta-cleavage 
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pathways for catechol and protocatechuate were only differentially abundant in the early 

post-fire timepoints (padj <0.05; Fig. 3.5a, 3.7) and at 131d post-fire for catechol meta-

cleavage (padj <0.05; Fig. 3.5a, 3.7). Interestingly, genes associated with aromatic 

hydrocarbon degradation, related to lignin degradation, were differentially abundant in 

the unburned communities at 17 and 25 days post-fire (Fig. 3.5a). However, it is 

noteworthy that the specific genes differed between the burned and unburned 

communities. 

Alkane degradation pathways exhibited differential abundance in genes related to 

converting acetate to methane (17d-376d; padj <0.05; Fig. 3.5b), with other degradation 

steps, such as propane 2-monooxygenase, alkane hydroxylase, and alkane 

monooxygenase being only overrepresented at 17d post-fire (padj <0.05; Fig. 3.5b).  

 

3.4.5 Wildfire increased genes for N retention 

Wildfires resulted in more differentially abundant N cycling genes within the 

burned communities than the unburned communities (143 vs 55;  padj <0.05; Fig. 3.5c, 

3.8). Overall, at all-time points, the genes encoding N retention pathways, such as 

assimilatory NO3- (nasABC; NRT, narK, nrtP, and nirA) and dissimilatory NO2- (nirBD, 

narBlVHY, and nxrB) reductase and NO3- assimilation (narG, narZ, nrxA) pathways were 

differentially abundant in the burned microbial communities (padj<0.05; Fig. 3.5c, 3.8). In 

contrast, all urea degradation pathways were significantly abundant in the burned plots at 

25, 34, and 131 days post-fire, except at 67 days post-fire, where only the conversion of 

argininosuccinate to arginine was significantly abundant (padj<0.05; Fig. 3.5d, 3.8).  
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3.4.6 Genomic potential of dominant taxa differed in burned and unburned 

communities 

The genomic potential for catechol and protocatechuate ortho-cleavage and β-

ketoadipate degradation in the burned plots were abundant in MAGS representing the 

phyla Proteobacteria, Actinobacteria, and Acidobacteriota (Fig. 3.6, gene fad; 

Supplementary file 1c). Pathway genes for Catechol ortho-cleavage (CatABC) and β-

ketoadipate (pcaDLJ, fadA) degradation were differentially encoded by MAG number 

CNF2NT9_metabat.6, representing the pyrophilous Proteobacteria Massilia (Fig. 3.6), 

the most dominant bacterial taxa in the post-fire community (Fig S4). The 

protocatechuate ortho-cleavage pathways, genes pcaBCH, were encoded by MAGs 

representing the Burkholderiales-SG8-41 Solirubrobacteraceae (MAG 

CNF6NT3_metabat.4) and the dominant pyrophilous Noviherbaspirillium (Fig. 3.6, S4; 

MAGs CNF3ST6_metabat.25). Additionally, genes related to the catechol meta-cleavage 

pathway (dmpBC, xylEG) were encoded by the MAGs affiliated with the bacterial 

families Xanthobacteraceae-PALSA-894 (MAG CNF2NT1_metabat.6) and 

Chthoniobacterales-AV80 (Cat3, MAG CNF6NT3_metabat.11; Fig. 3.6). Furthermore, 

protocatechuate meta-cleavage degradation genes (ligClK, galC) were differentially 

abundant in MAGs representing the dominant Noviherbaspirillium (MAG 

CNF3ST6_metabat.25) and Xanthobacteraceae-PALSA-894 (MAG CNF2ET2_metabat.2 

and CNF2NT1_metabat.6; Fig. 3.6). Although catechol, protocatechuate, and β-

ketoadipate genomic potential were differentially abundant at 17 and 25 days post-fire in 

the unburned plots, the genes and the genera differed and were driven by the MAGs 
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representing Bradyrhizobium (MAG CNF8ET1_metabat.62) and Acidimicrobiales-AC-

14 (MAG CNF8NT3_metabat.96; pcaD, fadAl; praC, xylH, pracH, ligABC; Fig. 3.6).  

The genes encoding NO3- retention pathways, both assimilatory NO3- reductase 

(nasABC, nirA) and dissimilatory NO3- reductase (nirBD), were differentially abundant in 

the MAGs for the family Actinobacteriota Arthrobacter (NasABC; MAG 

CNF3ET9_metabat.15), Micromonosporaceae (NasABC; NirBD; MAG 

CNF3ET9_metabat.92) and Pseudonocardia (NirBD; MAG CNF2NT3_metabat.37; Fig. 

3.6). Massilia (MAG CNF2NT9_metabat.6) also encoded genes for dissimilatory NO3- 

retention pathways reductase (nirD) and NO3- retention pathways (MAG 

CNF2NT9_metabat.6; NRT, narK, nrtP, nasA; Fig. 3.6). Furthermore, genes associated 

with NO3- retention pathways assimilation (NRT, narK, nrtP, nasA) were differentially 

abundant within the Actinobacteria, specifically in genera Arthrobacter (MAG 

CNF3ET9_metabat.15) and Micromonosporaceae (MAG CNF3ET9_metabat.92; Fig. 

3.6). Like PyOM genes, NO3- retention pathways assimilation, reduction, and 

denitrification in the unburned plots at 17 days post-fire were differentially abundant in 

the non-pyrophilous bacteria Bradyrhizobium (MAG CNF8ET1_metabat.62 and 

CNF8NT2_metabat.40; NRT, narK, nrtP, nasAC, napA; Fig. 3.6). 

 

 

Discussion 

We found that high-severity fire dramatically altered the genomic functional 

potential within the post-fire soil microbiome, concurrent with large changes in microbial 
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community composition (Pulido-Chavez et al., 2023). Wildfire increased the geTMM 

value for PyOM degradation genes over time, and our analyses revealed that catechol and 

protocatechuate ortho-cleavage (i.e., β-ketoadipate) pathways are the primary encoded 

mechanisms for PyOM degradation. We also found that wildfire increased the geTMM 

values for N cycling genes over time, selecting for genes encoding the N retention 

pathways, via conversion of NO3- to biomass and NO2 to NH3+, with significant 

implications for trace and greenhouse gas emissions. Finally, we found that pyrophilous 

bacterial taxa that dominated our post-fire chaparral communities (i.e., the  

Burkholderiales Massilia, and Noviherbaspirillium) (Pulido-Chavez et al., 2023) encoded 

multiple but differential PyOM degradation pathways, suggesting that traits enabling 

adaptation to wildfires like post-fire resource acquisition drive microbial succession.  

 

3.5.1  PyOM geTMM values increased over time 

We previously observed patterns of microbial secondary succession in chaparral 

and hypothesized that these changes aligned with the ability of post-fire microbes to 

utilize post-fire resources (Pulido-Chavez et al., 2023). Here, we found that geTMM 

values for genes encoding for PyOM degradation increased over time and were 

differentially abundant in the burned plots. While bacteria initially decreased in biomass 

and richness post-fire, they did vary in abundance over time, with some increases in 

richness observed in bacterial communities at 1 year relative to 17 days post-fire (Pulido-

Chavez et al., 2023). Thus, it is plausible that the augmented total number of 

differentially abundant genes and elevated getTMM values observed in our study over 
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time, are associated with the emergence of additional species possessing genomic 

capabilities for PyOM degradation in burned plots. 

We previously hypothesized that the succession of post-fire microbes is such that 

thermotolerant microbes dominate first, followed by fast-colonizers, which are then 

replaced by microbes capable of capitalizing on post-fire resources, such as PyOM and N 

(Pulido-Chavez et al., 2023). Our metagenomic data support those inferences from 

microbiome data and indicate that MAGs representing pyrophilous bacteria (i.e., 

Proteobacteria Noviherbaspirillum and Massilia) that dominate during the first-post-fire 

year encode multiple genes for PyOM and N degradation. Indeed, PyOM treatment (Chen 

et al., 2021; Cheng et al., 2022; Zeba et al., 2023) and incubation studies (Song et al., 

2017; Woolet & Whitman, 2020) have shown that Noviherbaspirillium and Massilia 

increase in relative abundance in response to PyOM addition, suggesting that these taxa 

are readily degrading PyOM as a C source. Massilia encoded genes to degrade PyOM via 

the catechol and β-ketoadipate ortho-cleavage pathway. In contrast, Noviherbaspirillium 

encoded genes for PyOM degradation via the protocatechuate ortho and meta-cleavage 

pathways, showing that while both taxa might be capable of attaining C via the 

degradation of PyOM, they do so via different degradation pathways. Previous studies 

have indicated that microbes utilizing the meta-cleavage pathway tend to experience a 

growth lag and delayed substrate utilization due to difficulties regulating the upper 

pathways required to induce degradation of the intermediate PyOM pathways, such as 

catechol and protocatechuate (Johnson & Beckham, 2015), potentially explain the later 

appearance of Noviherbaspirillium during succession. In contrast, the dominance of 
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Massilia could be explained by their genomic potential to degrade PyOM via the catechol 

ortho-cleavage pathway and rapidly accessing C. Although we were unable to detect any 

fungal-associated contigs for PyOM or N degradation in these data, we have previously 

found that fungal basidiomycetes Coprinellus and Lyophyllum increased in abundance in 

the burned communities 286 days post-fire (Pulido-Chavez et al., 2023). Both fungal 

basidiomycetes are well-known decomposers (Steindorff et al., 2021) and thus might also 

encode to better degrade PyOM and coincide with the increase of PyOM cycling genes 

over time.  

Fire selects for microbial taxa that encode genes for alkane degradation. Previous 

studies have shown that extractable levels of acetate increase post-fire in subsurface soil 

(Blank et al., 1994). In this study, we demonstrate that bacteria in the early post-fire 

stages, specifically at 17 and 25 days post-fire, possess the genomic capacity to utilize the 

abundant post-fire resource, as indicated by the higher abundance of genes such as 

ACSS1_2, acs, and pta associated with the alkane degradation, more specifically, with the 

conversion of acetate-to-methane. This suggests that early post-fire microbes might only 

be capable of using easier-to-degrade labile C sources and thus readily reproduce and 

rapidly dominate the ecosystem. However, later in the succession process, the potential 

depletion of labile C sources leads to microbial community shifts, with microbes capable 

of using more complex aromatic C sources rapidly dominating the community.  

Moreover, while methanogens were not detected in our system, the phylum  

Proteobacteria and Acidobacteriota contain the ACSS1_2, acs genes responsible for the 

conversion of acetate-to-methane and have been previously been shown to efficiently use 
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the C produced by methylotrophic bacteria (Morawe et al., 2017). Furthermore, previous 

studies have shown a cooperative interaction between the bacteria Bradyrhizobium 

(Hanson & Hanson, 1996) and the synergistic interactions involving methanogens, as 

exemplified by Acidimicrobiales (Koch et al., 2008; Johnson et al., 2009; Morawe et al., 

2017). Together, these findings highlight the intricate interactions that may occur post-

fire and suggest that metabolic handoffs and cooperative utilization of resources may play 

crucial roles in shaping post-fire successional and ecosystem dynamics. 

 

3.5.2  Post-fire microbes preferentially retain N and increase nitrification 

 Coincident with large post-fire increases in bioavailable N (Pulido-Chavez et al., 

In prep), we found that geTMM values for genes encoding nitrification, assimilatory, and 

dissimilatory N reductase increased over time and were differentially abundant in the 

burned plots. These results are supported by complementary post-fire studies in 

coniferous forests (Kurth et al., 2013; Kurth et al., 2014; Dove & Hart, 2017; Dove et al., 

2020; Dove et al., 2021; Dove et al., 2022) and chaparral (Hanan et al., 2016) ecosystems 

indicating enrichment of nitrification in the immediate aftermath of wildfire. In our initial 

study of post-fire microbiomes, we showed that bacterial taxa in the genera Massilia and 

Paenibacillus,  previously recognized as being capable of nitrification (Qiao et al., 2020; 

Wang et al., 2022; Salazar et al., 2023), increased with time and after winter rains 

(Pulido-Chavez et al., 2023). Moreover, the Actinobacteria genus Arthrobacter and 

family Micromonosporaceae encoded genes for N immobilization, suggesting that the 

increase in immobilization genes at 131 days could be attributed to heightened 
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immobilization by Arthrobacter and Micromonosporaceae following increased winter 

rains. 

Wildfire's innate ability to promote short-term N losses by stimulating NO3-  

retention pathways production can be detrimental to post-fire ecosystem recovery (Hanan 

et al., 2016), especially when microbes, the major players in N retention (Knicker, 2007; 

Hanan et al., 2016), are also affected by the fire. We found that pyrophilous microbes in 

early post-fire soils (17-25 days post-fire) possess denitrification genes, which could 

amplify N losses in the form of N2 or N2O, powerful greenhouse gases. These results 

align with a recent review of N emissions in wildfire affected ecosystems (Stephens & 

Homyak, 2023). However, N loss is transient since post-fire microbes, including those 

associated with the genera Arthrobacter, Massilia, and Micromonosporaceae, can 

potentially immobilize N by incorporating it into biomass through the assimilatory NO3- 

retention pathways reduction pathway. Moreover, the genera Massilia, Pseudonocardia, 

and family Micromonosporaceae can further convert NO2- to NH3+ via dissimilatory NO2- 

reductase, making this resource readily available for plant and microbial use. Together, 

these results show that post-fire microbes possess the genomic potential to retain post-fire 

ecosystem N. These findings align with prior research indicating the nitrogen-reducing 

and assimilating capabilities of Massilia and Arthrobacter (Cacciari et al., 1986; Bailey 

et al., 2014; Liu et al., 2023), and N retention processes have been observed in various 

wildfire-affected systems (Xu et al., 2022), including chaparral (Goodridge et al., 2018), 

and in field studies using biochar or PyOM additions (Bai et al., 2015). Furthermore, 

metagenomic studies have previously shown enrichment of nirB/D genes (N retention 
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genes) four years post-fire (Dove et al., 2022). These collective results underscore the 

role that dominant pyrophilous bacteria in fire-adapted chaparral communities may play 

in the assimilation and retention of N, playing critical roles in mitigating N losses and 

facilitating ecosystem restoration.  

 

3.5.3 Post-fire chaparral microbes preferentially degrade PyOM via the ortho-cleavage 

degradation pathway 

Microbial taxa enriched in the post-fire soils encoded the ortho-cleavage catechol 

and protocatechuate pathways for PyOM degradation over the meta-cleavage pathways. 

However, the bacterial taxa implicated in PyOM degradation only contained functional 

genes for part of a specific degradation pathway, suggesting that post-fire bacterial 

communities may thrive via cooperative interactions and metabolic handoffs. Prior 

studies have shown that the β-ketoadipate pathway (or the ortho pathway) is the most 

common method for aromatic degradation (Granja-Travez et al., 2020; Weiland et al., 

2022) and the preferred route for aromatic degradation for lignin-degrading bacteria 

(Granja-Travez et al., 2020; Weiland et al., 2022). These results are also supported by 

data from post-fire coniferous forest soils, which revealed the presence of the ortho-

cleavage pathway in over 50% of MAGs recovered from those samples (Nelson et al., 

2022) and intriguingly suggests that high-severity fires may always select for ortho-

cleavage pathways regardless of the biome. 

Furthermore, we found that the genes for the full catechol (catABC) and 

protocatechuate (pcaHGBCDLJ) ortho-cleavage degradation pathways were present 
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across all samples for the entire year. The ortho-cleavage pathways were differentially 

abundant across multiple taxa in the Proteobacteria including Burkholderiales SG8-41, 

Noviherbaspirillum, Massilia, and Xanthobacteraceae PALSA-894, Acidobacteriota 

(Blastocatellia JADGNW01, Verrucomicrobiota (Chthoniobacterales AV80 and 

Actinobacteriota (Mycobacterium, Pseudonocardia, and Solirubrobacteraceae). Previous 

research indicated that bacteria preferentially utilize the catechol ortho-cleavage pathway 

while fungi preferentially use the protocatechuate ortho-cleave pathway (Fuchs et al., 

2011), suggesting that interspecies competition for the same resource pool may be 

rampant between pyrophilous bacteria and fungi. Unfortunately, our bioinformatics 

pipeline did not allow for the recovery of fungal MAGs, thus limiting our insight into 

the fungal degradation of PyOM. 

The catechol and protocatechuate ortho pathways are biochemically conserved 

with high diversity in the level of gene organization (Parke et al., 2000; Buchan et al., 

2004). This indicates the potential for pyrophilous microbes of wildfire-adapted 

ecosystems, such as chaparral, to exhibit high degree of phylogenetic conservatism, as 

was previously shown (Enright et al., 2022). Thus, pyrophilous microbes might have 

evolved mechanism to capitalize on PyOM as a C source, as suggested by the large 

number of differentially abundant PyOM degradation genes in the burned plots. Indeed, 

our findings revealed that the Actinomycetales, Arthrobacter, Pseudonocardia, 

Micromonosporaceae, and Mycobacteriales CADCTP01 and the Burkholderiales SG8-41, 

Noviherbaspirillum, and Massilia encoded the PyOM genes that were shown to be 

differentially abundant in the burned plots.  Previous research showed that Arthrobacter 
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(Nelson et al., 2022) and Burkholderiales harbor a high potential for aromatic compound 

catabolism (Pérez-Pantoja et al., 2012), supporting our results. The ortho pathway 

provides a growth advantage to microbes (Song et al., 2002) by efficiently converting C 

to cell mass (Basha et al., 2010; Aghapour et al., 2013) and both pyrophilous Massilia 

and Noviherbaspirillum are fast-growing bacteria (Lin et al., 2013; Baldani et al., 2014; 

Li et al., 2014) that dominated this system (Pulido-Chavez et al., 2023) and contained 

genes for PyOM degradation. Together, these results suggest that in a post-fire system, 

where C is bound in difficult-to-degrade PyOM, pyrophilous microbes prefer the easier-

to-degrade PyOM pathway (ortho-cleavage pathway), rapidly converting PyOM to 

biomass and thus dominating and initiating microbial succession, as previously suggested 

(Pulido-Chavez et al., 2023). 

 

 

3.6  Conclusions 

 Our high-resolution gene-centric metagenomic analysis allowed us to detect the 

rapid enrichment of genomic functional potential for PyOM, inorganic N, alkane, and 

urea degradation during the first post-fire year, coinciding with the observed dominance 

of pyrophilous taxa in this post-fire environment. We found that MAGs encoding for 

pyrophilous Massilia and Noviherbaspirillium preferentially encode the easier-to-degrade 

ortho-cleavage catechol and protocatechuate degradation pathways while assimilating N 

to acquire energy and potentially minimize greenhouse gas emissions. While post-fire 

microbes can assimilate post-fire resources, they do so by encoding different PyOM and 
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N degradation pathways, suggesting that metabolic handoffs are common in post-fire 

communities and traits that evolved for post-fire survival, like resource acquisition, drive 

microbial secondary successional dynamics. While the capability of post-fire microbes to 

utilize PyOM and N has been previously hypothesized (Woolet & Whitman, 2020; 

Pulido-Chavez et al., 2023), and shown for some taxa (Cobo-Díaz et al., 2015; Fischer et 

al., 2021; Nelson et al., 2022), our research unveils previously unknown functional 

changes over successional time, filling a critical gap created by previous post-fire 

sampling efforts. Thus, we provide a deeper understanding about post-fire microbial 

ecology and provide insight into restoration of important ecosystem functions in fire-

affected environments.  
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Figure 3.1. Non-metric multidimensional scaling (NMDS) of geTMM normalized a) 
PyOM b) alkane c) nitrogen and d) urea cycling genes within the microbial communities 
of burned and unburned soil samples (color)  and time since fire (TSF days; shape). 
Treatment (Trt) and time since fire (TSF) effects based on PERMANOVA  (p <0.05). 
Ellipse represents the 95% confidence level. Genes were annotated using DRAM, 
CANT-HYD and KEGG) .  
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Figure 3.2. Principal component analysis (PCoA) of the mean and standard error Bray-
Curtis community dissimilarity at each timepoint (17, 25, 34, 131, 376) for the unburned 
and burned a,b) PyOM; c,d) Alkane; e,f) Nitrogen and g,h) Urea functional potentials. 
Note that timepoints further apart with nonoverlapping standard error bars indicate a 
community turnover, whereas overlapping standard error bars represent a lack of 
compositional turnover, with 17 days representing the base level (first sampling time 
point). Thus, the first turnover (TO) was initiated at 25 days. 
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Figure 3.3. Summed geTMM normalized gene abundance over time for a,b) PyOM and 
c, d) Alkane degradation in the unburned (left panel) and burned (right panel). Colors are 
based on the general function for each gene.  
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Figure 3.4. Summed geTMM normalized gene abundance over time for a,b) Nitrogen 
and c, d) Urea cycling genes in the unburned (left panel) and burned (right panel). Colors 
are based on the general function for each gene. 
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Figure 3.5. Total number of genes that were differentially abundant in the burned plots  
(brown) versus the unburned plots (blue green; x axis) per each carbon pathway, colored 
by each sampling time point for a) PyOM,  b) Alkane, Nitrogen and d) Urea cycling. 
Significance based on DESeq2 Wald test (adjusted P value < 0.05 and absolute log2 fold-
change >0).  
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Figure 3.6. Taxonomic annotation for the most dominant, differentially abundant PyOM, 
nitrogen and urea genes based on DESeq analysis (adjusted P value < 0.05 and absolute 
log2 fold-change >0). Taxonomy based on blasting contigs against MAGs.  
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Figure 3.7.  The catechol and protocatechuate degradation pathways with arrows 
indicating genes that were differentially expressed in the burned treatment at each time 
point (17, 25, 34, 131 and 376 days post-fire; Wald’s test in DESeq2; p<0.05). Line type 
represents catechol (solid) and protocatechuate (dashed) cycling pathways and gray solid 
lines represent pathways that were not expressed during post-fire year one. Numbers in 
parentheses represent the mean log2fold change (DESeq2) for each represented gene and 
are colored by the timepoint in which that gene was significantly abundantly represented.  
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Figure 3.8. The nitrogen cycle with arrows indicating genes that were differentially 
represented in the burned treatment at each time point (17, 25, 34, 131 and 376 days post-
fire; Wald’s test in DESeq2; p<0.05). Line type represents the different nitrogen cycling 
pathways, colored by timepoint and gray solid lines represent pathways that were not 
expressed during post-fire year one. Numbers in parentheses represent the mean log2fold 
change (DESeq2) for each represented gene and are colored by the timepoint in which 
that gene was significantly abundantly represented.  
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Chapter IV 
 
 
 
 

A comprehensive 4.5 year study of microbial resilience and 
ecosystem recovery after a Chaparral wildfire 

 
 

 

 

 

 
4.1 Abstract 
 
 
 High-severity wildfires, common in fire-adapted chaparral ecosystems, 

substantially impact microbial resilience, affecting community functions and structure 

and consequently influencing their ability to return to pre-fire conditions. Soil microbes 

are vital to ecosystem health, driving ecosystem functions such as nutrient cycling and 

vegetation regeneration. To understand post-fire microbial resilience and factors 

influencing their recovery, we performed a high-resolution temporal sampling of 17 time 

points spanning 17 days to 4.5 years post-fire. We estimated impacts on microbial 

biomass with 16S and 18S qPCR and microbial richness and composition with Illumina 

MiSeq sequencing of 16S and ITS2 amplicons. Further, we measured vegetation 

regeneration and key soil variables, including pH, NO3-, NH4+, moisture content, and 
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texture, at a subset of the time points. Neither bacterial nor fungal communities recovered 

to pre-fire conditions. However, bacteria exhibited greater resilience than fungi, 

recovering in terms of richness within 4.5 years, influenced by factors such as time, 

vegetation richness, and soil NH4+. Fungal richness did not recover, displaying negative 

correlations with time, burn severity, and proximity to unburned areas, but positive 

associations with vegetation and soil moisture. Bacterial stability improved with higher 

richness and reduced dominance, while fungal stability persisted due to the dominance of 

resilient taxa like Pyronema, Aspergillus, and Penicillium. These results emphasize the 

importance of diverse bacterial communities and well-established fungi for ecosystem 

resilience. Furthermore, our study revealed that both bacterial and fungal species richness 

had a positive impact on vegetation and a negative effect on soil NH4+ concentrations, 

while NO3- levels were specifically correlated with bacterial richness. These findings 

highlight the complex interconnections between fire and the soil environment while 

underscoring the vital roles played by microbes in facilitating post-fire ecosystem 

recovery.  

 

 

4.2 Introduction 

Wildfires are fundamental to ecosystems worldwide (McLauchlan et al., 2020), 

including chaparral (Pausas et al., 2008; Rundel, 2018). They facilitate the release of 

nutrients, create open habitats, enhance the diversity of light-loving plants (Pausas & 

Keeley., 2009), and promote tree regeneration (Certini, 2005). However, the rising 
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frequency, size, and severity of fires beyond historic levels (Abatzoglou & Williams, 

2016; McLauchlan et al., 2020) has raised concerns about the ability of ecosystems to 

recover (Gill et al., 2022). Severe wildfires can hinder ecosystem recovery by negatively 

affecting soil microbial communities (DeBano et al., 1998; Pressler et al., 2019; Fox et 

al., 2022). These microbial communities are crucial for nutrient cycling, litter 

decomposition, and plant regeneration (van der Heijden et al., 2008; Brundrett, 2009; 

Bardgett & van der Putten, 2014; Delgado-Baquerizo et al., 2016; Brundrett & Tedersoo, 

2018) . Thus, understanding microbial resilience—the ability of ecosystems to recover to 

pre-disturbance levels while maintaining their fundamental structure and functions 

(Walker et al., 2004; Allison & Martiny, 2008), is vital to ensuring the long-term health 

and stability of ecosystems.  

Following severe wildfires, rapid microbial mortality creates a niche for a distinct 

group of pyrophilous or "fire-loving" microbes to dominate the post-fire environment 

(Fox et al., 2022). These microbes are often phylogenetically conserved within bacterial 

phyla such as Firmicutes and Actinobacteria and Ascomycete fungal classes such as 

Eurotiomycetes and Pezizomycetes (Enright et al., 2022). We recently found that 

chaparral pyrophilous microbes undergo rapid secondary succession and display specific 

trade-offs in abundance during the first post-fire year (Pulido-Chavez et al., 2023). These 

patterns mirror vegetation successional dynamics, starting with the initial dominance of 

surviving thermotolerant microbes, followed by colonization by fast growers, which 

eventually yield to superior competitors for post-fire resources (Pulido-Chavez et al., 

2023). However, plant dynamics indicate that the composition of the surviving vegetation 
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governs the rate of recovery and succession of the system by facilitating the replacement 

and establishment of a diverse plant community (Steel et al., 2021). While we previously 

demonstrated the directional replacement of microbes during the first post-fire year  

(Pulido-Chavez et al., 2023), it is crucial to understand that resilience plays a pivotal role 

in facilitating directional succession and, consequently, the ecosystem recovery 

(Philippot et al., 2021). However, much remains to be understood about the resilience of 

post-fire microbes, and what factors govern their recovery rate, which limits our ability to 

predict and manage burned ecosystems.  

Wildfires can induce prolonged abiotic pressures on the microbial community by 

altering the soil environment and plant community (Shade et al., 2012; Jurburg et al., 

2017). Wildfires can result in rapid vegetation mortality (Neary et al., 1999; Neary et 

al., 2005), substantial carbon (C) transformation from woody vegetation to pyrogenic 

organic matter, PyOM (Certini, 2005), and increases in soil pH, ammonium (NH4+) and 

mineral N (Certini, 2005; Dannenmann et al., 2018). These changes pose threats to 

microbial resilience, potentially delaying ecosystem recovery. However, pyrophilous 

fungi like Pyronema or bacteria like Noviherbaspirillium can capitalize on post-fire 

resources like PyOM and bioavailable N (Steindorff et al.; Woolet & Whitman, 2020; 

Fischer et al., 2021; Nelson et al., 2022). The ability of post-fire microbes to use post-

fire resources may aid in post-fire C and nitrogen (N) cycling, facilitating ecosystem 

recovery. Indeed, research in shrublands has demonstrated the link between total soil N 

and the recovery of fungal phylogenetic biodiversity (Pérez-Valera et al., 2020). 

However, full resilience of ecosystem microbial diversity requires over 20 years (Pérez-
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Valera et al., 2018).  Recent research has demonstrated rapid changes in microbial 

communities during the initial phases of secondary succession (Ammitzboll et al., 2022; 

Pulido-Chavez et al., 2023). Additionally, studies suggest that microbial resilience might 

be contingent upon the specific ecosystem and severity of the fire (Pinto et al., 2023). 

Therefore, high-resolution temporal research that captures the early shifts in microbes 

and the soil environment within ecosystems naturally prone to high severity wildfires, 

such as chaparral (Barro & Conard, 1991; Rundel, 2018), can provide valuable insights 

into the mechanisms of microbial resilience and their link to ecosystem recovery.   

 In the process of ecosystem recovery and succession, factors like diversity, 

species niche complementarity (coexistence based on resource specialization), and 

competitive ability tend to increase, leading to enhanced ecosystem stability over time 

(Odum, 1969; Pickett, 1976). Moreover, vegetation in fire-prone ecosystems can exhibit 

resistance or resilience to wildfires (Agee, 1993; Steel et al., 2021). In microbial ecology, 

trends have emerged that suggest that bacteria exhibit greater resistance and resilience to 

disturbance than fungi due to their faster regeneration times (Dooley & Treseder, 2012; 

Pressler et al., 2019).  For example, bacteria appear resistant to low-severity grassland 

fires (Semenova‐Nelsen et al., 2019; Yang et al., 2020; Glassman et al., 2023). 

Conversely, high-severity fires result in long-lasting reductions in both bacterial and 

fungal populations, with recovery taking 5-10 years for bacteria (Xiang et al., 2014; 

Whitman et al., 2022) and over 20 years for fungi (Kipfer et al., 2011; Pérez-Valera et 

al., 2018; Pressler et al., 2019). While fire severity affects the rates of bacterial and 

fungal resilience, fires are incredibly heterogeneous, and many factors, such as distance 
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to the unburned forest edge, precipitation, and soil properties, likely contribute to rates of 

microbial resilience. 

 High-severity wildfires can reset microbial community assembly processes 

(Ferrenberg et al., 2013), presenting a unique opportunity to investigate the patterns and 

drivers of microbial resilience. Here, we sampled at high temporal resolution for 17 time 

points ranging from 17 days to 4.5 years to track changes in vegetation, soil 

biogeochemical properties, and bacterial and fungal biomass, richness, and composition 

after a high-severity wildfire in a Southern California chaparral shrubland. These 

complementary data allowed us to test whether 1) bacterial and fungal biomass, richness, 

and communities recovered over time, 2) if bacteria were more resilient than fungi, 3) 

what abiotic and biotic factors predicted microbial resilience, and 4) if microbial richness 

and composition drove recovery of biogeochemical functions and vegetation over time. 

 

 

4.3    Methods 

4.3.1 Study area, plot design, and soil sampling  

 In September 2018, the Holy Fire burned 94 km2  of manzanita (Arctostaphylos  

glandulosa) dominated chaparral shrublands in Southern California's Cleveland National 

Forest. Seventeen days after fire containment, we established nine plots (6 burned and 3 

unburned), each with four 1 m2 subplots at each cardinal direction (Fig. C.1.1) for 

repeated soil collection (Pulido-Chavez et al., 2023). Plots were selected for similar pre-

fire vegetation, slope, elevation, and aspect. To assess soil burn severity at a scale 
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relevant to microbial turnover (Bahram et al., 2013), we measured initial ash depth (in 

cm) at 17 days post-fire, averaging three separate measurements per subplot and used ash 

depth as a measure of soil burn severity throughout our analysis. Additionally, to assess 

the potential dispersal of microbes from unburned areas, we determined the nearest 

distance to unburned areas in each plot (in meters) using ArcGIS by measuring the 

distance to the center of each plot. 

 Our study site experiences a Mediterranean-type climate with hot, dry summers 

and cool, wet winters. During our study, annual average temperatures were 17.2ºC, with 

total monthly precipitation averaging 36 mm, with most rain falling between November 

and April. Precipitation information was derived from monthly averages from Sept 2018 

to May 2023 and collected from the El Cariso weather station (raws.dri.edu). The soils 

are mapped in the Cieneba and Friant series and are classified as Typic Xerorthents and 

Lithic Haploxerolls.  

 

4.3.2 Sample collection 

 We sampled soil for 17 time points ranging from 17 days to 4.5 years post-fire. 

We collected soils at the highest resolution during the first post-fire year, resulting in 9 

time points corresponding to 17, 25, 36, 67, 95, 131, 187, 286, and 376 days post-fire. 

For years 2-4, we sampled soils three times a year (winter, spring, and summer/fall) to 

minimize plot disturbance and to capture the largest seasonal variation. We always 

collected in August/September after the summer dry season, in January during the peak 

rainy season, and in May during peak plant productivity. These time points correspond to 

https://raws.dri.edu/
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16, 20, 23.5, 28, 31.75, 36, 40.35, 44 months post-fire. Sampling time points correspond 

to nearly 100% vegetation mortality at 17 days (Fig. 4.1a) to recovery of some shrubland 

vegetation at 5 years post-fire (Fig. 4.1f), but not to the richness or cover of the unburned 

plots (Fig. 4.1). At each time point, we collected the top 10 cm of mineral soil (A 

horizons) beneath the ash layer from each burned subplot and below the organic layer in 

the unburned plots with a ~250 mL releasable bulb planter cleaned with ethanol after 

each use to prevent cross-contamination, resulting in 36 soil samples (9 plots x 4 

subplots) per sampling time point. Soils were placed in individual Whirl-Paks and 

transported in a cooler to the University of California-Riverside within hours of 

sampling, stored overnight at 4˚C, and sieved (2mm) in ethanol-cleaned sieves within 24 

hours of sampling to minimize microbial community turnover (Phillips, 2021). 

Gravimetric soil moisture was measured immediately from all samples (weighing 5-10g 

of soil, drying for 24-48h at 105℃, and reweighing), then a subsample was frozen at -

80°C for future DNA extraction, and the rest was air-dried for biogeochemical analysis.  

 

 4.3.3 Soil chemistry 

We measured gravimetric soil moisture and performed KCL extractions within 

24h of collection from fresh soil samples, while all other biogeochemical analyses were 

performed on air-dried soils. For NH4+ and NO3-,  3g of fresh soil was mixed for 30 

minutes with 30 ml of 2 M KCL solution, filtered with Whatman No. 42 filter paper, and 

then frozen at -20ºC (Hanan et al., 2016).  Frozen KCL extracts were submitted to the 

Environmental Sciences Research Laboratory (ESRL) at the University of California, 
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Riverside, for analysis. Extracts were analyzed colorimetrically for NH4+ [SEAL method 

Environmental Protection Agency (EPA)-126-A] and NO3− (SEAL method EPA-129-A) 

using a SEAL AQ-2 discrete analyzer at the Environmental Sciences Research 

Laboratory at UCR. At 25 days post-fire, we determined soil particle size and textural 

class (soil texture) by the hydrometer method (Carter & Gregorich, 2008). Bulk density 

was measured using standard methods (Carter & Gregorich, 2008). Soil pH was 

determined using an Orion pH meter (ThermoFisher Scientific) on a 1:2 solution of air-

dried soil in nanopure water. Soil pH was measured for 15 timepoints except at 34 and 95 

days, resulting in 540 samples, and soil NO3- and NH4+ for 14 timepoints (no data for 34, 

67, 95 days, and 44 months post-fire), resulting in 468 samples (9 plots x 4 subplots x 13 

time points).  

 

 4.3.4 Vegetation field measurements 

 To measure vegetation regeneration over time, at 17 days post-fire, we measured 

vegetation composition and cover from the same subplot from which microbial samples 

were collected. However, since soil removal can affect vegetation recovery, in June 2019 

(276 days post-fire), new 1 m2 vegetation subplots were placed 1 m from the center of the 

microbial subplots for vegetation measurements (Fig. C.1.1b). Throughout the study, we 

sampled vegetation six times during spring peak productivity in May/June, corresponding 

to 17, 286, 376 days and 20, 23.5, 32, and 44 months post-fire. Within each plot, we 

visually estimated two levels of data following previously used methods (Glassman et al., 

2023). We measured the total vegetation cover, such that the composition adds up to 
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100%, and species composition, which can vary per plot but will add up to at least the 

total vegetation cover. To ensure precision in our estimates, all estimates above 15% or 

below 95% were rounded to the nearest divisible by 5 (i.e., 30 not 32). Species names and 

origin classification followed the Jepson Flora (2022) 

 

 4.3.5 DNA extraction, amplification, and sequencing 

DNA extractions for all 17-time points were performed over 4.5 years. The first 

nine time points were extracted in the summer of 2019. Due to a freezer failure, soils 

from T10, T11, and T12 were thawed before DNA extraction. However, we found that 

this had a limited effect on microbial richness and composition (Pulido-Chavez et al., in 

prep). For T1-16, we extracted DNA from 0.25g of soil using ethanol-cleaned spatulas 

and Qiagen DNeasy PowerSoil Kits, following the manufacturer's protocol with the slight 

modification of extending centrifugation time to 1.5 min after adding C3. For T17, DNA 

was extracted with Qiagen PowerSoil Pro kits due to the discontinuation of the Qiagen 

PowerSoil kits. To improve soil DNA recovery, we modified the Qiagen PowerSoil Pro 

protocol by adding 100ul of Qiagen ATL tissue lysis buffer buffer to the 0.25g of soil 

with the 700ul of Qiagen solution CD1 and incubating the samples overnight at 4°C for 

16-20hrs. The extracted DNA was stored at -20°C. We amplified extracted DNA using 

the primer pair ITS4-fun and 5.8S to target the ITS2 region for fungi (Taylor et al., 2016) 

and the primer pair 515F-806R to amplify the V4 region of the 16S rRNA for bacteria 

(Caporaso et al., 2011) using the Dual-Index Sequencing Strategy (DIP) (Kozich et al., 

2013) as previously published (Pulido-Chavez et al., 2023). In total, the 612 samples (9 
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plots x 4 subplots x 17 time points), along with negative DNA extractions, PCR controls, 

as well as mock communities, with 16S and ITS2 pools combined at a 2:3 ratio, were 

sequenced across seven Illumina MiSeq 2x300bp libraries at UCR Institute for 

Integrative Genome Biology.   

 

 4.3.6  Bacterial and fungal biomass  

Since biomass quantification methods for fungi are correlated (Cheeke et al., 

2017), we used quantitative (q) PCR to estimate bacterial and fungal gene copy numbers 

as a proxy for biomass using the Eub338/Eub518 primers for bacteria (Fierer et al., 2005) 

and FungiQuant-F/FungiQuant-R primers for fungi (Liu et al., 2012). Standard curves 

were generated using a 10-fold serial dilution of the standards Saccharomyces cerevisiae 

or the 16S region of the bacteria Escherichia coli as previously established (Averill & 

Hawkes, 2016). Quantitative PCR reactions were performed in triplicate of 10ul 

reactions. Each containing 1 μL undiluted DNA, 1 μL  of 0.05M Tris-HCl ph8.3, 1 μL of 

2.5mM MgCl2 (New England BioLabs (NEB); Ipswich, MA), 0.5 μL of 0.5mg/ml BSA, 

0.5 μL of 0.25mM dNTP (NEB), 0.4 μL of both primers at 0.4μM, 0.5 μL of 20X 

Evagreen Dye (VWR International; Radnor, PA), 0.1 μL of Taq DNA polymerase (NEB) 

and 4.6 μL ultra-pure water.  The qPCR conditions can be found in (Pulido-Chavez et al., 

2023). We employed the CFX384 Touch Real-Time PCR Detection System. Gene copy 

numbers were generated using the equation 10^ (Cq-b)/m), where Cq is the quantification 

cycle, calculated as the average per sample in relation to the known/calculated copies in 

the Cq/threshold cycles. The y-intercept (b) and the slope (m) values were generated with 
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CFX Maestro software. Values with an R2 > 0.994 were considered acceptable. Gene 

copy numbers were normalized per gram of dry soil (Tatti et al., 2016). 

 

4.3.7 Bioinformatics 

 Illumina data was processed with Qiime2 version 2023.2 (Bolyen et al., 2018). 

The demultiplexed fastQ files from the seven Illumina sequencing runs were individually 

processed, per library using cutadapt (Martin, 2011) to remove the primers, ran through 

DADA2 version 2023.2 with the defaults parameters filtering out chimeric sequences, 

eliminating low-quality regions and generating Amplicon Sequence Variants (ASVs) 

(Callahan et al., 2017). Bacterial reads were trimmed the forward read to 170 bp and 

reverse read was truncated to 163 bp and fungi 209 bp and 201 bp, respectively, resulting 

in an average of 63% of forward and reverse sequences merged for bacteria and 61% 

merged for fungi. The seven DADA2 outputs were consolidated into one library, 

singletons sequences were removed, and taxonomy was assigned using the Qiime2 Naïve 

Bayes Blast+ classifier. We used SILVA version 138.1 for bacterial (Yilmaz et al., 2014) 

and UNITE version 9.0 for fungal (Abarenkov et al., 2020) taxonomic assignment.  We 

removed bacterial sequences assigned to mitochondria and chloroplasts and fungal 

sequences not assigned to Kingdom Fungi. Moreover, fungal ASV tables were exported 

and parsed through FUNGuild (Nguyen, 2018) to assign functional ecological guilds, 

including only highly probable confidence rankings for ectomycorrhizal fungi. Sequences 

were submitted to the National Center for Biotechnology Information Sequence Read 
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Archive under BioProject accession number PRJNA761539 (T1-T9) and SUB13901547 

(final submission pending).  

 

4.3.8 Statistical analysis   

To evaluate species richness and community resilience in burned and unburned 

communities, we computed several quantitative stability metrics, including species 

resistance (Shade et al., 2012),  resilience (Shade et al., 2012; Yang et al., 2023),   

recovery rate,  percent recovery to unburned levels (Cole et al., 2014; Jones et al., 2018; 

Marchand et al., 2021), community stability and community compositional trajectory or 

the pattern of succession followed by post-fire microbes (i.e., stochastic or directional 

replacement) (Collins et al., 2000). 

First, we calculated species resistance, following the approach outlined by (Orwin 

& Wardle, 2004; Shade et al., 2012) for bacterial and fungal communities individually. 

Second, to quantitatively assess resilience, we computed species resilience for each 

sampling year as the difference in richness between unburned and burned bacterial and 

fungal communities (independently), tracking changes over time from 17 days to 4.5 

years post-fire, as per established methods (Yang et al., 2023). The resilience and 

resistance index are bound by ±1, where R of 1=full recovery (maximal 

resilience/resistance); 0 < R < 1 indicates the slow rate of recovery/resistance, and R of 0 

indicates no recovery over time. We then used linear regressions to test how bacterial and 

fungal resilience changed over time and whether resilience differed between bacterial and 

fungal communities. 
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 Third, to understand the recovery rate (Cole et al., 2014; Jones et al., 2018; 

Marchand et al., 2021) and percent recovery to unburned levels for each year (Jones et 

al., 2018), we applied Equation (1) adapted from (Yang et al., 2023). Bacterial and fungal 

richness was considered recovered when the richness in the burned communities equaled 

the initial richness in the unburned communities (as recorded at 17 days post-fire), 

resulting in a percent recovery value of 0, indicating no difference between sites. Like 

resilience, we used linear regressions to test how bacterial and fungal recovery rates and 

percent recovery changed over time and whether the percent recovery and recovery rate 

differed between bacterial and fungal communities.  

 

 

 

 

 

Lastly, to determine whether microbial successional trajectories are following 

directional or stochastic patterns of succession, we performed a linear regression analysis, 

as recommended by Collins et al. (2000) for bacterial and fungal species richness and 

community composition,  independently, using the codyn package (Hallett et al., 2016). 

Directional change in succession occurs when the regression line is significant, positive, 

and exhibits a linear pattern. Conversely, a non-significant regression, or a slope that is 

not significantly different from zero, indicates stochastic variation. Additionally, a 

negative slope indicates species richness or composition converges toward an earlier time 
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point (Collins et al., 2000; Hallett et al., 2016). For species richness, the richness was 

regressed against time. For community composition, we calculated the differences in 

community composition over increasing time intervals in codyn (Hallett et al., 2016) 

using Euclidean distance and regressed distance against time lags in ggplot2 (Wickham, 

2016). Moreover, we plotted the community successional trajectories using the Bray-

Curtis dissimilarity centroids for each time point per burned and unburned communities 

using Principle Coordinates Analysis (PCoA).  

To assess environmental drivers of bacterial and fungal biomass and richness, we 

conducted separate generalized negative binomial regression analyses for bacterial and 

fungal richness for burned and unburned samples. Because complete environmental data 

was unavailable for all sampled time points, our analysis was divided into two separate 

regression analyses. Regression 1 tested the effects of time, ash depth, distance to the 

unburned area, average wind speed, and percent soil moisture, clay, and pH and their 

first-order interactions for 15 time points, excluding 34 and 95 days post-fire. Regression 

2 examined the effects of all the variables included in regression 1, in addition to NO3-, 

NH4+ , vegetation richness, and vegetation Shannon diversity for six time points (17, 286, 

376 days, and 20, 23.5, and 32 months). For both richness and biomass models, for 

bacteria and fungi independently, we tested the level of nestedness by running null 

models with different nestedness levels, and the best fit was determined via Akaike 

Information Criterion (AICc) in the MuMIN package version 1.47.5 (Barton, 2023). In 

regression 1, we incorporated subplot and time as random effects for burned and 

unburned richness models. Model 2 for richness involved plot, subplot, and time as 
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random effects. When considering burned biomass in Model 1, we included plot, subplot, 

and time as random effects and only plot and time for unburned plots.  Additionally, for 

biomass regression 2, subplot and time were the selected random effects for both burned 

and unburned models. Marginal and conditional R2 values were calculated using the 

r.squaredGLMM function in the MuMIn Package v 1.47.5 (Barton, 2020). All variables 

were scaled.  

To assess the long-term impact of wildfire and time since fire on community 

composition, we calculated the square-root transformed median using Bray-Curtis 

dissimilarity per 100 iterations between burned and unburned communities. We then use 

permutational multivariate analysis of variance (PERMANOVA) (Anderson, 2017) in the 

vegan package to test how treatment, time, and their interaction influence community 

composition. Results were visualized using nonmetric multidimensional scaling (NMDS) 

ordinations.  

Given the high turnover rates of post-fire microbes (Pulido-Chavez et al., 2023) 

and the nonlinear nature of their responses (Glassman et al., 2017), we employed 

generalized dissimilarity modeling (GDM) (Ferrier et al., 2007) to examine the 

environmental drivers of bacterial and fungal community composition. Like the richness 

models, we conducted two separate GDM analyses based on the data partitioning 

described earlier for species richness. We applied GDMs to bacterial and fungal temporal 

Bray-Curtis diversity community composition and environmental dissimilarity matrices, 

following the method by (Ferrier et al., 2007) using the gdm package version 1.5.0-9.1 

(Fitzpatrick et al., 2022). All environmental variables were scaled for proper comparison, 
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and correlated variables were excluded from all analyses. Significance was tested via 

backward model selection with 999 permutations (Fitzpatrick et al., 2022). All models 

were fit independently for bacteria and fungi. Results of only the significant variables 

driving community composition were plotted in ggplot2. 

Lastly, to assess the influence of soil microbial communities on the recovery of 

biogeochemical functions and vegetation over time, we independently conducted Mantel 

tests on Bray-Curtis dissimilarities of vegetation and bacterial and fungal communities. 

To test the relationship of bacterial and fungal species richness on vegetation Shannon 

diversity and soil NO3- and NH4+, we performed linear mixed effect models (lmer) using 

the lme4 package in R. All linear regression models (lmer) used subplot as nested effects. 

Additionally, since ectomycorrhizal fungi are associated with over 80% of plants (van der 

Heijden et al., 2008), which should increase over succession (Liu et al., 2022), we also 

used lmer models to see their impact on ecosystem recovery, including vegetation 

Shannon diversity NO3-  and NH4+ .  

 

 

4.4 Results  

4.4.1 Wildfire had long-term impact on soil parameters and vegetation  

Wildfires had long-term significant increases in soil NH4+ (Fig. C.1.2a), NO3- 

(Fig. C.1.2b), pH (Fig. C.1.2c), and decreases in soil moisture (Fig. C.1.2d). At 4 years 

post-fire, NH4+ levels were 88% higher, NO3- levels were 406% higher, and soil pH was 

9% higher in the burned plots than the unburned plots (Fig. C.1.2). In contrast, vegetation 
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richness decreased post-fire, while Shannon diversity increased after the fire (Fig. C.1.3). 

Vegetation richness reached its peak at 20 months, being 78% higher than in the 

unburned plots, and then gradually decreased over time, recovering to unburned levels by 

44 months post-fire (Fig. C.1.3a). However, vegetation diversity (Hdiv) rapidly increased 

post-fire and fluctuated over time, peaking at 23.5 months post-fire, being 96% higher in 

the burned than unburned plots (Fig. C.1.3b). However, 4.5 years was insufficient time 

for vegetation Hdiv to recover, remaining 36% higher in the burned plots than the 

unburned plots (Fig. C.1.3b).  While vegetation Hdiv was higher in the burned plots, 

vegetation community composition differed. The unburned community was dominated by  

Arctostaphylos glandulosa and Adenostoma fasciculatum. In contrast, the burn 

community was more diverse and was dominated by Eriodictyon parryi, Adenostoma 

fasciculatum, Phacelia brachyloba, Acmispon glaber, Calystegia macrostegia, 

Ceanothus oliganthus and Crocanthemum scoparium. 

 

4.4.2 Drivers of bacterial and fungal resilience 

 Bacterial richness was more resistant and resilient to wildfire than fungal richness 

(Table C.2.1; 4.2). The high resilience of bacterial biomass and richness was driven by 

soil pH, distanced to unburned edge, and an interaction between soil burn severity and 

soil pH for biomass and soil burn severity and its interaction with time for richness 

(Table C.2.3). When vegetation and soil N concentrations were included in the regression 

analysis, these variables significantly impacted bacterial biomass and richness (Table 

C.2.4). While time and NH4+ negatively impacted bacterial biomass (p<0.0001), 
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vegetation richness led to positive impacts (p=0.02; Table C.2.4). There was also a 

notable interaction between time and NH4+ and time and soil pH, such that bacterial 

biomass increased over time as soil pH and NH4+ declined (Table C.2.4; Fig. C.1.2a,c). 

For bacterial richness, both ash depth and a time and NH4+ interaction negatively affected 

richness, whereas the direct effects of NH4+ and vegetation richness increased in bacterial 

richness over time (Table C.2.4).  

During the four-year successional study, changes in fungal biomass were driven 

by a wide array of soil abiotic and site variables (Table C.2.3). Fungal biomass was 

significantly and positively affected by time and ash depth and interactions between time 

and ash depth and ash depth and soil moisture. In contrast, fungal biomass was negatively 

impacted by soil pH, soil moisture, distance to unburned edge, and an interaction between 

ash depth and soil pH (Table C.2.3). In contrast, changes in fungal richness were 

positively influenced by soil moisture and an interaction between time and ash depth but 

negatively impacted by the direct effect of ash depth (Table C.2.3).  

Like bacteria, including vegetation metrics and soil N affected fungal biomass and 

richness (Table C.2.4). Fungal biomass was negatively influenced by the direct effects of 

time and NH4+ and an interaction between time and vegetation richness but was 

positively influenced by the direct effects of vegetation richness, time and soil pH, and 

interactions between time and NH4+ (Table C.2.4). Fungal richness, which did not 

recover over time, remained consistently and negatively affected by the direct effects of 

ash depth, time, vegetation Shannon diversity, and an interaction between time and ash 

depth (Table C.2.4).   
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4.4.3 Time and species richness increased bacterial and fungal community stability 

 Community stability significantly differed between bacterial and fungal 

communities (p<0.0001; Table C.2.5). Burned and unburned bacterial (Fig. 4.2e) and 

fungal (Fig. 4.2f) community stability was strongly linked to species richness (p<0.0001; 

Table C.2.5), with communities becoming more stable as richness increased (Fig. C.1.4). 

However, time had a differential impact on bacterial and fungal community stability 

(Table C.2.7). Unburned bacterial communities remained stable over time (p<0.02; Table 

C.2.6), whereas both burned bacterial (Fig. C.1.a) and fungal communities (Fig. C.1.4b) 

increased in stability over time (Fig. C.1.4; Table C.2.7). In contrast, unburned fungal 

communities fluctuated in stability over time (Fig. C.1.4b; Table C.2.6). In addition, time 

and richness interacted and positively impacted burned bacterial community stability 

(Fig. 4.2e) but did not affect fungal stability (Fig. 4.2f; Fig. C.1.4; Table C.2.7), showing 

that the recovery of bacterial richness over time corresponded with increased bacterial 

community stability.  

 

4.4.4 Burned communities experience post-fire directional change  

 Wildfires and time since fire had significant direct effects on bacterial (p<0.0001; 

Fig. 4.3a) and fungal community composition (p<0.0001; Fig. 4.3b; Table C.2.8). 

Moreover, we observed an interaction effect of wildfire and time on bacterial and fungal 

community composition (p = 0.0001; Fig. 4.3; Table C.2.8), such that community 

composition became more similar over time, more for bacteria (Fig. C.1.5) than fungi 

(Fig. C.1.6), highlighting the resilience of the bacterial communities (Fig. C.1.5), which 
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appear to be recovering over time, in contrast to the fungal community (Fig. 4.3a,b; Fig. 

C.1.6).   

Trajectory analysis of the PCoA centroids of bacterial (Fig. 4.3c) and fungal 

communities (Fig. 4.3d) further revealed that wildfire affected their successional 

trajectories (Fig. 4.3c,d). In contrast to the non-directional stochastic changes observed in 

unburned bacterial and fungal communities over time (Fig. 4.3c,d; Fig. C.1.7), burned 

bacterial and fungal communities displayed clear directional succession, diverging away 

from the unburned communities as succession progressed (Fig. 4.3c, d). Independent time 

lag analysis of bacterial (slope = 0.01; R2 =0.01; Fig. 4.3e) and fungal community 

composition (slop=0.01; R2=0.02; Fig. 4.3f) further indicates a stochastic change in 

unburned microbial communities (Fig. 4.3h,g). In contrast, time lag analysis confirmed 

that burned bacteria (slope = 0.27; R2=0.15; Fig. 4,3e) and fungal communities (slope = 

4.2; R2 =0.24; Fig. 4.3f) are undergoing slow directional change over time (Fig. 4.3e,f).  

 

4.4.5 Dynamics of bacterial and fungal dominance during succession 

 Directional changes in bacterial and fungal communities were primally driven by 

trade-offs in the dominant bacteria (Fig. 4.4a, 4.5a) and fungi (Fig. 4.4c, 4.5b). Notably, 

both bacterial and fungal communities exhibited higher levels of resilience at the phyla 

level (Fig. C.1.8) as opposed to the genus levels (Fig. 4.4). Overall, the unburned 

bacterial (Fig. 4.4b) and fungal (Fig. 4.4d) communities lacked dominance, except for the 

fungal Basidiomycete and ectomycorrhizal genus Inocybe (Fig. 4.4d; Table C.2.9). In 

contrast, the burned bacterial community displayed large dominance during the first post-
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fire year by the Proteobacteria Massilia, the Firmicute Paenibacillus and the 

Actinomycete Conexibacter (Fig. 4.4a, 4.5a; Table C.2.9). However, dominance 

diminished over time as more genera increased in relative abundance (>3% relative 

abundance), leading to a more rich and diverse microbial community from years 2-4.5 

(Fig. 4.4a; Table C.2.9) and thus aiding in community resilience. Indeed, Massilia, which 

accounted for an average of 34% of the bacterial community during the first year, 

decreased to 4% after 16 months and traded off in abundance with the Actinobacteriota 

Blastococcus, which made up, on average 32% of the burned community (95d-44m; Fig. 

4.4a, 4.5a; Table C.2.9), leading to an increase in community stability (Fig. 4.5c; Table 

C.2.9). Moreover, after year one, bacterial communities were equally dominated by taxa 

in the genera Bacillus which on average made up 4% of the community (from year 1-44m 

post-fire), Segetibacter (10%), and Sphingomonas (5%; Table C.2.9).  

 In contrast, fungal communities quickly became dominated by the Ascomycetes 

Aspergillus, which on average comprised 7% of the abundance in year one, Pyronema 

(32%), and Penicillium (14%; Fig. 4.4c; Table C.2.9). Despite the increased abundance of 

several genera over time, from year 2-4.5 years, including Coniochaeta on average 

making up 7%, Coniothyrium (5%), Alternaria (4%), and Plicaria (4%), the genera 

Pyronema (11%), Penicillium (12%), and Aspergillus (6.5%) continued to sustain high 

levels of dominance throughout succession (Fig. 4.4c, 4.5b; Table C.2.9). Moreover, by 

the end of year one, and throughout succession, there was a noticeable trade-off in 

abundance between Ascomycetes and Basidiomycetes (Fig. C.1.8c; Table C.2.9). The 

Basidiomycetes Coprinellus increased from 5% at 286 days to 7% at 44 months postfire. 
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Additionally, Naganishia increased from 4% at 286 days to 5% at 44 months, while 

Tephrocybe increased from 4% at 187 days to 7% 32 months post-fire (Fig. 4.4c, 4.5b; 

Table C.2.9). Interestingly, the decline in the abundance of Pyronema and the increase in 

the abundance of Coprinellus increased community stability (Fig. 4.5c; Table C.2.9).  

The analysis of fungal guild changes over time revealed a significant increase in 

saprotrophs during the first year, rising from 0.2% to 2% by the end of the year and 

remaining stable at 2% through 4.5 years (Fig. C.1.9). Additionally, in the burned plots, 

ectomycorrhizal fungi decreased from 1% at 17 days to .01% at 376 days post-fire but 

slowly increased over time, making 0.5% of the overall guild community at 44 months 

post-fire (Fig. C.1.9). 

 

4.4.6 Drivers of bacterial and fungal richness and community composition 

 Overall, the generalized dissimilarity model (GDM) explained 35% of the 

variance for burned bacterial and fungal communities, which was increased to 42% for 

bacteria and 48% for fungi when vegetation and N concentrations were included in the 

model (Table C.2.10). In all cases, time was the most significant driver of community 

composition for bacteria (Fig. 4.6a) and fungi (Fig. 4.6b), with time having exponential 

impacts on community composition at first and eventually plateauing with predictor 

distance.  Geographic distance played a larger but still minor role in shaping fungal 

community composition (Fig. 4.6c) than bacterial community composition (Table C.2.10; 

Fig. 4.6a) and soil burn severity also affected fungal community but also plateaued at 

higher predictor distance (Fig. 4.6c). Interestingly, when we included vegetation and N 
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metrics in the model, soil burn severity was no longer a driver of fungal community 

composition (Fig. C.1.10). However, it emerged as a significant driver of bacterial 

community composition (coefficient = 5; Fig. C.1.10; Table C.2.10), exhibiting a 

plateauing effect with increased predictor distance. The unburned GDM models 

explained less variance for both the bacterial (21% variance) and fungal communities 

(32%) but were increased to 39% for both bacteria and fungi when vegetation and soil N 

concentrations were included (Fig. C.1.10; Table C.2.11). Unburned bacterial community 

composition was influenced by percent clay, soil moisture, time, and geographic distance 

(Fig. C.1.10b; Table C.2.11). Similarly, the unburned fungal community was driven by 

geographic distance and percent soil clay, geographic distance, and vegetation richness 

(Fig. C.1.10d; Table C.2.11).  

 

4.4.7 Recovery of soil biogeochemistry and vegetation is linked to microbial species 

richness 

 While neither total bacterial nor fungal community composition was correlated to 

chaparral vegetation in burned or unburned sites (p>0.05; Fig. C.1.11), the richness of 

burned bacterial and fungal communities had a significant impact on vegetation richness 

(Fig. C.1.12a,b; p<0.05) and vegetation Shannon diversity (Fig. 4.7g,h; p<0.05). Soil 

NH4+ levels were significantly influenced by the richness of burned bacterial (Fig. 4.7a) 

and fungal species (Fig. 4.7b; p<0.05). Additionally, NO3- levels were significantly 

correlated with bacterial species richness (Fig. 4.7d; p<0.05) but not fungal richness (Fig. 

4.7e; p<0.05). Analysis of the ectomycorrhizal fungi further showed that in the burned 
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communities, increased in ectomycorrhizal species richness was significantly correlated 

to increased NH4+ (p=0.02; Fig. 4.7c) and decreases in NO3- (p=0.01; Fig. 4.7f). Although 

we observed a trend of increased vegetation Shannon diversity with increased 

ectomycorrhizal richness, the results were not statistically significant (p=0.08; Fig. 4.7i).   

 

 

4.5 Discussion 

  Our study highlights the high resilience of bacteria richness in post-fire 

ecosystems, recovering to unburned levels within 4.5 years following a high-severity 

chaparral wildfire. In contrast, fungal biomass, richness, and composition did not recover 

over time, highlighting their sensitivity to secondary wildfire effects on the environment.  

Even 4.5 years post-fire, microbial richness continued to be influenced by soil burn 

severity and time, with vegetation and N playing noteworthy though less significant roles. 

Additionally, time emerged as the most important factor shaping the composition of both 

burned bacterial and fungal communities. Lastly, we found that a NH4+ and vegetation 

diversity were significantly correlated with bacterial, fungal, and ectomycorrhizal fungal 

richness. In contrast, NO3- was associated with bacterial and ectomycorrhizal richness, 

emphasizing the pivotal role of these microbes in post-fire ecosystem recovery. 

 

4.5.1 Contrasting recovery in bacterial and fungal richness 

We found that bacteria richness and biomass were more resistant and resilient to 

wildfire than fungi, corroborating previous studies (Pressler et al., 2019). Although it has 
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been suggested that bacterial richness would take ~10 years to recover (Xiang et al., 

2014; Whitman et al., 2019) and that under the pressures of high-severity wildfires, 

bacterial communities would experience lower resilience due to increased mortality 

(Barreiro & Díaz-Raviña, 2021; Pinto et al., 2023), we found that in high-severity burned 

chaparral, bacterial richness recovered to unburned level in 4.5 years. Given that the 

impact of high-severity wildfires on microbial resilience is system-specific (Pinto et al., 

2023), and considering the historical 30-year burn interval of Southern California 

chaparral shrublands (Keeley, 1981), along with the rapid regeneration of the fire-adapted 

chaparral vegetation (Lamont et al., 2011), it is possible that the microbial communities 

are evolutionarily adapted to this specific fire regime. Consequently, they might have 

inherent traits that allow for rapid post-fire recovery. 

 In contrast, we found that neither fungal richness, biomass, nor bacterial or 

fungal community composition recovered to unburned levels, corroborating previous 

studies that suggest that it takes fungi over 15-20 years for species richness to recover 

(Kipfer et al., 2011; Pérez-Valera et al., 2018; Pressler et al., 2019). Interestingly, 

although we expected fungal richness to increase over time, we found that fungal richness 

decreased with time since fire. Previous research on post-fire fungi (Greenwood et al., 

2023), as well as ectomycorrhizal (Pulido-Chavez et al., 2021; Caiafa et al., 2023; 

Greenwood et al., 2023), and saprobic fungi in pine forests (Cutler et al., 2017) also 

reported declining richness over time. The dominance of ectomycorrhizal fungi in the 

unburned community compared to the predominantly saprotrophic nature of the burned 

fungal community, coupled with the decline in ectomycorrhizal fungi over time, suggests 
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that the reduction in overall fungal richness is attributed to the decrease in 

ectomycorrhizal fungi. Moreover, studies in Chinese temperate forests suggest fungi 

exhibit higher vegetation specificity than bacteria (Chen et al., 2022). The near-

monodominance of manzanita or chamise in chaparral ecosystems, coupled with the 

absence of understory vegetation, suggest potential host-specificity among post-fire 

chaparral fungi. Consequently, fungal recovery may remain low until dominant 

vegetation begins to exclude understory plant species.  

Furthermore, chaparral communities are characterized as water-limited 

environments (Solek & Resh, 2018). Drought mesocosm experiments show that, unlike 

bacteria, fungal richness decreases over time (Jaeger et al., 2023). In our study, we found 

that changes in fungal richness were associated with percent soil moisture, indicating that 

the decline in fungal richness over the 4.5 years of the study is not solely a direct 

consequence of wildfire. Instead, fungal declines are exacerbated by the persistent 

moisture deficiency in chaparral ecosystems which are exacerbated by the indirect effects 

of wildfire, such as increased soil temperature  and decreased soil moisture (Hart et al., 

2005). 

 

4.5.2 Richness and dominance: differential drivers of burned bacterial and fungal 

stability  

 The diversity-stability hypothesis suggests that increased species richness 

enhances community stability over time (Lehman & Tilman, 2000; Loreau & de 

Mazancourt, 2013). In our study of burned chaparral, we found that bacterial and fungal 
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communities follow this traditional hypothesis as both time and species richness 

positively impacted bacterial and fungal community stability. These findings align with 

previous research, including short-term bacterial microcosms (Eisenhauer et al., 2012), 

long-term 120,000-year chronosequence studies (Jangid et al., 2013) and a global study 

spanning 18 countries and 6 continents (Liu et al., 2012). Thus, bacterial communities are 

more stable as the different bacterial species host various functions and life strategies, 

allowing them to respond rapidly to environmental changes while maintaining a stable 

community (Tilman, 1999; Tilman et al., 2006). 

While bacterial richness increased over time and fungi decreased, the overall 

fungal community displayed a high dominance of key genera throughout the study 

period. In burned chaparral, we observed that early dominating genera, Aspergillus, 

Penicillium, and Pyronema, equalize in dominance over time, as Geopora, Naganishia, 

Coprinus, and Plicaria increased in dominance towards the end of the first year and 

lasted through years 2-4.5 post-fire. In contrast, burned bacterial communities lost 

dominance over time. These results suggest that for fungi, the continued dominance of a 

few resilient genera is more critical for increasing community stability than richness. 

These findings align with previous plant studies, which indicate that community stability 

is better explained by the dominant species (Grime, 1998; Smith & Knapp, 2003; Wayne 

Polley et al., 2007). Our results emphasize the applicability of the vegetation community 

assembly mechanism to soil microbial communities. However, they also show the critical 

differences in dynamics between bacterial and fungal communities, which are essential 

for interpreting the recovery, maintenance, and restoration of burned ecosystems.  
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4.5.3 Directional replacement of species drives bacterial and fungal successional 

dynamics 

 While neither the bacterial nor fungal community composition recovered to 

 unburned levels, our findings revealed that both microbial communities are undergoing 

directional changes, with the bacterial community displaying stronger directional trends 

than the fungal community. These results contrast with earlier studies that proposed 

bacterial communities, and to a lesser extent, fungal communities, follow more stochastic 

successional dynamics during secondary succession (Pinto et al., 2023). However, it is 

important to note that most previous studies have had limited sampling intervals, 

potentially missing key successional time points (Dove & Hart, 2017; Pressler et al., 

2019; Yang et al., 2020), which our study successfully captured. While directional 

replacement, or the sequential replacement of taxa in an orderly and predictable manner 

(Odum, 1969) in vegetation successional dynamics, is considered rare,  research 

demonstrates that directional replacement can occur when fire-dependent species with 

rapid growth rates thrive due to the abundant resources released by the fire (Platt, 2003). 

Moreover, for successful ecosystem recovery, post-fire microbes must exhibit high 

resilience and adaptability to the changing environmental conditions following the fire, 

ensuring the process of directional replacement. In our study, we observed certain fire 

resistant fungal and bacterial species like fungal Pyronema domesticum (Bruns et al., 

2020), Basidiomycete Geminibasidium, Ascomycete Aspergillus, and Bacterial 

Neobacillus bataviensis (a member of the Bacillaceae) thrive in heated soils due to their 

ability to use post-fire resources. These  findings suggest that the conditions necessary for 
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initiating directional replacement in burned microbial communities exist within burned  

chaparral ecosystems.  

Both bacterial and fungal communities demonstrated trade-offs in the abundance 

of the dominant genera over time. These abundant trade-offs showed that taxa were being 

replaced and likely drove ecosystem functions.  For example, the bacterial Proteobacteria 

Massilia, which has been identified as a pyrophilous bacteria in many ecosystems, 

including boreal forests (Whitman et al., 2019) and redwood tanoak forests (Enright et 

al., 2022), was highly dominant in the first year post-fire but started to decline after the 

first year as the Actinobacteria Blastococcus increased in abundance. We recently 

showed metagenomic evidence that Massilia can degrade both PyOM and bioavailable N, 

both abundant resources in post-fire systems (Pulido-Chavez et al., In Prep). However, 

Blastococcus, which is slow-growing, demonstrates high adaptive capacity and 

phenotypic plasticity (Montero-Calasanz et al., 2022), which likely made it more resilient 

and a stronger competitor in the post-fire altered environment, ultimately enhancing 

community stability. Pyronema domesticum, which is well-known as a pyrophilous 

fungus (Seaver, 1909; Fox et al., 2022), dominated in the first half of the first year post-

fire but began to decline as certain pyrophilous Basidiomycetes like Tephrocybe and 

Coprinellus increased. Pyronema, which likely survives wildfires through thermotolerant 

sclerotia (Moore, 1962), like Massilia, has the capacity to breakdown PyOM (Fischer et 

al., 2021). However, we speculate that Coprinellus, a Basidiomycete decomposer, is a 

stronger competitor, which also drove it to correlate with community resilience. These 

findings highlight the intricate and contrasting responses of bacterial and fungal 
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communities during post-fire succession, shedding light on the complex dynamics of 

microbial resilience and community stability.  

 

4.5.4 Drivers of bacterial and fungal species richness  

While wildfire-induced mortality is the initial driver of change in soil microbial 

communities (Pulido-Chavez et al., 2021; Pulido-Chavez et al., 2023), we found that ash 

depth, a metric of soil burn severity, becomes the most important factor negatively 

impacting bacterial and fungal species richness. This finding corroborates previous 

studies showing that high soil burn severity results in larger (Pulido-Chavez et al., 2021; 

Fox et al., 2022; Caiafa et al., 2023) and long-lasting impact on microbial richness 

(Pulido-Chavez et al., 2021; Dove et al., 2022) and biomass (Dooley & Treseder, 2012; 

Pulido-Chavez et al., 2023). However, the indirect effects of soil burn severity on the 

ecosystem have been shown to decrease over time (Certini et al., 2021), and here we 

found that a time and ash depth interaction positively impacted microbial richness. The 

positive effect of time and soil burn severity is better explained by the recovery of the 

ecosystem, such as the regeneration of the vegetation and changes in the soil environment 

(Neary et al., 1999; Certini, 2005; Certini et al., 2021), which can create niches for 

different microbial species to thrive.  

When vegetation and N metrics were included in the model, we saw that 

vegetation richness positively affected bacterial richness, while vegetation Shannon 

diversity affected fungal richness. Previous studies have shown that bacterial and fungal 

richness are associated with plant diversity (Liu et al., 2020) and that the post-fire 
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dynamics of plant communities significantly affect fungal (Hart et al., 2005) and bacterial 

communities  (Liang et al., 2016; Liu et al., 2020). Wildfires lead to an increase in 

bioavailable N (Dannenmann et al., 2018) and an increase in N-fixing vegetation, such as 

Ceanothus and N-fixing bacteria Paenibacillus (Monciardini et al., 2003; Slepecky & 

Hemphill, 2006) and the Bacillaceae Neobacillus bataviensis (Yousuf et al., 2017) 

corroborating previous studies showing that richness of bacterial taxa is closely related to 

the plant community (Liang et al., 2016; Liu et al., 2020), including exotic plant species 

(Glassman et al., 2023). Moreover, both manzanita and chamise form ectomycorrhizal 

associations (Allen et al., 2005), and the observed increase in vegetation richness and 

Shannon diversity coincides with the increased abundance of ectomycorrhizal genera 

(Geopora cooperi and Inocybe). Moreover, as plant richness and diversity increased over 

time, soil litter and root deposition also increased, thus potentially activating the soil 

microbial community and creating niches for specific microbial decomposers (Hooper et 

al., 2000). 

 Bacterial richness was further driven by NH4+ and a time by NH4+  interaction 

corroborating previous studies in pine forests (Li et al., 2019) and Mediterranean 

ecosystems (Goberna et al., 2021). In our system, we previously found that the bacteria 

Massilia and Arthrobacter have genes for assimilatory NO3- reductions and dissimilatory 

NO2- reduction  (Pulido-Chavez et al., in prep), allowing them to potentially take 

advantage of the large amounts of post-fire bioavailable N, thus showing that changes in 

NH4+ availability can significantly affect the microbial community over time. Indeed, in 

our system, NH4+ availability decreased over time, decreasing to levels close to unburn 
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levels at 16 months post-fire, which mimics the decrease in abundance observed for 

Massilia and the increase in bacterial richness observed in the post-fire sites, thus 

suggesting that declines in abundance of the dominant taxa and increased richness are 

indeed associated with soil NH4+.  

 

4.5.5 Time: the dominant driver of community composition 

 Building on our initial analysis of the microbial communities from one year post-

fire (Pulido-Chavez et al., 2023), we found after year one, time becomes the dominant 

drive of bacterial and fungal community composition. Similarly, a study of boreal 

bryosphere communities found that time was the largest driver of bacterial and fungal 

community composition (Cutler et al., 2017). It is important to note that time indirectly 

encompasses gradual changes in various soil geochemical, vegetation, and environmental 

factors. Thus, the significance of time on the community composition can have 

underlying mechanisms, as indicated by our findings that soil pH, NH4+, NO3-, soil 

moisture, and vegetation richness all changed dynamically over time. We were surprised 

that vegetation was not a significant driver of bacterial or fungal composition. These 

unexpected results could stem from our limited vegetation data, as we only collected data 

for five post-fire time points. This lack of data could have limited our ability to fully 

capture the dynamics between the soil microbes and vegetation over time. Furthermore, 

although geographic distance had a small but significant effect on community 

composition, its impact made us confident that the observed successional patterns and 
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community changes were not due to site differences, especially as geographic distance 

quickly plateaued in bacterial and fungal communities. 

 

4.5.6 Bacterial and fungal species richness drive post-fire vegetation and N dynamics  

Post-fire vegetation restoration was significantly associated with the recovery of 

bacterial and fungal richness, corroborating previous studies in grassland (Heinen et al., 

2020), chaparral (Teste et al., 2017), and forested ecosystems (Hanif et al., 2019). The 

observed positive impact of microbes on vegetation diversity might be attributed to 

feedback dynamics (Semchenko et al., 2022). In this scenario, microbes facilitate nutrient 

access for resprouting vegetation, and reciprocally, the vegetation induces soil changes 

that potentially enhance microbial survivorship. Moreover, although previous studies 

have shown that ectomycorrhizal fungi affect vegetation diversity (Kennedy et al., 2011; 

Bahram & Netherway, 2022), we found this not to be the case. However, it is important 

to note that although ectomycorrhizal fungi increased in relative abundance over time in 

the burned plots, they were still less that 1% of the burned community at the end of our 

study.  Moreover, the burned vegetation community was predominantly comprised of 

non-ectomycorrhizal herbs, thus potentially explaining the lack of association between 

the ectomycorrhizal community and Shannon diversity. However, we did find that 

Geopora cooperi, dominated later successional stages of the ectomycorrhizal community, 

corresponding to the increased growth and dominance of woody plant species, thus we 

speculate the with increased recovery time, the ectomycorrhizal community and thus 

fungal dynamics will be more closely linked to the vegetation community.  
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Moreover, we found that post-fire NH4+ levels were driven by bacterial and 

fungal richness, more so for bacteria than fungi. Post-fire, the increase in NH4+  is 

complemented by the rise in NH3+ oxidizing bacteria, as previously shown (Ball et al., 

2010). Furthermore, previous research has shown that post-fire microbes can use N 

(Espinosa-de-los-Monteros et al., 2001; Krappmann & Braus, 2005; Suzuki, 2009; 

Nelson et al., 2022) and research in burned oak woodlands in Spain (Cobo-Díaz et al., 

2015) and our previous study (Pulido-Chavez et al., In prep)   demonstrated that post-fire 

microbes possess genes for incorporating N into biomass, effectively limiting N losses in 

the system. These findings provide insights into the mechanisms through which bacteria 

and fungi actively contribute to post-fire N dynamics.  

In contrast, we found that NO3- levels were significantly influenced by bacteria 

but not fungi. This observation might be attributed to the declining capacity of fungi to 

assimilate NO3-  with increasing soil pH, a significant factor influencing fungal biomass 

in our system and other disturbed systems (Li et al., 2019). Moreover, a higher proportion 

of bacteria may possess the capacity to assimilate N than their fungal counterparts. This 

observation aligns with our previous findings, where we demonstrated the abundance of 

NO3- assimilation and assimilatory NO3- reduction genes in Massilia, a dominant 

bacterium, during the early post-fire period when NO3- concentrations were elevated. 

Furthermore, the larger population size of bacteria, both in terms of richness and 

abundance, implies that post-fire bacteria could be outcompeting fungi for available NO3-

, potentially leading to increased NO3-  immobilization (Li et al., 2019). This diversity in 
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the bacterial community could possibly contribute to the effective retention of N in the 

ecosystem. 

 

 

4.6  Conclusion 

Our study provides the most comprehensive high temporal resolution study of 

microbial resilience in burned ecosystems to date. Here, we contrast the resilience 

patterns and successional dynamics of post-fire bacterial and fungal communities in a 

high-severity burned chaparral ecosystem. While both bacterial and fungal communities 

did not recover to unburned conditions, bacterial and fungal richness displayed 

contrasting resilience patterns. Bacterial richness displayed high resilience, recovering to 

unburned levels in 4.5 years, potentially due to their diverse functions and life strategies 

that facilitated a more diverse bacterial community over time, as seen after the first post-

fire year. In contrast, fungal richness showed little recovery, decreasing over time, 

suggesting that fungi are more sensitive to fire direct and indirect wildfire effects on the 

ecosystem. Our research also revealed a directional pattern in post-fire microbial 

succession, driven by resilient, fire-adapted species that played an essential role in 

facilitating colonization and thus playing vital roles in enabling species replacement over 

time and thus driving successional dynamics. Over time, these species played essential 

roles in facilitating species turnover shaping microbial and ecosystem successional 

dynamics, such as vegetation and N dynamics. Together, this research shows the intricate 

relationship between microbial communities, vegetation, and soil geochemistry, 
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highlighting their importance in promoting the resilience and recovery of ecosystems 

following high-severity wildfires. 
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Figure 4.1. Chronosequence photos illustrating the recovery of the Holy Fire in Southern 
California. Samples were first collected (a) 17 days post-fire (September 2018), with 
continuous sampling over 5 years. Photos show the burn area at (b) 376 days (1 year, 
September 2019); (c) two years (September 2020); (d) 3 years (September 2021); (e) 4 
years (September 2022); and (f) 5 years post-fire (September 2023). Dominant vegetation 
in our system, indicated by arrows, includes c) Manzanita (Arctostaphylos glandulosa) 
with some cover of e) chamise (Adenostoma fasciculatum).  
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Figure 4.2. Changes in bacterial (a) and fungal (b) biomass, and bacterial (c) and fungal 
species richness (d) between burned (brown) and unburned (blue-green) plots over time. 
Time is indicated in days (d) and months (m), spanning from 17 days to 44 months post-
fire. The gray horizontal line represents the recovery point (based on biomass and 
richness at T1 (17 days post-fire). Plots e and f represent the change in community 
stability over time for both burned and unburned bacterial and fungal communities. The 
effects of species richness on community stability over time can be found in 
supplementary figure S4. Significant differences between burned and unburned plots at 
each timepoint are denoted by asterisks (*** = p < 0.001; ** = p < 0.01; * = p < 0.05) 
and were determined using a negative binomial regression. 
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Figure 4.3. Wildfire effects on community composition and successional trajectories. Nonmetric 
multidimensional scaling (NMDS) plots based on Bray-Curtis dissimilarity and three-dimensions 
for (a) bacterial and (b) fungal community composition with colors denoting treatment and shape 
indicating time since fire (d = days and m= months). Trajectory analysis of the Principle 
Coordinates Analysis (PCoA) centroids of bacterial (c)  and fungal communities (d) and 
confirmation of trajectory analysis based on linear regression of the time lag and 
Euclidean distance for (e) bacterial and (f) fungal communities. Closer look into the 
unburned successional dynamics in figure c, d) can be found in supplementary figure S7.  
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Figure 4.4. Relative sequence abundance of (a) bacterial and (b) fungal genera in burned 
plots (top panel) and unburned plots (bottom panels) for all seventeen  timepoints (44 
months). Grey bars represent multiple genera of bacteria (a, c) and fungi (b, d) that have 
relative sequence abundance under 3% at each timepoint constituting #% of the bacterial 
and #% of the fungal sequences. Time is indicated in days (d) and months (m), spanning 
from 17 days to 4.5 years post-fire. 
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Figure 4.5. Change in relative sequence abundance of the nine most abundant (a) 
bacterial and (b) fungal genera in the burned plots over time. Time is indicated in days 
(d) and months (m), spanning from 17 days to 4.5 years post-fire. Plot (c) represents the 
mean relative abundance of the bacterial and fungal genera that were significant drivers 
of community stability. 
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Figure 4.6. Generalized Dissimilarity Models (GDM) of the relationship between  a) 
bacterial and b) fungal observed compositional dissimilarity and predicted community 
dissimilarity between site pairs. Partial regression fits, for 3 GDM-fitted I-splined for 
variables significantly associated with c) bacterial and d) fungal beta diversity. 
Significance based on backward model selection in GDM package, with scaled variables 
and significance is based on p<0.05. Line heights represent the relative contribution of 
each variable to community composition whereas shape represents how the rate of 
community turnover varies with the predictor variable between sites. Mod 2 graphs 
including the vegetation and Nitrogen can be found in supplementary S8.  
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Figure 4.7. Relationship between bacterial, fungal, and ectomycorrhizal species richness 
and  Ammonium (NH4),  Nitrate (NO3)  and vegetation Shannon diversity (H) in burned 
(brown) and unburned communities (blue-green). Gray area around the regression line 
represents the standard error. 
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Chapter V 
 
 
 
 

General Conclusions 
 
 
 
 
 
 
 
 

 

 

My dissertation research aimed to answer key questions in microbial ecology 

related to wildfires. It aimed to address critical aspects, such as understanding the direct 

effects of wildfire and fine-scale succession, determining the links between microbial 

functions and ecosystem resilience, and identifying the biotic and abiotic drivers of 

microbial resilience to chaparral wildfires. To do so, I conducted the highest resolution 

temporal sampling of soil microbial communities post-fire to date, with 17 time points 

ranging from 17 days to 4.5 years post-fire. My research provides insight into post-fire 

microbial turnover rates, successional dynamics, microbial functions, and provides 

important background information for restoration management.  

In the first chapter, we identified secondary successional dynamics in bacterial 

and fungal communities, noting rapid turnover in the burned area. Our observations 

revealed that these dynamics were driven by dominant bacteria (Massilia, Paenibacillus, 
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and Noviherbaspirillium) and fungi (Geminibasidium, Pyronema, Aspergillus, and 

Penicillium) that traded-off in abundance over time. We also classified these microbes 

into putative traits via a literature search and related them to the microbial adaptations of 

Grime's C-S-R Competition (C), Stress-tolerant (S), and Ruderal (R ) (Grime, 1977) such 

that pyrophilous microbes are either competitive at acquiring post-fire resources, 

thermotolerant, or fast colonizing (Enright et al., 2022). This classification enabled us to 

hypothesize that, akin to plants, microbial succession is driven by trade-offs in functional 

traits. These traits fell in a specific sequence during succession, with thermotolerators 

dominating first, followed by fast colonizers, and ultimately, competitors capable of 

capitalizing on post-fire resource acquisition. 

In chapter two, we conducted a gene-centric metagenomic analysis of five 

turnover events observed in the first year to monitor changes in nitrogen (N) cycling and 

aromatic hydrocarbon degradation genes.  Fires transform carbon (C) into pyrogenic 

organic matter (PyOM), which is difficult to degrade and may lead to C sequestration. 

This analysis provided valuable insights into the functional changes occurring in 

pyrophilous microbes over successive stages, crucial for understanding whether the 

ecosystem will recover or transition to another state. As hypothesized, N and PyOM gene 

counts increased during succession, reflecting the growing dominance of pyrophilous 

taxa and the introduction of other species into the system. Moreover, we discovered that 

dominant pyrophilous bacteria Massilia and Noviherbaspirillium preferentially select the 

easier-to-degrade ortho-cleavage catechol and protocatechuate pathways while 

assimilating N to readily acquire energy, retaining N in the system and minimizing 
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greenhouse gas emissions. However, the abundant taxa for the different degradation N 

and PyOM degradation pathways allowed us to hypothesize that pyrophilous microbes 

readily interact via metabolic handoffs to break down post-fire resources. The observed 

metabolic strategies, including the efficient utilization of PyOM and N, emphasize the 

resilience and adaptability of these microbes while providing information on the potential 

recovery of burned chaparral.  

 In chapter three, we tested which factors affect bacterial and fungal resilience, or 

the ability of an ecosystem to recover both functionally and structurally (Allison & 

Martiny, 2008), stability, and successional dynamics over 4.5 years post-fire. Moreover, 

we linked microbial resilience to vegetation recovery and several key aspects of soil 

biogeochemistry. This comprehensive analysis enabled us to present a fine-scale 

temporal study of the mechanisms driving microbial resilience after a chaparral wildfire, 

helping lay the foundation for developing comprehensive restoration and management 

plans. Neither bacterial nor fungal composition recovered to unburned levels during the 

timespan of the study. However, bacterial richness exhibited higher resistance and 

resilience than fungi, fully recovering to pre-fire levels within 4.5 years while fungal 

richness declined in both the burned and unburned plots. The resilience of both groups 

was intricately connected to vegetation and soil nutrients, underscoring the crucial role of 

resources in bacterial recovery and fungal maintenance. Moreover, bacterial community 

stability emerged through increased richness and reduced dominance over time, while the 

persistent dominance of early pyrophilous fungi Pyronema, Aspergillus, and Penicillium 

characterized fungal stability, highlighting the unique trajectories of bacterial and fungal 
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communities. This distinction underscores the diverse trajectories of bacterial and fungal 

communities, indicating that niche complementarity enhances bacterial resilience and 

stability in response to environmental changes. In contrast, fungal stability relies on well-

established potential keystone taxa, which is crucial for maintaining ecosystem functions 

in post-fire systems.  

 While our study revealed valuable insights into the successional dynamics of 

post-fire bacteria and fungi, categorizing them within existing theoretical frameworks, 

further research is essential to fully develop microbial successional dynamics theories. 

This necessitates expanding our sampling efforts across multiple chaparral ecosystems 

and other burned environments to validate the identified patterns. Additionally, our 

metagenomic analysis were limited by our inability to assembled fungal metagenomically 

assembled genomes (MAGs). The presence of key fungal decomposers (Coprinus and 

Tephrocybe) in later successional periods coinciding with increased PyOM and N cycling 

genes raises questions about the functional dynamics of this community and its effects on 

fungal resilience. The intriguing possibility of cross-feeding dynamics in the bacterial 

community, suggested by the diverse array of N and PyOM genes in my metagenomic 

analysis, underscores the need for comprehensive characterization of the fungal 

community using metagenomics, encompassing both bacterial and fungal MAGs. This 

analysis is crucial for determining whether pyrophilous microbes possess the complete 

enzymatic machinery to degrade PyOM or N independently, or if these genes are 

distributed across the community, necessitating metabolic handoffs. Investigating these 

aspects further will elucidate the intricate post-fire microbial interactions. Continued 
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research in these areas will significantly enhance our understanding of microbial 

succession and the factors influencing microbial resilience following wildfires. 

Additionally, this knowledge will inform the development of post-fire management 

strategies that integrate microbial communities, shaping more effective and ecologically 

sound approaches to functionally and structurally restore wildfire affected ecosystem.  
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Appendix A: Supplemental Information for 
Chapter II 

 
 
 
 
 

Rapid Bacterial and Fungal Successional Dynamics in 
First Year After Chaparral wildfire 
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Figure A.1.1. Comparison of alpha diversity metrics for bacteria and fungi between 
burned (brown) and unburned (blue-green) plots for A) observed species richness 
(ASVs), B) Simpson, C) Chao1, D) ACE, E) Inverse Simpson (dominance), and E) 
Shannon. Significance based on negative binomial regression with plots and time since 
fire as random effects for all alpha metrics except for bacteria inverse Simpson which 
was based on a generalized mixed effect model. Percent value represents the percent 
change in alpha diversity from the unburned to burned communities, where the negative 
value represents a decrease in alpha diversity.  
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Figure A.1.2. Change in average A) bacterial and B) fungal estimated biomass (per gram 
of soil) between the burned (brown) and unburned (blue-green) communities across all 
time points. Boxes represent the 25th and 75th quartiles, and the horizontal line is the 
median of the data—significance based on negative binomial regressions with plot and 
time since fire as random effects. Percent value represents the percent change in biomass 
from the unburned to burned communities, where the negative value represents a 
decrease in biomass.  
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Figure A.1.3. Change in average richness for A) arbuscular mycorrhizal fungi (AMF), B) 
ectomycorhizal fungi (EMF), C) pathogenic, and D) saprobic fungi between burned 
(brown) and unburned (blue-green) plots across all time points. Boxes represent the 25th 
and 75th quartiles, and the horizontal line is the median of the data. Significance based on 
negative binomial regressions with plot, subplot, and time since fire as random effects. 
Percent value represents the percent change in species richness from the unburned to 
burned communities, where the negative value represents a decrease in richness.  
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Figure A.1.4. Change of species richness in burned (brown) versus unburned (blue-
green) plots at each of the 9-time points for all four fungal guilds (arbuscular mycorrhizal 
fungi (AMF); ectomycorrhizal fungi (EMF), pathogens, and saprobes). Points represent 
the mean, and bars represent the standard error of the mean.  
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. 

 
 
 
Figure A.1.5. NMDS plots for bacterial community composition in burned (brown) 
versus unburned (blue-green) plots at each of the 9-time points with R2, significance, and 
stress (S) based on ADONIS. NMDS is based on the Bray-Curtis dissimilarity matrix on 
3-dimensions 



 

 188 

 

 
 
Figure A.1.6. NMDS plots for fungal community composition in burned (brown) versus 
unburned (blue-green) plots at each of the 9-time points with R2, significance, and stress 
(S) based on ADONIS. NMDS is based on the Bray-Curtis dissimilarity matrix on 3-
dimensions. 
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Figure A.1.7. Soil burn severity effect on species richness.  Severity categories were 
based on initial ash depth (cm) following Parson et al., 2010 (unburned = 0 cm; Low = 
0.1-1.49 cm; Moderate = 1.5-2.9cm; and High => 3.0cm) and compared to BAER soil 
burn severity categories.  
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Table A.2.1. Holy Fire Site-specific characteristics for the nine sampling plots (6 burned, 
3 unburned) located within the 2018 Holy Fire.  
 

     Soil pH 
Soil Taxonomic 
Class Site ID Treatment Latitude Longitude Elevation 25 days 376 

days 
CNF01 Burned 33.6901 -117.463 1228 7.25 6.33 Cieneba series; 

Loamy, mixed, 
superactive, 
nonacid, thermic, 
shallow Typic 
Xerorthents 
(Entisols) 

CNF02 Burned 33.69537 -117.471 1260 6.71 6.74 

CNF03 Burned 33.69326 -117.467 1237 6.79 7.1 

CNF04 Burned 33.68456 -117.457 1260 7.11 6.84 
Friant series; 
Loamy, mixed, 
superactive, 
thermic Lithic 
Haploxerolls 
(Mollisols) 

CNF05 Burned 33.67809 -117.457 1195 6.94 7.17 

CNF06 Burned 33.67168 -117.459 1285 6.92 7.48 

CNF07 Unburned 33.67135 -117.459 1283 6.1 6.85 

CNF08 Unburned 33.66813 -117.456 1250 6.12 6.88 
CNF09 Unburned 33.6678 -117.455 1240 6.18 6.18 
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Table A.2.2. Total sequences and ASVs per control (positive mock communities and 
negative DNA extraction and PCR controls) based on Qiime2 data. Note rarefying 
removed all negative controls. Mock communities were manually removed after 
verification of taxonomy with Zymo Mock information.  
 

Organism Sample Type  
Seq/Sample  ASVs ASVs After 

Rarefaction 
Fungi     All 78,202 11,480 7,445 
Bacteria    All 31,052 33,078 24,874 

Fungi 

   Mock 2997* 5* removed 
Neg DNA   
Extraction 235* 9* removed 

   Neg PCR control 183* 5* removed 

Bacteria 

   Mock 33533* 10* removed 
Neg DNA 
Extraction 1668* 12* removed 

Neg PCR control 194* 5* removed 
* Denotes: average sequence per sample 
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Table A.2.3. Descriptive statistics and percent change in estimated biomass (per gram 
soil) and species richness (observed ASV’s) between treatment (unburned (burned)) and 
time since fire for bacteria and fungi. The mean copy number is based on the 16S rRNA 
for bacteria and 18S rRNA for fungi.  
 

  Biomass  Richness 

  Time since fire 
(days) 

Mean Copy Num.          
(g-1 soil) 

% 
Chang
e 

  Mean ASVs % Change 

Bacteria 

17 243,288,300 (39,632,680) -84   462 (604) 31 
25 235,169,333 (36,530,267) -84  688 (486) -29 
34 252,455,133 (107,186,067) -58  962 (313) -67 
67 293,834,733 (132,186,480) -55  621 (250) -60 
95 329,736,333 (245,489,900) -26  302 (180) -41 
131 276,979,018 (167,983,317) -39  972 (378) -61 
187 291,303,200 (241,265,883) -17  933 (244) -74 
286 323,115,100 (169,881,567) -47  368 (411) 12 
376 283,013,818 (160,504,850) -43  533 (411) -23 

       

Fungi 

17 83,624,650 (2,345,940) -97  292(161) -45 
25 75,569,867 (3,067,448) -96  369(117) -68 
34 90,105,000 (10,755,267) -88  305(77) -75 
67 71,132,133 (14,439,620) -80  328(60) -82 
95 54,003,967 (10,113,017) -81  335(85) -75 
131 43,502,333 (4,985,833) -89  312(93) -70 
187 53,313,133 (11,076,350) -79  344(118) -66 
286 86,949,156 (16,557,783) -81  268(119) -55 
376 73,025,167(14,810,867) -80   257(99) -61 
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Table A.2.4. Model summary results of the effect of treatment (burned vs. unburned), 
time since fire (TSF in days), precipitation (mm), and soil burn severity measured as ash 
depth (cm) at day 17 on bacterial and fungal estimated biomass (per gram soil) and 
richness (observed ASV’s). Significance is based on the negative binomial generalized 
mixed effect models with plot, subplot, and time since fire as the random effect for 
richness and plot and time since fire as random effect for estimated biomass (gram per 
soil)—significance at p<0.05 (bold).  
 

 Bacteria  Fungi 

  Est. z 
value P value 

 
Est. z value P value 

Biomass 

(Intercept) 19.45 91.46 < 2e-16  18.01 79.91 < 2e-16 
Treatment (Burned) -0.82 -3.29 0.001  -2.11 -7.62 2.47E-14 
TSF 0.15 1.17 0.24  -0.02 -0.16 0.87 
Precipitation 0.05 0.39 0.70  -0.16 -1.06 0.29 
Soil burn severity (ash depth) -0.01 -0.50 0.62  -0.0004 -0.01 0.99 
Treatment (Burned): Precip 0.30 3.02 0.003  0.20 1.61 0.11 
TSF x Soil burn severity (ash depth) 0.06 3.72 0.0002  - - - 

Treatment (Burned) x TSF - - -  0.44 3.46 0.001 
  

Random Effects 

Variance/Std.Dev 0.08/0.29Plot; 0.11/0.33TSF  0.08/0.29Plot; 0.11/0.33TSF 

Mar. R2 / Cond. R2 (delta) 0.30/0.46  0.47/0.56 
 

Richness 

(Intercept)   47.27 <0.0001  5.8 54.69 <0.0001 

Treatment (Burned)  -2.56 0.01  -0.9 -5.76 <0.0001 

TSF  -0.84 0.4  0.19 2.13 0.03 

Precipitation  1.38 0.17  -0.01 -0.36 0.72 

Soil burn severity (ash depth)  -3.83 0.0001  -0.07 -3.48 0.001 

TSF x Precipitation  -4.64 <0.0001  0.34 3.27 0.001 

TSF x Soil burn severity (ash depth)  2.38 0.02  0.03 3.82 0.0001 

 
 Random Effects 

Variance/Std.Dev 
0.02/0.13Plot  
0.02/0.14Subplot 0.08/0.28 
TSF 

 0.02/0.12Plot  0.04/0.20Subplot  
0.01/0.08TSF 

 
Mar R2 / Cond. R2 (delta) 0.32/0.57   0.63/0.74 
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Table A.2.5. Model summary results of the effect of treatment (burned vs. unburned), 
time since fire (TSF in days), precipitation (mm), and ash depth (cm) on arbuscular fungi 
(AMF), ectomycorrhizal fungi (EMF), Saprobes and Pathogens. Significance based on 
the negative binomial generalized mixed effect models with plot, subplot, and time since 
fire as random effect—significance at p<0.05 (bold).  
 
 

 AMF  EMF 

  Est. z value P value  Est. z value P value 
(Intercept) -0.98 -1.71 0.09 

 

1.52 4.57 <0.0001 
Treatment (Burned) -4.10 -4.34 <0.0001 -1.09 -2.18 0.03 
TSF - - - -0.09 -1.25 0.21 
Soil burn severity (ash depth)  - - - -0.19 -2.77 0.01 
Precipitation - - - 0.00 -0.06 0.95 
Treatment (Burned) x Precipitation - - - -0.37 -3.92 <0.0001 
Treatment (Burned) x TSF - - - -0.68 -7.04 <0.0001 
       
 Random Effects  

Variance/Std.Dev 0.23/0.48Plot  0.45/0.67Subplot                  
0.03/0.17TSF 

6.3e-10/2.5e-05
Plot   3.06/1.75Subplot  

0.06/0.25TSF 

Mar R2 / Cond. R2  0.55/0.81 0.20/0.37 
       

 Saprobes Pathogens 
  Est. z value P value Est. z value P value 
(Intercept) -0.06 -0.35 0.73 -1.28 -4.83 <0.0001 
Treatment (Burned) -1.96 -7.37 <0.0001 -1.48 -3.63 0.0003 
TSF -0.36 -3.07 0.002 - - - 
Precipitation - - - 0.09 0.52 0.60 
Treatment (Burned) x Precipitation - - - -0.88 -2.16 0.03 

Treatment (Burned) x TSF 0.68 3.42 0.001 - - - 
       
Random Effects       

Variance/Std.Dev 1.01e-11/3.2e-06
Plot   0.18/0.42Subplot                  

0.01/0.08TSF 
7.2e-12/2.7e-06

Plot   0.34/0.58Subplot                  
3.9e-13/6.3e-07

TSF  

Mar R2 / Cond. R2  0.21/0.25 0.11/0.16 
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Table A.2.6. Permutational multivariate analysis of variance (PERMANOVA) of 
bacterial and fungal community composition and the effects of treatment (burned vs. 
unburned), time since fire (TSF) in days,  Initial ash depth (soil burn severity), and total 
precipitation (mm) and their respective interactions. Significance p<0.05 (bold). 
 
 

  Variable Sum of 
Sqs. R2 F P value 

Bacteria 

Treatment 14.34 0.13 50.47 0.0001 
Time since fire 4.33 0.04 15.25 0.0001 
Total Precipitation 3.20 0.03 11.26 0.0001 
Initial Ash Depth 1.98 0.02 6.97 0.0001 
Treatment x Initial Ash Depth 2.27 0.02 8.00 0.0001 
Treatment x Total Precipitation 1.53 0.01 5.39 0.0001 
Time since fire x Initial Ash Depth 0.52 0.005 1.82 0.03 

 

Fungi 

Treatment 12.49 0.10 34.52 0.0001 
TSF 1.80 0.01 4.98 0.0001 
Total Precipitation 1.12 0.01 3.10 0.0001 
Initial Ash Depth 2.32 0.02 6.40 0.0001 
Treatment x Time Since Fire 1.16 0.01 3.21 0.0005 
Treatment x Total Precipitation 0.66 0.01 1.82 0.02 
Time since fire x  Initial Ash Depth 0.43 0.003 1.17 0.23 
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Table A.2.7. Measures of successional dynamics for bacterial and fungal communities 
between treatments (burned vs. unburned) where the unburned values are inside the 
parenthesis. Turnover rates (proportion of species that differ between time points), 
appearance (relative species appearance between time points) and disappearance (relative 
species disappearance between time points), rates of change (rate of directional change in 
community composition over time), Stability (of total species abundance as a measure of 
equilibrium) and Synchrony (a measure of whether abundance fluctuations are homo- or 
heterogeneous over time). Higher values represent a higher rate for each category.  
 
 

Microbe TSF 
days 

Turnover 
Rate Appearance Disappearance Rate of 

change Stability Synchrony 

Bacteria 

25 0.59 (0.54) 0.25 (0.40) 0.34 (0.14) 

0.16 
(0.12) 

8.35 
(5.36) 

0.03       
(0.22) 

34 0.51 (0.50) 0.15 (0.21) 0.36 (0.29) 
67 0.45 (0.43) 0.21 (0.27) 0.24 (0.16) 
95 0.50 (0.56) 0.15 (0.14) 0.35 (0.42) 
131 0.37 (0.40) 0.19 (0.16) 0.19 (0.24) 
187 0.50 (0.58) 0.31 (0.21) 0.19 (0.38) 
286 0.50 (0.64) 0.28 (0.32) 0.22 (0.32) 
376 0.50 (0.35) 0.26 (0.25) 0.24 (0.10) 

Fungi 

25 0.61 (0.50) 0.26 (0.37) 0.34 (0.13) 

0.49 
(0.08) 

6.42 
(8.58) 

0.04   
(0.05) 

34 0.52 (0.43) 0.14 (0.30) 0.38 (0.13) 
67 0.52 (0.53) 0.28 (0.28) 0.24 (0.25) 
95 0.42 (0.47) 0.27 (0.25) 0.15 (0.23) 

131 0.52 (0.57) 0.29 (0.27) 0.23 (0.30) 
187 0.55 (0.53) 0.40 (0.24) 0.15 (0.29) 
286 0.53 (0.53) 0.15 (0.24) 0.38 (0.29) 

376 0.42 (0.58) 0.19 (0.31) 0.23 (0.27) 
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Appendix B: Supplemental Information for 
Chapter III 

 
 
 
 
 

Microbial-Mediated Pyrogenic Organic Matter 
and Nitrogen Cycling genes increase over time after 

a Chaparral wildfire 
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Figure B.1.1.  Map of the sampling area a) Burned Area Emergency Response (BAER) 
map of the soil burn severity within the 2018 Holy Fire, with the b) sampling design for 9 
plots (6 burned, 3 unburned) each with 4 subplots 1m2 for soil sampling over time. 
Samples used for this study were plot 2 (yellow pin) and plot 8 (light blue pin) c) 
Sampling of the top 10 cm of soil within subplot. Figure adapted from (Pulido-Chavez et 
al., 2023)  
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Figure B.1.2.  Detailed methodological map for the bioinformatic steps used to analyze 
Illumina NovaSeq shotgun metagenomic samples.  
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Figure B.1.3. Total number of unique Pyrogenic Organic Matter (PyOM) cycling genes 
across time (in days) in the burned plots. Depicting increases in genes relate to increases 
in species richness with potential increases in relative abundance at 131 days post-fire.  
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Figure B.1.4.  Relative abundance of the bacterial and fungal community over time for 
timepoints (17,34, 67, 131, and 376d post-fire). Only taxa that make up above 3% of the 
relative abundance are shown, taxa <3% are represented in gray.  
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Figure B.1.5.  Effect of time (in days) on all Pyrogenic Organic Matter (PyOM) 
pathways between the burned (brown) and unburned (blue-green). Where mean geTMM  
are the contigs normalized by contig length corrected trimmed mean (geTMM) and 
normalized by library depth and gene length. 
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Figure B.1.6. Total number of unique nitrogen cycling genes across time (in days) in the 
burned plots. Depicting increases in genes relate to increases in species richness with 
potential increases in relative abundance at 131 days post-fire.  
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Figure B.1.7. Effect of time (in days) on all Nitrogen cycling pathways between the 
burned (brown) and unburned (blue-green). Where mean geTMM  are the contigs 
normalized by contig length corrected trimmed mean (geTMM) and normalized by 
library depth and gene length. 
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Table B.2.1. Permanova results of the effects of treatment and time since fire (days) on 
alkane, PyOM, nitrogen and urea gene composition. Significance based on p<0.05, and 
based on Bray-Curtis dissimilarity.  
 

Functional Gene Variable Sum of Sqs R2 F Pr (>F) 

Alkanes 
Treatment (burned) 1.47 0.16 5.59 0.001 
TSF days 0.51 0.06 1.95 0.02 
Treatment x TSF days 0.43 0.05 1.63 0.07 

      

PyOM 
Treatment (burned) 1.39 0.15 5.25 0.001 

TSF days 0.49 0.05 1.84 0.03 

Treatment x TSF days 0.47 0.05 1.76 0.03 
      

Nitrogen 
Treatment (burned) 1.51 0.16 5.65 0.001 

TSF days 0.45 0.05 1.69 0.04 

Treatment x TSF days 0.53 0.06 1.97 0.02 
      

Urea 
Treatment (burned) 1.39 0.15 5.35 0.001 

TSF days 0.47 0.05 1.83 0.02 

Treatment x TSF days 0.47 0.05 1.81 0.04 
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Table B.2.2. Permutest results for the betadisper analysis for nitrogen, urea, PyOM and 
Alkane pathways, based on 9999 permutations and “plot” as random effect. 
  

      Sum Sq Mean Sq F Pr(>F) 

Nitrogen 
Burn 

Groups 0.07 0.02 3.82 0.04 
Residuals 0.04 0.004  

 

Unburn 
Groups 0.01 0.003 0.52 0.7 
Residuals 0.06 0.01  

        

Urea 
Burn 

Groups 0.08 0.02 4.51 0.03 
Residuals 0.04 0.004  

 

Unburn 
Groups 0.01 0.003 0.52 0.7 
Residuals 0.06 0.01  

        

PyOM 
Burn 

Groups 0.10 0.02 5.32 0.02 
Residuals 0.05 0.005  

 

Unburn 
Groups 0.01 0.002 0.39 0.8 
Residuals 0.06 0.01  

        

Alkane 
Burn 

Groups 0.08 0.02 4.65 0.02 
Residuals 0.04 0.004  

 

Unburn 
Groups 0.01 0.003 0.50 0.7 

Residuals 0.05 0.01    

DF (4), Residuals (10), N permutations (9999) per pathway 
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Table B.2.3.  Generalized negative binomial result for the effects of treatment, time since 
fire (days) and their interaction on nitrogen. urea, pyrogenic organic matter (PyOM) and 
alkane cycling genes. Significance based on p<0.05, denoted in bold.  
 

Nitrogen  Urea 

  
Estimate 
  

Std. 
Error  

Pr(>|z|) 
    

 
Estimate 
  

Std. 
Error 

Pr(>|z|) 
  

(Intercept) 4.57 0.26 <2e-16  7.09 0.26 <2e-16 
Treatment (Burned) 0.02 0.32 0.96  0.11 0.31 0.71 
TSF days -0.19 0.10 0.06  -0.16 0.07 0.02 
Treatment (Burned) x 
TSF days 0.37 0.16 0.02  0.28 0.01 <2e-16 
Random Effects        
   Tsf/Subplot    
   Margina/Conditional 
R2  0.014/0.11   0.08/ 0.99 

        
PyOM     Alkane   

  Estimate  Std.Error Pr(>|z|)   Estimate  Std.Error Pr(>|z|) 

(Intercept) 5.63 0.29 < 2e-16  5.63 0.29 < 2e-16 
Treatment (Burned) 0.28 0.34 0.41  0.28 0.34 0.41 
TSF1 -0.19 0.07 3.0E-03  -0.19 0.07 0.003 
Treatment (Burned) x 
TSF1 0.38 0.07 4.2E-08  0.38 0.07 4.2E-08 
Random Effects        
   Tsf/Subplot   0.013/0.31 
   Margina/Conditional 
R2  0.026/0.18   0.03/ 0.18 
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Table B.2.4. Generalized negative binomial regression for the effects of time since fire 
(days) nitrogen. urea, cycling genes. Significance based on p<0.05, denoted in bold.  
 

Nitrogen  Urea 

  Est Std. 
Error p   Est Std.  

Error p 

(Intercept) 4.64 0.34 <2e-16  7.19 0.25 <2e-16 
Treatment (Burned) -0.35 0.46 0.45  -0.52 0.31 0.09 
TSF25 0.31 0.35 0.37  0.23 0.01 <2e-16 
TSF34 -0.08 0.33 0.81  -0.18 0.01 <2e-16 
TSF131 -0.24 0.33 0.46  -0.21 0.01 <2e-16 
TSF376 -0.42 0.34 0.21  -0.38 0.01 <2e-16 
Treatment (Burned) : TSF25 -0.16 0.52 0.76  0.39 0.03 <2e-16 
Treatment (Burned) : TSF34 0.35 0.53 0.51  0.69 0.02 <2e-16 
Treatment (Burned) : TSF131 0.70 0.48 0.14  0.92 0.02 <2e-16 
Treatment (Burned) : TSF376 0.99 0.50 0.05  1.04 0.02 <2e-16 
Random Effects 

Plot 0.24   
Marginal/conditional R2 var 0.021/ 0.12     

  
PyOM  Alkane 

  Est Std. 
Error p   Est Std. 

Error p 

(Intercept) 5.76 0.30 < 2e-16  5.76 0.30 < 2e-16 
Treatment (Burned) -0.28 0.37 0.45  -0.28 0.37 0.45 
TSF25 0.29 0.14 0.03  0.29 0.14 0.03 
TSF34 -0.25 0.13 6.1E-02  -0.25 0.13 0.06 
TSF131 -0.33 0.13 0.01  -0.33 0.13 0.01 
TSF376 -0.50 0.14 0.0002  -0.50 0.14 0.0002 
Treatment (Burned) : TSF25 0.01 0.23 9.6E-01  0.01 0.23 0.96 
Treatment (Burned) : TSF34 0.73 0.26 0.004  0.73 0.26 0.004 
Treatment (Burned) : TSF131 0.78 0.19 0.0001  0.78 0.19 5.3E-05 
Treatment (Burned) : TSF376 1.25 0.22 0.000  1.25 0.22 2.6E-08 
Random Effects 

Subplot 0.33  TSF/Subplot  
Marginal/conditional R2 var 0.04 / 0.20   0.04/ 0.20 
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Table B.2.5.  Generalized negative binomial regression for the effects of time (days) on 
all the different PyOM cycling  (C) pathways for burned and unburned plots 
independently. Significance based on p<0.05, denoted in bold. 

  
  Burn Unburn   
PyOM 
pathways   Est. z value P Est. z 

value P R2 (B),(Un) 

Catechol Meta (Int) 6.29 23.54 < 2e-16 5.99 18.27 <2e-16 (0.04/0.21), 
(0.025/0.31) TSF 0.21 2.92 0.004 -0.19 -2.44 0.01 

Catechol Ortho (Int) 6.56 25.14 < 2e-16 6.26 25.08 <2e-16 (0.1/0.29), 
(0.054/0.28)  TSF 0.30 3.23 0.001 -0.22 -2.42 0.0155 

Aerobic Gallate (Int) 2.80 8.04 8.9E-16 3.40 8.40 <2e-16 (0.07/0.9),  
(0.04/0.01) TSF 0.17 5.06 4.3E-07 0.24 0.73 0.463 

Anaerobic 
Gallate 

(Int) 4.50 16.93 <2e-16 4.49 16.64 <2e-16 (0.04/0.3), 
(0.01/0.61) TSF -0.13 -0.86 0.393 0.06 0.52 0.605 

Benzene (Int) 2.79 10.74 < 2e-16 1.92 5.00 5.7e-07 (0.13/0.27),  
(0.05/0.38) TSF 0.39 3.91 9.3E-05 -0.29 -2.78 0.01 

Benzoate (Int) 5.12 19.60 < 2e-16 4.80 17.00 <2e-16 (0.13/0.29), 
(0.06/0.3) TSF 0.38 3.72 0.0002 -0.25 -2.36 0.02 

BenzoykCoA (Int) 5.12 19.60 < 2e-16 2.92 8.46 <2e-16 (0.012/0.01) TSF 0.38 3.72 0.0002 0.17 0.43 0.668 

Biphenyl (Int) 1.37 2.83 0.005 -0.06 -0.11 0.912 (0.12/0.20), 
(0.004/0.31)  TSF 0.53 2.02 0.04 -0.11 -0.34 0.734 

bka (Int) 7.04 25.75 <2e-16 6.91 26.30 <2e-16 (0.06/0.17)  TSF 0.30 2.03 0.04 -0.18 -1.30 0.193 

Carbazole (Int) -0.05 -0.14 0.89 -2.34 -1.23 0.221 (0.6/0.8),  
(0.0004/0.96)  TSF 1.05 11.60 <2e-16 0.06 0.40 0.691 

Cumate (Int) 3.78 14.76 <2e-16 3.47 9.45 <2e-16 (0.06/0.13),   
(0.0003,0.19)  TSF 0.33 2.47 0.01 -0.03 -0.15 0.883 

Dgalac (Int) 1.09 2.36 0.02 0.77 0.61 0.542 (0.21/0.80),   
(1.3e-04/0.82) TSF 0.46 10.14 <2e-16 0.03 0.14 0.891 

DDVA (Int) 3.22 11.84 <2e-16 2.77 7.35 2.0E-13 (0.22/0.22),     
(2.9e-03/2.9e-03) TSF 0.70 2.35 0.02 -0.08 -0.21 0.837 

PCA Meta (Int) 5.87 17.62 < 2e-16 5.96 17.32 < 2e-16 (0.11/0.4), 
(0.03/0.41) TSF 0.36 5.11 3.3E-07 -0.18 -2.68 0.01 

PCA Ortho (Int) 7.89 32.00 <2e-16 7.75 27.51 <2e-16 (0.034/0.22), 
(0.04/0.33) TSF 0.17 1.89 0.06 -0.18 -2.06 0.04 

Naphthalene (Int) 3.75 14.96 < 2e-16 2.65 7.03 2.1e-12 (0.23/0.34),     
(3.6e-04/0.3) TSF 0.56 4.67 3.0E-06 -0.02 -0.16 0.871 

Phathalete (Int) 6.09 32.45 <2e-16 5.87 19.32 <2e-16 (0.43/0.99), 
(0.003/0.07) TSF 0.28 73.67 <2e-16 0.08 0.34 0.736 

Syringate (Int) 2.40 5.82 5.8E-09 1.14 1.09 0.276 (0.2/0.5), 
(0.005/0.92) TSF 0.52 2.92 0.003 0.15 0.92 0.356 

Terephthalate (Int) 2.67 9.00 <2e-16 2.40 13.01 <2e-16 (0.6/0.94),  
(0.05/0.05)  TSF 0.71 31.99 <2e-16 -0.25 -1.33 0.182 

Toluene (Int) 4.10 15.00 <2e-16 3.73 10.61 <2e-16 (0.04/0.15)  TSF 0.26 2.30 0.02 -0.14 -1.20 0.232 
Trans (Int) 6.18 22.61 < 2e-16 6.07 21.76 <2e-16 (0.08/0.20), 

(0.02/0.2)  TSF 0.35 3.01 0.003 -0.17 -1.36 0.174 
Vanillate Int) 4.10 13.44 <2e-16 4.28 11.68 <2e-16 (0.36/0.97),   

(0.04/0.1)  TSF 0.41 34.07 <2e-16 -0.24 -1.02 0.308 
Xylene (Int) 5.62 19.60 < 2e-16 5.43 24.82 <2e-16 (0.13/0.53),   

(0.13/0.5)   TSF 0.26 2.62 0.01 -0.24 -2.53 0.01 
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Table B.2.6.  Generalized negative binomial regression for the effects of time (days) on 
all the different Alkane degradation pathways for burned plots. Significance based on 
p<0.05, denoted in bold. 
 
 

    Burn Unburn   
Alkane 
pathway
s 

  Est z  value P Estimat
e 

z   
value P R2 (B),(Un) 

Methane 
(Int) 5.51 21.43 <2e-16 5.37 23.46 <2e-16 (0.013/0.07)

, (0.02/0.07) TSF 0.17 1.49 0.136 -0.19 -1.56 0.119 

Alkane 
(Int) 5.08 14.81 <2e-16 5.15 10.27 <2e-16 (0.0001/0.5)

, (0.01/0.70) TSF -
0.01 -0.10 0.919 -0.12 -1.15 0.252 

Propane 
(Int) 5.30 19.61 <2e-16 4.47 11.76 <2e-16 (0.23/0.43), 

(0.01/0.7) TSF 0.37 2.21 0.0275 -0.08 -0.59 0.554 
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Table B.2.7. Generalized negative binomial regression for the effects of time (days) on all 
the different Nitrogen cycling pathways for burned and unburned plots independently. 
Significance based on p<0.05, denoted in bold. 

  

  Burn Unburn 

    Est z 
value P value Est z 

value 
P 
value  R2 (B),(Un) 

Dissimilatory 
Nitrite 

(Int) 6.03 19.04 <2e-16 6.15 19.21 
< 2e-
16 (0.1/0.99), 

(0.07/ 0.99)  TSF days 0.20 2.06 0.0397 -0.18 -3.15 0.002 

Assimilatory 
Nitrite 
Reductase 

 
(Int) 

-
6.55 -4.99 5.9E-07 2.52 3.28 0.001 (0.04/1),  

(0.06/0.73) 
TSF days 1.71 8.50 < 2e-16 -0.41 -1.34 0.18 

Assimilatory 
Nitrate 
Reductase 

(Int) 1.29 2.17 0.03 6.14 28.19 
<2e-
16 (0.0006/0.42),  

(0.003/0.04) 
TSF days 

-
0.03 -0.19 

0.85 -0.07 -0.35 0.72 
Dissimilatory 
Nitrate 
Reductase 

(Int) 5.97 19.49 <2e-16 1.99 3.55 0.0004 (0.023/0.1),  
(0.1/0.63) 

TSF days 0.18 0.93 0.35 -0.44 -3.24 0.001 

N assimilation (Int) 6.58 22.12 <2e-16 6.60 21.95 
<2e-
16 (0.15/0.59), 

(0.14/0.62) TSF days 0.27 2.11 0.03 -0.28 -1.98 0.05 

Nitrite 
Reductase 

(Int) 3.28 10.85 <2e-16 3.48 8.71 
<2e-
16 

(6.23e-
04/0.17), 
(0.05/0.63) TSF days 0.12 1.06 0.29 -0.24 -2.63 0.01 

Denitrification 
(Int) 2.04 5.66 1.5E-08 2.24 5.55 

2.9E-
08 

(0.06/0.4) 

TSF days 
-
0.03 -0.24 0.81 -0.31 -2.85 0.004 

Nitrite 
oxireductase 

(Int) 0.41 0.40 0.69 1.14 2.28 0.02 (0.013/0.7), 
(0.15/0.54) 

TSF days 
-
0.23 -0.98 0.33 -0.57 -3.14 0.002 

Nitrification (Int) 1.24 1.88 0.06 0.57 2.13 0.03  (0.26/0.71), 
(0.02/0.12) TSF days 1.11 2.04 0.04 -0.20 -0.82 0.41 

Fixation 
(Int) 

-
15.61 -1.68 0.09 -1.17 -1.12 0.27 (0.61/0.99), 

(0.0006/0.72) 
TSF days 

-
9.23 -1.15 0.25 0.06 0.08 0.94 
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Table B.2.8. Generalized negative binomial regression for the effects of time (days) on all 
the different urea cycling  (C) pathways for burned and unburned plots independently. 
Significance based on p<0.05, denoted in bold. 
  
  Burned Unburn   

Urea cycling    Est.  z 
value 

P 
value 

    
Est.  

z 
value P value  R2 (B),(Un) 

 Urea 
(Int)  25.30 <2e-16   30.65 <2e-16 

    
(0.10/0.99) TSF  1.04 0.30   -

55.53 <2e-16 

Ornithine 
biosynthesis 

(Int)  3.16 0.002   2.86 0.004 (0.14/0.4), 
(0.02/0.02) TSF   -1.55 0.12   0.41 0.68 
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Appendix C: Supplemental Information for 
Chapter IV 

 
 
 
 
 

A comprehensive 4.5 year study of microbial resilience 
and ecosystem recovery after a  

Chaparral wildfire 
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Figure C.1.1. (a) Study area and plots (6 burned; 3 unburned) located within the Holy Fire 
burn scar in the Cleveland National Forest in southern California. Soil burn severity is 
classified based on the BAER classifications. (b) Experimental plot design, each featuring 
four 1 m2 soil sampling subplots placed 5 m from the center in each cardinal direction. 
Vegetation sampling plots (1 m2) were positioned 1 m from the center of each soil sampling 
plot. (c) Soil samples were collected from the top 10 cm of soil beneath the ash (or beneath 
the organic layer in unburned plots) using a releasable bulb planter, spanning from 17 days 
to 44 months post-fire. Figure adapted from (Pulido-Chavez et al., 2023). 
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Figure C.1.2. Comparison between burned (brown) and unburned communities (blue-
green) for (a) soil NH4, (b) soil NO3, (c) soil pH, and (d) moisture content at each of the 
sampling timepoints over 4.5 years. Points represent the mean values of soil NH4, soil 
NO3, soil pH, and moisture content, while bars indicate the standard error of the mean for 
burned versus unburned plots at each timepoint. 
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Figure C.1.3. Comparison of vegetation richness (a) and Shannon diversity (b) between 
burned (brown) and unburned communities (blue-green) at each of the seven timepoints 
over 4.5 years. Points represent the mean richness and Shannon diversity, while bars 
indicate the standard error of the mean for burned versus unburned plots at each 
timepoint.. 
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Figure C.1.4. Effect of species richness on (a) bacterial and (b) fungal community 
stability over time in unburned (blue-green) and burned (brown) plots.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Y = 0.0002x + 0.13; R2adj=0.77; p < 0.0001
Y = 7.0-05x + 0.25 ; R2adj=0.45; p < 0.00010

0.
1

0.
2

0.
3

0.
4

0.
5

0 250 500 750 1000

Species Ricness

C
om

m
un

ity
 S

ta
bi

lit
y

(a)

Y = 0.0003x + 0.05; R2adj=0.64; pvalue < 0.0001
Y = 0.0002x + 0.04; R2adj=0.52; pvalue < 0.0001

0.
05

0.
10

0.
15

0.
20

0 200 400 600

Species Ricness

(b)
Bacteria Fungi



 

 218 

 

 
 
Figure C.1.5. Nonmetric multidimensional scaling (NMDS) plot illustrating bacterial 
community composition at each sampling time point (d = days, m = months), with 
treatment indicated by color and time since fire denoted by shape. The NMDS is 
represented in three dimensions. R2 values are derived from PERMANOVA analysis 
conducted with 999 iterations. 
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Figure C.1.6. Nonmetric multidimensional scaling (NMDS) plot illustrating fungal 
community composition at each sampling time point (d = days, m = months), with 
treatment indicated by color and time since fire denoted by shape. The NMDS is 
represented in three dimensions. R2 values are derived from PERMANOVA analysis 
conducted with 999 iterations. 
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Figure C.1.7. Successional trajectory analysis of Principal Coordinates Analysis (PCoA) 
centroids for (a) bacterial and (b) fungal communities in unburned plots over the 4.5-year 
study period. The complete set of figures for both burned and unburned plots can be found 
in the manuscript (Fig 2). 
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Figure C.1.8. Relative sequence abundance of (a) bacterial and (b) fungal phyla in 
burned plots (left) and unburned plots (right) across 17 timepoints (ranging from 17 days 
(d) to 44 months (m)). Grey bars in bacterial burned (a) and unburned (b) plots represent 
multiple bacterial phyla with relative abundance under 1% at each timepoint per 
treatment. 
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Figure C.1.9. Relative sequence abundance of  fungal guilds (highly probable 
annotations) in burned plots (left) and unburned plots (right) across 17 timepoints 
(ranging from 17 days (d) to 44 months (m)).  
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Figure C.1.10. Generalized Dissimilarity Models (GDM) of the relationship between  a) 
bacterial and b) fungal observed compositional dissimilarity and predicted community 
dissimilarity between site pairs.  Partial regression fits, for 3 GDM-fitted I-splined for 
variables significantly associated with c) bacterial and d) fungal beta diversity. 
Significance based on backward model selection in GDM package, with scaled variables 
and significance is based on p<0.05. Line heights represent the relative contribution of 
each variable to community composition whereas shape represents how the rate of 
community turnover varies with the predictor variable between sites.  
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Figure C.1.11. Mantel correlations between total a) bacterial and b) fungal community 
composition and vegetation community composition. Both vegetation and microbial 
dissimilarity are based on Bray-Curtis.  
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Figure C.1.12. Relationship between bacterial and fungal species richness and (a, b) 
vegetation richness, and (c, d) vegetation Shannon diversity in burned (brown) and 
unburned communities (blue-green). Points are shaped according to time in days (d) and 
months (m), and the gray area around the regression line represents the standard error. 
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Table C.2.1. Difference in resilience, recovery rate and percent recovery for burned 
bacterial and fungal communities independently. Significance shown in bold (p<0.05).  
 

  

    Estimate Std. Error t value Pr(>|t|) Adj R2 
Resilience 

Bacteria (Intercept) -0.35 0.14 -2.53 0.02 0.24 
TSF days 0.001 0.0002 2.47 0.03 

Fungi (Intercept) -0.22 0.05 -4.34 0.001 0.011 
TSF days 0.0002 7.5E-05 3.23 0.01 

    
Recovery Rate 

Bacteria (Intercept) 5.27 1.39 3.78 0.002 0.13 
TSF days -0.005 0.002 -2.63 0.02 

Fungi (Intercept) -1.12 0.33 -3.36 0.004 0.27 
TSF  days 0.001 0.0005 2.33 0.03 

              
Recovery Percent 

Bacteria (Intercept) 74.62 9.86 7.57 1.7E-06 0.13 
TSF days 0.03 0.01 1.86 0.08 

Fungi (Intercept) -1.12 0.33 -3.36 0.004 0.41 
TSF days 0.001 0.0005 2.33 0.03 
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Table C.2.2. Linear regression comparing the effect of time on bacterial and fungal 
resilience and  recovery percent. Recovery rate was based on Kruskal-Wallis due to non-
normality. Significance shown in bold (p<0.05). 

  

  Estimate 
Std. 
Error t value Pr(>|t|) Adj R2 

Resilience 
(Intercept) -0.35 0.10 -3.37 0.002 

0.24 
TSF days 0.0005 0.0002 3.29 0.003 
Kingdom (Fungi) 0.14 0.15 0.93 0.36 
TSF days x Kingdom 
(Fungi) -0.0003 0.0002 -1.24 0.22 

      
Percent Recovery 
(Intercept) 74.62 7.25 10.30 2.30E-11 

0.67 
TSF days 0.03 0.01 2.53 0.02 
Kingdom (Fungi) -40.56 10.25 -3.96 0.0004 
TSF days x Kingdom 
(Fungi) -0.03 0.02 -1.68 0.10 

     

Recovery Rate (Kruskal-Wallis)   
  X2 df p-value   
Kingdom (Fungi) 20.989 1 4.62E-06   
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Table C.2.3. Table of  multivariate negative binomial regressions from backward model 
selection and based on stepwise AIC for biomass (top section) and richness (bottom 
section) for bacterial and fungal communities for Model 1 which contains 15 timepoints 
(no timepoint 3 and 5, 34 and 67 days post-fire, due to missing soil pH and  soil 
moisture).  Drivers include time since fire, ash depth in cm, soil pH, percent soil 
moisture, distance to unburn locations, and average wind speed (m/s). Significance 
shown in bold (p<0.05). All variables were scaled.  
 
 

Biomass  
 Bacteria   Fungi  

Predictors Est Statisti
c 

p-
value   Est Statistic p-

value 

(Intercept) 16.38 15.22 <0.001 
 

17.6
4 337.4 <0.001 

Time (days) 0.32 1.39 0.16  0.32 5.77 <0.001 
Ash depth (cm) 1.9 1.84 0.07  1.01 16.02 <0.001 
Soil pH 2.57 2.44 0.02  -0.95 -14.9 <0.001 
% Soil Moisture 0.02 0.12 0.90  -0.45 -6.66 <0.001 
Distance Unburn -0.56 -7.15 <0.001  -0.61 -13.39 <0.001 
Time x Ash depth 0.26 1.94 0.05  0.37 6.69 <0.001 
Ash depth x Soil ph -2.24 -2.2 0.03  -1.52 -28.84 <0.001 
Ash depth x Soil Moisture 0.17 1.47 0.14  0.34 6.22 <0.001 
Random Effects     

σ2 0.4  0.6 
τ00 Time/Plot/Subplot 0.19/ /  0.42/0.01/0.02 
N Time/Plot/Subplot 15/6/24   15/6/24 
Observations 349  348 
Marginal R2 / Condt. R2 0.312 / 0.533   0.261 / 0.575 

 

Richness 

Predictors Est Statisti
c 

p-
value   Est Statistic p-

value 
(Intercept) 6.45 18.66 <0.001  4.72 30.07 <0.001 
Time -0.05 -0.43 0.66  -0.15 -1.35 0.18 
Ash depth (cm) -0.44 -4.28 <0.001  -0.4 -3.16 0.002 
Wind speed -0.17 -1.88 0.06  - - - 
Time x Ash depth 0.27 4.37 <0.001  0.24 3.78 <0.001 
% Soil Moisture - - -  0.19 3.48 <0.001 
Random Effects 

σ2 0.11  0.11 
τ00 Time/Subplot 0.05/0.04  0.05/0.07 
N Time/Subplot 15/24   15/24 
Observations 330   337 
Marginal R2 / Condt R2            0.194 / 0.546 0.119 / 0.575 
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Table C.2.4.  Table of  multivariate negative binomial regressions from backward model 
selection and based on stepwise AIC for biomass (top section) and richness (bottom section) for 
bacterial and fungal communities for Model 2 which contains 6 timepoints only, as this were the 
only timepoint for which we had vegetation and soil nitrogen measurement.  Drivers include time 
since fire, ash depth in cm, soil pH, percent soil moisture, distance to unburn locations, and 
average wind speed (m/s), vegetation richness and Shannon diversity, and soil nitrate NO3 and 
ammonia (NH4). Significance shown in bold (p<0.05). All variables were scaled.  

              
  Bacteria   Fungi 
Biomass 
Predictors Est. Statistic p   Est. Statistic p 
(Intercept) 27.9 14.25 <0.001  30.51 9.18 <0.001 
Time -10.18 -5.25 <0.001  -12.82 -4.07 <0.001 
Soil pH -1.32 -4.75 <0.001  -2.12 -4.66 <0.001 
NH4 -0.86 -6.03 <0.001  -1.06 -4.93 <0.001 
Clay (%)     -0.27 -0.7 0.48 
Vegetation Richness 0.31 2.31 0.02  2.23 3.11 0.002 
Veg Hdiv - - -  -1.15 -1.9 0.06 
Distance Unburn -0.62 -5.73 <0.001  -0.74 -3.21 0.001 
Time x Soil pH 1.51 5.31 <0.001  1.98 4.42 <0.001 
Time x NH4 1.57 6.83 <0.001  1.5 4.15 <0.001 
Time x Hdiv - - -  1.23 1.96 0.05 
Time x Veg Richness - - -  -1.83 -2.75 0.01 
Random Effects     
    σ2 0.39  0.58 

τ00 TSFdays/ /Subplot 4.591e-12/5.402e-12  0.18/0.08 
N TSFdays/ Subplot 6/24  6/24 

Observations 140  139 
Marginal R2 / Condt 
R2 0.605 / NA 

 
0.566 / 0.700 

        
Richness               
Predictors Log-Mean Statistic p   Est Statistic p-value 
(Intercept) 5.85 27.56 <0.001  4.86 28.00 <0.001 
Time  -0.13 -0.68 0.50  -0.33 -2.95 0.003 
Ash depth (cm) -0.53 -4.48 <0.001  -0.35 -2.25 0.02 
NH4 0.15 2.05 0.04  - - - 
Veg Richness 0.46 2.75 0.01  - - - 
Soil Moisture -0.02 -0.18 0.86  - - - 
Time  x Ash depth 0.20 1.99 0.05  0.25 2.14 0.03 
Time x NH4 -0.39 -2.70 0.01  - - - 
Time x Veg Richness -0.25 -1.92 0.06  - - - 
Ash Depth x Soil 
Moisture 0.15 1.84 0.07 

 - - - 
Vegetation Hdiv - - -  0.22 2.31 0.02 
Random Effects        

σ2 0.07  0.09 
τ00 TSFdays/ Plot/Subplot 0.02/0.02/0.01  0.0003/0.02/0.05 
N TSFdays/ Plot/Subplot 6/6/24   6/6/24 
Observations 125   136 
Marginal R2 / 

Condt R2 0.311 / 0.583   0.111 / 0.501 
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Table C.2.5. Generalized liner regression results testing the difference in community 
stability between burned and unburned communities (treatment), and kingdoms (bacteria 
vs. fungi). Significance shown in bold (p<0.005).  
 

        

            Est       
T P-value 

(Intercept) 0.27 31.78  
Treatment (Burned) 0.28 34.6 < 2.2e-16 
Taxa (Fungi) -9.10E-02 -13.32 < 2.2e-16 
Treatment (Burned) x 
Taxa (Fungi) -0.16 -36.25 < 2.2e-16 

 4.80E-02 8.85  
    

Random effects    
 TSF days/Plot 5.7e-04/6.1e-05 
Marginal and Conditional 
R2 0.68/0.76 
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Table C.2.6. Overall effects of time and species richness (observed ASV) and their first 
order interactions on unburned bacterial and fungal community stability. Significance 
shown in bold (p<0.05). 
 
  Bacteria   Fungi 

  Est t 
value P-value   Est t value P-value 

Intercept) 0.24 21.68   0.05 3.83  
Time 6.0-06 0.36 0.02  -1.5-05 -0.93 0.67 
Richness 6.6-05 3.54 <0.0001  2.3-04 5.68  <2e-16 
Time x Richness 1.7-08 0.46 0.65  6.5-08 1.21 0.23 

 
Random effects    
Time/Subplot 1.28-05/4.2-04  1.3-05/4.2-04 
Marginal/condt R2 0.11/0.44  0.37/0.54 
        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 232 

Table C.2.7. Overall effects of time and species richness (observed ASV) and their first 
order interactions on burned bacterial and fungal community stability. Significance 
shown in bold (p<0.05).  
 
 

  
  Bacteria   Fungi 

  Est t 
value 

P-
value   Est t value P-value 

(Intercept) 0.07 6.27   0.04 13.479  
Time 1.3-04 6.93 2.9-07  1.8-05 4.1 < 2e-16 
Richness 2.6-04 14.2 < 2.2-16  2.4-04 11.0 < 2e-16 
Time x Richness -1.4-07 -5.11 3.3-07  6.9-08 1.895 0.06 

        
Random effects    

Time/Subplot 0.001/0.0001                0.00002/4.9e-06 
Marginal and condt  R2 0.62/0.80   0.61/0.65 
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Table C.2.8. Permutational multivariate analysis of variance (PERMANOVA) for 
bacterial and fungal community composition. Based on 9999 permutations. Significance 
p<0.05 (bold). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Sum of Sqs R2 Pr(>F) 

Bacteria 
Treatment 8.56 0.04 0.0001 
Time since fire (TSF) 5.91 0.03 0.0001 
Treatment x TSF 3.41 0.02 0.0001 

     

Fungi 
Treatment 8.56 0.04 0.0001 
Time since fire (TSF) 5.91 0.03 0.0001 
Treatment x TSF 3.41 0.02 0.0001 
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Table C.2.9. Mean and percent change in relative abundance of the most dominant 
bacterial and fungal genera in the burned plots over time. Time is denoted as days (d)  
and months (m). Percent changes in relative abundance is based in comparison of  
relative abundance at each progressive timepoint to 17 days post-fire (base level).  
 

       
Time Bacterial Genus mean percent Fungal Genus mean percent 
17d Blastococcus 0.014 0% Pyronema 0.031 0% 
25d Blastococcus 0.016 1506% Pyronema 0.266 75390% 
34d Blastococcus 0.003 -7824% Pyronema 0.629 191933% 
67d Blastococcus 0.004 -7012% Pyronema 0.627 191316% 
95d Blastococcus 0.010 -2673% Pyronema 0.375 110229% 
131d Blastococcus 0.013 -597% Pyronema 0.331 96091% 
187d Blastococcus 0.022 6055% Pyronema 0.191 51214% 
286d Blastococcus 0.038 17321% Pyronema 0.226 62409% 
376d Blastococcus 0.039 17858% Pyronema 0.196 53021% 
16m Blastococcus 0.040 19074% Pyronema 0.186 49572% 
20m Blastococcus 0.052 27266% Pyronema 0.135 33465% 

23.5m Blastococcus 0.058 31906% Pyronema 0.111 25557% 
28m Blastococcus 0.054 29060% Pyronema 0.095 20457% 
32m Blastococcus 0.061 33992% Pyronema 0.123 29320% 
36m Blastococcus 0.056 30805% Pyronema 0.125 30058% 
40m Blastococcus 0.052 27618% Pyronema 0.080 15809% 
44m Blastococcus 0.046 23114% Pyronema 0.007 -7908% 
17d Bryobacter 0.022 0% Penicillium 0.029 0% 
25d Bryobacter 0.017 -2283% Penicillium 0.144 39716% 
34d Bryobacter 0.006 -7228% Penicillium 0.081 18089% 
67d Bryobacter 0.006 -7236% Penicillium 0.128 34204% 
95d Bryobacter 0.006 -7088% Penicillium 0.220 66044% 
131d Bryobacter 0.004 -8012% Penicillium 0.157 44021% 
187d Bryobacter 0.007 -6901% Penicillium 0.185 53761% 
286d Bryobacter 0.010 -5534% Penicillium 0.109 27545% 
376d Bryobacter 0.011 -5004% Penicillium 0.162 45883% 
16m Bryobacter 0.011 -5008% Penicillium 0.186 54267% 
20m Bryobacter 0.011 -4808% Penicillium 0.121 31569% 

23.5m Bryobacter 0.012 -4375% Penicillium 0.128 34135% 
28m Bryobacter 0.011 -4788% Penicillium 0.100 24462% 
32m Bryobacter 0.011 -5141% Penicillium 0.131 35246% 
36m Bryobacter 0.012 -4437% Penicillium 0.051 7660% 
40m Bryobacter 0.016 -2906% Penicillium 0.067 13214% 
44m Bryobacter 0.012 -4370% Penicillium 0.202 59652% 
17d Cohnella 0.018 0% Aspergillus 0.004 0% 
25d Cohnella 0.035 9234% Aspergillus 0.057 147665% 
34d Cohnella 0.040 12132% Aspergillus 0.036 88771% 
67d Cohnella 0.043 14171% Aspergillus 0.051 131241% 
95d Cohnella 0.046 15669% Aspergillus 0.126 339822% 
131d Cohnella 0.022 2501% Aspergillus 0.097 261103% 
187d Cohnella 0.012 -3148% Aspergillus 0.084 223962% 
286d Cohnella 0.006 -6422% Aspergillus 0.051 131594% 
376d Cohnella 0.008 -5642% Aspergillus 0.111 297749% 
16m Cohnella 0.005 -7156% Aspergillus 0.089 237482% 
20m Cohnella 0.004 -7843% Aspergillus 0.073 193885% 

23.5m Cohnella 0.005 -7064% Aspergillus 0.112 302715% 
28m Cohnella 0.005 -7459% Aspergillus 0.060 156698% 
32m Cohnella 0.004 -7588% Aspergillus 0.054 139964% 
36m Cohnella 0.004 -7958% Aspergillus 0.034 84596% 
40m Cohnella 0.003 -8502% Aspergillus 0.030 74714% 
44m Cohnella 0.026 4356% Aspergillus 0.066 174466% 
17d Conexibacter 0.040 0% Alternaria 0.000 0% 
25d Conexibacter 0.031 -2390% Alternaria 0.012 1272233% 
34d Conexibacter 0.006 -8499% Alternaria 0.006 589549% 
67d Conexibacter 0.006 -8566% Alternaria 0.004 377894% 
95d Conexibacter 0.003 -9257% Alternaria 0.024 2406775% 
131d Conexibacter 0.004 -8988% Alternaria 0.028 2904030% 
187d Conexibacter 0.004 -8940% Alternaria 0.022 2222724% 
286d Conexibacter 0.010 -7409% Alternaria 0.009 941832% 
376d Conexibacter 0.020 -5123% Alternaria 0.005 551004% 
16m Conexibacter 0.013 -6773% Alternaria 0.048 4953330% 
20m Conexibacter 0.018 -5604% Alternaria 0.051 5212007% 

23.5m Conexibacter 0.021 -4682% Alternaria 0.028 2836811% 
28m Conexibacter 0.017 -5678% Alternaria 0.034 3519902% 
32m Conexibacter 0.015 -6152% Alternaria 0.020 2023031% 
36m Conexibacter 0.014 -6472% Alternaria 0.038 3868868% 
40m Conexibacter 0.016 -5935% Alternaria 0.037 3780559% 
44m Conexibacter 0.020 -5102% Alternaria 0.015 1495477% 
17d Domibacillus 0.001 0% Coniochaeta 0.023 0% 
25d Domibacillus 0.012 171274% Coniochaeta 0.037 5787% 
34d Domibacillus 0.094 1433318% Coniochaeta 0.042 7781% 
67d Domibacillus 0.082 1253884% Coniochaeta 0.074 21403% 
95d Domibacillus 0.019 286111% Coniochaeta 0.091 28608% 
131d Domibacillus 0.011 162422% Coniochaeta 0.185 68916% 
187d Domibacillus 0.011 158836% Coniochaeta 0.144 51391% 
286d Domibacillus 0.006 82501% Coniochaeta 0.180 66460% 
376d Domibacillus 0.012 167988% Coniochaeta 0.150 53881% 
16m Domibacillus 0.012 168806% Coniochaeta 0.076 22516% 
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20m Domibacillus 0.008 110746% Coniochaeta 0.070 19740% 
23.5m Domibacillus 0.012 178759% Coniochaeta 0.090 28346% 
28m Domibacillus 0.006 85855% Coniochaeta 0.078 23065% 
32m Domibacillus 0.005 67065% Coniochaeta 0.053 12468% 
36m Domibacillus 0.006 83418% Coniochaeta 0.064 17083% 
40m Domibacillus 0.003 31902% Coniochaeta 0.078 23043% 
44m Domibacillus 0.016 233554% Coniochaeta 0.037 5834% 
17d Massilia 0.004 0% Naganishia 0.000 0% 
25d Massilia 0.004 1370% Naganishia 0.000 -5567% 
34d Massilia 0.320 836905% Naganishia 0.001 162235% 
67d Massilia 0.280 731450% Naganishia 0.001 88271% 
95d Massilia 0.312 816534% Naganishia 0.012 1366308% 
131d Massilia 0.258 672419% Naganishia 0.019 2183628% 
187d Massilia 0.168 434042% Naganishia 0.019 2215468% 
286d Massilia 0.111 282816% Naganishia 0.039 4592972% 
376d Massilia 0.070 176281% Naganishia 0.016 1855166% 
16m Massilia 0.054 134026% Naganishia 0.047 5569970% 
20m Massilia 0.039 92400% Naganishia 0.037 4341369% 

23.5m Massilia 0.037 87346% Naganishia 0.037 4400137% 
28m Massilia 0.047 113159% Naganishia 0.124 14619287% 
32m Massilia 0.038 90494% Naganishia 0.047 5495374% 
36m Massilia 0.034 80307% Naganishia 0.063 7455776% 
40m Massilia 0.020 43750% Naganishia 0.053 6179650% 
44m Massilia 0.020 43433% Naganishia 0.054 6365426% 
17d Paenibacillus 0.026 0% Geopora 0.020 0% 
25d Paenibacillus 0.039 5176% Geopora 0.002 -8984% 
34d Paenibacillus 0.084 22459% Geopora 0.002 -9159% 
67d Paenibacillus 0.077 19813% Geopora 0.001 -9673% 
95d Paenibacillus 0.096 27472% Geopora 0.000 -9796% 
131d Paenibacillus 0.062 14031% Geopora 0.000 -9865% 
187d Paenibacillus 0.034 3335% Geopora 0.002 -8827% 
286d Paenibacillus 0.012 -5335% Geopora 0.018 -1152% 
376d Paenibacillus 0.015 -3988% Geopora 0.001 -9749% 
16m Paenibacillus 0.013 -5102% Geopora 0.002 -8899% 
20m Paenibacillus 0.009 -6361% Geopora 0.022 602% 

23.5m Paenibacillus 0.006 -7592% Geopora 0.074 26456% 
28m Paenibacillus 0.005 -8119% Geopora 0.069 23751% 
32m Paenibacillus 0.006 -7587% Geopora 0.082 30321% 
36m Paenibacillus 0.005 -7999% Geopora 0.124 50940% 
40m Paenibacillus 0.004 -8306% Geopora 0.070 24222% 
44m Paenibacillus 0.039 5183% Geopora 0.126 51842% 
17d Segetibacter 0.001 0% Coprinellus 0.000 0% 
25d Segetibacter 0.001 3608% Coprinellus 0.000 -8361% 
34d Segetibacter 0.001 -3599% Coprinellus 0.000 -6214% 
67d Segetibacter 0.001 2894% Coprinellus 0.000 -8243% 
95d Segetibacter 0.002 12768% Coprinellus 0.000 -6065% 
131d Segetibacter 0.008 72076% Coprinellus 0.005 113167% 
187d Segetibacter 0.022 227710% Coprinellus 0.021 482315% 
286d Segetibacter 0.031 328444% Coprinellus 0.046 1071720% 
376d Segetibacter 0.018 185169% Coprinellus 0.069 1593834% 
16m Segetibacter 0.037 397055% Coprinellus 0.008 175616% 
20m Segetibacter 0.033 351126% Coprinellus 0.012 275486% 

23.5m Segetibacter 0.033 345614% Coprinellus 0.048 1109182% 
28m Segetibacter 0.053 567996% Coprinellus 0.043 984633% 
32m Segetibacter 0.046 494200% Coprinellus 0.096 2229270% 
36m Segetibacter 0.052 554087% Coprinellus 0.030 677201% 
40m Segetibacter 0.051 547779% Coprinellus 0.064 1470545% 
44m Segetibacter 0.040 428778% Coprinellus 0.073 1679683% 
17d Sphingomonas 0.008 0%    
25d Sphingomonas 0.005 -3540%    
34d Sphingomonas 0.008 -946%    
67d Sphingomonas 0.003 -6202%    
95d Sphingomonas 0.007 -2105%    
131d Sphingomonas 0.009 1094%    
187d Sphingomonas 0.012 4148%    
286d Sphingomonas 0.012 3800%    
376d Sphingomonas 0.010 2048%    
16m Sphingomonas 0.038 35308%    
20m Sphingomonas 0.016 9254%    

23.5m Sphingomonas 0.017 10340%    
28m Sphingomonas 0.019 12299%    
32m Sphingomonas 0.017 10052%    
36m Sphingomonas 0.020 14452%    
40m Sphingomonas 0.030 25808%    
44m Sphingomonas 0.032 28520%    
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Table C.2.10. Burned Generalized Dissimilarity Model (GDM) models for bacterial 
(left) and fungal (right) community composition. All variables were scaled and 
significance tested via 999 permutations via backward model selection. Top panels are 
based on model 1 variables (). Bottom panel are model 2 include the variables in model 1, 
plus NH4, NO3 and vegetation richness and Shannon diversity.  

Mod 1  
 Bacteria  Fungi 
  Importance P-value   Importance P-value 
Geographic 4.58 0  10.07 0 
Time  95.82 0  82.57 0 
Distance Unburn NA NA  - - 
Ash depth (cm) NA NA  5.80 0 
Soil Moisture NA NA  NA NA 
Clay (%) NA NA  NA NA 
Soil pH NA NA  NA NA 
Wind speed NA NA  - - 

    - - 
Model deviance 2203.33  2540.47 
Percent deviance explained 34.87  34.77 
Model p-value 0   0 

  
Mod 2: Vegetation + Nitrogen 

  Importance P-value   Importance P-value 

Geographic 3.31 0  6.315 0 
Vegetation Hdiv NA NA  NA NA 
Time  91.29 0  93.992 0 
Ash depth (cm) 5.45 0  NA NA 
Soil Moisture NA NA  NA NA 
Clay (%) NA NA  NA NA 
NO3 NA NA  NA NA 
NH4 NA NA  NA NA 
Vegetation Richness NA NA  NA NA 
Soil pH NA NA  NA NA 
Wind speed NA NA  - - 

      
Model deviance 317.154  370.78 
Percent deviance explained 42.683  48.111 
Model p-value 0   0 
All models fitted with permutations 999 
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Table C.2.11. Unburned Generalized Dissimilarity Model (GDM) models for bacterial 
(left) and fungal (right) community composition. All variables were scaled and 
significance tested via 999 permutations via backward model selection. Top panels are 
based on model 1 variables (). Bottom panel are model 2 include the variables in model 1, 
plus NH4, NO3 and vegetation richness and Shannon diversity.  
 

Mod 1  
 Bacteria  Fungi 

  Importance P-value   Importance P-value 

Geographic 5.135 0  8.374 0 
Time  0.904 0  1.257 0 
Soil Moisture 8.657 0  NA NA 
Clay (%) 19.789 0  19.429 0 
Soil pH 8.854 0  NA NA 
Wind speed 0.073 0  - - 

   
   

Model deviance 268.306  615.974 
Percent deviance explained 20.522  32.398 
Model p-value 0  0 

  
Mod 2: Vegetation + Nitrogen           
  Importance P-value   Importance P-value 
Geographic 8.797 0  11.36 0 

Vegetation Hdiv NA NA  NA NA 

Soil Moisture 15.891 0  6.17 0 

Clay (%) 4.558 0  9.66 0 

NH4 NA NA  - - 
Vegetation Richness NA NA  8.297 0 
Soil pH 6.96 0  NA NA 
Wind speed NA NA  NA NA 

      
Model deviance 23.122  95.34 
Percent deviance explained 39.004  39.49 

Model p-value 0   0 

  
 




